National Library of Energy BETA

Sample records for meters ami communication

  1. AMI Communication Requirements to Implement Demand-Response: Applicability of Hybrid Spread Spectrum Wireless

    SciTech Connect (OSTI)

    Hadley, Mark D.; Clements, Samuel L.; Carroll, Thomas E.

    2011-09-30

    While holistically defining the smart grid is a challenge, one area of interest is demand-response. In 2009, the Department of Energy announced over $4 billion in grant and project funding for the Smart Grid. A significant amount of this funding was allotted to utilities for cost sharing projects to deploy Smart Grid technologies, many of whom have deployed and are deploying advanced metering infrastructure (AMI). AMI is an enabler to increase the efficiency of utilities and the bulk power grid. The bulk electrical system is unique in that it produces electricity as it is consumed. Most other industries have a delay between generation and consumption. This aspect of the power grid means that there must be enough generation capacity to meet the highest demand whereas other industries could over produce during off-peak times. This requires significant investment in generation capacity to cover the few days a year of peak consumption. Since bulk electrical storage doesn't yet exist at scale another way to curb the need for new peak period generation is through demand-response; that is to incentivize consumers (demand) to curtail (respond) electrical usage during peak periods. Of the various methods proposed for enabling demand-response, this paper will focus on the communication requirements for creating an energy market using transactional controls. More specifically, the paper will focus on the communication requirements needed to send the peak period notices and receive the response back from the consumers.

  2. "Utility Characteristics",,,,,,"Number AMR- Automated Meter Reading",,,,,"Number AMI- Advanced Metering Infrastructure",,,,,"Energy Served - AMI (MWh)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Served - AMI (MWh)" "Year","Month","Utility Number","Utility Name","State","Data

  3. Amy Ross

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Careers, Jobs » Careers Stories » Employee Spotlight » Amy Ross Amy Ross-Helping kids soar high The Materials Science and Technology Division's Amy Ross is a volunteer pilot and coordinator for the Experimental Aircraft Association's Young Eagles Program. January 9, 2015 Amy Ross Amy Ross owns a bright-yellow 1968 Beechcraft Musketeer Super III called Big Bird. While still on the ground, Ross explains how planes fly to her young visitors and what will happen once they are in the air. As they

  4. Faces of Science: Amy Clarke

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clarke Amy Clarke and Seth Imhoff of Materials Technology-Metallurgy (MST-6) align a copper density calibration object for a proton radiography experiment. Contact Communications...

  5. Amy Manheim | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Amy Manheim About Us Amy Manheim - Communication and Outreach Lead, Advanced Manufacturing Office Most Recent Five Questions for an Expert: Paul Scheihing on Industrial Energy Management April 9 5 Questions for an Expert: Bob Gemmer on Combined Heat and Power October 27 The Future of Manufacturing Takes Shape: 3D Printed Car on Display at Manufacturing Summit September 17

  6. Meters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and RP-1 Agreement and Guide For Use and Utilization of the RadEye B20-ER Survey Meters The Rad Eye B20-ER is a pancake GM detector capable of measuring low levels of Alpha, Beta,...

  7. Meters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sc 620 Meters ~ 310 ~g~ 1, coOmpartment 11 ~~I . * ~~O~6 ~,~: '- N A o Soils Soil Series and Phase ~BaB FuB OrA TrB o ~ u Vegetation o 310 o o Commun;~y I fPme - L~ng e~'ne/HardwOOd %. EJ ~~:~1o,;"'a'" W~*. Monitoring wells :W~~~~ o Wa"""'" ~ :/'/ m// .y ~WWE:~~tI' s/~~ N Roads . et-Asld ~ ~~!~~ ~~~~l~idL:sndfili ~/#//};;;;>. Figure 28-1. Plant cOl1llllunities and soils associated with the Field 3-409 Set-Aside Area. 28-5 Set-Aside 28: Field 3-409

