National Library of Energy BETA

Sample records for meters residential commercial

  1. How to Read Residential Electric and Natural Gas Meters | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How to Read Residential Electric and Natural Gas Meters How to Read Residential Electric and Natural Gas Meters An electromechanical electric meter on the side of a house. | Photo...

  2. Lane Electric Cooperative - Residential and Commercial Weatherization...

    Broader source: Energy.gov (indexed) [DOE]

    Washer: 75 Solar Water Heater: 500 Summary Lane Electric Cooperative offers energy efficient Weatherization Grant Programs to Lane Electric residential and commercial members: a...

  3. Longmont Power & Communications - Residential and Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    50 per appliance Residential: 1 clothes washer and 1 dishwasher per year Commercial: 3 clothes washers and 3 dishwashers per year Program Info Sector Name Utility...

  4. WINDExchange: Residential-Scale 30-Meter Wind Maps

    Wind Powering America (EERE)

    Residential-Scale 30-Meter Wind Maps The U.S. Department of Energy provides 30-meter (m) height, high-resolution wind resource maps for the United States. Businesses, farms, and homeowners use residential-scale wind resource maps to identify wind sites that may be appropriate for small-scale wind projects. A wind resource map of the United States. Go to the California wind resource map. Go to the Washington wind resource map. Go to the Oregon wind resource map. Go to the Idaho wind resource map.

  5. Energy Efficiency Trends in Residential and Commercial Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Trends in Residential and Commercial Buildings - August 2010 Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Overview of building trends ...

  6. Clean Energy Finance Guide for Residential and Commercial Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finance Guide for Residential and Commercial Building Improvements - Chapter 6 Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 6 Clean ...

  7. Air Barriers for Residential and Commercial Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Barriers for Residential and Commercial Buildings Diana Hun, PhD Oak Ridge National Laboratory dehun@ornl.gov 865-574-5139 April 4, 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov Problem Statement & Project Focus - Air leakage is a significant contributor to HVAC loads - ~50% in residential buildings (Sherman and Matson 1997) - ~33% of heating loads in office buildings (Emmerich et al. 2005) - Airtightness of buildings listed in BTO prioritization tool -

  8. Presentation Slides: Solar Finance for Residential and Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation Slides: Solar Finance for Residential and Commercial Customers and Potential Roles of State and Local Government Presentation Slides: Solar Finance for Residential and ...

  9. Residential and Commercial ITC Factsheets

    Broader source: Energy.gov [DOE]

    The 30% federal investment tax credit (ITC) is among the most important incentives currently available for solar PV. These two guides–one for homeowners and one on the commercial ITC–provide a concise, yet thorough, overview of the ITC, demystifying the tax code with intuitive explanations and examples, answering frequently asked questions, and explaining the process of claiming the ITC. Designed for readers unacquainted with the ITC, these guides clearly outline the most important aspects of the ITC, while still providing the specificity and comprehensiveness to be a useful reference for more seasoned professionals in the solar industry.

  10. How to Read Residential Electric and Natural Gas Meters | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy How to Read Residential Electric and Natural Gas Meters How to Read Residential Electric and Natural Gas Meters An electromechanical electric meter on the side of a house. | Photo courtesy of ©iStockphoto/epantha An electromechanical electric meter on the side of a house. | Photo courtesy of ©iStockphoto/epantha A digital electric meter on the side of a house. | Photo courtesy of ©iStockphoto/nbehmans A digital electric meter on the side of a house. | Photo courtesy of

  11. Salem Electric - Residential, Commercial, and Industrial Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Industrial Local Government Nonprofit Residential State Government Federal Government Multifamily Residential Savings Category Clothes Washers RefrigeratorsFreezers Equipment...

  12. Lane Electric Cooperative- Residential and Commercial Weatherization & Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Lane Electric Cooperative offers energy efficient Weatherization Grant Programs to Lane Electric residential and commercial members: a residential cash grant for 25% of measure costs up to $1,000,...

  13. Entity State Ownership Residential Commercial Industrial Transportation

    Gasoline and Diesel Fuel Update (EIA)

    Revenue for Delivery Service Providers (Data from form EIA-861 schedule 4C) Entity State Ownership Residential Commercial Industrial Transportation Total Pacific Gas & Electric Co CA Investor Owned 58,038 366,593 243,892 4,112 672,635 San Diego Gas & Electric Co CA Investor Owned 596 91,379 113,352 0 205,326 Southern California Edison Co CA Investor Owned 4,502 517,154 90,847 0 612,503 Connecticut Light & Power Co CT Investor Owned 351,392 489,607 96,889 4,242 942,130 United

  14. Energy Efficiency Trends in Residential and Commercial Buildings - August

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 | Department of Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Overview of building trends and energy use in commercial and residential buildings, including environmental impacts of buildings and trends in select product specification and market insights. PDF icon building_trends_2010.pdf More Documents & Publications Business Case for Energy Efficient Building Retrofit and

  15. Remote Duct Sealing in Residential and Commercial Buildings | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Remote Duct Sealing in Residential and Commercial Buildings Remote Duct Sealing in Residential and Commercial Buildings Remote Duct Sealing in Residential and Commercial Buildings: "Saving Money, Saving Energy and Improving Performance," Lawrence Berkeley National Laboratory, presented by Dr. Mark Modera, staff scientist, Environmental Energy Technologies Division. PDF icon LBNL Duct Sealing Presentation More Documents & Publications Ventilation in Multifamily Buildings

  16. Longmont Power & Communications- Residential and Commercial Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Longmont Power & Communications offers an incentive for its residential and commercial customers to install ENERGY STAR certified clothes washers. The rebate application is available on the...

  17. Redding Electric- Residential and Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Redding Electric Utility offers a variety of financial incentives for energy efficiency through its Residential and Commercial Rebate Programs. Rebates are for weatherization measures, HVAC...

  18. Yellowstone Valley Electric Cooperative- Residential/Commercial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Yellowstone Valley Electric Cooperative offers rebates to residential and commercial members for purchasing energy efficient add-on heat pumps, geothermal heat pumps, water heaters, dishwashers...

  19. State Residential Commercial Industrial Transportation Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Megawatthours) (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 47,211,525 53,107,038 19,107,433 557,463 119,983,459 Connecticut 12,777,579 12,893,531 3,514,798 168,552 29,354,460 Maine 4,660,605 3,984,570 3,357,486 0 12,002,661 Massachusetts 20,071,160 26,076,208 7,960,941 360,983 54,469,292 New Hampshire 4,510,487 4,464,530 1,969,064 0 10,944,081 Rhode Island 3,070,347 3,657,679 887,150 27,928

  20. Commercial and Residential Hourly Load Data Question | OpenEI...

    Open Energy Info (EERE)

    Commercial and Residential Hourly Load Data Question Home Hi, I saw that you were actively replying to the questions on that page, so thought I'd contact you to ask about the data...

  1. Fort Collins Utilities- Residential and Small Commercial Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Fort Collins Utilities offers a number of appliance and recycling rebates to residential and small commercial customers. The appliance rebate program offers a $50 rebate for Energy Star rated...

  2. New England Gas Company - Residential and Commercial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    500 High-Efficiency Pre-Rinse Spray Valves 50 Summary In conjunction with Gas Networks, New England Gas Company offers its residential and commercial customers rebates for buying...

  3. Clean Energy Finance Guide for Residential and Commercial Building

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvements - Chapter 6 | Department of Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 6 Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 6 Clean Energy Finance Guide, Third Edition, December 9, 2010, Chapter 6. Partners and Stakeholders: Roles and Potential Impact. This chapter discusses the roles and potential impact of clean energy financing partners and stakeholders. PDF icon Chapter 6 More Documents &

  4. Redding Electric - Residential and Commercial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    REU for Commercial Program Info Sector Name Utility Administrator Redding Electric Utility Website http:www2.reupower.comrebates.asp State California Program Type Rebate...

  5. Residential and commercial buildings data book: Third edition

    SciTech Connect (OSTI)

    Amols, G.R.; Howard, K.B.; Nicholls, A.K.; Guerra, T.D.

    1988-02-01

    This Data Book updates and expands the previous Data Book originally published by the Department of Energy in September, 1986 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; and Additional Buildings and Community Systems Information. 12 refs., 59 figs., 118 tabs.

  6. Compliance Verification Paths for Residential and Commercial Energy Codes

    SciTech Connect (OSTI)

    Conover, David R.; Makela, Eric J.; Fannin, Jerica D.; Sullivan, Robin S.

    2011-10-10

    This report looks at different ways to verify energy code compliance and to ensure that the energy efficiency goals of an adopted document are achieved. Conformity assessment is the body of work that ensures compliance, including activities that can ensure residential and commercial buildings satisfy energy codes and standards. This report identifies and discusses conformity-assessment activities and provides guidance for conducting assessments.

  7. RESIDENTIAL",,,,"COMMERCIAL",,,,"INDUSTRIAL",,,,"TRANSPORTATION",,,,"OTHER",,,,"

    U.S. Energy Information Administration (EIA) Indexed Site

    "RESIDENTIAL",,,,"COMMERCIAL",,,,"INDUSTRIAL",,,,"TRANSPORTATION",,,,"OTHER",,,,"TOTAL"

  8. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  9. Analysis of institutional mechanisms affecting residential and commercial buildings retrofit

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    Barriers to energy conservation in the residential and commercial sectors influence (1) the willingness of building occupants to modify their energy usage habits, and (2) the willingness of building owners/occupants to upgrade the thermal characteristics of the structures within which they live or work and the appliances which they use. The barriers that influence the willingness of building owners/occupants to modify the thermal efficiency characteristics of building structures and heating/cooling systems are discussed. This focus is further narrowed to include only those barriers that impede modifications to existing buildings, i.e., energy conservation retrofit activity. Eight barriers selected for their suitability for Federal action in the residential and commercial sectors and examined are: fuel pricing policies that in the short term do not provide enough incentive to invest in energy conservation; high finance cost; inability to evaluate contractor performance; inability to evaluate retrofit products; lack of well-integrated or one-stop marketing systems (referred to as lack of delivery systems); lack of precise or customized information; lack of sociological/psychological incentives; and use of the first-cost decision criterion (expanded to include short-term payback criterion for the commercial sector). The impacts of these barriers on energy conservation are separately assessed for the residential and commercial sectors.

  10. "YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL...

    U.S. Energy Information Administration (EIA) Indexed Site

    TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ...

  11. Residential and commercial buildings data book. Second edition

    SciTech Connect (OSTI)

    Crumb, L.W.; Bohn, A.A.

    1986-09-01

    This Data Book updates and expands the previous Data Book originally published by the Department of Energy in October, 1984 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; Additional Buildings and Community Systems Information. This Data Book complements another Department of Energy document entitled ''Overview of Building Energy Use and Report of Analysis-1985'' October, 1985 (DOE/CE-0140). The Data Book provides supporting data and documentation to the report.

  12. Evaluation of advanced technologies for residential appliances and residential and commercial lighting

    SciTech Connect (OSTI)

    Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

    1995-01-01

    Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

  13. The Economic Value of PV and Net Metering to Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-05-17

    In this paper, we analyze the bill savings from PV for residential customers of the California's two largest electric utilities, under existing net metering tariffs as well as under several alternative compensation mechanisms. We find that economic value of PV to the customer is dependent on the structure of the underlying retail electricity rate and can vary quite significantly from one customer to another. In addition, we find that the value of the bill savings from PV generally declines with PV penetration level, as increased PV generation tends to offset lower-priced usage. Customers in our sample from both utilities are significantly better off with net metering than with a feed-in tariff where all PV generation is compensated at long-run avoided generation supply costs. Other compensation schemeswhich allow customers to displace their consumption with PV generation within each hour or each month, and are also based on the avoided costs, yield similar value to the customer as net metering.

  14. Kissimmee Utility Authority- Residential & Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kissimmee Utility Authority (KUA) offers several rebates to residential customers for energy efficiency improvements. Residential customers can earn a $75 rebate for repairing duct leaks in...

  15. Ohio Valley Gas Corporation- Residential and Small Commercial Natural Gas Incentive Program

    Broader source: Energy.gov [DOE]

    Ohio Valley Gas Corporation (OVG) offers rebates to its residential and small commercial customers for the purchase of energy efficient equipment and appliances. The program's rebate offering...

  16. Cutting Residential, Commercial, and Industrial Energy Use: Tools and Incentives that Work

    Broader source: Energy.gov [DOE]

    This presentation, presented July 8, 2010, covered energy efficiency potential, examined specific energy efficiency opportunities in residential, commercial, industrial facilities, identified market barriers, and more.

  17. 2014-06-27 Issuance: Test Procedures for Residential and Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    solely as a means to facilitate the public's access to this document. 2014-06-27 Test Procedures for Residential and Commercial Water Heaters; Final Rule More Documents &...

  18. New England Gas Company- Residential and Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    In conjunction with Gas Networks, New England Gas Company offers its residential and commercial customers rebates for buying energy efficient gas boilers, furnaces, high efficiency water heaters,...

  19. Meters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and RP-1 Agreement and Guide For Use and Utilization of the RadEye B20-ER Survey Meters The Rad Eye B20-ER is a pancake GM detector capable of measuring low levels of Alpha, Beta,...

  20. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-03-30

    Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods are under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.

  1. ISSUANCE 2015-06-25: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Residential and Commercial Water Heaters; Correction

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Residential and Commercial Water Heaters; Correction

  2. U.S. Virgin Islands- Net Metering

    Broader source: Energy.gov [DOE]

    In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energ...

  3. City of Frisco- Residential and Commercial Green Building Requirements

    Broader source: Energy.gov [DOE]

    In October 2013, existing green building codes were repealed and the 2012 International Residential Code with amendments was adopted. Among the amendments were energy efficiency requirements appr...

  4. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

    SciTech Connect (OSTI)

    Goetzler, William; Sutherland, Timothy; Reis, Callie

    2013-12-04

    This report describes the current state of motor technology and estimates opportunities for energy savings through application of more advanced technologies in a variety of residential and commercial end uses. The objectives of this report were to characterize the state and type of motor technologies used in residential and commercial appliances and equipment and to identify opportunities to reduce the energy consumption of electric motor-driven systems in the residential and commercial sectors through the use of advanced motor technologies. After analyzing the technical savings potential offered by motor upgrades and variable speed technologies, recommended actions are presented.

  5. Meters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sc 620 Meters ~ 310 ~g~ 1, coOmpartment 11 ~~I . * ~~O~6 ~,~: '- N A o Soils Soil Series and Phase ~BaB FuB OrA TrB o ~ u Vegetation o 310 o o Commun;~y I fPme - L~ng e~'ne/HardwOOd %. EJ ~~:~1o,;"'a'" W~*. Monitoring wells :W~~~~ o Wa"""'" ~ :/'/ m// .y ~WWE:~~tI' s/~~ N Roads . et-Asld ~ ~~!~~ ~~~~l~idL:sndfili ~/#//};;;;>. Figure 28-1. Plant cOl1llllunities and soils associated with the Field 3-409 Set-Aside Area. 28-5 Set-Aside 28: Field 3-409

  6. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

    2011-06-01

    Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.

  7. City of Houston- Residential and Commercial Green Building Requirements

    Broader source: Energy.gov [DOE]

    In 2014, the City Council of Houston passed Ordinance No. 2014-5, requiring new residential construction to exceed the energy efficiency requirements under the 2009 International Energy Conservat...

  8. Entergy Texas- Residential and Small Commercial Standard Offer Program

    Broader source: Energy.gov [DOE]

    The Hard to Reach and Residential Standard Offer Programs provides incentives for the retrofit or new construction installation of a wide range of energy efficiency measures. The program does not...

  9. "YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL...

    U.S. Energy Information Administration (EIA) Indexed Site

    NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK ...

  10. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Technology by sector", 2013, 2012, 2011, 2010 "AMR meters",48736538,48330822,45965762,48685043 "Residential",43728325,43455437,41451888,43913225 "Commercial",4805138,4691018,4341105,4611877 "Industrial",201873,185862,172692,159315 "Transportation",1202,125,77,626 "AMI meters",51924502,43165183,37290373,20334525 "Residential",46083727,38524639,33453548,18369908

  11. DOE Publishes Notice of Proposed Rulemaking for Residential Water Heater and Certain Commercial Water Heater Test Procedures

    Broader source: Energy.gov [DOE]

    The Department of Energy has published a notice of proposed rulemaking regarding test procedures for residential water heaters and certain commercial water heaters.

  12. Lighting in Residential and Commercial Buildings (1993 and 1995...

    U.S. Energy Information Administration (EIA) Indexed Site

    of different kinds of lighting equipment with data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), building floorspace can be described in three different...

  13. Residential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  14. Major models and data sources for residential and commercial sector energy conservation analysis. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

  15. City of Dallas- Residential and Commercial Green Building Requirements

    Broader source: Energy.gov [DOE]

    Notably, Dallas became the first U.S. city to adopt the 2012 International Green Construction Code (with amendments, hereafter Dallas Green Construction Code) as mandatory for new commercial cons...

  16. Natural Gas Marketer Prices and Sales To Residential and Commercial Customers: 2002-2005

    Reports and Publications (EIA)

    2007-01-01

    This report compares residential and commercial prices collected from natural gas marketers and local distribution companies in Maryland, New York, Ohio and Pennsylvania from 2002-2005 and gives the history and status of natural gas choice programs in those states.

  17. Price Responsiveness in the AEO2003 NEMS Residential and Commercial Buildings Sector Models

    Reports and Publications (EIA)

    2003-01-01

    This paper describes the demand responses to changes in energy prices in the Annual Energy Outlook 2003 versions of the Residential and Commercial Demand Modules of the National Energy Modeling System (NEMS). It updates a similar paper completed for the Annual Energy Outlook 1999 version of the NEMS.

  18. Grid-Competitive Residential and Commercial Fully Automated PV Systems Technology: Final technical Report, August 2011

    SciTech Connect (OSTI)

    Brown, Katie E.; Cousins, Peter; Culligan, Matt; Jonathan Botkin; DeGraaff, David; Bunea, Gabriella; Rose, Douglas; Bourne, Ben; Koehler, Oliver

    2011-08-26

    Under DOE's Technology Pathway Partnership program, SunPower Corporation developed turn-key, high-efficiency residential and commercial systems that are cost effective. Key program objectives include a reduction in LCOE values to 9-12 cents/kWh and 13-18 cents/kWh respectively for the commercial and residential markets. Target LCOE values for the commercial ground, commercial roof, and residential markets are 10, 11, and 13 cents/kWh. For this effort, SunPower collaborated with a variety of suppliers and partners to complete the tasks below. Subcontractors included: Solaicx, SiGen, Ribbon Technology, Dow Corning, Xantrex, Tigo Energy, and Solar Bridge. SunPower's TPP addressed nearly the complete PV value chain: from ingot growth through system deployment. Throughout the award period of performance, SunPower has made progress toward achieving these reduced costs through the development of 20%+ efficient modules, increased cell efficiency through the understanding of loss mechanisms and improved manufacturing technologies, novel module development, automated design tools and techniques, and reduced system development and installation time. Based on an LCOE assessment using NREL's Solar Advisor Model, SunPower achieved the 2010 target range, as well as progress toward 2015 targets.

