Powered by Deep Web Technologies
Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

,"Alabama Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

2

Origin State Destination State STB EIA STB EIA Alabama  

Gasoline and Diesel Fuel Update (EIA)

W - - - - - - - Alabama New Jersey - W - W W W - W Arizona Arizona - W - W W W - W Colorado Alabama W 34.52 W 62.70 55.1% 2,898 W 96.7% Colorado Arizona W W W W W W W W...

3

Origin State Destination State STB EIA STB EIA Alabama  

Gasoline and Diesel Fuel Update (EIA)

- W - W W W - W Alabama Pennsylvania - W - W W W - W Arizona Arizona - W - W W W - W Colorado Alabama W 30.35 W 70.84 42.8% 905 W 95.3% Colorado Arizona W W W W W W W W Colorado...

4

Miscellaneous States Coalbed Methane Proved Reserves Revision...  

U.S. Energy Information Administration (EIA) Indexed Site

Revision Decreases (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

5

GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA  

SciTech Connect (OSTI)

Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in Alabama emit approximately 31 MMst (2.4 Tcf) of CO{sub 2} annually. The total sequestration capacity of the Black Warrior coalbed methane fairway at 350 psi is about 189 MMst (14.9 Tcf), which is equivalent to 6.1 years of greenhouse gas emissions from the coal-fired power plants. Applying the geologic screening model indicates that significant parts of the coalbed methane fairway are not accessible because of fault zones, coal mines, coal reserves, and formation water with TDS content less than 3,000 mg/L. Excluding these areas leaves a sequestration potential of 60 MMst (4.7 Tcf), which is equivalent to 1.9 years of emissions. Therefore, if about10 percent of the flue gas stream from nearby power plants is dedicated to enhanced coalbed methane recovery, a meaningful reduction of CO{sub 2} emissions can be realized for nearly two decades. If the fresh-water restriction were removed for the purposes of CO{sub 2} sequestration, an additional 10 MMst (0.9 Tcf) of CO{sub 2} could feasibly be sequestered. The amount of unswept coalbed methane in the fairway is estimated to be 1.49 Tcf at a pressure of 50 psi. Applying the screening model results in an accessible unswept gas resource of 0.44 Tcf. Removal of the fresh-water restriction would elevate this number to 0.57 Tcf. If a recovery factor of 80 percent can be realized, then enhanced recovery activities can result in an 18 percent expansion of coalbed methane reserves in the Black Warrior basin.

Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

2004-01-01T23:59:59.000Z

6

GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA  

SciTech Connect (OSTI)

Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and reactivity of supercritical CO{sub 2} in coal-bearing strata is unknown, and potential exists for supercritical conditions to develop below a depth of 2,480 feet following abandonment of the coalbed methane fields. High-pressure adsorption isotherms confirm that coal sorbs approximately twice as much CO{sub 2} as CH{sub 4} and approximately four times as much CO{sub 2} as N{sub 2}. Analysis of isotherm data reveals that the sorption performance of each gas can vary by a factor of two depending on rank and ash content. Gas content data exhibit extreme vertical and lateral variability that is the product of a complex burial history involving an early phase of thermogenic gas generation and an ongoing stage of late biogenic gas generation. Production characteristics of coalbed methane wells are helpful for identifying areas that are candidates for carbon sequestration and enhanced coalbed methane recovery. Many geologic and engineering factors, including well construction, well spacing, and regional structure influence well performance. Close fault spacing limits areas where five-spot patterns may be developed for enhanced gas recovery, but large structural panels lacking normal faults are in several gas fields and can be given priority as areas to demonstrate and commercialize carbon sequestration technology in coalbed methane reservoirs.

Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

2003-01-01T23:59:59.000Z

7

Miscellaneous States Coalbed Methane Proved Reserves Adjustments...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

8

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Alabama  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Alabama.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-29T23:59:59.000Z

9

,"Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click

10

Origin State Destination State STB EIA STB EIA Alabama  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794 2011-2013DecadeDelawareState Destination

11

Alabama Recovery Act State Memo | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance| DepartmentBurden RFI |Air-SourceAlabama

12

Environmental Management Commission (Alabama)  

Broader source: Energy.gov [DOE]

The Alabama Department of Environmental Management is charged with developing the state's environmental policy, hearing administrative appeals of permits, administrative orders and variances issued...

13

Methane Production: In the United States cattle emit about 5.5 million metric tons of methane per year into the  

E-Print Network [OSTI]

Methane Production: In the United States cattle emit about 5.5 million metric tons of methane per year into the atmosphere. o Accounts for 20% of methane emissions from human sources. Globally cattle produce about 80 million metric tons of methane annually. o Accounts for 28% of global methane emissions

Toohey, Darin W.

14

Western States Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet)perWestern States Coalbed Methane

15

Quarterly review of methane from coal-seams technology. Volume 7, Number 3, July-September 1989  

SciTech Connect (OSTI)

The report contains: sources of coal well information; Powder River Basin, Wyoming; greater Green River coal region, Wyoming and Colorado; Piceance Basin, Colorado; San Juan Basin, Colorado and New Mexico; Raton Basin, Colorado and New Mexico; Black Warrior Basin, Alabama; the United States coalbed methane resource; western cretaceous coal seams project; multiple coal seams project; spalling and the development of a hydraulic fracturing strategy for coal; geologic evaluation of critical production parameters for coalbed methane resources; coalbed methane opportunities in Alberta; the coalbed methane forum; eastern coalbed methane forum.

Not Available

1990-01-01T23:59:59.000Z

16

Origin State Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

7. Estimated truck transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama W W W W W Alabama...

17

Forestry Policies (Alabama)  

Broader source: Energy.gov [DOE]

Alabama's Forests are managed by the Alabama Forestry Commission. The Commission has organized biomass market resources including a number of publications with regard to biomass energy...

18

Alabama Profile  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotalnerrSpring 2008U.S.Alabama

19

,"Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved Reserves (BillionShare of Total U.S. Natural

20

,"Alabama--State Offshore Natural Gas Marketed Production (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved Reserves (BillionShare of Total U.S. NaturalMarketed

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

State-of-the-art in coalbed methane drilling fluids  

SciTech Connect (OSTI)

The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

2008-09-15T23:59:59.000Z

22

Two Alabama Elementary Schools Get Cool with New HVAC Units ...  

Broader source: Energy.gov (indexed) [DOE]

campaign. Winston's HVAC replacement project received a boost from the Alabama State Energy Program, which granted the school district a little more than 82,000 in Recovery...

23

Alabama Power- UESC Activities  

Broader source: Energy.gov [DOE]

Presentationógiven at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meetingódiscusses Alabama Power and its utility energy service contract (UESC) projects and activities.

24

Alabama - SEP | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Huntsville program fact sheet Sample Energy Performance Score report Facebook: Nexus Energy Center Alabama Program Takes a Dual Approach to Energy Efficiency Upgrades Alabama...

25

Infrared spectroscopic study of rovibrational states of methane trapped in parahydrogen crystal  

E-Print Network [OSTI]

Infrared spectroscopic study of rovibrational states of methane trapped in parahydrogen crystal observed by using Fourier transform infrared and high resolution laser spectroscopy. The observed spectrum broader lines of a width of 1 cm 1 . The infrared selection rules derived from an extended group theory

Oka, Takeshi

26

Alabama SEP Final Technical Report  

SciTech Connect (OSTI)

Executive Summary In the fall of 2010, the Alabama Department of Economic and Community Affairs (ADECA) launched the Multi-State Model for Catalyzing the National Home Energy Retrofit Market Project (Multi-State Project). This residential energy efficiency pilot program was a collaborative effort among the states of Alabama, Massachusetts, Virginia, and Washington, and was funded by competitive State Energy Program (SEP) awards through the U.S. Department of Energy (DOE). The objective of this project was to catalyze the home energy efficiency retrofit market in select areas within the state of Alabama. To achieve this goal, the project addressed a variety of marketplace elements that did not exist, or were underdeveloped, at the outset of the effort. These included establishing minimum standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency and addressing real or perceived financial barriers to investments in whole-home energy efficiency, among others. The anticipated effect of the activities would be increased market demand for retrofits, improved audit to retrofit conversion rates and growth in overall community understanding of energy efficiency. The four-state collaborative was created with the intent of accelerating market transformation by allowing each state to learn from their peers, each of whom possessed different starting points, resources, and strategies for achieving the overall objective. The four partner states engaged the National Association of State Energy Officials (NASEO) to oversee a project steering committee and to manage the project evaluation for all four states. The steering committee, comprised of key program partners, met on a regular basis to provide overall project coordination, guidance, and progress assessment. While there were variances in program design among the states, there were several common elements: use of the Energy Performance Score (EPS) platform; an audit and home energy rating tool; emphasis on community based coordination and partnerships; marketing and outreach to increase homeowner participation; training for market actors; access to financing options including rebates, incentives, and loan products; and an in depth process evaluation to support continual program improvement and analysis. In Alabama, Nexus Energy Center operated energy efficiency retrofit programs in Huntsville and Birmingham. In the Huntsville community the AlabamaWISE program was available in five Alabama counties: Cullman, Lawrence, Limestone, Madison, and Morgan. In Birmingham, the program was available to residents in Jefferson and Shelby Counties. In both communities, the program was similar in terms of program design but tailored marketing and partnerships to address the unique local conditions and population of each community. ADECA and the Southeast Energy Efficiency Alliance (SEEA) provided overall project management services and common resources to the local program administrator Nexus Energy Center, including contracted services for contractor training, quality assurance testing, data collection and reporting, and compliance. The fundamental components of the AlabamaWISE program included a vertical contractor-based business model; comprehensive energy assessments; third-party quality assurance; rebates for installation of energy saving measures; accessible, low-interest financing; targeted and inbound marketing; Energy Performance Score (EPS) tool to engage and educate homeowners; training for auditors, contractors, and real estate professionals; and online resources for education and program enrollment. Program participants were eligible to receive rebates or financing toward the assessments and upgrades to their home provided they reached at least 20 percent deemed or modeled energy savings. The design of each program focused on addressing several known barriers including: limited homeowner knowledge on the benefits of energy efficiency, lack of financing options, lack of community support for energy efficiency programs, and

Grimes, Elizabeth M.

2014-06-30T23:59:59.000Z

27

Alabama Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3

28

Water Rules (Alabama)  

Broader source: Energy.gov [DOE]

These rules and regulations shall apply to all water systems subject to the jurisdiction of the Alabama Public Service Commission. They are intended to promote good utility practices, to assure...

29

The Source of Alabamaís Abundance of Arbitration Cases: Alabamaís Bizarre Law of Damages for Mental Anguish  

E-Print Network [OSTI]

This Article gives an overview of arbitration litigation in Alabama, including the evolution of mental anguish jurisprudence in contract cases, especially with regard to the automobile and home industries; a proposal to bring Alabama law in line...

Simpson, W. Scott; Ware, Stephen J.; Willard, Vickie M.

2004-01-01T23:59:59.000Z

30

4-102 Methane is heated in a rigid container. The final pressure of the methane is to be determined using the ideal gas equation and the Benedict-Webb-Rubin equation of state.  

E-Print Network [OSTI]

4-54 4-102 Methane is heated in a rigid container. The final pressure of the methane the ideal gas equation of state, Methane 100 kPa 20qC Q kPa229.7 K293 K673 kPa)100( 1 2 12 T T PP The specific molar volume of the methane is /kmolm36.24 kPa100 K)K)(293/kmolmkPa(8.314 3 3 1 1 21 P TRu vv (b

Bahrami, Majid

31

Alabama Institute for Deaf and Blind Biodiesel Project Green  

SciTech Connect (OSTI)

Through extensive collaboration, Alabama Institute for Deaf and Blind (AIDB) is Alabama's first educational entity to initiate a biodiesel public education, student training and production program, Project Green. With state and national replication potential, Project Green benefits local businesses and city infrastructures within a 120-mile radius; provides alternative education to Alabama school systems and to schools for the deaf and blind in Appalachian States; trains students with sensory and/or multiple disabilities in the acquisition and production of biodiesel; and educates the external public on alternative fuels benefits.

Edmiston, Jessica L

2012-09-28T23:59:59.000Z

32

H. R. 2998: A bill to amend the Natural Gas Act to permit the development of coalbed methane gas in areas where its development has been impeded or made impossible by uncertainty and litigation over ownership rights, and for other purposes, introduced in the US House of Representatives, One Hundred Second Congress, First Session, July 23, 1991  

SciTech Connect (OSTI)

This bill would direct the Secretary of Energy to compile a list of affected states which are determined to be states in which disputes, uncertainty, or litigation exist or potentially exists regarding the ownership of coalbed methane; in which the development of significant deposits of coalbed methane may be impeded by such disputes; in which statutory or regulatory procedures permitting and encouraging development of coalbed methane prior to final resolution of disputes are not in place; and in which extensive development of coalbed methane does not exist. Colorado, Montana, New Mexico, Wyoming, Utah, Virginia, and Alabama are excluded from such a list since they currently have development of coalbed methane. Until the Secretary of Energy publishes a different list, the affected states are West Virginia, Pennsylvania, Kentucky, Ohio, Tennessee, Indiana, and Illinois, effective on the date of enactment of this bill.

Not Available

1991-01-01T23:59:59.000Z

33

X-ray diffraction studies and equation of state of methane at 202 GPa Liling Sun a,*, Wei Yi a  

E-Print Network [OSTI]

X-ray diffraction studies and equation of state of methane at 202 GPa Liling Sun a,*, Wei Yi that at room temperature compressed CH4 remains an insulator with cubic structure to 202 GPa. √? 2009 Elsevier B of planetary interiors and the origin of their magnetic field distribution. CH4 has a very rich phase diagram

Shen, Guoyin

34

Alabama DOT: Alabama Report Questions on NDT Testing  

E-Print Network [OSTI]

Alabama DOT: Alabama Report Questions on NDT Testing 1. What NDT testing methods for concrete materials, concrete pavements, and overlays are you trying? · We perform pavement smoothness testing, pavement friction testing and FWD testing · We are currently using GPR on the I-59 project to locate voids

35

Haleburg, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a countyon State Highways |Haiti:Haleburg, Alabama:

36

South Alabama Electric Cooperative- Residential Energy Efficiency Loan Program  

Broader source: Energy.gov [DOE]

South Alabama Electric Cooperative (SAEC) is a part owner of Alabama Electric Cooperative which has a generation facility in Andalusia, Alabama. The Energy Resources Conservation Loan (ERC) helps...

37

Alabama -- SEP Summary of Reported Data | Department of Energy  

Energy Savers [EERE]

Summary of Reported Data Alabama -- SEP Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Alabama -- SEP. Alabama Summary of...

38

Methane Hydrate Field Program  

SciTech Connect (OSTI)

This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. ē Historical Methane Hydrate Project Review Report ē Methane Hydrate Workshop Report ē Topical Report: Marine Methane Hydrate Field Research Plan ē Final Scientific/Technical Report

None

2013-12-31T23:59:59.000Z

39

Recovery Act State Memos Alabama  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList?Department09 Section 9990|Updated July 2010

40

U.S. Natural Gas System Methane Emissions: State of Knowledge from LCAs, Inventories, and Atmospheric Measurements (Presentation)  

SciTech Connect (OSTI)

Natural gas (NG) is a potential "bridge fuel" during transition to a decarbonized energy system: It emits less carbon dioxide during combustion than other fossil fuels and can be used in many industries. However, because of the high global warming potential of methane (CH4, the major component of NG), climate benefits from NG use depend on system leakage rates. Some recent estimates of leakage have challenged the benefits of switching from coal to NG, a large near-term greenhouse gas (GHG) reduction opportunity. During this presentation, Garvin will review evidence from multiple perspectives - life cycle assessments (LCAs), inventories and measurements - about NG leakage in the US. Particular attention will be paid to a recent article in Science magazine which reviewed over 20 years of published measurements to better understand what we know about total methane emissions and those from the oil and gas sectors. Scientific and policy implications of the state of knowledge will be discussed.

Heath, G.

2014-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

,"California--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry Natural Gas ExpectedWellheadCrudeCoalbed Methane

42

Quarterly Review of Methane from Coal-Seams Technology. Volume 8, Number 4, July 1991. Report for October-December 1990  

SciTech Connect (OSTI)

Contents include reports on: Powder River Basin, Wyoming and Montana; Piceance Basin, Colorado; Raton Basin, Colorado and New Mexico; Black Warrior Basin, Alabama; Coalbed Methane Development in the Appalachian Basin; Geologic Evaluation of Critical Production Parameters for Coalbed Methane Resources; Reservoir Engineering and Analysis; Coordinated Laboratory Studies in Support of Hydraulic Fracturing of Coalbed Methane; Physical Sciences Coalbed Methane Research; Coalbed Methane Opportunities in Alberta.

McBane, R.A.; Schwochow, S.D.; Stevens, S.H.

1991-01-01T23:59:59.000Z

43

The Corporate Headquarters for Alabama Power Company  

E-Print Network [OSTI]

of the "product", and also helps to delay require ments for future generating capacity. Therefore, cooling for the complex will be provided by a state of-the-art refrigeration plant and ice storage system which is capable of producing and storing one and a... 16-18, 1987 I Typical Peak Demand Breakdown Commercial Building LIGHTING (39.4%) AIR HANDLING (10.8%) / COOLING AUX (5.2%) Figure 1 DESIGN APPROACH Specific objectives established by Alabama Power for the project include: - Reduce peak...

Reardon, J. G.; Penuel, K. M.

44

,"Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion Cubic Feet)"ShaleCoalbed Methane Proved Reserves (Billion

45

Studies of the Active Sites for Methane Dehydroaromatization...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Active Sites for Methane Dehydroaromatization Using Ultrahigh-Field Solid-State Mo95 NMR Spectroscopy. Studies of the Active Sites for Methane Dehydroaromatization Using...

46

,"Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion Cubic Feet)"Shale Proved ReservesCoalbed Methane Proved

47

,"Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per ThousandPrice Sold to9"3LNGCoalbed Methane

48

Alabama Coalbed Methane Proved Reserves, Reserves Changes, and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727 1,342 1,298 1,210 1,006 413

49

Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3Proved Reserves (Billion

50

Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansion 5Wellhead99.6Year Jan6Proved

51

Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed Methane  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003of Energy2009 2010NA13,8922,297Proved

52

Solid Waste Program (Alabama)  

Broader source: Energy.gov [DOE]

This article states the authority of the department, regulations for the control of unauthorized dumping, disposal fees, violations and penalties.

53

Hazardous Waste Program (Alabama)  

Broader source: Energy.gov [DOE]

This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

54

Enterprise Zone Program (Alabama)  

Broader source: Energy.gov [DOE]

The Enterprise Zone Program provides certain tax incentives to corporations, partnerships and proprietorships that locate or expand within designated Enterprise Zones. In addition to state-level...

55

Pollution Control Equipment Tax Deduction (Alabama)  

Broader source: Energy.gov [DOE]

The Pollution Control Equipment Tax Deduction allows businesses to deduct from their Alabama net worth the net amount invested in all devices, facilities, or structures, and all identifiable...