  8. Microsoft Word - OE AMI-SEC Requirements Document.doc

    Office of Environmental Management (EM)

    Utility Task Force Partners with DOE to Develop Cyber Security Requirements for Advanced Metering Infrastructure March 16, 2009 The Advanced Metering Infrastructure Security (AMI-SEC) Task Force announces the release of the AMI System Security Requirements, a first-of-its-kind for the utility industry that will help utilities procure and implement secure components and systems using a common set of security requirements. The utility industry recognizes that AMI changes the face of traditional

  9. AMI FW UPGRADEABILITY TEST PROCEDURE AND SECURITY ASSESSMENT

    SciTech Connect (OSTI)

    Snyder, Isabelle B

    2014-01-01

    The National Institute of Standards and Technology (NIST) is producing NISTIR 7823 to define test requirements for Smart Meter upgradability. The term Smart Meter refers specifically to advanced electric meters being deployed to enhance management of electricity distribution for residential and industrial consumers. The underlying functional and security requirements for Smart Meter upgradability are specified in NEMA standard SG-AMI 1-2009. The purpose of NISTIR 7823 is to describe conformance test requirements that may be used voluntarily by testers and/or test laboratories to determine whether Smart Meters and Upgrade Management Systems conform to the requirements of NEMA SG-AMI 1-2009.

  10. Employee Spotlight: Amy Spears

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amy Spears Amy Spears-Inspired by the "dark place" Amy proved how tough she is on the CMT channel's grueling Broken Skull Challenge. But in everyday life, she's driven to help those around her achieve their fitness goals. spears spears spears spears spears spears 12 3 4 "I'm a mother, but I am also still Amy. I have big goals and dreams and it is so important for me to work towards those while I am raising my kids and, in turn, I think I am a better mom for it." Inspired by

  11. Faces of Science: Amy Clarke

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to new materials and metallurgy keeps Amy motivated Amy Clarke grew up in the "Copper Country" in Michigan, where she was first exposed to metallurgy and materials science...

  12. AMI System Security Requirements - v1_01-1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AMI System Security Requirements - v1_01-1 AMI System Security Requirements - v1_01-1 This document provides the utility industry and vendors with a set of security requirements for Advanced Metering Infrastructure (AMI). These requirements are intended to be used in the procurement process, and represent a superset of requirements gathered from current cross industry accepted security standards and best practice guidance documents. PDF icon AMI System Security Requirements - v1_01-1 More

  13. Microsoft Word - AMI System Security Requirements - v1_01-1.doc

    Office of Environmental Management (EM)

    UCAIUG: AMI-SEC-ASAP AMI System Security Requirements V1.01 ASAP 12/17/2008 AMI System Security Specification v1.0 Page i Executive Summary 1 This document provides the utility industry and vendors with a set of security requirements for 2 Advanced Metering Infrastructure (AMI). These requirements are intended to be used in the 3 procurement process, and represent a superset of requirements gathered from current cross- 4 industry accepted security standards and best practice guidance documents.

  14. Amy B. Demagistris | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Amy B. Demagistris About Us Amy B. Demagistris - Deputy Director, Office of Executive Secretariat

  15. ARM - AMIE Manus - Data Plots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CampaignsARM MJO Investigation Experiment (AMIE)Data Plots - Manus Related Links amie.png 34h AMIE Home cindy.png 50h CINDY2011 dynamo.png 34h DYNAMO ARM Data Discovery Browse Data Outreach News & Press Blog Backgrounder (PDF, 1.2MB) Education Flyer (PDF, 2.0MB) Images ARM flickr site Official AMIE Logo AMIE Gear Experiment Planning Steering Committee AMIE-MANUS Proposal Abstract AMIE-GAN Proposal Abstract Meetings Cloud Life Cycle Working Group Deployment Operations Science Plan - TWP Manus