  19. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment December 2013 i NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

  20. UTILITY CHARACTERISTICS",,,,,,"RESIDENTIAL",,,"COMMERCIAL",,,"INDUSTRIAL",,,"TRA

    U.S. Energy Information Administration (EIA) Indexed Site

    "RESIDENTIAL",,,"COMMERCIAL",,,"INDUSTRIAL",,,"TRANSPORTATION",,,"TOTAL" ,,,,,,"Revenue","Sales","Customers","Revenue","Sales","Customers","Revenue","Sales","Customers","Revenue","Sales","Customers","Revenue","Sales","Customers" "Year","Month","Utility

  1. UTILITY CHARACTERISTICS",,,,,,,"RESIDENTIAL",,,"COMMERCIAL",,,"INDUSTRIAL",,,"TR

    U.S. Energy Information Administration (EIA) Indexed Site

    CHARACTERISTICS",,,,,,,"RESIDENTIAL",,,"COMMERCIAL",,,"INDUSTRIAL",,,"TRANSPORTATION",,,"TOTAL" ,,,,,,,"Revenue","Sales","Customers","Revenue","Sales","Customers","Revenue","Sales","Customers","Revenue","Sales","Customers","Revenue","Sales","Customers"

  2. UTILITY CHARATERISTICS",,,,,,,"RESIDENTIAL",,,"COMMERCIAL",,,"INDUSTRIAL",,,"TRA

    U.S. Energy Information Administration (EIA) Indexed Site

    CHARATERISTICS",,,,,,,"RESIDENTIAL",,,"COMMERCIAL",,,"INDUSTRIAL",,,"TRANSPORTATION",,,"TOTAL" ,,,,,,,"Revenue","Sales","Customers","Revenue","Sales","Customers","Revenue","Sales","Customers","Revenue","Sales","Customers","Revenue","Sales","Customers"

  3. Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Office of Energy Efficiency and Renewable Energy (EERE)

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  4. July 11 Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances

    Broader source: Energy.gov [DOE]

    These documents contain the three slide decks presented at the public meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances, held on July 11, 2014 in Washington, DC.

  5. Presentation Slides: Solar Finance for Residential and Commercial Customers and Potential Roles of State and Local Government

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of how residential and commercial solar projects are financed and the various roles that state and local governments can play to support the deployment of solar within their jurisdictions.

  6. Customer-Economics of Residential Photovoltaic Systems: The Impact of High Renewable Energy Penetrations on Electricity Bill Savings with Net Metering

    Broader source: Energy.gov [DOE]

    Residential photovoltaic (PV) systems in the US are often compensated at the customer's underlying retail electricity rate through net metering. There is growing interest in understanding how potential changes in rates may impact the value of bill savings from PV. This article uses a production cost and capacity expansion model to project California hourly wholesale electricity market prices under a reference scenario and a 33% renewables scenario. Second, based on the wholesale electricity market prices generated by the model, the article develops retail rates (i.e., flat, time-of-use, and real-time pricing) for each future scenario based on standard retail rate design principles. Finally, based on these retail rates, the bill savings from PV are estimated for 226 California residential customers under two types of net metering, for each scenario. The article finds that high renewable penetrations can drive substantial changes in residential retail rates and that these changes, together with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV.

  7. Residential and Commercial Property Assessed Clean Energy (PACE) Financing in California Rooftop Solar Challenge Areas

    Broader source: Energy.gov [DOE]

    This version of the report updates the original report published in March 2013. It identifies and describes the current state of residential and commercial property assessed clean energy (PACE) financing programs in California. The report discusses the Improvement Act of 1911, the Mello-Roos Act of 1982, the different philosophies cities have adopted in implementing PACE financing, and various PACE program structures. It also discusses the first implementation of PACE by cities that used their charter authority to create programs under the Mello-Roos Act of 1982 before the enactment of AB 811 and SB 555.1. This report focuses on PACE as a mechanism to increase the amount of rooftop solar systems installed, but also recognizes that these programs provide an effective means to finance energy and water efficiency projects. The updated report provides new information on California’s Residential PACE Loss Reserve Program, the Federal Housing Finance Agency, program requirements, and program performance.

  8. SRP- Net Metering

    Broader source: Energy.gov [DOE]

    Note: Salt River Project (SRP) modified its existing net-metering program for residential customers in February 2015. These changes are effective with the April 2015 billing cycle.

  9. 2014-06-27 Issuance: Test Procedures for Residential and Commercial Water Heaters; Final Rule

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register final rule regarding test procedures for residential and commercial water heaters, as issued by the Deputy Assistant Secretary for Energy Efficiency on June 27, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  10. Net Metering

    Broader source: Energy.gov [DOE]

    Note: On May 12, 2015 Georgia's governor signed House Bill 57 which allows residential and commercial customers to enter into third party financing deals for solar systems.

  11. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",232888,233270,230916,221262,139874,58993,27057 "Residential",204000,206539,204690,195920,124976,51007,24817 "Commercial",28129,26000,25582,24807,14408,7529,2220 "Industrial",759,731,644,535,490,457,20 "Transportation",0,0,0,0,0,0,0 "AMI meters",12272,3766,3408,3213,3106,2753,4 "Residential",11593,3423,3119,2951,3083,2744,3

  12. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2188,2991,4659,35987,29770,32000,3562 "Residential",1046,1722,3108,32964,27174,29415,892 "Commercial",1139,1266,1548,3022,2595,2584,2670 "Industrial",3,3,3,1,1,1,0 "Transportation",0,0,0,0,0,0,0 "AMI meters",269876,246642,29650,0,0,0,0 "Residential",245295,230705,27695,0,0,0,0

  13. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",33662,57269,46871,44911,41201,28512,22820 "Residential",32688,53083,44459,42324,38779,26141,21191 "Commercial",974,4186,2412,2587,2394,2350,1629 "Industrial",0,0,0,0,28,21,0 "Transportation",0,0,0,0,0,0,0 "AMI meters",29489,30,758,9213,8713,8126,6571 "Residential",25136,0,438,8040,7727,7154,5697

  14. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",6822,6415,5210,4499,116826,103242,101084 "Residential",6455,6075,4920,3375,101823,101363,99995 "Commercial",307,240,190,822,14701,1577,749 "Industrial",60,100,100,302,302,302,340 "Transportation",0,0,0,0,0,0,0 "AMI meters",739583,735415,669482,193415,0,0,0 "Residential",657380,654512,602750,170941,0,0,0

  15. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",53483,38201,81499,78292,96058,81992,63856 "Residential",44206,30907,72579,69795,85984,74356,59256 "Commercial",7729,5975,7473,7374,9197,7333,4305 "Industrial",1548,1319,1447,1123,877,303,295 "Transportation",0,0,0,0,0,0,0 "AMI meters",1125193,1021241,555414,20665,0,0,0 "Residential",994812,919971,542609,18237,0,0,0

  16. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",38125,41827,35412,43254,27018,21054,8132 "Residential",35775,28906,23442,31700,15987,11031,7263 "Commercial",1455,10789,10095,9635,8772,8234,621 "Industrial",876,2122,1866,1909,2258,1789,236 "Transportation",19,10,9,10,1,0,12 "AMI meters",34919,11533,11610,0,0,0,0 "Residential",22109,11454,11531,0,0,0,0

  17. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",471388,470428,467346,457508,458475,451138,450668 "Residential",461380,461788,460721,409497,407884,406169,400631 "Commercial",10008,8640,6625,47728,50591,44969,50037 "Industrial",0,0,0,283,0,0,0 "Transportation",0,0,0,0,0,0,0 "AMI meters",211,211,205,0,0,0,0 "Residential",0,0,0,0,0,0,0

  18. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",730599,309569,320041,45373,43870,43861,46240 "Residential",643429,276292,285239,41482,41208,41115,40438 "Commercial",85467,32375,34115,3830,2629,2711,5802 "Industrial",1703,902,687,61,33,35,0 "Transportation",0,0,0,0,0,0,0 "AMI meters",1094256,515971,336940,0,0,0,0 "Residential",926872,450089,304126,0,0,0,0

  19. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",53266,44430,84409,81030,77963,71278,58477 "Residential",48343,39930,76274,73703,71100,65176,53306 "Commercial",4901,4481,8121,7325,6861,6100,5169 "Industrial",22,19,14,2,2,2,2 "Transportation",0,0,0,0,0,0,0 "AMI meters",271526,343769,123,0,0,0,0 "Residential",229844,294918,116,0,0,0,0

  20. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",520857,464502,473117,474077,436376,438764,448444 "Residential",439830,394660,399243,402817,387552,389596,381604 "Commercial",78280,67228,70415,67890,47130,47431,66840 "Industrial",2747,2614,3459,3370,1694,1737,0 "Transportation",0,0,0,0,0,0,0 "AMI meters",116,81,0,0,95,0,0 "Residential",116,81,0,0,88,0,0

  1. PSEG Long Island- Net Metering

    Broader source: Energy.gov [DOE]

    Although PSEG Long Island’s net metering policy is not governed by the State’s net metering law, the provisions are similar to the State law. Net metering is available for residential, non-reside...

  2. Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances

    SciTech Connect (OSTI)

    Meyers, Stephen P.; McMahon, James; Atkinson, Barbara

    2008-05-08

    This study estimated energy, environmental and consumer economic impacts of U.S. Federal residential energy efficiency standards that became effective in the 1988-2006 period, and of energy efficiency standards for fluorescent lamp ballasts and distribution transformers. These standards have been the subject of in-depth analyses conducted as part of DOE's standards rulemaking process. This study drew on those analyses, but updated certain data and developed a common framework and assumptions for all of the products in order to estimate realized impacts and to update projected impacts. It also performed new analysis for the first (1990) fluorescent ballast standards, which had been introduced in the NAECA legislation without a rulemaking. We estimate that the considered standards will reduce residential/ commercial primary energy consumption and carbon dioxide emissions in 2030 by 4percent compared to the levels expected without any standards. The reduction for the residential sector is larger, at 8percent. The estimated cumulative energy savings from the standards amount to 39 quads by 2020, and 63 quads by 2030. The standards will also reduce emissions of carbon dioxide by considerable amounts.The estimated cumulative net present value of consumer benefit amounts to $241 billion by 2030, and grows to $269 billion by 2045. The overall ratio of consumer benefits to costs (in present value terms) in the 1987-2050 period is 2.7 to 1. Although the estimates made in this study are subject to a fair degree of uncertainty, we believe they provide a reasonable approximation of the national benefits resulting from Federal appliance efficiency standards.

  3. Advanced Sub-Metering Program

    Broader source: Energy.gov [DOE]

    The program is designed to provide information about energy usage for each residences at a multi-residential buildings. Residences living in multi-residential buildings that are not sub-metered d...

  4. EA-1463: 10 CFR 433: Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings and 10 CFR 435: Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings

    Broader source: Energy.gov [DOE]

    The EA examines the potential environmental impacts of the Final Rule on building habitability and the outdoor environment. To identify the potential environmental impacts that may result from implementing the Final Rule for new Federal commercial and residential buildings, DOE compared the Final Rule with the “no-action alternative” of using the current Federal standards – 10 CFR Part 434 and 10 CFR Part 435 Subpart C (referred to as the “no-action alternative”).

  5. N. Mariana Islands- Net Metering

    Broader source: Energy.gov [DOE]

    Note: The Commonwealth Utility Corporation issued a moratorium on net metering. However, Public Law 18-62 signed September 6, 2014 states that net metering should be available to all residential...

  6. U.S. Photovoltaic Prices and Cost Breakdowns. Q1 2015 Benchmarks for Residential, Commercial, and Utility-Scale Systems

    SciTech Connect (OSTI)

    Chung, Donald; Davidson, Carolyn; Fu, Ran; Ardani, Kristen; Margolis, Robert

    2015-09-01

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has continued to decline across all major market sectors. This report provides a Q1 2015 update regarding the prices of residential, commercial, and utility scale PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variations in business models, labor rates, and system architecture choice. We estimate a weighted-average cash purchase price of $3.09/W for residential scale rooftop systems, $2.15/W for commercial scale rooftop systems, $1.77/W for utility scale systems with fixed mounting structures, and $1.91/W for utility scale systems using single-axis trackers. All systems are modeled assuming standard-efficiency, polycrystalline-silicon PV modules, and further assume installation within the United States.

  7. Models for residential- and commercial-sector energy-conservation analysis: applications, limitations, and future potential. Final report

    SciTech Connect (OSTI)

    Cole, Henry E.; Fullen, Robert E.

    1980-09-01

    This report reviews four of the major models used by the Department of Energy (DOE) for energy conservation analyses in the residential- and commercial-building sectors. The objective is to provide a critical analysis of how these models can serve as tools for DOE and its Conservation Policy Office in evaluating and quantifying their policy and program requirements. For this, the study brings together information on the models' analytical structure and their strengths and limitations in policy applications these are then employed to assess the most-effective role for each model in addressing future issues of buildings energy-conservation policy and analysis. The four models covered are: Oak Ridge Residential Energy Model; Micro Analysis of Transfers to Households/Comprehensive Human Resources Data System (MATH/CHRDS) Model; Oak Ridge Commercial Energy Model; and Brookhaven Buildings Energy Conservation Optimization Model (BECOM).

  8. Remote Duct Sealing in Residential and Commercial Buildings: Saving Money, Saving Energy and Improving PerformanceŽ

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remote Duct Sealing in Residential and Commercial Buildings: "Saving Money, Saving Energy and Improving Performance" Lawrence Berkeley National Laboratory Presented by Dr. Mark Modera Staff Scientist, Environmental Energy Technologies Division 2 Presentation Overview Lawrence Berkeley National Laboratory * Introduction to Duct Leakage - Single-family residences - leakage rates, energy impacts, other impacts - Larger buildings - Duct leakage in codes, standards and utility programs *

  9. Austin Energy- Net Metering

    Broader source: Energy.gov [DOE]

    Austin Energy, the municipal utility of Austin Texas, offers net metering to its non-residential retail electricity customers for renewable energy systems up to 20 kilowatts (kW). Austin Energy o...

  10. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1508995,2093902,2358735,2338527,2232621,2203630,1526540 "Residential",1283786,1854282,2111101,2092893,1998214,1993991,1396097 "Commercial",217043,231143,238676,237244,228706,203914,128444 "Industrial",8104,8400,8890,8322,5694,5718,1999 "Transportation",62,77,68,68,7,7,0 "AMI

  11. 2014-04-30 Public Meeting Presentation Slides: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Office of Energy Efficiency and Renewable Energy (EERE)

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  12. 2014-04-30 Public Meeting Agenda: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    This document is the agenda for the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting being held on April 30, 2014.

  13. Agenda for Public Meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    Download the agenda below for the July 11 Public Meeting on the Physical Characterization of Grid-Connected Commercial and  Residential Buildings End-Use Equipment and Appliances.

  14. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1744297,1582760,137399,1546233,1175077,110675,105694 "Residential",1518981,1381543,121843,1352435,1029039,98707,92194 "Commercial",218762,195291,15383,188053,142132,11957,11999 "Industrial",6554,5926,173,5745,3906,11,1501 "Transportation",0,0,0,0,0,0,0 "AMI meters",338352,216201,1610285,108179,96024,85177,88231

  15. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",230418,261023,262683,318606,300790,239851,109188 "Residential",205920,231422,236070,287123,272669,223219,105408 "Commercial",22594,22467,19931,24091,21425,11089,3772 "Industrial",1904,7134,6682,7392,6696,5543,8 "Transportation",0,0,0,0,0,0,0 "AMI meters",421297,278395,174388,85163,54081,51982,46525

  16. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",380098,339368,314854,246497,666915,500476,354452 "Residential",342033,307265,287712,225362,631062,480824,351548 "Commercial",26918,23326,21051,17703,35711,19592,2898 "Industrial",11147,8777,6091,3432,142,60,6 "Transportation",0,0,0,0,0,0,0 "AMI meters",2091766,1767206,1643430,1234009,400980,192860,155031

  17. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",827670,580957,431858,1696965,345864,238634,181180 "Residential",699209,481305,319842,1520278,278976,221857,167236 "Commercial",115318,90939,97104,164498,57736,15597,12701 "Industrial",13070,8699,14912,12189,9152,1178,1241 "Transportation",73,14,0,0,0,2,2 "AMI meters",12427747,10580445,10610811,4036383,2636757,363353,140042

  18. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1643794,1552727,1622740,1636242,1495425,1410712,231119 "Residential",1491944,1425970,1502253,1517327,1387937,1306346,206747 "Commercial",146263,121673,115391,115899,106007,102596,23667 "Industrial",5587,5084,5096,3016,1481,1770,705 "Transportation",0,0,0,0,0,0,0 "AMI meters",305731,242832,182651,173921,117738,17270,388

  19. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1469876,1481357,1496432,1536716,1530906,1534171,1478640 "Residential",1324280,1334604,1350835,1393474,1391016,1394732,1343996 "Commercial",141213,142227,141092,138781,138239,137617,132856 "Industrial",4383,4526,4505,4461,1651,1822,1788 "Transportation",0,0,0,0,0,0,0 "AMI meters",147008,128595,99755,36069,1784,1213,2463

  20. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",116714,114296,113252,405728,56702,110087,20750 "Residential",105342,103234,102397,364709,52679,106326,20361 "Commercial",11207,10828,10619,40773,3989,3637,389 "Industrial",165,234,236,246,34,124,0 "Transportation",0,0,0,0,0,0,0 "AMI meters",307904,297247,297308,100,72000,48603,0

  1. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",3395748,3755977,3637527,3231398,3216922,2579337,2416630 "Residential",3139468,3455396,3325863,3024574,2953200,2378958,2351242 "Commercial",254631,298694,308099,204383,262736,199331,64901 "Industrial",1649,1886,3565,1893,986,1047,487 "Transportation",0,1,0,548,0,1,0 "AMI meters",5707660,4900737,3221462,2087870,308206,181984,44549

  2. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",627008,613969,521331,487830,435276,317642,295425 "Residential",556807,552232,467749,440914,393533,292233,269843 "Commercial",68008,59406,51774,44378,39314,23245,24111 "Industrial",2193,2331,1808,2538,2429,2164,1471 "Transportation",0,0,0,0,0,0,0 "AMI meters",3771777,3456641,3208987,2329510,1486413,778441,56921

  3. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",177493,168685,163567,142759,151004,146779,88220 "Residential",155125,147140,142398,122329,133724,128395,82814 "Commercial",21730,20916,20529,19850,17042,17904,5401 "Industrial",638,629,640,580,238,480,5 "Transportation",0,0,0,0,0,0,0 "AMI meters",548969,542009,536130,353867,225474,49380,0

  4. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",997408,973664,998081,1002378,973505,851285,549055 "Residential",888394,869121,894434,902092,872418,773309,493378 "Commercial",105317,101051,100648,97601,98067,75669,54444 "Industrial",3382,3492,2999,2685,3018,2305,1227 "Transportation",315,0,0,0,2,2,6 "AMI meters",381906,305272,181667,150202,19121,9954,28114