56

Land Division: Uniform Environmental Covenants Program (Alabama)  

Broader source: Energy.gov [DOE]

These regulations apply to environmental covenants arising from environmental response projects conducted under any of the following Alabama Department of Environmental Management programs: Scrap...

57

Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8,...

58

Quasielastic electron scattering from methane, methane-d4, methane-d2, ethylene, and 2-methylpropane  

E-Print Network [OSTI]

Quasielastic electron scattering from methane, methane-d4, methane-d2, ethylene, and 2-methylpropane, ethylene, methane, and two isotopically substituted methanes, CH2D2 and CD4, at a momentum constituent. For example, Fig. 1 of Ref. 2 shows that, for gaseous methane, above a certain momentum transfer

Hitchcock, Adam P.

59

Enhanced coalbed methane recovery  

SciTech Connect (OSTI)

The recovery of coalbed methane can be enhanced by injecting CO{sub 2} in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed CO{sub 2} is permanently stored. This is called enhanced coalbed methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of CO{sub 2} in a carbon dioxide capture and storage system. This work reviews the state of the art on fundamental and practical aspects of the technology and summarizes the results of ECBM field tests. These prove the feasibility of ECBM recovery and highlight substantial opportunities for interdisciplinary research at the interface between earth sciences and chemical engineering.

Mazzotti, M.; Pini, R.; Storti, G. [ETH, Zurich (Switzerland). Inst. of Process Engineering

2009-01-15T23:59:59.000Z

60

Central-northern Appalachian coalbed methane flow grows  

SciTech Connect (OSTI)

Over the past decade in the US, coalbed methane (CBM) has become an increasingly important source of unconventional natural gas. The most significant CBM production occurs in the San Juan basin of Colorado and new Mexico and the Black Warrior basin of Alabama, which collective in 1995 accounted for about 94% of US CBM production. The paper discusses early CBM production, recent production, gas composition, undiscovered potential, and new exploration areas.

Lyons, P.C. [Geological Survey, Reston, VA (United States)

1997-07-07T23:59:59.000Z

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alabama  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotalnerrSpring 2008

62

Global Assessment of Hydrogen Technologies Ė Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies  

SciTech Connect (OSTI)

This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOEís high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies Ė steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

2007-12-01T23:59:59.000Z

63

Alabama State Historic Preservation Programmatic Agreement  

Broader source: Energy.gov (indexed) [DOE]

heating heat recovery systems, and other energy recovery equipment k. Repair or replace electric motors and motor controls like valiable speed drives I. Incorporate other...

64

Coal Bed Methane Primer  

SciTech Connect (OSTI)

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

65

Aachen RWTH Aarhus University Aberdeen University Adelaide University Alabama University Alberta University Amsterdam University Arizona University Auckland University Australian National University Bath University Beijing  

E-Print Network [OSTI]

Massachusetts University Massey University McGill University McMaster University Melbourne University Michigan State University Michigan University Minnesota University Monash University Montpellier UniversityAachen RWTH Aarhus University Aberdeen University Adelaide University Alabama University Alberta

Tisdell, Chris

66

Measurements of Methane Emissions at Natural Gas Production Sites  

E-Print Network [OSTI]

Measurements of Methane Emissions at Natural Gas Production Sites in the United States #12;Why = 21 #12;Need for Study · Estimates of methane emissions from natural gas production , from academic in assumptions in estimating emissions · Measured data for some sources of methane emissions during natural gas

Lightsey, Glenn

67

An improved third order dipole moment surface for methane  

E-Print Network [OSTI]

An improved third order dipole moment surface for methane P. Cassam-Chena¨i Laboratoire J and used to calculate the rotational spectrum of methane vibrational ground state, by means. Keywords: Dipole moment surface; methane; generalized mean field configuration interaction. Suggested

Paris-Sud XI, Université de

68

Alabama Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

69

Gordon, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy ResourcesGordon, Alabama: Energy Resources Jump to:

70

Rehobeth, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue Ridge And Piedmont Provinces |Rehobeth, Alabama: Energy

71

,"Alabama Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

72

Energy Secretary Bodman Tours Alabama Red Cross Facility and...  

Broader source: Energy.gov (indexed) [DOE]

Remembrance Service with Governor Riley September 16, 2005 - 10:24am Addthis MONTGOMERY, AL - Today, Secretary of Energy Samuel W. Bodman traveled to Montgomery, Alabama, to...

73

ALABAMA GETS WISE ABOUT SELLING UPGRADES | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

financing products, and stakeholder education and training. Managed by Nexus Energy Center, AlabamaWISE achieved success through high involvement from contractors to...

74

Alabama Family Staying Nice and Cozy This Fall  

Broader source: Energy.gov [DOE]

Recovery Act money to weatherize homes has resulted in much lower energy bills for Alabama families, including Mary, whose bill is about $300 cheaper now.

75

E-Print Network 3.0 - alabama volume ii Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

License Sales in Alabama Summary: in Alabama by Sayeed Mehmood, Daowei Zhang and James Armstrong* June 18, 2003 *The authors are, respectively... of this paper. This research is...

76

Water Pollution Control Authority (Alabama)  

Broader source: Energy.gov [DOE]

The Water Pollution Control Revolving Loan Fund, is maintained in perpetuity and operated by the department as agent for the authority for the purposes stated herein. Grants from the federal...

77

Brownfield Development Tax Abatements (Alabama)  

Broader source: Energy.gov [DOE]

The Brownfield Development Tax Abatements gives cities and counties the ability to abate, non-educational city and county sales and use taxes, non-educational state, city and county property taxes ...

78

Portland Cement Concrete Pavement Shannon Golden, Alabama DOT  

E-Print Network [OSTI]

Portland Cement Concrete Pavement Shannon Golden, Alabama DOT PORTLAND CEMENT CONCRETE PAVEMENT PROJECT · First in Alabama in more than 25 years! · IM-I059 (342) Etowah County ­ I-59 Concrete Pavement Rehabilitation with Unbonded Concrete Overlay ­ Length: 10.9 miles ­ Thickness: 11.0 to 13.5 inches ­ Volume: 300

79

Coker, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy, -105.3774934¬įCoda BatteryCohoe, Alaska:Coker, Alabama:

80

Cowarts, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova39. It is classified as ASHRAECowarts, Alabama:

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Ariton, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergy InformationArcata,Koblitz JumpAriton, Alabama: Energy

82

Ashford, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergyElectric Coop CorpInformationAscopiaveAlabama: Energy

83

Brookwood, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais a village in CookEnergyBrookwood, Alabama: Energy Resources

84

Energy Incentive Programs, Alabama | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica, N.Y.EnergyDepartment ofScheduleFrom theAlabama

85

Tennessee Valley Authority (Alabama) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:TaosISGANAttribution(Alabama) Jump to: navigation, search

86

Enterprise, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformation ContractsCGNPC JV JumpEnphaseEnterprise, Alabama:

87

Coalbed Methane Reserves Extensions  

U.S. Energy Information Administration (EIA) Indexed Site

724 497 736 166 278 2009-2013 Federal Offshore U.S. 0 0 0 0 0 2009-2013 Pacific (California) 0 0 0 0 0 2009-2013 Gulf of Mexico (Louisiana & Alabama) 0 0 0 0 0 2009-2013 Gulf of...

88

Coalbed Methane Reserves Adjustments  

U.S. Energy Information Administration (EIA) Indexed Site

-14 784 -15 1,327 -309 2009-2013 Federal Offshore U.S. 0 0 0 0 0 2009-2013 Pacific (California) 0 0 0 0 0 2009-2013 Gulf of Mexico (Louisiana & Alabama) 0 0 0 0 0 2009-2013 Gulf of...

89

Coalbed Methane Reserves Sales  

U.S. Energy Information Administration (EIA) Indexed Site

08 366 1,775 200 869 2009-2013 Federal Offshore U.S. 0 0 0 0 0 2009-2013 Pacific (California) 0 0 0 0 0 2009-2013 Gulf of Mexico (Louisiana & Alabama) 0 0 0 0 0 2009-2013 Gulf of...

90

Coalbed Methane Reserves Acquisitions  

U.S. Energy Information Administration (EIA) Indexed Site

24 226 1,710 36 42 2009-2013 Federal Offshore U.S. 0 0 0 0 0 2009-2013 Pacific (California) 0 0 0 0 0 2009-2013 Gulf of Mexico (Louisiana & Alabama) 0 0 0 0 0 2009-2013 Gulf of...

91

Area balance and strain in coalbed methane reservoirs of the Black Warrior basin  

SciTech Connect (OSTI)

Investigation of coalbed methane reservoirs in the Black Warrior basin of Alabama has established a correspondence between productivity and structural position, but the reasons for this correspondence remain uncertain. In Cedar Cove field, for example, exceptionally productive wells are concentrated in a rollover anticline, whereas in Oak Grove field, exceptionally productive wells are aligned along a synclinal axis. This suggests that factors controlling gas production are a derivative of the structural geometry, and not the geometry by itself. Natural fractures and a low state of in-situ stress facilitate depressurization of coalbed reservoirs by dewatering, and hence, desorption and production of coalbed gas. Our hypothesis is that the abundance and openness of natural fractures in the Black Warrior basin are a direct expression of the layer-parallel strain dictated by map-scale structural geometry. Area balancing techniques can be used to quantify requisite strain, which is the homogeneous layer-parallel strain required for local area balance, and can also be used to constrain and verify structural cross sections. Application of area balancing techniques to extensional structures in the Black Warrior basin indicates that coalbed gas is produced from thin-skinned structures detached within the coal-bearing Pottsville Formation. Within reservoir intervals, requisite strain values are as high as 10 percent and increase downward toward the basal detachment. Mapping structure and production indicates that some productivity sweet spots correlate with enhanced bed curvature. Whereas requisite strain is the homogeneous strain calculated for discrete bed segments, curvature affects the distribution of strain within those segments. Recognizing this, our research is now focused on integrating area balancing techniques with curvature analysis to explain production patterns in coalbed methane reservoirs.

Pashin, J.C. [Geological Survey of Alabama, Tuscaloosa, AL (United States); Groshong, R.H., Jr. [Univ. of Alabama, Tuscaloosa, AL (United States)

1996-09-01T23:59:59.000Z

92

Methane Digester Loan Program  

Broader source: Energy.gov [DOE]

Established in 1998, the Minnesota Dept. of Agriculture Methane Digester Loan Program helps livestock producers install on-farm anaerobic digesters used for the production of electricity by...

93

Four-State Residential Retrofit and Energy Labeling Project: Process Evaluation and Results Webinar  

Broader source: Energy.gov [DOE]

The State Energy Offices in Alabama, Massachusetts, Virginia, and Washington recently completed a multi-year residential energy efficiency pilot program funded by a competitive State Energy Program...

94

Methanation assembly using multiple reactors  

DOE Patents [OSTI]

A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

Jahnke, Fred C.; Parab, Sanjay C.

2007-07-24T23:59:59.000Z

95

Origin State Destination State STB EIA STB EIA Alabama  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794 2011-2013DecadeDelaware

96

Mechanistic Studies on the Hydroxylation of Methane by Methane Monooxygenase  

E-Print Network [OSTI]

Mechanistic Studies on the Hydroxylation of Methane by Methane Monooxygenase Mu-Hyun Baik, Martin 2393 3.1. KIE in Methane Oxidations 2394 3.2. Primary and Secondary KIEs 2396 3.3. Other KIEs 2396 3 are bacteria that live on methane as their only source of carbon.1 The first step in their utilization

Baik, Mu-Hyun

97

Energy Standards for State Agencies  

Broader source: Energy.gov [DOE]

In May 2006 the governor of Alabama issued Executive Order 33 mandating that state departments and agencies encourage and promote the conservation of energy in state-owned buildings.In November...

98

Rapid communication Mapping urban pipeline leaks: Methane leaks across Boston  

E-Print Network [OSTI]

Rapid communication Mapping urban pipeline leaks: Methane leaks across Boston Nathan G. Phillips a of methane (CH4) in the United States. To assess pipeline emissions across a major city, we mapped CH4 leaks extraction and pipeline transmission are the largest human-derived source of emissions (EPA, 2012). However

Jackson, Robert B.

99

Alabama Power Co (Alabama) EIA Revenue and Sales - November 2008 | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowattOpen2008 |Energy Information Alabama Power

100

Alabama Power Co (Alabama) EIA Revenue and Sales - October 2008 | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowattOpen2008 |Energy Information Alabama

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Alabama Power Co (Alabama) EIA Revenue and Sales - September 2008 | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowattOpen2008 |Energy Information AlabamaEnergy

102

Methane emission from flooded coal seams in abandoned mines, in the light of laboratory investigations  

E-Print Network [OSTI]

Methane emission from flooded coal seams in abandoned mines, in the light of laboratory of methane from flooded unexploited coal seams Field experience from the flooding operations of the abandoned sorption capacity of coal in the dry-air state through determining the isotherm of methane sorption

Boyer, Edmond

103

E-Print Network 3.0 - alabama eastern gulf Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sample search results for: alabama eastern gulf Page: << < 1 2 3 4 5 > >> 1 Curriculum vitae Steven J.A. Kimble Summary: of Alabama at Birmingham (UAB) Birmingham, AL May...

104

Impacts of House Bill 56 on the Construction Economy in Alabama  

E-Print Network [OSTI]

bill, and its impact on the construction economy in Alabama. The study utilized construction employment rates, construction GDP, and construction spending as the major indices detailing the ďhealthĒ of the construction economy in Alabama. This research...

Bilbo, David; Escamilla, Edelmiro; Bigelow, Ben F.; Garcia, Jose

105

SEP Success Story: Alabama Institute for Deaf and Blind to Launch...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Alabama Institute for Deaf and Blind to Launch Lighting Project SEP Success Story: Alabama Institute for Deaf and Blind to Launch Lighting Project August 20, 2010 - 9:44am Addthis...

106

Electrochemical methane sensor  

DOE Patents [OSTI]

A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

Zaromb, S.; Otagawa, T.; Stetter, J.R.

1984-08-27T23:59:59.000Z

107

Journal of Electron Spectroscopy and Related Phenomena 155 (2007) 2834 Electron Compton scattering from methane and methane-d4  

E-Print Network [OSTI]

from methane and methane-d4 G. Coopera, A.P. Hitchcocka,, C.A. Chatzidimitriou-Dreismannb, M. Vosc]. © 2006 Elsevier B.V. All rights reserved. Keywords: Quasi-elastic electron scattering; Methane; CD4

Hitchcock, Adam P.

108

Integrated Distribution Management System for Alabama Principal Investigator  

SciTech Connect (OSTI)

Southern Company Services, under contract with the Department of Energy, along with Alabama Power, Alstom Grid (formerly AREVA T&D) and others moved the work product developed in the first phase of the Integrated Distribution Management System (IDMS) from ďProof of ConceptĒ to true deployment through the activity described in this Final Report. This Project Ė Integrated Distribution Management Systems in Alabama Ė advanced earlier developed proof of concept activities into actual implementation and furthermore completed additional requirements to fully realize the benefits of an IDMS. These tasks include development and implementation of a Distribution System based Model that enables data access and enterprise application integration.

Schatz, Joe

2013-03-31T23:59:59.000Z

109

The basics of coalbed methane  

SciTech Connect (OSTI)

The report is an overview of coalbed methane (CBM), also known as coal seam gas. It provides an overview of what coalbed methane is and the current status of global coalbed methane exploration and production. Topics covered in the report include: An analysis of the natural gas industry, including current and future production, consumption, and reserves; A detailed description of coalbed methane, its characteristics, and future potential; An analysis of the key business factors that are driving the increased interest in coalbed methane; An analysis of the barriers that are hindering the development of coalbed methane; An overview of the technologies used for coalbed methane production and water treatment; and Profiles of key coalbed methane producing countries. 25 figs., 5 tabs., 1 app.

NONE

2006-12-15T23:59:59.000Z

110

ISSUE PAPER METHANE AVOIDANCE FROM  

E-Print Network [OSTI]

ISSUE PAPER METHANE AVOIDANCE FROM COMPOSTING An Issue Paper for the: Climate Action Reserve...........................................................................................................39 6.2. Standard Methods for Quantifying Methane from Organic Waste in Landfills...40 6.3. GHG

Brown, Sally

111

5, 94059445, 2005 Methane emissions  

E-Print Network [OSTI]

ACPD 5, 9405­9445, 2005 Methane emissions from SCIAMACHY observations J. F. Meirink et al. Title and Physics Discussions Sensitivity analysis of methane emissions derived from SCIAMACHY observations through, 9405­9445, 2005 Methane emissions from SCIAMACHY observations J. F. Meirink et al. Title Page Abstract

Paris-Sud XI, Université de

112

4, 9931057, 2007 Methane hydrate  

E-Print Network [OSTI]

BGD 4, 993­1057, 2007 Methane hydrate stability and anthropogenic climate change D. Archer Title Discussions Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences Methane 2007 Correspondence to: D. Archer (d-archer@uchicago.edu) 993 #12;BGD 4, 993­1057, 2007 Methane hydrate

Paris-Sud XI, Université de

113

5, 243270, 2008 Methane emissions  

E-Print Network [OSTI]

BGD 5, 243­270, 2008 Methane emissions from plant biomass I. Vigano et al. Title Page Abstract and temperature on the emission of methane from plant biomass and structural components I. Vigano 1 , H. van.roeckmann@phys.uu.nl) 243 #12;BGD 5, 243­270, 2008 Methane emissions from plant biomass I. Vigano et al. Title Page Abstract

Paris-Sud XI, Université de

114

The Tri--Methane Rearrangement  

E-Print Network [OSTI]

The Tri--Methane Rearrangement #12;Cirkva, Vladimir; Zuraw, Michael J.; Zimmerman, Howard E.* Department of Chemistry, University of Wisconsin, Madison, WI 53706 #12;INTRODUCTION The tri--methane of a cyclopentene 5a, but only in crystalline medium. However, in the solution photochemistry of tri--methane system

Cirkva, Vladimir

115

METHANE OXIDATION (AEROBIC) Helmut Brgmann  

E-Print Network [OSTI]

METHANE OXIDATION (AEROBIC) Helmut B√ľrgmann Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland Synonyms Methanotrophy Definition Methane oxidation is a microbial metabolic process for energy generation and carbon assimilation from methane that is carried out by specific

Wehrli, Bernhard

116

6, 68416852, 2006 Methane emission  

E-Print Network [OSTI]

ACPD 6, 6841­6852, 2006 Methane emission from savanna grasses E. Sanhueza and L. Donoso Title Page Chemistry and Physics Discussions Methane emission from tropical savanna Trachypogon sp. grasses E. Sanhueza;ACPD 6, 6841­6852, 2006 Methane emission from savanna grasses E. Sanhueza and L. Donoso Title Page

Boyer, Edmond

117

The Tri--Methane Rearrangement  

E-Print Network [OSTI]

The Tri--Methane Rearrangement #12;Církva, Vladimír; Zuraw, Michael J.; Zimmerman, Howard E.* Department of Chemistry, University of Wisconsin, Madison, WI 53706 #12;INTRODUCTION The tri--methane of a cyclopentene 5a, but only in crystalline medium. However, in the solution photochemistry of tri--methane system

Cirkva, Vladimir

118

5, 23052341, 2008 Anaerobic methane  

E-Print Network [OSTI]

BGD 5, 2305­2341, 2008 Anaerobic methane oxidation in Black Sea sediments N. J. Knab et al. Title of Biogeosciences Regulation of anaerobic methane oxidation in sediments of the Black Sea N. J. Knab1 , B. A. Cragg2­2341, 2008 Anaerobic methane oxidation in Black Sea sediments N. J. Knab et al. Title Page Abstract

Paris-Sud XI, Université de

119

THE UNIVERSITY OF ALABAMA IN HUNTSVILLE FINANCIAL DATA SHEET  

E-Print Network [OSTI]

THE UNIVERSITY OF ALABAMA IN HUNTSVILLE FINANCIAL DATA SHEET 1. Price Summary The cost estimate raises. These increases are MERIT, not cost-of-living, raises. Percentage of time is estimated. Salaries on Modified Total Direct Costs (MTDC). Equipment, capital expenditures, charges for patient care and tuition

Alabama in Huntsville, University of

120

The University of Alabama 1 Department of Computer Science  

E-Print Network [OSTI]

The University of Alabama 1 Department of Computer Science Computer science is a multifaceted discipline that encompasses a broad range of topics. At one end of the spectrum, computer science focuses. At the other applications-oriented end of the spectrum, computer science deals with techniques for the design

Carver, Jeffrey C.

