National Library of Energy BETA

Sample records for meters wellhead imports

  1. Natural Gas Wellhead Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Production Imputed Wellhead Value Wellhead Price Marketed Production Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes ...

  2. Mudline subsea wellhead system

    SciTech Connect (OSTI)

    Milberger, L.J.; Thames, E.E.

    1993-08-31

    In a subsea wellhead system, an improved means is described for allowing the well to be drilled with a mudline suspension system and completed with a subsea pressure control system, comprising in combination: an outer wellhead housing for location on a subsea floor, having a lower end adapted to be secured to a conductor pipe extending into the well; conductor connector means for releasably securing a string of conductor riser to the outer wellhead housing to extend to the surface; a cement return port extending through the outer wellhead housing; an inner wellhead housing having a lower end adapted to be secured to a string of outer casing, the inner wellhead housing having a bore containing an internal landing shoulder; outer casing connector means for connecting the inner wellhead housing to outer casing riser and for lowering the outer casing riser and inner wellhead housing through the conductor riser with the inner wellhead housing landing in the outer wellhead housing; seal means for sealing the inner wellhead housing to the outer wellhead housing above the cement return port; a first casing hanger having an internal mudline latch profile; intermediate casing connector means; a second casing hanger having an external latch that latches into the internal mudline latch profile in the first casing hanger; inner casing connector means; and the conductor riser, outer casing riser, intermediate casing riser, and inner casing riser allowing the well to be drilled with a mudline suspension system and pressure control equipment at the surface, the inner casing connector means, intermediate casing connector means, outer casing connector means, and conductor connector means being subsequently releasable to remove the inner casing riser, intermediate casing riser, outer casing riser and conductor riser for subsea pressure control completion.

  3. Simplified subsea production wellhead

    SciTech Connect (OSTI)

    Lewis, H.R.

    1980-10-28

    A simplified subsea production wellhead which permits (1) pumpdown tool operations for routine well maintenance and (2) vertical entry to the wellbore for major workover operations. The wellhead can be lowered by the production pipeline to a wellhead site on the sea floor. The production wellhead includes a diverter spool for releasably attaching to a subsea well. Pumpdown tools can be used with the diverter spool. If vertical entry of the subsea well is required, the diverter spool can be released, raised and moved horizontally to one side of the subsea well, giving vertical entry. After workover operations, the diverter spool is again moved over the subsea well and reattached.

  4. Subsea wellhead seal assembly

    SciTech Connect (OSTI)

    Gullion, S.D.

    1988-07-26

    An annular subsea wellhead seal assembly is described for sealing against the walls in a subsea wellhead annulus above a landing seat at the lower end of the annulus comprising: an annular body having an outwardly and downwardly flaring outer skirt and an inwardly and downwardly flaring inner skirt extending from it slower surface, a landing ring having lower landing surface for landing on a landing seat at the lower end of the subsea wellhead annulus in which the assembly is to seal, and an upper flat reaction surface which is positioned immediately under and engagable with the lower ends of the skirts; and means connecting the body and the landing ring for relative movement toward each other; downward movement of the body with respect to the landing ring spreading the skirts outward and inward, respectively, into a substantially horizontal digging engagement set position with the walls of the annulus to be sealed.

  5. Natural Gas Wellhead Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price Marketed Production Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. NA NA NA NA NA NA 1973-2016

  6. Meters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and RP-1 Agreement and Guide For Use and Utilization of the RadEye B20-ER Survey Meters The Rad Eye B20-ER is a pancake GM detector capable of measuring low levels of Alpha, Beta, and Gamma radiation. User authorization under this agreement is for use of the RadEye B20-ER radiation survey instrument for Process Knowledge surveys and user informational purposes only. These instruments cannot be used for official surveys. An RP-1 RCT must be contacted for official surveys or item release surveys.

  7. Wellhead with non-ferromagnetic materials

    DOE Patents [OSTI]

    Hinson, Richard A [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2009-05-19

    Wellheads for coupling to a heater located in a wellbore in a subsurface formation are described herein. At least one wellhead may include a heater located in a wellbore in a subsurface formation; and a wellhead coupled to the heater. The wellhead may be configured to electrically couple the heater to one or more surface electrical components. The wellhead may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the wellhead. Systems and methods for using such wellheads for treating a subsurface formation are described herein.

  8. New York Natural Gas Wellhead Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) New York Natural Gas Wellhead Price ... Referring Pages: Natural Gas Wellhead Price New York Natural Gas Prices Natural Gas ...

  9. New Mexico Natural Gas Wellhead Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) New Mexico Natural Gas Wellhead Price ... Referring Pages: Natural Gas Wellhead Price New Mexico Natural Gas Prices Natural Gas ...

  10. West Virginia Natural Gas Wellhead Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) West Virginia Natural Gas Wellhead Price ... Referring Pages: Natural Gas Wellhead Price West Virginia Natural Gas Prices Natural Gas ...

  11. North Dakota Natural Gas Wellhead Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Wellhead Price ... Referring Pages: Natural Gas Wellhead Price North Dakota Natural Gas Prices Natural Gas ...

  12. New York Quantity of Production Associated with Reported Wellhead...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) New ... Quantity of Natural Gas Production Associated with Reported Wellhead Value New York ...

  13. New Mexico Quantity of Production Associated with Reported Wellhead...

    Gasoline and Diesel Fuel Update (EIA)

    Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) New ... Quantity of Natural Gas Production Associated with Reported Wellhead Value New Mexico ...

  14. Imputed Wellhead Value of Natural Gas Marketed Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Thousand Dollars) Data Series: Quantity of Production Imputed Wellhead Value Wellhead Price Marketed Production Period: Annual Download Series History Download Series History...

  15. U.S. Quantity of Production Associated with Reported Wellhead...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) U.S. Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade...

  16. Virginia Quantity of Production Associated with Reported Wellhead...

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Virginia Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) ...

  17. Utah Quantity of Production Associated with Reported Wellhead...

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Utah Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade ...

  18. Nevada Natural Gas Wellhead (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead Value Nevada Natural Gas Wellhead Value and Marketed Production

  19. Seal integrity and connector clamping force at the subsea wellhead

    SciTech Connect (OSTI)

    Owens, J.H.

    1983-05-01

    The importance of the relative stiffness of the hydraulic connector and the wellhead hub for subsea wellhead connections is demonstrated using existing design principles for bolted flanges and clamps. Connector stiffness is determined experimentally for one design, and a method utilizing finite element analysis is demonstrated for another. A 3-D finite element model is used to determine wellhead seal radial loading after hub separation has occurred on one side of the hub interface, as it might under a severe moment. The results suggest that the normal load between hub seal pocket and seal OD reduces markedly as the gap increases, and more of the internal pressure loading on the seal is resisted by hoop stresses in the seal itself. However, even at a gap of 0.090 inches, the loading on the seal appears to be uniform around the seal pocket. At a hub separation 0.090 to 0.120 inches, all OD normal load is lost on a portion of the seal near the separation.

  20. ,"Nevada Natural Gas Wellhead Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Nevada Natural Gas Wellhead Price (Dollars per ... 1:10:15 AM" "Back to Contents","Data 1: Nevada Natural Gas Wellhead Price (Dollars per ...

  1. ,"New York Natural Gas Wellhead Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Wellhead Price (Dollars ... 8:33:11 AM" "Back to Contents","Data 1: New York Natural Gas Wellhead Price (Dollars ...

  2. ,"New Mexico Natural Gas Wellhead Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Wellhead Price (Dollars ... 8:33:11 AM" "Back to Contents","Data 1: New Mexico Natural Gas Wellhead Price (Dollars ...

  3. ,"Kansas Natural Gas Wellhead Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Kansas Natural Gas Wellhead Price (Dollars per ... 7:03:09 AM" "Back to Contents","Data 1: Kansas Natural Gas Wellhead Price (Dollars per ...

  4. ,"North Dakota Natural Gas Wellhead Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Wellhead Price (Dollars ... 9:04:04 AM" "Back to Contents","Data 1: North Dakota Natural Gas Wellhead Price (Dollars ...

  5. ,"Texas Natural Gas Wellhead Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas Natural Gas Wellhead Price (Dollars per ... 7:03:13 AM" "Back to Contents","Data 1: Texas Natural Gas Wellhead Price (Dollars per ...

  6. Standardized wellheads proven economical for subsea operations

    SciTech Connect (OSTI)

    Moreira, C.C.; Silva Paulo, C.A. )

    1994-05-02

    A standardization program for subsea wellheads and completion equipment has made development of Brazil's offshore fields more economical and efficient. The resulting operational flexibility associated with the use of field-proven equipment and procedures saves rig time and can reduce production loss during workovers. Additionally, investments can be rationalized economically by installing part of the completion equipment at the end of the drilling job and then delaying purchase and installation of the christmas tree and the flow lines until installation of the production platform. Savings are also realized from the reduction in the number of spare parts and tools. Moreover, the savings related to improved operations exceed considerably those from equipment acquisition and storage. Thus, the greatest benefit is the operational flexibility. The paper discusses initial standards, the subsea programs, philosophy, implementation, diver-assisted trees, diverless trees, and economics.

  7. Independent load support in an 18 3/4-in. , 15,000-psi subsea wellhead

    SciTech Connect (OSTI)

    Cowan, W.S.

    1993-03-01

    Previous-generation subsea wellhead equipment was conceived as an extension of well-known surface wellhead equipment. Contemporary performance criteria for subsea wellhead equipment require new technology from the designer/manufacturer. This paper describes the role of a single design concept, independent load support, in addressing these criteria and illustrates the resulting configuration of a severe-service subsea wellhead system.

  8. Montana Quantity of Production Associated with Reported Wellhead...

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's ...

  9. Hybrid Rotor Compression for Multiphase and Liquids-Rich Wellhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    but also allows for compression of wet gas, or gas that contains liquid content. At many natural gas wellheads, liquids-typically heavier hydrocarbons and water-are present in the...

  10. Nevada Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Wellhead Price Nevada Natural Gas Prices Natural Gas Wellhead Price

  11. Net Metering

    Broader source: Energy.gov [DOE]

    Note: Illinois is currently undergoing a rulemaking that would change its existing net metering rules. The proposed rules include provisions clarifying virtual net metering policies, facilitating...

  12. Net Metering

    Broader source: Energy.gov [DOE]

    Kansas adopted the Net Metering and Easy Connection Act in May 2009, which established net metering for customers of investor-owned utilities (IOUs). 

  13. Net Metering

    Broader source: Energy.gov [DOE]

    Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas, hydropower, fu...

  14. Wellhead monitors automate Lake Maracaibo gas lift

    SciTech Connect (OSTI)

    Adjunta, J.C. ); Majek, A. )

    1994-11-28

    High-performance personal computer (PC) and intelligent remote terminal unit (IRTU) technology have optimized the remote control of gas lift injection and surveillance of over 1,000 offshore production wells at Lake Maracaibo in Venezuela. In its 3-year program, Maraven expects a 27,000 b/d increase in oil production by reducing deferred production and optimizing gas lift injection by as much as 20%. In addition, real time data on well performance will enhance production management as well as allocation of operational and maintenance resources. The remote control system consists of a solar-powered wellhead monitor (WHM) installed on each well platform. At each flow gathering station within a 2-mile range of a family of wells, a host terminal unit polls and stores the well data with low power, 250-mw radios. From a remote location, 60 miles onshore, an operator interface polls the host units for real time data with 5-watt radios operating in the 900-megahertz band. The paper describes the design, optimization, telemetry management, and selection of a single vendor for this system. The economic impact of this system to Maraven is also discussed.

  15. Indiana Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Indiana Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 135 394 367 365 217 412 416 1990's 399 232 174 192 107 249 360 526 615 855 2000's 899 1,064 1,309 1,464 3,401 3,135 2,921 3,606 4,701 4,927 2010's 6,802 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  16. Maryland Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Maryland Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31 60 39 20 44 29 34 1990's 22 29 33 28 26 22 0 118 63 18 2000's 34 32 22 48 34 46 NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  17. Missouri Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Missouri Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4 4 4 4 4 4 1990's 7 19 27 14 8 16 25 5 0 2000's 0 0 0 0 0 0 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  18. Imputed Wellhead Value of Natural Gas Marketed Production

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Dollars) Data Series: Quantity of Production Imputed Wellhead Value Wellhead Price Marketed Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2008 2009 2010 2011 2012 2013 View History U.S. 1989-2006 Alabama 2,489,704 1,020,599 994,688 0 0 0 1989-2013 Alaska 2,944,546 1,163,554 1,185,249 0 0 0 1989-2013 Arizona 3,710 2,269 753 0 0 0 1989-2013 Arkansas 3,891,921

  19. Arizona Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Arizona Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 26 10 0 0 0 0 1,360 1990's 2,125 1,225 730 548 691 500 405 401 411 439 2000's 332 266 243 426 306 211 588 634 503 695 2010's 165 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. Illinois Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Illinois Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,030 1,530 1,324 1,887 1,371 1,338 1,477 1990's 677 466 346 250 333 0 0 0 0 0 2000's 0 0 NA 0 NA NA NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to all customers of investor-owned utilities and rural electric cooperatives, exempting TVA utilities. Kentucky's requires the use of a single, bi-directional meter for...

  2. Net Metering

    Broader source: Energy.gov [DOE]

    NOTE: On October 21, 2015, the NY Public Service Commission denied the Orange and Rockland Utility’s petition to cease offering net-metering and interconnections once the 6% net-metering cap was...

  3. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    NOTE: Although, this post is categorized as netmetering, the policy adopted by MS does not meet DSIRE's standards for a typical net metering policy. Net metering policy allows a customer to offset...

  4. Net Metering

    Broader source: Energy.gov [DOE]

    New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives) to offer net metering at non-...

  5. Plugging meter

    DOE Patents [OSTI]

    Nagai, Akinori

    1979-01-01

    A plugging meter for automatically measuring the impurity concentration in a liquid metal is designed to have parallel passages including a cooling passage provided with a plugging orifice and with a flow meter, and a by-pass passage connected in series to a main passage having another flow meter, so that the plugging points may be obtained from the outputs of both flow meters. The plugging meter has a program signal generator, a flow-rate ratio setter and a comparator, and is adapted to change the temperature of the plugging orifice in accordance with a predetermined pattern or gradient, by means of a signal representative of the temperature of plugging orifice and a flow-rate ratio signal obtained from the outputs of both flow meters. This plugging meter affords an automatic and accurate measurement of a multi-plugging phenomenon taking place at the plugging orifice.

  6. Using geographic information systems in the delineation of wellhead protection areas

    SciTech Connect (OSTI)

    Shafer, J.M. . Earth Sciences and Resources Inst.); Horton, C.A. . Dept. of Civil Engineering)

    1994-03-01

    The 1986 amendments to the Safe Drinking Water Act established the nationwide wellhead protection program to be administered by the US Environmental Protection Agency. Although individual states have the responsibility to implement wellhead protection, the US EPA provides technical guidance, and approves each wellhead protection plan prepared by the states. A major aspect of wellhead protection strategies is the delineation of wellhead protection areas. These are zones around municipal water supply wells that receive special land use considerations intended to minimize the threat of contamination of the wells. The US EPA has recommended several technical approaches to delineating wellhead protection areas, ranging in sophistication from simple concentric circles around wells to irregular areas determined from groundwater flow and transport analyses. Regardless of the wellhead protection area delineation technique, the resulting area surrounding the municipal well must be accurately mapped. A geographic information system (GIS) approach to mapping the results of wellhead protection area delineation is demonstrated. Using hypothetical groundwater flow regimes, each EPA recommended approach to wellhead protection area delineation is presented in a GIS format. A visual comparison of delineation techniques in terms of area and configuration of the resulting wellhead protection areas is made. Finally, the advantages of using a GIS for representing wellhead protection areas is provided.

  7. Net Metering

    Broader source: Energy.gov [DOE]

    Missouri enacted legislation in June 2007 requiring all electric utilities—investor-owned utilities, municipal utilities, and electric cooperatives—to offer net metering to customers with systems...

  8. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available on a first-come, first-served basis until the cumulative generating capacity of net-metered systems equals 0.5% of a utility’s peak demand during 1996.* At least one-half...

  9. Nebraska Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Nebraska Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,091 2,300 1,944 1,403 1,261 910 878 1990's 793 785 1,177 1,375 2,098 1,538 1,332 1,194 1,285 1,049 2000's 879 883 892 1,168 1,172 1,172 NA 1,555 3,082 2,908 2010's 2,231 - = No Data Reported; -- = Not Applicable;

  10. Ohio Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Ohio Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 149,096 184,651 180,458 180,287 164,960 166,690 159,730 1990's 154,619 146,189 143,381 135,939 130,855 125,085 119,251 116,246 108,542 102,505 2000's 98,551 97,272 103,158 120,081 119,847 83,523 86,315 88,095 84,858

  11. Oklahoma Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Oklahoma Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,730,061 1,985,869 1,936,341 1,917,493 2,004,797 2,106,632 2,185,204 1990's 2,186,153 2,119,161 1,937,224 2,005,971 1,879,257 1,765,788 1,751,487 1,452,233 1,644,531 1,577,961 2000's 1,612,890 1,477,058 1,456,375

  12. Oregon Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Oregon Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 2,790 4,080 4,600 3,800 4,000 2,500 1990's 2,815 2,741 2,580 4,003 3,221 1,923 1,439 1,173 1,067 1,291 2000's 1,214 1,069 837 688 467 433 NA 390 751 751 2010's 1,376 - = No Data Reported; -- = Not Applicable; NA =

  13. Pennsylvania Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Pennsylvania Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 118,372 166,342 150,234 159,889 163,318 167,089 191,774 1990's 177,609 152,500 138,675 189,443 187,113 177,139 0 0 0 0 2000's 0 0 0 0 NA NA NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA =

  14. Florida Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Florida Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.16 1970's 0.30 0.32 0.34 0.54 0.97 0.98 1.09 1.39 1.57 1980's 1.73 2.71 2.46 2.33 2.57 2.43 1.20 1.68 1.53 2.05 1990's 2.25 2.46 2.51 2.17 1.28 1.24 2000's NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  15. Illinois Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Illinois Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.12 0.13 0.14 1970's 0.16 0.18 0.28 0.35 0.40 0.70 0.99 1.20 1.29 1.86 1980's 1.90 2.47 2.62 2.84 2.78 2.77 2.57 2.24 2.19 2.15 1990's 2.11 2.17 2.15 2.30 2.40 2000's NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. Kentucky Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Kentucky Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46,720 61,518 73,126 80,195 70,125 44,725 72,417 1990's 75,333 78,904 79,690 86,966 73,081 74,754 81,435 79,547 81,868 76,770 2000's 81,545 81,723 88,259 87,609 94,259 92,795 95,320 95,437 114,116 NA 2010's 135,355

  17. Michigan Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Michigan Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 138,910 144,537 131,855 127,287 146,996 146,145 155,988 1990's 106,193 189,497 190,637 199,746 216,268 238,203 245,740 305,950 278,076 277,364 2000's 296,556 275,036 274,476 236,987 259,681 261,112 NA NA 153,130

  18. Mississippi Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Mississippi Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 211,116 206,871 178,426 197,217 195,299 196,912 148,167 1990's 149,012 126,637 129,340 131,450 105,646 95,349 88,805 98,075 88,723 83,232 2000's 70,965 76,986 112,979 133,901 145,692 52,923 60,531 73,460 96,641

  19. Wyoming Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Wyoming Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 395,656 447,615 416,565 352,858 407,863 471,095 623,915 1990's 690,356 711,799 765,254 63,667 14,283 12,449 27,821 719,933 1,004,020 1,079,375 2000's 1,240,038 1,359,868 1,533,724 1,561,322 1,724,725 1,729,760

  20. Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.30 0.30 0.30 1970's 0.31 0.31 0.32 0.33 0.51 0.51 1.14 1.26 1.31 1.68 1980's 2.85 2.15 3.69 3.30 3.00 3.02 2.45 2.08 2.08 2.19 1990's 2.30 1.88 1.85 2.29 2.15 1.72 2000's NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  1. Missouri Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Missouri Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.29 0.13 1970's 0.24 0.23 0.22 0.24 0.30 0.33 0.34 0.40 1980's 3.75 3.50 3.75 3.75 3.75 3.50 1990's 1.57 1.32 1.56 1.57 1.49 1.70 1.56 1.70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016

  2. Alaska Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Alaska Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Alaska Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 211,569 211,579 222,637 304,841 271,120 228,284 192,760 1990's 191,798 200,557 206,259 224,786 201,891 227,797 193,278 191,017 192,982 186,727 2000's 189,896 197,735 200,871 199,616 413,667 502,887 494,323

  3. Arkansas Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Arkansas Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 78,097 75,575 86,552 68,206 42,688 102,046 42,226 1990's 99,456 83,864 85,177 122,596 24,326 180,117 76,671 71,449 61,012 54,382 2000's 55,057 16,901 161,871 166,329 183,299 190,533 193,491 269,886 446,551 680,613

  4. California Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) California Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 282,639 343,079 361,739 329,366 346,720 327,399 283,509 1990's 275,738 211,841 195,515 76,381 199,649 263 37,823 219,216 264,810 382,715 2000's 323,864 328,778 309,399 293,691 276,520 274,817 278,933 268,016

  5. Colorado Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Colorado Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 139,820 143,552 126,037 163,684 164,557 191,544 216,737 1990's 242,997 271,159 314,105 388,016 441,343 511,513 559,473 637,375 696,321 705,477 2000's 735,332 800,712 819,205 989,678 1,058,383 1,106,993 1,170,819

  6. Florida Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Florida Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 25,630 18,897 13,162 3,004 1,893 1,883 1,437 1990's 1,443 2,096 3,849 2,612 4,940 3,545 0 0 0 0 2000's 0 0 NA 0 NA NA NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  7. Oregon Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Oregon Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2.00 1980's 2.40 2.60 3.33 3.33 2.78 2.40 2.00 1.45 1.60 1.40 1990's 1.39 1.42 1.29 1.70 2.06 0.93 2.26 2.19 2.38 2.52 2000's 2.69 3.66 3.97 4.48 3.89 4.25 NA 5.27 5.33 4.00 2010's 4.92 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  8. Pennsylvania Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Pennsylvania Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.28 0.28 0.28 1970's 0.28 0.27 0.30 0.42 0.44 0.67 0.68 0.80 0.86 1.33 1980's 2.13 2.33 2.80 3.00 3.25 3.16 2.50 2.25 2.15 2.40 1990's 2.35 2.20 1.95 2.71 2.76 2.84 2000's NA NA NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Tennessee Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Tennessee Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,950 5,022 4,686 3,464 2,707 2,100 1,900 1990's 2,067 1,856 1,770 1,660 1,990 1,820 1,690 1,510 1,420 1,230 2000's 1,150 2,000 2,050 1,803 2,100 2,200 2,663 3,942 4,700 5,478 2010's 5,144 - = No Data Reported; --

  10. Texas Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Texas Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,227,995 6,630,246 6,367,936 6,465,964 6,414,021 6,386,544 6,276,968 1990's 6,476,032 6,066,256 5,893,069 5,769,437 5,834,671 5,592,323 4,684,140 4,716,304 4,777,945 5,719,128 2000's 5,869,901 5,159,233 5,166,315

  11. Net Metering

    Broader source: Energy.gov [DOE]

    Note: On October 12th, 2015 the Hawaii PUC voted to end net metering in favor of 3 alternative options: a grid supply option, a self-supply option, and a time of use tariff. Customers with net...

  12. Net Metering

    Broader source: Energy.gov [DOE]

    Net excess generation (NEG) is credited to the customer's next monthly bill. The customer may choose to start the net metering period at the beginning of January, April, July or October to match...

  13. Net Metering

    Broader source: Energy.gov [DOE]

    In April 2001, Arkansas enacted legislation (HB 2325) directing the Arkansas Public Service Commission (PSC) to establish net-metering rules for certain renewable-energy systems.* The PSC approved...

  14. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    North Dakota's net metering policy, adopted in 1991 by the state Public Service Commission (PSC), applies to renewable energy systems and combined heat and power (CHP) systems up to 100 kilowatts...

  15. Net Metering

    Broader source: Energy.gov [DOE]

    In October 2008, Michigan enacted P.A. 295, requiring the Michigan Public Service Commission (MPSC) to establish a statewide net metering program for renewable energy systems. On May 26, 2009 the...

  16. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

     NOTE: The program website listed above links to the Maryland Public Service Commission's Net Metering Working Group page, which contains a variety of information resources related to the ongoing...

  17. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering in Virginia is available on a first-come, first-served basis until the rated generating capacity owned and operated by customer-generators reaches 1% of an electric distribution...

  18. Net Metering

    Broader source: Energy.gov [DOE]

    With these regulations, renewable energy systems with a capacity up to 25 kilowatts (kW) are eligible for net metering. Overall enrollment is limited to 1.5% of a utility's retail sales from the...