  5. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1251574,1284613,1095102,1059678,1038172,951160,382580 "Residential",1115322,1167245,990346,965867,947409,868170,371539 "Commercial",131027,113006,102278,91550,88929,81696,10751 "Industrial",4729,4362,2478,2261,1834,1294,290 "Transportation",496,0,0,0,0,0,0 "AMI meters",414513,303192,257567,211145,164837,72679,11028

  6. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",744438,722583,713567,710239,697696,559054,139256 "Residential",646196,624355,620170,615649,612354,495955,124347 "Commercial",97104,97466,93000,92968,85137,62661,14851 "Industrial",1134,762,397,1622,205,438,58 "Transportation",4,0,0,0,0,0,0 "AMI meters",150555,143163,128116,121751,74120,48847,14946

  7. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",349836,335293,320708,400083,308859,300734,53919 "Residential",303782,289091,276856,343492,264664,260503,41763 "Commercial",44125,41789,39968,52910,41425,38520,10237 "Industrial",1929,4413,3884,3681,2770,1711,1919 "Transportation",0,0,0,0,0,0,0 "AMI meters",242858,184292,108395,41781,20570,25047,5878

  8. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",532871,607590,548321,495475,529171,526410,445146 "Residential",465927,534181,484008,439680,479635,480572,422463 "Commercial",65386,71883,62353,54453,48318,44688,22493 "Industrial",1558,1526,1960,1342,1218,1150,190 "Transportation",0,0,0,0,0,0,0 "AMI meters",505780,355451,330218,211996,147835,118209,23961

  9. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",371841,357579,344263,342766,331557,283997,203389 "Residential",344167,330690,318544,316995,309010,267588,192187 "Commercial",24657,24380,24208,24551,21202,14922,9945 "Industrial",3017,2509,1511,1220,1345,1487,1257 "Transportation",0,0,0,0,0,0,0 "AMI meters",396398,220128,40063,34087,12021,3597,2

  10. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",611045,877019,903093,889901,875440,845154,725634 "Residential",549148,799807,823936,815476,804226,782901,659322 "Commercial",61658,76998,78818,74100,71203,62242,66226 "Industrial",239,214,339,325,11,11,0 "Transportation",0,0,0,0,0,0,86 "AMI meters",1159371,498806,912,896,1034,810,0

  11. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2815732,2753089,2717020,2634758,2605159,2389547,2327751 "Residential",2579059,2527224,2500177,2325333,2300444,2103743,2072453 "Commercial",234458,224070,215022,306584,303458,284904,253942 "Industrial",2215,1795,1821,2841,1257,900,1356 "Transportation",0,0,0,0,0,0,0 "AMI meters",71178,59601,46241,39076,35489,37270,28021

  12. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",337976,324455,314211,359361,333902,272851,189606 "Residential",292051,283561,272718,318011,299426,246630,174020 "Commercial",44463,41134,40083,38141,32779,24761,14476 "Industrial",1462,1390,1410,3209,1697,1460,1110 "Transportation",0,0,0,0,0,0,0 "AMI meters",1351082,947546,735450,334065,198442,200415,187349

  13. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1913337,1922706,1909106,1985873,1874104,1718448,363947 "Residential",1730915,1735168,1733724,1805096,1709999,1567837,333575 "Commercial",172309,176721,165245,170062,162297,149294,29352 "Industrial",10087,10817,10137,10715,1808,1317,1020 "Transportation",26,0,0,0,0,0,0 "AMI meters",245897,121264,172810,91395,66777,53561,10203

  14. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",273118,136678,116456,144254,103645,91623,24243 "Residential",237034,117623,101376,130228,90425,80463,20942 "Commercial",32633,16705,12952,12658,11393,10084,2156 "Industrial",3451,2350,2128,1368,1827,1076,1145 "Transportation",0,0,0,0,0,0,0 "AMI meters",363360,274884,153279,48308,9465,1610,0

  15. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1920471,1935078,1917474,1959937,1921343,1933413,1546006 "Residential",1696195,1709394,1698061,1736715,1705866,1728577,1372572 "Commercial",216779,219525,213325,217255,210496,199759,167190 "Industrial",7497,6159,6088,5967,4981,5077,6243 "Transportation",0,0,0,0,0,0,1 "AMI meters",357449,314812,295556,222019,160446,60909,1882

  16. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",520018,495676,489407,482732,481682,397693,347611 "Residential",448313,430824,429479,423471,417166,345119,304959 "Commercial",67155,61129,57161,56837,62129,51022,41698 "Industrial",4550,3723,2767,2424,2387,1552,954 "Transportation",0,0,0,0,0,0,0 "AMI meters",18851,18830,17593,11991,6459,3532,212

  17. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",535042,523950,503996,484383,454089,399845,380008 "Residential",451388,444819,430631,415589,392296,349786,333774 "Commercial",69711,67398,62997,59285,52508,44771,43230 "Industrial",13943,11733,10368,9509,9285,5288,3004 "Transportation",0,0,0,0,0,0,0 "AMI meters",123139,106301,91917,70111,40182,10725,25

  18. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    New Hampshire" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",69251,61857,59512,53293,50098,48310,46505 "Residential",67647,60510,58467,47171,43959,42402,41078 "Commercial",1604,1347,1045,5910,5929,5864,5401 "Industrial",0,0,0,212,210,44,26 "Transportation",0,0,0,0,0,0,0 "AMI meters",156960,153882,100345,76125,76085,72512,75094

  19. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",214695,229210,220279,228503,244759,216434,112719 "Residential",192195,206606,198130,207663,226923,209009,110488 "Commercial",21811,21656,21246,19675,16998,7022,2000 "Industrial",689,948,903,1165,838,403,231 "Transportation",0,0,0,0,0,0,0 "AMI meters",108505,80808,72506,46139,24384,6215,0

  20. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",3052524,2515127,2328801,2223645,2164329,1701366,1534285 "Residential",2848664,2295268,2140229,2044476,2005137,1555371,1410652 "Commercial",202417,218735,187424,178662,158992,145798,123436 "Industrial",1255,1124,1148,507,199,196,196 "Transportation",188,0,0,0,1,1,1 "AMI meters",28411,23758,18785,12675,11162,10872,1553

  1. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",3708639,3613936,3768269,4027965,3718103,3521887,2048869 "Residential",3322965,3255122,3396907,3656223,3322323,3250613,1878066 "Commercial",381832,355716,368487,369622,393894,268784,169438 "Industrial",3842,3098,2875,2120,1886,2490,1365 "Transportation",0,0,0,0,0,0,0 "AMI meters",869185,716349,556214,420956,285532,206150,30759

  2. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",274775,171896,165282,181060,149553,123861,41003 "Residential",225851,141249,139162,154904,129384,111817,37069 "Commercial",42282,26052,22916,23171,18971,11124,3873 "Industrial",6642,4595,3204,2985,1198,920,61 "Transportation",0,0,0,0,0,0,0 "AMI meters",85007,72431,64037,42676,25380,11406,14500

  3. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1068626,948564,727112,622965,563380,512000,277489 "Residential",976072,867682,680331,582725,525578,475653,257499 "Commercial",86314,75747,44209,37864,35575,34425,18264 "Industrial",6221,5135,2572,2376,2227,1922,1726 "Transportation",19,0,0,0,0,0,0 "AMI meters",953964,716772,506635,287441,95769,27974,16631

  4. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",385000,430870,427117,459002,392071,400426,277880 "Residential",332981,377207,376188,400471,342530,351012,244516 "Commercial",49803,51627,49838,54788,48517,48392,33162 "Industrial",2216,2036,1091,3743,1024,1022,202 "Transportation",0,0,0,0,0,0,0 "AMI meters",1082432,968785,715368,332888,124060,44245,17169

  5. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",183897,173477,180073,180305,182669,179104,91950 "Residential",168007,158650,161735,163234,167965,167090,86244 "Commercial",14848,13699,17315,15885,13539,10954,5115 "Industrial",1042,1128,1023,1186,1165,1060,591 "Transportation",0,0,0,0,0,0,0 "AMI meters",1044864,1034711,939933,900290,190480,21408,6334

  6. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1848300,1816190,1809822,1897976,1700354,1510892,963079 "Residential",1621880,1600626,1596247,1678999,1490280,1348053,862204 "Commercial",225016,213938,212061,218049,209287,161774,99865 "Industrial",1404,1626,1514,928,787,1065,1010 "Transportation",0,0,0,0,0,0,0 "AMI meters",354418,271427,230942,205017,150689,119149,49293

  7. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",162490,163750,181907,193350,89054,66943,33995 "Residential",140673,143049,159847,171557,79340,60552,31632 "Commercial",20385,19257,20260,19532,8695,5801,2011 "Industrial",1432,1444,1800,2261,1019,590,352 "Transportation",0,0,0,0,0,0,0 "AMI meters",152199,127805,102671,95155,22793,16820,0

  8. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2278989,2649814,2362245,2609078,3758758,2513848,1019510 "Residential",2073428,2396415,2160965,2378327,3560320,2294696,942621 "Commercial",178381,230398,177755,219325,186979,214217,74475 "Industrial",27180,23001,23525,11426,11459,4935,2414 "Transportation",0,0,0,0,0,0,0 "AMI meters",7840588,6880155,5658595,3337913,296252,174508,20600

  9. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",947887,931692,903266,912616,851283,791097,374299 "Residential",861955,849405,821766,814440,772961,722710,361979 "Commercial",81853,78179,77565,92519,77666,67851,12272 "Industrial",4079,4100,3935,5657,656,536,48 "Transportation",0,8,0,0,0,0,0 "AMI meters",44150,22480,35163,17080,12860,2485,1

  10. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2978913,3094379,3079891,3159249,3047610,3053272,2934487 "Residential",2742598,2851174,2841255,2930873,2825185,2842167,2730183 "Commercial",234244,240960,236618,226654,220991,209453,204144 "Industrial",2071,2245,2018,1722,1434,1652,160 "Transportation",0,0,0,0,0,0,0 "AMI meters",532415,400698,306378,158244,105371,8402,0

  11. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1715708,1681481,1656936,1611285,1326509,1346041,1143057 "Residential",1525473,1494345,1474547,1436056,1177320,1203954,1014025 "Commercial",182666,182010,177498,170267,144934,137882,124770 "Industrial",7569,5126,4891,4962,4255,4205,4261 "Transportation",0,0,0,0,0,0,1 "AMI meters",133299,85171,83353,76591,54484,46121,10670

  12. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",225895,210204,206764,147885,175769,139584,26178 "Residential",181206,166730,162523,114344,141179,114795,24873 "Commercial",37340,36283,37200,27897,29852,20219,1204 "Industrial",7349,7176,7041,5644,4738,4570,101 "Transportation",0,15,0,0,0,0,0 "AMI meters",84587,79675,77029,72260,10442,8609,0

  13. Net Metering | Open Energy Information

    Open Energy Info (EERE)

    Gas Wind Biomass Geothermal Electric Anaerobic Digestion Small Hydroelectric Tidal Energy Wave Energy No Ashland Electric - Net Metering (Oregon) Net Metering Oregon Commercial...

  14. Residential and commercial space heating and cooling with possible greenhouse operation; Baca Grande development, San Luis Valley, Colorado. Final report

    SciTech Connect (OSTI)

    Goering, S.W.; Garing, K.L.; Coury, G.E.; Fritzler, E.A.

    1980-05-01

    A feasibility study was performed to evaluate the potential of multipurpose applications of moderate-temperature geothermal waters in the vicinity of the Baca Grande community development in the San Luis Valley, Colorado. The project resource assessment, based on a thorough review of existing data, indicates that a substantial resource likely exists in the Baca Grande region capable of supporting residential and light industrial activity. Engineering designs were developed for geothermal district heating systems for space heating and domestic hot water heating for residences, including a mobile home park, an existing motel, a greenhouse complex, and other small commercial uses such as aquaculture. In addition, a thorough institutional analysis of the study area was performed to highlight factors which might pose barriers to the ultimate commercial development of the resource. Finally, an environmental evaluation of the possible impacts of the proposed action was also performed. The feasibility evaluation indicates the economics of the residential areas are dependent on the continued rate of housing construction. If essentially complete development could occur over a 30-year period, the economics are favorable as compared to existing alternatives. For the commercial area, the economics are good as compared to existing conventional energy sources. This is especially true as related to proposed greenhouse operations. The institutional and environmental analyses indicates that no significant barriers to development are apparent.

  15. Non-Hardware ("Soft") Cost-Reduction Roadmap for Residential and Small Commercial Solar Photovoltaics, 2013-2020

    SciTech Connect (OSTI)

    Ardani, K.; Seif, D.; Margolis, R.; Morris, J.; Davidson, C.; Truitt, S.; Torbert, R.

    2013-08-01

    The objective of this analysis is to roadmap the cost reductions and innovations necessary to achieve the U.S. Department of Energy (DOE) SunShot Initiative's total soft-cost targets by 2020. The roadmap focuses on advances in four soft-cost areas: (1) customer acquisition; (2) permitting, inspection, and interconnection (PII); (3) installation labor; and (4) financing. Financing cost reductions are in terms of the weighted average cost of capital (WACC) for financing PV system installations, with real-percent targets of 3.0% (residential) and 3.4% (commercial).

  16. Better Buildings Residential Network Peer Exchange Call: Commercial and Multi-family Building Benchmarking and Disclosure, Call Slides, July 25, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    25, 2013 Better Buildings Residential Network Peer Exchange Call: Commercial and Multi-family Building Benchmarking and Disclosure Call Slides Agenda * Call Logistics and Introductions * Introducing the Better Buildings Residential Network * Discussion:  What energy benchmarking policies/requirements/ordinances are in place across the country?  Are policies on building disclosure of energy use creating momentum/driving demand in the marketplace for energy audits and retrofits?  How are

  17. Financing, Overhead, and Profit: An In-Depth Discussion of Costs Associated with Third-Party Financing of Residential and Commercial Photovoltaic Systems

    SciTech Connect (OSTI)

    Feldman, D.; Friedman, B.; Margolis, R.

    2013-10-01

    Previous work quantifying the non-hardware balance-of-system costs -- or soft costs -- associated with building a residential or commercial photovoltaic (PV) system has left a significant portion unsegmented in an 'other soft costs' category. This report attempts to better quantify the 'other soft costs' by focusing on the financing, overhead, and profit of residential and commercial PV installations for a specific business model. This report presents results from a bottom-up data-collection and analysis of the upfront costs associated with developing, constructing, and arranging third-party-financed residential and commercial PV systems. It quantifies the indirect corporate costs required to install distributed PV systems as well as the transactional costs associated with arranging third-party financing.

  18. Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2

  19. Blue Ridge EMC- Net Metering

    Broader source: Energy.gov [DOE]

    The Blue Ridge Electric Membership Corporation offers net metering to its residential customers with solar photovoltaic, wind, or micro-hydro generators up to 25 kilowatts. There is no aggregate...

  20. EA-2001: Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings' Baseline Standards Update (RIN 1904-AD39)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is publishing this final rule to implement provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal commercial and multi-family high-rise residential buildings. This rule updates the baseline Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2013.

  1. Ohio Average Price of Natural Gas Delivered to Residential and Commercial

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumers by Local Distribution and Marketers 23.83 25.46 24.31 15.36 9.68 7.40 1989-2015 Commercial Average Price 8.14 8.02 7.99 6.79 6.03 5.5

  2. Progress Energy - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Commercial Industrial Local Government Nonprofit Residential Schools State Government Federal Government Tribal Government Agricultural Institutional Savings Category Solar...

  3. Assessing National Employment Impacts of Investment in Residential and Commercial Sector Energy Efficiency: Review and Example Analysis

    SciTech Connect (OSTI)

    Anderson, David M.; Belzer, David B.; Livingston, Olga V.; Scott, Michael J.

    2014-06-18

    Pacific Northwest National Laboratory (PNNL) modeled the employment impacts of a major national initiative to accelerate energy efficiency trends at one of two levels: ‱ 15 percent savings by 2030. In this scenario, efficiency activities save about 15 percent of the Annual Energy Outlook (AEO) Reference Case electricity consumption by 2030. It is assumed that additional energy savings in both the residential and commercial sectors begin in 2015 at zero, and then increase in an S-shaped market penetration curve, with the level of savings equal to about 7.0 percent of the AEO 2014 U.S. national residential and commercial electricity consumption saved by 2020, 14.8 percent by 2025, and 15 percent by 2030. ‱ 10 percent savings by 2030. In this scenario, additional savings begin at zero in 2015, increase to 3.8 percent in 2020, 9.8 percent by 2025, and 10 percent of the AEO reference case value by 2030. The analysis of the 15 percent case indicates that by 2030 more than 300,000 new jobs would likely result from such policies, including an annual average of more than 60,000 jobs directly supporting the installation and maintenance of energy efficiency measures and practices. These are new jobs resulting initially from the investment associated with the construction of more energy-efficient new buildings or the retrofit of existing buildings and would be sustained for as long as the investment continues. Based on what is known about the current level of building-sector energy efficiency jobs, this would represent an increase of more than 10 percent from the current estimated level of over 450,000 such jobs. The more significant and longer-lasting effect comes from the redirection of energy bill savings toward the purchase of other goods and services in the general economy, with its attendant influence on increasing the total number of jobs. This example analysis utilized PNNL’s ImSET model, a modeling framework that PNNL has used over the past two decades to assess the economic impacts of the U.S. Department of Energy’s (DOE’s) energy efficiency programs in the buildings sector.

  4. New York Price of Natural Gas Delivered to Residential Consumers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pages: Average Residential Price New York Average Price of Natural Gas Delivered to Residential and Commercial Consumers by Local Distribution and Market Average Residential...

  5. Not-In-Kind Technologies for Residential and Commercial Unitary Equipment

    SciTech Connect (OSTI)

    Fischer, S.K.

    2001-01-11

    This project was initiated by the Department of Energy in response to a request from the HVAC industry for consolidated information about alternative heating and cooling cycles and for objective comparisons of those cycles in space conditioning applications. Twenty-seven different heat pumping technologies are compared on energy use and operating costs using consistent operating conditions and assumptions about component efficiencies for all of them. This report provides a concise summary of the underlying principals of each technology, its advantages and disadvantages, obstacles to commercial development, and economic feasibility. Both positive and negative results in this study are valuable; the fact that many of the cycles investigated are not attractive for space conditioning avoids any additional investment of time or resources in evaluating them for this application. In other cases, negative results in terms of the cost of materials or in cycle efficiencies identify where significant progress needs to be made in order for a cycle to become commercially attractive. Specific conclusions are listed for many of the technologies being promoted as alternatives to electrically-driven vapor compression heat pumps using fluorocarbon refrigerants. Although reverse Rankine cycle heat pumps using hydrocarbons have similar energy use to conventional electric-driven heat pumps, there are no significant energy savings due to the minor differences in estimated steady-state performance; higher costs would be required to accommodate the use of a flammable refrigerant. Magnetic and compressor-driven metal hydride heat pumps may be able to achieve efficiencies comparable to reverse Rankine cycle heat pumps, but they are likely to have much higher life cycle costs because of high costs for materials and peripheral equipment. Both thermoacoustic and thermionic heat pumps could have lower life cycle costs than conventional electric heat pumps because of reduced equipment and maintenance costs although energy use would be higher. There are strong opportunities for gas-fired heat pumps to reduce both energy use and operating costs outside of the high cooling climates in the southeast, south central states, and the southwest. Diesel and IC (Otto) engine-driven heat pumps are commercially available and should be able to increase their market share relative to gas furnaces on a life cycle cost basis; the cost premiums associated with these products, however, make it difficult to achieve three or five year paybacks which adversely affects their use in the U.S. Stirling engine-driven and duplex Stirling heat pumps have been investigated in the past as potential gas-fired appliances that would have longer lives and lower maintenance costs than diesel and IC engine-driven heat pumps at slightly lower efficiencies. These potential advantages have not been demonstrated and there has been a low level of interest in Stirling engine-driven heat pumps since the late 1980's. GAX absorption heat pumps have high heating efficiencies relative to conventional gas furnaces and are viable alternatives to furnace/air conditioner combinations in all parts of the country outside of the southeast, south central states, and desert southwest. Adsorption heat pumps may be competitive with the GAX absorption system at a higher degree of mechanical complexity; insufficient information is available to be more precise in that assessment.