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Phase III Early Restoration Projects Alabama Florida Louisiana Mississippi Texas  

E-Print Network [OSTI]

counties. The project includes reef designs to be constructed at various depths. The deep water "nearshore and limestone layers with spacers between the layers, in less than 20 feet deep water and within 950 feetPhase III Early Restoration Projects Alabama · Florida · Louisiana · Mississippi · Texas NOAA

122

A University of Alabama Axial-Gap Electric Motor Developmenty  

E-Print Network [OSTI]

CAVT A University of Alabama Axial-Gap Electric Motor Developmenty Research Center OBJECTIVE ­ Develop axial gap permanent-magnet electric Axial motor ­ Develop axial gap permanent-magnet electric motor topologies with high torque and power densities MOTIVATION ­ Axial-gap ("pancake") motors have

Carver, Jeffrey C.

123

A University of Alabama Fuel Cell Electronic Integration  

E-Print Network [OSTI]

the ability of hydrogen fuel cells to H2 tank Loads ­ Study the ability of hydrogen fuel cells to respondCAVT A University of Alabama Fuel Cell Electronic Integration y Research Center OBJECTIVE ­ Study to rapid load changes MOTIVATION Fuel cell ­ Automotive cycles include rapid load changes (passing

Carver, Jeffrey C.

124

,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

125

Coalbed Methane Reserves Revision Increases  

U.S. Energy Information Administration (EIA) Indexed Site

1,563 2,589 2,071 971 3,123 2009-2013 Federal Offshore U.S. 0 0 0 0 0 2009-2013 Pacific (California) 0 0 0 0 0 2009-2013 Gulf of Mexico (Louisiana & Alabama) 0 0 0 0 0 2009-2013...

126

Coalbed Methane New Field Discoveries  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 0 0 0 2009-2013 Federal Offshore U.S. 0 0 0 0 0 2009-2013 Pacific (California) 0 0 0 0 0 2009-2013 Gulf of Mexico (Louisiana & Alabama) 0 0 0 0 0 2009-2013 Gulf of Mexico...

127

Coalbed Methane Reserves Revision Decreases  

U.S. Energy Information Administration (EIA) Indexed Site

,486 2,914 1,668 3,871 1,998 2009-2013 Federal Offshore U.S. 0 0 0 0 0 2009-2013 Pacific (California) 0 0 0 0 0 2009-2013 Gulf of Mexico (Louisiana & Alabama) 0 0 0 0 0 2009-2013...

128

ARM - Methane Background Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethane Background Information Outreach Home Room News

129

ARM - Methane Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethane Background Information Outreach Home Room

130

Appalachian basin coal-bed methane: Elephant or flea  

SciTech Connect (OSTI)

Historically, interest in the Appalachian basin coal-bed methane resource extends at least over the last 50 years. The Northern and Central Appalachian basins are estimated to contain 61 tcf and 5 tcf of coal-bed methane gas, respectively. Development of this resource has not kept pace with that of other basins, such as the Black Warrior basin of Alabama of the San Juan basin of northern New Mexico and Colorado. Without the benefit of modern completion, stimulation, and production technology, some older Appalachian basin coal-bed methane wells were reported to have produced in excess of 150 used here to characterize some past projects and their results. This work is not intended to comprise a comprehensive survey of all Appalachian basin projects, but rather to provide background information from which to proceed for those who may be interested in doing so. Several constraints to the development of this resource have been identified, including conflicting legal rights of ownership of the gas produced from the coal seams when coal and conventional oil and gas rights are controlled by separate parties. In addition, large leaseholds have been difficult to acquire and finding costs have been high. However, the threshold of minimum economic production may be relatively low when compared with other areas, because low-pressures pipelines are available and gas prices are among the highest in the nation. Interest in the commercial development of the resource seems to be on the increase with several projects currently active and more reported to be planned for the near future.

Hunt, A.M. (Dames and Moore, Cincinnati, OH (United States))

1991-08-01T23:59:59.000Z

131

Alabama State Offshore Natural Gas Gross Withdrawals and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) BaseSep-14 Oct-14per Thousand 2007 2008 2009

132

Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 Oiland 5 Advisory

133

Alabama (with State Offshore) Natural Gas Liquids Lease Condensate,  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 Oiland 5

134

Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 Oiland 5Reserves

135

Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 Oiland

136

Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves Based  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 OilandProduction (Million

137

Alabama (with State Offshore) Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 OilandProduction

138

Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 OilandProductionShale

139

Alabama--State Offshore Natural Gas Marketed Production (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan Feb Mar AprDecadeYear Jan0.8

140

Alabama State Historic Preservation Programmatic Agreement | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary o f R eported Data

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Domestic Coal Distribution 2009 Q1 by Destination State: Alabama  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data0 0(BTUFeet)(Dollars per604

142

Domestic Coal Distribution 2009 Q1 by Origin State: Alabama  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data0 0(BTUFeet)(Dollars

143

Domestic Coal Distribution 2009 Q2 by Destination State: Alabama  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data0 0(BTUFeet)(Dollars61

144

Domestic Coal Distribution 2009 Q2 by Origin State: Alabama  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data0 0(BTUFeet)(Dollars61Q2 by

145

Pioneer Electric Coop, Inc (Alabama) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilips Color Kinetics Jump to:PiedmontMaunaAlabama)

146

Lamar County, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN) Jump to:Lamar County, Alabama Beaverton,

147

Macon County, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger <IndustriesMacomb,County, Alabama:

148

Jackson County, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy2005) |JMalucelli EnergiaJackson County, Alabama

149

City of Evergreen, Alabama (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhio (Utility Company) JumpDoerun, GeorgiaElectraElsmore, KansasErieAlabama

150

City of Fairhope, Alabama (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhio (Utility Company) JumpDoerun, GeorgiaElectraElsmore,Fairhope, Alabama

151

City of Luverne, Alabama (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhio (UtilityHolyrood, KansasLampasas,Luverne Place: Alabama References: EIA

152

City of Piedmont, Alabama (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby, Illinois (Utility Company) JumpPaullina,Piedmont Place: Alabama

153

E-Print Network 3.0 - alabama argillacea huebner Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ecology and Organismal Summary: . of Evolution, Ecology and Organismal Biology Advisor: Dr. Allison Snow 2001 - 2004 University of Alabama... HOWARD HUGHES MEDICAL...

154

E-Print Network 3.0 - alabama Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ecology and Organismal Summary: . of Evolution, Ecology and Organismal Biology Advisor: Dr. Allison Snow 2001 - 2004 University of Alabama... HOWARD HUGHES MEDICAL...

155

E-Print Network 3.0 - alabama doe-experimental program Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University Graduate Program Dept... . of Evolution, Ecology and Organismal Biology Advisor: Dr. Allison Snow 2001 - 2004 University of Alabama... HOWARD HUGHES MEDICAL...

156

Constitutional Reform in Alabama: Why Efforts for Change Continue to Fail .  

E-Print Network [OSTI]

??Alabama has been governed by the same constitutional document for one hundred thirteen years. The document is outdated and it is also the longest constitutionÖ (more)

Hartley, Rebecca

2015-01-01T23:59:59.000Z

157

Methane/nitrogen separation process  

DOE Patents [OSTI]

A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

1997-09-23T23:59:59.000Z

158

Methane/nitrogen separation process  

DOE Patents [OSTI]

A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

1997-01-01T23:59:59.000Z

159

Bioconversion of biomass to methane  

SciTech Connect (OSTI)

The conversion of biomass to methane is described. The biomethane potentials of various biomass feedstocks from our laboratory and literature is summarized.

Hashimoto, A.G. [Oregon State Univ., Corvallis, OR (United States)

1995-12-01T23:59:59.000Z

160

VIBRATION->VIBRATION ENERGY TRANSFER IN METHANE  

E-Print Network [OSTI]

VIBRATION ENERGY TRANSFER IN METHANE Peter Hess, A. H. Kung,Rotation Spectra of Methane, U.S. Nat'L∑ Tech. Inform.tret t tllll. I. INTRODUCTION Methane is a relatively simple

Hess, Peter

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Coal Bed Methane Protection Act (Montana)  

Broader source: Energy.gov [DOE]

The Coal Bed Methane Protection Act establishes a long-term coal bed methane protection account and a coal bed methane protection program for the purpose of compensating private landowners and...

162

methane hydrate science plan-final.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2013 Principal Authors: Consor um for Ocean Leadership and the Methane Hydrate Project Science Team December 2013 DOE Award Number: DE-FE0010195 Project Title: Methane Hydrate...

163

Coalbed Methane Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil andMCKEESPORTfor the 2012Methane

164

Coal mine methane global review  

SciTech Connect (OSTI)

This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

NONE

2008-07-01T23:59:59.000Z

165

Sulfonation of Methane Direct Liquid-Phase Sulfonation of Methane to  

E-Print Network [OSTI]

Sulfonation of Methane Direct Liquid-Phase Sulfonation of Methane to Methanesulfonic Acid by SO3 of methane to value-added prod- ucts is a significant contemporary challenge.[1] Methane is a very unreactive, consider- able effort has been devoted to the oxidation and oxidative carbonylation of methane.[2

Bell, Alexis T.

166

Review article Methane production by ruminants  

E-Print Network [OSTI]

Review article Methane production by ruminants: its contribution to global warming Angela R. MOSSa of methane in the global warming scenario and to examine the contribution to atmospheric methane made by enteric fermentation, mainly by rumi- nants. Agricultural emissions of methane in the EU-15 have recently

Paris-Sud XI, Université de

167

Structural Evolution of Plasma Sputtered Core-shell Nanoparticles for Catalytic Combustion of Methane  

E-Print Network [OSTI]

of Methane Xiaoning Guo a,c , Pascal Brault b,* , Guojuan Zhi a,c , Ama√ęl Caillard b , Guoqiang Jin a , Xiangyun Guo a,* a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Taiyuan 030001, PR deposition, and employed as the catalyst for methane combustion. The core-shell catalysts exhibit higher

Paris-Sud XI, Université de

168

Solar hot water system installed at Mobile, Alabama. Final report  

SciTech Connect (OSTI)

This final report describes the solar energy hot water system installed at LaQuinta Motor Inn Inc., at Mobile, Alabama. The building is a 122 unit motel. The system consists of six rows of ten collectors and three rows of eleven collectors (1990 square feet) mounted on the roof. Griswald flow control valves were installed to regulate the flow to each row. Two Heliotrope electronic thermometers with a combined capability of measuring the temperatures of 22 different locations were installed for monitoring purposes. Engineering drawings, component specifications, and operator instructions are included.

None

1980-10-01T23:59:59.000Z

169

ALABAMA GETS WISE ABOUT SELLING UPGRADES | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office of FossilMembershipof EnergyALABAMA GETS WISE ABOUT SELLING

170

Washington County, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana: EnergyWasco County, Oregon:WashburnAlabama:

171

DOE - Office of Legacy Management -- Alabama Ordnance Works - AL 02  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home ¬Ľ Sites ¬Ľ SitesNewAlabama Ordnance

172

Wilcox County, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to:Westview,GeothermalHawaii: EnergyLinkButtonEnergyAlabama: Energy

173

Winston County, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamson County,Bay, OR)Winneshiek County, Iowa:Winooski,Alabama:

174

Fort Rucker, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlixMapFile Jump to:ForseoMcKinley, Ohio:Rucker, Alabama:

175

Alabama - Seds - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases211Alabama - Seds - U.S.

176

Alabama Natural Gas Gross Withdrawals (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases211Alabama - Seds -

177

Alabama Natural Gas Gross Withdrawals (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases211Alabama - Seds -Year

178

City of Hartford, Alabama (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Nebraska (Utility Company) Jump to: navigation, searchAlabama (Utility

179

City of Robertsdale, Alabama (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Nebraska (UtilityGeorgiaArkansas References:Robertsdale, Alabama (Utility

180

Cleburne County, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouthSolarClearPathEdwardsville, Alabama

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alabama Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience (SC)Supply andofJuneDOE OfficeAlabama

182

Alternative Fuels Data Center: Alabama City Leads With Biodiesel and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCHThermalPlug-inTexas Laws andEthanol Alabama

183

Method of coalbed methane production  

SciTech Connect (OSTI)

This patent describes a method for producing coalbed methane from a coal seam containing coalbed methane and penetrated by at least one injection well and at least one producing well. It comprises: injecting an inert gas through the injection well and into the coal seam. The inert gas being a gas that does not react with the coal under conditions of use and that does not significantly adsorb to the coal; and producing a gas from the production well which consists essentially of the inert gas, coalbed methane, or mixtures thereof.

Puri, R.; Stein, M.H.

1989-11-28T23:59:59.000Z

184

Microbe-Metazoan interactions at Pacific Ocean methane seeps  

E-Print Network [OSTI]

B) and those present within methane seep Euryarchaea ( PMI,margin: the influence of methane seeps and oxygen minimumisotope signatures and methane use by New Zealand cold seep

Thurber, Andrew R

2010-01-01T23:59:59.000Z

185

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

AND PRODUCTION OF METHANE Lawrence Berkeley LaboratoryDIGESTION AND PRODUCTION OF METHANE Kendall F. Haven MarkArrangement Kelp to Methane Processing Plant Schematic.

Haven, Kendall F.

2011-01-01T23:59:59.000Z

186

Microbe-metazoan interactions at Pacific Ocean methane seeps  

E-Print Network [OSTI]

B) and those present within methane seep Euryarchaea ( PMI,margin: the influence of methane seeps and oxygen minimumisotope signatures and methane use by New Zealand cold seep

Thurber, Andrew Reichmann

2010-01-01T23:59:59.000Z

187

A method for measuring methane oxidation rates using low levels of 14C-labeled methane and accelerator mass spectrometry  

E-Print Network [OSTI]

the anaerobic oxidation of methane. Environ. Microbiol. 10(Field observations of methane concentra- tions and oxidationAnaerobic oxidation of methane above gas hydrates at Hydrate

2011-01-01T23:59:59.000Z

188

Adsorption Kinetics of CO2, CH4, and their Equimolar Mixture on Coal from the Black Warrior Basin, West-Central Alabama  

SciTech Connect (OSTI)

Laboratory experiments were conducted to investigate the adsorption kinetic behavior of pure and mixed gases (CO2, CH4, approximately equimolar CO2 + CH4 mixtures, and He) on a coal sample obtained from the Black Warrior Basin at the Littleton Mine (Twin Pine Coal Company), Jefferson County, west-central Alabama. The sample was from the Mary Lee coal zone of the Pottsville Formation (Lower Pennsylvanian). Experiments with three size fractions (45-150 m, 1-2 mm, and 5-10 mm) of crushed coal were performed at 40 C and 35 C over a pressure range of 1.4 6.9 MPa to simulate coalbed methane reservoir conditions in the Black Warrior Basin and provide data relevant for enhanced coalbed methane recovery operations. The following key observations were made: (1) CO2 adsorption on both dry and water-saturated coal is much more rapid than CH4 adsorption; (2) water saturation decreases the rates of CO2 and CH4 adsorption on coal surfaces, but it appears to have minimal effects on the final magnitude of CO2 or CH4 adsorption if the coal is not previously exposed to CO2; (3) retention of adsorbed CO2 on coal surfaces is significant even with extreme pressure cycling; and (4) adsorption is significantly faster for the 45-150 m size fraction compared to the two coarser fractions.

Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Naney, Michael {Mike} T [ORNL; Blencoe, James {Jim} G [ORNL; Cole, David R [ORNL; Pashin, Jack C. [Geological Survey of Alabama; Carroll, Richard E. [Geological Survey of Alabama

2009-01-01T23:59:59.000Z

189

Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water  

SciTech Connect (OSTI)

The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (‚??Methane in the Arctic Shelf‚?Ě or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (‚??metagenomes‚?Ě). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

David Kirchman

2011-12-31T23:59:59.000Z

190

Launching an Energy-Efficient Future in Alabama: Weatherization Assistance Close-Up Fact Sheet  

SciTech Connect (OSTI)

Alabama demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

D& R International

2001-10-10T23:59:59.000Z

191

Methane escape from gas hydrate systems in marine environment, and methane-driven oceanic eruptions  

E-Print Network [OSTI]

Methane escape from gas hydrate systems in marine environment, and methane-driven oceanic eruptions quantities of CH4 are stored in marine sediment in the form of methane hydrate, bubbles, and dissolved CH4 in pore water. Here I discuss the various pathways for methane to enter the ocean and atmosphere

Zhang, Youxue

192

POSSIBLE ROLE OF WETLANDS, PERMAFROST, AND METHANE HYDRATES IN THE METHANE  

E-Print Network [OSTI]

POSSIBLE ROLE OF WETLANDS, PERMAFROST, AND METHANE HYDRATES IN THE METHANE CYCLE UNDER FUTURE the available scientific literature on how natural sources and the atmospheric fate of methane may be affected by future climate change. We discuss how processes governing methane wetland emissions, per- mafrost thawing

Chappellaz, J√©r√īme

193

Activation of the C-H Bond of Methane by Intermediate Q of Methane Monooxygenase: A  

E-Print Network [OSTI]

Activation of the C-H Bond of Methane by Intermediate Q of Methane Monooxygenase: A Theoretical component (MMOH) of the multicomponent soluble methane monooxygenase (MMO) system catalyzes the oxidation of methane by dioxygen to form methanol and water at non-heme, dinuclear iron active sites. The catalytic

Gherman, Benjamin F.