  19. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    NOTE: On February 2016, the PA Public Service Commission (PUC) issued a final rulemaking order amending net metering regulations to provide clarity and to comply with the statutes. Changes include...

  20. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Net metering is available to all "qualifying facilities" (QFs), as defined by the federal Public Utility Regulatory Policies Act of 1978 (PURPA), which pertains to renewable energy systems and co...

  1. Net Metering

    Broader source: Energy.gov [DOE]

    There is no stated limit on the aggregate capacity of net-metered systems in a utility's service territory. Any net excess generation (NEG) during a monthly billing period is carried over to the...

  2. Net Metering

    Broader source: Energy.gov [DOE]

    Iowa's statutes do not explicitly authorize the Iowa Utilities Board (IUB) to mandate net metering, but this authority is implicit through the board's enforcement of PURPA and Iowa Code § 476.41 ...

  3. Net Metering

    Broader source: Energy.gov [DOE]

    Nevada's original net-metering law for renewable-energy systems was enacted in 1997 and amended in 2001, 2003, 2005, 2007, 2011, 2013, and 2015. Systems up to one megawatt (MW) in capacity that...

  4. Net Metering

    Broader source: Energy.gov [DOE]

    In Delaware, net metering is available to any customer that generates electricity using solar, wind or hydro resources, anaerobic digesters, or fuel cells capable of being powered by renewable fu...

  5. Net Metering

    Broader source: Energy.gov [DOE]

    Note: The California Public Utilities Commission (CPUC) issued a decision in April 2016 establishing rules for net metering PV systems paired with storage devices 10 kW or smaller. See below for...

  6. Net Metering

    Broader source: Energy.gov [DOE]

    Utah law requires their only investor-owned utility, Rocky Mountain Power (RMP), and most electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wi...

  7. Saturation meter

    DOE Patents [OSTI]

    Gregurech, S.

    1984-08-01

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  8. Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.13 0.13 1970's 0.14 0.15 0.35 0.38 0.74 0.87 0.99 1.47 1.50 2.04 1980's 3.19 4.77 3.44 4.28 3.73 3.71 2.89 2.97 2.65 2.72 1990's 2.75 2.33 2.29 2.46 2.17 1.82 2.62 2.67 2.21 2.32 2000's 3.99 4.23 3.48 5.93 6.66 9.28 7.57 7.44 9.65 4.32 2010's 4.46 - = No Data Reported; -- = Not Applicable;

  9. GASCAP: Wellhead Gas Productive Capacity Model documentation, June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The Wellhead Gas Productive Capacity Model (GASCAP) has been developed by EIA to provide a historical analysis of the monthly productive capacity of natural gas at the wellhead and a projection of monthly capacity for 2 years into the future. The impact of drilling, oil and gas price assumptions, and demand on gas productive capacity are examined. Both gas-well gas and oil-well gas are included. Oil-well gas productive capacity is estimated separately and then combined with the gas-well gas productive capacity. This documentation report provides a general overview of the GASCAP Model, describes the underlying data base, provides technical descriptions of the component models, diagrams the system and subsystem flow, describes the equations, and provides definitions and sources of all variables used in the system. This documentation report is provided to enable users of EIA projections generated by GASCAP to understand the underlying procedures used and to replicate the models and solutions. This report should be of particular interest to those in the Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas.

  10. Alaska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Alaska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.25 0.25 1970's 0.25 0.24 0.15 0.15 0.17 0.30 0.39 0.40 0.52 0.52 1980's 0.73 0.62 0.63 0.73 0.73 0.74 0.50 0.94 1.27 1.36 1990's 1.38 1.48 1.41 1.42 1.27 1.64 1.61 1.82 1.32 1.37 2000's 1.76 1.99 2.13 2.41 3.42 4.75 5.79 5.63 7.39 2.93 2010's 3.17 - = No Data Reported; -- = Not Applicable;

  11. Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.16 0.18 1970's 0.17 0.18 0.18 0.18 0.20 0.28 0.28 0.33 0.37 0.41 1980's 2.59 3.08 2.90 1.80 1990's 1.20 1.50 1.85 1.30 1.40 1.20 1.65 2.40 1.88 2.08 2000's 3.50 4.12 2.60 4.33 5.12 6.86 5.70 5.98 7.09 3.19 2010's 4.11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  12. Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.16 0.16 1970's 0.16 0.17 0.17 0.18 0.26 0.35 0.53 0.58 0.75 0.96 1980's 0.70 1.81 2.13 2.29 2.54 2.55 2.51 2.29 1.94 2.41 1990's 2.06 1.92 2.15 2.81 2.65 3.02 3.82 4.03 3.92 4.10 2000's 5.23 4.99 4.43 5.17 5.68 7.26 6.43 6.61 8.72 3.43 2010's 3.84 - = No Data Reported; -- = Not Applicable;

  13. California Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) California Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.30 0.31 0.31 1970's 0.32 0.33 0.37 0.37 0.44 0.70 0.94 1.17 1.36 1.70 1980's 2.17 2.57 3.09 3.57 3.80 3.36 2.89 2.37 2.39 2.32 1990's 2.36 2.46 2.34 2.38 1.50 1.73 1.82 2.41 1.97 2.36 2000's 4.81 6.93 2.92 5.04 5.65 7.45 6.47 6.62 8.38 3.96 2010's 4.87 - = No Data Reported; -- = Not

  14. Colorado Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Colorado Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.13 0.14 1970's 0.15 0.16 0.16 0.18 0.20 0.26 0.48 0.81 0.84 1.41 1980's 1.47 1.97 3.17 3.38 3.43 2.90 2.05 1.76 1.59 1.52 1990's 1.55 1.41 1.37 1.61 1.39 0.95 1.37 2.23 1.90 2.18 2000's 3.67 3.84 2.41 4.54 5.21 7.43 6.12 4.57 6.94 3.21 2010's 3.96 - = No Data Reported; -- = Not Applicable;

  15. Indiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Indiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.23 0.24 0.23 1970's 0.24 0.25 0.15 0.14 0.14 0.39 0.52 0.69 0.71 1.05 1980's 1.35 2.08 1.55 2.09 3.38 2.51 1.23 1.71 1.57 1.71 1990's 2.01 1.72 2.01 2.09 1.97 1.90 2.30 2.18 2.09 2.19 2000's 3.51 3.28 3.11 5.41 6.30 9.11 6.01 5.78 7.58 4.05 2010's 4.13 - = No Data Reported; -- = Not Applicable;

  16. Kansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Kansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.14 0.14 1970's 0.14 0.14 0.14 0.16 0.17 0.17 0.42 0.48 0.57 0.76 1980's 0.77 0.92 1.51 1.57 1.49 1.27 1.21 1.15 1.36 1.44 1990's 1.56 1.37 1.54 1.80 1.60 1.36 1.92 2.05 1.70 1.80 2000's 3.21 3.66 2.61 4.33 4.94 6.51 5.61 5.69 6.85 3.16 2010's 4.23 - = No Data Reported; -- = Not Applicable;

  17. Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.24 0.25 0.25 1970's 0.25 0.25 0.25 0.35 0.50 0.54 0.55 0.55 0.58 0.95 1980's 0.89 1.01 1.52 1.51 1.70 2.39 1.88 1.82 2.56 2.13 1990's 2.24 2.03 1.92 2.28 2.24 1.64 2.55 2.66 2.39 2.07 2000's 3.16 4.78 3.01 4.54 5.26 6.84 8.83 7.35 8.42 NA 2010's 4.47 - = No Data Reported; -- = Not Applicable;

  18. Tennessee Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Tennessee Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.19 1970's 0.20 0.22 0.32 0.30 0.35 0.44 0.51 0.74 1.64 1.70 1980's 1.76 2.55 3.00 2.50 3.50 2.48 1.78 1.31 1.50 1.65 1990's 1.65 1.72 1.79 2.65 2.16 1.54 2.54 2.55 2.15 2.28 2000's 4.09 3.60 3.41 5.22 6.90 9.55 6.78 6.63 8.85 3.83 2010's 4.35 - = No Data Reported; -- = Not

  19. Texas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Texas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.14 0.14 1970's 0.14 0.16 0.16 0.20 0.31 0.52 0.72 0.90 0.99 1.23 1980's 1.56 1.87 2.17 2.36 2.45 2.33 1.65 1.47 1.51 1.53 1990's 1.57 1.59 1.77 2.09 1.89 1.61 2.29 2.48 2.06 2.31 2000's 3.93 4.12 3.16 5.18 5.83 7.55 6.60 6.98 8.51 3.81 2010's 4.70 - = No Data Reported; -- = Not Applicable; NA

  20. Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.16 0.15 1970's 0.15 0.17 0.17 0.19 0.41 0.48 0.50 0.61 0.64 0.72 1980's 1.12 1.10 3.06 3.40 4.08 3.52 2.90 1.88 2.39 1.58 1990's 1.70 1.54 1.63 1.77 1.54 1.15 1.39 1.86 1.73 1.93 2000's 3.28 3.52 1.99 4.11 5.24 7.16 5.49 NA 6.15 3.38 2010's 4.23 - = No Data Reported; -- = Not Applicable; NA =

  1. Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.15 1970's 0.15 0.15 0.16 0.18 0.25 0.34 0.41 0.64 0.79 1.13 1980's 1.92 2.77 3.22 3.18 3.32 3.01 2.52 1.76 1.53 1.24 1990's 1.16 1.06 1.13 1.99 2.05 1.78 2.57 2.42 1.78 1.97 2000's 3.34 3.49 2.70 4.13 4.96 6.86 5.85 4.65 6.86 3.40 2010's 4.30 - = No Data Reported; -- = Not Applicable;

  2. Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.19 1970's 0.19 0.20 0.20 0.22 0.31 0.42 0.46 0.70 0.84 1.11 1980's 1.61 2.07 2.60 2.67 2.73 2.66 2.21 1.78 1.81 1.82 1990's 1.83 1.73 1.73 2.14 2.08 1.58 2.33 2.36 2.02 2.22 2000's 3.68 3.99 3.20 5.64 5.96 8.72 6.93 7.02 8.73 3.82 2010's 4.23 - = No Data Reported; -- = Not

  3. Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.26 0.26 0.25 1970's 0.25 0.24 0.21 0.23 0.24 0.27 0.32 0.39 0.61 1.04 1980's 0.46 0.48 0.78 0.55 0.55 0.59 0.65 0.55 0.93 0.85 1990's 1.14 1.55 1.91 2.44 1.37 1.42 2.23 2.60 2.73 2000's 3.75 4.15 5.98 4.50 6.25 7.43 NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not

  4. Michigan Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Michigan Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.25 0.26 1970's 0.27 0.26 0.31 0.39 0.50 0.63 0.89 1.01 1.20 1.74 1980's 2.35 2.86 3.19 3.58 3.76 3.60 3.60 3.24 3.18 3.16 1990's 3.00 2.79 2.71 2.38 1.96 1.67 2.21 2.19 1.77 1.77 2000's 2.44 3.47 2.16 4.01 3.85 5.30 NA NA 5.63 3.92 2010's 3.79 - = No Data Reported; -- = Not Applicable; NA

  5. Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.17 0.18 1970's 0.18 0.21 0.27 0.23 0.29 0.50 0.71 0.73 1.15 1.60 1980's 2.32 3.21 3.91 3.78 3.47 3.17 2.13 1.94 1.86 1.97 1990's 1.76 1.66 1.64 1.73 1.49 1.24 1.66 1.73 1.42 1.63 2000's 3.30 3.93 3.06 5.13 5.83 8.54 6.84 6.70 8.80 3.73 2010's 4.17 - = No Data Reported; -- = Not

  6. Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.08 0.09 0.10 1970's 0.10 0.12 0.12 0.24 0.25 0.43 0.45 0.72 0.85 1.21 1980's 1.45 1.91 2.15 2.41 2.46 2.39 2.05 1.80 1.70 1.55 1990's 1.79 1.66 1.62 1.55 1.46 1.36 1.41 1.59 1.53 1.68 2000's 2.84 3.12 2.39 3.73 4.51 6.57 5.53 5.72 7.50 3.16 2010's 3.64 - = No Data Reported; -- = Not Applicable;

  7. Nebraska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Nebraska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.18 0.17 1970's 0.17 0.18 0.18 0.18 0.34 0.54 0.51 0.65 0.68 0.85 1980's 0.83 1.45 1.99 2.93 2.24 3.01 2.82 2.42 2.66 2.23 1990's 2.26 2.06 1.78 1.81 1.60 1.19 1.43 1.53 1.30 1.36 2000's 2.26 2.16 1.52 3.17 3.22 4.29 NA 4.86 6.22 2.97 2010's 3.98 - = No Data Reported; -- = Not Applicable;

  8. Ohio Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Ohio Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.24 0.25 0.26 1970's 0.27 0.34 0.39 0.43 0.48 0.71 1.02 1.40 1.57 1.81 1980's 1.98 2.17 2.71 3.24 3.19 3.08 2.84 2.58 2.55 2.55 1990's 2.54 2.38 2.35 2.46 2.43 2.33 2.63 2.70 2.95 2.43 2000's 4.06 4.54 4.52 5.90 6.65 9.03 7.75 7.59 7.88 4.36 2010's 4.63 - = No Data Reported; -- = Not Applicable; NA

  9. Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.14 0.15 1970's 0.16 0.16 0.16 0.19 0.28 0.32 0.50 0.79 0.90 1.12 1980's 1.51 1.88 2.74 2.83 2.72 2.47 1.71 1.47 1.55 1.59 1990's 1.57 1.47 1.70 1.88 1.70 1.44 2.21 2.32 1.77 2.05 2000's 3.63 4.03 2.94 4.97 5.52 7.21 6.32 6.24 7.56 3.53 2010's 4.71 - = No Data Reported; -- = Not Applicable;

  10. Palau- Net Metering

    Broader source: Energy.gov [DOE]

    The Palau Net Metering Act of 2009 established net metering on the Island of Palau. Net metering was implemented in order to:

  11. System and method for converting wellhead gas to liquefied petroleum gases (LPG)

    SciTech Connect (OSTI)

    May, R.L.; Snow, N.J. Jr.

    1983-12-06

    A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a well-head; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; and separating LPG from gas vapors of the refrigerated natural gas. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for cooling the compressed gases therefrom; and a product separator downstream of the refrigeration unit for receiving cooled and compressed gases discharged from the refrigeration unit and separating LPG therein from gases remaining in vapor form.

  12. INITIAL CHEMICAL AND RESERVOIR CONDITIONS AT LOS AZUFRES WELLHEAD POWER PLANT STARTUP

    SciTech Connect (OSTI)

    Kruger, P.; Semprini, L.; Verma, S.; Barragan, R.; Molinar, R.; Aragon, A.; Ortiz, J.; Miranda, C.

    1985-01-22

    One of the major concerns of electric utilities in installing geothermal power plants is not only the longevity of the steam supply, but also the potential for changes in thermodynamic properties of the resource that might reduce the conversion efficiency of the design plant equipment. Production was initiated at Los Azufres geothermal field with wellhead generators not only to obtain electric energy at a relatively early date, but also to acquire needed information about the resource so that plans for large central power plants could be finalized. Commercial electric energy production started at Los Azufres during the summer of 1982 with five 5-MWe wellhead turbine-generator units. The wells associated with these units had undergone extensive testing and have since been essentially in constant production. The Los Azufres geothermal reservoir is a complex structural and thermodynamic system, intersected by at least 4 major parallel faults and producing geothermal fluids from almost all water to all steam. The five wellhead generators are associated with wells of about 30%, 60%, and 100% steam fraction. A study to compile existing data on the chemical and reservoir conditions during the first two years of operation has been completed. Data have been compiled on mean values of wellhead and separator pressures, steam and liquid flowrates, steam fraction, enthalpy, and pertinent chemical components. The compilation serves both as a database of conditions during the start-up period and as an initial point to observe changes with continued and increased production. Current plans are to add additional wellhead generators in about two years followed by central power plants when the data have been sufficiently evaluated for optimum plant design. During the next two years, the data acquired at the five 5-MWe wellhead generator units can be compared to this database to observe any significant changes in reservoir behavior at constant production.

  13. Non intrusive sensors -- An answer to annulus pressure monitoring in subsea wellhead equipment

    SciTech Connect (OSTI)

    Adamek, F.C.; Jennings, C.; Aarskog, A.

    1995-12-01

    On offshore platform and jackup surface wellhead completions, there is the potential for leakage from the high pressure production tubing and casing strings into the low pressure outer casing string, or from poor cementing jobs. Historically, these completions maintain the capability of regularly monitoring wellhead annulus pressure so that appropriate action can be taken should a leak be detected. In the past, subsea completions have been oil producers, however, gas production, extreme reservoir pressures, and deeper waters are becoming common place. Although subsea wellhead technology and reliability have significantly improved with the introduction of the metal-to-metal sealing system, the potential for annulus pressure buildup still exists. Up to the present, the ability to monitor pressure beyond the first casing string has been virtually non-existent. This paper describes the design, development, testing, and application of non intrusive sensor technology for pressure measurement in subsea wellheads and production trees. The data and test results define and describe the phenomenon of ``inverse magnetostriction``. This phenomenon allows magnetic sensors to non intrusively penetrate three to four inches of steel in a subsea wellhead housing and measure annulus pressure from less than 30 psi to more than 15,000 psi. In addition, test data, charts, and graphs illustrate the sensor`s capability of differentiating between pressure, tension, compression, and bending stress imposed on the wellhead. The electronic interface description details how the data is obtained from the sensors, stored, and later transmitted to existing control systems or to the user interface at the surface via an ROV.

  14. Is revenue metering feasible

    SciTech Connect (OSTI)

    Taylor, N.R.

    1985-02-01

    Revenue metering for thermal systems has been in use for more than 100 years. There is an infinite variety of meters based on flow principles, but very limited choice of steam condensate meters. Progress is being made in the application of computer technology to thermal metering. Btu meters are showing substantial progress as the U.S. market increases. There is a lack of traceable standards, application guidelines and approved materials. Strongly needed are educational programs designed for the thermal metering technician. Costs of thermal measurements is, in general, out of balance with other utility type service meters.

  15. ,"Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  16. ,"Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  17. ,"Michigan Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  18. ,"Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  19. ,"Missouri Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",1997 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  20. ,"Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  1. ,"Nebraska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  2. ,"Ohio Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  3. ,"Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  4. ,"Oregon Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  5. ,"Pennsylvania Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  6. ,"South Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  7. ,"Tennessee Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  8. ,"Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  9. ,"Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  10. ,"West Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  11. ,"Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  12. ,"Alaska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  13. ,"Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  14. ,"Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  15. ,"California Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  16. ,"Colorado Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  17. ,"Florida Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  18. ,"Illinois Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  19. ,"Indiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  20. System and method for converting wellhead gas to liquefied petroleum gases (LPG)

    SciTech Connect (OSTI)

    May, R.L.; Sinclair, B.W.

    1984-07-31

    A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a wellhead; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; separating LPG from gas vapors of the refrigerated natural gas; storing the separated LPG in a storage tank with a vapor space therein; and recirculating a portion of the LPG vapors in the storage tank with the natural gas exiting the wellhead to enhance recovery of LPG. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for refrigerating the compressed gases therefrom; at least one product separator downstream of the refrigerator unit for receiving refrigerated and compressed gases discharged from the refrigerator unit and separating LPG therein from gases remaining in vapor form; and a storage tank for receiving and storing the separated LPG therein, the storage tank having a vapor space therein connected upstream of the gas compressor through a pressure regulator allowing recirculation of some LPG vapors with the natural gases through said system.

  1. LADWP- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    LADWP allows its customers to net meter their photovoltaic (PV), wind, and hybrid systems with a capacity of not more than one megawatt. LADWP will provide the necessary metering equipment unless...

  2. Utility Metering- AGL Resources

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—discusses AGL Resources metering, including interruptible rate customers, large users, and meeting federal metering goals.

  3. South Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) South Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2.11 1980's 2.75 3.08 3.37 3.67 2.51 2.46 2.71 1.95 1.11 1990's 1.56 1.12 1.79 2.13 1.73 1.59 2.09 2.47 2.13 2000's 3.56 3.42 2.95 4.98 5.49 7.44 6.40 7.22 7.94 NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  4. Campo Net Meter Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Campo Net Meter Project Michael Connolly Miskwish, MA Economist/Engineer Campo Kumeyaay Nation Location map Tribal Energy Planning  Current 50 MW project  Proposed 160 MW project  DOE energy grant  Land use planning, renewable energy zones overlay  Economic analysis  Transmission, queue, PPA  Energy Resource Agreement analysis  Tribal Net meter turbine planning California SGIP program  Self Generation Incentive Program  Requires utilities to allow net metering

  5. SRP- Net Metering

    Broader source: Energy.gov [DOE]

    Note: Salt River Project (SRP) modified its existing net-metering program for residential customers in February 2015. These changes are effective with the April 2015 billing cycle.

  6. Geothermal rotary separator turbine: wellhead power system tests at Milford, Utah

    SciTech Connect (OSTI)

    Hughes, E.E.

    1983-08-01

    Through development of a separator/expander engine EPRI is improving the efficiency of single flash geothermal power systems. Under cost-shared contracts with Biphase Energy Systems and Utah Power and Light Company (UP and L), a wellhead power generating system has been built and tested. The wellhead unit has been operated for 4000 hours at Roosevelt Hot Springs near Milford, Utah. Phillips Petroleum Company operates the geothermal field at this site. The rotary separator turbine (RST) is a separating expander that increases the resource utilization efficiency by extracting power upstream of a steam turbine in either a 1-stage or 2-stage flash power system. The first power output was achieved October 28, 1981, six weeks after arrival of the RST at the site. The RST system produced 3270 MWh(e) gross and 2770 MWh(e) net to the UP and L grid. Total equivalent power produced by the wellhead RST (actual power output of the RST plus the power obtainable from the steam flow out of the RST) is 15 to 20 percent above the power that would be produced by an optimum 1-stage direct flash plant operated on the same geothermal well.

  7. DC attenuation meter

    DOE Patents [OSTI]

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  8. Guam- Net Metering

    Broader source: Energy.gov [DOE]

    Note: As of October 2015, the net metering program had around 700 customers. According to the Guam Daily Post, the program is expected to reach the current 1,000-customer cap in mid-2016. This cap...

  9. Austin Energy- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Austin Energy, the municipal utility of Austin Texas, offers net metering to its non-residential retail electricity customers for renewable energy systems up to 20 kilowatts (kW). Austin Energy o...

  10. EWEB- Net Metering

    Broader source: Energy.gov [DOE]

    The Eugene Water and Electric Board (EWEB) offers net metering for customers with renewable energy generation systems with an installed capacity of 25 kW or less. Eligible systems use solar power,...

  11. Idaho Power- Net Metering

    Broader source: Energy.gov [DOE]

    In July 2013, the PUC issued an order in response to Idaho Power's application to modify its net metering program. The ruling removed a previously existing service capacity cap of 2.9 MW and chan...

  12. Lesson Plan: Power Metering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Metering Project Grades: 9-12 Topic: Energy Basics Owner: ACTS This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency and...

  13. DIGITAL Q METER

    DOE Patents [OSTI]

    Briscoe, W.L.

    1962-02-13

    A digital Q meter is described for measuring the Q of mechanical or electrical devices. The meter comprises in combination a transducer coupled to an input amplifier, and an upper and lower level discriminator coupled to the amplifier and having their outputs coupled to an anticoincidence gate. The output of the gate is connected to a scaler. The lower level discriminator is adjusted to a threshold level of 36.8 percent of the operating threshold level of the upper level discriminator. (AEC)

  14. Advanced Metering Infrastructure

    SciTech Connect (OSTI)

    2007-10-15

    The report provides an overview of the development of Advanced Metering Infrastructure (AMI). Metering has historically served as the cash register for the utility industry. It measured the amount of energy used and supported the billing of customers for that usage. However, utilities are starting to look at meters in a whole different way, viewing them as the point of contact with customers in supporting a number of operational imperatives. The combination of smart meters and advanced communications has opened up a variety of methods for utilities to reduce operating costs while offering new services to customers. A concise look is given at what's driving interest in AMI, the components of AMI, and the creation of a business case for AMI. Topics covered include: an overview of AMI including the history of metering and development of smart meters; a description of the key technologies involved in AMI; a description of key government initiatives to support AMI; an evaluation of the current market position of AMI; an analysis of business case development for AMI; and, profiles of 21 key AMI vendors.

  15. PSEG Long Island- Net Metering

    Broader source: Energy.gov [DOE]

    Although PSEG Long Island’s net metering policy is not governed by the State’s net metering law, the provisions are similar to the State law. Net metering is available for residential, non-reside...