  6. Rocky Mountain Power- Net Metering

    Broader source: Energy.gov [DOE]

    For residential and small commercial customers, net excess generation (NEG) is credited at Rocky Mountain Power's retail rate and carried forward to the next month. For larger commercial and...

  7. Improved Design of Motors for Increased Efficiency in Residential Commercial Buildings

    SciTech Connect (OSTI)

    Pragasen Pillay

    2008-12-31

    Research progress on understanding magnetic steel core losses is presented in this report. Three major aspects have been thoroughly investigated: 1, experimental characterization of core losses, 2, fundamental physical understanding of core losses and development of core loss formulas, and 3, design of more efficient machine based on the new formulations. Considerable progress has been achieved during the four years of research and the main achievements are summarized in the following: For the experimental characterization, a specially designed advanced commercial test bench was commissioned in addition to the development of a laboratory system with advanced capabilities. The measured properties are core losses at low and higher frequencies, with sinusoidal and non-sinusoidal excitations, at different temperatures, with different measurement apparatus (Toroids, Epstein etc). An engineering-based core loss formula has been developed which considers skin effect. The formula can predict core losses for both sinusoidal and non-sinusoidal flux densities and frequencies up to 4000 Hz. The formula is further tested in electric machines. The formula error range is 1.1% - 7.6% while the standard formulas can have % errors between -8.5% {-+} 44.7%. Two general core loss formulas, valid for different frequencies and thickness, have been developed by analytically and numerically solving Maxwell's equations based on a physical investigation of the dynamic hysteresis effects of magnetic materials. To our knowledge, they are the first models that can offer accurate core loss prediction over a wide range of operating frequencies and lamination thicknesses without a massive experimental database of core losses. The engineering core loss formula has been used with commercial software. The formula performs better than the modified Steinmetz and Bertotti's model used in Cedrat/Magsoft Flux 2D/3D. The new formula shows good correlation with measured results under both sinusoidal and non-sinusoidal excitations. A permanent magnet synchronous motor has been designed with the use of the engineering formula with Flux2D. There was acceptable agreement between predictions and measurements. This was further tested on an induction motor with toroid results.

  8. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    commercial) as long as the base requirements are met. All net-metered facilities must be behind a customer's meter, but only a minimal amount of load located on-site is required....

  9. Net Metering

    Broader source: Energy.gov [DOE]

    Note: Illinois is currently undergoing a rulemaking that would change its existing net metering rules. The proposed rules include provisions clarifying virtual net metering policies, facilitating...

  10. Net Metering

    Broader source: Energy.gov [DOE]

    Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas, hydropower, fu...

  11. Net Metering

    Broader source: Energy.gov [DOE]

    Kansas adopted the Net Metering and Easy Connection Act in May 2009, which established net metering for customers of investor-owned utilities (IOUs). 

  12. Solarnorth '81 by Tymura Solardesigns: diverse residential, commercial and industrial projects at and above the 48th parallel in Ontario, Canada

    SciTech Connect (OSTI)

    Tymura, E.J.

    1981-01-01

    Solar Energy Heating Applications are On the Rise in and above the Northwestern City of Thunder Bay, on the northern shore of Lake Superior. Unique in their diversifications, the architectural commissions range from pure passive residential design thru hybrid systems; residential Greenhouse-Solarium active swimming pool and commercial hotel pool to inexpensive hybrid system for Canada's First Commercial Solar Lumber Drying Kiln; as well as combined earth sheltered with solar system design for a dormitory complex and shopping center. By May 1981, 7 buildings designed by Tymura Solardesigns in the Thunder Bay area will have been subjected to the Extreme Canadian climate (10,500/sup 0/F degree days, yearly temperature maximums from -41/sup 0/F to 90/sup 0/F, and solar fractions vary from 50% to 75%, with economic payback periods ranging between 7 and 10 years.

  13. April 30 Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014. The first document includes the first presentation from the meeting: DOE Vision and Objectives. The second document includes all other presentations from the meeting: Terminology and Definitions; End-User and Grid Services; Physical Characterization Framework; Value, Benefits & Metrics.

  14. Kenergy- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Kenergy is an electric cooperative that serves 51,000 households and commercial customers in 14 western Kentucky counties. Currently, Kenergy offers three rebate programs for residential customers...

  15. EA-1918: Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and MultiFamily High-Rise Residential Buildings" RIN 1904-AC60

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of implementing provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal buildings, including commercial and multi-family high-rise residential buildings. This EA addresses Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2010. The Final Rule was published in the Federal Register on July 9, 2013, 78 FR 40945.

  16. Commercial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Commercial Incentive Pilot Program (CIPP). Final Impact Evaluation Report. Cambridge Systematics. (1292) Commercial Incentives Pilot Program (CIPP) Database for the...

  17. Adjusted Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2

  18. Net Metering

    Broader source: Energy.gov [DOE]

    NOTE: On October 21, 2015, the NY Public Service Commission denied the Orange and Rockland Utility’s petition to cease offering net-metering and interconnections once the 6% net-metering cap was...

  19. Net Metering

    Broader source: Energy.gov [DOE]

    New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives) to offer net metering at non-...

  20. Net Metering

    Broader source: Energy.gov [DOE]

    Note: In January 2016, the California Public Utilities Commission issued a ruling on its net metering successor tariff. Customers on the new net metering successor tariff will have to pay an...

  1. Net Metering

    Broader source: Energy.gov [DOE]

    NOTE: Although, this post is categorized as netmetering, the policy adopted by MS does not meet DSIRE's standards for a typical net metering policy. Net metering policy allows a customer to offset...

  2. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to all customers of investor-owned utilities and rural electric cooperatives, exempting TVA utilities. Kentucky's requires the use of a single, bi-directional meter for...

  3. Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior

    SciTech Connect (OSTI)

    Kavousian, A; Rajagopal, R; Fischer, M

    2013-06-15

    We propose a method to examine structural and behavioral determinants of residential electricity consumption, by developing separate models for daily maximum (peak) and minimum (idle) consumption. We apply our method on a data set of 1628 households' electricity consumption. The results show that weather, location and floor area are among the most important determinants of residential electricity consumption. In addition to these variables, number of refrigerators and entertainment devices (e.g., VCRs) are among the most important determinants of daily minimum consumption, while number of occupants and high-consumption appliances such as electric water heaters are the most significant determinants of daily maximum consumption. Installing double-pane windows and energy-efficient lights helped to reduce consumption, as did the energy-conscious use of electric heater. Acknowledging climate change as a motivation to save energy showed correlation with lower electricity consumption. Households with individuals over 55 or between 19 and 35 years old recorded lower electricity consumption, while pet owners showed higher consumption. Contrary to some previous studies, we observed no significant correlation between electricity consumption and income level, home ownership, or building age. Some otherwise energy-efficient features such as energy-efficient appliances, programmable thermostats, and insulation were correlated with slight increase in electricity consumption. (C) 2013 Elsevier Ltd. All rights reserved.

  4. Xcel Energy - Residential Energy Efficiency Rebate Program |...

    Broader source: Energy.gov (indexed) [DOE]

    ResidentialSolutionsRebates... Expiration Date 12312014 State New Mexico Program Type Rebate Program Rebate Amount Draft Check Kits and Power Check Meters:...

  5. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity. This option is available for photovoltaic (PV), wind, hydro...

  6. Net Metering

    Broader source: Energy.gov [DOE]

    Missouri enacted legislation in June 2007 requiring all electric utilities—investor-owned utilities, municipal utilities, and electric cooperatives—to offer net metering to customers with systems...

  7. Commercial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a large efficiency program in Commercial and Industrial Lighting. BPA continues to invest in improving the lighting program as a critical component to achieving regional...

  8. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available on a first-come, first-served basis until the cumulative generating capacity of net-metered systems equals 0.5% of a utility’s peak demand during 1996.* At least one-half...

  9. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to all "qualifying facilities" (QFs), as defined by the federal Public Utility Regulatory Policies Act of 1978 (PURPA), which pertains to renewable energy systems and co...

  10. Net Metering

    Broader source: Energy.gov [DOE]

     NOTE: The program website listed above links to the Maryland Public Service Commission's Net Metering Working Group page, which contains a variety of information resources related to the ongoing...

  11. Net Metering

    Broader source: Energy.gov [DOE]

    North Dakota's net-metering policy, adopted in 1991 by the state Public Service Commission (PSC), applies to renewable-energy systems and combined heat and power (CHP) systems up to 100 kilowatts...

  12. Net Metering

    Broader source: Energy.gov [DOE]

    In Delaware, net metering is available to any customer that generates electricity using solar, wind or hydro resources, anaerobic digesters, or fuel cells capable of being powered by renewable fu...

  13. Net Metering

    Broader source: Energy.gov [DOE]

    Iowa's statutes do not explicitly authorize the Iowa Utilities Board (IUB) to mandate net metering, but this authority is implicit through the board's enforcement of PURPA and Iowa Code § 476.41 ...

  14. Net Metering

    Broader source: Energy.gov [DOE]

    Note: On October 12th, 2015 the Hawaii PUC voted to end net metering in favor of 3 alternative options: a grid supply option, a self-supply option, and a time of use tariff. Customers with net...

  15. Net Metering

    Broader source: Energy.gov [DOE]

    In October 2008, Michigan enacted P.A. 295, requiring the Michigan Public Service Commission (MPSC) to establish a statewide net metering program for renewable energy systems. On May 26, 2009 the...

  16. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering in Virginia is available on a first-come, first-served basis until the rated generating capacity owned and operated by customer-generators reaches 1% of an electric distribution...

  17. Net Metering

    Broader source: Energy.gov [DOE]

    With these regulations, renewable energy systems with a capacity up to 25 kilowatts (kW) are eligible for net metering. Overall enrollment is limited to 1.5% of a utility's retail sales from the...

  18. Net Metering

    Broader source: Energy.gov [DOE]

    NOTE: On February 2016, the PA Public Service Commission (PUC) issued a final rulemaking order amending net metering regulations to provide clarity and to comply with the statutes. Changes include...

  19. Net Metering

    Broader source: Energy.gov [DOE]

    There is no stated limit on the aggregate capacity of net-metered systems in a utility's service territory. Any net excess generation (NEG) during a monthly billing period is carried over to the...

  20. Net Metering

    Broader source: Energy.gov [DOE]

    Utah law requires their only investor-owned utility, Rocky Mountain Power (RMP), and most electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wi...

  1. Net Metering

    Broader source: Energy.gov [DOE]

    Net excess generation (NEG) is credited to the customer's next monthly bill. The customer may choose to start the net metering period at the beginning of January, April, July or October to match...

  2. Net Metering

    Broader source: Energy.gov [DOE]

    Nevada's original net-metering law for renewable-energy systems was enacted in 1997 and amended in 2001, 2003, 2005, 2007, 2011, 2013, and 2015. Systems up to one megawatt (MW) in capacity that...

  3. Net Metering

    Broader source: Energy.gov [DOE]

    In April 2001, Arkansas enacted legislation (HB 2325) directing the Arkansas Public Service Commission (PSC) to establish net-metering rules for certain renewable-energy systems.* The PSC approved...

  4. Draft Environmental Assessment for Direct Final Rule, 10 CFR 434, Energy Standards for New Federal Commercial and High-Rise High-Rise Multi-FamilyResidential BuildingsŽ and 10 CFR 435, Energy Efficiency Standards for New Federal Residential Low-Rise Re

    Office of Environmental Management (EM)

    ENVIRONMENTAL ASSESSMENT FOR Final Rule, 10 CFR Part 433, "Energy Efficiency Standards for New Federal Commercial and Multi- Family High-Rise Residential Buildings' Baseline Standards Update" (RIN 1904-AD39) (DOE/EA-2001) Prepared by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy September 2015 2 Environmental Assessment for Final Rule, 10 CFR Part 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential

  5. COMMERCIALIZING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMMERCIALIZING TECHNOLOGIES & CREATING JOBS Our location in the SS&TP plays a vital role in our ability to leverage the deep domain expertise of Sandia. Our proximity to the Labs has facilitated teaming with them on Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) efforts that develop cutting-edge technology in the areas of precision pointing and inertial measurement." Dan Gillings President Applied Technology Associates NMSBA reduced my

  6. Chapter 4, Small Commercial and Residential Unitary and Split System HVAC Cooling Equipment-Efficiency Upgrade Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Small Commercial and Residential Unitary and Split System HVAC Cooling Equipment-Efficiency Upgrade Evaluation Protocol David Jacobson, Jacobson Energy Research Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 4 - 1 Chapter 4 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application

  7. Public Meeting: Physical Characterization of Grid-Connected Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building...

  8. EA-1871: Environmental Assessment for Final Rule, 10 CFR 433, “EE Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings” and 10 CFR 435, “EE Standards for New Federal Residential Low-Rise Residential Buildings"

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE‘s Final Rule, 10 CFR 433, ―Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings‖ and 10 CFR 435, ―Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings‖ Baseline Standards Update. The final rule updates the baseline standards in 10 CFR 433 and 10 CFR 435 to the latest private sector standards based on the cost-effectiveness of the latest private sector standards and DOE‘s determination that energy efficiency has been improved in these codes as required by 42 U.S.C 6831 et seq. DOE is issuing its final determinations on American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 (ASHRAE 2007) and the International Code Council‘s 2009 International Energy Conservation Code (IECC) in the same edition of the Federal Register as this final rule.

  9. Saturation meter

    DOE Patents [OSTI]

    Gregurech, S.

    1984-08-01

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  10. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  11. Residential Weatherization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  12. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  13. The Impact of Rate Design and Net Metering on the Bill Savings...

    Open Energy Info (EERE)

    Impact of Rate Design and Net Metering on the Bill Savings from Distributed Photovoltaics (PV) for Residential Customers in California Jump to: navigation, search Tool Summary...

  14. Palau- Net Metering

    Broader source: Energy.gov [DOE]

    The Palau Net Metering Act of 2009 established net metering on the Island of Palau. Net metering was implemented in order to:

  15. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    "Commercial",32,20,16,5 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Wind",,,, "Capacity (MW)",0.117,0.28,0.213,0.191 "Residential",0.054,0.12,0.053,0.032 ...

  16. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    "Commercial",15,11,10,7 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Wind",,,, "Capacity (MW)",0.003,0.002,0.002,0.2 "Residential",0.001,0,0,0 ...

  17. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",17.151,10.78,5.73,3.45 "Residential",7.328,3.823,2.643,2.567 "Commercial",9.073,6.551,3.031,...

  18. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",11.378,9.9,6.55,3.68 "Residential",6.68,5.179,3.987,2.776 "Commercial",4.596,4.582,2.468...

  19. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",3.361,2,1.43,1.97 "Residential",1.205,0.633,0.574,0.535 "Commercial",2.156,1.37,0.85...

  20. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",19.874,18.9,8.33,6.32 "Residential",15.192,14.888,5.361,3.963 "Commercial",4.485,3.804,2....

  1. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",44.618,41.66,28.33,0.02 "Residential",10.101,8.529,6.356,0.027 "Commercial",27.322,26.859,...

  2. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",59.06,46.45,19.33,10.37 "Residential",6.684,4.275,2.701,1.41 "Commercial",46.952,39.954,16.2...

  3. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",56.423,42.74,31.28,23.11 "Residential",26.353,20.326,14.076,9.618 "Commercial",28.482,21.1...

  4. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",25.528,17.09,10.65,7.38 "Residential",19.414,12.741,7.424,6.021 "Commercial",6.074,4.3...

  5. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",10.191,6.17,3.72,10.35 "Residential",4.661,2.56,1.368,8.591 "Commercial",5.352,3.604,2.3...

  6. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",0.241,0.17,0.08,0.01 "Residential",0.191,0.114,0.063,0.008 "Commercial",0.05,0.05,0.02,0 ...

  7. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",0.092,0.09,0.07,0.01 "Residential",0.02,0.017,0.012,0.005 "Commercial",0.072,0.072,0.06,0 ...

  8. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",7.52,3.57,2.29,2.18 "Residential",5.939,2.303,1.37,1.337 "Commercial",1.581,1.268,0.917,0...

  9. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",175.579,98.31,70.4,41.47 "Residential",83.781,50.708,37.822,25.153 "Commercial",89.631,47.52...

  10. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",2.163,1.77,0.75,0.3 "Residential",1.633,1.286,0.495,0.249 "Commercial",0.524,0.473,...

  11. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",8.565,5.07,3.05,1.88 "Residential",5.005,2.668,1.791,1.223 "Commercial",3.064,2.097,0.9...

  12. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",1.885,1.2,0.68,1.38 "Residential",1.56,1.034,0.604,1.312 "Commercial",0.322,0.162,0.056,...

  13. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",0.16,0.15,0.4,0 "Residential",0.028,0.014,0.015,0 "Commercial",0.132,0.132,0.206,0 ...

  14. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",0.651,0.55,0.19,0.08 "Residential",0.399,0.243,0.106,0.041 "Commercial",0.18,0.297,0.034...

  15. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",1.616,1.32,0.99,1.03 "Residential",0.923,0.754,0.515,0.409 "Commercial",0.516,0.413,0.323...

  16. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",61.793,37.98,26.65,19.6 "Residential",25.504,16.995,11.126,7.151 "Commercial",35.713,20.63...

  17. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",89.898,45.5,29.91,16.82 "Residential",59.839,23.363,14.826,9.433 "Commercial",29.851,21.913...

  18. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",1.155,0.66,0.51,0.25 "Residential",0.779,0.405,0.311,0.163 "Commercial",0.376,0.253,0.18...