194

Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian  

E-Print Network [OSTI]

Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian, University of Hamburg, Allende-Platz 2, 20146 Hamburg, Germany Summary 1. Methane (CH4) oxidation to Sphagnum species and low-pH peatlands. 2. Moss-associated methane oxidation (MAMO) can be an effective

Wehrli, Bernhard

195

Nonequilibrium clumped isotope signals in microbial methane  

E-Print Network [OSTI]

Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its ...

Wang, David T.

196

Community Energy Systems and the Law of Public Utilities. Volume Three. Alabama  

SciTech Connect (OSTI)

A detailed description is given of the laws and programs of the State of Alabama governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

Feurer, D A; Weaver, C L

1981-01-01T23:59:59.000Z

197

Energy Policy Seminar Series: Climate impacts of methane-emitting energy technologies  

E-Print Network [OSTI]

, University of Alabama at Birmingham) Nov. 7 - Andrew Zwicker (PPL, Head, Science Education) Nov. 14 - Jason

Chen, Kuang-Yu

198

Method for the photocatalytic conversion of methane  

DOE Patents [OSTI]

A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time. 3 figs.

Noceti, R.P.; Taylor, C.E.; D`Este, J.R.

1998-02-24T23:59:59.000Z

199

Method for the photocatalytic conversion of methane  

DOE Patents [OSTI]

A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time.

Noceti, Richard P. (Pittsburgh, PA); Taylor, Charles E. (Pittsburgh, PA); D'Este, Joseph R. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

200

Coalbed methane production case histories  

SciTech Connect (OSTI)

The production of methane gas from coal and coal-bearing rocks is one of the prime objectives of the Department of Energy's Methane Recovery from Coalbeds Project. This report contains brief description of wells that are presently producing gas from coal or coal-bearing rocks. Data from three gob gas production areas in Illinois, an in-mine horizontal borehole degasification, and eleven vertical boreholes are presented. Production charts and electric logs of the producing zones are included for some of the wells. Additional information on dry gas production from the San Juan Basin, Colorado/New Mexico and the Greater Green River Coal Region, Colorado/Wyoming is also included.

Not Available

1981-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Methane adsorption on Devonian shales  

E-Print Network [OSTI]

METHANE ADSORPTION ON DEVONIAN SHALES A Thesis by FAN-CHANG LI Submitted to thc Office of Graclua4e Sturiics of texas AgiM Ulllvel'sliy in pari, ial fulfilhuent of t, hc requirements I'or t, hc degree of ii IAS'I'Elf OF SCIL'NCE December... 1992 Major Subject, : Chemical Engineering METHANE ADSORPTION ON DEVONIAN SHALES A Thesis l&y I'AN-CHANC LI Approved as to style and contcut by: A. T. 'vtratson (Chair of Commitl. ee) John C. Slattery (Member) Bruce . Hcrhcrt (Memhcr...

Li, Fan-Chang

1992-01-01T23:59:59.000Z

202

Biogeochemistry of Microbial Coal-Bed Methane  

E-Print Network [OSTI]

Biogeochemistry of Microbial Coal-Bed Methane Dariusz Strapo¬īc,1, Maria Mastalerz,2 Katherine, biodegradation Abstract Microbial methane accumulations have been discovered in multiple coal- bearing basins low-maturity coals with predominantly microbial methane gas or uplifted coals containing older

Macalady, Jenn

203

6, 36113626, 2006 Effects of methane  

E-Print Network [OSTI]

ACPD 6, 3611­3626, 2006 Effects of methane outgassing on the Black Sea atmosphere K. Kourtidis et a Creative Commons License. Atmospheric Chemistry and Physics Discussions Effects of methane outgassing Effects of methane outgassing on the Black Sea atmosphere K. Kourtidis et al. Title Page Abstract

Paris-Sud XI, Université de

204

2, 11971241, 2005 Control of methane  

E-Print Network [OSTI]

BGD 2, 1197­1241, 2005 Control of methane efflux at the Tommeliten seep area H. Niemann et al Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences Methane emission;BGD 2, 1197­1241, 2005 Control of methane efflux at the Tommeliten seep area H. Niemann et al. Title

Boyer, Edmond

205

Potential for CO2 Sequestration and Enhanced Coalbed Methane Production, Blue Creek Field, NW Black Warrior Basin, Alabama  

E-Print Network [OSTI]

Carbon dioxide (CO2) is a primary source of greenhouse gases. Injection of CO2 from power plants near coalbed reservoirs is a win-win method to reducing emissions of CO2 to the atmosphere. Limited studies have investigated CO2 sequestration...

He, Ting

2011-02-22T23:59:59.000Z

206

,"Alabama Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved Reserves (Billion CubicTotalPrice

207

Methane production by attached film  

DOE Patents [OSTI]

A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

Jewell, William J. (202 Eastwood Ave., Ithaca, NY 14850)

1981-01-01T23:59:59.000Z

208

Methane generation from waste materials  

DOE Patents [OSTI]

An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

2010-03-23T23:59:59.000Z

209

Kinetics of methanation on nickel catalysts  

SciTech Connect (OSTI)

Extensive steady-state and transient measurements of the disproportionation of carbon monoxide, the hydrogenation of deposited carbon, and methanation of carbon monoxide were performed over 2 and 10% nickel on silica support. The results indicated that the methanation of carbon monoxide involves competitively adsorbed species; that the reaction is nearly zero order in carbon monoxide at 0.1-0.5 atm CO and 1 atm H/sub 2/, but negative at higher CO partial pressures and that it becomes less negative with increasing temperature or increasing hydrogen pressure; and that the reaction order with respect to hydrogen changes from 0.5 to 1.0 with increasing CO pressure and decreasing H/sub 2/ pressure. A reaction mechanism is proposed which consists of the molecular adsorption of CO, the dissociative adsorption of H/sub 2/, dissociation of the surface CO species, and reaction of two adsorbed hydrogen atoms with the oxygen; and a multistep hydrogenation and desorption process for the adsorbed carbon. The dissociation and reaction of adsorbed CO is probably the rate-limiting step. The kinetic behavior is best represented with the assumption of a heterogeneous catalyst surface, containing three types of sites of widely varying activity.

Ho, S.V.; Harriott, P.

1980-08-01T23:59:59.000Z

210

Closeout Report: Experimental High Energy Physics Group at the University of South Alabama  

SciTech Connect (OSTI)

The High Energy Physics group at the University of South Alabama has been supported by this research grant (DE-FG02-96ER40970) since 1996. One researcher, Dr. Merrill Jenkins, has been supported on this grant during this time worked on fixed target experiments at the Fermi National Accelerator Laboratory, west of Chicago, Illinois. These experiments have been E-705, E-771, E-871 (HyperCP) and E-921 (CKM) before it was canceled for budgetary reasons. After the cancellation of CKM, Dr. Jenkins joined the Compact Muon Solenoid (CMS) experiment as an associate member via the High Energy Physics Group at the Florida State University. A second, recently tenured faculty member, Dr. Romulus Godang joined the group in 2009 and has been supported by this grant since then. Dr. Godang is working on the BaBaR experiment at SLAC and has joined the Belle-II experiment located in Japan at KEK. According to the instructions sent to us by our grant monitor, we are to concentrate on the activities over the last three years in this closeout report.

Jenkins, Charles M; Godang, Romulus

2013-06-25T23:59:59.000Z

211

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network [OSTI]

Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE2011] METHANE DIGESTERS AND BIOGAS RECOVERY methane, and 64%

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

212

The Methane to Markets Coal Mine Methane Subcommittee meeting  

SciTech Connect (OSTI)

The presentations (overheads/viewgraphs) include: a report from the Administrative Support Group; strategy updates from Australia, India, Italy, Mexico, Nigeria, Poland and the USA; coal mine methane update and IEA's strategy and activities; the power of VAM - technology application update; the emissions trading market; the voluntary emissions reduction market - creating profitable CMM projects in the USA; an Italian perspective towards a zero emission strategies; and the wrap-up and summary.

NONE

2008-07-01T23:59:59.000Z

213

The oxidative dimerization of methane over promoted and unpromoted magnesium oxide monoliths  

E-Print Network [OSTI]

for the degree of MASTER OF SCIENCE May 1989 Major Subject: Chemistry THE OXIDATIVE DIMERIZATION OF METHANE OVER PROMOTED AND UNPROMOTED MAGNESIUM OxiDE MONOLITHS A Thesis by JANE MARIE AIGLER Approved as to style and content by: uns or (Chair of Commi... ee) os e (Member) nt ony (Member) a (Head of Department) May 1989 ABSTRACT The Oxidative Dimerization of Methane over Promoted and Unpromoted Magnesium Oxide Monoliths. (May 1989) Jane Marie Aigier, B. S. , Pennsylvania State University...

Aigler, Jane Marie

1989-01-01T23:59:59.000Z

214

Nickel crystallite thermometry during methanation  

SciTech Connect (OSTI)

A magnetic method to measure the average temperature of superparamagnetic nickel crystallites has been applied during CO methanation. The method takes advantage of the temperature dependence of the low field magnetization of such catalysts; however, the adsorption of carbon monoxide and the formation of surface carbon species complicate the interpretation of results. Calibrations to account for temperature change and the adsorption of reactants are described. The calibration for the effects of CO is based on the assumption that the interaction of CO with nickel is the same for methanation and disproportionation. Interphase heat transfer calculations based on the thermometric data compare favorably with previous results from ethane hyrogenolysis, and give no indication of microscopic temperature differences between the nickel crystallites and support.

Ludlow, D.K.; Cale, T.S.

1986-01-01T23:59:59.000Z

215

,"Colorado Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

216

,"Arkansas Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

217

,"Wyoming Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

218

A guide to coalbed methane operations  

SciTech Connect (OSTI)

A guide to coalbed methane production is presented. The guide provides practical information on siting, drilling, completing, and producing coalbed methane wells. Information is presented for experienced coalbed methane producers and coalbed methane operations. The information will assist in making informed decisions about producing this resource. The information is presented in nine chapters on selecting and preparing of field site, drilling and casing the wellbore, wireline logging, completing the well, fracturing coal seams, selecting production equipment and facilities, operating wells and production equipment, treating and disposing of produced water, and testing the well.

Hollub, V.A.; Schafer, P.S.

1992-01-01T23:59:59.000Z

219

,"Montana Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

220

,"Oklahoma Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

,"Virginia Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

222

CO2 Sequestration Enhances Coalbed Methane Production.  

E-Print Network [OSTI]

??Since 1980s, petroleum engineers and geologists have conducted researches on Enhanced Coalbed Methane Recovery (ECBM). During this period, many methods are introduced to enhance theÖ (more)

Pang, Yu

2013-01-01T23:59:59.000Z

223

,"Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

224

,"Miscellaneous Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

225

A conduit dilation model of methane venting from lake sediments  

E-Print Network [OSTI]

Methane is a potent greenhouse gas, but its effects on Earth's climate remain poorly constrained, in part due to uncertainties in global methane fluxes to the atmosphere. An important source of atmospheric methane is the ...

Ruppel, Carolyn

226

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS  

E-Print Network [OSTI]

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16.............................................................................................21 Coal and Methane Production

Maxwell, Bruce D.

227

Methane productivity and nutrient recovery from manure Henrik B. Mller  

E-Print Network [OSTI]

Methane productivity and nutrient recovery from manure Henrik B. MÝller Danish Institute This thesis, entitled "Methane productivity and nutrient recovery from manure" is presented in partial of digested and separated products.................... 13 3. Methane productivity and greenhouse gas emissions

228

The economic feasibility of enhanced coalbed methane recovery using CO2 sequestration in the San Juan Basin  

E-Print Network [OSTI]

, due to the chemical and physical properties of carbon dioxide, CO2 sequestration is a potential option for substantially enhancing coal bed methane recovery (ECBM). The San Juan Fruitland coal has the most prolific coal seams in the United States...

Agrawal, Angeni

2007-09-17T23:59:59.000Z

229

Three-dimensional model synthesis of the global methane cycle  

E-Print Network [OSTI]

39, Ehhalt, D. H. , The atmoēheric cycle of methane, Tellugworld-wide increase in tēheric methane, 1978-1987, Science,

1991-01-01T23:59:59.000Z

230

Prediction of coalbed methane reservoir performance with type curves.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from the coal seams. CBM reservoirs are dual-porosity systems that are characterized byÖ (more)

Bhavsar, Amol Bhaskar.

2005-01-01T23:59:59.000Z

231

The Optimization of Well Spacing in a Coalbed Methane Reservoir.  

E-Print Network [OSTI]

??Numerical reservoir simulation has been used to describe mechanism of methane gas desorption process, diffusion process, and fluid flow in a coalbed methane reservoir. TheÖ (more)

Sinurat, Pahala Dominicus

2012-01-01T23:59:59.000Z

232

Diffusion Characterization of Coal for Enhanced Coalbed Methane Production.  

E-Print Network [OSTI]

??This thesis explores the concept of displacement of sorbed methane and enhancement of methane recovery by injection of CO2 into coal, while sequestering CO2. TheÖ (more)

Chhajed, Pawan

2011-01-01T23:59:59.000Z

233

Development of gas production type curves for coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists on methane production from the coal seams. The unique coal characteristic results in a dual-porosity system.Ö (more)

Garcia Arenas, Anangela.

2004-01-01T23:59:59.000Z

234

Direct Observation of the Active Center for Methane Dehydroaromatizati...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Active Center for Methane Dehydroaromatization Using an Ultrahigh Field 95Mo NMR Spectroscopy. Direct Observation of the Active Center for Methane Dehydroaromatization Using an...

235

Scientists detect methane levels three times larger than expected...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

methane that actually preceded recent concerns about potential emissions from fracking," Dubey said. Scientists detect methane levels three times larger than expected over...

236

Coalbed Methane (CBM) is natural  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartmentPolicyClean,Coalbed Methane (CBM)

237

The 1991 coalbed methane symposium proceedings  

SciTech Connect (OSTI)

The proceedings of the 1991 coalbed methane symposium are presented. The proceedings contains 50 papers on environmental aspects of recovering methane from coal seams, reservoir characterization and testing mine safety and productivity, coalbed stimulation, geology and resource assessment, well completion and production technologies, reservoir modeling and case histories, and resources and technology.

Not Available

1991-01-01T23:59:59.000Z

238

SAFETY ANALYSIS ON RAIL HIGHWAY AT-GRADE CROSSING IN ALABAMA  

E-Print Network [OSTI]

Administration (FRA) database · Highway-rail crossing inventory · Highway-rail crossing history file · Highway-rail crossing accident database Alabama Department of Transportation (ALDOT) database · Rail-highway at,720 RHGCs FRA highway-rail crossing history file Crossing ID Crossing characteristics Crash count over 1998

Illinois at Urbana-Champaign, University of

239

Phase III Proposed Early Restoration Project Alabama Florida Louisiana Mississippi Texas  

E-Print Network [OSTI]

to be constructed at various depths. The deep water "nearshore reefs" would have a single, prefabricated modular, in less than 20 feet deep water and within 950 feet of shore. Deepwater Horizon Oil Spill Natural ResourcePhase III Proposed Early Restoration Project Alabama · Florida · Louisiana · Mississippi · Texas

240

Assessment of the geothermal/geopressure potential of the Gulf Coastal Plan of Alabama. Final report  

SciTech Connect (OSTI)

Geothermal and geopressure as well as geologic and geophysical data were studied to evaluate the potential for future development of geothermal resources underlying the Alabama Coastal Plain. Wire-line log data compiled and interpreted from more than 1300 oil and gas test wells included maximum recorded temperatures, mud weights, rock resistivities as related to geopressure, formation tops, fault locations, and depths to basement rock. The Alabama Coastal Plain area is underlain by a conduction dominated, deep sedimentary basin where geothermal gradients are low to moderate (1.0 to 1.8/sup 0/F/100 feet). In some areas of southwest Alabama, abnormally high temperatures are found in association with geopressured zones within the Haynesville Formation of Jurassic age; however, rocks of poor reservoir quality dominate this formation, with the exception of a 200-square-mile area centered in southernmost Clarke County where a porous and permeable sand unit is encased within massive salt deposits of the lower Haynesville. The results of a petrograhic study of the Smackover Formation, which underlies the Haynesville, indicate that this carbonate rock unit has sufficient porosity in some areas to be considered a potential geothermal reservoir. Future development of geothermal resources in south Alabama will be restricted to low or moderate temperature, non-electric applications, which constitute a significant potential energy source for applications in space heating and cooling and certain agricultural and industrial processes.

Wilson, G.V.; Wang, G.C.; Mancini, E.A.; Benson, D.J.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

THE UNIVERSITY OF ALABAMA Department of Civil, Construction, and Environmental Engineering  

E-Print Network [OSTI]

THE UNIVERSITY OF ALABAMA Department of Civil, Construction, and Environmental Engineering) that are administratively supported by the Department of Civil, Construction, and Environmental Engineering. In the last ten degrees in environmental engineering and architectural engineering. At the graduate level, the department

Carver, Jeffrey C.

242

Survey of Ice Plants in Louisiana, Mississippi, and Alabama, 1980-81  

E-Print Network [OSTI]

Survey of Ice Plants in Louisiana, Mississippi, and Alabama, 1980-81 JOHN M. WARD and JOHN R. POFFENBERGER Introduction Reports of ice shortages during the shrimp fishing season prompted a Na- tional closure regulation on ice plant production and sales. Like Texas, Louisiana controls the opening

243

Department of Energy Advance Methane Hydrates Science and Technology Projects  

Broader source: Energy.gov [DOE]

Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

244

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

University, School of Engineering, Ocean .. Engineel'ing-and nutrition, ocean engineering and methane generation. In

Haven, Kendall F.

2011-01-01T23:59:59.000Z

245

RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS  

E-Print Network [OSTI]

RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS PART I: ALLENE Full-length article SHORTENED RUNNING TITLE : METHANE FLAMES DOPED BY ALLENE OR PROPYNE * E investigated: a pure methane flame and two methane flames doped by allene and propyne, respectively. The gases

Paris-Sud XI, Université de

246

Anaerobic Methane Oxidation in a Landfill-Leachate Plume  

E-Print Network [OSTI]

Anaerobic Methane Oxidation in a Landfill-Leachate Plume E T H A N L . G R O S S M A N , * , L U I, and methane, and (2) negligible oxygen, nitrate, and sulfate concentrations. Methane concentrations and stable carbon isotope (13C) values suggest anaerobic methane oxidation was occurring within the plume and at its

Grossman, Ethan L.

247

Cyclic process for producing methane with catalyst regeneration  

DOE Patents [OSTI]

Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. For practical commercial operations utilizing the two-step process of the invention of a cyclic basis, nickel, cobalt, ruthenium, thenium and alloys thereof are especially prepared for use in a metal state, with CO disproportionation being carried out at temperatures up to about 350.degree. C. and with the conversion of active surface carbon to methane being carried out by reaction with steam. The catalyst is employed in such cyclic operations without the necessity for employing a regeneration step as part of each processing cycle. Inactive carbon or coke that tends to form on the catalyst over the course of continuous operations utilizing such cyclic process is effectively and advantageously removed, on a periodic basis, in place of conventional burn off with an inert stream containing a low concentration of oxygen.