  16. NREL: Biomass Research - Amie Sluiter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amie Sluiter Amie Sluiter (aka Amie D. Sluiter, Amie Havercamp) is a scientist at the National Renewable Energy Laboratory's National Bioenergy Center in Golden, Colorado. Research Interests Amie Sluiter began research in the biomass-to-ethanol field in 1996. She joined the Biomass Analysis Technologies team to provide compositional analysis data on biomass feedstocks and process intermediates for use in pretreatment models and techno-economic analyses. The results of wet chemical analysis

  17. Amy Kidd | Department of Energy

    Energy Savers [EERE]

    Amy Kidd About Us Amy Kidd - Project Officer, State Energy Program Amy Kidd is a Project Officer with the State Energy Program. Most Recent Swept Away by Alternative Energy January 17 Harvesting the Sun at the West Tennessee Solar Farm April 18

  18. Advanced Metering Infrastructure Security Considerations | Department of

    Energy Savers [EERE]

    Energy Metering Infrastructure Security Considerations Advanced Metering Infrastructure Security Considerations The purpose of this report is to provide utilities implementing Advanced Metering Infrastructure (AMI) with the knowledge necessary to secure that implementation appropriately. We intend that utilities use this report to guide their planning, procurement, roll-out, and assessment of the security of Advanced Metering Infrastructure. PDF icon Advanced Metering Infrastructure Security

  19. Amy Royden-Bloom | Department of Energy

    Energy Savers [EERE]

    Amy Royden-Bloom About Us Amy Royden-Bloom - State Energy Program Supervisor Most Recent Warding Off Energy Vampires and Phantom Loads October 31

  20. Metering Technology Corporation | Open Energy Information

    Open Energy Info (EERE)

    Technology Corporation Jump to: navigation, search Name: Metering Technology Corporation Place: Scotts Valley, California Product: Engineering related to communicating meters....

  1. Faces of Science: Amy Bauer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bauer March 4, 2015 From finance to forensics: a foundation of inspired problem-solving For Amy Bauer working in science allows her to express her passion for challenges and...

  2. AMIE (ACRF MJO Investigation Experiment)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AMIE (ACRF MJO Investigation Experiment) Planning Meeting AMIE Science Steering Committee Chuck Long, Tony DelGenio, Bill Gustafson, Bob Houze, Mike Jensen, Steve Klein, Ruby Leung, Xaihong Liu, Ed Luke, Peter May, Sally McFarlane, Pat Minnis, Courtney Schumacher, Andy Vogelmann, Yi Wang, Xiaoqing Wu, Shaohong Xie Agenda * Proposal due May 1 !!!!!! * Primary purpose of this meeting is discussions and planning in support of completing the proposal * Defining the science and ACRF support needed to

  3. ARM - ARM MJO Investigation Experiment (AMIE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links amie.png 34h AMIE Home cindy.png 50h CINDY2011 dynamo.png 34h DYNAMO ARM Data Discovery Browse Data Outreach News & Press Blog Backgrounder (PDF, 1.2MB) Education Flyer (PDF, 2.0MB) Images ARM flickr site Official AMIE Logo AMIE Gear Experiment Planning Steering Committee AMIE-MANUS Proposal Abstract AMIE-GAN Proposal Abstract Meetings Cloud Life Cycle Working Group Deployment Operations Science Plan - TWP Manus Site (PDF, 2.1 MB) Science Plan - Gan Island Site (PDF, 2.0 MB)

  4. Amy LaFountain | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amy LaFountain Amy LaFountain placeholder image Amy LaFountain Research Affiliate Technical Assocaite E-mail: amy.lafountain@uconn.edu Website: University of Connecticut Research...