  19. Financing Non-Residential Photovoltaic Projects: Options and Implications

    SciTech Connect (OSTI)

    Bolinger, Mark

    2009-01-09

    Installations of grid-connected photovoltaic (PV) systems in the United States have increased dramatically in recent years, growing from less than 20 MW in 2000 to nearly 500 MW at the end of 2007, a compound average annual growth rate of 59%. Of particular note is the increasing contribution of 'non-residential' grid-connected PV systems--defined here as those systems installed on the customer (rather than utility) side of the meter at commercial, institutional, non-profit, or governmental properties--to the overall growth trend. Although there is some uncertainty in the numbers, non-residential PV capacity grew from less than half of aggregate annual capacity installations in 2000-2002 to nearly two-thirds in 2007. This relative growth trend is expected to have continued through 2008. The non-residential sector's commanding lead in terms of installed capacity in recent years primarily reflects two important differences between the non-residential and residential markets: (1) the greater federal 'Tax Benefits'--including the 30% investment tax credit (ITC) and accelerated tax depreciation--provided to commercial (relative to residential) PV systems, at least historically (this relative tax advantage has largely disappeared starting in 2009) and (2) larger non-residential project size. These two attributes have attracted to the market a number of institutional investors (referred to in this report as 'Tax Investors') seeking to invest in PV projects primarily to capture their Tax Benefits. The presence of these Tax Investors, in turn, has fostered a variety of innovative approaches to financing non-residential PV systems. This financial innovation--which is the topic of this report--has helped to overcome some of the largest barriers to the adoption of non-residential PV, and is therefore partly responsible (along with the policy changes that have driven this innovation) for the rapid growth in the market seen in recent years.ii Specifically, due to financial innovation, non-residential entities interested in PV no longer face prohibitively high up-front costs, no longer need to be able to absorb Tax Benefits in order to make the economics pencil out, no longer need to be able to operate and maintain the system, and no longer need to accept the risk that the system does not perform as expected.

  20. Arkansas Oklahoma Gas (AOG) Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Arkansas Oklahoma Gas (AOG) provides financial incentives to its residential and small commercial customers for both existing and new construction homes and small business whose primary fuel for...

  1. Waseca Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Develops innovative products and services to help them deliver value to customers. With help from SMMPA, Waseca Utilities provides incentives for residential and commercial customers to improve t...

  2. Evaluation of evolving residential electricity tariffs

    SciTech Connect (OSTI)

    Lai, Judy; DeForest, Nicholas; Kiliccote, Sila; Stadler, Michael; Marnay, Chris; Donadee, Jon

    2011-05-15

    Residential customers in California's Pacific Gas and Electric (PG&E) territory have seen several electricity rate structure changes in the past decade. This poster: examines the history of the residential pricing structure and key milestones; summarizes and analyzes the usage between 2006 and 2009 for different baseline/climate areas; discusses the residential electricity Smart Meter roll out; and compares sample bills for customers in two climates under the current pricing structure and also the future time of use (TOU) structure.

  3. Southface Energy Institute: Advanced Commercial Buildings Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southface Energy Institute: Advanced Commercial Buildings Initiative Southface Energy Institute: ... More Documents & Publications Georgia and Arkansas Residential Energy Code ...

  4. Commercial and Multifamily Building Benchmarking and Disclosure

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call: Commercial and Multifamily Building Benchmarking and Disclosure, Call Slides, July 25, 2013.

  5. Commercial and Multifamily Building Benchmarking and Disclosure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Multifamily Building Benchmarking and Disclosure Commercial and Multifamily Building Benchmarking and Disclosure Better Buildings Residential Network Peer Exchange Call: ...

  6. Commercial % Sold by Local Distribution Companies

    Gasoline and Diesel Fuel Update (EIA)

    Residential Price - Local Distribution Companies Residential Price - Marketers Residential % Sold by Local Distribution Companies Average Commercial Price Commercial Price - Local Distribution Companies Commerical Price - Marketers Commercial % Sold by Local Distribution Companies Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 View History District of

  7. EA-2001: Energy Efficiency Design Standards: New Federal Commercial...

    Energy Savers [EERE]

    2001: Energy Efficiency Design Standards: New Federal Commercial and Multi-Family High-Rise Residential Buildings and New Federal Low-Rise Residential Buildings EA-2001: Energy...

  8. Is revenue metering feasible

    SciTech Connect (OSTI)

    Taylor, N.R.

    1985-02-01

    Revenue metering for thermal systems has been in use for more than 100 years. There is an infinite variety of meters based on flow principles, but very limited choice of steam condensate meters. Progress is being made in the application of computer technology to thermal metering. Btu meters are showing substantial progress as the U.S. market increases. There is a lack of traceable standards, application guidelines and approved materials. Strongly needed are educational programs designed for the thermal metering technician. Costs of thermal measurements is, in general, out of balance with other utility type service meters.

  9. EA-2001: Energy Efficiency Design Standards: New Federal Commercial and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi-Family High-Rise Residential Buildings and New Federal Low-Rise Residential Buildings | Department of Energy 1: Energy Efficiency Design Standards: New Federal Commercial and Multi-Family High-Rise Residential Buildings and New Federal Low-Rise Residential Buildings EA-2001: Energy Efficiency Design Standards: New Federal Commercial and Multi-Family High-Rise Residential Buildings and New Federal Low-Rise Residential Buildings SUMMARY The U.S. Department of Energy (DOE) is publishing

  10. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",433.54,252.66,126.57,120.74 "Residential",189.267,150.958,76.948,66.022 "Commercial",207.56,78.694,32.17,41.447 "Industrial",36.713,23.005,17.453,13.273 "Transportation",0,0,0,0 "Customers",33298,24277,11328,8443 "Residential",31245,23282,10753,8082 "Commercial",1865,861,495,309

  11. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",204.622,166.4,129.78,53.43 "Residential",96.632,70.855,51.233,40.162 "Commercial",106.739,94.033,77.232,11.868 "Industrial",1.251,1.504,1.313,1.374 "Transportation",0,0,0,0 "Customers",20815,16377,12491,9635 "Residential",18362,14098,10622,8386 "Commercial",2431,2259,1851,1163

  12. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",220.565,121.11,55.38,28.85 "Residential",173.15,84.817,32.328,13.906 "Commercial",47.415,36.298,23.044,14.939 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Customers",40511,22264,9785,4302 "Residential",39008,21007,9129,3905 "Commercial",1503,1257,656,397 "Industrial",0,0,0,0

  13. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",278.065,123.77,59.72,43.84 "Residential",54.325,25.025,13.334,18.958 "Commercial",203.506,86.325,38.241,23.26 "Industrial",20.234,12.398,8.133,1.617 "Transportation",0,0,0,0 "Customers",11468,6109,3886,2829 "Residential",9742,4884,2997,2142 "Commercial",1581,1104,793,662

  14. Hawaii demand-side management resource assessment. Final report, Reference Volume 3 -- Residential and commercial sector DSM analyses: Detailed results from the DBEDT DSM assessment model; Part 1, Technical potential

    SciTech Connect (OSTI)

    1995-04-01

    The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. Numerous tables and figures illustrating the technical potential for demand-side management are included.

  15. LADWP- Net Metering

    Broader source: Energy.gov [DOE]

    LADWP allows its customers to net meter their photovoltaic (PV), wind, and hybrid systems with a capacity of not more than one megawatt. LADWP will provide the necessary metering equipment unless...

  16. Utility Metering- AGL Resources

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—discusses AGL Resources metering, including interruptible rate customers, large users, and meeting federal metering goals.

  17. Average Residential Price

    Gasoline and Diesel Fuel Update (EIA)

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From

  18. Average Residential Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  19. Residential Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2009 10:18 AM http:www.eia.govconsumptioncommercialdataarchivecbecspba99residential.html If you are having any technical problems with this site, please contact the EIA...

  20. Hawaii demand-side management resource assessment. Final report, Reference Volume 2: Final residential and commercial building prototypes and DOE-2.1E developed UECs and EUIs; Part 3

    SciTech Connect (OSTI)

    1995-04-01

    This section contains the detailed measured impact results and market segment data for each DSM case examined for this building type. A complete index of all base and measure cases defined for this building type is shown first. This index represents an expansion of the base and measure matrix presented in Table 1 (residential) or Table 2 (commercial) for the applicable sector. Following this index, a summary report sheet is provided for each DSM measure case in the order shown in the index. The summary report sheet contains a host of information and selected graphs which define and depict the measure impacts and outline the market segment data assumptions utilized for each case in the DBEDT DSM Forecasting models. The variables and figures included in the summary report sheet are described. Numerous tables and figures are included.

  1. City of Boulder - EnergySmart Commercial Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility Commercial Industrial Nonprofit Multifamily Residential Institutional Savings Category Solar Photovoltaics Dishwasher Lighting Lighting ControlsSensors Furnaces...

  2. NW Natural (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Energy Trust of Oregon administers energy efficiency rebate programs for both residential and commercial customers of NW Natural in Washington. Interested customers can see the program website...

  3. Grays Harbor PUD- Non-Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Grays Harbor PUD's Non-Residential Rebate Program offers financial incentives to its small and large commercial customers, agricultural customers, industrial customers, and institutional customers...

  4. Wells Public Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    SMMPA develops innovative products and services to help them deliver value to customers. With help from SMMPA, Wells Public Utilities provides incentives for residential and commercial customers ...

  5. Saint Peter Municipal Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Develops innovative products and services to help them deliver value to customers. With help from SMMPA, Saint Peter Municipal Utilities provides incentives for its residential and commercial cus...

  6. AEP Appalachian Power- Non-Residential Prescriptive Rebate Program

    Broader source: Energy.gov [DOE]

    The Appalachian Power Commercial and Industrial Standard Program helps non-residential customers implement standard energy efficiency projects through financial incentives to offset project costs....

  7. Campo Net Meter Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Campo Net Meter Project Michael Connolly Miskwish, MA EconomistEngineer Campo Kumeyaay Nation Location map Tribal Energy Planning Current 50 MW project Proposed 160 MW ...

  8. Fort Collins Utilities- Residential Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Fort Collins Utilities offers a number of appliance and recycling rebates to residential and small commercial customers. The appliance rebate program offers a $50 rebate for Energy Star rated...

  9. New York Price of Natural Gas Sold to Commercial Consumers (Dollars...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pages: Average Commercial Price New York Average Price of Natural Gas Delivered to Residential and Commercial Consumers by Local Distribution and Market Average Commercial...

  10. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",1978.416,1536.71,1129.19,790.74 "Residential",1053.345,734.319,529.795,362.404 "Commercial",625.514,524.977,307.782,214.282 "Industrial",299.557,277.413,291.565,214.033 "Transportation",0,0,0,0 "Customers",232747,158940,115139,85835 "Residential",222803,150663,108722,80994

  11. UES (Gas)- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    UniSource Energy Services (UES) offers the Commercial Energy Solutions Program for non-residential gas customers to install energy efficient equipment. Incentives are provided for qualified...

  12. DC attenuation meter

    DOE Patents [OSTI]

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  13. Electricity Submetering on the Cheap: Stick-on Electricity Meters

    SciTech Connect (OSTI)

    Lanzisera, Steven; Lorek, Michael; Pister, Kristofer

    2014-08-17

    We demonstrate a low-cost, 21 x 12 mm prototype Stick-on Electricity Meter (SEM) to replace traditional in-circuit-breaker-panel current and voltage sensors for building submetering. A SEM sensor is installed on the external face of a circuit breaker to generate voltage and current signals. This allows for the computation of real and apparent power as well as capturing harmonics created by non-linear loads. The prototype sensor is built using commercially available components, resulting in a production cost of under $10 per SEM. With no highvoltage install work requiring an electrician, home owners or other individuals can install the system in a few minutes with no safety implications. This leads to an installed system cost that is much lower than traditional submetering technology.. Measurement results from lab characterization as well as a real-world residential dwelling installation are presented, verifying the operation of our proposed SEM sensor. The SEM sensor can resolve breaker power levels below 10W, and it can be used to provide data for non-intrusive load monitoring systems at full sample rate.

  14. Idaho Power- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    In July 2013, the PUC issued an order in response to Idaho Power's application to modify its net metering program. The ruling removed a previously existing service capacity cap of 2.9 MW and chan...

  15. Lesson Plan: Power Metering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Metering Project Grades: 9-12 Topic: Energy Basics Owner: ACTS This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency and...

  16. EWEB- Net Metering

    Broader source: Energy.gov [DOE]

    The Eugene Water and Electric Board (EWEB) offers net metering for customers with renewable energy generation systems with an installed capacity of 25 kW or less. Eligible systems use solar power,...

  17. Guam- Net Metering

    Broader source: Energy.gov [DOE]

    Note: As of October 2015, the net metering program had around 700 customers. According to the Guam Daily Post, the program is expected to reach the current 1,000-customer cap in mid-2016. This cap...

  18. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",0.51,0.27,0.17,0.01 "Residential",0.362,0.157,0.1,0.005 "Commercial",0.129,0.082,0.041,0.008 "Industrial",0.019,0.028,0.028,0.002 "Transportation",0,0,0,0 "Customers",90,62,39,5 "Residential",68,44,27,3 "Commercial",19,14,8,1 "Industrial",3,4,4,1 "Transportation",0,0,0,0

  19. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",64.026,37.39,30.61,3.98 "Residential",25.608,16.666,13.336,1.465 "Commercial",35.816,19.387,15.931,1.371 "Industrial",2.602,1.345,1.345,1.145 "Transportation",0,0,0,0 "Customers",4461,3092,2471,278 "Residential",3923,2643,2107,247 "Commercial",522,437,353,22 "Industrial",16,12,11,9

  20. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",22.224,19.05,14.1,8.52 "Residential",8.361,6.918,5.043,3.523 "Commercial",11.858,10.184,7.13,4.533 "Industrial",2.005,1.932,1.926,0.465 "Transportation",0,0,0,0 "Customers",1617,1246,919,783 "Residential",1372,1049,780,651 "Commercial",231,189,133,112 "Industrial",14,8,6,20

  1. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",7.664,5.44,3.55,1.71 "Residential",4.141,2.841,1.829,0.94 "Commercial",3.523,2.603,1.72,0.765 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Customers",1124,638,418,276 "Residential",1049,586,389,256 "Commercial",75,52,29,20 "Industrial",0,0,0,0 "Transportation",0,0,0,0

  2. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",59.797,43.82,31.65,20.13 "Residential",27.648,20.99,17.278,11.39 "Commercial",31.865,22.754,14.283,8.709 "Industrial",0.284,0.06,0.06,0 "Transportation",0,0,0,0 "Customers",6656,5239,3862,2699 "Residential",5175,4167,3263,2369 "Commercial",1477,1070,597,330 "Industrial",4,2,2,0

  3. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",9.614,7.94,4.8,2.74 "Residential",2.929,2.066,2.692,2.107 "Commercial",5.058,4.468,1.78,0.62 "Industrial",1.627,1.413,0.311,0 "Transportation",0,0,0,0 "Customers",690,556,342,193 "Residential",509,398,249,144 "Commercial",165,145,89,49 "Industrial",16,13,4,0 "Transportation",0,0,0,0

  4. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",2.836,2.22,1.57,0.31 "Residential",1.37,1.016,0.594,0.212 "Commercial",1.466,1.186,0.94,0.106 "Industrial",0,0.001,0.032,0.001 "Transportation",0,0,0,0 "Customers",428,349,207,76 "Residential",331,265,180,66 "Commercial",97,83,24,9 "Industrial",0,1,3,1 "Transportation",0,0,0,0

  5. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",5.167,4.35,2.74,1.05 "Residential",2.88,2.626,1.808,0.75 "Commercial",2.157,1.725,0.938,0.301 "Industrial",0.13,0,0,0 "Transportation",0,0,0,0 "Customers",716,682,506,233 "Residential",535,544,414,210 "Commercial",178,138,92,23 "Industrial",3,0,0,0 "Transportation",0,0,0,0

  6. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",3.331,2.19,1.32,0.56 "Residential",2.223,1.127,0.716,0.366 "Commercial",1.082,1.06,0.602,0.168 "Industrial",0.026,0.01,0,0.005 "Transportation",0,0,0,0 "Customers",551,335,238,131 "Residential",454,260,180,90 "Commercial",95,74,58,40 "Industrial",2,1,0,1 "Transportation",0,0,0,0

  7. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",5.998,1.77,0.65,9.43 "Residential",2.885,0.794,0.268,9.289 "Commercial",2.91,0.947,0.373,0.116 "Industrial",0.203,0.036,0,0 "Transportation",0,0,0,0 "Customers",534,148,79,65 "Residential",388,111,59,49 "Commercial",136,35,20,16 "Industrial",10,2,0,0 "Transportation",0,0,0,0

  8. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",1.36,0.92,0.61,0 "Residential",0.576,0.324,0.206,0.004 "Commercial",0.784,0.588,0.405,0 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Customers",164,106,76,2 "Residential",124,75,49,2 "Commercial",40,31,27,0 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Wind",,,,

  9. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",2.838,1.37,1.14,0.51 "Residential",1.842,0.534,0.397,0.23 "Commercial",0.996,0.83,0.733,0.282 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Customers",330,254,208,122 "Residential",284,221,180,100 "Commercial",46,33,28,22 "Industrial",0,0,0,0 "Transportation",0,0,0,0

  10. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",51.156,23.19,8.44,6.25 "Residential",48.69,21.418,7.73,5.521 "Commercial",2.466,1.755,0.697,0.716 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Customers",9569,3899,1287,1656 "Residential",9111,3835,1245,1512 "Commercial",458,64,42,144 "Industrial",0,0,0,0 "Transportation",0,0,0,0

  11. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",7.74,5.04,5.95,2.57 "Residential",5.696,3.558,4.263,1.907 "Commercial",2.018,1.464,1.687,0.655 "Industrial",0.026,0.026,0,0 "Transportation",0,0,0,0 "Customers",1344,967,683,446 "Residential",1210,850,584,379 "Commercial",133,116,99,67 "Industrial",1,1,0,0 "Transportation",0,0,0,0

  12. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",105.226,65.82,36.92,11.06 "Residential",36.071,22.582,11.629,5.159 "Commercial",66.138,42.245,24.284,5.891 "Industrial",3.017,1,1,0 "Transportation",0,0,0,0 "Customers",6596,4146,2456,1155 "Residential",6066,3734,2236,1051 "Commercial",526,411,219,104 "Industrial",4,1,1,0

  13. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",11.493,8.69,5.54,3.42 "Residential",6.351,4.86,3.581,2.837 "Commercial",4.63,3.724,1.913,0.54 "Industrial",0.512,0.103,0.047,0.033 "Transportation",0,0,0,0 "Customers",1299,996,769,383 "Residential",1032,807,624,331 "Commercial",254,184,142,48 "Industrial",13,5,3,4

  14. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",11.21,8.87,4.07,8.13 "Residential",4.99,3.851,2.302,5.203 "Commercial",5.74,4.484,1.505,2.774 "Industrial",0.48,0.52,0.25,0.114 "Transportation",0,0,0,0 "Customers",1172,970,613,608 "Residential",877,723,487,489 "Commercial",279,230,117,107 "Industrial",16,17,9,12

  15. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",6.077,0.04,0.03,0 "Residential",1.077,0.036,0.024,0 "Commercial",2,0,0,0 "Industrial",3,0,0,0 "Transportation",0,0,0,0 "Customers",50,5,4,0 "Residential",24,5,4,0 "Commercial",22,0,0,0 "Industrial",4,0,0,0 "Transportation",0,0,0,0 "Wind",,,, "Capacity

  16. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",42.797,14.7,4.31,1.21 "Residential",21.508,6.129,1.602,0.786 "Commercial",21.115,8.547,2.693,0.424 "Industrial",0.174,0.03,0,0 "Transportation",0,0,0,0 "Customers",2930,1260,512,200 "Residential",1929,834,345,167 "Commercial",994,425,167,33 "Industrial",7,1,0,0

  17. Best Management Practice #11: Commercial Kitchen Equipment

    Broader source: Energy.gov [DOE]

    Commercial kitchen equipment can be a significant water use in the non-residential sector. Water efficiency for commercial kitchen equipment is especially important because high-volume applications...