  16. ,"U.S. Natural Gas Wellhead Value and Marketed Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Value and Marketed Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Wellhead Value and Marketed Production",4,"Annual",2015,"06/30/1900" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  17. Net Metering | Open Energy Information

    Open Energy Info (EERE)

    Gas Wind Biomass Geothermal Electric Anaerobic Digestion Small Hydroelectric Tidal Energy Wave Energy No Ashland Electric - Net Metering (Oregon) Net Metering Oregon Commercial...

  18. Schlumberger Electricity Metering | Open Energy Information

    Open Energy Info (EERE)

    Electricity Metering Jump to: navigation, search Name: Schlumberger Electricity Metering Place: Oconee, South Carolina Product: Manufacturer of electricity meters. Coordinates:...

  19. Aggregate Net Metering Opportunities for Local Governments | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Aggregate Net Metering Opportunities for Local Governments Aggregate Net Metering Opportunities for Local Governments This guide summarizes the variations in state laws that determine whether or not meter aggregation is an option for local governments, explores the unique opportunities that it can extend to public-sector photovoltaic projects, and describes the important details that must be considered when promoting or pursuing such a policy. Aggregate net metering is the practice of

  20. Neutron dose equivalent meter

    DOE Patents [OSTI]

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  1. Response of the Los Azufres Geothermal Field to Four Years of 25 MW Wellhead Generation

    SciTech Connect (OSTI)

    Kruger, P.; Ortiz, J.; Miranda, G.; Gallardo, M.

    1987-01-20

    Production and chemical data have been compiled and analyzed on a six-month averaged basis for the first four years of electric energy generation with five 5-MW wellhead generators at the Los Azufres geothermal field. The data were evaluated with respect to the extent of observable thermal drawdown of the reservoir from 25 MW of generation in relation to the estimated capacity of the field of several hundred megawatts of power. The analysis updates the previous one compiled after the first two years of continuous production, at which time the results indicated that differences in reservoir temperature estimated from geochemical thermometers and wellhead production data were not statistically significant based on the number of data and the standard deviations. Analysis of the data after four years of operation were made for the larger number of data and smaller standard deviations. The results review the adequacy of the sampling frequency and the reliability of the measurements from statistical t-Test of the means of the first and second two-year periods. 3 figs., 5 tabs., 20 refs.

  2. Genesis of a three-phase subsea metering system. [Oil and gas metering systems for subsea operations

    SciTech Connect (OSTI)

    Dowty, E.L.; Hatton, G.J.; Durrett, M.G. ); Dean, T.L.; Jiskoot, R.J.J.

    1993-08-01

    Periodic well flow testing is necessary to monitor well and reservoir performance over time to optimize decisions on well production rates and new well requirements through improved reservoir models, to determine the timing of well workovers, and to identify when wells become uneconomical to produce. A dedicated test separator' conventionally is used to meter individual wells. Fluids from a well are separated into the three component phases (oil, gas, and water) in a large vessel, and the flow rate of each phase is measured on the respective outlet lines from the vessel. The same method currently is used for subsea satellite developments by providing a dedicated test pipeline' from the subsea field to carry a selected well's production to a test separator for metering on the host platform. The capital cost of these systems rises rapidly with distance. Greater distances between the wellhead and flow test system increase the cost of the test pipeline and require larger and hence more expensive slug catchers and risers. Clearly, a subsea-based well-test system could result in large capital cost savings by eliminating the need for conventional test systems. This paper tracks the development of one subsea well test system from conception to field testing on the Tartan. A platform in the North Sea. This work defines the design requirements of the system, reviews system development and fabrication, describes modifications made as a result of initial field tests, and reports the results of topside tests completed through Dec. 1990.

  3. Electric Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Metering Electric Metering Saving Money by Saving Energy The Department of Energy has installed meters in the James Forrestal Building that will enable DOE to measure electricity use and costs in its headquarters facility. You may explore this data further by visiting our Forrestal Metering Dashboard at the following website: http://forrestal.nrel.gov The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power

  4. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  5. Meters Roads N Streams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Meters Roads N Streams o Openwells E3i APT Site *. TES Plants (1) E2J Other Set-Asides lEI Hydric Soils . 370 o 370 Soils Soil Series and Phase DBaB DBaC .Pk .TrB DTrC DTrD .TuE...

  6. Flow metering valve

    DOE Patents [OSTI]

    Blaedel, K.L.

    1983-11-03

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  7. Flow metering valve

    DOE Patents [OSTI]

    Blaedel, Kenneth L.

    1985-01-01

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  8. Period meter for reactors

    DOE Patents [OSTI]

    Rusch, Gordon K.

    1976-01-06

    An improved log N amplifier type nuclear reactor period meter with reduced probability for noise-induced scrams is provided. With the reactor at low power levels a sampling circuit is provided to determine the reactor period by measuring the finite change in the amplitude of the log N amplifier output signal for a predetermined time period, while at high power levels, differentiation of the log N amplifier output signal provides an additional measure of the reactor period.

  9. Montana Electric Cooperatives- Net Metering

    Broader source: Energy.gov [DOE]

    The Montana Electric Cooperatives' Association (MECA) adopted model interconnection guidelines in 2001 and a revised net-metering policy in September 2008. Net metering is available in whole or...

  10. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    commercial) as long as the base requirements are met. All net-metered facilities must be behind a customer's meter, but only a minimal amount of load located on-site is required....

  11. N. Mariana Islands- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: The Commonwealth Utility Corporation issued a moratorium on net metering. However, Public Law 18-62 signed September 6, 2014 states that net metering should be available to all residential...

  12. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the limit on individual system size from 100 kilowatts (kW) to 1 MW . Net Excess Generation: The District's net-metering rules specify that metering equipment must be capable...

  13. Washington City Power- Net Metering

    Broader source: Energy.gov [DOE]

    Washington City adopted a net-metering program, including interconnection procedures, in January 2008, and updated the policy in December 2014.* Net metering is available to any customer of...

  14. Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Guidance defines which federal buildings are appropriate to meter, provides metering prioritization ...

  15. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  16. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  17. Coalbed Methane Procduced Water Treatment Using Gas Hydrate Formation at the Wellhead

    SciTech Connect (OSTI)

    BC Technologies

    2009-12-30

    Water associated with coalbed methane (CBM) production is a significant and costly process waste stream, and economic treatment and/or disposal of this water is often the key to successful and profitable CBM development. In the past decade, advances have been made in the treatment of CBM produced water. However, produced water generally must be transported in some fashion to a centralized treatment and/or disposal facility. The cost of transporting this water, whether through the development of a water distribution system or by truck, is often greater than the cost of treatment or disposal. To address this economic issue, BC Technologies (BCT), in collaboration with Oak Ridge National Laboratory (ORNL) and International Petroleum Environmental Consortium (IPEC), proposed developing a mechanical unit that could be used to treat CBM produced water by forming gas hydrates at the wellhead. This process involves creating a gas hydrate, washing it and then disassociating hydrate into water and gas molecules. The application of this technology results in three process streams: purified water, brine, and gas. The purified water can be discharged or reused for a variety of beneficial purposes and the smaller brine can be disposed of using conventional strategies. The overall objectives of this research are to develop a new treatment method for produced water where it could be purified directly at the wellhead, to determine the effectiveness of hydrate formation for the treatment of produced water with proof of concept laboratory experiments, to design a prototype-scale injector and test it in the laboratory under realistic wellhead conditions, and to demonstrate the technology under field conditions. By treating the water on-site, producers could substantially reduce their surface handling costs and economically remove impurities to a quality that would support beneficial use. Batch bench-scale experiments of the hydrate formation process and research conducted at ORNL

  18. Microwave fluid flow meter

    DOE Patents [OSTI]

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  19. GAS METERING PUMP

    DOE Patents [OSTI]

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  20. Federal Building Metering Implementation Plan Template | Department...

    Office of Environmental Management (EM)

    Implementation Plan Template Federal Building Metering Implementation Plan Template Document provides a template for a federal building metering implementation plan....

  1. Metering Technology Corporation | Open Energy Information

    Open Energy Info (EERE)

    Technology Corporation Jump to: navigation, search Name: Metering Technology Corporation Place: Scotts Valley, California Product: Engineering related to communicating meters....

  2. Prioritizing Building Water Meter Applications | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Water Efficiency Prioritizing Building Water Meter Applications Prioritizing Building Water Meter Applications Executive Order 13693: Planning for Federal ...

  3. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Anaerobic Digestion Fuel Cells using Renewable Fuels Program Info Sector Name State State North Carolina Program Type Net Metering Summary The North Carolina Utilities Commission...

  4. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    after 12312014) are eligible. Net-metered systems must be intended primarily to offset part or all of a customer's electricity requirements. Public utilities may not limit...

  5. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of retail renewable distributed generation and net metering. Details will be posted once a final order is issued. Eligibility and Availability In December 2005 the Colorado...

  6. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    who generate electricity using solar, wind, hydroelectric, geothermal, biomass, biogas, combined heat and power, or fuel cell technologies.* A net metering facility must be...

  7. Wavelength meter having elliptical wedge

    DOE Patents [OSTI]

    Hackel, Richard P.; Feldman, Mark

    1992-01-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10.sup.8. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing.

  8. Wavelength meter having elliptical wedge

    DOE Patents [OSTI]

    Hackel, R.P.; Feldman, M.

    1992-12-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10[sup 8]. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing. 7 figs.

  9. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "AMR meters",46829659,47321320,48330822,45965762,48685043 "Residential",41830781,42491242,43455437,41451888,43913225 "Commercial",4781167,4632744,4691018,4341105,4611877 "Industrial",216459,196132,185862,172692,159315 "Transportation",1252,1202,125,77,626 "AMI meters",58545938,53341422,43165183,37290373,20334525

  10. Advanced Metering Infrastructure Security Considerations | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Metering Infrastructure Security Considerations Advanced Metering Infrastructure Security Considerations The purpose of this report is to provide utilities implementing Advanced Metering Infrastructure (AMI) with the knowledge necessary to secure that implementation appropriately. We intend that utilities use this report to guide their planning, procurement, roll-out, and assessment of the security of Advanced Metering Infrastructure. Advanced Metering Infrastructure Security

  11. Periodic review enhances LPG metering performance

    SciTech Connect (OSTI)

    Van Orsdol, F.G.

    1988-01-25

    Because of the loss of experienced personnel throughout the industry, the author says one must start over teaching the basics of liquid measurement. Warren Petroleum Co., a division of Chevron U.S.A. Inc., has developed a checklist review method for its metering systems, complete with enough explanation to allow the reviewer to understand why each item is important. Simultaneously, it continues with more in-depth and theoretical training in training course. This article describes the review process.

  12. Advanced Sub-Metering Program

    Broader source: Energy.gov [DOE]

    The program is designed to provide information about energy usage for each residences at a multi-residential buildings. Residences living in multi-residential buildings that are not sub-metered d...

  13. Grays Harbor PUD- Net Metering

    Broader source: Energy.gov [DOE]

    Washington's original net-metering law, which applies to all electric utilities, was enacted in 1998 and amended in 2006. Individual systems are limited to 100 kilowatts (kW) in capacity. Net...

  14. Valley Electric Association- Net Metering

    Broader source: Energy.gov [DOE]

    The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

  15. Blue Ridge EMC- Net Metering

    Broader source: Energy.gov [DOE]

    The Blue Ridge Electric Membership Corporation offers net metering to its residential customers with solar photovoltaic, wind, or micro-hydro generators up to 25 kilowatts. There is no aggregate...

  16. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable energy facilities established on military property for on-site military consumption may net meter for systems up to 2.2 megawatts (MW, AC). Aggregate Capacity Limit...

  17. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  18. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  19. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  20. Healthcare Energy Metering Guidance (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This brochure is intended to help facility and energy managers plan and prioritize investments in energy metering. It offers healthcare-specific examples of metering applications, benefits, and steps that other health systems can reproduce. It reflects collaborative input from the U.S. Department of Energy national laboratories and the health system members of the DOE Hospital Energy Alliance's Benchmarking and Measurement Project Team.

  1. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  2. Electric Meters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity & Fuel » Appliances & Electronics » Electric Meters Electric Meters The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. The basic unit of measure of electric power is the Watt. One

  3. Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use) | Department of Energy Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy. Download the Federal Building Metering

  4. Insert metering plates for gas turbine nozzles

    DOE Patents [OSTI]

    Burdgick, Steven S.; Itzel, Gary; Chopra, Sanjay; Abuaf, Nesim; Correia, Victor H.

    2004-05-11

    The invention comprises a metering plate which is assembled to an impingement insert for use in the nozzle of a gas turbine. The metering plate can have one or more metering holes and is used to balance the cooling flow within the nozzle. A metering plate with multiple holes reduces static pressure variations which result from the cooling airflow through the metering plate. The metering plate can be assembled to the insert before or after the insert is inserted into the nozzle.

  5. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",33865,33662,57269,46871,44911,41201,28512,22820 "Residential",30803,32688,53083,44459,42324,38779,26141,21191 "Commercial",3062,974,4186,2412,2587,2394,2350,1629 "Industrial",0,0,0,0,0,28,21,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",29909,29489,30,758,9213,8713,8126,6571

  6. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",17894,6822,6415,5210,4499,116826,103242,101084 "Residential",15963,6455,6075,4920,3375,101823,101363,99995 "Commercial",1828,307,240,190,822,14701,1577,749 "Industrial",103,60,100,100,302,302,302,340 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",741819,739583,735415,669482,193415,0,0,0

  7. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",52528,53483,38201,81499,78292,96058,81992,63856 "Residential",43410,44206,30907,72579,69795,85984,74356,59256 "Commercial",7661,7729,5975,7473,7374,9197,7333,4305 "Industrial",1457,1548,1319,1447,1123,877,303,295 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",1213192,1125193,1021241,555414,20665,0,0,0

  8. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",40233,38125,41827,35412,43254,27018,21054,8132 "Residential",37473,35775,28906,23442,31700,15987,11031,7263 "Commercial",1873,1455,10789,10095,9635,8772,8234,621 "Industrial",868,876,2122,1866,1909,2258,1789,236 "Transportation",19,19,10,9,10,1,0,12 "AMI meters",36345,34919,11533,11610,0,0,0,0

  9. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",42342,53266,44430,84409,81030,77963,71278,58477 "Residential",37948,48343,39930,76274,73703,71100,65176,53306 "Commercial",4394,4901,4481,8121,7325,6861,6100,5169 "Industrial",0,22,19,14,2,2,2,2 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",296824,271526,343769,123,0,0,0,0 "Residential",253659,229844,294918,116,0,0,0,0

  10. Status of Net Metering: Assessing the Potential to Reach Program Caps

    SciTech Connect (OSTI)

    Heeter, J.; Gelman, R.; Bird, L.

    2014-09-01

    Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

  11. Status of Net Metering: Assessing the Potential to Reach Program Caps (Poster)

    SciTech Connect (OSTI)

    Heeter, J.; Bird, L.; Gelman, R.

    2014-10-01

    Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

  12. LINEAR COUNT-RATE METER

    DOE Patents [OSTI]

    Henry, J.J.

    1961-09-01

    A linear count-rate meter is designed to provide a highly linear output while receiving counting rates from one cycle per second to 100,000 cycles per second. Input pulses enter a linear discriminator and then are fed to a trigger circuit which produces positive pulses of uniform width and amplitude. The trigger circuit is connected to a one-shot multivibrator. The multivibrator output pulses have a selected width. Feedback means are provided for preventing transistor saturation in the multivibrator which improves the rise and decay times of the output pulses. The multivibrator is connected to a diode-switched, constant current metering circuit. A selected constant current is switched to an averaging circuit for each pulse received, and for a time determined by the received pulse width. The average output meter current is proportional to the product of the counting rate, the constant current, and the multivibrator output pulse width.

  13. Net Metering Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Net Metering Resources Net Metering Resources State net metering policies allow customers to produce onsite electricity and sell excess generation to the utility at a set price, which creates an incentive for private investment in distributed renewable energy technologies by providing value to the electricity generation that, during certain times of day or season, exceeds the customer's electricity demand. Find net metering resources below. DOE Resource Net Metering Policy Development in

  14. Meters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HardwOOd %. EJ :1o,;"'a'" W. Monitoring wells :W o Wa"""'" :' m .y WWE:tI' s N Roads . et-Asld lidL:sndfili ;;;;>. Figure 28-1. Plant...

  15. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2103,2188,2991,4659,35987,29770,32000,3562 "Residential",935,1046,1722,3108,32964,27174,29415,892 "Commercial",1165,1139,1266,1548,3022,2595,2584,2670 "Industrial",3,3,3,3,1,1,1,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",277998,269876,246642,29650,0,0,0,0 "Residential",252040,245295,230705,27695,0,0,0,0

  16. Federal Building Metering Guidance (per 42 U.S.C. 8253(e), Metering of Energy Use)

    SciTech Connect (OSTI)

    2014-11-01

    Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy.

  17. Government Program Briefing: Smart Metering

    SciTech Connect (OSTI)

    Doris, E.; Peterson, K.

    2011-09-01

    This document is adapted and updated from a memo delivered to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the U.S. Department of Energy (DOE) Project Officer in March 2008. This briefing piece provides an overview of the benefits, costs, and challenges of smart metering.

  18. Government Program Briefing: Smart Metering

    Broader source: Energy.gov [DOE]

    This document is adapted and updated from a memo delivered to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the U.S. Department of Energy (DOE) Project Officer in March 2008. This briefing piece provides an overview of the benefits, costs, and challenges of smart metering.

  19. Power-factor metering gains new interest

    SciTech Connect (OSTI)

    Womack, D.L.

    1980-01-01

    The combined effect of increased energy costs, advances in digital metering techniques, and regulatory pressures is stimulating utility interest in charging smaller customers the full cost of their burden on the electric system, by metering reactive power and billing for poor power factor. Oklahoma Gas and Electric Co. adopted the Q-meter method, made practical with the advent of magnetic-tape metering. Digital metering and new techniques now being developed will add more options for utilities interested in metering power factor. There are three commonly used methods of determining power factor, all of which require the use of the standard induction watthour meter, plus at least one other meter, to obtain a second value in the power triangle. In all cases, the third value, if required, is obtained by calculation.

  20. Laser Power Meter Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2002-09-19

    Laser Power Meter integrates the digital output of a Newport 1835-C Laser Energy Meter and inserts the results into the file header of a WinSpec experimental file.

  1. greenMeter | Open Energy Information

    Open Energy Info (EERE)

    physics engine from the gMeter app, greenMeter computes power, fuel usagecost, crude oil consumption, and carbon emission (data can be shown in US or metric units). Thanks to...

  2. Metering in Federal Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Maintenance » Metering in Federal Buildings Metering in Federal Buildings The U.S. Department of Energy is required by the Energy Policy Act of 2005 and Executive Order 13693 to establish guidelines for agencies to meter their federal buildings for energy (electricity, natural gas, and steam) and water use. To help agencies meet these metering requirements, the Federal Energy Management Program (FEMP) provides guidance materials, an implementation plan template, and a best practices

  3. DOE Releases Federal Building Metering Guidance

    Broader source: Energy.gov [DOE]

    The guidance requires federal agencies to review, revise, and submit to FEMP its metering implementation plan within one year.

  4. El Paso Electric - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Website http:www.epelectric.comtxbusinessrollback-net-metering-approved-in-... State Texas Program Type Net Metering Summary El Paso Electric (EPE) has offered net metering to...

  5. Smart Meters on Tap for Owasso, Oklahoma

    Office of Energy Efficiency and Renewable Energy (EERE)

    Saving 10 percent of annual energy and increasing response time for electrical emergencies? Find out how smart meters can make cities smarter.

  6. BPA Metering Services Editing and Estimating Procedures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an unmetered condition An unmetered event will be identified through one of the following methods: 1) The Field Forms application (via Metering Services email), 2) An email...

  7. City of St. George- Net Metering

    Broader source: Energy.gov [DOE]

    The City of St. George Energy Services Department (SGESD) offers a net metering program to its customers, and updated program guidelines and fees in September 2015.* 

  8. Now that we have smart meters, what do we do with them?

    SciTech Connect (OSTI)

    2010-01-15

    For years, electric utilities have been dreaming about the day when they would have smart meters on customers' premises. However, there have always been lingering doubts among some consumer advocates and critics of the smart metering schemes about their cost-effectiveness. An issue that is beginning to become noticed is that installing smart meters and introducing variable pricing will accomplish very little unless the price signals are communicated to consumers and -- more important -- to energy-using devices beyond the meter. Since consumers are unlikely to sit around watching variable prices and adjusting consumption or thermostat settings, ways must be found for the price signals to automatically and directly communicate with devices,.

  9. Proton recoil scintillator neutron rem meter

    DOE Patents [OSTI]

    Olsher, Richard H.; Seagraves, David T.

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  10. Simplified Processing Method for Meter Data Analysis

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Colotelo, Alison H. A.; Downs, Janelle L.; Ham, Kenneth D.; Henderson, Jordan W.; Montgomery, Sadie A.; Vernon, Christopher R.; Parker, Steven A.

    2015-11-01

    Simple/Quick metered data processing method that can be used for Army Metered Data Management System (MDMS) and Logistics Innovation Agency data, but may also be useful for other large data sets. Intended for large data sets when analyst has little information about the buildings.

  11. 2010 Assessment of Demand Response and Advanced Metering - Staff Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Assessment of Demand Response and Advanced Metering - Staff Report 2010 Assessment of Demand Response and Advanced Metering - Staff Report 2010 Assessment of Demand Response and Advanced Metering - Staff Report. The Federal Energy Regulatory Commission's 2010 Demand Response and Advanced Metering Survey (2010 FERC Survey, covering calendar year 2009) indicates that advanced metering penetration (i.e., the fraction of all installed meters that are advanced meters) reached

  12. Smart Meters | OpenEI Community

    Open Energy Info (EERE)

    Smart Meters Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 16 January, 2013 - 11:09 SDG&E Customers Can Connect Home Area Network Devices With Smart...

  13. meter data | OpenEI Community

    Open Energy Info (EERE)

    by Graham7781(2017) Super contributor 26 June, 2013 - 09:17 NREL's Energy Databus storing big energy data campus databus energy meter data NREL OpenEI Tool The Energy Databus began...

  14. Murray City Power- Net Metering Pilot Program

    Broader source: Energy.gov [DOE]

    Under a pilot program, Murray City Power offers net metering to customers that generate electricity using photovoltaic (PV), wind-electric or hydroelectric systems with a maximum capacity of 10...

  15. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity. This option is available for photovoltaic (PV), wind, hydro...

  16. June 25 Webinar to Explore Net Metering

    Broader source: Energy.gov [DOE]

    Register for the Net Metering webinar, which will be held on Wednesday, June 25, 2014, from 11 a.m. to 12:30 p.m. Mountain time.

  17. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    New Hampshire" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",222183,69251,61857,59512,53293,50098,48310,46505 "Residential",218780,67647,60510...

  18. Green Pricing and Net Metering Programs 2010

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    294 2,971 650 Rhode Island 2 136 58 194 172 September 2012 U.S. Energy Information Administration | Green Pricing and Net Metering Programs 2010 6 Table 2. Estimated U.S. net ...

  19. Green Pricing and Net Metering Programs 2010

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Green Pricing and Net Metering Programs 2010 i This report was prepared by ...

  20. Green Pricing and Net Metering Programs 2010

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    30,060 27,750 Vermont 2 4,453 239 4,692 4,936 September 2012 U.S. Energy Information Administration | Green Pricing and Net Metering Programs 2010 4 Table 1. Estimated U.S. ...

  1. U.S. Virgin Islands- Net Metering

    Broader source: Energy.gov [DOE]

    In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energ...

  2. Natural Gas Wellhead Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010

  3. Natural Gas Wellhead Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 4.48 3.95 2.66 NA NA NA 1922-2015 Alabama 4.46 1967-2010 Alaska 3.17 1967-2010 Arizona 4.11 1967-2010 Arkansas 3.84 1967-2010 California 4.87 1967-2010 Colorado 3.96 1967-2010 Florida NA 1967-2010 Illinois NA 1967-2010 Indiana 4.13 1967-2010 Kansas 4.23 1967-2010 Kentucky 4.47 1967-2010

  4. Natural Gas Wellhead Price

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1973

  5. Working With Your Utility to Obtain Metering Services

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers the government metering requirement, the U.S. Department of Defense (DoD) metering directive, and customer metering services available from utilities.

  6. How to Read Residential Electric and Natural Gas Meters | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How to Read Residential Electric and Natural Gas Meters How to Read Residential Electric and Natural Gas Meters An electromechanical electric meter on the side of a house. | Photo...

  7. RWE Metering GmbH | Open Energy Information

    Open Energy Info (EERE)

    GmbH Jump to: navigation, search Name: RWE Metering GmbH Place: Germany Product: Smart metering subsidiary of Germany's second largest utility RWE AG. References: RWE Metering...