  5. Amy Foster Parish | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Amy Foster Parish About Us Amy Foster Parish Amy Foster Parish is on staff with the Washington State University Extension Energy Program and answers inquiries through the EERE Information Center. Most Recent Resolving to Make Earth Day Last All Year March 21 Resolving to Make Earth Day Last All Year March 21 Missed Out on Federal Tax Credits? You're in Luck! March

  6. Security Analysis of Selected AMI Failure Scenarios Using Agent Based Game Theoretic Simulation

    SciTech Connect (OSTI)

    Abercrombie, Robert K; Schlicher, Bob G; Sheldon, Frederick T

    2014-01-01

    Information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, and information assets. We concentrated our analysis on the Advanced Metering Infrastructure (AMI) functional domain which the National Electric Sector Cyber security Organization Resource (NESCOR) working group has currently documented 29 failure scenarios. The strategy for the game was developed by analyzing five electric sector representative failure scenarios contained in the AMI functional domain. From these five selected scenarios, we characterize them into three specific threat categories affecting confidentiality, integrity and availability (CIA). The analysis using our ABGT simulation demonstrates how to model the AMI functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the AMI network with respect to CIA.

  7. Net Metering

    Broader source: Energy.gov [DOE]

    Note: Illinois is currently undergoing a rulemaking that would change its existing net metering rules. The proposed rules include provisions clarifying virtual net metering policies, facilitating...

  8. Net Metering

    Broader source: Energy.gov [DOE]

    Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas, hydropower, fu...

  9. Net Metering

    Broader source: Energy.gov [DOE]

    Kansas adopted the Net Metering and Easy Connection Act in May 2009, which established net metering for customers of investor-owned utilities (IOUs). 

  10. AMIE (ARM MJO Investigation Experiment):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 AMIE (ARM MJO Investigation Experiment): Observations of the Madden-Julian Oscillation for Modeling Studies Science Plan ARM Climate Research Facility Tropical Western Pacific Manus Site October 2011-March 2012 C Long Principal Investigator A DelGenio P May W Gustafson S McFarlane R Houze P Minnis C Jakob C Schumacher M Jensen A Vogelmann S Klein Y Wang L Ruby Leung X Wu X Liu S Xie E Luke March 2010 DISCLAIMER This report was prepared as an account of work sponsored by the U.S Government

  11. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Technology by sector", 2013, 2012, 2011, 2010 "AMR meters",48736538,48330822,45965762,48685043 "Residential",43728325,43455437,41451888,43913225 "Commercial",4805138,4691018,4341105,4611877 "Industrial",201873,185862,172692,159315 "Transportation",1202,125,77,626 "AMI meters",51924502,43165183,37290373,20334525 "Residential",46083727,38524639,33453548,18369908

  12. Net Metering

    Broader source: Energy.gov [DOE]

    NOTE: On October 21, 2015, the NY Public Service Commission denied the Orange and Rockland Utility’s petition to cease offering net-metering and interconnections once the 6% net-metering cap was...

  13. Net Metering

    Broader source: Energy.gov [DOE]

    New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives) to offer net metering at non-...

  14. Net Metering

    Broader source: Energy.gov [DOE]

    Note: In January 2016, the California Public Utilities Commission issued a ruling on its net metering successor tariff. Customers on the new net metering successor tariff will have to pay an...

  15. Net Metering

    Broader source: Energy.gov [DOE]

    NOTE: Although, this post is categorized as netmetering, the policy adopted by MS does not meet DSIRE's standards for a typical net metering policy. Net metering policy allows a customer to offset...

  16. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to all customers of investor-owned utilities and rural electric cooperatives, exempting TVA utilities. Kentucky's requires the use of a single, bi-directional meter for...