  18. Residential Marketing Toolkit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  19. Residential Absorption Water Heater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Absorption Water Heater 2014 Building Technologies Office Peer Review Kyle ... Target MarketAudience: Residential gas water heating Key Partners: GE CRADA partner SRA ...

  20. residential-lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Progress Report Evaluation Utility Toolkit Residential Lighting Market Research The Residential Lighting Market Research Project will estimate market savings from...

  1. Liquid metal Flow Meter - Final Report

    SciTech Connect (OSTI)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  2. Schlumberger Electricity Metering | Open Energy Information

    Open Energy Info (EERE)

    Electricity Metering Jump to: navigation, search Name: Schlumberger Electricity Metering Place: Oconee, South Carolina Product: Manufacturer of electricity meters. Coordinates:...

  3. Neutron dose equivalent meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Hsu, Hsiao-Hua (Los Alamos, NM); Casson, William H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM); Kleck, Jeffrey H. (Menlo Park, CA); Beverding, Anthony (Foster City, CA)

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  4. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  5. Electric Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Metering Electric Metering Saving Money by Saving Energy The Department of Energy has installed meters in the James Forrestal Building that will enable DOE to measure electricity use and costs in its headquarters facility. You may explore this data further by visiting our Forrestal Metering Dashboard at the following website: http://forrestal.nrel.gov The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power

  6. Residential Buildings Integration Program

    Broader source: Energy.gov [DOE]

    Residential Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

  7. Flow metering valve

    DOE Patents [OSTI]

    Blaedel, K.L.

    1983-11-03

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  8. Flow metering valve

    DOE Patents [OSTI]

    Blaedel, Kenneth L. (Dublin, CA)

    1985-01-01

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  9. Period meter for reactors

    DOE Patents [OSTI]

    Rusch, Gordon K.

    1976-01-06

    An improved log N amplifier type nuclear reactor period meter with reduced probability for noise-induced scrams is provided. With the reactor at low power levels a sampling circuit is provided to determine the reactor period by measuring the finite change in the amplitude of the log N amplifier output signal for a predetermined time period, while at high power levels, differentiation of the log N amplifier output signal provides an additional measure of the reactor period.

  10. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the limit on individual system size from 100 kilowatts (kW) to 1 MW . Net Excess Generation: The District's net-metering rules specify that metering equipment must be capable...

  11. Montana Electric Cooperatives- Net Metering

    Broader source: Energy.gov [DOE]

    The Montana Electric Cooperatives' Association (MECA) adopted model interconnection guidelines in 2001 and a revised net-metering policy in September 2008. Net metering is available in whole or...

  12. Washington City Power- Net Metering

    Broader source: Energy.gov [DOE]

    Washington City adopted a net-metering program, including interconnection procedures, in January 2008, and updated the policy in December 2014.* Net metering is available to any customer of...

  13. Cowlitz County PUD- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Cowlitz County PUD offers the Commercial Energy Efficiency Program (CEEP) for non-residential customers to improve the efficiency of facilities. The program offers incentives on lighting, custom...

  14. EA-2001: Energy Efficiency Standards for New Federal Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings' Baseline Standards Update (RIN 1904-AD39) EA-2001: Energy Efficiency...

  15. Lodi Electric Utility- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility (LEU) offers energy efficiency incentives to eligible commercial and multifamily residential customers. More information regarding the rebate programs, including application...

  16. Chicopee Electric Light- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Chicopee Electric Light Department (CELD) is participating in the Massachusetts Municipal Whoesale Electric Company's Green Opportunity Proagram to encourage non-residential, commercial, and...

  17. Meters Roads N Streams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Meters Roads N Streams o Openwells E3i APT Site *. TES Plants (1) E2J Other Set-Asides lEI] Hydric Soils . 370 o 370 Soils Soil Series and Phase DBaB DBaC .Pk .TrB DTrC DTrD .TuE !iii TuF 740 Compartment 52 Compartment 53 N A sc Figure 5-1. Area. Plant communities and soils associated with the Oak Hickory Forest #1 Set-Aside 5-7 Set-Aside 5: Oak-Hickory Forest 1

  18. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  19. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  20. EA-1892: Direct Final Rule Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners & Heat Pumps

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to adopt energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential air conditioners and heat pumps, as required by the Energy Policy and Conservation Act, as amended (42 U.S.C. 6291 et seq.)

  1. Residential Solar Investment Program

    Broader source: Energy.gov [DOE]

    In March 2012, the CT Green Bank* unveiled its solar photovoltaic residential investment program with the ultimate goal to support 30 megawatts of residential solar photovoltaics (PV). HB 6838...

  2. Leasing Residential PV Systems

    SciTech Connect (OSTI)

    Rutberg, Michael; Bouza, Antonio

    2013-11-01

    The article discusses the adoption, consequences and current market status of the leasing of residential photovoltaic systems. It addresses attributed energy savings and market potential of residential system leasing.

  3. Residential Energy Consumption Survey:

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... ...*...,,.<,<,...,,.,,.,,. 97 Table 6. Residential Fuel Oil and Kerosene Consumption and Expenditures April 1979 Through March 1980 Northeast...

  4. Residential Buildings Integration (RBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Energy Efficiency and Renewable Energy eere.energy.gov David Lee Program Manager Residential Buildings Integration (RBI) April 22, 2014 Residential Buildings Integration (RBI) Mission/Vision The Residential Buildings Integration (RBI) program's mission: To accelerate energy performance improvements in residential buildings by developing, demonstrating, and deploying a suite of cost-effective technologies, tools, and solutions to achieve peak performance in new and existing homes. RBI Vision,

  5. Better Buildings Residential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential 2014 Building Technologies Office Peer Review Danielle Sass Byrnett danielle.byrnett@ee.doe.gov U.S. Department of Energy 2 Project Summary: Better Buildings Residential (BBR) Timeline: Start date: FY11 Planned end date: ongoing Key Milestones 1. Better Buildings Neighborhood Program, Fall 2010 2. Home Energy Score, 2011 3. Home Performance with ENERGY STAR to DOE, Oct. 2011 4. Better Buildings Residential Network, April 2013 5. Better Buildings Residential Program Solution Center

  6. Clallam County PUD- Residential and Small Business Solar Loan Program

    Broader source: Energy.gov [DOE]

    In conjunction with First Federal Savings and Loan, Clallam County PUD offers residential and small commercial customers a low-interest loan program for the purchase of solar photovoltaic systems....

  7. Net Metering Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Net Metering Resources Net Metering Resources State net metering policies allow customers to produce onsite electricity and sell excess generation to the utility at a set price,...

  8. Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings

    SciTech Connect (OSTI)

    Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan; Burch, Gabriel

    2011-10-13

    An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the ‘direct-DC house’ with respect to today’s typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative of the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sector—because of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolation—this paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.

  9. Percentage of Total Natural Gas Residential Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S.

  10. WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California

  11. Benefits of Better Buildings Residential Network Reporting |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Better Buildings Residential Network Orientation Better Buildings Residential Network Orientation Webinar Nothing But Networking for Residential Network Members...

  12. National Grid (Electric) - Residential Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility Residential InstallersContractors Multifamily Residential Low Income Residential Savings Category RefrigeratorsFreezers Equipment Insulation Water Heaters...

  13. National Grid (Electric) - Residential Energy Efficiency Incentive...

    Broader source: Energy.gov (indexed) [DOE]

    Construction Residential Multifamily Residential Low Income Residential Savings Category RefrigeratorsFreezers Dehumidifiers Water Heaters Lighting Heat Pumps Air conditioners...

  14. Optional Residential Program Benchmarking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optional Residential Program Benchmarking Optional Residential Program Benchmarking Better Buildings Residential Network Data and Evaluation Peer Exchange Call Series: Optional ...

  15. Metering Technology Corporation | Open Energy Information

    Open Energy Info (EERE)

    Technology Corporation Jump to: navigation, search Name: Metering Technology Corporation Place: Scotts Valley, California Product: Engineering related to communicating meters....

  16. Electric Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power outlets. The purpose is to measure the ...

  17. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of retail renewable distributed generation and net metering. Details will be posted once a final order is issued. Eligibility and Availability In December 2005 the Colorado...

  18. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    who generate electricity using solar, wind, hydroelectric, geothermal, biomass, biogas, combined heat and power, or fuel cell technologies.* A net metering facility must be...

  19. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Anaerobic Digestion Fuel Cells using Renewable Fuels Program Info Sector Name State State North Carolina Program Type Net Metering Summary The North Carolina Utilities Commission...

  20. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    after 12312014) are eligible. Net-metered systems must be intended primarily to offset part or all of a customer's electricity requirements. Public utilities may not limit...

  1. UES (Electric)- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    UniSource Energy Services (UES) offers the Commercial Energy Solutions Program for non-residential electric customers to upgrade existing equipment with more energy efficient measures. Rebates are...

  2. West Penn Power SEF Commercial Loan Program

    Broader source: Energy.gov [DOE]

    The West Penn Power Sustainable Energy Fund (WPPSEF) promotes the use of renewable energy and clean energy among commercial, industrial, institutional and residential customers in the West Penn m...

  3. NW Natural (Gas)- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Energy Trust of Oregon administers energy efficiency rebate programs for both residential and commercial customers of NW Natural in Washington. To be eligible for the commercial gas rebate program,...

  4. Evaluation of evolving residential electricity tariffs

    SciTech Connect (OSTI)

    Lai, Judy; DeForest, Nicholas; Kiliccote, Sila; Stadler, Michael; Marnay, Chris; Donadee, Jon

    2011-03-22

    Residential customers in California's Pacific Gas and Electric (PG&E) territory have seen several electricity rate structure changes in the past decade. A relatively simple two-tiered pricing system (charges by usage under/over baseline for the home's climate zone) was replaced in the summer of 2001 by a more complicated five-tiered system (usage below baseline and up to 30percent, 100percent, 200percent, and 300percent+ over baseline). In 2009, PG&E began the process of upgrading its residential customers to Smart Meters and laying the groundwork for time of use pricing, due to start in 2011. This paper examines the history of the tiered pricing system, discusses the problems the utility encountered with its Smart Meter roll out, and evaluates the proposed dynamic pricing incentive structures. Scenario analyses of example PG&E customer bills will also be presented. What would these residential customers pay if they were still operating under a tiered structure, and/or if they participated in peak hour reductions?

  5. Average Commercial Price

    Gasoline and Diesel Fuel Update (EIA)

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From

  6. Average Commercial Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  7. Wavelength meter having elliptical wedge

    DOE Patents [OSTI]

    Hackel, R.P.; Feldman, M.

    1992-12-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10[sup 8]. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing. 7 figs.

  8. Strategy Guideline: High Performance Residential Lighting

    SciTech Connect (OSTI)

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  9. Energy Simulator Residential Buildings

    Energy Science and Technology Software Center (OSTI)

    1992-02-24

    SERI-RES performs thermal energy analysis of residential or small commercial buildings and has the capability of modeling passive solar equipment such as rock beds, trombe walls, and phase change material. The analysis is accomplished by simulation. A thermal model of the building is created by the user and translated into mathematical form by the program. The mathematical equations are solved repeatedly at time intervals of one hour or less for the period of simulation. Themore » mathematical representation of the building is a thermal network with nonlinear, temperature-dependent controls. A combination of forward finite differences, Jacobian iteration, and constrained optimization techniques is used to obtain a solution. An auxiliary interactive editing program, EDITOR, is included for creating building descriptions. EDITOR checks the validity of the input data and also provides facilities for storing and referencing several types of building description files. Some of the data files used by SERI-RES need to be implemented as direct-access files. Programs are included to convert sequential files to direct-access files and vice versa.« less

  10. Residential Building Activities

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building...

  11. Residential Building Audits and Retrofits

    Broader source: Energy.gov [DOE]

    This presentation covers local, regional, and national efforts to promote energy efficiency in residential buildings, programmatic elements of residential building audit and retrofit programs, and resources that you can access to address residential retrofit issues.

  12. Solar Photovoltaic Financing: Residential Sector Deployment

    SciTech Connect (OSTI)

    Coughlin, J.; Cory, K.

    2009-03-01

    This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

  13. Residential Retrofit Program Design Guide

    Broader source: Energy.gov [DOE]

    This Residential Retrofit Program Design Guide focuses on the key elements and design characteristics of building and maintaining a successful residential retrofit program.

  14. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    8, 2015 Residential propane price increases The average retail price for propane is $1.91 per gallon, up 1.4 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.39 per gallon, up 1 cent from last week, and down 55.3

  15. ConEd (Electric)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Commercial and Industrial Equipment Rebate and Custom Efficiency Programs offer incentives to directly metered electric customers in good standing who contribute to the system benefits charge ...

  16. Grays Harbor PUD- Net Metering

    Broader source: Energy.gov [DOE]

    Washington's original net-metering law, which applies to all electric utilities, was enacted in 1998 and amended in 2006. Individual systems are limited to 100 kilowatts (kW) in capacity. Net...

  17. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable energy facilities established on military property for on-site military consumption may net meter for systems up to 2.2 megawatts (MW, AC). Aggregate Capacity Limit...

  18. Valley Electric Association- Net Metering

    Broader source: Energy.gov [DOE]

    The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

  19. Healthcare Energy Metering Guidance (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This brochure is intended to help facility and energy managers plan and prioritize investments in energy metering. It offers healthcare-specific examples of metering applications, benefits, and steps that other health systems can reproduce. It reflects collaborative input from the U.S. Department of Energy national laboratories and the health system members of the DOE Hospital Energy Alliance's Benchmarking and Measurement Project Team.

  20. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  1. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  2. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  3. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  4. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

  5. Draft Environmental Assessment for Direct Final Rule, 10 CFR 434, "Energy Standards for New Federal Commercial and High-Rise High-Rise Multi-FamilyResidential Buildings" and 10 CFR 435, "Energy Efficiency Standards for New Federal Residential Low-Rise Re

    Office of Environmental Management (EM)

    DRAFT ENVIRONMENTAL ASSESSMENT FOR Final Rule, 10 CFR Part 435, "Energy Efficiency Standards for New Federal Low-Rise Residential Buildings' Baseline Standards Update" (RIN 1904-AD56) (DOE/EA-2020) Prepared by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy January 11, 2016 1 ABBREVIATIONS AND ACRONYMS CAIR Clean Air Interstate Rule CAP Climate Action Plan CEQ Council on Environmental Quality CFR Code of Federal Regulations CH 4 methane CO 2 carbon

  6. Insert metering plates for gas turbine nozzles

    DOE Patents [OSTI]

    Burdgick, Steven S.; Itzel, Gary; Chopra, Sanjay; Abuaf, Nesim; Correia, Victor H.

    2004-05-11

    The invention comprises a metering plate which is assembled to an impingement insert for use in the nozzle of a gas turbine. The metering plate can have one or more metering holes and is used to balance the cooling flow within the nozzle. A metering plate with multiple holes reduces static pressure variations which result from the cooling airflow through the metering plate. The metering plate can be assembled to the insert before or after the insert is inserted into the nozzle.

  7. Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven Heat Pump for the Residential Sector

    Energy Savers [EERE]

    Engine-Driven Heat Pump for the Residential Sector Introduction Building on previous work on an 11-ton packaged natural gas heat pump, this project will develop hardware and software for engine and system controls for a residential gas heat pump system that will provide space cooling, heating, and hot water. Various electric heat pump systems are used to provide heating and cooling for a wide range of buildings, from commercial fa- cilities to single family homes. The market for heat pumps is

  8. Net Metering and Market Feedback Loops: Exploring the Impact of Retail Rate Design on Distributed PV Deployment

    SciTech Connect (OSTI)

    Darghouth, Naïm R.; Wiser, Ryan; Barbose, Galen; Mills, Andrew

    2015-01-13

    The substantial increase in deployment of customer-sited solar photovoltaics (PV) in the United States has been driven by a combination of steeply declining costs, financing innovations, and supportive policies. Among those supportive policies is net metering, which in most states effectively allows customers to receive compensation for distributed PV generation at the full retail electricity price. The current design of retail electricity rates and the presence of net metering have elicited concerns that the possible under-recovery of fixed utility costs from PV system owners may lead to a feedback loop of increasing retail prices that accelerate PV adoption and further rate increases. However, a separate and opposing feedback loop could offset this effect: increased PV deployment may lead to a shift in the timing of peak-period electricity prices that could reduce the bill savings received under net metering where time-varying retail electricity rates are used, thereby dampening further PV adoption. In this paper, we examine the impacts of these two competing feedback dynamics on U.S. distributed PV deployment through 2050 for both residential and commercial customers, across states. Our results indicate that, at the aggregate national level, the two feedback effects nearly offset one another and therefore produce a modest net effect, although their magnitude and direction vary by customer segment and by state. We also model aggregate PV deployment trends under various rate designs and net-metering rules, accounting for feedback dynamics. Our results demonstrate that future adoption of distributed PV is highly sensitive to retail rate structures. Whereas flat, time-invariant rates with net metering lead to higher aggregate national deployment levels than the current mix of rate structures (+5% in 2050), rate structures with higher monthly fixed customer charges or PV compensation at levels lower than the full retail rate can dramatically erode aggregate customer adoption of PV (from -14% to -61%, depending on the design). Moving towards time-varying rates, on the other hand, may accelerate near- and medium-term deployment (through 2030), but is found to slow adoption in the longer term (-22% in 2050).

  9. CBEI - Virtual Refrigerant Charge Sensing and Load Metering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Refrigerant Charge Sensing and Load Metering 2015 Building Technologies Office Peer Review Jim Braun, jbraun@purdue.edu CBEI/Purdue University Project Summary Timeline: Start date: 5/1/2014 Planned end date: 4/30/2016 Key Milestones 1. Accuracy of virtual charge sensor, 4/30/15 2. Accuracy of virtual BTU meter, 4/30/15 Budget: Total DOE $ to date: $400,000 Total future DOE $: $140,000 Target Market/Audience: Commercial buildings with either rooftop units (RTUs) or built-up air-handling

  10. Residential Energy Tax Credit

    Broader source: Energy.gov [DOE]

    Note: ODOE filed new permanent rules for the Residential Energy Tax Credit program. The rule changes include a 50 percent incentive cap for all category one eligible devices (as specified under HB...

  11. Residential New Construction Program

    Broader source: Energy.gov [DOE]

    The Residential New Construction Program includes two levels that can be achieved by completing various energy efficiency measures: Base Level and High Performance Level. Projects meeting the req...

  12. TES for Residential Settings

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Bouza, Antonio

    2013-07-31

    The article discusses thermal energy storage approaches for residential buildings. This article addresses both brick bank storage and phase change material technologies. The energy savings and market potential of these thermal energy storage methods are reviewed as well.