Frost, Albert C. (Congers, NY); Risch, Alan P. (New Fairfield, CT)

1980-01-01T23:59:59.000Z

248

Integrated petrographic and petrophysical study of the Smackover formation, Womack Hill field, Clarke and Choctaw counties, Alabama  

E-Print Network [OSTI]

The objective of this study was to describe depositional and diagenetic characteristics of the Oxfordian (Jurassic) Smackover formation in Womack Hill field, Alabama, as part of an integrated reservoir description program. In order to understand...

Hopkins, Tiffany Lynn

2002-01-01T23:59:59.000Z

249

Determination of Methane Concentration Methane will be measured on the gas chromatogram using a FID (flame ionization)  

E-Print Network [OSTI]

Determination of Methane Concentration Methane will be measured on the gas chromatogram using a FID to equilibrate the methane between the air and water. · With the syringe pointing down, eject all the water fromL of gas in the syringe · We will now move to the GC lab in Starr 332 to measure methane. · Repeat

Vallino, Joseph J.

250

Formation of Liquid Methane-Water Mixture during Combustion of a Laminar Methane Jet at Supercritical Pressures  

E-Print Network [OSTI]

Formation of Liquid Methane-Water Mixture during Combustion of a Laminar Methane Jet in laminar jet flames of methane at elevated pressures in a high-pressure combustion chamber, we have MPa, after the laminar methane jet flame had been stabilized on a co-flow circular nozzle-type burner

G√ľlder, √?mer L.

251

SEP Success Story: Local Program Helps Alabama Manufacturers...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo...

252

Hydraulic fracturing accelerates coalbed methane recovery  

SciTech Connect (OSTI)

Methane production from deep coal seams that never will be mined requires hydraulic fracturing for faster, optimal recovery. Since this can be a complex process, proper formation evaluation beforehand is essential, according to this paper.

Holditch, S.A. (Texas A and M Univ. (US)); Ely, J.W.; Semmelbeck, M.E.; Carter, R.H. (S.A. Holditch and Associates (US)); Hinkel, J.J.; Jeffrey, R.G. Jr. (Dowell Schlumberger (US))

1990-11-01T23:59:59.000Z

253

The role of methane in tropospheric chemistry  

E-Print Network [OSTI]

While methane is chemically quite inert to reactions with atmospheric molecular species, it does react with atomic species and molecular radicals. Because of its relatively large abundance in the global troposphere and ...

Golomb, D.

1989-01-01T23:59:59.000Z

254

Virginia Coalbed Methane Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

255

Oklahoma Coalbed Methane Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

256

Pennsylvania Coalbed Methane Proved Reserves Revision Decreases...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

257

Virginia Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

258

Arkansas Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

259

Colorado Coalbed Methane Proved Reserves Revision Increases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

260

Pennsylvania Coalbed Methane Proved Reserves Revision Increases...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Virginia Coalbed Methane Proved Reserves Revision Decreases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

262

Colorado Coalbed Methane Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

263

Oklahoma Coalbed Methane Proved Reserves Revision Decreases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

264

Montana Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

265

Wyoming Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

266

Wyoming Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

267

Arkansas Coalbed Methane Proved Reserves Revision Increases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

268

Oklahoma Coalbed Methane Proved Reserves Revision Increases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

269

Oklahoma Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

270

Pennsylvania Coalbed Methane Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

271

Colorado Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

272

Arkansas Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

273

Colorado Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

274

Oklahoma Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

275

Colorado Coalbed Methane Proved Reserves Revision Decreases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

276

Arkansas Coalbed Methane Proved Reserves Revision Decreases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

277

Virginia Coalbed Methane Proved Reserves Revision Increases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

278

Pennsylvania Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

279

Transient Supersonic Methane-Air Flames  

E-Print Network [OSTI]

The purpose of this study was to investigate the thermochemical properties of a transient supersonic flame. Creation of the transient flame was controlled by pulsing air in 200 millisecond intervals into a combustor filled with flowing methane...

Richards, John L.

2012-07-16T23:59:59.000Z

280

Development of water production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from the coal seams. The key parameters for the evaluation of coalbed methaneÖ (more)

Burka Narayana, Praveen Kumar.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Tool to predict the production performance of vertical wells in a coalbed methane reservoir.  

E-Print Network [OSTI]

??Coalbed Methane (CBM) is an unconventional gas resource that consists of methane production from coal seams. Coalbed Methane gas production is controlled be interactions ofÖ (more)

Enoh, Michael E.

2007-01-01T23:59:59.000Z

282

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network [OSTI]

Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THEEVEN BEYOND MANURE-ASSOCIATED METHANE EMISSIONS, INDUSTRIAL

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

283

Diffusional methane fluxes within continental margin sediments and depositional constraints on formation factor estimates  

E-Print Network [OSTI]

Goldberg, E.D. , 1976. Methane production and consumption inanaerobic oxidation of methane. Nature, 407 , 623-626.profiles indicate in situ methane flux from underlying gas

Berg, Richard D.

2008-01-01T23:59:59.000Z

284

Marine methane cycle simulations for the period of early global warming  

E-Print Network [OSTI]

aspects of atmospheric methane, Global Biogeochem. Cycles 2,Budeus, Fate of vent derived methane in seawater above theHanfland, Pathways of methane in seawater: Plume spreading

Elliott, S.

2011-01-01T23:59:59.000Z

285

Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane  

E-Print Network [OSTI]

Issues with Methane and Propane Michael A. Green LawrenceSAFETY ISSUES WITH METHANE AND PROPANE M. A. Green Lawrencehydrogen. Methane and propane are commonly used by ordinary

Green, Michael A.

2005-01-01T23:59:59.000Z

286

METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps More Documents & Publications LumensState24 March 2014 Re:METHANE

287

Reservoir heterogeneity in Carter Sandstone, North Blowhorn Creek oil unit and vicinity, Black Warrior Basin, Alabama  

SciTech Connect (OSTI)

This report presents accomplishments made in completing Task 3 of this project which involves development of criteria for recognizing reservoir heterogeneity in the Black Warrior basin. The report focuses on characterization of the Upper Mississippian Carter sandstone reservoir in North Blowhorn Creek and adjacent oil units in Lamar County, Alabama. This oil unit has produced more than 60 percent of total oil extracted from the Black Warrior basin of Alabama. The Carter sandstone in North Blowhorn Creek oil unit is typical of the most productive Carter oil reservoirs in the Black Warrior basin of Alabama. The first part of the report synthesizes data derived from geophysical well logs and cores from North Blowhorn Creek oil unit to develop a depositional model for the Carter sandstone reservoir. The second part of the report describes the detrital and diagenetic character of Carter sandstone utilizing data from petrographic and scanning electron microscopes and the electron microprobe. The third part synthesizes porosity and pore-throat-size-distribution data determined by high-pressure mercury porosimetry and commercial core analyses with results of the sedimentologic and petrographic studies. The final section of the report discusses reservoir heterogeneity within the context of the five-fold classification of Moore and Kugler (1990).

Kugler, R.L.; Pashin, J.C.

1992-05-01T23:59:59.000Z

288

Environmental control technology survey of selected US strip mining sites. Volume 2B. Alabama. Water quality impacts and overburden chemistry of Alabama study site  

SciTech Connect (OSTI)

As part of a program to examine the ability of existing control technologies to meet federal guidelines for the quality of aqueous effluents from coal mines, an intensive study of water, coal, and overburden chemistry was conducted at a surface coal mine in Alabama from May 1976 through July 1977. Sampling sites included the pit sump, a stream downgrade from the mine, the discharge from the water treatment facility, and a small stream outside the mine drainage. Water samples were collected every two weeks by Argonne subcontractors at the Alabama Geological Survey and analysed for the following parameters: specific conductance, pH, temperature, acidity, bicarbonate, carbonate, chloride, total dissolved solids, suspended solids, sulfate, and 20 metals. Analysis of the coal and overburden shows that no potential acid problem exists at this mine. Water quality is good in both streams sampled, and high levels of dissolved elements are found only in water collected from the pit sump. The mine effluent is in compliance with Office of Surface Mining water quality standards.

Henricks, J D; Bogner, J E; Olsen, R D; Schubert, J P; Sobek, A A; Johnson, D O

1980-05-01T23:59:59.000Z

289

UNDERSTANDING METHANE EMISSIONS SOURCES AND VIABLE MITIGATION MEASURES IN THE NATURAL GAS TRANSMISSION SYSTEMS: RUSSIAN AND U.S. EXPERIENCE  

SciTech Connect (OSTI)

This article will compare the natural gas transmission systems in the U.S. and Russia and review experience with methane mitigation technologies in the two countries. Russia and the United States (U.S.) are the world's largest consumers and producers of natural gas, and consequently, have some of the largest natural gas infrastructure. This paper compares the natural gas transmission systems in Russia and the U.S., their methane emissions and experiences in implementing methane mitigation technologies. Given the scale of the two systems, many international oil and natural gas companies have expressed interest in better understanding the methane emission volumes and trends as well as the methane mitigation options. This paper compares the two transmission systems and documents experiences in Russia and the U.S. in implementing technologies and programs for methane mitigation. The systems are inherently different. For instance, while the U.S. natural gas transmission system is represented by many companies, which operate pipelines with various characteristics, in Russia predominately one company, Gazprom, operates the gas transmission system. However, companies in both countries found that reducing methane emissions can be feasible and profitable. Examples of technologies in use include replacing wet seals with dry seals, implementing Directed Inspection and Maintenance (DI&M) programs, performing pipeline pump-down, applying composite wrap for non-leaking pipeline defects and installing low-bleed pneumatics. The research methodology for this paper involved a review of information on methane emissions trends and mitigation measures, analytical and statistical data collection; accumulation and analysis of operational data on compressor seals and other emission sources; and analysis of technologies used in both countries to mitigate methane emissions in the transmission sector. Operators of natural gas transmission systems have many options to reduce natural gas losses. Depending on the value of gas, simple, low-cost measures, such as adjusting leaking equipment components, or larger-scale measures, such as installing dry seals on compressors, can be applied.

Ishkov, A.; Akopova, Gretta; Evans, Meredydd; Yulkin, Grigory; Roshchanka, Volha; Waltzer, Suzie; Romanov, K.; Picard, David; Stepanenko, O.; Neretin, D.

2011-10-01T23:59:59.000Z

290

Water Management Strategies for Improved Coalbed Methane Production in the Black Warrior Basin  

SciTech Connect (OSTI)

The modern coalbed methane industry was born in the Black Warrior Basin of Alabama and has to date produced more than 2.6 trillion cubic feet of gas and 1.6 billion barrels of water. The coalbed gas industry in this area is dependent on instream disposal of co-produced water, which ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride water. This study employed diverse analytical methods to characterize water chemistry in light of the regional geologic framework and to evaluate the full range of water management options for the Black Warrior coalbed methane industry. Results reveal strong interrelationships among regional geology, water chemistry, and gas chemistry. Coalbed methane is produced from multiple coal seams in Pennsylvanian-age strata of the Pottsville Coal Interval, in which water chemistry is influenced by a structurally controlled meteoric recharge area along the southeastern margin of the basin. The most important constituents of concern in the produced water include chlorides, ammonia compounds, and organic substances. Regional mapping and statistical analysis indicate that the concentrations of most ionic compounds, metallic substances, and nonmetallic substances correlate with total dissolved solids and chlorides. Gas is effectively produced at pipeline quality, and the only significant impurity is N{sub 2}. Geochemical analysis indicates that the gas is of mixed thermogenic-biogenic origin. Stable isotopic analysis of produced gas and calcite vein fills indicates that widespread late-stage microbial methanogenesis occurred primarily along a CO{sub 2} reduction metabolic pathway. Organic compounds in the produced water appear to have helped sustain microbial communities. Ammonia and ammonium levels increase with total dissolved solids content and appear to have played a role in late-stage microbial methanogenesis and the generation of N{sub 2}. Gas production tends to decline exponentially, whereas water production tends to decline hyperbolically. Hyperbolic decline indicates that water volume is of greatest concern early in the life of a coalbed methane project. Regional mapping indicates that gas production is controlled primarily by the ability to depressurize permeable coal seams that are natively within the steep part of the adsorption isotherm. Water production is greatest within the freshwater intrusion and below thick Cretaceous cover strata and is least in areas of underpressure. Water management strategies include instream disposal, which can be applied effectively in most parts of the basin. Deep disposal may be applicable locally, particularly where high salinity limits the ability to dispose into streams. Artificial wetlands show promise for the management of saline water, especially where the reservoir yield is limited. Beneficial use options include municipal water supply, agricultural use, and industrial use. The water may be of use to an inland shrimp farming industry, which is active around the southwestern coalbed methane fields. The best opportunities for beneficial use are reuse of water by the coalbed methane industry for drilling and hydraulic fracturing. This research has further highlighted opportunities for additional research on treatment efficiency, the origin of nitrogen compounds, organic geochemistry, biogenic gas generation, flow modeling, and computer simulation. Results of this study are being disseminated through a vigorous technology transfer program that includes web resources, numerous presentations to stakeholders, and a variety of technical publications.

Pashin, Jack; McIntyre-Redden, Marcella; Mann, Steven; Merkel, David

2013-10-31T23:59:59.000Z

291

Adsorption and methanation of carbon dioxide on a nickel/silica catalyst  

SciTech Connect (OSTI)

The adsorption and methanation of carbon dioxide on a nickel/silica catalyst were studied using temperature-programmed desorption and temperature-programmed reaction. Carbon dioxide adsorption on nickel was found to be activated; almost no adsorption occurred at room temperature, but large coverages were obtained between 383 and 473 K. The data indicate CO/sub 2/ dissociates upon adsorption at elevated temperatures to yield carbon monoxide and oxygen atoms. These oxygen atoms react with hydrogen at room temperature, so the methane and water observed during programmed heating in flowing hydrogen are identical for adsorbed CO and adsorbed CO/sub 2/. Single CH/sub 4/ and H/sub 2/O peaks, each with a peak temperature at 473 K, were observed. This peak temperature did not change with initial coverage, indicating methanation is first order in CO surface coverage. The activated adsorption of CO/sub 2/ allowed these coverage variation experiments to be carried out. Thus, following adsorption, CO and CO/sub 2/ methanation proceed by the same mechanism. However, the activated adsorption of CO/sub 2/ may create a higher H/sub 2/:CO surface ratio during steady-state hydrogenation, causing CO/sub 2/ hydrogenation to favor methane over higher hydrocarbons. 5 figures.

Falconer, J.L.; Zagli, A.E.

1980-04-01T23:59:59.000Z

292

CX-001646: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

State of Alabama Energy Efficiency and Conservation Block Grant (EECBG) Methane Capture SubgrantsCX(s) Applied: B5.1Date: 04/09/2010Location(s): Uniontown, AlabamaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

293

E-Print Network 3.0 - active methane weather Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry 48 Universitt Stuttgart Auslandsorientierter Studiengang Summary: Potential of Coalbed Methane Recovery during Active Coalmin- ing... Methane Recovery from Active...

294

Methane Hydrates: Major Energy Source for the Future or Wishful Thinking?  

SciTech Connect (OSTI)

Methane hydrates are methane bearing, ice-like materials that occur in abundance in permafrost areas such as on the North Slope of Alaska and Canada and as well as in offshore continental margin environments throughout the world including the Gulf of Mexico and the East and West Coasts of the United States. Methane hydrate accumulations in the United States are currently estimated to be about 200,000 Tcf, which is enormous when compared to the conventional recoverable resource estimate of 2300 Tcf. On a worldwide basis, the estimate is 700,000 Tcf or about two times the total carbon in coal, oil and conventional gas in the world. The enormous size of this resource, if producible to any degree, has significant implications for U.S. and worldwide clean energy supplies and global environmental issues. Historically the petroleum industry's interests in methane hydrates have primarily been related to safety issues such as wellbore stability while drilling, seafloor stability, platform subsidence, and pipeline plugging. Many questions remain to be answered to determine if any of this potential energy resource is technically and economically viable to produce. Major technical hurdles include: 1) methods to find, characterize, and evaluate the resource; 2) technology to safely and economically produce natural gas from methane hydrate deposits; and 3) safety and seafloor stability issues related to drilling through gas hydrate accumulations to produce conventional oil and gas. The petroleum engineering profession currently deals with gas hydrates in drilling and production operations and will be key to solving the technical and economic problems that must be overcome for methane hydrates to be part of the future energy mix in the world.

Thomas, Charles Phillip

2001-09-01T23:59:59.000Z

295

Numerical modeling of methane venting from lake sediments  

E-Print Network [OSTI]

The dynamics of methane transport in lake sediments control the release of methane into the water column above, and the portion that reaches the atmosphere may contribute significantly to the greenhouse effect. The observed ...

Scandella, Benjamin P. (Benjamin Paul)

2010-01-01T23:59:59.000Z

296

Conversion of methane and acetylene into gasoline range hydrocarbons  

E-Print Network [OSTI]

Conversion of methane and acetylene to higher molecular weight hydrocarbons over zeolite catalyst (HZSM-5) was studied The reaction between methane and acetylene successfully produced high molecular weight hydrocarbons, such as naphthalene, benzene...

Alkhawaldeh, Ammar

2000-01-01T23:59:59.000Z

297

Natural Gas Infrastructure R&D and Methane Emissions Mitigation...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop November 12, 2014 11:00AM EST to...

298

Methane Adsorption and Dissociation and Oxygen Adsorption and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methane Adsorption and Dissociation and Oxygen Adsorption and Reaction with CO on Pd Nanoparticles on MgO(100) and on Pd(111). Methane Adsorption and Dissociation and Oxygen...

299

Diurnal variations in methane emission from rice plants  

E-Print Network [OSTI]

A greenhouse study was conducted to investigate the mechanisms causing diurnal variations in methane emission from rice plants (Oryza sativa L.). Methane emission was measured using a closed chamber system on individual rice plants at five stages...

Laskowski, Nicholas Aaron

2004-11-15T23:59:59.000Z

300

New Methane Hydrate Research: Investing in Our Energy Future...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed...

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

SCREENING TESTS FOR IMPROVED METHANE CRACKING MATERIALS  

SciTech Connect (OSTI)

Bench scale (1 to 6 gram) methane cracking tests have been performed on a variety of pure elements, some alloys, and SAES{reg_sign} commercial getters St 101, St 198, St 707, St 737, and St 909 to determine methane cracking performance (MCP) of 5% methane in a helium carrier at 700 C, 101.3 kPa (760 torr) with a 10 sccm feed. The MCP was almost absent from some materials tested while others showed varying degrees of MCP. Re, Cr, V, Gd, and Mo powders had good MCP, but limited capacities. Nickel supported on kieselguhr (Ni/k), a Zr-Ni alloy, and the SAES{reg_sign} getters had good MCP in a helium carrier. The MCP of these same materials was suppressed in a hydrogen carrier stream and the MCP of the Zr-based materials was reduced by nitride formation when tested with a nitrogen carrier gas.

Klein, J; Jeffrey Holder, J

2007-07-16T23:59:59.000Z

302

Direct use of methane in coal liquefaction  

DOE Patents [OSTI]

This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.