  17. PHY and MAC Layer Design of Hybrid Spread Spectrum Based Smart Meter Network

    SciTech Connect (OSTI)

    Kuruganti, Phani Teja

    2012-01-01

    The smart grid is a combined process of revitalizing the traditional power grid applications and introducing new applications to improve the efficiency of power generation, transmission and distribution. This can be achieved by leveraging advanced communication and networking technologies. Therefore the selection of the appropriate communication technology for different smart grid applications has been debated a lot in the recent past. After comparing different possible technologies, a recent research study has arrived at a conclusion that the 3G cellular technology is the right choice for distribution side smart grid applications like smart metering, advanced distribution automation and demand response management system. In this paper, we argue that the current 3G/4G cellular technologies are not an appropriate choice for smart grid distribution applications and propose a Hybrid Spread Spectrum (HSS) based Advanced Metering Infrastructure (AMI) as one of the alternatives to 3G/4G technologies. We present a preliminary PHY and MAC layer design of a HSS based AMI network and evaluate their performance using matlab and NS2 simulations. Also, we propose a time hierarchical scheme that can significantly reduce the volume of random access traffic generated during blackouts and the delay in power outage reporting.

  18. Amy Bauer-Problem-solving fuels passion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Problem-solving fuels passion Amy Bauer-Problem-solving fuels passion She works on a broad range of nuclear counterterrorism projects, including post-detonation nuclear forensics. March 11, 2014 Amy Bauer She works on a broad range of nuclear counterterrorism projects, including post-detonation nuclear forensics. Bauer's career advice? "Do something that you are passionate about. Don't wait for opportunities-position yourself right and create them! Adhere to a strong work ethic and always

  19. Net Metering

    Broader source: Energy.gov [DOE]

    Missouri enacted legislation in June 2007 requiring all electric utilities—investor-owned utilities, municipal utilities, and electric cooperatives—to offer net metering to customers with systems...

  20. QER- Comment of Amy Borezo

    Broader source: Energy.gov [DOE]

    To Whom it May Concern, I am a citizen of the Commonwealth of Massachusetts and I vehemently oppose the construction of new Natural Gas Pipelines in Massachusetts, and specifically the newly proposed expansion pipeline that may traverse my rural town in North Central Mass. If tariffs are to be imposed on electric customers to provide more electricity to the region, these tariffs should be used to fund expansion of renewable energy sources, not a continued dependence on fossil fuels like natural gas. The process of procuring natural gas is harmful to the environment and the methane leaks that occur during the procurement and transit process have a negative impact on the reduction of greenhouse gas emissions. Natural gas is not a clean energy source. We know what those are and we should be investing heavily in them. Conservation and energy efficiency programs should continue to be heavily expanded. Not only is the expansion of natural gas pipelines a bad environmental choice, it's also a bad economic choice. The signs seem clear that while there may be a drop in natural gas prices at the outset of an expansion, the over-reliance on fossil fuels over the long term will cause increased pressure on markets that will demand more and more of a non-renewable resource. We have seen this play out with oil, and it clearly is already happening with the natural gas market. Let's invest only in sources of energy that are renewable. Renewable sources will clearly produce more stable prices for the long term and are truly "clean". To do anything else is governing irresponsibly, ignoring basic facts and thinking of only short term gain to the detriment of the global environment and the stability of our economy in the future. Sincerely, Amy Borezo

  1. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available on a first-come, first-served basis until the cumulative generating capacity of net-metered systems equals 0.5% of a utility’s peak demand during 1996.* At least one-half...

  2. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to all "qualifying facilities" (QFs), as defined by the federal Public Utility Regulatory Policies Act of 1978 (PURPA), which pertains to renewable energy systems and co...

  3. Net Metering

    Broader source: Energy.gov [DOE]

     NOTE: The program website listed above links to the Maryland Public Service Commission's Net Metering Working Group page, which contains a variety of information resources related to the ongoing...

  4. Net Metering

    Broader source: Energy.gov [DOE]

    North Dakota's net-metering policy, adopted in 1991 by the state Public Service Commission (PSC), applies to renewable-energy systems and combined heat and power (CHP) systems up to 100 kilowatts...

  5. Net Metering

    Broader source: Energy.gov [DOE]

    In Delaware, net metering is available to any customer that generates electricity using solar, wind or hydro resources, anaerobic digesters, or fuel cells capable of being powered by renewable fu...