  8. Metering Best Practices: A Guide to Achieving Utility Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Guide describes information...

  9. CBEI: Virtual Refrigerant Charge Sensing and Load Metering -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review Presenter: James Braun, Purdue ...

  10. Demand Response and Smart Metering Policy Actions Since the Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the ...

  11. Insights from Smart Meters: Identifying Specific Actions, Behaviors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insights from Smart Meters: Identifying Specific Actions, Behaviors, and Characteristics That Drive Savings in Behavior-Based Programs In this report, we use smart meter data to ...

  12. Metering Best Practices: A Guide to Achieving Utility Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Guide describes information ...

  13. Smart Meters Help Balance Energy Consumption at Solar Decathlon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Meters Help Balance Energy Consumption at Solar Decathlon Smart Meters Help Balance Energy Consumption at Solar Decathlon September 28, 2011 - 10:57am Addthis The Team...

  14. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency

    SciTech Connect (OSTI)

    2015-03-02

    Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005.

  15. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE)

    Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005.

  16. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",251619,232888,233270,230916,221262,139874,58993,27057 "Residential",217995,204000,206539,204690,195920,124976,51007,24817 "Commercial",32890,28129,26000,25582,24807,14408,7529,2220 "Industrial",734,759,731,644,535,490,457,20 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",25553,12272,3766,3408,3213,3106,2753,4

  17. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",118318,116714,114296,113252,405728,56702,110087,20750 "Residential",106626,105342,103234,102397,364709,52679,106326,20361 "Commercial",11496,11207,10828,10619,40773,3989,3637,389 "Industrial",196,165,234,236,246,34,124,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",307168,307904,297247,297308,100,72000,48603,0

  18. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",183892,177493,168685,163567,142759,151004,146779,88220 "Residential",160763,155125,147140,142398,122329,133724,128395,82814 "Commercial",22512,21730,20916,20529,19850,17042,17904,5401 "Industrial",617,638,629,640,580,238,480,5 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",576309,548969,542009,536130,353867,225474,49380,0

  19. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",756473,744438,722583,713567,710239,697696,559054,139256 "Residential",655474,646196,624355,620170,615649,612354,495955,124347 "Commercial",99632,97104,97466,93000,92968,85137,62661,14851 "Industrial",1356,1134,762,397,1622,205,438,58 "Transportation",11,4,0,0,0,0,0,0 "AMI meters",161963,150555,143163,128116,121751,74120,48847,14946

  20. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",399663,371841,357579,344263,342766,331557,283997,203389 "Residential",371003,344167,330690,318544,316995,309010,267588,192187 "Commercial",25678,24657,24380,24208,24551,21202,14922,9945 "Industrial",2982,3017,2509,1511,1220,1345,1487,1257 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",400098,396398,220128,40063,34087,12021,3597,2

  1. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",319494,611045,877019,903093,889901,875440,845154,725634 "Residential",281386,549148,799807,823936,815476,804226,782901,659322 "Commercial",37868,61658,76998,78818,74100,71203,62242,66226 "Industrial",238,239,214,339,325,11,11,0 "Transportation",2,0,0,0,0,0,0,86 "AMI meters",1608027,1159371,498806,912,896,1034,810,0

  2. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",236654,273118,136678,116456,144254,103645,91623,24243 "Residential",197928,237034,117623,101376,130228,90425,80463,20942 "Commercial",37012,32633,16705,12952,12658,11393,10084,2156 "Industrial",1714,3451,2350,2128,1368,1827,1076,1145 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",445502,363360,274884,153279,48308,9465,1610,0

  3. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",467870,520018,495676,489407,482732,481682,397693,347611 "Residential",405276,448313,430824,429479,423471,417166,345119,304959 "Commercial",58023,67155,61129,57161,56837,62129,51022,41698 "Industrial",4539,4550,3723,2767,2424,2387,1552,954 "Transportation",32,0,0,0,0,0,0,0 "AMI meters",80864,18851,18830,17593,11991,6459,3532,212

  4. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",243727,214695,229210,220279,228503,244759,216434,112719 "Residential",217140,192195,206606,198130,207663,226923,209009,110488 "Commercial",25863,21811,21656,21246,19675,16998,7022,2000 "Industrial",724,689,948,903,1165,838,403,231 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",83802,108505,80808,72506,46139,24384,6215,0

  5. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",281284,274775,171896,165282,181060,149553,123861,41003 "Residential",229712,225851,141249,139162,154904,129384,111817,37069 "Commercial",44264,42282,26052,22916,23171,18971,11124,3873 "Industrial",7308,6642,4595,3204,2985,1198,920,61 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",100537,85007,72431,64037,42676,25380,11406,14500

  6. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",160541,162490,163750,181907,193350,89054,66943,33995 "Residential",138247,140673,143049,159847,171557,79340,60552,31632 "Commercial",20871,20385,19257,20260,19532,8695,5801,2011 "Industrial",1423,1432,1444,1800,2261,1019,590,352 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",160557,152199,127805,102671,95155,22793,16820,0

  7. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",709716,730599,309569,320041,45373,43870,43861,46240 "Residential",613484,643429,276292,285239,41482,41208,41115,40438 "Commercial",95689,85467,32375,34115,3830,2629,2711,5802 "Industrial",543,1703,902,687,61,33,35,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",1184894,1094256,515971,336940,0,0,0,0

  8. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",969524,947887,931692,903266,912616,851283,791097,374299 "Residential",880637,861955,849405,821766,814440,772961,722710,361979 "Commercial",84742,81853,78179,77565,92519,77666,67851,12272 "Industrial",4145,4079,4100,3935,5657,656,536,48 "Transportation",0,0,8,0,0,0,0,0 "AMI meters",46185,44150,22480,35163,17080,12860,2485,1

  9. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",513140,520857,464502,473117,474077,436376,438764,448444 "Residential",431517,439830,394660,399243,402817,387552,389596,381604 "Commercial",78717,78280,67228,70415,67890,47130,47431,66840 "Industrial",2906,2747,2614,3459,3370,1694,1737,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",6792,116,81,0,0,95,0,0

  10. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",228950,225895,210204,206764,147885,175769,139584,26178 "Residential",183907,181206,166730,162523,114344,141179,114795,24873 "Commercial",37536,37340,36283,37200,27897,29852,20219,1204 "Industrial",7507,7349,7176,7041,5644,4738,4570,101 "Transportation",0,0,15,0,0,0,0,0 "AMI meters",85136,84587,79675,77029,72260,10442,8609,0

  11. Liquid metal Flow Meter - Final Report

    SciTech Connect (OSTI)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  12. Innovation and Success in Solar Net Metering and Interconnection |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Net Metering and Interconnection Innovation and Success in Solar Net Metering and Interconnection This document summarizes the latest developments in solar net metering and interconnection. webinar_080713_solar_net_metering_connection.pdf (2.09 MB) More Documents & Publications webinar_innovation_net_metering_interconnection.doc PRESENTATION: OVERVIEW OF THE SUNSHOT INITIATIVE Final Report - Chicago Region Solar Market Transformation Team

  13. Societal Benefits of smart metering investments

    SciTech Connect (OSTI)

    Neenan, Bernard; Hemphill, Ross C.

    2008-10-15

    Implementing smart metering involves complex interactions that may generate many new sources of benefits. It is a potentially powerful enabler, one with considerable - but still speculative - potential that is highly dependent on how the technology is utilized by utilities and supported by their regulators. (author)

  14. Smart Meter Company Boosting Production, Workforce

    Office of Energy Efficiency and Renewable Energy (EERE)

    A manufacturing facility in South Carolina is producing enough smart meters to reduce annual electricity use by approximately 1.7 million megawatt hours -- and through advanced manufacturing tax credits, just increased the facility's production capability by 20 percent and created 420 jobs.

  15. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & < Imports -

  16. Community Net Energy Metering: How Novel Policies Expand Benefits of Net Metering to Non-Generators

    SciTech Connect (OSTI)

    Rose, James; Varnado, Laurel

    2009-04-01

    As interest in community solutions to renewable energy grows, more states are beginning to develop policies that encourage properties with more than one meter to install shared renewable energy systems. State net metering policies are evolving to allow the aggregation of multiple meters on a customer’s property and to dissolve conventional geographical boundaries. This trend means net metering is expanding out of its traditional function as an enabling incentive to offset onsite customer load at a single facility. This paper analyzes community net energy metering (CNEM) as an emerging vehicle by which farmers, neighborhoods, and municipalities may more easily finance and reap the benefits of renewable energy. Specifically, it aims to compare and contrast the definition of geographical boundaries among different CNEM models and examine the benefits and limitations of each approach. As state policies begin to stretch the geographic boundaries of net metering, they allow inventive solutions to encourage renewable energy investment. This paper attempts to initiate the conversation on this emerging policy mechanism and offers recommendations for further development of these policies.

  17. Fuel cell membrane hydration and fluid metering

    DOE Patents [OSTI]

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  18. Fuel cell membrane hydration and fluid metering

    DOE Patents [OSTI]

    Jones, Daniel O.; Walsh, Michael M.

    2003-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  19. SOLVENT DISPERSION AND FLOW METER CALCULATION RESULTS

    SciTech Connect (OSTI)

    Nash, C.; Fondeur, F.; Peters, T.

    2013-06-21

    Savannah River National Laboratory (SRNL) found that the dispersion numbers for the six combinations of CSSX:Next Generation Solvent (NGS) “blend” and pure NGS versus salt solution, caustic wash, and strip aqueous solutions are all good. The dispersion numbers are indications of processability with centrifugal contactors. A comparison of solvent physical and thermal properties shows that the Intek™ solvent flow meter in the plant has a reading biased high versus calibrated flow when NGS is used, versus the standard CSSX solvent. The flow meter, calibrated for CSSX solvent, is predicted to read 2.8 gpm of NGS in a case where the true flow of NGS is 2.16 gpm.

  20. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",480329,471388,470428,467346,457508,458475,451138,450668 "Residential",468728,461380,461788,460721,409497,407884,406169,400631 "Commercial",11601,10008,8640,6625,47728,50591,44969,50037 "Industrial",0,0,0,0,283,0,0,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",247,211,211,205,0,0,0,0 "Residential",0,0,0,0,0,0,0,0

  1. New Technologies Bring New Opportunities for Meter Reader | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technologies Bring New Opportunities for Meter Reader New Technologies Bring New Opportunities for Meter Reader September 22, 2011 - 2:03pm Addthis Brian Andrews is a former meter reader who now works with smart meter and intelligent grid projects. | Image courtesy of CenterPoint Energy. Brian Andrews is a former meter reader who now works with smart meter and intelligent grid projects. | Image courtesy of CenterPoint Energy. Liisa O'Neill Liisa O'Neill Former New Media Specialist,

  2. Coriolis Meters for Hydrogen Dispensing Measurement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coriolis Meters for Hydrogen Dispensing Measurement John Daly NA Lead Flow Specialist GE Measurement and Control Solutions Flow Technologies at GE MS Clamp-on Ultrasonic * Install on existing pipes * Low over cost of ownership * Focused on liquid but also for gas Wetted Ultrasonic * Higher accuracy * Difficult applications * Very low operational costs * Strong performance for liquid and gas Coriolis * Direct mass measurement * High accuracy over wide range * Liquid and Gas * Pipes up to 12"

  3. The Need for Essential Consumer Protections: Smart Metering Proposals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metering Proposals and the Move to Time-Based Pricing The Need for Essential Consumer Protections: Smart Metering Proposals and the Move to Time-Based Pricing There is a widespread ...

  4. Stick-on Electricity Meter - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Stick-on Electricity Meter Lawrence Berkeley National ... J., Lanzisera, S. "COTS-based stick-on electricity meters for building submetering," IEEE ...

  5. How to Read Your Electric Meter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Your Electric Meter How to Read Your Electric Meter The difference between one month's reading and the next is the amount of energy units that have been used for that billing...

  6. Meter and Relay Craftsman - Journeyman | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meter and Relay Craftsman - Journeyman Meter and Relay Craftsman - Journeyman Submitted by admin on Sun, 2016-06-26 00:15 Job Summary Organization Name Department Of Energy Agency ...

  7. Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    extremely receptive to expanding the use of the sub-meter data to drive decision making. ... Amp meter used at a Trenton, Michigan, plant to gather data on electrical usage. Courtesy ...

  8. How to Read Residential Electric and Natural Gas Meters | Department...

    Office of Environmental Management (EM)

    How to Read Residential Electric and Natural Gas Meters How to Read Residential Electric ... You can read your own meters to help monitor your electric or gas energy use. During the ...

  9. SCE&G - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of net metering programs offered by the IOUs. South Carolina Electric & Gas (SCE&G) designed two net-metering options for its South Carolina customers. These options are...

  10. Data Center Metering and Power Usage Effectiveness | Department...

    Office of Environmental Management (EM)

    Data Center Metering and Power Usage Effectiveness Data Center Metering and Power Usage Effectiveness July 28, 2016 2:00PM to 3:00PM EDT Webinar will cover material from the Data ...

  11. The Intersection of Net Metering and Retail Choice: An Overview...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Intersection of Net Metering and Retail Choice: An Overview of Policy, Practice and Issues The Intersection of Net Metering and Retail Choice: An Overview of Policy, Practice and ...

  12. Coriolis Meters for Hydrogen Dispensing Measurement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coriolis Meters for Hydrogen Dispensing Measurement Coriolis Meters for Hydrogen Dispensing Measurement This presentation by John Daly of GE Measurement and Control Solutions was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013. csd_workshop_14_daly.pdf (572.19 KB) More Documents & Publications 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report Report on RFI DE-FOA-000753: High-Accuracy Hydrogen Meters Metering Best

  13. Overcoming Net Metering and Interconnection Objections: New Jersey MSR Partnership

    SciTech Connect (OSTI)

    Not Available

    2005-09-01

    This fact sheet explains how the New Jersey MSR Partnership successfully revised net metering rules to make solar installations easier.

  14. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",332650,329079,1582760,137399,1546233,1175077,110675,105694 "Residential",286796,281898,1381543,121843,1352435,1029039,98707,92194 "Commercial",45661,46368,195291,15383,188053,142132,11957,11999 "Industrial",193,813,5926,173,5745,3906,11,1501 "Transportation",0,0,0,0,0,0,0,0 "AMI

  15. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",248444,230418,261023,262683,318606,300790,239851,109188 "Residential",222458,205920,231422,236070,287123,272669,223219,105408 "Commercial",23607,22594,22467,19931,24091,21425,11089,3772 "Industrial",2379,1904,7134,6682,7392,6696,5543,8 "Transportation",0,0,0,0,0,0,0,0 "AMI

  16. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",465753,380098,339368,314854,246497,666915,500476,354452 "Residential",421384,342033,307265,287712,225362,631062,480824,351548 "Commercial",43384,26918,23326,21051,17703,35711,19592,2898 "Industrial",985,11147,8777,6091,3432,142,60,6 "Transportation",0,0,0,0,0,0,0,0 "AMI

  17. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",868579,827670,580957,431858,1696965,345864,238634,181180 "Residential",736745,699209,481305,319842,1520278,278976,221857,167236 "Commercial",118539,115318,90939,97104,164498,57736,15597,12701 "Industrial",13222,13070,8699,14912,12189,9152,1178,1241 "Transportation",73,73,14,0,0,0,2,2 "AMI

  18. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1719454,1643794,1552727,1622740,1636242,1495425,1410712,231119 "Residential",1561074,1491944,1425970,1502253,1517327,1387937,1306346,206747 "Commercial",152693,146263,121673,115391,115899,106007,102596,23667 "Industrial",5687,5587,5084,5096,3016,1481,1770,705 "Transportation",0,0,0,0,0,0,0,0 "AMI

  19. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1453004,1469876,1481357,1496432,1536716,1530906,1534171,1478640 "Residential",1307338,1324280,1334604,1350835,1393474,1391016,1394732,1343996 "Commercial",140814,141213,142227,141092,138781,138239,137617,132856 "Industrial",4852,4383,4526,4505,4461,1651,1822,1788 "Transportation",0,0,0,0,0,0,0,0 "AMI

  20. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",3474452,3395748,3755977,3637527,3231398,3216922,2579337,2416630 "Residential",3208228,3139468,3455396,3325863,3024574,2953200,2378958,2351242 "Commercial",265169,254631,298694,308099,204383,262736,199331,64901 "Industrial",1054,1649,1886,3565,1893,986,1047,487 "Transportation",1,0,1,0,548,0,1,0 "AMI

  1. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",470136,627008,613969,521331,487830,435276,317642,295425 "Residential",407551,556807,552232,467749,440914,393533,292233,269843 "Commercial",60005,68008,59406,51774,44378,39314,23245,24111 "Industrial",2580,2193,2331,1808,2538,2429,2164,1471 "Transportation",0,0,0,0,0,0,0,0 "AMI

  2. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1018377,997408,973664,998081,1002378,973505,851285,549055 "Residential",905665,888394,869121,894434,902092,872418,773309,493378 "Commercial",109744,105317,101051,100648,97601,98067,75669,54444 "Industrial",2710,3382,3492,2999,2685,3018,2305,1227 "Transportation",258,315,0,0,0,2,2,6 "AMI

  3. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1199243,1251574,1284613,1095102,1059678,1038172,951160,382580 "Residential",1070706,1115322,1167245,990346,965867,947409,868170,371539 "Commercial",123315,131027,113006,102278,91550,88929,81696,10751 "Industrial",4728,4729,4362,2478,2261,1834,1294,290 "Transportation",494,496,0,0,0,0,0,0 "AMI

  4. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",135823,349836,335293,320708,400083,308859,300734,53919 "Residential",115628,303782,289091,276856,343492,264664,260503,41763 "Commercial",18934,44125,41789,39968,52910,41425,38520,10237 "Industrial",1261,1929,4413,3884,3681,2770,1711,1919 "Transportation",0,0,0,0,0,0,0,0 "AMI

  5. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",520625,532871,607590,548321,495475,529171,526410,445146 "Residential",459091,465927,534181,484008,439680,479635,480572,422463 "Commercial",60064,65386,71883,62353,54453,48318,44688,22493 "Industrial",1470,1558,1526,1960,1342,1218,1150,190 "Transportation",0,0,0,0,0,0,0,0 "AMI

  6. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2869249,2815732,2753089,2717020,2634758,2605159,2389547,2327751 "Residential",2618243,2579059,2527224,2500177,2325333,2300444,2103743,2072453 "Commercial",245237,234458,224070,215022,306584,303458,284904,253942 "Industrial",5746,2215,1795,1821,2841,1257,900,1356 "Transportation",23,0,0,0,0,0,0,0 "AMI

  7. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",354444,337976,324455,314211,359361,333902,272851,189606 "Residential",306626,292051,283561,272718,318011,299426,246630,174020 "Commercial",46331,44463,41134,40083,38141,32779,24761,14476 "Industrial",1487,1462,1390,1410,3209,1697,1460,1110 "Transportation",0,0,0,0,0,0,0,0 "AMI

  8. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1910556,1913337,1922706,1909106,1985873,1874104,1718448,363947 "Residential",1722688,1730915,1735168,1733724,1805096,1709999,1567837,333575 "Commercial",177021,172309,176721,165245,170062,162297,149294,29352 "Industrial",10821,10087,10817,10137,10715,1808,1317,1020 "Transportation",26,26,0,0,0,0,0,0 "AMI

  9. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1925736,1920471,1935078,1917474,1959937,1921343,1933413,1546006 "Residential",1701539,1696195,1709394,1698061,1736715,1705866,1728577,1372572 "Commercial",216604,216779,219525,213325,217255,210496,199759,167190 "Industrial",7537,7497,6159,6088,5967,4981,5077,6243 "Transportation",56,0,0,0,0,0,0,1 "AMI

  10. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",542577,535042,523950,503996,484383,454089,399845,380008 "Residential",462384,451388,444819,430631,415589,392296,349786,333774 "Commercial",49197,69711,67398,62997,59285,52508,44771,43230 "Industrial",30996,13943,11733,10368,9509,9285,5288,3004 "Transportation",0,0,0,0,0,0,0,0 "AMI

  11. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",3467586,3052524,2515127,2328801,2223645,2164329,1701366,1534285 "Residential",3044860,2848664,2295268,2140229,2044476,2005137,1555371,1410652 "Commercial",421467,202417,218735,187424,178662,158992,145798,123436 "Industrial",1095,1255,1124,1148,507,199,196,196 "Transportation",164,188,0,0,0,1,1,1 "AMI

  12. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",3592602,3708639,3613936,3768269,4027965,3718103,3521887,2048869 "Residential",3207225,3322965,3255122,3396907,3656223,3322323,3250613,1878066 "Commercial",381477,381832,355716,368487,369622,393894,268784,169438 "Industrial",3900,3842,3098,2875,2120,1886,2490,1365 "Transportation",0,0,0,0,0,0,0,0 "AMI

  13. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1200096,1068626,948564,727112,622965,563380,512000,277489 "Residential",1083593,976072,867682,680331,582725,525578,475653,257499 "Commercial",108652,86314,75747,44209,37864,35575,34425,18264 "Industrial",7831,6221,5135,2572,2376,2227,1922,1726 "Transportation",20,19,0,0,0,0,0,0 "AMI

  14. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",372720,385000,430870,427117,459002,392071,400426,277880 "Residential",323195,332981,377207,376188,400471,342530,351012,244516 "Commercial",47792,49803,51627,49838,54788,48517,48392,33162 "Industrial",1733,2216,2036,1091,3743,1024,1022,202 "Transportation",0,0,0,0,0,0,0,0 "AMI

  15. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",187890,183897,173477,180073,180305,182669,179104,91950 "Residential",171874,168007,158650,161735,163234,167965,167090,86244 "Commercial",14716,14848,13699,17315,15885,13539,10954,5115 "Industrial",1300,1042,1128,1023,1186,1165,1060,591 "Transportation",0,0,0,0,0,0,0,0 "AMI

  16. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",822579,1508995,2093902,2358735,2338527,2232621,2203630,1526540 "Residential",680993,1283786,1854282,2111101,2092893,1998214,1993991,1396097 "Commercial",133489,217043,231143,238676,237244,228706,203914,128444 "Industrial",8034,8104,8400,8890,8322,5694,5718,1999 "Transportation",63,62,77,68,68,7,7,0 "AMI

  17. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1819320,1848300,1816190,1809822,1897976,1700354,1510892,963079 "Residential",1597883,1621880,1600626,1596247,1678999,1490280,1348053,862204 "Commercial",220338,225016,213938,212061,218049,209287,161774,99865 "Industrial",1099,1404,1626,1514,928,787,1065,1010 "Transportation",0,0,0,0,0,0,0,0 "AMI

  18. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2305298,2278989,2649814,2362245,2609078,3758758,2513848,1019510 "Residential",2092754,2073428,2396415,2160965,2378327,3560320,2294696,942621 "Commercial",176555,178381,230398,177755,219325,186979,214217,74475 "Industrial",35989,27180,23001,23525,11426,11459,4935,2414 "Transportation",0,0,0,0,0,0,0,0 "AMI

  19. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2902638,2978913,3094379,3079891,3159249,3047610,3053272,2934487 "Residential",2670605,2742598,2851174,2841255,2930873,2825185,2842167,2730183 "Commercial",229930,234244,240960,236618,226654,220991,209453,204144 "Industrial",2103,2071,2245,2018,1722,1434,1652,160 "Transportation",0,0,0,0,0,0,0,0 "AMI

  20. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1736282,1715708,1681481,1656936,1611285,1326509,1346041,1143057 "Residential",1542833,1525473,1494345,1474547,1436056,1177320,1203954,1014025 "Commercial",185136,182666,182010,177498,170267,144934,137882,124770 "Industrial",8313,7569,5126,4891,4962,4255,4205,4261 "Transportation",0,0,0,0,0,0,0,1 "AMI

  1. Test and demonstration of a 1-MW wellhead generator: helical screw expander power plant, Model 76-1. Final report to the International Energy Agency

    SciTech Connect (OSTI)

    Not Available

    1985-07-04

    A 1-MW geothermal wellhead power plant incorporating a Lysholm or helical screw expander (HSE) was field tested between 1980 and 1983 by Mexico, Italy, and New Zealand with technical assistance from the United States. The objectives were to provide data on the reliability and performance of the HSE and to assess the costs and benefits of its use. The range of conditions under which the HSE was tested included loads up to 933 kW, mass flowrates of 14,600 to 395, 000 lbs/hr, inlet pressures of 64 to 220 psia, inlet qualities of 0 to 100%, exhaust pressures of 3.1 to 40 psia, total dissolved solids up to 310,000 ppM, and noncondensible gases up to 38% of the vapor mass flow. Typical machine efficiencies of 40 to 50% were calculated. For most operations efficiency increased approximately logarithmically with shaft power, while inlet quality and rotor speed had only small effects. The HSE was designed with oversized internal clearances in the expectation that adherent scale would form during operation. Improvements in machine efficiency of 3.5 to 4 percentage points were observed over some test periods with some scale deposition. A comparison with a 1-MW back-pressure turbine showed that the HSE can compete favorably under certain conditions. The HSE was found to be a rugged energy conversion machine for geothermal applications, but some subsystems were found to require further development. 7 refs., 28 figs., 5 tabs.