  13. Residential | Open Energy Information

    Open Energy Info (EERE)

    used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy consumption. The residential sector accounted for 57 percent of that energy use and the...

  14. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 4.1 cents from a week ago to 2.89 per gallon, based on the residential heating fuel survey by the...

  15. Best Management Practice #11: Commercial Kitchen Equipment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 1: Commercial Kitchen Equipment Best Management Practice #11: Commercial Kitchen Equipment Commercial kitchen equipment can be a significant water use in the non-residential sector. Water efficiency for commercial kitchen equipment is especially important because high-volume applications typically use mostly hot water. Ensuring that commercial kitchen equipment uses water efficiently affords both significant water and energy savings. Water-using commercial kitchen equipment includes:

  16. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    8, 2015 Residential propane price decreases The average retail price for propane is $2.34 per gallon, down 1.7 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.85 per gallon, down 1.2 cents from last week, and down 63.2

  17. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    6, 2014 Residential propane price decreases The average retail price for propane fell to $3.48 per gallon, down 15.9 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 3.06 a gallon, down 24.8 cents from last week, but up $1.28 from a year ago. This is Marcela Rourk, with EIA, in Washington.

  18. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    05, 2014 Residential propane price decreases The average retail price for propane fell to $2.40 per gallon, down 1.2 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.95 per gallon, up 8-tenths of a cent from last week, and down 1.9

  19. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price virtually unchanged The average retail price for propane is $2.03 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.48 per gallon, down 1-tenths of a cent from last week, and down 39.8

  20. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is $2.03 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.48 per gallon, down 6-tenths of a cent from last week, and down 40 cents

  1. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is $2.03 per gallon, down 2-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.47 per gallon, down 6-tenths of a cent from last week, and down 41 cents

  2. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    4, 2015 Residential propane price increases The average retail price for propane is $2.36 per gallon, up half of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.88 per gallon, down 1-tenth of a cent from last week, and down 90.5

  3. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is $2.02 per gallon, down 5-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.46 per gallon, down 7-tenths of a cent from last week, and down 40 cents

  4. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane virtually unchanged The average retail price for propane is $2.02 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.46 per gallon, up 1-tenth of a cent from last week, and down 38.8

  5. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is $1.91 per gallon, down 6.7 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.40 per gallon, down 1.6 cents from last week, and down 49.5 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  6. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    1, 2015 Residential propane price increases The average retail price for propane is $1.90 per gallon, up 2-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.38 per gallon, up 1.1 cents from last week, and down 53 cents from a year ago. This is Marcela Rourk

  7. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    4, 2015 Residential propane price increases The average retail price for propane is $1.92 per gallon, up 1.4 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.42 per gallon, up 2.6 cents from last week, and down 53.2

  8. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is $1.92 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.40 per gallon, down 1.2 cents from last week, and down 54.8 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  9. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    8, 2015 Residential propane price increases The average retail price for propane is $1.94 per gallon, up 2 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.42 per gallon, up 1 cent from last week, and down 52.8 cents from a year ago.

  10. Residential propane prices decreases

    Gasoline and Diesel Fuel Update (EIA)

    5, 2014 Residential propane prices decreases The average retail price for propane fell to $3.89 per gallon, that's down 11.9 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 3.83 a gallon, down 36.8 cents from last week, but up $2.05 from a year ago. This is Amerine Woodyard

  11. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    5, 2014 Residential propane price decreases The average retail price for propane fell to $3.30 per gallon, down 17.5 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.78 a gallon, down 27.9 cents from last week, but up 99.3

  12. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    2, 2014 Residential propane price decreases The average retail price for propane fell to $3.17 per gallon, down 13.1 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.60 a gallon, down 18.5 cents from last week, but up 88.1

  13. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    9, 2014 Residential propane price decreases The average retail price for propane fell to $3.08 per gallon, down 8.6 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.48 a gallon, down 10.7 cents from last week, but up 69.7

  14. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solar Valuation Rates Karl R. Rábago Rábago Energy LLC 1 The Ideal Residential Solar Tariff ‣ Fair to the utility and non-solar customers ‣ Fair compensation to the solar customer ‣ Decouple compensation from incentives ‣ Align public policy goals (decouple compensation from consumption) ‣ Intuitively sound and administratively simple 2 Historical Antecedents ‣ Externalities ‣ Price ≠ Cost ‣ Green Power ‣ Small Is Profitable (http://www.smallisprofitable.org/)

  15. Fact Sheet: Better Buildings Residential Network | Department...

    Energy Savers [EERE]

    Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network, increasing the number of...

  16. Electricity savings potentials in the residential sector of Bahrain

    SciTech Connect (OSTI)

    Akbari, H.; Morsy, M.G.; Al-Baharna, N.S.

    1996-08-01

    Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

  17. Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use) | Department of Energy Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy. PDF icon Download the Federal Building

  18. DOE Publishes New Report on the Performance of Flicker Meters | Department

    Office of Environmental Management (EM)

    of Energy New Report on the Performance of Flicker Meters DOE Publishes New Report on the Performance of Flicker Meters February 23, 2016 - 9:46am Addthis The U.S. Department of Energy (DOE) has published a report on the performance of newly commercially available flicker meters. The purpose of the study was simply to report on the availability and performance of these meters. Flicker is garnering increased attention across the lighting community, and gaining a better understanding of why

  19. UTILITYID","UTILNAME","STATE_CODE","YEAR","MONTH","RESIDENTIAL REVENUES ($1,000)

    U.S. Energy Information Administration (EIA) Indexed Site

    STATE_CODE","YEAR","MONTH","RESIDENTIAL REVENUES ($1,000)","RESIDENTIAL SALES (MWh)","RESIDENTIAL CUSTOMERS","COMMERCIAL REVENUES ($1,000)","COMMERCIAL SALES (MWh)","COMMERCIAL CUSTOMERS","INDUSTRIAL REVENUES ($1,000)","INDUSTRIAL SALES (MWh)","INDUSTRIAL CUSTOMERS","TRANSPORTATION REVENUES ($1,000)","TRANSPORTATION SALES (MWh)","TRANSPORTATION

  20. Advanced Metering Infrastructure Security Considerations | Department of

    Energy Savers [EERE]

    Energy Metering Infrastructure Security Considerations Advanced Metering Infrastructure Security Considerations The purpose of this report is to provide utilities implementing Advanced Metering Infrastructure (AMI) with the knowledge necessary to secure that implementation appropriately. We intend that utilities use this report to guide their planning, procurement, roll-out, and assessment of the security of Advanced Metering Infrastructure. PDF icon Advanced Metering Infrastructure Security

  1. WINDExchange: Utility-Scale Land-Based 80-Meter Wind Maps

    Wind Powering America (EERE)

    Maps & Data Printable Version Bookmark and Share Land-Based Utility-Scale Maps Potential Capacity Maps Offshore Wind Maps Community-Scale Maps Residential-Scale Maps Installed Capacity Maps Utility-Scale Land-Based 80-Meter Wind Maps The U.S. Department of Energy provides an 80-meter (m) height, high-resolution wind resource map for the United States with links to state wind maps. States, utilities, and wind energy developers use utility-scale wind resource maps to locate and quantify the

  2. WINDExchange: Puerto Rico and U.S. Virgin Islands 50-Meter Wind Resource

    Wind Powering America (EERE)

    Map Maps & Data Printable Version Bookmark and Share Land-Based Utility-Scale Maps Potential Capacity Maps Offshore Wind Maps Community-Scale Maps Residential-Scale Maps Installed Capacity Maps Puerto Rico and U.S. Virgin Islands 50-Meter Wind Resource Map Puerto Rico and U.S. Virgin Islands wind resource map. Click on the image to view a larger version. Enlarge image This Puerto Rico wind map and the U.S. Virgin Islands wind map shows the wind resource at 50 meters. Download a printable

  3. Research, Development and Demonstration of Micro-CHP Systems for Residential Applications - Phase I

    SciTech Connect (OSTI)

    Robert A. Zogg

    2011-03-14

    The objective of the Micro-CHP Phase I effort was to develop a conceptual design for a Micro-CHP system including: Defining market potential; Assessing proposed technology; Developing a proof-of-principle design; and Developing a commercialization strategy. TIAX LLC assembled a team to develop a Micro-CHP system that will provide electricity and heating. TIAX, the contractor and major cost-share provider, provided proven expertise in project management, prime-mover design and development, appliance development and commercialization, analysis of residential energy loads, technology assessment, and market analysis. Kohler Company, the manufacturing partner, is a highly regarded manufacturer of standby power systems and other residential products. Kohler provides a compellingly strong brand, along with the capabilities in product development, design, manufacture, distribution, sales, support, service, and marketing that only a manufacturer of Kohler's status can provide. GAMA, an association of appliance and equipment manufacturers, provided a critical understanding of appliance commercialization issues, including regulatory requirements, large-scale market acceptance issues, and commercialization strategies. The Propane Education & Research Council, a cost-share partner, provided cost share and aided in ensuring the fuel flexibility of the conceptual design. Micro-CHP systems being commercialized in Europe and Japan are generally designed to follow the household thermal load, and generate electricity opportunistically. In many cases, any excess electricity can be sold back to the grid (net metering). These products, however, are unlikely to meet the demands of the U.S. market. First, these products generally cannot provide emergency power when grid power is lost--a critical feature to market success in the U.S. Even those that can may have insufficient electric generation capacities to meet emergency needs for many U.S. homes. Second, the extent to which net metering will be available in the U.S. is unclear. Third, these products are typically not designed for use in households having forced hot-air heating, which is the dominant heating system in the U.S. The U.S. market will also require a major manufacturer that has the reputation and brand recognition, low-cost manufacturing capability, distribution, sales, and service infrastructure, and marketing power to achieve significant market size with a previously unknown and unproven product. History has proven time and time again that small-to-medium-size manufacturers do not have the resources and capabilities to achieve significant markets with such products. During the Phase I effort, the Team developed a conceptual design for a Micro-CHP system that addresses key DOE and U.S. market needs: (1) Provides emergency power adequate for critical household loads, with none of the key drawbacks associated with typical, low-cost emergency generators, such as liquid fuel storage, inability to power ''hard-wired'' loads, need to run temporary extension cords for plug loads, manual set up required, susceptibility to overload, and risk of failure due to lack of maintenance and infrequent operation; (2) Requires no special skills to install--plumbers, electricians and HVAC technicians will typically have all necessary skills; (3) Can be used with the major residential fuels in the U.S., including natural gas and propane, and can be easily adapted to fuel oil as well as emerging fuels as they become available; and (4) Significantly reduces household energy consumption and energy costs.

  4. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  5. Commercial Weatherization

    Broader source: Energy.gov [DOE]

    Commercial buildings consume 19 percent of the energy used in the U.S. Learn how the Energy Department is supporting research and deployment on commercial weatherization.

  6. Stronger Manufacturers' Energy Efficiency Standards for Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners...

  7. Building America Webinar: National Residential Efficiency Measures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Residential Efficiency Measures Database Unveiled Building America Webinar: National Residential Efficiency Measures Database Unveiled This webinar presented an overview...

  8. Covered Product Category: Residential Electric Resistance Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Covered Product Category: Residential Electric Resistance Water Heaters Covered Product Category: Residential Electric Resistance Water Heaters The Federal Energy Management ...

  9. Better Buildings Residential Network Orientation Webinar | Department...

    Broader source: Energy.gov (indexed) [DOE]

    11, 2014. Call Slides and Discussion Summary More Documents & Publications Better Buildings Residential Network Orientation Better Buildings Residential Network Orientation...

  10. Residential Wood Heating Fuel Exemption

    Broader source: Energy.gov [DOE]

    The New York Department of Taxation and Finance publishes a variety of sales tax reports detailing local tax rates and exemptions, including those for residential energy services. The residential...

  11. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    2, 2014 Residential heating oil prices decline The average retail price for home heating oil is 3.48 per gallon. That's down 4.5 cents from a week ago, based on the residential...

  12. Government Program Briefing: Smart Metering

    SciTech Connect (OSTI)

    Doris, E.; Peterson, K.

    2011-09-01

    This document is adapted and updated from a memo delivered to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the U.S. Department of Energy (DOE) Project Officer in March 2008. This briefing piece provides an overview of the benefits, costs, and challenges of smart metering.

  13. Government Program Briefing: Smart Metering

    Broader source: Energy.gov [DOE]

    This document is adapted and updated from a memo delivered to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the U.S. Department of Energy (DOE) Project Officer in March 2008. This briefing piece provides an overview of the benefits, costs, and challenges of smart metering.

  14. Mode Meter - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Energy Analysis Find More Like This Return to Search Mode Meter Pacific Northwest National Laboratory Contact PNNL About This Technology Technology Marketing Summary Electricity grids have traditionally been monitored using systems based upon dated and slow communications and computational technologies. A large effort is underway in the electricity industry to replace those legacy systems with high-speed and accurate monitoring units call "phasor monitoring units," or PMUs.

  15. Residential Retrofit Design Guide Overview

    Broader source: Energy.gov [DOE]

    This webinar covered the Residential Retrofit Program Design Guide and its elements, including assess, plan, implement, and evaluate.

  16. About Residential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings » About Residential About Residential The Building Technologies Office (BTO) collaborates with home builders, energy professionals, state and local governments, utilities, product manufacturers, educators, and researchers to improve the energy efficiency of both new and existing homes. Residential Sector Activities Include: Demonstrating to builders and remodelers how to build and renovate for high performance through best practice guides and case studies and continuing to

  17. Empire District Electric- Commercial & Industrial Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    The Empire District Electric Company offers a Commercial/Industrial Prescriptive Rebate Program to its non-residential customers in Arkansas who purchase certain high-efficiency equipment for...

  18. PSEG Long Island- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    PSEG Long Island offers a variety of incentives for its non-residential customers to increase the energy efficiency of facilities through the Commercial Efficiency Program. Major renovations of...

  19. Lakeview Light and Power- Commercial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Lakeview Light and Power offers a commercial lighting rebate program. Rebates apply to the installation of energy efficient lighting retrofits in non-residential buildings. The rebate program is...

  20. MICRO-CHP System for Residential Applications

    SciTech Connect (OSTI)

    Joseph Gerstmann

    2009-01-31

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  1. Percentage of Total Natural Gas Commercial Deliveries included in Prices

    Gasoline and Diesel Fuel Update (EIA)

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S.

  2. greenMeter | Open Energy Information

    Open Energy Info (EERE)

    physics engine from the gMeter app, greenMeter computes power, fuel usagecost, crude oil consumption, and carbon emission (data can be shown in US or metric units). Thanks to...

  3. Laser Power Meter Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2002-09-19

    Laser Power Meter integrates the digital output of a Newport 1835-C Laser Energy Meter and inserts the results into the file header of a WinSpec experimental file.

  4. Residential Mechanical Precooling

    SciTech Connect (OSTI)

    German, a.; Hoeschele, M.

    2014-12-01

    This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

  5. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.36 per gallon, down 1 cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.92 per gallon, down 8-tenths of a cent from last week, and down 44.4 cents

  6. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.29 per gallon, down 3.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.80 per gallon, down 2.4 cents from last week

  7. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.32 per gallon, down 2 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.82 per gallon, down 2.4 cents from last week. This is Marcela Rourk,

  8. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.01 per gallon, up 1.2 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.47 per gallon, up 9-tenths of a cent from last week, and down 44.8

  9. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.02 per gallon, up 4-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.48 per gallon, down 1-tenth of a cent from last week, and down 43

  10. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.03 per gallon, up 1 cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.48 per gallon, up 9-tenths of a cent from last week, and down 40.7

  11. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.96 per gallon, up 7-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.43 per gallon, up 1.3 cents from last week, and down 51.7

  12. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.97 per gallon, up 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.44 per gallon, up 7-tenths of a cent from last week, and down 50.

  13. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.98 per gallon, up 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.44 per gallon, up 4-tenths of a cent from last week, and down 49.7

  14. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    propane prices available The average retail price for propane is $1.94 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.40 per gallon. This is Marcela Rourk, with EIA, in Washington.

  15. Metering in Federal Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Maintenance » Metering in Federal Buildings Metering in Federal Buildings The U.S. Department of Energy is required by the Energy Policy Act of 2005 and Executive Order 13693 to establish guidelines for agencies to meter their federal buildings for energy (electricity, natural gas, and steam) and water use. To help agencies meet these metering requirements, the Federal Energy Management Program (FEMP) provides guidance materials, an implementation plan template, and a best practices

  16. Analysis of Bright Harvest Remote Analysis for Residential Solar Installations

    SciTech Connect (OSTI)

    Nangle, John; Simon, Joseph

    2015-06-17

    Bright Harvest provides remote shading analysis and design products for residential PV system installers. The National Renewable Energy Laboratory (NREL) through the NREL Commercialization Assistance Program, completed comparative assessments between on-site measurements and remotely calculated values to validate the accuracy of Bright Harvest’s remote shading and power generation.

  17. Questions Asked during the Financing Residential Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets SERC Photovoltaics for Residential Buildings Webinar...

  18. Residential Retrofit Program Design Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide Residential Retrofit Program Design Guide. PDF icon Residential Retrofit Program Design Guide...

  19. Strategy Guideline. High Performance Residential Lighting

    SciTech Connect (OSTI)

    Holton, J.

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  20. Insights from Smart Meters: The Potential for Peak-Hour Savings from Behavior-Based Programs

    SciTech Connect (OSTI)

    Todd, Annika; Perry, Michael; Smith, Brian; Sullivan, Michael; Cappers, Peter; Goldman, Charles

    2014-03-25

    The rollout of smart meters in the last several years has opened up new forms of previously unavailable energy data. Many utilities are now able in real-time to capture granular, household level interval usage data at very high-frequency levels for a large proportion of their residential and small commercial customer population. This can be linked to other time and locationspecific information, providing vast, constantly growing streams of rich data (sometimes referred to by the recently popular buzz word, “big data”). Within the energy industry there is increasing interest in tapping into the opportunities that these data can provide. What can we do with all of these data? The richness and granularity of these data enable many types of creative and cutting-edge analytics. Technically sophisticated and rigorous statistical techniques can be used to pull interesting insights out of this highfrequency, human-focused data. We at LBNL are calling this “behavior analytics”. This kind of analytics has the potential to provide tremendous value to a wide range of energy programs. For example, highly disaggregated and heterogeneous information about actual energy use would allow energy efficiency (EE) and/or demand response (DR) program implementers to target specific programs to specific households; would enable evaluation, measurement and verification (EM&V) of energy efficiency programs to be performed on a much shorter time horizon than was previously possible; and would provide better insights in to the energy and peak hour savings associated with specifics types of EE and DR programs (e.g., behavior-based (BB) programs). In this series, “Insights from Smart Meters”, we will present concrete, illustrative examples of the type of value that insights from behavior analytics of these data can provide (as well as pointing out its limitations). We will supply several types of key findings, including: • Novel results, which answer questions the industry previously was unable to answer; • Proof-of-concept analytics tools that can be adapted and used by others; and • Guidelines and protocols that summarize analytical best practices. This report focuses on one example of the kind of value that analysis of this data can provide: insights into whether behavior-based (BB) efficiency programs have the potential to provide peak-hour energy savings.