  6. Net Metering

    Broader source: Energy.gov [DOE]

    Iowa's statutes do not explicitly authorize the Iowa Utilities Board (IUB) to mandate net metering, but this authority is implicit through the board's enforcement of PURPA and Iowa Code § 476.41 ...

  7. Net Metering

    Broader source: Energy.gov [DOE]

    Note: On October 12th, 2015 the Hawaii PUC voted to end net metering in favor of 3 alternative options: a grid supply option, a self-supply option, and a time of use tariff. Customers with net...

  8. Net Metering

    Broader source: Energy.gov [DOE]

    In October 2008, Michigan enacted P.A. 295, requiring the Michigan Public Service Commission (MPSC) to establish a statewide net metering program for renewable energy systems. On May 26, 2009 the...

  9. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering in Virginia is available on a first-come, first-served basis until the rated generating capacity owned and operated by customer-generators reaches 1% of an electric distribution...

  10. Net Metering

    Broader source: Energy.gov [DOE]

    With these regulations, renewable energy systems with a capacity up to 25 kilowatts (kW) are eligible for net metering. Overall enrollment is limited to 1.5% of a utility's retail sales from the...

  11. Net Metering

    Broader source: Energy.gov [DOE]

    NOTE: On February 2016, the PA Public Service Commission (PUC) issued a final rulemaking order amending net metering regulations to provide clarity and to comply with the statutes. Changes include...

  12. Net Metering

    Broader source: Energy.gov [DOE]

    There is no stated limit on the aggregate capacity of net-metered systems in a utility's service territory. Any net excess generation (NEG) during a monthly billing period is carried over to the...

  13. Net Metering

    Broader source: Energy.gov [DOE]

    Utah law requires their only investor-owned utility, Rocky Mountain Power (RMP), and most electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wi...

  14. Net Metering

    Broader source: Energy.gov [DOE]

    Net excess generation (NEG) is credited to the customer's next monthly bill. The customer may choose to start the net metering period at the beginning of January, April, July or October to match...

  15. Net Metering

    Broader source: Energy.gov [DOE]

    Nevada's original net-metering law for renewable-energy systems was enacted in 1997 and amended in 2001, 2003, 2005, 2007, 2011, 2013, and 2015. Systems up to one megawatt (MW) in capacity that...

  16. Net Metering

    Broader source: Energy.gov [DOE]

    In April 2001, Arkansas enacted legislation (HB 2325) directing the Arkansas Public Service Commission (PSC) to establish net-metering rules for certain renewable-energy systems.* The PSC approved...

  17. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1508995,2093902,2358735,2338527,2232621,2203630,1526540 "Residential",1283786,1854282,2111101,2092893,1998214,1993991,1396097 "Commercial",217043,231143,238676,237244,228706,203914,128444 "Industrial",8104,8400,8890,8322,5694,5718,1999 "Transportation",62,77,68,68,7,7,0 "AMI

  18. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1744297,1582760,137399,1546233,1175077,110675,105694 "Residential",1518981,1381543,121843,1352435,1029039,98707,92194 "Commercial",218762,195291,15383,188053,142132,11957,11999 "Industrial",6554,5926,173,5745,3906,11,1501 "Transportation",0,0,0,0,0,0,0 "AMI meters",338352,216201,1610285,108179,96024,85177,88231

  19. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",230418,261023,262683,318606,300790,239851,109188 "Residential",205920,231422,236070,287123,272669,223219,105408 "Commercial",22594,22467,19931,24091,21425,11089,3772 "Industrial",1904,7134,6682,7392,6696,5543,8 "Transportation",0,0,0,0,0,0,0 "AMI meters",421297,278395,174388,85163,54081,51982,46525

  20. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",232888,233270,230916,221262,139874,58993,27057 "Residential",204000,206539,204690,195920,124976,51007,24817 "Commercial",28129,26000,25582,24807,14408,7529,2220 "Industrial",759,731,644,535,490,457,20 "Transportation",0,0,0,0,0,0,0 "AMI meters",12272,3766,3408,3213,3106,2753,4 "Residential",11593,3423,3119,2951,3083,2744,3