Sundaram, Muthu S. (Shoreham, NY); Steinberg, Meyer (Melville, NY)

1987-01-01T23:59:59.000Z

303

Direct use of methane in coal liquefaction  

DOE Patents [OSTI]

This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.

Sundaram, M.S.; Steinberg, M.

1985-06-19T23:59:59.000Z

304

,"Federal Offshore--Alabama Natural Gas Gross Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry NaturalCoalbed Methane Proved

305

Examples of past vehicle-related projects at the University of Alabama: Diesel Exhaust Treatment Using Catalyst/Zeolite-II-collaborative UAB/UA project funded by  

E-Print Network [OSTI]

of an electrostatic diesel injector. Micro-Pilot Ignition Studies for Alternative Fueled Engines- five-year project with/without electrical heating and with/without secondary air injection. Alabama Alternative Fuel base, develop and disseminate alternative fuels information to Alabama citizens, and coordinate

Carver, Jeffrey C.

306

Geologic evaluation of critical production parameters for coalbed methane resources. Part 1. San Juan Basin. Annual report, August 1988-July 1989  

SciTech Connect (OSTI)

In the San Juan Basin, Fruitland Formation coal seams contain an estimated 43 to 49 Tcf of methane. With more than 500 producing coalbed methane wells and approximately 1,000 wells scheduled for drilling in 1990, the basin is one of the most active areas of coalbed methane exploration and production in the United States. Among the most important geologic factors affecting the occurrence and producibility of coalbed methane are depositional setting, structural attitude and fracturing of the coal, and regional hydraulic setting. In the second year of the study, the Bureau of Economic Geology evaluated the depositional setting and structure of Fruitland coal seams, which are both source rocks and reservoirs for coalbed methane, throughout the basin. The report summarizes the regional tectonic setting of the San Juan Basin; describes the Cretaceous stratigraphy, structure, and basin evolution; relates these factors to Fruitland coal and coalbed methane occurrence; describes studies of lineaments, fractures, and cleats; presents hydrodynamic controls on the producibility of coalbed methane from the Fruitland Formation; summarizes production from the Fruitland Formation; and evaluates geologic and hydrologic controls on coalbed methane producibility.

Ayers, W.B.; Kaiser, W.R.; Ambrose, W.A.; Swartz, T.E.; Laubach, S.E.

1990-01-01T23:59:59.000Z

307

Gravimetric study of adsorbed intermediates in methanation of carbon monoxide  

SciTech Connect (OSTI)

The purpose of this study is to more fully elucidate the adsorbed intermediates and mechanism involved in catalytic methanation of CO on a typical nickel methanation catalyst. Rates of adsorption and desorption of surface species and of gasification of carbon were measured gravimetrically to determine their kinetics and possible roles in methanation. 19 refs.

Gardner, D.C.; Bartholomew, C.H.

1981-08-01T23:59:59.000Z

308

Planetary and Space Science 54 (2006) 11771187 Titan's methane cycle  

E-Print Network [OSTI]

Abstract Methane is key to sustaining Titan's thick nitrogen atmosphere. However, methane is destroyed and the pressure induced opacity in the infrared, particularly by CH4­N2 and H2­N2 collisions in the troposphere), whose reaction with carbon grains or carbon dioxide in the crustal pores produces methane gas

Atreya, Sushil

309

METHANE IN SUBSURFACE: MATHEMATICAL MODELING AND COMPUTATIONAL CHALLENGES  

E-Print Network [OSTI]

advanced models of adsorption occuring in coalbed methane recovery processes, and discuss the underlying methods, hysteresis, coalbed methane, mean-field equi- librium models AMS(MOS) subject classifications. 76 applications important for global climate and energy studies, namely Enhanced Coalbed Methane (ECBM) recovery

Peszynska, Malgorzata

310

Methane-assisted combustion synthesis of nanocomposite tin dioxide materials  

E-Print Network [OSTI]

Methane-assisted combustion synthesis of nanocomposite tin dioxide materials S.D. Bakrania *, C and flow conditions using methane as a supplemental fuel. The experiments were carried out at atmospheric-phase precursor for metal additives. In the methane-assisted (MA) system, the inert carrier gas was replaced

Wooldridge, Margaret S.

311

ESTIMATING METHANE EMISSION AND OXIDATION FROM TWO TEMPORARY  

E-Print Network [OSTI]

ESTIMATING METHANE EMISSION AND OXIDATION FROM TWO TEMPORARY COVERS ON LANDFILLED MBT TREATED WASTE to oxidize the methane flux coming from the residual organic fraction. The first plant was operated without recovery of organic fraction and with concentration of the fine fraction in a cell. The methane fluxes were

Paris-Sud XI, Université de

312

PYROLYSIS OF METHANE IN A SUPERSONIC, ARC-HEATED FLOW  

E-Print Network [OSTI]

1 PYROLYSIS OF METHANE IN A SUPERSONIC, ARC-HEATED FLOW F.K. Lu,* C.M. Roseberry, J.M. Meyers and D arc pyrolysis of methane at supersonic conditions, representative of conditions in the reformer- cate the feasibility of arc pyrolysis of methane. Introduction he high specific enthalpy of combustion

Texas at Arlington, University of

313

Methane Activation with Rhenium Catalysts. 1. Bidentate Oxygenated Ligands  

E-Print Network [OSTI]

Methane Activation with Rhenium Catalysts. 1. Bidentate Oxygenated Ligands Jason M. Gonzales, Jonas, California 90089 ReceiVed July 31, 2006 Trends in methane activation have been explored for rhenium complexes proceeds with methane activation through a barrier of less than 35 kcal mol-1 . Study

Goddard III, William A.

314

Extreme Methane Emissions from a Swiss Hydropower Reservoir  

E-Print Network [OSTI]

Extreme Methane Emissions from a Swiss Hydropower Reservoir: Contribution from Bubbling Sediments manuscript received February 3, 2010. Accepted February 15, 2010. Methane emission pathways.Methanediffusionfromthesediment was generally low and seasonally stable and did not account for the high concentration of dissolved methane

Wehrli, Bernhard

315

Monterey Bay Aquarium Research A robotic sub samples the methane  

E-Print Network [OSTI]

Monterey Bay Aquarium Research Institute A robotic sub samples the methane content of the seafloor.263 News Seafloor probe taps methane reservoir Greenhouse gas found in high abundance but risk of mass release uncertain. Nicola Jones A robotic submarine has been used to measure the amount of methane lurking

Tian, Weidong

316

Carbon and Hydrogen Isotopic Effects in Microbial Methane  

E-Print Network [OSTI]

6 Carbon and Hydrogen Isotopic Effects in Microbial Methane from Terrestrial Environments Jeffrey Chanton, Lia Chaser, Paul Glasser,Don Siegel Methane is the ultimate end-product of anaerobic respiration. Methane production via CO2 reduction does not consume CO2. Also, acetate can be written as 2CH20, so Eq. 6

Saleska, Scott

317

RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS  

E-Print Network [OSTI]

RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS PART III: CYCLOPENTENE-length article SHORTENED RUNNING TITLE : METHANE FLAMES DOPED BY CYCLOPENTENE * E-mail : pierre with the studies presented in the parts I and II of this paper, the structure of a laminar rich premixed methane

Paris-Sud XI, Université de

318

Methane in lakes and wetlands Microbiological production, ecosystem  

E-Print Network [OSTI]

Methane in lakes and wetlands Microbiological production, ecosystem uptake, climatological significance LAKES AND WETLANDS ­ A RELEVANT METHANE SOURCE Lakes and other wetlands are an important source of methane, the third most important greenhouse gas in the atmosphere. However, the absolute contribution

M√ľhlemann, Oliver

319

The Tri--methane Rearrangement: Mechanistic and Exploratory Organic  

E-Print Network [OSTI]

The Tri--methane Rearrangement: Mechanistic and Exploratory Organic Photochemistry1 Howard E zimmerman@bert.chem.wisc.edu Received May 31, 2000 ABSTRACT The di--methane rearrangement is firmly established as a mode of synthesizing three-membered-ring compounds. We now report the tri-- methane

Cirkva, Vladimir

320

METHANE SOURCES AND SINKS IN UPPER OCEAN WATERS  

E-Print Network [OSTI]

METHANE SOURCES AND SINKS IN UPPER OCEAN WATERS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION the distribution of dissolved methane in ocean surface waters were investigated. Water column and sediment trap and Antarctic waters to the oliogotrophic ocean off Hawaii. The methane concentrations in most of the surface

Luther, Douglas S.

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Dissociation of methane under high pressure Guoying Gao,1,a  

E-Print Network [OSTI]

Dissociation of methane under high pressure Guoying Gao,1,a Artem R. Oganov,2,a Yanming Ma,1,b Hui Received 15 May 2010; accepted 18 August 2010; published online 12 October 2010 Methane is an extremely of methane under extreme conditions are of great fundamental interest. Using the ab initio evolutionary

Oganov, Artem R.

322

Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT  

E-Print Network [OSTI]

Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT Christian Frankenberg,1; accepted 26 June 2008; published 12 August 2008. [1] Methane retrievals from near-infrared spectra recorded spectroscopic parameters, causing a substantial overestimation of methane correlated with high water vapor

Haak, Hein

323

RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS  

E-Print Network [OSTI]

RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS PART II: 1,3-BUTADIENE-length article SHORTENED RUNNING TITLE : METHANE FLAMES DOPED BY 1,3-BUTADIENE * E-mail : Pierre of this paper, the structure of a laminar rich premixed methane flame doped with 1,3-butadiene has been

Paris-Sud XI, Université de

324

Introduction In the past two centuries, atmospheric methane  

E-Print Network [OSTI]

90 Introduction In the past two centuries, atmospheric methane (Ch4) concentrations have more than doubled. Despite the about 20o times smaller atmospheric burden of methane compared to carbon dioxide (CO2 ; IPCC 4th assessment report, 2007), because on a per molecule basis methane is a much more effective

Haak, Hein

325

Water Policy and Economics Conference 21st Century Water Issues in the Southern States  

E-Print Network [OSTI]

1 Water Policy and Economics Conference 21st Century Water Issues in the Southern States October 13 actively address water policy issues in 13 southern states (Alabama, Florida, Georgia, Kentucky, Louisiana ............................................................................................. 4 · Welcome and meeting objectives - Mike Smolen (Oklahoma State University) · Key water programs

326

New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry  

E-Print Network [OSTI]

New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico Keywords: Methane flux Mass spectrometer Brine pool Methane oxidation Gulf of Mexico a b s t r a c t Deep heterogeneity. In particular, biogeochemical fluxes of volatiles such as methane remain largely unconstrained

Girguis, Peter R.

327

Hale County, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a countyon State Highways |Haiti: Energy859102¬į,

328

A method for measuring methane oxidation rates using low levels of 14C-labeled methane and accelerator mass spectrometry  

E-Print Network [OSTI]

oxidation of methane above gas hydrates at Hydrate Ridge, NEsediment from a marine gas hydrate area. Environ. Microbiol.

2011-01-01T23:59:59.000Z

329

Studies of mechanisms and kinetics of methane and ethane steam reforming on nickel catalysts  

SciTech Connect (OSTI)

Methane and ethane adsorption/desorption and reaction on steam-reforming catalysts, Ni(INCO), Ni/ZrO{sub 2}, and Ni/CaAl{sub 2}O{sub 4}, were studied by temperature-programmed desorption (TPD), temperature-programmed surface reaction (TPSR), and thermogravimetric (TGA) techniques. The data show that only a fraction of the methane adsorbed (determined by TPSR with H{sub 2}) on nickel catalysts is desorbed during TPD experiments. The results of TPD indicate supports and promoters affect the adsorption of methane and ethane, and transformation of adsorbed carbon species. Several carbon types formed during methane and ethane adsorptions including {alpha}, {beta}, {gamma}, vermicular (v), and graphitic (c) carbon can be identified by TPSR. These data indicate that the distribution of these carbon forms is also strongly a function of adsorption temperature and catalyst. The results show that there are significant quantities of CH{sub 4}, CO, and CO{sub 2} desorbed during TPSR reaction of H{sub 2}O with preadsorbed CH{sub 4}, CD{sub 4} and C{sub 2}H{sub 6}. The agreement between previously reported steady-state and the unsteady-state steam reforming reforming rates of this study indicates that the steam-reforming kinetic data can be quantitatively measured by TPSR experiments.

Hsieh, H.Y.

1988-01-01T23:59:59.000Z

330

Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems  

SciTech Connect (OSTI)

This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

Komar, C.A. (ed.)

1980-01-01T23:59:59.000Z

331

Hydroelectric Reservoirs -the Carbon Dioxide and Methane  

E-Print Network [OSTI]

Hydroelectric Reservoirs - the Carbon Dioxide and Methane Emissions of a "Carbon Free" Energy an overview on the greenhouse gas production of hydroelectric reservoirs. The goals are to point out the main how big the greenhouse gas emissions from hydroelectric reservoirs are compared to thermo-power plants

Fischlin, Andreas

332

High Temperature Solar Splitting of Methane  

E-Print Network [OSTI]

-term commercialization opportunities #12;Why Use Solar Energy?Why Use Solar Energy? · High concentrations possible (>1000High Temperature Solar Splitting of Methane to Hydrogen and Carbon High Temperature Solar Splitting and worldwide) ­ Sufficient to power the world (if we choose to) · Advantages tradeoff against collection area

333

Methane production from ozonated pulp mill effluent  

SciTech Connect (OSTI)

A study was made of the production of methane from desugared spent sulfite liquor (SSL) reacted with ozone. The ozonated SSL was fed continuously to three anaerobic fermenters for three months as the sole source of carbon and energy. The fermenters were inoculated with anaerobic bacteria obtained from sewage sludge and acclimated for 1 month in ozonated SSL prior to continuous fermentation. Chemical and biological parameters such as COD, BOD, total sulfur content, redox potential, pH, fatty acid composition, and methane bacteria populations were monitored to determine changes in the SSL during fermentation. Methane production from ozone-treated SSL averaged 1.7 liters/ liter or 17 ml of CH/sub 4/ produced/gram of volatile solids fed. Fatty acis analysis of fermenter effluent indicated a net production of 58 mM/ liter of acetate during ozonated SSL fermentation. This acetic acid production shows future potential for further fermentation by protein-producing yeast. Although the rate of conversion of volatile solids to CH/sub 4/ in this process was not competitive with domestic or agricultural waste digesters, this study did indicate the potential benefits of ozonating organic wastes for increased methane fermentation yields.

Bremmon, C.E.; Jurgensen, M.F.; Patton, J.T.

1980-07-01T23:59:59.000Z

334

Formation and retention of methane in coal  

SciTech Connect (OSTI)

The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

Hucka, V.J.; Bodily, D.M.; Huang, H.

1992-05-15T23:59:59.000Z

335

Generating power with drained coal mine methane  

SciTech Connect (OSTI)

The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

NONE

2005-09-01T23:59:59.000Z

336

Technical Note Methane gas migration through geomembranes  

E-Print Network [OSTI]

coefficient of PVC, LLDPE, and HDPE geomembranes by performing the standard gas transport test (ASTM D1434). The measured methane gas permeability coefficient through a PVC geomembrane is 7.55 3 104 ml(STP).mil/m2.day thicknesses is proposed using the measured permeability coefficients for PVC, LLDPE, and HDPE geomembranes

337

Methane present in an extrasolar planet atmosphere  

E-Print Network [OSTI]

Molecules present in exoplanetary atmospheres are expected to strongly influence the atmospheric radiation balance, trace dynamical and chemical processes, and indicate the presence of disequilibrium effects. Since molecules have the potential to reveal the exoplanet atmospheric conditions and chemistry, searching for them is a high priority. The rotational-vibrational transition bands of water, carbon monoxide, and methane are anticipated to be the primary sources of non-continuum opacity in hot-Jovian planets. Since these bands overlap in wavelength, and the corresponding signatures from them are weak, decisive identification requires precision infrared spectroscopy. Here we report on a near-infrared transmission spectrum of the planet HD 189733b showing the presence of methane. Additionally, a resolved water-vapour band at 1.9 microns confirms the recent claim of water in this object. On thermochemical grounds, carbon-monoxide is expected to be abundant in the upper atmosphere of hot-Jovian exoplanets; thus the detection of methane rather than carbon-monoxide in such a hot planet could signal the presence of a horizontal chemical gradient away from the permanent dayside, or it may imply an ill-understood photochemical mechanisms that leads to an enhancement of methane.

Mark R. Swain; Gautam Vasisht; Giovanna Tinetti

2008-02-07T23:59:59.000Z

338

Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water  

SciTech Connect (OSTI)

Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

Song Jin

2007-05-31T23:59:59.000Z

339

SAES ST 909 PILOT SCALE METHANE CRACKING TESTS  

SciTech Connect (OSTI)

Pilot scale (500 gram) SAES St 909 methane cracking tests were conducted to determine material performance for tritium process applications. Tests that ran up to 1400 hours have been performed at 700 C, 202.7 kPa (1520 torr) with a 30 sccm feed of methane, with various impurities, in a 20 vol% hydrogen, balance helium, stream. A 2.5 vol% methane feed was reduced below 30 ppm for 631 hours. A feed of 1.1 vol% methane plus 1.4 vol% carbon dioxide was reduced below 30 ppm for 513 hours. The amount of carbon dioxide gettered by St 909 can be equated to an equivalent amount of methane gettered to estimate a reduced bed life for methane cracking. The effect of 0.4 vol % and 2.1 vol% nitrogen in the feed reduced the time to exceed 30 ppm methane to 362 and 45 hours, respectively, but the nitrogen equivalence to reduced methane gettering capacity was found to be dependent on the nitrogen feed composition. Decreased hydrogen concentrations increased methane getter rates while a drop of 30 C in one bed zone increased methane emissions by over a factor of 30. The impact of gettered nitrogen can be somewhat minimized if the nitrogen feed to the bed has been stopped and sufficient time given to recover the methane cracking rate.

Klein, J; Henry Sessions, H

2007-07-02T23:59:59.000Z

340

Methane oxidation over dual redox catalysts  

SciTech Connect (OSTI)

Catalytic oxidation of methane to partial oxidation products, primarily formaldehyde and C[sub 2] hydrocarbons, was found to be directed by the catalyst used. In this project, it was discovered that a moderate oxidative coupling catalyst for C[sub 2] hydrocarbons, zinc oxide, is modified by addition of small amounts of Cu and Fe dopants to yield fair yields of formaldehyde. A similar effect was observed with Cu/Sn/ZnO catalysts, and the presence of a redox Lewis acid, Fe[sup III] or Sn[sup IV], was found to be essential for the selectivity switch from C[sub 2] coupling products to formaldehyde. The principle of double doping with an oxygen activator (Cu) and the redox Lewis acid (Fe, Sn) was pursued further by synthesizing and testing the CuFe-ZSM-5 zeolite catalyst. The Cu[sup II](ion exchanged) Fe[sup III](framework)-ZSM-5 also displayed activity for formaldehyde synthesis, with space time yields exceeding 100 g/h-kg catalyst. However, the selectivity was low and earlier claims in the literature of selective oxidation of methane to methanol over CuFe-ZSM-5 were not reproduced. A new active and selective catalytic system (M=Sb,Bi,Sn)/SrO/La[sub 2]O[sub 3] has been discovered for potentially commercially attractive process for the conversion of methane to C[sub 2] hydrocarbons, (ii) a new principle has been demonstrated for selectivity switching from C[sub 2] hydrocarbon products to formaldehyde in methane oxidations over Cu,Fe-doped zinc oxide and ZSM-5, and (iii) a new approach has been initiated for using ultrafine metal dispersions for low temperature activation of methane for selective conversions. Item (iii) continues being supported by AMOCO while further developments related to items (i) and (ii) are the objective of our continued effort under the METC-AMOCO proposed joint program.