  2. Automatic ranging circuit for a digital panel meter

    DOE Patents [OSTI]

    Mueller, Theodore R.; Ross, Harley H.

    1976-01-01

    This invention relates to a range changing circuit that operates in conjunction with a digital panel meter of fixed sensitivity. The circuit decodes the output of the panel meter and uses that information to change the gain of an input amplifier to the panel meter in order to insure that the maximum number of significant figures is always displayed in the meter. The circuit monitors five conditions in the meter and responds to any of four combinations of these conditions by means of logic elements to carry out the function of the circuit.

  3. The magnetic flywheel flow meter: Theoretical and experimental contributions

    SciTech Connect (OSTI)

    Buchenau, D. Galindo, V.; Eckert, S.

    2014-06-02

    The development of contactless flow meters is an important issue for monitoring and controlling of processes in different application fields, like metallurgy, liquid metal casting, or cooling systems for nuclear reactors and transmutation machines. Shercliff described in his book “The Theory of Electromagnetic Flow Measurement, Cambridge University Press, 1962” a simple and robust device for contact-less measurements of liquid metal flow rates which is known as magnetic flywheel. The sensor consists of several permanent magnets attached on a rotatable soft iron plate. This arrangement will be placed closely to the liquid metal flow to be measured, so that the field of the permanent magnets penetrates into the fluid volume. The flywheel will be accelerated by a Lorentz force arising from the interaction between the magnetic field and the moving liquid. Steady rotation rates of the flywheel can be taken as a measure for the mean flow rate inside the fluid channel. The present paper provides a detailed theoretical description of the sensor in order to gain a better insight into the functional principle of the magnetic flywheel. Theoretical predictions are confirmed by corresponding laboratory experiments. For that purpose, a laboratory model of such a flow meter was built and tested on a GaInSn-loop under various test conditions.

  4. Long Island Smart Metering Pilot Project

    SciTech Connect (OSTI)

    2012-03-30

    The Long Island Power Authority (LIPA) Smart Meter Pilots provided invaluable information and experience for future deployments of Advanced Metering Infrastructure (AMI), including the deployment planned as part of LIPA’s Smart Grid Demonstration Project (DE-OE0000220). LIPA will incorporate lessons learned from this pilot in future deployments, including lessons relating to equipment performance specifications and testing, as well as equipment deployment and tracking issues. LIPA ultimately deployed three AMI technologies instead of the two that were originally contemplated. This enabled LIPA to evaluate multiple systems in field conditions with a relatively small number of meter installations. LIPA experienced a number of equipment and software issues that it did not anticipate, including issues relating to equipment integration, ability to upgrade firmware and software “over the air” (as opposed to physically interacting with every meter), and logistical challenges associated with tracking inventory and upgrade status of deployed meters. In addition to evaluating the technology, LIPA also piloted new Time-of-Use (TOU) rates to assess customer acceptance of time-differentiated pricing and to evaluate whether customers would respond by adjusting their activities from peak to non-peak periods. LIPA developed a marketing program to educate customers who received AMI in the pilot areas and to seek voluntary participation in TOU pricing. LIPA also guaranteed participating customers that, for their initial year on the rates, their electricity costs under the TOU rate would not exceed the amount they would have paid under the flat rates they would otherwise enjoy. 62 residential customers chose to participate in the TOU rates, and every one of them saved money during the first year. 61 of them also elected to stay on the TOU rate – without the cost guarantee – at the end of that year. The customer who chose not to continue on the rate was also

  5. ARM: Three Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ARM: Three Meter Tower: video camera Citation Details In-Document Search Title: ARM: Three Meter Tower: video camera Three Meter Tower: video camera Authors: Scott Smith ; Martin...

  6. ARM: Three Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Three Meter Tower: video camera Citation Details In-Document Search Title: ARM: Three Meter Tower: video camera Three Meter Tower: video camera Authors: Scott Smith ; Martin...

  7. ARM: Forty Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Forty Meter Tower: video camera Citation Details In-Document Search Title: ARM: Forty Meter Tower: video camera Forty Meter Tower: video camera Authors: Scott Smith ; Martin...

  8. Logic elements for reactor period meter

    DOE Patents [OSTI]

    McDowell, William P.; Bobis, James P.

    1976-01-01

    Logic elements are provided for a reactor period meter trip circuit. For one element, first and second inputs are applied to first and second chopper comparators, respectively. The output of each comparator is O if the input applied to it is greater than or equal to a trip level associated with each input and each output is a square wave of frequency f if the input applied to it is less than the associated trip level. The outputs of the comparators are algebraically summed and applied to a bandpass filter tuned to f. For another element, the output of each comparator is applied to a bandpass filter which is tuned to f to give a sine wave of frequency f. The outputs of the filters are multiplied by an analog multiplier whose output is 0 if either input is 0 and a sine wave of frequency 2f if both inputs are a frequency f.

  9. Gas-metering test and research facility to meet North Sea needs

    SciTech Connect (OSTI)

    Bosio, J.; Wilcox, P.; Sembsmoen, O. )

    1988-12-12

    A joint-venture, high-pressure, large-flow-rate facility to test, qualify, and research new natural-gas metering systems has been built by Den Norske Stats Oljeselskap A.S. (Statoil) and Total Marine Norsk A.S. Located near Haugesund in the Stavanger area, the lab, designated the Karsto Metering and Technology Laboratory, or K-Lab, is adjacent to Norway's first natural-gas-processing plant. It receives natural gas from across the Norwegian Trench from the Statfjord complex and after processing it sends it on to Emden, West Germany. The gas, which is produced in the North Sea, is transported to United Kingdom and the European continent through a high-pressure pipeline network. The importance of gas-metering technology has been emphasized by oil and gas companies as well as by national regulatory authorities.

  10. De Minimis Thresholds for Federal Building Metering Appropriateness

    SciTech Connect (OSTI)

    Henderson, Jordan W.

    2015-03-31

    The U.S. Department of Energy (DOE) is required by statute and Presidential Memorandum to establish guidelines for agencies to meter their Federal buildings for energy (electricity, natural gas, and steam) and water. See 42 U.S.C. § 8253(e). DOE issued guidance in February 2006 on the installation of electric meters in Federal buildings. A recent update to the 2006 guidance accounts for more current metering practices within the Federal Government. The updated metering guidance specifies that all Federal buildings shall be considered “appropriate” for energy or water metering unless identified for potential exclusion. In developing the updated guidance to carry out the statue, Congress also directed DOE to (among other things) establish exclusions from the metering requirements based on the de minimis quantity of energy use of a Federal building, industrial process, or structure. This paper discusses the method used to identify de minimis values.

  11. Method and apparatus for reading meters from a video image

    DOE Patents [OSTI]

    Lewis, Trevor J.; Ferguson, Jeffrey J.

    1997-01-01

    A method and system to enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relatively non-intrusive manner without making any complicated or expensive electronic connections, and without requiring intensive manpower.

  12. Energy Secretary Chu Announces Five Million Smart Meters Installed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nationwide as Part of Grid Modernization Effort | Department of Energy Five Million Smart Meters Installed Nationwide as Part of Grid Modernization Effort Energy Secretary Chu Announces Five Million Smart Meters Installed Nationwide as Part of Grid Modernization Effort June 13, 2011 - 12:00am Addthis Washington, DC - At a White House Grid Modernization event today, U.S. Department of Energy Secretary Steven Chu announced that more than five million smart meters have been installed nationwide

  13. Secretary Chu Announces Two Million Smart Grid Meters Installed Nationwide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Million Smart Grid Meters Installed Nationwide Secretary Chu Announces Two Million Smart Grid Meters Installed Nationwide August 31, 2010 - 12:00am Addthis Columbus, OH - At an event today at Battelle headquarters in Columbus, Ohio, U.S. Energy Secretary Steven Chu announced that two million smart grid meters have been installed across the country, helping to reduce energy costs for families and businesses. As a result of funding from the Recovery Act, smart grid

  14. CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review Presenter: James Braun, Purdue University View the Presentation CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review (2.39 MB) More Documents & Publications CBEI: FDD for Advanced RTUs - 2015 Peer Review Control and Diagnostics for Rooftop Units - 2014 BTO Peer Review CBEI: Coordinating

  15. Nevada Renewable Energy Application For Net Metering Customers...

    Open Energy Info (EERE)

    Renewable Energy Application For Net Metering Customers Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Nevada Renewable Energy Application For Net...

  16. Fuel Quality and Metering: Current Status and Future Needs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Metering Current Status and Future Needs DOE Tank Safety Workshop Sandia National Labs ... with enforcing the quality standards for Gasoline, Diesel, Motor Oil, Coolants, Brake ...

  17. Metering Best Practices: A Guide to Achieving Utility Resource...

    Broader source: Energy.gov (indexed) [DOE]

    distribution-level, and end-use metering. * Explain the ... by major utility type: electricity, natural gas, steam, ... Increase in Energy Consumption ...... 5.8 ...

  18. Vermont Construction and Operation of Net Metering Systems Rules...

    Open Energy Info (EERE)

    rule is applicable to all net metered installations in Vermont, and applies to every person, firm, company, corporation and municipality engaged in the construction or operation...

  19. Vermont Construction and Operation of Net Metering Systems Rule...

    Open Energy Info (EERE)

    rule is applicable to all net metered installations in Vermont, and applies to every person, firm, company, corporation and municipality engaged in the construction or operation...

  20. Smart Meters Helping Oklahoma Consumers Save Hundreds During...

    Energy Savers [EERE]

    Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat July 26, 2011 - ... on Good Morning America that he's saving over 320 per month compared to last ...

  1. Cyprus Smart metering demo (Smart Grid Project) | Open Energy...

    Open Energy Info (EERE)

    Installation of 3000 smart meters with the required infrastructure for full functionality evaluation of the best practice approach for full roll out. References "EU Smart Grid...

  2. Extreme Adaptive Optics for the Thirty Meter Telescope (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Extreme Adaptive Optics for the Thirty Meter Telescope Direct detection of extrasolar Jovian planets is a major scientific motivation for the construction of future ...

  3. Fisher Controls introduces Snug Meter to gas industry

    SciTech Connect (OSTI)

    Share, J.

    1996-04-01

    Spurred by an industry demanding a sleeker look that will appeal to consumers, Fisher Controls International inc., has introduced a compact natural gas meter that not only is considerably smaller than existing models, but also incorporates features that company officials feel may set new standards. Termed the Snug meter, the four-chamber device is particularly designed for multi-dwelling buildings and is also the initial foray of Fisher--a recognized leader in North America for pressure-control and regulation equipment--into the meter industry. This paper reviews the design features of this new meter.

  4. NASA's Solar Tower Test of the 1-Meter Aeroshell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NASA's Solar Tower Test of the 1-Meter Aeroshell - Sandia Energy Energy Search Icon Sandia ... Applications National Solar Thermal Test Facility Nuclear Energy Systems ...

  5. Cost benefit analysis for the implementation of smart metering...

    Open Energy Info (EERE)

    with pilot project (Smart Grid Project) Jump to: navigation, search Project Name Cost benefit analysis for the implementation of smart metering with pilot project Country...

  6. Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nissan North America: How Sub-Metering Changed the Way a Plant Does Business Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology to Identify Potential Reductions ...

  7. Improvements in Shallow (Two-Meter) Temperature Measurements...

    Open Energy Info (EERE)

    Center for Geothermal Energy has been working on improvements in shallow (two-meter) temperature surveys in two areas: overcoming limitations posed by difficult ground...

  8. Insights from Smart Meters: The Potential for Peak Hour Savings...

    Energy Savers [EERE]

    Technical Report Technical Report Appendix More Documents & Publications Insights from Smart Meters: Identifying Specific Actions, Behaviors, and Characteristics That Drive Savings ...

  9. Wavelength meter having single mode fiber optics multiplexed inputs

    DOE Patents [OSTI]

    Hackel, R.P.; Paris, R.D.; Feldman, M.

    1993-02-23

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  10. Wavelength meter having single mode fiber optics multiplexed inputs

    DOE Patents [OSTI]

    Hackel, Richard P.; Paris, Robert D.; Feldman, Mark

    1993-01-01

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  11. Shallow (2-meter) temperature surveys in Colorado

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Geothermal Development Associates, Reno, Nevada Publication Date: 2012 Title: Colorado 2m Survey Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: Shallow temperature surveys are useful in early-stage geothermal exploration to delineate surface outflow zones, with the intent to identify the source of upwelling, usually a fault. Detailed descriptions of the 2-meter survey method and equipment design can be found in Coolbaugh et al. (2007) and Sladek et al. (2007), and are summarized here. The survey method was devised to measure temperature as far below the zone of solar influence as possible, have minimal equilibration time, and yet be portable enough to fit on the back of an all-terrain vehicle (ATV); Figure 2). This method utilizes a direct push technology (DPT) technique where 2.3 m long, 0.54” outer diameter hollow steel rods are pounded into the ground using a demolition hammer. Resistance temperature devices (RTD) are then inserted into the rods at 2-meter depths, and allowed to equilibrate for one hour. The temperatures are then measured and recorded, the rods pulled out of the ground, and re-used at future sites. Usually multiple rods are planted over the course of an hour, and then the sampler returns back to the first station, measures the temperatures, pulls the rods, and so on, to eliminate waiting time. At Wagon Wheel Gap, 32 rods were planted around the hot springs between June 20 and July 1, 2012. The purpose was to determine the direction of a possible upflow fault or other structure. Temperatures at 1.5m and 2m depths were measured and recorded in the attribute table of this point shapefile. Several anomalous temperatures suggest that outflow is coming from a ~N60W striking fault or shear zone that contains the quartz-fluorite-barite veins of the adjacent patented mining claims. It should be noted that temperatures at 2m

  12. Multiphase pumps and flow meters avoid platform construction

    SciTech Connect (OSTI)

    Elde, J.

    1999-02-01

    One of the newest wrinkles in efficiency in BP`s Eastern Trough Area Project (ETAP) is the system for moving multiphase oil, water and gas fluids from the Machar satellite field to the Marnock Central Processing Facility (CPF). Using water-turbine-driven multiphase pumps and multiphase flow meters, the system moves fluid with no need for a production platform. In addition, BP has designed the installation so it reduces and controls water coning, thereby increasing recoverable reserves. Both subsea multiphase booster stations (SMUBS) and meters grew out of extensive development work and experience at Framo Engineering AS (Framo) in multiphase meters and multiphase pump systems for subsea installation. Multiphase meter development began in 1990 and the first subsea multiphase meters were installed in the East Spar Project in Australia in 1996. By September 1998, the meters had been operating successfully for more than 1 year. A single multiphase meter installed in Marathon`s West Brae Project has also successfully operated for more than 1 year. Subsea meters for ETAP were installed and began operating in July 1998.

  13. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-03-30

    Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods are under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.

  14. GRD Import

    Energy Science and Technology Software Center (OSTI)

    2010-11-01

    Imports RAW data (*.GRD) files created by Ion-TOF’s SurfaceLab version 6.1 or later into Matlab and saves the resulting variables to a file.

  15. Federal metering data analysis needs and existing tools

    SciTech Connect (OSTI)

    Henderson, Jordan W.; Fowler, Kimberly M.

    2015-07-01

    Agencies have been working to improve their metering data collection, management, and analysis efforts over the last decade (since EPAct 2005) and will continue to address these challenges as new requirements and data needs come into place. Unfortunately there is no “one-size-fits-all” solution. As agencies continue to expand their capabilities to use metered consumption data to reducing resource use and improve operations, the hope is that shared knowledge will empower others to follow suit. This paper discusses the Federal metering data analysis needs and some existing tools.

  16. Non-Invasive Energy Meter - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flow systems (e.g., solar systems) using a simple technique that senses when the system is running and then estimates the BTU energy production. Current energy meters must be ...

  17. Smart Meters and a Smarter Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A smart meter, in the context of a Smart Grid, is your home's connection between your electricity needs and the rest of the grid. So, what's the difference between a regular ...

  18. The Need for Essential Consumer Protections: Smart metering proposals...

    Energy Savers [EERE]

    August 2010 The Need for Essential Consumer Protections: Smart metering proposals and the move to time-based pricing. August 2010 There is widespread consensus that the U.S. ...

  19. ARRA Program Celebrates Milestone 600,000 Smart Meter Installations

    Broader source: Energy.gov [DOE]

    On April 11, 2012, DOE Recovery Act funding recipient Sacramento Municipal Utility District (SMUD) celebrated a major milestone in the development of a regional smart grid in California: the installation of over 600,000 smart meters.

  20. San Antonio City Public Service (CPS Energy)- Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to customers of CPS Energy. There is no aggregate capacity limit or maximum system size. There are also no commissioning fees or facilities charges for customers.

  1. Application for a Certificate of Public Good for Net Metered...

    Open Energy Info (EERE)

    Certificate of Public Good for Net Metered Power Systems that are Non-Photovoltaic Systems Up to 150 kW (AC) in Capacity Jump to: navigation, search OpenEI Reference LibraryAdd to...

  2. Meeting the "Applied" Accuracy Needs of Energy Metering

    Energy Savers [EERE]

    NOT worst case accuracy of meter * NOT the accuracy as a function of input value Working definition: Average accuracy a user can expect to achieve on the desired measurement that...

  3. Fuel Quality and Metering: Current Status and Future Needs |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Quality and Metering: Current Status and Future Needs These slides were presented at ... 10-11, 2009 BILIWG Meeting: DOE Hydrogen Quality Working Group Update and Recent Progress ...

  4. ODUSD (I&E) Facilities Energy Program Advanced Metering Policy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers the U.S. Department of Defense's (DoD's) metering policy, including implementation challenges and utility partnerships.

  5. WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential

    Wind Powering America (EERE)

    Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California

  6. WINDExchange: Community-Scale 50-Meter Wind Maps

    Wind Powering America (EERE)

    Community-Scale 50-Meter Wind Maps The U.S. Department of Energy provides 50-meter (m) height, high-resolution wind resource maps for most of the states and territories of Puerto Rico and the Virgin Islands in the United States. Counties, towns, utilities, and schools use community-scale wind resource maps to locate and quantify the wind resource, identifying potentially windy sites determining a potential site's economic and technical viability. Map of the updated wind resource assessment

  7. The Need for Essential Consumer Protections: Smart Metering Proposals and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Move to Time-Based Pricing | Department of Energy Metering Proposals and the Move to Time-Based Pricing The Need for Essential Consumer Protections: Smart Metering Proposals and the Move to Time-Based Pricing There is a widespread consensus that the U.S. distribution and transmission systems for vital electricity service need to be modernized and upgraded to handle not only load growth, but the integration of renewable resources and the potential for a significant increase in

  8. Novel Application of Metering Pump on Diesel Aftertreatment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Novel Application of Metering Pump on Diesel Aftertreatment Novel Application of Metering Pump on Diesel Aftertreatment Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_liu.pdf (562.68 KB) More Documents & Publications SCR Systems for Heavy Duty Trucks: Progress Towards

  9. High-Performance Computing Data Center Metering Protocol | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High-Performance Computing Data Center Metering Protocol High-Performance Computing Data Center Metering Protocol Guide details the methods for measurement in High-Performance Computing (HPC) data center facilities and documents system strategies that have been used in Department of Energy data centers to increase data center energy efficiency. Download the guide. (1.34 MB) More Documents & Publications Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance

  10. Insights from Smart Meters: Identifying Specific Actions, Behaviors, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characteristics That Drive Savings in Behavior-Based Programs | Department of Energy Identifying Specific Actions, Behaviors, and Characteristics That Drive Savings in Behavior-Based Programs Insights from Smart Meters: Identifying Specific Actions, Behaviors, and Characteristics That Drive Savings in Behavior-Based Programs In this report, we use smart meter data to analyze specific actions, behaviors, and characteristics that drive energy savings in a BB program. Specifically, we examine a

  11. A Meter-Scale Plasma Wakefield Accelerator (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: A Meter-Scale Plasma Wakefield Accelerator Citation Details In-Document Search Title: A Meter-Scale Plasma Wakefield Accelerator No abstract prepared. Authors:...

  12. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meters and a Smarter Power Grid Tips: Smart Meters and a Smarter Power Grid The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- ...

  13. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and equipment -- including a smart meter at your home -- working together to ... and equipment -- including a smart meter at your home -- working together to ...

  14. Metering Best Practices. A Guide to Achieving Utility Resource Efficiency, Release 3.0

    SciTech Connect (OSTI)

    Parker, Steven A.; Hunt, W. D.; McMordie Stoughton, Kate; Boyd, Brian K.; Fowler, Kimberly M.; Koehler, Theresa M.; Sandusky, William F.; Sullivan, Greg P.; Pugh, Ray

    2015-04-05

    DOE FEMP guide for metering best practices aligned with the DOE Metering Guidance revision required by the 12/2013 Presidential Memo.

  15. REDUCING PRODUCED WATER WITH DENSITY AND CONDUCTIVITY METERS

    SciTech Connect (OSTI)

    Jason T. Smith

    2004-08-01

    The work performed was an attempt to reduce the amount of produced water by using the well bore as an oil-water separator. The use of a flow meter, density meter and/or conductivity meter controlling a pumping unit would be used to achieve this goal. The natural physical differences between oil and water are easily detected inside the production stream with proper equipment. A coriolis mass meter, conductivity meter, data recorder, timer and relays were purchased and housed in a purpose-built field cabinet. The metering unit was hooked to four wells over the course of the project, Spencer No.8, Applegate Gray Unit No.1 (AGU No.1), Vollmer No.4 and Mohr No.1. All are located in the Illinois Basin, three with artificial lift pumps and one flowing well. Depth of producing formations ranges from a maximum of 846.13 m (2776 ft) to minimum of 316.69 m (1039 ft). All wells were completed in one formation of Mississippian or Pennsylvanian age. The data recorded were analyzed to determine what events could be detected. Events included pure oil or higher oil-cut fluid reaching the pump or reaching the metering equipment, the pump operating under capacity, and the well ''pumped down''. Based on how much oil and water is present in a fluid column, the pressure the fluid column imparts on a formation can be calculated. By knowing the amount of oil and water in a well bore and the maximum height water can reach, production equipment can be configured to only produce oil. However, the configuration may not be profitable. It became apparent during the course of this research the wells tested do not have an oil-water contact deep enough so traditional pumping equipment can be configured to recover oil by the proposed method. This method may work more successfully in deeper basins. Other interesting anomalies were also detected in the data.

  16. Compensated count-rate circuit for radiation survey meter

    DOE Patents [OSTI]

    Todd, R.A.

    1980-05-12

    A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for couting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensation circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.

  17. Compensated count-rate circuit for radiation survey meter

    DOE Patents [OSTI]

    Todd, Richard A.

    1981-01-01

    A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for counting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensated circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.

  18. The AGS Ggamma Meter and Calibrating the Gauss Clock

    SciTech Connect (OSTI)

    Ahrens, Leif

    2014-03-31

    During AGS Polarized Proton acceleration periods, one output from the AGS Ggamma Meter, namely the energy (or Ggamma) calculated from the magnetic field in the AGS main magnets and the beam radius- both measured in particular instant, is used to figure out the times in the AGS magnet acceleration cycle when the beam passes through a particular set of depolarizing resonances. The resonance set occur whenever a particle’s Ggamma (energy*(G/m) becomes nearly equal to n*Qx (i.e. any integer multiplied by the horizontal betatron tune). This deliverable is why the machinery is referred to as the ''Ggamma Meter'' rather than the AGS energy meter. The Ggamma Meter takes as inputs a set of measurements of frequency (F(t)), radius (r(t)), and gauss clock counts (GCC(t)). The other energy (GgammaBr) assumes the field when the gauss clock starts counting is known. The change in field to time t is given by the measured accumulated gauss clock counts multiplied by the gauss clock calibration (gauss/GCC). In order to deal with experimental data, this calibration factor gets an added ad hoc complication, namely a correction dependent on the rate of change the counting rate. The Ggamma meter takes GCC(t) and together with the past history for this cycle calculates B(t).

  19. Icing rate meter estimation of in-cloud cable icing

    SciTech Connect (OSTI)

    McComber, P.; Druez, J.; Laflamme, J.