  1. Thermal Profiling of Residential Energy Use

    SciTech Connect (OSTI)

    Albert, A; Rajagopal, R

    2015-03-01

    This work describes a methodology for informing targeted demand-response (DR) and marketing programs that focus on the temperature-sensitive part of residential electricity demand. Our methodology uses data that is becoming readily available at utility companies-hourly energy consumption readings collected from "smart" electricity meters, as well as hourly temperature readings. To decompose individual consumption into a thermal-sensitive part and a base load (non-thermally-sensitive), we propose a model of temperature response that is based on thermal regimes, i.e., unobserved decisions of consumers to use their heating or cooling appliances. We use this model to extract useful benchmarks that compose thermal profiles of individual users, i.e., terse characterizations of the statistics of these users' temperature-sensitive consumption. We present example profiles generated using our model on real consumers, and show its performance on a large sample of residential users. This knowledge may, in turn, inform the DR program by allowing scarce operational and marketing budgets to be spent on the right users-those whose influencing will yield highest energy reductions-at the right time. We show that such segmentation and targeting of users may offer savings exceeding 100% of a random strategy.

  2. YEAR","MONTH","STATE","UTILITY_ID","UTILITY_NAME","RESIDENTIAL_GP REVENUES (Tho

    U.S. Energy Information Administration (EIA) Indexed Site

    UTILITY_ID","UTILITY_NAME","RESIDENTIAL_GP REVENUES (Thousand $)","COMMERCIAL_GP REVENUES (Thousand $)","INDUSTRIAL_GP REVENUES (Thousand $)","TRANS_GP REVENUES (Thousand $)","TOTAL_GP REVENUES (Thousand $)","RESIDENTIAL_GP SALES (MWh)","COMMERCIAL_GP SALES (MWh)","INDUSTRIAL_GP SALES (MWh)","TRANS_GP SALES (MWh)","TOTAL_GP SALES (MWh)","RESIDENTIAL_GP

  3. El Paso Electric - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Website http:www.epelectric.comtxbusinessrollback-net-metering-approved-in-... State Texas Program Type Net Metering Summary El Paso Electric (EPE) has offered net metering to...

  4. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.35 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.92 per gallon, down 3-tenths of a cent from last week, and down 47.9 cents

  5. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.39 per gallon, up 3.9 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.91 per gallon, down 8-tenths of a cent from last week, and down 63.1 cents

  6. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price decrease The average retail price for propane is $2.37 per gallon, down 1.3 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.93 per gallon, down 3-tenths of a cent from last week, and down 39.6 cents

  7. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.38 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.91 per gallon, down 4-tenths of a cent from last week, and down $2.29 cents

  8. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.37 per gallon, down 9-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.89 per gallon, down 1.4 cents from last week, and down $1.93 cents

  9. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.36 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.89 per gallon, down 4-tenths of a cent from last week, and down $1.67 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  10. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.36 per gallon, down 7-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.89 per gallon, down 1.1 cents from last week, and down $1.43 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  11. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.35 per gallon, down 3-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.88 per gallon, down 3-tenths of a cent from last week, and down $1.18 from a year ago. This is Marcela Rourk, with EIA, in Washington.

  12. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.36 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.86 per gallon, down 1.6 cents from last week, and down 72.7 cents from a year ago. This is Marcela Rourk,

  13. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.39 per gallon, down 2.2 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.94 per gallon, down 1.3 cents from last week, and down 17.5 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  14. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.00 per gallon, up 7-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.46 per gallon, up 4-tenths of a cent from last week, and down 46.2

  15. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.02 per gallon, up 5-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.48 per gallon, up 7-tenths of a cent from last week, and down 43.3

  16. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.02 per gallon, up 4-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.47 per gallon, down 2-tenths of a cent from last week, and down 41.9

  17. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.96 per gallon, up 1.8 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.42 per gallon, up 6-tenths of a cent from last week, and down 52.9 cents

  18. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.41 per gallon, up 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.95 per gallon, up 2-tenths of a cent from last week, and down 12.7 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  19. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.98 per gallon, up 5-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.45 per gallon, up 6-tenths of a cent from last week, and down 48.2

  20. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.99 per gallon, up 3-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.45 per gallon, up 2-tenths of a cent from last week, and down 47.6

  1. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 3.9 cents from a week ago to $2.80 per gallon. That's up 53.7 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.32 a gallon, up 3.8 cents from last week, and up 59

  2. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 2.5 cents from a week ago to $2.83 per gallon. That's up 56 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.36 a gallon, up 3.9 cents from last week, and up 62.3

  3. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose to $2.40 per gallon, up 1.1 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.94 a gallon, up 2.9 cents from last week, and up 2.6 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  4. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 5.5 cents per gallon from last week to $2.62 per gallon; up 37.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The retail price for propane in the Midwest region averaged 2.11 per gallon, up 3.4 cents per gallon from last week, and up 39.6

  5. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 9.1 cents from a week ago to $2.71 per gallon. That's up 46.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.22 a gallon, up 11 cents from last week, and up 50.8 cents from a year ago

  6. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 4.8 cents from a week ago to $2.76 per gallon. That's up 51.2 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.28 a gallon, up 6.3 cents from last week, and up 56.4

  7. Residential propane prices stable

    Gasoline and Diesel Fuel Update (EIA)

    propane prices stable The average retail price for propane is $2.37 per gallon. That's down 4-tenths of a penny from a week ago, based on the U.S. Energy Information Administration's weekly residential heating fuel survey. Propane prices in the Midwest region averaged $1.89 a gallon. Down 2-tenths of a cent from last week. This is Amerine Woodyard, with EIA, in Washington.

  8. Residential propane prices stable

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.40 per gallon, down 9-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.94 per gallon, down 7-tenths of a cent from . last week, and down 8.7 cents from a year ago This is Marcela Rourk, with EIA, in Washington.

  9. Guidelines for residential commissioning

    SciTech Connect (OSTI)

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-31

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify problems or to correct them. Residential commissioning is a solution to this problem. This guide is the culmination of a 30-month project that began in September 1999. The ultimate objective of the project is to increase the number of houses that undergo commissioning, which will improve the quality, comfort, and safety of homes for California citizens. The project goal is to lay the groundwork for a residential commissioning industry in California focused on end-use energy and non-energy issues. As such, we intend this guide to be a beginning and not an end. Our intent is that the guide will lead to the programmatic integration of commissioning with other building industry processes, which in turn will provide more value to a single site visit for people such as home energy auditors and raters, home inspectors, and building performance contractors. Project work to support the development of this guide includes: a literature review and annotated bibliography, which facilitates access to 469 documents related to residential commissioning published over the past 20 years (Wray et al. 2000), an analysis of the potential benefits one can realistically expect from commissioning new and existing California houses (Matson et al. 2002), and an assessment of 107 diagnostic tools for evaluating residential commissioning metrics (Wray et al. 2002). In this guide, we describe the issues that non-experts should consider in developing a commissioning program to achieve the benefits we have identified. We do this by providing specific recommendations about: how to structure the commissioning process, which diagnostics to use, and how to use them to commission new and existing houses. Using examples, we also demonstrate the potential benefits of applying the recommended whole-house commissioning approach to such houses.

  10. Application of IEEE Standard 519-1992 harmonic limits for revenue billing meters

    SciTech Connect (OSTI)

    Arseneau, R.; Heydt, G.T.; Kempker, M.J.

    1997-01-01

    This paper identifies the potential for billing inequities at harmonic generating loads due to different measuring methods implemented in revenue meters. Potential problems are almost exclusively in the commercial and industrial sectors where demand and power factor charges are common. Field data are used to illustrate that compliance with IEEE Standard 519-1992 reduces the possibility of meter reading differences thus promoting a more equitable treatment of all customers.

  11. Optional Residential Program Benchmarking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optional Residential Program Benchmarking Optional Residential Program Benchmarking Better Buildings Residential Network Data and Evaluation Peer Exchange Call Series: Optional Residential Program Benchmarking, Call Slides and Discussion Summary, January 23, 2014. PDF icon Call Slides and Discussion Summary More Documents & Publications Guide to Benchmarking Residential Program Progress Webcast Slides Lessons Learned: Measuring Program Outcomes and Using Benchmarks Guide for Benchmarking

  12. Better Buildings Residential Program Solution Center Demonstration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration from the U.S. Department of Energy. PDF icon Solution Center Demo More Documents & Publications Building Science Solutions … Faster and Better Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center

  13. Better Buildings Residential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Residential Better Buildings Residential Solution Center Shares Energy Efficiency Program Strategies Solution Center Shares Energy Efficiency Program Strategies Explore the Better Buildings Residential Program Solution Center, a robust collection of nearly 1,000 examples, strategies, and resources for program administrators and home energy upgrade professionals. Read more Residential Network Connects More Than 240 Organizations Residential Network Connects More Than 240

  14. Energy Information Administration (EIA)- About the Commercial Buildings

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey (CBECS) About the Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy Consumption Survey (CBECS) is a national sample survey that collects information on the stock of U.S. commercial buildings, including their energy-related building characteristics and energy usage data (consumption and expenditures). Commercial buildings include all buildings in which at least half of the floorspace is used for a purpose that is not residential,

  15. National Residential Efficiency Measures Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Residential Efficiency Measures Database Development Document, v3.0 Final Draft, June 2012 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado i Executive Summary The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most

  16. UES (Electric)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    UniSource Energy Services (UES) offers rebates to its residential customers who have certain energy efficient equipment installed by participating contractors. The rebate is provided directly to...

  17. Cleco- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Cleco energy efficiency program provides a number of incentives to its residential customers for energy efficiency upgrades. Rebates and cash incentives are available for qualifying Air...

  18. NREL: Buildings Research - Residential Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a row of homes in the distance. The NREL Residential Buildings group is an innovative, multidisciplinary team focused on accelerating the adoption of cost-effective energy...

  19. Residential Clean Energy Grant Program

    Broader source: Energy.gov [DOE]

    Maryland's Residential Clean Energy Grant Program, administered by the Maryland Energy Administration (MEA), provides financial incentives to homeowners that install solar water-heating, solar...

  20. Pacific Power- Residential wattsmart Program

    Broader source: Energy.gov [DOE]

    Pacific Power offers incentives for residential customers to improve the energy efficiency of homes through the Home Energy Savings Program. Full details are available on the program website.

  1. Federal Building Metering Implementation Plan Template | Department of

    Energy Savers [EERE]

    Energy Building Metering Implementation Plan Template Federal Building Metering Implementation Plan Template Document provides a template for a federal building metering implementation plan. File metering_implementation_template.docx

  2. VOLTTRONTM Commercialization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VOLTTRON TM Commercialization 2015 Building Technologies Office Peer Review Srinivas Katipamula, Srinivas.Katipamula@pnnl.gov Pacific Northwest National Laboratory VOLTTRON Commercialization Project Summary Timeline: Start date: 10/1/2014 (New Project) Planned end date: 9/30/2017 Key Milestones 1. Complete market assessment for a VOLTTRON based product for small- and medium-sized commercial buildings market; April 2015 2. Development of VOLTTRON-based product; August 2015 Budget: Total DOE $ to

  3. City of St. George- Net Metering

    Broader source: Energy.gov [DOE]

    The City of St. George Energy Services Department (SGESD) offers a net metering program to its customers, and updated program guidelines and fees in September 2015.* 

  4. A Million Meter Milestone | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Million Meter Milestone A Million Meter Milestone March 4, 2011 - 2:36pm Addthis To see what installing the 1 millionth meter looked like, check out this video. Don Macdonald Don Macdonald Senior Advisor for Strategic Projects What does this mean for me? Smart meters allow consumers to take personal control and ownership of her energy usage in a way not possible before. As program manager for the Department of Energy's Recovery Act funded Smart Grid Investment Grant (SGIG) program, I've had

  5. BPA Metering Services Editing and Estimating Procedures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an unmetered condition An unmetered event will be identified through one of the following methods: 1) The Field Forms application (via Metering Services email), 2) An email...

  6. DOE Releases Federal Building Metering Guidance | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management (Dec. 5, 2013), re-emphasized the requirements for installing electricity, natural gas, and steam meters and provided an additional requirement for installing water...

  7. Smart Meters on Tap for Owasso, Oklahoma

    Broader source: Energy.gov [DOE]

    Saving 10 percent of annual energy and increasing response time for electrical emergencies? Find out how smart meters can make cities smarter.

  8. Better Buildings Residential Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Buildings » Better Buildings Residential Network Better Buildings Residential Network Better Buildings Residential Network EXPLORE PEER EXCHANGE CALL LESSONS LEARNED To make collaboration with a utility easier, show how energy efficiency can solve a financial, public relations, or customer service problem for the utility. Read the "Collaborating With Utilities on Residential Energy Efficiency" Peer Exchange Call summary to learn more, and see other member tips. Residential

  9. Guide for Benchmarking Residential Program Progress with Examples

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network: Guide for Benchmarking Residential Program Progress with Examples.

  10. Making PACE Work for Residential (201) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Making PACE Work for Residential (201) Making PACE Work for Residential (201) February 25

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Net Metering Eligibility: Eligibility: Commercial, Residential Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass,...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    El Paso Electric- Net Metering Eligibility and Availability Eligibility: Commercial, Construction, Local Government, Nonprofit, Residential, Schools, Institutional Savings...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Eligible Technologies Eligibility: Commercial, Local Government, Nonprofit, Residential,...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agricultural Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Eligible Technologies Eligibility: Commercial, Local Government, Nonprofit, Residential,...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Generation Technologies, Microturbines City of New Orleans- Net Metering Origin Eligibility: Commercial, Residential, Agricultural Savings Category: Geothermal...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels, Microturbines City of New Orleans- Net Metering Origin Eligibility: Commercial, Residential, Agricultural Savings Category: Geothermal...

  17. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    propane prices available The average retail price for propane is $2.30 per gallon, based on the U.S. Energy Information Administration's weekly residential heating fuel survey. Propane prices in the Midwest region, which has the most households that use propane, averaged $1.89 a gallon. This is Marcela Rourk, with EIA, in Washington. The EIA has expanded its propane price survey to include 14 more states located mostly in the South and the West. The survey now looks at propane prices in 38

  18. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 3.2 cents from a week ago to $2.86 per gallon. That's up 59.3 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.40 a gallon, up 3.2 cents from last week, and up 65.8 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  19. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 10.3 cents from a week ago to $2.96 per gallon. That's up 68.1 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. This is the largest single week increase since the heating season started in October. Propane prices in the Midwest region averaged 2.55 a gallon, up 14.9 cents from last week, and up 79.1 cents from a year ago. This is Marcela Rourk, with EIA, in

  20. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 2.3 cents per gallon from last week to $2.57 per gallon; up 32.2 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The retail price for propane in the Midwest region averaged 2.08 per gallon, up 2.4 cents per gallon from last week, and up 36.9 cents from a year earlier. This is Marlana Anderson, with EIA, in Washington.

  1. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    propane prices surges The average retail price for propane rose to an all-time high of $4.01 a gallon, that's up $1.05 from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. This is the largest weekly increase since the survey began in 1990. Propane prices in the Midwest region averaged 4.20 a gallon, up $1.66 from last week, and up $2.43 from a

  2. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    Midwest and Northeast propane prices much higher this winter than last year Households that heat with propane will pay for that propane at prices averaging 39 percent higher in the Midwest and 14 percent higher in the Northeast this winter compared with last winter.....as much colder temperatures this winter boosts heating fuel demand. Midwest residential propane is expected to average $2.41 per gallon over the winter, while propane in the Northeast will average $3.43 per gallon, according to

  3. Residential Building Industry Consulting Services | Open Energy...

    Open Energy Info (EERE)

    Residential Building Industry Consulting Services Jump to: navigation, search Name: Residential Building Industry Consulting Services Place: New York, NY Information About...

  4. Entergy Mississippi- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Entergy Mississippi offers residential energy efficiency programs to help residential customers save energy by providing rebates for lighting, heating and cooling equipment, A/C tune ups, and...

  5. Residential Geothermal Systems Credit | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential Low Income Residential Savings Category Geothermal Heat Pumps Geothermal Direct-Use Maximum Rebate 1,500 Program Info Sector Name State Administrator Montana...

  6. Building America Residential Buildings Energy Efficiency Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings ... More Documents & Publications Summary of Gaps and Barriers for Implementing Residential ...

  7. Better Buildings Residential Network Case Study: Partnerships...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships, from the U.S. ...

  8. SMECO- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Maryland Electric Cooperative's (SMECO) Residential Energy Efficiency Program helps residential customers save energy by providing rebates for home weatherization and the installation of...

  9. SRP- Residential Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    SRP's Residential Energy Efficiency Rebate Program is designed to encourage residential SRP customers to utilize energy efficient appliances and measures at home. See program web site for a...

  10. Residential Energy Services Network (RESNET) Conference | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Services Network (RESNET) Conference Residential Energy Services Network (RESNET) Conference February 29, 2016 9:00AM EST to March 2, 2016 5:0

  11. Guide for Benchmarking Residential Energy Efficiency Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress as ...

  12. Better Buildings Residential Network | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and see other member tips. Residential Network Members Residential Resources Download the Social Media Toolkit. New Materials Download the November issue of the Better Buildings...

  13. Residential Solar Energy Property Tax Exemption | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Property Tax Exemption Residential Solar Energy Property Tax Exemption < Back Eligibility Residential Savings Category Solar Water Heat Solar Space Heat Solar Photovoltaics...

  14. Laboratory Performance Testing of Residential Window Mounted...

    Energy Savers [EERE]

    Laboratory Performance Testing of Residential Window Mounted Air Conditioners Laboratory Performance Testing of Residential Window Mounted Air Conditioners This presentation was...

  15. National Residential Efficiency Measures Database Webinar Slides...

    Energy Savers [EERE]

    Webinar Slides National Residential Efficiency Measures Database Webinar Slides Presentation slides for the Building Technologies Program Webinar on the National Residential...

  16. Steven Winter Associates (Consortium for Advanced Residential...

    Open Energy Info (EERE)

    Steven Winter Associates (Consortium for Advanced Residential Buildings) Jump to: navigation, search Name: Steven Winter Associates (Consortium for Advanced Residential Buildings)...

  17. El Paso Electric Company- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    EPE offers incentives to residential customers in its New Mexico service territory that purchase and install high efficiency equipment for residential use. Some incentives, including insulation,...

  18. Better Buildings Residential Network Orientation Webinar | Department...

    Broader source: Energy.gov (indexed) [DOE]

    May 14, 2015. Call Slides and Discussion Summary More Documents & Publications Better Buildings Residential Network Orientation Webinar Better Buildings Residential Network...

  19. Better Buildings Residential Network Orientation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Summary, March 27, 2014. Call Slides and Summary More Documents & Publications Better Buildings Residential Network Orientation Webinar Better Buildings Residential Network...

  20. Idaho Power- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Idaho Power offers a variety of incentives for residential customers in Idaho and Oregon.  The Heating and Cooling Program offers incentives for residential customers who purchase and have...