Klier, K.; Herman, R.G.; Sojka, Z.; DiCosimo, J.I.; DeTavernier, S.

1992-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Deep oxidation of methane on particles derived from YSZ-supported Pd-Pt-(O) coatings synthesized by pulsed filtered cathodic arc  

E-Print Network [OSTI]

2009) Deep oxidation of methane on particles derived fromAbstract Methane conversion tests were performed on Pd, PdOFigure captions Figure 1: Methane conversion a), methane

Horwat, D.

2009-01-01T23:59:59.000Z

342

Coal mine methane ownership issues  

SciTech Connect (OSTI)

The article summarizes the CMM ownership conditions in the US and the obstacles they present for project development. The first section discusses CMM resources and rights on lands controlled by the US Government, the case in several western states. The second section reviews the situation on private lands, such as in much of the eastern US, where ownership of the mineral; resources is governed by state laws. Each of the two sections analyses the ownership procedures and rules that govern both the relationship between the surface and subsurface owners and the relationship between two or more subsurface resource owners. 8 refs., 1 tab.

NONE

2007-09-30T23:59:59.000Z

343

,"Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming" "Item","Value","Rank"WesternPlant

344

Alabama--State Offshore Natural Gas Dry Production (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) BaseSep-14 Oct-14per ThousandOnshore

345

Alabama--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan Feb Mar AprDecadeYear Jan0.8 0.8

346

Alabama--State Offshore Natural Gas Withdrawals from Gas Wells (Million  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan Feb Mar AprDecadeYear Jan0.8Cubic

347

Alabama State Energy Program, Summary of Reported Data From July 1, 2010 - September 30, 2013  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary o f R eported Data (July

348

,"Federal Offshore--Alabama Natural Gas Marketed Production (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry NaturalCoalbed Methane ProvedMarketed Production

349

Methane Sulfonation A High-Yield Approach to the Sulfonation of  

E-Print Network [OSTI]

Methane Sulfonation A High-Yield Approach to the Sulfonation of Methane to Methanesulfonic Acid Initiated by H2O2 and a Metal Chloride** Sudip Mukhopadhyay and Alexis T. Bell* Methane is abundant reactivity of methane makes it difficult to develop commercially viable processes for methane conversion.[1

Bell, Alexis T.

350

RESEARCH ARTICLE -BASED ON MIR INVESTIGATIONS IN LAKE GENEVA Spatial heterogeneity of benthic methane dynamics  

E-Print Network [OSTI]

methane dynamics in the subaquatic canyons of the Rhone River Delta (Lake Geneva) S. Sollberger ¬∑ J. P methane (CH4) dynam- ics from river deltas with important organic matter accumulation have been recently Methane emission √Ā Methane production Introduction Atmospheric methane (CH4) concentration has dramati

Wehrli, Bernhard

351

RESEARCH ARTICLE -BASED ON MIR INVESTIGATIONS IN LAKE GENEVA Spatial heterogeneity of benthic methane dynamics  

E-Print Network [OSTI]

methane dynamics in the subaquatic canyons of the Rhone River Delta (Lake Geneva) S. Sollberger ¬∑ J. P Abstract Heterogeneous benthic methane (CH4) dynam- ics from river deltas with important organic matter Particle size √Ā Methane emission √Ā Methane production Introduction Atmospheric methane (CH4) concentration

Wehrli, Bernhard

352

METHANE AND ETHANE ON THE BRIGHT KUIPER BELT OBJECT 2005 FY9 M. E. Brown,1  

E-Print Network [OSTI]

METHANE AND ETHANE ON THE BRIGHT KUIPER BELT OBJECT 2005 FY9 M. E. Brown,1 K. M. Barkume,1 G. A regime and by absorption due to methane in the near-infrared. The solid methane absorption lines through the methane. These long path lengths can be parameterized as a methane grain size of approximately

Brown, Michael E.

353

Coalbed Methane New Reservoir Discoveries in Old Fields  

U.S. Energy Information Administration (EIA) Indexed Site

91 0 13 0 0 2009-2013 Federal Offshore U.S. 0 0 0 0 0 2009-2013 Pacific (California) 0 0 0 0 0 2009-2013 Gulf of Mexico (Louisiana & Alabama) 0 0 0 0 0 2009-2013 Gulf of Mexico...

354

The MVR fee for all other states, US territories and provinces is as follows: State/Province Fee (USD) State/Province Fee (USD)  

E-Print Network [OSTI]

The MVR fee for all other states, US territories and provinces is as follows: State/Province Fee (USD) State/Province Fee (USD) Alabama $11.25 North Carolina $11.50 Alaska $8.50 North Dakota.50 Georgia $11.50 Tennessee $10.50 Hawaii $26.50 Texas $10.00 Idaho $12.50 Utah $12.50 Illinois

Kirschner, Denise

355

Methane Hydrate Field Studies | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORTMAMay 20Field Studies Methane Hydrate Field

356

Methane Hydrate Production Feasibility | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORTMAMay 20Field Studies Methane Hydrate

357

Carbon dioxide adsorption and methanation on ruthenium  

SciTech Connect (OSTI)

The adsorption and methanation of carbon dioxide on a ruthenium-silica catalyst were studied using temperature-programmed desorption (TPD) and temperature-programmed reaction (TPR). Carbon dioxide adsorption was found to be activated; CO/sub 2/ adsorption increased significantly as the temperature increased from 298 to 435 K. During adsorption, some of the CO/sub 2/ dissociated to carbon monoxide and oxygen; upon hydrogen exposure at room temperature, the oxygen reacted to water. Methanation of adsorbed CO and of adsorbed CO/sub 2/, using TPR in flowing hydrogen, yielded a CH/sub 4/ peak with a peak temperature of 459 K for both adsorbates, indicating that both reactions follow the same mechanism after adsorption. This peak temperature did not change with initial surface coverage of CO, indicating that methanation is first order in CO coverage. The desorption and reaction spectra for Ru/SiO/sub 2/ were similar to those previously obtained for Ni/SiO/sub 2/, but both CO/sub 2/ formation and CH/sub 4/ formation proceeded faster on Ru. Also, the details of CO desorption and the changes in CO/sub 2/ and CO desorptions with initial coverage were different on the two metals. 5 figures, 3 tables.

Zagli, E.; Falconer, J.L.

1981-05-01T23:59:59.000Z

358

Alternative technologies to steam-methane reforming  

SciTech Connect (OSTI)

Steam-methane reforming (SMR) has been the conventional route for hydrogen and carbon monoxide production from natural gas feedstocks. However, several alternative technologies are currently finding favor for an increasing number of applications. The competing technologies include: steam-methane reforming combined with oxygen secondary reforming (SMR/O2R); autothermal reforming (ATR); thermal partial oxidation (POX). Each of these alternative technologies uses oxygen as a feedstock. Accordingly, if low-cost oxygen is available, they can be an attractive alternate to SMR with natural gas feedstocks. These technologies are composed technically and economically. The following conclusions can be drawn: (1) the SMR/O2R, ATR and POX technologies can be attractive if low-cost oxygen is available; (2) for competing technologies, the H{sub 2}/CO product ratio is typically the most important process parameter; (3) for low methane slip, the SMR/O2R, ATR and POX technologies are favored; (4) for full CO{sub 2} recycle, POX is usually better than ATR; (5) relative to POX, the ATR is a nonlicensed technology that avoids third-party involvement; (6) economics of each technology are dependent on the conditions and requirements for each project and must be evaluated on a case-by-case basis.

Tindall, B.M.; Crews, M.A. [Howe-Baker Engineers, Inc., Tyler, TX (United States)

1995-11-01T23:59:59.000Z

359

Process for separating nitrogen from methane using microchannel process technology  

DOE Patents [OSTI]

The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

Tonkovich, Anna Lee (Marysville, OH); Qiu, Dongming (Dublin, OH); Dritz, Terence Andrew (Worthington, OH); Neagle, Paul (Westerville, OH); Litt, Robert Dwayne (Westerville, OH); Arora, Ravi (Dublin, OH); Lamont, Michael Jay (Hilliard, OH); Pagnotto, Kristina M. (Cincinnati, OH)

2007-07-31T23:59:59.000Z

360

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect (OSTI)

''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

Don Augenstein

1999-01-11T23:59:59.000Z

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Department Expands Research into Methane Hydrates, a Vast...  

Broader source: Energy.gov (indexed) [DOE]

separate project funded by the EU through Universities of Bremen (Germany) and Tromso (Norway), will assess the response of methane hydrates to environmental changes at the...

362

Biomass Gasification and Methane Digester Property Tax Exemption  

Broader source: Energy.gov [DOE]

Michigan exempts certain energy production related farm facilities from real and personal property taxes. Among exempted property are certain methane digesters, biomass gasification equipment,...

363

,"North Louisiana Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

364

,"Ohio Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2010,"630...

365

,"U.S. Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

366

Ohio Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

W Withheld to avoid disclosure of individual company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Reserves Revision Increases...

367

Ohio Coalbed Methane Proved Reserves Adjustments (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Available; W Withheld to avoid disclosure of individual company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Reserves Adjustments...

368

,"U.S. Coalbed Methane Proved Reserves New Field Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",201...

369

,"Kansas Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

370

Oklahoma Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

371

,"NM, West Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

372

WATERJETTING: A NEW DRILLING TECHNIQUE IN COALBED METHANE RESERVOIRS.  

E-Print Network [OSTI]

??WATERJETTING: A NEW DRILLING TECHNIQUE IN COALBED METHANE RESERVOIRS Applications of waterjeting to drill horizontal wells for the purpose of degassing coalbeds prior to miningÖ (more)

Funmilayo, Gbenga M.

2010-01-01T23:59:59.000Z

373

,"U.S. Coalbed Methane Production (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Production (Billion Cubic Feet)",1,"Annual",2013 ,"Release Date:","124...

374

,"U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic...

375

,"West Virginia Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

376

,"New Mexico Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

377

,"TX, RRC District 2 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

378

,"U.S. Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2013...

379

Wyoming Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

380

,"U.S. Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2013...

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

,"U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2013...

382

,"Utah Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

383

,"TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

384

,"TX, RRC District 4 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

385

,"NM, East Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

386

,"TX, RRC District 3 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

387

,"Texas Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

388

,"U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2013...

389

Utah Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1...

390

UPGRADING METHANE USING ULTRA-FAST THERMAL SWING ADSORPTION  

SciTech Connect (OSTI)

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the feasibility of upgrading low-Btu methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys' modular microchannel process technology. The project is on schedule and under budget. For Task 1.1, the open literature, patent information, and vendor contacts were surveyed to identify adsorbent candidates for experimental validation and subsequent demonstration in an MPT-based ultra-fast TSA separation for methane upgrading. The leading candidates for preferential adsorption of methane over nitrogen are highly microporous carbons. A Molecular Gate{trademark} zeolite from Engelhard Corporation has emerged as a candidate. For Task 1.2, experimental evaluation of adsorbents was initiated, and data were collected on carbon (MGN-101) from PICA, Inc. This carbon demonstrated a preferential capacity for methane over nitrogen, as well as a reasonable thermal swing differential capacity for a 90% methane and 10% nitrogen mixture. A similar methane swing capacity at 2 psig was measured. The mixture composition is relevant because gob gas contains nearly 85% methane and must be purified to 97% methane for pipeline quality.

Anna Lee Tonkovich

2004-01-01T23:59:59.000Z

391

Reservoir Simulation and Evaluation of the Upper Jurassic Smackover Microbial Carbonate and Grainstone-Packstone Reservoirs in Little Cedar Creek Field, Conecuh County, Alabama  

E-Print Network [OSTI]

This thesis presents an integrated study of mature carbonate oil reservoirs (Upper Jurassic Smackover Formation) undergoing gas injection in the Little Cedar Creek Field located in Conecuh County, Alabama. This field produces from two reservoirs...

Mostafa, Moetaz Y

2013-04-25T23:59:59.000Z

392

Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells  

E-Print Network [OSTI]

Methane contributes 20% annually to increases in global warming, and is explosive at concentrations of 5-15% in air. Landfills contribute 15% to total methane emissions. This study was conducted to determine the potential decrease in methane...

West, Margrit Evelyn

1995-01-01T23:59:59.000Z

393

Analysis of a direct methane conversion to high molecular weight hydrocarbons  

E-Print Network [OSTI]

Methane conversion to heavier hydrocarbons was studied using electrical furnaces and a plasma apparatus. The experiments were performed with pure methane for the electrical furnace experiments while pure methane and additions such as hydrogen...

Al-Ghafran, Moh'd. J.

2000-01-01T23:59:59.000Z

394

Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes  

E-Print Network [OSTI]

Potential distribution of methane hydrate in the world'sisotopic evidence for methane hydrate instability duringHendy, L.L. , and R.J. Behl, Methane hydrates in quaternary

Reagan, M.

2012-01-01T23:59:59.000Z

395

Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions  

E-Print Network [OSTI]

in tropospheric ozone and methane; global 3-D model studies,hydroxyl radical and methane life- time from the Atmosphericof meteorology and emissions on methane trends, 1990Ė2004,

Holmes, C. D; Prather, M. J; Sovde, O. A; Myhre, G.

2013-01-01T23:59:59.000Z

396

Methane in lakes and wetlands -Microbiological production, ecosystem uptake, climatological significance  

E-Print Network [OSTI]

1 Methane in lakes and wetlands - Microbiological production, ecosystem Z√ľrcher, Fortunat Joos Global methane emissions from wet ecosystems 9:50 - 10 Were tropical wetlands C4-dominated during the glacial? A view from methane

M√ľhlemann, Oliver

397

Methane Hydrate Dissociation by Depressurization in a Mount Elbert Sandstone Sample: Experimental Observations and Numerical Simulations  

E-Print Network [OSTI]

S.S.H. , 1987. Kinetics of Methane Hydrate Decomposition,T. J. , et al. (2007), Methane Hydrate Formation andCharting the future of methane hydrate research in the

Kneafsey, T.

2012-01-01T23:59:59.000Z

398

Methane from UV-irradiated carbonaceous chondrites under simulated Martian conditions  

E-Print Network [OSTI]

Methane from UV-irradiated carbonaceous chondrites under simulated Martian conditions Andrew C process was studied for the production of methane from carbonaceous chondrites under simulated Martian conditions. Methane evolution rates from carbonaceous chondrites were found to be positively correlated

Schuerger, Andrew C.

399

SUESS ET AL.: SEA FLOOR METHANE HYDRATES AT HYDRATE RIDGE, CASCADIA MARGIN Sea Floor Methane Hydrates at Hydrate Ridge, Cascadia Margin  

E-Print Network [OSTI]

SUESS ET AL.: SEA FLOOR METHANE HYDRATES AT HYDRATE RIDGE, CASCADIA MARGIN 1 Sea Floor Methane are exposed at the sea floor. A methane-oxidizing bacterial consortium populates the exposures of hydrate; colonies of vent macro-fauna are abundant as well. Discharge of methane from destabilized hydrate

Goldfinger, Chris

400

Mechanistic studies of electron transfer, complex formation, C-H bond activation, and product binding in soluble methane monooxygenase  

E-Print Network [OSTI]

Chapter 1. Soluble Methane Monooxygenase: Activation of Dioxygen and Methane The mechanisms by which soluble methane monooxygenase uses dioxygen to convert methane selectively to methanol have come into sharp focus. Diverse ...

Kopp, Daniel Arthur

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Experimental and kinetic study of autoignition in methane/ethane/air and methane/propane/air mixtures under engine-relevant conditions  

SciTech Connect (OSTI)

The ignition delay of homogeneous methane/air mixtures enriched with small fractions of ethane/propane was measured using the reflected-shock technique at temperatures from 900 to 1400 K and pressures from 16 to 40 bar. The results show complex effects of ethane/propane on the ignition of methane, but a common trend observed with both hydrocarbons is an increased promotion effect for temperatures below 1100 K. A detailed kinetic mechanism was used to investigate the interaction between ethane/propane and the ignition chemistry of methane under the above conditions. It was found that at relatively low temperatures, the reactions between ethane/propane and methylperoxy (CH{sub 3}O{sub 2}) lead to an enhanced rate of formation of OH radicals in the initiation phase of the ignition. By systematically applying the quasi-steady-state assumptions to the intermediate species involved in the main reaction path identified, we have achieved an analytical description of the ignition process in the transitional temperature regime. The analytical solutions agree reasonably well with the detailed kinetic model and the experimental results for both ignition delay and concentrations of major intermediate species.

Huang, J.; Bushe, W.K. [Department of Mechanical Engineering, University of British Columbia, 6950 Applied Science Lane, Vancouver, British Columbia (Canada V6T 1Z4)

2006-01-01T23:59:59.000Z

402

Coalbed methane potential of the Pechora Coalfield, Timan-Pechora Basin, Russia  

SciTech Connect (OSTI)

A comparison of the more important geologic attributes of coal beds in the coalbed methane producing regions of the United States to Permian coal beds in the Pechora Coalfield, Timan-Pechora Basin, Russia indicates a high potential for commercial coalbed methane production. Although the depositional and structural histories, as well as the age, of the coal beds in the Pechora Coalfield are different than coal beds in U.S. basins, coal quality attributes are similar. The more prospective part of the coal-bearing sequence is as thick as 1600 m and contains more than 150 coal beds that individually are as thick as 4 m. These coal beds are composed primarily of rank ranges from subbituminous to anthracite (,0.5->2.5% R[sub 0]), with the highest rank coal located near the city of Vorkuta. Published data indicates that the gas content of coals is as high as 28-35 m[sup 3]/ton, with an average value of 18 m[sup 3]/ton. About 700 MMCM of gas per year is emmitted from coal mines. Pore pressures in the coal beds are unknown, however, interbedded sandstones in some parts of the basin are overpressured. The commonly occurring problem, in mid-latitude coalbed methane well, of excessive amounts of water may be alleviated in this high-latitude coal field. We suggest that the wide-spread occurrence of permafrost in the Pechora Coalfield may form an effective barrier to down-dip water flow, thereby facilitating the dewatering state. In summary, the quality of coal beds in the Pechora Coalfield are similar to methane producing coal beds in the United States and should, therefore, be favorable for commercial rates of gas production.