    1994-12-31

    In many northern countries, the design and reliability of power transmission lines are closely related to atmospheric icing overloads. It is becoming increasingly important to have reliable instrument systems to warn of icing conditions before icing loads become sufficient to damage the power transmission network. Various instruments are presently being developed to provide better monitoring of icing conditions. One such instrument is the icing rate meter (IRM) which counts icing and de-icing cycles per unit time on a standard probe and can be used to estimate the icing rate on nearby cables. The calibration presently used was originally based on experiments conducted in a cold room. Even though this calibration has shown that the IRM estimation already offers an improvement over model prediction based on standard meteorological parameters, it can certainly be improved further with appropriate field data. For this purpose, the instrument was tested on an icing test site at Mt. Valin (altitude 902 m) Quebec, Canada. In this paper measurements from twelve in-cloud icing events during the 1991--92 winter are divided into one hour periods of icing to provide the experimental icing rate data. The icing rates measured on a 12.5 mm and a 35 mm cables are then compared with the number of IRM signals, also for one hour periods, in relation to initial ice load, temperature, wind velocity and direction. From this analysis, a better calibration for the IRM instrument is suggested. The improvement of the IRM estimation is illustrated by making a comparison with measurements, of the icing load estimation with the old and new calibrations for two complete icing events.

  20. Advanced Metering Implementations - A Perspective from Federal Sector

    SciTech Connect (OSTI)

    Eaarni, Shankar

    2014-08-11

    Federal mandate (EPACT 2005) requires that federal buildings install advanced electrical meters-meters capable of providing data at least daily and measuring the consumption of electricity at least hourly. This work presents selected advanced metering implementations to understand some of the existing practices related to data capture and to understand how the data is being translated into information and knowledge that can be used to improve building energy and operational performance to meet federal energy reduction mandates. This study highlights case studies to represent some of the various actions that are being taken based on the data that are being collected to improve overall energy performance of these buildings. Some of these actions include- individualized tenant billing and energy forecasting, benchmarking, identifying energy conservation measures, measurement and verification.

  1. Smart preamplifier for real-time turbine meter diagnostics

    SciTech Connect (OSTI)

    Breter, J.C.

    1995-12-31

    A new, dual-purpose device for turbine meters, which functions as a traditional signal preamplifier and accomplishes real-time performance diagnostics, is now available. This smart preamplifier (patent pending) utilizes high speed microprocessor technology to continuously monitor and analyze the rotation of a turbine meter rotor. Continuous monitoring allows the device to detect rotational anomalies that can lead to erroneous measurements as they occur. The smart preamplifier works on liquid or gas turbine meters that use a variable reluctance pickup coil for signal generation. This paper will discuss the technology and capabilities of the smart preamplifier. To simplify this discussion, it is assumed that the signal generated will be via a non-rimmed rotor. Thus, the term ``blade`` is used throughout. However, all discussions relevant to signal generation are also true for a rimmed rotor using either buttons or slots for signal generation.

  2. Net Metering and Interconnection Procedures-- Incorporating Best Practices

    SciTech Connect (OSTI)

    Jason Keyes, Kevin Fox, Joseph Wiedman, Staff at North Carolina Solar Center

    2009-04-01

    State utility commissions and utilities themselves are actively developing and revising their procedures for the interconnection and net metering of distributed generation. However, the procedures most often used by regulators and utilities as models have not been updated in the past three years, in which time most of the distributed solar facilities in the United States have been installed. In that period, the Interstate Renewable Energy Council (IREC) has been a participant in more than thirty state utility commission rulemakings regarding interconnection and net metering of distributed generation. With the knowledge gained from this experience, IREC has updated its model procedures to incorporate current best practices. This paper presents the most significant changes made to IREC’s model interconnection and net metering procedures.

  3. WINDExchange: Residential-Scale 30-Meter Wind Maps

    Wind Powering America (EERE)

    Residential-Scale 30-Meter Wind Maps The U.S. Department of Energy provides 30-meter (m) height, high-resolution wind resource maps for the United States. Businesses, farms, and homeowners use residential-scale wind resource maps to identify wind sites that may be appropriate for small-scale wind projects. A wind resource map of the United States. Go to the California wind resource map. Go to the Washington wind resource map. Go to the Oregon wind resource map. Go to the Idaho wind resource map.

  4. The Need for Essential Consumer Protections: Smart metering proposals and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the move to time-based pricing. August 2010 | Department of Energy metering proposals and the move to time-based pricing. August 2010 The Need for Essential Consumer Protections: Smart metering proposals and the move to time-based pricing. August 2010 There is widespread consensus that the U.S. distribution and transmission systems for vital electricity service need to be modernized and upgraded. This modernization has been recently promoted under the rubric of the Smart Grid. The Smart Grid

  5. Recessed impingement insert metering plate for gas turbine nozzles

    DOE Patents [OSTI]

    Itzel, Gary Michael; Burdgick, Steven Sebastian

    2002-01-01

    An impingement insert sleeve is provided that is adapted to be disposed in a coolant cavity defined through a stator vane. The insert has a generally open inlet end and first and second diametrically opposed, perforated side walls. A metering plate having at least one opening defined therethrough for coolant flow is mounted to the side walls to generally transverse a longitudinal axis of the insert, and is disposed downstream from said inlet end. The metering plate improves flow distribution while reducing ballooning stresses within the insert and allowing for a more flexible insert attachment.

  6. EDD-7 Electric Charge Point Meter test results

    SciTech Connect (OSTI)

    Mersman, C.R.

    1993-09-01

    The results of tests evaluating the electric switching portion of the EDD-7 Electric Charge Point Meter (ECPM) are presented. The ECPM is a modified parking meter that allows the purchase of 120 or 240 volt electric power. The ECPM is designed to make electricity available at any vehicle parking location. The test results indicate that the ECPM operated without failure thru a series of over current and ground fault tests at three different test temperatures. The magnitude of current required to trip the over current protection circuitry varied with temperature while the performance of the ground fault interruption circuitry did not change significantly with the test temperature.

  7. Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat July 26, 2011 - 4:27pm Addthis Small business owner Steve Kaplan told ABC News’ “Show Me the Money” on Good Morning America that he's saving over $320 per month compared to last summer, which they calculated could result in $1,300 a year. Small business owner Steve Kaplan told ABC News' "Show Me the Money" on

  8. Wintertime current meter measurements from the East China Sea

    SciTech Connect (OSTI)

    Trump, C.L.; Burt, W.V.

    1981-09-01

    An array of three current meters were anchored on the continental shelf of the East China Sea during the last half of February 1975 as part of the Japanese Air Mass Transformation Experiment, AMTEX-75. The results indicate that the currents are dominated by the rotational semidiurnal M/sub 2/ tidal component superimposed on a slow mean drift to the northeast. Differences in direction of several days duration between two of the current meters suggest the presence of transient mesoscale eddies or meanders in the flow regime.

  9. Utility-Scale Smart Meter Deployments, Plans & Proposals | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Utility-Scale Smart Meter Deployments, Plans & Proposals Utility-Scale Smart Meter Deployments, Plans & Proposals The Edison Foundation's chart of plans and proposals for utility-scale smart meter deployments. Utility-Scale Smart Meter Deployments, Plans & Proposals (687.9 KB) More Documents & Publications Government Program Briefing: Smart Metering Comments of the New America Foundation's Open Technology Initiative 2014 Smart Grid System Report (August 2014

  10. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, J.R.

    1982-05-04

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

  11. Akwesasne Housing Authority - Go Solar Initiative: Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Akwesasne Housing Authority Go Solar Initiative: Net Metering Indian Energy Webinar: Understanding the Energy Policy and Regulatory Environment Theresa Cole, Special Projects Coordinator * Intro Akwesasne Housing Authority * Energy Vision * Sunrise Acres Complex * Technical Assistance/Strategic Plan * Project Goals & Outcomes * Community Awareness Campaign * Solar Initiative Goals * AHA's Unique Energy Conservation & Education Programming * Funding Sources * New York State and Utility

  12. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, James R.

    1982-01-01

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  13. Insights from Smart Meters: The Potential for Peak Hour Savings from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Behavior-Based Programs | Department of Energy The Potential for Peak Hour Savings from Behavior-Based Programs Insights from Smart Meters: The Potential for Peak Hour Savings from Behavior-Based Programs This report focuses on one example of the value that analysis of this data can provide: insights into whether BB efficiency programs have the potential to provide peak-hour energy savings. This is important because there is increasing interest in using BB programs as a stand-alone peak

  14. Dead-time compensation for a logarithmic display rate meter

    DOE Patents [OSTI]

    Larson, J.A.; Krueger, F.P.

    1987-10-05

    An improved circuit is provided for application to a radiation survey meter that uses a detector that is subject to dead time. The circuit compensates for dead time over a wide range of count rates by producing a dead-time pulse for each detected event, a live-time pulse that spans the interval between dead-time pulses, and circuits that average the value of these pulses over time. The logarithm of each of these values is obtained and the logarithms are subtracted to provide a signal that is proportional to a count rate that is corrected for the effects of dead time. The circuit produces a meter indication and is also capable of producing an audible indication of detected events. 5 figs.

  15. Dead-time compensation for a logarithmic display rate meter

    DOE Patents [OSTI]

    Larson, John A.; Krueger, Frederick P.

    1988-09-20

    An improved circuit is provided for application to a radiation survey meter that uses a detector that is subject to dead time. The circuit compensates for dead time over a wide range of count rates by producing a dead-time pulse for each detected event, a live-time pulse that spans the interval between dead-time pulses, and circuits that average the value of these pulses over time. The logarithm of each of these values is obtained and the logarithms are subtracted to provide a signal that is proportional to a count rate that is corrected for the effects of dead time. The circuit produces a meter indication and is also capable of producing an audible indication of detected events.

  16. Metered Evaporator for Tokamak Wall Conditioning --- Inventor(s): Charles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. Skinner, Dennis Mansfield, Henry Kugel, Hans Schneider and Lane Roquemore | Princeton Plasma Physics Lab Metered Evaporator for Tokamak Wall Conditioning --- Inventor(s): Charles H. Skinner, Dennis Mansfield, Henry Kugel, Hans Schneider and Lane Roquemore A novel lithium evaporator for the controlled introduction of lithium into tokamaks for wall conditioning is described. The concept uses a Li granule injector with a heated in-vessel yttrium crucible to evaporate a controlled amount of

  17. Smart Meter Investments Support Rural Economy in Arkansas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Meter Investments Support Rural Economy in Arkansas Woodruff Electric Cooperative (Woodruff) serves customers in seven eastern Arkansas counties. The proportion of residents living in poverty in those counties is more than double the national average. As a member-owned rural electric cooperative, Woodruff is connected to its customers and engaged in economic development efforts to bring more jobs and higher incomes to local communities. In order to bring the capital investment and its

  18. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, J.R.

    1980-05-02

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  19. Revenue-metering device for HVDC systems. Final report

    SciTech Connect (OSTI)

    Schweitzer, E.O. III; Ando, M.; Aliaga, A.; Baker, R.; Seamans, D.

    1984-05-01

    This final report describes a digital dc revenue metering device for HVDC systems developed by Washington State University researchers under a contract with the Electric Power Research Institute. The device was installed at the Sylmar Converter Station of the Los Angeles Department of Water and Power in November 1981, and has been operating satisfactorily for over 20 months. It uses voltage and current measurements from existing voltage dividers, current transductors, and a current shunt. The energy-computation algorithms are implemented using digital signal processing principles in a single eight-bit microprocessor (Motorola MC6809). The algorithms accommodate the different characteristics of the sensors, and tolerate the unavailability of some of the sensors, with some loss in accuracy. Comparisons of the dc Revenue Meter energy measurements with the ac revenue meter measurements plus the station losses reveal a 0.1 percent difference in one pole and a one percent difference in the other pole, for a net difference of about one-half percent.

  20. Final Report - Integration of Behind-the-Meter PV Fleet Forecasts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Final Report - Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System ...

  1. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Office of Environmental Management (EM)

    Tips: Smart Meters and a Smarter Power Grid Tips: Smart Meters and a Smarter Power Grid The Smart Grid will consist of controls, computers, automation, and new technologies and...

  2. Nissan North America: How Sub-Metering Changed the Way a Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    North America: How Sub-Metering Changed the Way a Plant Does Business Nissan North America: How Sub-Metering Changed the Way a Plant Does Business This case study describes how ...

  3. United States- Land Based and Offshore Annual Average Wind Speed at 100 Meters

    Broader source: Energy.gov [DOE]

    Full-size, high resolution version of the 100-meter land-based and offshore wind speed resource map.

  4. Metering Plan: Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings

    SciTech Connect (OSTI)

    Pope, Jason E.

    2012-07-25

    This Plan presents progress toward the metering goals shared by all national laboratories and discusses PNNL's contemporary approach to the installation of new meters. In addition, the Plan discusses the data analysis techniques with which PNNL is working to mature using endless data streams made available as a result of increased meter deployment.

  5. The KFM, A Homemade Yet Accurate and Dependable Fallout Meter

    SciTech Connect (OSTI)

    Kearny, C.H.

    2001-11-20

    The KFM is a homemade fallout meter that can be made using only materials, tools, and skills found in millions of American homes. It is an accurate and dependable electroscope-capacitor. The KFM, in conjunction with its attached table and a watch, is designed for use as a rate meter. Its attached table relates observed differences in the separations of its two leaves (before and after exposures at the listed time intervals) to the dose rates during exposures of these time intervals. In this manner dose rates from 30 mR/hr up to 43 R/hr can be determined with an accuracy of {+-}25%. A KFM can be charged with any one of the three expedient electrostatic charging devices described. Due to the use of anhydrite (made by heating gypsum from wallboard) inside a KFM and the expedient ''dry-bucket'' in which it can be charged when the air is very humid, this instrument always can be charged and used to obtain accurate measurements of gamma radiation no matter how high the relative humidity. The heart of this report is the step-by-step illustrated instructions for making and using a KFM. These instructions have been improved after each successive field test. The majority of the untrained test families, adequately motivated by cash bonuses offered for success and guided only by these written instructions, have succeeded in making and using a KFM. NOTE: ''The KFM, A Homemade Yet Accurate and Dependable Fallout Meter'', was published by Oak Ridge National Laboratory report in1979. Some of the materials originally suggested for suspending the leaves of the Kearny Fallout Meter (KFM) are no longer available. Because of changes in the manufacturing process, other materials (e.g., sewing thread, unwaxed dental floss) may not have the insulating capability to work properly. Oak Ridge National Laboratory has not tested any of the suggestions provided in the preface of the report, but they have been used by other groups. When using these instructions, the builder can verify the

  6. MSET modeling of Crystal River-3 venturi flow meters.

    SciTech Connect (OSTI)

    Bockhorst, F. K.; Gross, K. C.; Herzog, J. P.; Wegerich, S. W.

    1998-01-05

    The analysis of archived Crystal River-3 feedwater flow data reveals a slow and steady degradation of the flow meter measurements during the 1992/1993 operating cycle. MSET can reliably estimate the true flow rate and quantify the degree of departure between the indicated signal and the true flow rate with high accuracy. The MSET computed flow rate could, in principle, be used to provide an improved estimate of the reactor power and hence avoid the revenue loss associated with derating the reactor based on a faulty feedwater flow rate indication.

  7. Vids4Grids: Smart Meters and Super Cables | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vids4Grids: Smart Meters and Super Cables Vids4Grids: Smart Meters and Super Cables March 14, 2011 - 4:46pm Addthis This episode of Vids 4 Grids will take us to Itron's smart meter factory in West Union, SC where we will learn the role smart meters play in the Smart Grid. Deborah J. Buterbaugh Energy Project Specialist at National Energy Technology Laboratory What does this mean for me? Smart meters allow consumers to get real time information about their energy usage. Super cables help provide

  8. Uncertainty quantification in application of the enrichment meter principle for nondestructive assay of special nuclear material

    SciTech Connect (OSTI)

    Burr, Tom; Croft, Stephen; Jarman, Kenneth D.

    2015-09-05

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings, and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically quantify total uncertainty in terms of “random” and “systematic” components, and then specify error bars for the total mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed and achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we propose improvements over GUM for NDA by illustrating UQ challenges that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using low-resolution NaI spectra and applying the enrichment meter principle to estimate the U-235 mass in an item. The case study illustrates how to update the current American Society for Testing and Materials guide for application of the enrichment meter principle using gamma spectra from a NaI detector.

  9. Uncertainty quantification in application of the enrichment meter principle for nondestructive assay of special nuclear material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burr, Tom; Croft, Stephen; Jarman, Kenneth D.

    2015-09-05

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings, and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically quantify total uncertainty in terms of “random” and “systematic” components, and then specify error bars for the total mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed andmore » achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we propose improvements over GUM for NDA by illustrating UQ challenges that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using low-resolution NaI spectra and applying the enrichment meter principle to estimate the U-235 mass in an item. The case study illustrates how to update the current American Society for Testing and Materials guide for application of the enrichment meter principle using gamma spectra from a NaI detector.« less

  10. LLNL current meter array--concept and system description

    SciTech Connect (OSTI)

    Mantrom, D.D.

    1994-11-15

    A measurement capability using a horizontal array of 10 S4 current meters mounted on a stiff floating structure with 35 m aperture has been developed to support interpretation of radar imaging of surface effects associated with internal waves. This system has been fielded three times and most recently, has collected data alongside the sea-surface footprint of a land-fixed radar imaging ship-generated internal waves. The underlying need for this measurement capability is described. The specifications resulting from this need are presented and the engineering design and deployment procedures of the platform and systems that resulted are described The current meter data are multiplexed along with meteorological and system status data on board the floating platform and are telemetered to a shore station and on to a data acquisition system. The raw data are recorded, and are then processed to form space-time images of current and strain rate (a spatial derivative of the current field). Examples of raw and processed data associated with ship-generated internal waves are presented.

  11. Gas flow meter and method for measuring gas flow rate

    DOE Patents [OSTI]

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  12. Deployable telescope having a thin-film mirror and metering structure

    DOE Patents [OSTI]

    Krumel, Leslie J.; Martin, Jeffrey W.

    2010-08-24

    A deployable thin-film mirror telescope comprises a base structure and a metering structure. The base structure houses a thin-film mirror, which can be rolled for stowage and unrolled for deployment. The metering structure is coupled to the base structure and can be folded for stowage and unfolded for deployment. In the deployed state, the unrolled thin-film mirror forms a primary minor for the telescope and the unfolded metering structure positions a secondary minor for the telescope.

  13. NIST Releases Test Framework for Upgrading of Smart Meters | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Releases Test Framework for Upgrading of Smart Meters NIST Releases Test Framework for Upgrading of Smart Meters July 12, 2012 - 10:46am Addthis The National Institute of Standards and Technology (NIST) has released a draft set of guidelines that will help utilities test their procedures for upgrading their smart meters securely from a remote location and determine whether their procedures conform with the National Electrical Manufacturers Association (NEMA) Standard for Smart Grid

  14. Demand Response and Smart Metering Policy Actions Since the Energy Policy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act of 2005: A Summary for State Officials | Department of Energy Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials This report represents a review of policy developments on demand response and other related areas such as smart meters and smart grid. It has been prepared by the Demand Response Coordinating

  15. Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve

    SciTech Connect (OSTI)

    Song, Li; Wang, Gang; Brambley, Michael R.

    2013-04-28

    A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the probability of error in the measurements is significantly greater than for conventionally manufactured flow meters. In this paper, mathematical models are developed and used to conduct uncertainty analysis for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded anuncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other, and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study.

  16. Experience in the Application of Single-Beam Ultrasonic Flow Meters for Turbines

    SciTech Connect (OSTI)

    Krasilnikov, A. M.; Dmitriev, S. G.; Karyakin, V. A.

    2002-03-15

    Experience in the use of ultrasonic flow meters at the Bratskaya and Vilyuiskaya HPP is described. The article is of interest to field engineers.

  17. Nissan North America: How Sub-Metering Changed the Way a Plant Does

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business | Department of Energy North America: How Sub-Metering Changed the Way a Plant Does Business Nissan North America: How Sub-Metering Changed the Way a Plant Does Business This case study describes how Nissan North America uses sub-meters to measure a range of variables at its U.S. plants, including electricity and compressed air, and identify opportunities to reduce energy consumption. Nissan North America: How Sub-Metering Changed the Way a Plant Does Business (June 2011) (2.84 MB)

  18. How Would You Use a Smart Meter to Manage Your Energy Use? | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Smart Meter to Manage Your Energy Use? How Would You Use a Smart Meter to Manage Your Energy Use? May 19, 2011 - 7:30am Addthis On Monday, Andrea told you about smart meters and how they can help you monitor your home's energy usage. How would you use a smart meter to manage your energy use? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please e-mail your responses to the Energy Saver team at

  19. Integration of Behind-the-Meter PV Fleet Forecasts into Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting behind-the-meter distributed PV generation power production within a region ... This project is expected to reduce the costs of integrating higher penetrations of PV into ...

  20. The Impact of Rate Design and Net Metering on the Bill Savings...

    Open Energy Info (EERE)

    Impact of Rate Design and Net Metering on the Bill Savings from Distributed Photovoltaics (PV) for Residential Customers in California Jump to: navigation, search Tool Summary...

  1. DOE Publishes New Report on the Performance of Flicker Meters | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy New Report on the Performance of Flicker Meters DOE Publishes New Report on the Performance of Flicker Meters February 23, 2016 - 9:46am Addthis The U.S. Department of Energy (DOE) has published a report on the performance of newly commercially available flicker meters. The purpose of the study was simply to report on the availability and performance of these meters. Flicker is garnering increased attention across the lighting community, and gaining a better understanding of why

  2. Electricity Submetering on the Cheap: Stick-on Electricity Meters

    SciTech Connect (OSTI)

    Lanzisera, Steven; Lorek, Michael; Pister, Kristofer

    2014-08-17

    We demonstrate a low-cost, 21 x 12 mm prototype Stick-on Electricity Meter (SEM) to replace traditional in-circuit-breaker-panel current and voltage sensors for building submetering. A SEM sensor is installed on the external face of a circuit breaker to generate voltage and current signals. This allows for the computation of real and apparent power as well as capturing harmonics created by non-linear loads. The prototype sensor is built using commercially available components, resulting in a production cost of under $10 per SEM. With no highvoltage install work requiring an electrician, home owners or other individuals can install the system in a few minutes with no safety implications. This leads to an installed system cost that is much lower than traditional submetering technology.. Measurement results from lab characterization as well as a real-world residential dwelling installation are presented, verifying the operation of our proposed SEM sensor. The SEM sensor can resolve breaker power levels below 10W, and it can be used to provide data for non-intrusive load monitoring systems at full sample rate.

  3. Ash level meter for a fixed-bed coal gasifier

    DOE Patents [OSTI]

    Fasching, George E.

    1984-01-01

    An ash level meter for a fixed-bed coal gasifier is provided which utilizes the known ash level temperature profile to monitor the ash bed level. A bed stirrer which travels up and down through the extent of the bed ash level is modified by installing thermocouples to measure the bed temperature as the stirrer travels through the stirring cycle. The temperature measurement signals are transmitted to an electronic signal process system by an FM/FM telemetry system. The processing system uses the temperature signals together with an analog stirrer position signal, taken from a position transducer disposed to measure the stirrer position to compute the vertical location of the ash zone upper boundary. The circuit determines the fraction of each total stirrer cycle time the stirrer-derived bed temperature is below a selected set point, multiplies this fraction by the average stirrer signal level, multiplies this result by an appropriate constant and adds another constant such that a 1 to 5 volt signal from the processor corresponds to a 0 to 30 inch span of the ash upper boundary level. Three individual counters in the processor store clock counts that are representative of: (1) the time the stirrer temperature is below the set point (500.degree. F.), (2) the time duration of the corresponding stirrer travel cycle, and (3) the corresponding average stirrer vertical position. The inputs to all three counters are disconnected during any period that the stirrer is stopped, eliminating corruption of the measurement by stirrer stoppage.

  4. Smart Meter Driven Segmentation: What Your Consumption Says About You

    SciTech Connect (OSTI)

    Albert, A; Rajagopal, R

    2013-11-01

    With the rollout of smart metering infrastructure at scale, demand-response (DR) programs may now be tailored based on users' consumption patterns as mined from sensed data. For issuing DR events it is key to understand the inter-temporal consumption dynamics as to appropriately segment the user population. We propose to infer occupancy states from consumption time series data using a hidden Markov model framework. Occupancy is characterized in this model by 1) magnitude, 2) duration, and 3) variability. We show that users may be grouped according to their consumption patterns into groups that exhibit qualitatively different dynamics that may be exploited for program enrollment purposes. We investigate empirically the information that residential energy consumers' temporal energy demand patterns characterized by these three dimensions may convey about their demographic, household, and appliance stock characteristics. Our analysis shows that temporal patterns in the user's consumption data can predict with good accuracy certain user characteristics. We use this framework to argue that there is a large degree of individual predictability in user consumption at a population level.

  5. Fuel Use and Greenhouse Gas Emissions from the Natural Gas System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Use and Greenhouse Gas Emissions from the Natural Gas System; Sankey Diagram Methodology As natural gas travels through infrastructure, from well-head to customer meter, small ...

  6. Company Level Imports Archives

    U.S. Energy Information Administration (EIA) Indexed Site

    Company Level Imports Company Level Imports Archives 2015 Imports by Month January XLS February XLS March XLS April XLS May XLS June XLS July XLS August XLS September XLS October...

  7. Instrument Qualification of Custom Fabricated Water Activity Meter for Hot Cell Use

    SciTech Connect (OSTI)

    McCoskey, Jacob K.

    2014-01-22

    This report describes a custom fabricated water activity meter and the results of the qualification of this meter as described in the laboratory test plan LAB-PLN-11-00012, Testing and Validation of an Enhanced Acquisition and Control System. It was calibrated against several NaOH solutions of varying concentrations to quantify the accuracy and precision of the instrument at 20 °C and 60 °C. Also, a schematic and parts list of the equipment used to make the water activity meter will be presented in this report.

  8. Report on RFI DE-FOA-000753: High-Accuracy Hydrogen Meters

    Broader source: Energy.gov [DOE]

    This Fuel Cell Technologies Office document presents a summary of information gathered on the current status and needs for high-accuracy hydrogen meters, from a 2012 Request for Information (RFI) and other sources.

  9. The Intersection of Net Metering and Retail Choice: An Overview of Policy, Practice and Issues

    Broader source: Energy.gov [DOE]

    In this report, the authors studied different facets of crediting mechanisms, and defined five different theoretical models describing different ways competitive suppliers and utilities provide net metering options for their customers. They then provided case studies to illustrate the models.

  10. Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling...

    Office of Scientific and Technical Information (OSTI)

    Unit Chilled Water Valve Citation Details In-Document Search Title: Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve A virtual ...

  11. Description of Model Data for SNL100-00: The Sandia 100-meter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia 100-meter All-glass Baseline Wind Turbine Blade D. Todd Griffith, Brian R. Resor ... A separate package of model files is available for the associated 13.2 MW turbine model ...

  12. "I'd Like to Check Out Two Books, One DVD, and One Electrical Meter, Please."

    Broader source: Energy.gov [DOE]

    Yesterday I wrote about my experience using a digital electrical meter at home. Today I'll discuss what I'm doing with promoting their use in my home town.

  13. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 27, 2014 - 8:13pm Addthis The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home --...

  14. Application of IEEE Standard 519-1992 harmonic limits for revenue billing meters

    SciTech Connect (OSTI)

    Arseneau, R.; Heydt, G.T.; Kempker, M.J.

    1997-01-01

    This paper identifies the potential for billing inequities at harmonic generating loads due to different measuring methods implemented in revenue meters. Potential problems are almost exclusively in the commercial and industrial sectors where demand and power factor charges are common. Field data are used to illustrate that compliance with IEEE Standard 519-1992 reduces the possibility of meter reading differences thus promoting a more equitable treatment of all customers.

  15. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations | Department of Energy Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean Power Research logo.jpg This project will address the need for a more accurate approach to forecasting net utility load by taking into consideration the contribution of customer-sited PV energy generation. Tasks within the project are designed to integrate novel PV power

  16. Mapping Battery Activity at the Level of a Billionth of a Meter - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Mapping Battery Activity at the Level of a Billionth of a Meter Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryAn ORNL method and apparatus offer a new approach to revealing battery behavior at the nanoscale. With this invention, researchers successfully mapped lithium diffusivity and electrochemical activity, showing how the battery works at the level of a billionth of a meter. Future energy technologies will rely heavily on

  17. Five Million Smart Meters Installed Nationwide is Just the Beginning of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Progress | Department of Energy Million Smart Meters Installed Nationwide is Just the Beginning of Smart Grid Progress Five Million Smart Meters Installed Nationwide is Just the Beginning of Smart Grid Progress June 13, 2011 - 1:55pm Addthis A 21st Century Grid includes increasing the overall efficiency of our generating, transmission and distribution system to facilitate the growth of renewable energy sources. | Energy Department Image A 21st Century Grid includes increasing the

  18. Company Level Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Company Level Imports With Data for June 2016 | Release Date: August 31, 2016 | Next Release Date: September 30, 2016 | XLS Previous Issues Month: June 2016 May 2016 April 2016 March 2016 February 2016 January 2016 December 2015 November 2015 October 2015 September 2015 August 2015 July 2015 June 2015 prior issues Go June 2016 Import Highlights Monthly data on the origins of crude oil imports in June 2016 show that two countries, Canada and Saudi Arabia, exported more than one million barrels

  19. Using Wireless Power Meters to Measure Energy Use of Miscellaneous and Electronic Devices in Buildings

    SciTech Connect (OSTI)

    UC Berkeley, Berkeley, CA USA; Brown, Richard; Lanzisera, Steven; Cheung, Hoi Ying; Lai, Judy; Jiang, Xiaofan; Dawson-Haggerty, Stephen; Taneja, Jay; Ortiz, Jorge; Culler, David

    2011-05-24

    Miscellaneous and electronic devices consume about one-third of the primary energy used in U.S. buildings, and their energy use is increasing faster than other end-uses. Despite the success of policies, such as Energy Star, that promote more efficient miscellaneous and electronic products, much remains to be done to address the energy use of these devices if we are to achieve our energy and carbon reduction goals. Developing efficiency strategies for these products depends on better data about their actual usage, but very few studies have collected field data on the long-term energy used by a large sample of devices due to the difficulty and expense of collecting device-level energy data. This paper describes the development of an improved method for collecting device-level energy and power data using small, relatively inexpensive wireless power meters. These meters form a mesh network based on Internet standard protocols and can form networks of hundreds of metering points in a single building. Because the meters are relatively inexpensive and do not require manual data downloading, they can be left in the field for months or years to collect long time-series energy use data. In addition to the metering technology, we also describe a field protocol used to collect comprehensive, robust data on the miscellaneous and electronic devices in a building. The paper presents sample results from several case study buildings, in which all the plug-in devices for several homes were metered, and a representative sample of several hundred plug-in devices in a commercial office building were metered for several months.

  20. Development of the prototype Munitions Case Moisture Meter, Model ORNL-1

    SciTech Connect (OSTI)

    Agouridis, D.C.; Gayle, T.M.; Griest, W.H.

    1993-02-24

    There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental results on empty cccs in laboratory conditions demonstrate satisfactory performance of the instrument. Additional work is needed to bring the prototype to its optimum usefulness and accuracy for field measurements. This includes: Calibration of the meter scale with full-up munitions; Data and evaluation procedures to adjust the performance of the meter for different environmental conditions such as temperature and humidity; and Studies of the dielectric properties of moist ccc materials, as a function of frequency and temperature, are needed for adjustment of the meter for optimal performance.

  1. Development of the prototype Munitions Case Moisture Meter, Model ORNL-1. Final report

    SciTech Connect (OSTI)

    Agouridis, D.C.; Gayle, T.M.; Griest, W.H.

    1993-02-24

    There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental results on empty cccs in laboratory conditions demonstrate satisfactory performance of the instrument. Additional work is needed to bring the prototype to its optimum usefulness and accuracy for field measurements. This includes: Calibration of the meter scale with full-up munitions; Data and evaluation procedures to adjust the performance of the meter for different environmental conditions such as temperature and humidity; and Studies of the dielectric properties of moist ccc materials, as a function of frequency and temperature, are needed for adjustment of the meter for optimal performance.

  2. American coal imports 2015

    SciTech Connect (OSTI)

    Frank Kolojeski

    2007-09-15

    As 2007 ends, the US coal industry passes two major milestones - the ending of the Synfuel tax break, affecting over 100M st annually, and the imposition of tighter and much more expensive safety measures, particularly in deep mines. Both of these issues, arriving at a time of wretched steam coal price levels, promise to result in a major shake up in the Central Appalachian mining sector. The report utilizes a microeconomic regional approach to determine whether either of these two schools of thought have any validity. Transport, infrastructure, competing fuels and regional issues are examined in detail and this forecasts estimates coal demand and imports on a region by region basis for the years 2010 and 2015. Some of the major highlights of the forecast are: Import growth will be driven by steam coal demand in the eastern and southern US; Transport will continue to be the key driver - we believe that inland rail rates will deter imports from being railed far inland and that the great majority of imports will be delivered directly by vessel, barge or truck to end users; Colombian coal will be the overwhelmingly dominant supply source and possesses a costs structure to enable it to compete with US-produced coal in any market conditions; Most of the growth will come from existing power plants - increasing capacity utilization at existing import facilities and other plants making investments to add imports to the supply portfolio - the growth is not dependent upon a lot of new coal fired capacity being built. Contents of the report are: Key US market dynamics; International supply dynamics; Structure of the US coal import market; and Geographic analysis.

  3. Development and field evaluation of revenue metering device for HVDC Systems

    SciTech Connect (OSTI)

    Schweitzer, E.O.; Aliga, A.; Ando, M.; Baker, R.A.; Seamans, D.A.

    1985-02-01

    A prototype dc revenue metering device was developed under sponsorship of the Electrical Power Research Institute. The device was installed at the Sylmar Converter Station of the Pacific HVDC Intertie, owned by the Los Angeles Department of Water and Power (host utility) in November 1981, and has been operating satisfactorily for over two years. It uses voltage and current measurements from existing voltage dividers, current transductors, and a current shunt. The energy-computation algorithms are implemented using signal processing principles in a single eight-bit microprocessor. The algorithms accommodate the different characteristics of the sensors, and tolerate the unavailability of some of the sensors, with some loss in accuracy. Comparisons of the dc revenue meter energy measurements with the ac revenue meter measurements plus the station losses (estimated by the host utility) reveal a 0.1 percent difference in one pole and a one percent difference in the other pole, for a net difference of about one-half percent.

  4. Design of an Open Smart Energy Gateway for Smart Meter Data Management

    SciTech Connect (OSTI)

    Page, Janie; McParland, Chuck; Piette, Mary Ann; Czarnecki, Stephen

    2015-03-01

    With the widespread deployment of electronic interval meters, commonly known as smart meters, came the promise of real-time data on electric energy consumption. Recognizing an opportunity to provide consumers access to their near real-time energy consumption data directly from their installed smart meter, we designed a mechanism for capturing those data for consumer use via an open smart energy gateway (OpenSEG). By design, OpenSEG provides a clearly defined boundary for equipment and data ownership. OpenSEG is an open-source data management platform to enable better data management of smart meter data. Effectively, it is an information architecture designed to work with the ZigBee Smart Energy Profile 1.x (SEP 1.x). It was specifically designed to reduce cyber-security risks and provide secure information directly from smart meters to consumers in near real time, using display devices already owned by the consumers. OpenSEG stores 48 hours of recent consumption data in a circular cache using a format consistent with commonly available archived (not real-time) consumption data such as Green Button, which is based on the Energy Services Provider Interface (ESPI) data standard. It consists of a common XML format for energy usage information and a data exchange protocol to facilitate automated data transfer upon utility customer authorization. Included in the design is an application program interface by which users can acquire data from OpenSEG for further post processing. A sample data display application is included in the initial software product. The data display application demonstrates that OpenSEG can help electricity use data to be retrieved from a smart meter and ported to a wide variety of user-owned devices such as cell phones or a user-selected database. This system can be used for homes, multi-family buildings, or small commercial buildings in California.

  5. OTRA-THS MAC to reduce Power Outage Data Collection Latency in a smart meter network

    SciTech Connect (OSTI)

    Garlapati, Shravan K; Kuruganti, Phani Teja; Buehrer, Richard M; Reed, Jeffrey H

    2014-01-01

    The deployment of advanced metering infrastructure by the electric utilities poses unique communication challenges, particularly as the number of meters per aggregator increases. During a power outage, a smart meter tries to report it instantaneously to the electric utility. In a densely populated residential/industrial locality, it is possible that a large number of smart meters simultaneously try to get access to the communication network to report the power outage. If the number of smart meters is very high of the order of tens of thousands (metropolitan areas), the power outage data flooding can lead to Random Access CHannel (RACH) congestion. Several utilities are considering the use of cellular network for smart meter communications. In 3G/4G cellular networks, RACH congestion not only leads to collisions, retransmissions and increased RACH delays, but also has the potential to disrupt the dedicated traffic flow by increasing the interference levels (3G CDMA). In order to overcome this problem, in this paper we propose a Time Hierarchical Scheme (THS) that reduces the intensity of power outage data flooding and power outage reporting delay by 6/7th, and 17/18th when compared to their respective values without THS. Also, we propose an Optimum Transmission Rate Adaptive (OTRA) MAC to optimize the latency in power outage data collection. The analysis and simulation results presented in this paper show that both the OTRA and THS features of the proposed MAC results in a Power Outage Data Collection Latency (PODCL) that is 1/10th of the 4G LTE PODCL.

  6. WINDExchange: Utility-Scale Land-Based 80-Meter Wind Maps

    Wind Powering America (EERE)

    Maps & Data Printable Version Bookmark and Share Land-Based Utility-Scale Maps Potential Capacity Maps Offshore Wind Maps Community-Scale Maps Residential-Scale Maps Installed Capacity Maps Utility-Scale Land-Based 80-Meter Wind Maps The U.S. Department of Energy provides an 80-meter (m) height, high-resolution wind resource map for the United States with links to state wind maps. States, utilities, and wind energy developers use utility-scale wind resource maps to locate and quantify the

  7. WINDExchange: Puerto Rico and U.S. Virgin Islands 50-Meter Wind Resource

    Wind Powering America (EERE)

    Map Maps & Data Printable Version Bookmark and Share Land-Based Utility-Scale Maps Potential Capacity Maps Offshore Wind Maps Community-Scale Maps Residential-Scale Maps Installed Capacity Maps Puerto Rico and U.S. Virgin Islands 50-Meter Wind Resource Map Puerto Rico and U.S. Virgin Islands wind resource map. Click on the image to view a larger version. Enlarge image This Puerto Rico wind map and the U.S. Virgin Islands wind map shows the wind resource at 50 meters. Download a printable

  8. Improvements to the Rocky Flats Metrology Laboratories Velocity Meter Calibration System

    SciTech Connect (OSTI)

    Abercrombie, K.R.

    1992-03-12

    The Rocky Flats Standards Laboratory has undertaken a project to improve calibration of air velocity meters by reducing the uncertainty of the Velocity Meter Calibration System. The project was accomplished by analyzing the governing equation in order to determine which areas within the system contributed most to the overall system uncertainty. Then, based upon this new analysis, new components were selected to replace the components identified in the analysis. Finally, the system was re-evaluated to determine the new systematic uncertainty for the system.

  9. Revenue metering error caused by induced voltage from adjacent transmission lines

    SciTech Connect (OSTI)

    Hughes, M.B. )

    1992-04-01

    A large zero sequence voltage was found to have been induced onto a 138 kV line from adjacent 500 kV lines where these share the same transmission right-of-way. This zero sequence voltage distorted the 2-1/2-element revenue metering schemes used for two large industrial customer supplied directly from the affected 138 kV line. As a result, these two customers were overcharged, on average, approximately 3.5% for 15 years. This paper describes the work done to trace the origins of the zero sequence voltage, quantify the metering error, and calculate customer refunds which, in the end, totalled $4 million.

  10. Microsoft PowerPoint - 03.2010_Metering Billing MDM America.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    METERING BILLING/MDM AMERICA Back-up Generation Sources (BUGS) Prepared by Steve Pullins March 9, 2010 Metering, Billing/MDM America - San Diego, CA This material is based upon work supported by the Department of Energy under Award Number DE- Department of Energy under Award Number DE AC26-04NT41817 This presentation was prepared as an account of work sponsored by an agency of This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the

  11. Hydrogen consentration meter utilizing a diffusion tube composed of 2 1/4 C r

    DOE Patents [OSTI]

    Roy, Prodyot; Sandusky, David W.; Hartle, Robert T.

    1979-01-01

    A diffusion tube hydrogen meter for improving the sensitivity and response time for the measurement of hydrogen in liquid sodium. The improved hydrogen meter has a composite membrane composed of pure nickel sleeve fitted, for example, over a 2 1/4 Cr-1 Mo steel or niobium diffusion tube. Since the hydrogen permeation rate through 2 1/4 Cr-1 Mo steels is a factor of four higher than pure nickel, and the permeation rate of hydrogen through niobium is two orders of magnitude greater than the 2 1/4 Cr-1 Mo steel, this results in a decrease in response time and an increase in the sensitivity.

  12. Advanced Metering Plan for Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings

    SciTech Connect (OSTI)

    Pope, Jason E.; Olson, Norman J.; Berman, Marc J.; Schielke, Dale R.

    2011-08-17

    This updated Advanced Metering Plan for monitoring whole building energy use in Pacific Northwest National Laboratory (PNNL) EMS4 buildings on the PNNL campus has been prepared in accordance with the requirements of the Energy Policy Act of 2005 (EPAct 2005), Section 103, U.S. Department of Energy (DOE) Order 430.2B, and Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Federal Energy Management Program, October 2007 (Sullivan et al. 2007). The initial PNNL plan was developed in July 2007 (Olson 2007), updated in September 2008 (Olson et al. 2008), updated in September 2009 (Olson et al. 2009), and updated again in August 2010 (Olson et al. 2010).

  13. Website Policies / Important Links | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Website Policies Important Links Website Policies Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  14. Website Policies / Important Links | sciencecinema

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Website Policies / Important Links Website Policies / Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  15. Radiation dose-rate meter using an energy-sensitive counter

    DOE Patents [OSTI]

    Kopp, Manfred K.

    1988-01-01

    A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.

  16. Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals Through Data

    Broader source: Energy.gov [DOE]

    This case study describes how Solutia uses sub-meters at all of its U.S. facilities to understand how equipment is running and to identify quick and inexpensive energy efficiency solutions, like reducing the run-time for a compressed air system at its Trenton, Michican plant.

  17. Hanford Surpasses Transuranic Waste Milestone: 1,000 Cubic Meters Shipped Four Months Ahead of Schedule

    Broader source: Energy.gov [DOE]

    RICHLAND, WASH. – The U.S. Department of Energy (DOE) at Hanford surpassed a Tri-Party Agreement Milestone by four months in shipping 1,000 cubic meters of transuranic waste off the Hanford Site in route to the Waste Isolation Pilot Plant (WIPP) in New Mexico before September 30, 2011.

  18. Final Report- Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Four major research objectives were completed over the course of this study. Three of the objectives were to evaluate three, new, state-of-the-art solar irradiance forecasting models. The fourth objective was to improve the California independent system operator’s load forecasts by integrating behind-the-meter photovoltaic forecasts.

  19. Net Metering

    Broader source: Energy.gov [DOE]

    Customer net excess generation (NEG) is carried forward at the utility's retail rate (i.e., as a kilowatt-hour credit) to a customer's next bill for up to 12 months. At the end of a 12-month...

  20. Net Metering

    Broader source: Energy.gov [DOE]

    Note: On May 12, 2015 Georgia's governor signed House Bill 57 which allows residential and commercial customers to enter into third party financing deals for solar systems.

  1. Net Metering

    Broader source: Energy.gov [DOE]

    Net excess generation (NEG) is treated as a kilowatt-hour (kWh) credit or other compensation on the customer's following bill.* At the beginning of the calendar year, a utility will purchase any...

  2. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: Ongoing issues related to Minnesota's Community Solar Garden rules and program implementation are being considered in Docket No. E002/M-13-867. This entry will be updated as necessary to...

  3. Sun meter

    DOE Patents [OSTI]

    Younskevicius, Robert E.

    1978-01-01

    A simple, inexpensive device for measuring the radiation energy of the sun impinging on the device. The measurement of the energy over an extended period of time is accomplished without moving parts or tracking mechanisms.

  4. Net Metering

    Broader source: Energy.gov [DOE]

    * The PSC regulates investor-owned utilities and electric cooperatives in Louisiana; it does not regulate municipal-owned utilities, and its rules thereby do not apply to municipal utilities....

  5. Fission meter

    DOE Patents [OSTI]

    Rowland, Mark S.; Snyderman, Neal J.

    2012-04-10

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.

  6. Estimates of Refrigerator Loads in Public Housing Based on Metered Consumption Data

    SciTech Connect (OSTI)

    Miller, JD; Pratt, RG

    1998-09-11

    The New York Power Authority (NYPA), the New York City Housing Authority (NYCHA), and the U.S. Departments of Housing and Urban Development (HUD) and Energy (DOE) have joined in a project to replace refrigerators in New York City public housing with new, highly energy-efficient models. This project laid the ground work for the Consortium for Energy Efficiency (CEE) and DOE to enable housing authorities throughout the United States to bulk-purchase energy-efficient appliances. DOE helped develop and plan the program through the ENERGY STAR@ Partnerships program conducted by its Pacific Nofiwest National Laboratory (PNNL). PNNL was subsequently asked to conduct the savings evahations for 1996 and 1997. PNNL designed the metering protocol and occupant survey, supplied and calibrated the metering equipment, and managed and analyzed the data. The 1996 metering study of refrigerator energy usage in New York City public housing (Pratt and Miller 1997) established the need and justification for a regression-model-based approach to an energy savings estimate. The need originated in logistical difficulties associated with sampling the population and pen?orming a stratified analysis. Commonly, refrigerators[a) with high representation in the population were missed in the sampling schedule, leaving significant holes in the sample and difficulties for the stratified anrdysis. The just{jfcation was found in the fact that strata (distinct groups of identical refrigerators) were not statistically distinct in terms of their label ratio (ratio of metered consumption to label rating). This finding suggested a general regression model could be used to represent the consumption of all refrigerators in the population. In 1996 a simple two-coefficient regression model, a function of only the refrigerator label rating, was developed and used to represent the existing population of refrigerators. A key concept used in the 1997 study grew from findings in a small number of apartments

  7. Measuring Dependence on Imported Oil

    Reports and Publications (EIA)

    1995-01-01

    U.S. dependence on imported oil can be measured in at least two ways. The differences hinge largely on whether oil imports are defined as net imports (total imports minus exports) or as total imports. EIA introduces a revised table that expresses dependence on imports in terms of both measures.

  8. Digital revenue metering algorithm: development, analysis, implementation, testing, and evaluation. Final report

    SciTech Connect (OSTI)

    Schweitzer III, E.O.; To, H.W.; Ando, M.

    1980-11-01

    A digital revenue metering algorithm is described. The algorithm has been tested in a microcomputer system using two 8-bit MC6800 microprocessors and 12-bit analog-to-digital converters. The tests show that the system meets the accuracy requirements of ANSI C12-1975. The algorithm demands modest computing requirements and low data sampling rates. The algorithm uses Walsh-functions and will operate with as few as 4 samples per 60-Hz cycle. For proper response to odd harmonic frequencies, higher sampling rates must be used. Third harmonic power can be handled with an 8-sample per cycle Walsh function. However, even harmonics are effectively suppressed by the algorithm. The developed algorithm is intended for use in digital data acquisition systems for substations where interchange metering is required.

  9. The SNL100-01 blade : carbon design studies for the Sandia 100-meter blade.

    SciTech Connect (OSTI)

    Griffith, Daniel Todd

    2013-02-01

    A series of design studies to investigate the effect of carbon on blade weight and performance for large blades was performed using the Sandia 100-meter All-glass Baseline Blade design as a starting point. This document provides a description of the final carbon blade design, which is termed as SNL100-01. This report includes a summary of the design modifications applied to the baseline all-glass 100-meter design and a description of the NuMAD model files that are made publicly available. This document is intended primarily to be a companion document to the distribution of the NuMAD blade model files for SNL100-01.

  10. Deployment of High Resolution Real-Time Distribution Level Metering on Maui: Preprint

    SciTech Connect (OSTI)

    Bank, J.

    2013-01-01

    In order to support the ongoing Maui Smart Grid demonstration project advanced metering has been deployed at the distribution transformer level in Maui Electric Company's Kihei Circuit on the Island of Maui. This equipment has been custom designed to provide accurately time-stamped Phasor and Power Quality data in real time. Additionally, irradiance sensors have been deployed at a few selected locations in proximity to photovoltaic (PV) installations. The received data is being used for validation of existing system models and for impact studies of future system hardware. Descriptions of the hardware and its installation, and some preliminary metering results are presented. Real-time circuit visualization applications for the data are also under development.

  11. Near-surface current meter array measurements of internal gravity waves

    SciTech Connect (OSTI)

    Jones, H.B.E.