Yakutseni, V.P.; Petrova, Y.E. (VNIGRI, St. Petersburg (Russian Federation)); Law, B.E.; Ulmishek, G.F. (Geological Survey, Denver, CO (United States))

1996-01-01T23:59:59.000Z

403

Coalbed methane potential of the Pechora Coalfield, Timan-Pechora Basin, Russia  

SciTech Connect (OSTI)

A comparison of the more important geologic attributes of coal beds in the coalbed methane producing regions of the United States to Permian coal beds in the Pechora Coalfield, Timan-Pechora Basin, Russia indicates a high potential for commercial coalbed methane production. Although the depositional and structural histories, as well as the age, of the coal beds in the Pechora Coalfield are different than coal beds in U.S. basins, coal quality attributes are similar. The more prospective part of the coal-bearing sequence is as thick as 1600 m and contains more than 150 coal beds that individually are as thick as 4 m. These coal beds are composed primarily of rank ranges from subbituminous to anthracite (,0.5->2.5% R{sub 0}), with the highest rank coal located near the city of Vorkuta. Published data indicates that the gas content of coals is as high as 28-35 m{sup 3}/ton, with an average value of 18 m{sup 3}/ton. About 700 MMCM of gas per year is emmitted from coal mines. Pore pressures in the coal beds are unknown, however, interbedded sandstones in some parts of the basin are overpressured. The commonly occurring problem, in mid-latitude coalbed methane well, of excessive amounts of water may be alleviated in this high-latitude coal field. We suggest that the wide-spread occurrence of permafrost in the Pechora Coalfield may form an effective barrier to down-dip water flow, thereby facilitating the dewatering state. In summary, the quality of coal beds in the Pechora Coalfield are similar to methane producing coal beds in the United States and should, therefore, be favorable for commercial rates of gas production.

Yakutseni, V.P.; Petrova, Y.E. [VNIGRI, St. Petersburg (Russian Federation); Law, B.E.; Ulmishek, G.F. [Geological Survey, Denver, CO (United States)

1996-12-31T23:59:59.000Z

404

Exploiting coalbed methane and protecting the global environment  

SciTech Connect (OSTI)

The global climate change caused by greenhouse gases (GHGs) emission has received wide attention from all countries in the world. Global environmental protection as a common problem has confronted the human being. As a main component of coalbed methane, methane is an important factor influencing the production safety of coal mine and threatens the lives of miners. The recent research on environment science shows that methane is a very harmful GHG. Although methane gas has very little proportion in the GHGs emission and its stayed period is also very short, it has very obvious impact on the climate change. From the estimation, methane emission in the coal-mining process is only 10% of the total emission from human`s activities. As a clean energy, Methane has mature recovery technique before, during and after the process of mining. Thus, coalbed methane is the sole GHG generated in the human`s activities and being possible to be reclaimed and utilized. Compared with the global greenhouse effect of other GHGs emission abatement, coalbed methane emission abatement can be done in very low cost with many other benefits: (1) to protect global environment; (2) to improve obviously the safety of coal mine; and (3) to obtain a new kind of clean energy. Coal is the main energy in China, and coalbed contains very rich methane. According to the exploration result in recent years, about 30000{approximately}35000 billion m{sup 2} methane is contained in the coalbed below 2000 m in depth. China has formed a good development base in the field of reclamation and utilization of coalbed methane. The author hopes that wider international technical exchange and cooperation in the field will be carried out.

Yuheng, Gao

1996-12-31T23:59:59.000Z

405

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network [OSTI]

DIGESTERS AND BIOGAS RECOVERY Digesters Do Not Address theMethane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

406

Development of gas production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from coal seams .The unique difference between CBM and conventional gas reservoirs isÖ (more)

Nfonsam, Allen Ekahnzok.

2006-01-01T23:59:59.000Z

407

Coalbed Methane Produced Water Screening Tool for Treatment Technology and Beneficial Use 2013 Supporting Information  

E-Print Network [OSTI]

Coalbed Methane Produced Water Screening Tool for Treatment Technology and Beneficial Use 2013 1 (to sustain instream #12;Coalbed Methane Produced Water Screening Tool for Treatment Technology

408

Presentations from the March 27th - 28th Methane Hydrates Advisory...  

Broader source: Energy.gov (indexed) [DOE]

the March 27th - 28th Methane Hydrates Advisory Committee Meeting Presentations from the March 27th - 28th Methane Hydrates Advisory Committee Meeting International Gas Hydrate...

409

E-Print Network 3.0 - anthropogenic methane emissions Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

regional assessments... and global lake methane emissions, contributing to the greenhouse effect, are poorly known. We developed... predictions of methane emissions from easily...

410

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network [OSTI]

Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THEA. Digesters Have Received Attention for Their Potential to

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

411

1870 Organometallics 1994,13,1870-1877 Mechanism and Energetics for Dehydrogenation of Methane  

E-Print Network [OSTI]

1870 Organometallics 1994,13,1870-1877 Mechanism and Energetics for Dehydrogenation of Methane also activate CHI. 1. Introduction Becauseof the enormousworldwidereservesof methane (CH4)andthe

Goddard III, William A.

412

Methane Hydrate Program Annual Report to Congress  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 Master EM ProjectMemoDepartmentFY 2010 Methane Hydrate

413

Formation mechanism for polycyclic aromatic hydrocarbons in methane flames  

E-Print Network [OSTI]

Formation mechanism for polycyclic aromatic hydrocarbons in methane flames K. Siegmanna) Swiss 96822 Received 24 August 1999; accepted 13 October 1999 A laminar diffusion flame of methane exhausts,7­17 coal-fired, electricity generating power plants,18,19 tobacco smoke,20 residential wood

Sattler, Klaus

414

Development of a Series of National Coalbed Methane Databases  

E-Print Network [OSTI]

Development of a Series of National Coalbed Methane Databases Mohaghegh, S. D., Nunsavathu, U Growing Interest in Coalbed Methane ­ Elevated natural gas prices ­ Demand for clean energy sources DatabaseDatabase One Location Reservoir & Sorption Collection ­ 126 Coalbed Areas ­ 34 Parameters Ordered

Mohaghegh, Shahab

415

Photofragment imaging of methane Albert J. R. Heck  

E-Print Network [OSTI]

on CH4. © 1996 American Institute of Physics. S0021-9606 96 03810-3 INTRODUCTION Knowledge about the photo dissociation pathways of the methane molecule is of fundamental importance as it is of central, the photochemistry of methane in the atmosphere is mostly driven by intense solar atomic emission lines

Zare, Richard N.

416

The thermal decomposition of methane in a tubular reactor  

SciTech Connect (OSTI)

The reaction rate of methane decomposition using a tubular reactor having a 1 inch inside diameter with an 8 foot long heated zone was investigated in the temperature range of 700 to 900 C with pressures ranging from 28.2 to 56.1 atm. Representing the rate by a conventional model, {minus}dC{sub CH4}/dt= k1 C{sub CH4} {minus}k2 C{sub H2}{sup 2}, the rate constant k1 for methane decomposition was determined. The activation energy, 31.3 kcal/mol, calculated by an Arrhenius Plot was lower than for previously published results for methane decomposition. This result indicates that submicron particles found in the reactor adhere to the inside of the reactor and these submicron high surface area carbon particles tend to catalyze the methane decomposition. The rate constant has been found to be approximately constant at 900 C with pressure range cited above. The rate of methane decomposition increases with methane partial pressure in first-order. The rate of the methane decomposition is favored by higher temperatures and pressures while the thermochemical equilibrium of methane decomposition is favored by lower pressures. 8 refs., 7 figs., 2 tabs.

Kobayashi, Atsushi; Steinberg, M.

1992-01-01T23:59:59.000Z

417

,"Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved Reserves (Billion Cubic Feet)"

418

,"Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved Reserves (Billion Cubic Feet)"Expected Future

419

,"Alabama Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved Reserves (Billion Cubic Feet)"Expected

420

,"Alabama Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved Reserves (Billion Cubic

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

,"Alabama Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved Reserves (Billion CubicTotal Offshore

422

,"Alabama Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved Reserves (Billion CubicTotal

423

,"Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved Reserves (Billion CubicTotalPrice (Dollars per

424

,"Alabama Natural Gas Underground Storage Net Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved Reserves (Billion CubicTotalPriceNet Withdrawals

425

,"Alabama Natural Gas Underground Storage Volume (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved Reserves (Billion CubicTotalPriceNet

426

,"Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved Reserves (Billion CubicTotalPriceNetWellhead

427

Program in Functional Genomics of Autoimmunity and Immunology of yhe University of Kentucky and the University of Alabama  

SciTech Connect (OSTI)

This grant will be used to augment the equipment infrastructure and core support at the University of Kentucky and the University of Alabama particularly in the areas of genomics/informatics, molecular analysis and cell separation. In addition, we will promote collaborative research interactions through scientific workshops and exchange of scientists, as well as joint exploration of the role of immune receptors as targets in autoimmunity and host defense, innate and adaptive immune responses, and mucosal immunity in host defense.

Alan M Kaplan

2012-10-12T23:59:59.000Z

428

Alabama Blood Lead Surveillance Report 1997 -2005 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006  

E-Print Network [OSTI]

Alabama Blood Lead Surveillance Report 1997 - 2005 0 5,000 10,000 15,000 20,000 25,000 1997 1998 Tested #12;Alaska Blood Lead Surveillance Report 1997 - 2006 0 50 100 150 200 250 300 1997 1998 1999 2000;Arizona Blood Lead Surveillance Report 1997 - 2006 0 10,000 20,000 30,000 40,000 50,000 60,000 1997 1998

429

A STUDY ON SPHERICAL EXPANDING FLAME SPEEDS OF METHANE, ETHANE, AND METHANE/ETHANE MIXTURES AT ELEVATED PRESSURES  

E-Print Network [OSTI]

High-pressure experiments and chemical kinetics modeling were performed for laminar spherically expanding flames for methane/air, ethane/air, methane/ethane/air and propane/air mixtures at pressures between 1 and 10 atm and equivalence ratios...

De Vries, Jaap

2010-07-14T23:59:59.000Z

430

Texas State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667 28,167

431

LA, State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 328 370 396After LeaseProduction

432

Lower 48 States Coalbed Methane Proved Reserves, Reserves Changes, and  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289886,084Dry

433

Texas (with State Offshore) Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousandProcessed (Million Cubic Feet)WellheadProduction

434

Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousandProcessed (Million Cubic

435

Texas--State Offshore Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear JanSeparation,(Million(Million(Million Barrels)

436

California (with State off) Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReservesm 3 (D CDProduction

437

California (with State off) Coalbed Methane Proved Reserves (Billion Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReservesm 3 (D CDProductionFeet)

438

California--State Offshore Coalbed Methane Proved Reserves (Billion Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010 Imports 2.83

439

Louisiana (with State Offshore) Coalbed Methane Proved Reserves (Billion  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422Year Jan FebYear JanCubic

440

Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year inBarrels) Crude OilShale Proved

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year inBarrels) CrudeMarketedSeparation,

442

Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand CubicYear Jan Feb MarThousandCoalbed

443

Mississippi (with State off) Coalbed Methane Proved Reserves (Billion Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand CubicYearFuture Production

444

Other States Natural Gas Coalbed Methane, Reserves Based Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper ThousandResidentialElements)

445

Mississippi (with State off) Coalbed Methane Production (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay6 Kentucky -Proved ReservesFutureFeet)

446

Louisiana--State Offshore Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA.MissouriElements)Based Production (MillionProved

447

Lower 48 States Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA.MissouriElements)BasedFeet) ProvedProduction (Billion Cubic

448

Eastern States Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96Nebraska Nuclear ProfileReportSep-14(Million CubicCoalbed

449

Louisiana (with State Offshore) Coalbed Methane Production (Billion Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (MillionYear JanDecadeYearFeet) Year Jan FebFeet)

450

CA, State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 8021 1 2and Production 2011

451

Alaska coal geology, resources, and coalbed methane potential  

SciTech Connect (OSTI)

Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces, Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines. Alaskan coals have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States and are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. Another untapped potential resource is coalbed methane estimated to total 1,000 trillion cubic feet (28 trillion cubic meters).

Romeo M. Flores; Gary D. Stricker; Scott A. Kinney

2005-11-15T23:59:59.000Z

452

Methane Recovery from Hydrate-bearing Sediments  

SciTech Connect (OSTI)

Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.

J. Carlos Santamarina; Costas Tsouris

2011-04-30T23:59:59.000Z

453

EFFECTS OF WATER SPRAYS AND SCRUBBER EXHAUST ON FACE METHANE CONCENTRATIONS  

E-Print Network [OSTI]

methane levels. KEYWORDS Ventilation, water sprays, methane, coal mining, dust scrubber INTRODUCTIONChapter 65 EFFECTS OF WATER SPRAYS AND SCRUBBER EXHAUST ON FACE METHANE CONCENTRATIONS Ch.D. Taylor-mounted scrubber and water sprays can reduced methane levels at the face. The current research was conducted

Saylor, John R.

454

Goldschmidt Conference Abstracts 2010 A331 Biogenic methane potential for Surat  

E-Print Network [OSTI]

methane when native Walloon coal was provided as the sole organic carbon source. Methane generation rates]. This is the first direct evidence of real-time biogenic coal-to-methane potential for an Australian coal seam sample not produce methane from a non-native coal. Pathway and Bioavailability Results Six of the eight Surat Basin

455

Large-eddy simulation of lean hydrogenemethane turbulent premixed flames in the methane-  

E-Print Network [OSTI]

Large-eddy simulation of lean hydrogenemethane turbulent premixed flames in the methane- dominated to available experimental data. The enriched flame has 20% H2 in terms of mole fraction and lies in the methane methane flame in the methane- dominated regime. Copyright ª 2014, Hydrogen Energy Publications, LLC

G√ľlder, √?mer L.

456

CHEMISTRY OF METHANE AND RELATED HYDROCARBONS IN THE ATMOSPHERE OF MARS.  

E-Print Network [OSTI]

CHEMISTRY OF METHANE AND RELATED HYDROCARBONS IN THE ATMOSPHERE OF MARS. F. Lefèvre, LATMOS, Paris detection of methane on Mars [1,2,3,4] has revived the possibility of past or extant life on this planet of the recent observations of methane on Mars is that methane concentrations appear to be locally enhanced

457

Origin State Destination State  

Gasoline and Diesel Fuel Update (EIA)

-4.9 -3.3 Illinois Pennsylvania - - W - - Illinois Tennessee 4.21 3.54 W W W Illinois West Virginia W 14.15 W W W Illinois Wisconsin - - W - - Indiana Alabama W 18.38 20.54...

458

,"Alabama Natural Gas Gross Withdrawals Total Offshore (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved Reserves (Billion CubicTotal Offshore (MMcf)"

459

,"Alabama Natural Gas LNG Storage Net Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved Reserves (Billion CubicTotalPrice (Dollars perLNG

460

,"Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved Reserves (Billion CubicTotalPriceNetWellhead Price

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

,"Alabama Share of Total U.S. Natural Gas Delivered to Consumers"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved Reserves (BillionShare of Total U.S. Natural Gas

462

Percent of Commercial Natural Gas Deliveries in Alabama Represented by the  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-MonthCoalbed Methane(Dollars per ThousandShalePrice

463

,"Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry NaturalCoalbed MethaneMarketed

464

Single-well Modeling of Coalbed Methane Production  

E-Print Network [OSTI]

The presented study concerns the unconventional coal bed methane (CBM) fields that imply peculiarity of their evaluation. The theoretical basis of the CBM field development is briefly described, most widely known models of changes in the properties...

Martynova, Elena

2014-01-14T23:59:59.000Z

465

Direct Biological Conversion of Electrical Current into Methane by  

E-Print Network [OSTI]

electrical energy and substrate heat of combustion energy (82%) (3). One disadvantage of electrically-chamber MEC, methane was produced at anoverallenergyefficiencyof80%(electricalenergyandsubstrate heat of combustion). These results show that electrometha- nogenesis can be used to convert electrical current

466

Wyoming Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

467

New Mexico Coalbed Methane Proved Reserves Revision Decreases...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) New Mexico Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

468

New Mexico Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) New Mexico Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

469

West Virginia Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) West Virginia Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

470

Oklahoma Coalbed Methane Proved Reserves Sales (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6...

471

Kansas Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Kansas Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

472

Montana Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

473

New Mexico Coalbed Methane Proved Reserves New Field Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 - ...

474

Utah Coalbed Methane Proved Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 - ...

475

Utah Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

476

Louisiana--North Coalbed Methane Proved Reserves Sales (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Louisiana--North Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

477

Utah Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

478

Ohio Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Revision Decreases (Billion Cubic Feet) Ohio Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

479

Kansas Coalbed Methane Proved Reserves Adjustments (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Kansas Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

480

Wyoming Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

Note: This page contains sample records for the topic "methane alabama state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Utah Coalbed Methane Proved Reserves Adjustments (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

482

Utah Coalbed Methane Proved Reserves Acquisitions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

483

New Mexico Coalbed Methane Proved Reserves Revision Increases...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) New Mexico Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

484

Kansas Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Kansas Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

485

West Virginia Coalbed Methane Proved Reserves Revision Increases...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) West Virginia Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

486

Wyoming Coalbed Methane Proved Reserves New Field Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 - ...

487

Montana Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

488

Wyoming Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

489

Pennsylvania Coalbed Methane Proved Reserves Sales (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

490

Wyoming Coalbed Methane Proved Reserves Sales (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

491

Oklahoma Coalbed Methane Proved Reserves New Field Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0...

492

Kansas Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Kansas Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

493

Utah Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

494

Montana Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

495

West Virginia Coalbed Methane Proved Reserves Revision Decreases...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) West Virginia Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

496

Colorado Coalbed Methane Proved Reserves Sales (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0...

497

Arkansas Coalbed Methane Proved Reserves Sales (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

498

Utah Coalbed Methane Proved Reserves Sales (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0...

499

Commodity chemicals from natural gas by methane chlorination  

SciTech Connect (OSTI)

Ethylene and vinyl chloride monomer (VCM) can be produced from natural gas through methane chlorination by reacting methane and chlorine at 900/sup 0/C or higher. Experimental results indicate total ethylene equivalent yield from methane of 45%(wt) and marginal process economics. Fundamental kinetic modeling predicts improved C/sub 2/ yields of up to 70%(wt) at optimum reaction conditions. This optimum condition established the basis for the process design study to evaluate the potential for producing ethylene and VCM from natural gas. HCl by-product is recycled for economic viability. Using the Kel-Chlor process for recycling HCl, the proposed plant produces 27,200 TPA of C/sub 2/H/sub 4/ and 383,800 TPA of VCM. The Midwest is an ethylene consumption area requiring imports of ethylene derivatives from other regions. A methane chlorination plant located on a Midwestern natural gas pipeline network has a good commercial potential.

Che, S.C.; Minet, R.G.; Giacobbe, F.; Mullick, S.L.

1987-01-01T23:59:59.000Z

500

Modeling pure methane hydrate dissociation using a numerical simulator from a novel combination of X-ray computed tomography and macroscopic data  

E-Print Network [OSTI]

of predicted and measured methane gas production data within the heterogeneous porous methane hydrate sample.Global Distribution of Methane Hydrate in Ocean Hydrate.

Gupta, A.

2010-01-01T23:59:59.000Z