    1994-11-15

    We have developed various processing algorithms used to estimate the wave forms produced by hydrodynamic Internal Waves. Furthermore, the estimated Internal Waves are used to calculate the Modulation Transfer Function (MTF) which relates the current and strain rate subsurface fields to surface scattering phenomenon imaged by radar. Following a brief discussion of LLNL`s measurement platform (a 10 sensor current meter array) we described the generation of representative current and strain rate space-time images from measured or simulated data. Then, we present how our simulation capability highlighted limitations in estimating strain rate. These limitations spurred the application of beamforming techniques to enhance our estimates, albeit at the expense of collapsing our space-time images to 1-D estimates. Finally, we discuss progress with regard to processing the current meter array data captured during the recent Loch Linnhe field trials.

  12. Non-invasive energy meter for fixed and variable flow systems

    DOE Patents [OSTI]

    Menicucci, David F.; Black, Billy D.

    2005-11-01

    An energy metering method and apparatus for liquid flow systems comprising first and second segments of one or more conduits through which a liquid flows, comprising: attaching a first temperature sensor for connection to an outside of the first conduit segment; attaching a second temperature sensor for connection to an outside of the second conduit segment; via a programmable control unit, receiving data from the sensors and calculating energy data therefrom; and communicating energy data from the meter; whereby the method and apparatus operate without need to temporarily disconnect or alter the first or second conduit segments. The invention operates with both variable and fixed flow systems, and is especially useful for both active and passive solar energy systems.

  13. Optical voltage and current sensors used in a revenue metering system

    SciTech Connect (OSTI)

    Cease, T.W.; Driggans, J.G. ); Weikel, S.J. )

    1991-10-01

    This paper discusses the development of an optical voltage sensor as part of an all optic or Faraday effect was used to implement a Magneto-Optic Voltage Transducer (MOVT) to measure voltage by sensing the current flow through a capacitor connected from a 161 kV transmission line to ground. The current sensor was a Magneto-Optic Current Transducer (MOCT), developed previously. The unique design of the voltage sensors using the magneto-optic effects allows the implementation of that revenue metering system using all optical sensors. This method of measuring voltage was previously unproven. The components of the all optical sensor revenue metering system, the site installation, and the data acquisition system used to monitor the system are described. Decisions leading to the design of the MOVT are discussed.

  14. Analysis of U.S Interconnection and Net-Metering Policy

    SciTech Connect (OSTI)

    Haynes, Rusty; Cook, Chris

    2006-07-01

    Historically, the absence of interconnection standards has been one of the primary barriers to the deployment of distributed generation (DG) in the United States. Although significant progress in the development of interconnection standards was achieved at both the federal and state levels in 2005, interconnection policy and net-metering policy continue to confound regulators, lawmakers, DG businesses, clean-energy advocates and consumers. For this reason it is critical to keep track of developments related to these issues.The North Carolina Solar Center (NCSC) is home to two Interstate Renewable Energy Council (IREC) projects -- the National Interconnection Project and the Database of State Incentives for Renewable Energy (DSIRE). This paper will present the major federal and state level policy developments in interconnection and net metering in 2005 and early 2006. It will also present conclusions based an analysis of data collected by these two projects.

  15. NREL Tool Finds Effective Behind-the-Meter Energy Storage Configurations -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Tool Finds Effective Behind-the-Meter Energy Storage Configurations Small battery systems can offer attractive return on investment March 9, 2015 The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) has used the Battery Lifetime Analysis and Simulation Tool (BLAST) to confirm that energy storage for demand-charge management can deliver attractive economic benefits. The analysis paired recent utility rate structures with historic data on solar

  16. Borehole Gravity Meter Surveys at the Waste Treatment Plant, Hanford, Washington.

    SciTech Connect (OSTI)

    MacQueen, Jeffrey D.; Mann, Ethan

    2007-04-06

    Microg-LaCoste (MGL) was contracted by Pacfic Northwest National Laboratories (PNNL) to record borehole gravity density data in 3 wells at the HanfordWaste Treatment Plant (WTP) site. The survey was designed to provide highly accurate density information for use in seismic modeling. The borehole gravity meter (BHGM) tool has a very large depth of investigation (hundreds of feet) compared to other density tools so it is not influenced by casing or near welbore effects, such as washouts.

  17. Video game console usage and US national energy consumption: Results from a field-metering study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Desroches, Louis-Benoit; Greenblatt, Jeffery B.; Pratt, Stacy; Willem, Henry; Claybaugh, Erin; Beraki, Bereket; Nagaraju, Mythri; Price, Sarah K.; Young, Scott J.; Donovan, Sally M.; et al

    2014-10-23

    There has been an increased in attention placed on the energy consumption of miscellaneous electronic loads in buildings by energy analysts and policymakers in recent years. The share of electricity consumed by consumer electronics in US households has increased in the last decade. Many devices, however, lack robust energy use data, making energy consumption estimates difficult and uncertain. Video game consoles are high-performance machines present in approximately half of all households and can consume a considerable amount of power. The precise usage of game consoles has significant uncertainty, however, leading to a wide range of recent national energy consumption estimates.more » We present here an analysis based on field-metered usage data, collected as part of a larger field metering study in the USA. This larger study collected data from 880 households in 2012 on a variety of devices, including 113 game consoles (the majority of which are Generation 7 consoles). From our metering, we find that although some consoles are left on nearly 24 h/day, the overall average usage is lower than many other studies have assumed, leading to a US national energy consumption estimate of 7.1 TWh in 2012. Nevertheless, there is an opportunity to reduce energy use with proper game console power management, as a substantial amount of game console usage occurs with the television turned off. The emergence of Generation 8 consoles may increase national energy consumption.« less

  18. Video game console usage and US national energy consumption: Results from a field-metering study

    SciTech Connect (OSTI)

    Desroches, Louis-Benoit; Greenblatt, Jeffery B.; Pratt, Stacy; Willem, Henry; Claybaugh, Erin; Beraki, Bereket; Nagaraju, Mythri; Price, Sarah K.; Young, Scott J.; Donovan, Sally M.; Ganeshalingam, Mohan

    2014-10-23

    There has been an increased in attention placed on the energy consumption of miscellaneous electronic loads in buildings by energy analysts and policymakers in recent years. The share of electricity consumed by consumer electronics in US households has increased in the last decade. Many devices, however, lack robust energy use data, making energy consumption estimates difficult and uncertain. Video game consoles are high-performance machines present in approximately half of all households and can consume a considerable amount of power. The precise usage of game consoles has significant uncertainty, however, leading to a wide range of recent national energy consumption estimates. We present here an analysis based on field-metered usage data, collected as part of a larger field metering study in the USA. This larger study collected data from 880 households in 2012 on a variety of devices, including 113 game consoles (the majority of which are Generation 7 consoles). From our metering, we find that although some consoles are left on nearly 24 h/day, the overall average usage is lower than many other studies have assumed, leading to a US national energy consumption estimate of 7.1 TWh in 2012. Nevertheless, there is an opportunity to reduce energy use with proper game console power management, as a substantial amount of game console usage occurs with the television turned off. The emergence of Generation 8 consoles may increase national energy consumption.

  19. The Economic Value of PV and Net Metering to Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-05-17

    In this paper, we analyze the bill savings from PV for residential customers of the California's two largest electric utilities, under existing net metering tariffs as well as under several alternative compensation mechanisms. We find that economic value of PV to the customer is dependent on the structure of the underlying retail electricity rate and can vary quite significantly from one customer to another. In addition, we find that the value of the bill savings from PV generally declines with PV penetration level, as increased PV generation tends to offset lower-priced usage. Customers in our sample from both utilities are significantly better off with net metering than with a feed-in tariff where all PV generation is compensated at long-run avoided generation supply costs. Other compensation schemeswhich allow customers to displace their consumption with PV generation within each hour or each month, and are also based on the avoided costs, yield similar value to the customer as net metering.

  20. Improving the Reliability and Resiliency of the US Electric Grid: SGIG Article in Metering International, March 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    The quarterly magazine Metering International is a resource for information on trends and developments in the industry. Issue 1 2012 (March) featured an article on DOE's Smart Grid Investment Grant...

  1. An Evaluation of a Dual Coriolis Meter System for In-Line Monitoring of Suspended Solids Concentrations in Radioactive Slurries

    SciTech Connect (OSTI)

    Hylton, T.D.

    2000-09-01

    The U.S. Department of Energy (DOE) has millions of gallons of radioactive liquid and sludge wastes stored in underground tanks at several of its sites. In order to comply with various regulations and to circumvent potential problems associated with tank integrity, these wastes must be retrieved from the tanks, transferred to treatment facilities (or other storage locations), and processed to stable waste forms. The sludge wastes will typically be mobilized by some mechanical means (e.g., mixer pump, submerged jet) and mixed with the respective supernatants to create slurries that can be transferred by pipeline to the desired destination. Depending on the DOE site, these slurries may be transferred up to six miles. Since the wastes are radioactive, it is critically important for the transfers to be made without plugging a pipeline. To reduce such a risk, the relevant properties of the slurry (e.g., density, suspended solids concentration, viscosity, and particle size distribution) should be determined to be within acceptable limits prior to transfer. These properties should also be continuously monitored and controlled within specified limits while the transfer is in progress. The baseline method for determining the transport properties of slurries involves sampling and analysis; however, this method is time-consuming, and costly, and it does not provide real-time information. In addition, personnel who collect and analyze the samples are exposed to radiation. It is also questionable as to whether a laboratory analyst can obtain representative aliquots from the sample jar for these solid-liquid mixtures. The alternative method for determining the transport properties is in-line analysis. An in-line instrument is one that is connected to the process, analyzes the slurry as it flows through or by the instrument, and provides the results within seconds. This instrument can provide immediate feedback to operators so that, when necessary, the operators can respond

  2. Verifying energy savings with minimal metered data: The Hunter heat pump analysis

    SciTech Connect (OSTI)

    Parker, S.A.

    1995-03-01

    In November 1992, Hunter Army Air Field (AAF) completed the installation of 489 air-source heat pumps -- a new heat pump and air-handling unit for each residence. The air-source heat pumps replaced older, less efficient, air-conditioning systems, fuel oil-fired furnaces, and fan coil units. Hunter AAF originally contacted to upgrade the old family housing heating, ventilating, and air-conditioning (HVAC) systems with high efficiency air-conditioning systems and natural gas furnaces, but an alternative proposal and following energy studies indicated that heat pumps were a more life-cycle cost-effective alternative. Six months after the heat pumps were installed, Hunter`s energy bills appeared to be increasing, not decreasing as expected. In early 1994, Pacific Northwest Laboratory` (PNL) began an analysis to determine if there were any energy savings resulting from the heat pump installation as predicted by previous energy studies. The problem is that the HVAC systems are not specifically submetered to support verifying the resulting energy savings and, as is the case with most federal facilities, even the homes are not individually metered. Savings verification needed to be accomplished with die existing and available metered data. This data consisted primarily of monthly electric submeter readings from the two housing subdivision meters, historical fuel oil delivery records for family housing, and monthly base-wide electric bills. The objective of the study is to verify the change in energy consumption in family housing and, to the extent possible, identify how much of the change in consumption is attributable to the new HVAC system and how much is probably attributable to other factors, such as the weather.

  3. Validation of pH meters, balances and other supporting laboratory equipment

    SciTech Connect (OSTI)

    Noon, J.P.

    1995-12-01

    Good Laboratory Practice Standards specify that equipment used for the generation, measurement or assessment of data shall be adequately tested, calibrated and/or standardized, inspected, cleaned and maintained. The validation of less sophisticated instruments and equipment, such as pH meters and balances, is often given little attention when validation procedures are discussed. In this presentation the salient factors to consider when establishing validation strategies for several specific ancillary pieces of equipment will be reviewed. In addition, practical procedures including form for entering validation data and frequency of validation operations will be presented.

  4. OVERCOMING THE METER BARRIER AND THE FORMATION OF SYSTEMS WITH TIGHTLY PACKED INNER PLANETS (STIPs)

    SciTech Connect (OSTI)

    Boley, A. C.; Morris, M. A.; Ford, E. B.

    2014-09-10

    We present a solution to the long outstanding meter barrier problem in planet formation theory. As solids spiral inward due to aerodynamic drag, they will enter disk regions that are characterized by high temperatures, densities, and pressures. High partial pressures of rock vapor can suppress solid evaporation, and promote collisions between partially molten solids, allowing rapid growth. This process should be ubiquitous in planet-forming disks, which may be evidenced by the abundant class of Systems with Tightly packed Inner Planets discovered by the NASA Kepler Mission.

  5. Status of Net Metering: Assessing the Potential to Reach Program Caps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status of Net Metering: Assessing the Potential to Reach Program Caps J. Heeter, R. Gelman, and L. Bird National Renewable Energy Laboratory Technical Report NREL/TP-6A20-61858 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No.

  6. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2015-01-01

    This study investigates how economically motivated customers will use energy storage for demand charge reduction, as well as how this changes in the presence of on-site photovoltaic power generation, to investigate the possible effects of incentivizing increased quantities of behind-the-meter storage. It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand. While profitable to the customer, such action is unlikely to adequately benefit the utility as may be desired, thus highlighting the need for modified utility rate structures or properly structured incentives.

  7. Development of an optical current transducer with a bulk type Faraday sensor for metering

    SciTech Connect (OSTI)

    Katsukawa, H.; Ishikawa, H.; Okajima, H.; Cease, T.W.

    1996-04-01

    An optical current transducer (OCT) with a bulk type Faraday sensor demonstrated 0.3% class accuracy for metering. The Faraday sensor had Bi{sub 12}SiO{sub 20} (BSO) single crystals with right and left optical rotatory power to cancel out temperature dependency. A prototype 161 kV OCT installed in a TVA substation verified 0.3% class performance. The OCT had the Faraday sensor, a gapped magnetic iron core, a 1.6 m optical insulator, and an optical interface.

  8. Google's looking smarter about advanced metering than long-laboring utilities

    SciTech Connect (OSTI)

    2009-07-15

    In late May, Google announced a partnership with eight utilities in six states in the U.S. plus Canada and India to enable roughly 10 million customers to 'access detailed information on their home energy use.' What is different about the new product is that consumers can view simple graphical displays of their power usage more or less in real time from anywhere there is access to the Internet. That may ultimately turn PowerMeter into a powerful tool to manage electricity consumption on truly large scale and at very low cost.

  9. Net Metering Policy Development and Distributed Solar Generation in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap

    SciTech Connect (OSTI)

    Doris, E.; Busche, S.; Hockett, S.

    2009-12-01

    The goal of the Minnesota net metering policy is to give the maximum possible encouragement to distributed generation assets, especially solar electric systems (MN 2008). However, according to a published set of best practices (NNEC 2008) that prioritize the maximum development of solar markets within states, the Minnesota policy does not incorporate many of the important best practices that may help other states transform their solar energy markets and increase the amount of grid-connected distributed solar generation assets. Reasons cited include the low system size limit of 40kW (the best practices document recommends a 2 MW limit) and a lack of language protecting generators from additional utility fees. This study was conducted to compare Minnesota's policies to national best practices. It provides an overview of the current Minnesota policy in the context of these best practices and other jurisdictions' net metering policies, as well as a qualitative assessment of the impacts of raising the system size cap within the policy based on the experiences of other states.

  10. PHY and MAC Layer Design of Hybrid Spread Spectrum Based Smart Meter Network

    SciTech Connect (OSTI)

    Kuruganti, Phani Teja

    2012-01-01

    The smart grid is a combined process of revitalizing the traditional power grid applications and introducing new applications to improve the efficiency of power generation, transmission and distribution. This can be achieved by leveraging advanced communication and networking technologies. Therefore the selection of the appropriate communication technology for different smart grid applications has been debated a lot in the recent past. After comparing different possible technologies, a recent research study has arrived at a conclusion that the 3G cellular technology is the right choice for distribution side smart grid applications like smart metering, advanced distribution automation and demand response management system. In this paper, we argue that the current 3G/4G cellular technologies are not an appropriate choice for smart grid distribution applications and propose a Hybrid Spread Spectrum (HSS) based Advanced Metering Infrastructure (AMI) as one of the alternatives to 3G/4G technologies. We present a preliminary PHY and MAC layer design of a HSS based AMI network and evaluate their performance using matlab and NS2 simulations. Also, we propose a time hierarchical scheme that can significantly reduce the volume of random access traffic generated during blackouts and the delay in power outage reporting.

  11. Phillips using automated meter/prover for custody transfer at tanker terminal

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This paper reports on an automated metering/proving system for custody transfer of crude oil at the Phillips 66 Co. tanker unloading terminal in Freeport, Texas. It is described as one of the most sophisticated systems developed. The menu-driven, one-button automation removes the proving sequence entirely from manual control. The system also is the to be cost-effective and versatile compared to a dedicated flow computer with API calculation capabilities. Developed by Puffer-Sweiven, systems integrators, the new technology additionally is thought to be the first custody transfer system to employ a programmable logic controller (PLC). The PLC provides the automation, gathers and stores all raw data, and prints alarms. Also the system uses a personal computer operator interface (OI) that runs on the Intel iRMX real time operating system. The OI is loaded with Puffer-Sweiven application software that performs API meter factor and volume correction calculations as well as present color graphics and generate reports.

  12. Designing and Operating Through Compromise: Architectural Analysis of CKMS for the Advanced Metering Infrastructure

    SciTech Connect (OSTI)

    Duren, Mike; Aldridge, Hal; Abercrombie, Robert K; Sheldon, Frederick T

    2013-01-01

    Compromises attributable to the Advanced Persistent Threat (APT) highlight the necessity for constant vigilance. The APT provides a new perspective on security metrics (e.g., statistics based cyber security) and quantitative risk assessments. We consider design principals and models/tools that provide high assurance for energy delivery systems (EDS) operations regardless of the state of compromise. Cryptographic keys must be securely exchanged, then held and protected on either end of a communications link. This is challenging for a utility with numerous substations that must secure the intelligent electronic devices (IEDs) that may comprise complex control system of systems. For example, distribution and management of keys among the millions of intelligent meters within the Advanced Metering Infrastructure (AMI) is being implemented as part of the National Smart Grid initiative. Without a means for a secure cryptographic key management system (CKMS) no cryptographic solution can be widely deployed to protect the EDS infrastructure from cyber-attack. We consider 1) how security modeling is applied to key management and cyber security concerns on a continuous basis from design through operation, 2) how trusted models and key management architectures greatly impact failure scenarios, and 3) how hardware-enabled trust is a critical element to detecting, surviving, and recovering from attack.

  13. λ-augmented tree for robust data collection in Advanced Metering Infrastructure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kamto, Joseph; Qian, Lijun; Li, Wei; Han, Zhu

    2016-01-01

    In this study, tree multicast configuration of smart meters (SMs) can maintain the connectivity and meet the latency requirements for the Advanced Metering Infrastructure (AMI). However, such topology is extremely weak as any single failure suffices to break its connectivity. On the other hand, the impact of a SM node failure can be more or less significant: a noncut SM node will have a limited local impact compared to a cut SM node that will break the network connectivity. In this work, we design a highly connected tree with a set of backup links to minimize the weakness of treemore » topology of SMs. A topology repair scheme is proposed to address the impact of a SM node failure on the connectivity of the augmented tree network. It relies on a loop detection scheme to define the criticality of a SM node and specifically targets cut SM node by selecting backup parent SM to cover its children. Detailed algorithms to create such AMI tree and related theoretical and complexity analysis are provided with insightful simulation results: sufficient redundancy is provided to alleviate data loss at the cost of signaling overhead. It is however observed that biconnected tree provides the best compromise between the two entities.« less

  14. λ-augmented tree for robust data collection in Advanced Metering Infrastructure

    SciTech Connect (OSTI)

    Kamto, Joseph; Qian, Lijun; Li, Wei; Han, Zhu

    2016-01-01

    In this study, tree multicast configuration of smart meters (SMs) can maintain the connectivity and meet the latency requirements for the Advanced Metering Infrastructure (AMI). However, such topology is extremely weak as any single failure suffices to break its connectivity. On the other hand, the impact of a SM node failure can be more or less significant: a noncut SM node will have a limited local impact compared to a cut SM node that will break the network connectivity. In this work, we design a highly connected tree with a set of backup links to minimize the weakness of tree topology of SMs. A topology repair scheme is proposed to address the impact of a SM node failure on the connectivity of the augmented tree network. It relies on a loop detection scheme to define the criticality of a SM node and specifically targets cut SM node by selecting backup parent SM to cover its children. Detailed algorithms to create such AMI tree and related theoretical and complexity analysis are provided with insightful simulation results: sufficient redundancy is provided to alleviate data loss at the cost of signaling overhead. It is however observed that biconnected tree provides the best compromise between the two entities.

  15. Application of a dry-gas meter for measuring air sample volumes in an ambient air monitoring network

    SciTech Connect (OSTI)

    Fritz, Brad G.

    2009-05-24

    Ambient air monitoring for non-research applications (e.g. compliance) occurs at locations throughout the world. Often, the air sampling systems employed for these purposes employee simple yet robust equipment capable of handling the rigors of demanding sampling schedules. At the Hanford Site (near Richland, Washington) concentrations of radionuclides in ambient air are monitored continuously at 44 locations. In 2004, mechanical dry-gas meters were incorporated into the Hanford Site ambient air sample collection system to allow the direct measurement of sample volumes. These meters replaced a portable airflow measurement system that required two manual flow measurements and a sample duration measurement to determine sample volume. A six-month evaluation of the dry-gas meters compared sample volumes calculated using the original flow rate method to the direct sample volume measurement (new method). The results of the evaluation indicate that use of the dry-gas meters result in accurate sample volume measurements and provide greater confidence in the measured sample volumes. In several years of in-network use, the meters have proven to be reliable and have resulted in an improved sampling system.

  16. Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Release 2.0

    SciTech Connect (OSTI)

    Sullivan, Greg; Hunt, W. D.; Pugh, Ray; Sandusky, William F.; Koehler, Theresa M.; Boyd, Brian K.

    2011-08-31

    This release is an update and expansion of the information provided in Release 1.0 of the Metering Best Practice Guide that was issued in October 2007. This release, as was the previous release, was developed under the direction of the U.S. Department of Energy's Federal Energy Management Program (FEMP). The mission of FEMP is to facilitate the Federal Government's implementation of sound cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. Each of these activities is directly related to achieving requirements set forth in the Energy Policy Acts of 1992 and 2005, the Energy Independence and Security Act (EISA) of 2007, and the goals that have been established in Executive Orders 13423 and 13514 - and also those practices that are inherent in sound management of Federal financial and personnel resources.

  17. A prototype clamp-on magneto-optical current transducer for power system metering and relaying

    SciTech Connect (OSTI)

    Song, J.; McLaren, P.G.; Thomson, D.J.; Middleton, R.L.

    1995-10-01

    A new type of Faraday effect based magneto-optical current transducer (MOCT) has been developed. This paper presents the theoretical background, engineering design, and test results of this clamp-on MOCT. The sensor consists of two separate clamp-on parts. This design avoids the need to brake the current carrying circuit in order to have the conductor enclosed by the optical path. A feedback scheme has been designed to stabilize the light source. The MOCT has two output stages, 1KA and 20KA, so that it can provide current signals for both power system metering and relaying devices. The theoretical background of maintaining the light travelling through the glass prism to be linearly polarized and the analysis on the effects of dielectric and metal reflections on the linearly polarized light is presented in the appendix.

  18. Important Trinity / NERSC-8 Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RFP » Important Trinity / NERSC-8 Documents Important Trinity / NERSC-8 Documents Trinity / NERSC-8 Use Case Scenarios for Burst Buffer and Power Management [PDF] Facility Limits for Trinity (Updated June 4, 2013) [PDF] Last edited: 2016-04-29 11:35:13

  19. Gas energy meter for inferential determination of thermophysical properties of a gas mixture at multiple states of the gas

    DOE Patents [OSTI]

    Morrow, Thomas B.; Kelner, Eric; Owen, Thomas E.

    2008-07-08

    A gas energy meter that acquires the data and performs the processing for an inferential determination of one or more gas properties, such as heating value, molecular weight, or density. The meter has a sensor module that acquires temperature, pressure, CO2, and speed of sound data. Data is acquired at two different states of the gas, which eliminates the need to determine the concentration of nitrogen in the gas. A processing module receives this data and uses it to perform a "two-state" inferential algorithm.

  20. We got a new digital electric meter. Our usage went up 123%. Our Bill went up 65%

    SciTech Connect (OSTI)

    Honebein, Peter C.

    2010-03-15

    There is no question that smart meters are a benefit to utilities, in terms of operational efficiency. But headlines like this one are frightening. They suggest a significant misunderstanding of the technology, marketing, and customer experience surrounding this worthwhile innovation. (author)