  1. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",380098,339368,314854,246497,666915,500476,354452 "Residential",342033,307265,287712,225362,631062,480824,351548 "Commercial",26918,23326,21051,17703,35711,19592,2898 "Industrial",11147,8777,6091,3432,142,60,6 "Transportation",0,0,0,0,0,0,0 "AMI meters",2091766,1767206,1643430,1234009,400980,192860,155031

  2. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",827670,580957,431858,1696965,345864,238634,181180 "Residential",699209,481305,319842,1520278,278976,221857,167236 "Commercial",115318,90939,97104,164498,57736,15597,12701 "Industrial",13070,8699,14912,12189,9152,1178,1241 "Transportation",73,14,0,0,0,2,2 "AMI meters",12427747,10580445,10610811,4036383,2636757,363353,140042

  3. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1643794,1552727,1622740,1636242,1495425,1410712,231119 "Residential",1491944,1425970,1502253,1517327,1387937,1306346,206747 "Commercial",146263,121673,115391,115899,106007,102596,23667 "Industrial",5587,5084,5096,3016,1481,1770,705 "Transportation",0,0,0,0,0,0,0 "AMI meters",305731,242832,182651,173921,117738,17270,388

  4. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1469876,1481357,1496432,1536716,1530906,1534171,1478640 "Residential",1324280,1334604,1350835,1393474,1391016,1394732,1343996 "Commercial",141213,142227,141092,138781,138239,137617,132856 "Industrial",4383,4526,4505,4461,1651,1822,1788 "Transportation",0,0,0,0,0,0,0 "AMI meters",147008,128595,99755,36069,1784,1213,2463

  5. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",116714,114296,113252,405728,56702,110087,20750 "Residential",105342,103234,102397,364709,52679,106326,20361 "Commercial",11207,10828,10619,40773,3989,3637,389 "Industrial",165,234,236,246,34,124,0 "Transportation",0,0,0,0,0,0,0 "AMI meters",307904,297247,297308,100,72000,48603,0

  6. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2188,2991,4659,35987,29770,32000,3562 "Residential",1046,1722,3108,32964,27174,29415,892 "Commercial",1139,1266,1548,3022,2595,2584,2670 "Industrial",3,3,3,1,1,1,0 "Transportation",0,0,0,0,0,0,0 "AMI meters",269876,246642,29650,0,0,0,0 "Residential",245295,230705,27695,0,0,0,0

  7. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",3395748,3755977,3637527,3231398,3216922,2579337,2416630 "Residential",3139468,3455396,3325863,3024574,2953200,2378958,2351242 "Commercial",254631,298694,308099,204383,262736,199331,64901 "Industrial",1649,1886,3565,1893,986,1047,487 "Transportation",0,1,0,548,0,1,0 "AMI meters",5707660,4900737,3221462,2087870,308206,181984,44549

  8. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",627008,613969,521331,487830,435276,317642,295425 "Residential",556807,552232,467749,440914,393533,292233,269843 "Commercial",68008,59406,51774,44378,39314,23245,24111 "Industrial",2193,2331,1808,2538,2429,2164,1471 "Transportation",0,0,0,0,0,0,0 "AMI meters",3771777,3456641,3208987,2329510,1486413,778441,56921

  9. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",33662,57269,46871,44911,41201,28512,22820 "Residential",32688,53083,44459,42324,38779,26141,21191 "Commercial",974,4186,2412,2587,2394,2350,1629 "Industrial",0,0,0,0,28,21,0 "Transportation",0,0,0,0,0,0,0 "AMI meters",29489,30,758,9213,8713,8126,6571 "Residential",25136,0,438,8040,7727,7154,5697

  10. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",177493,168685,163567,142759,151004,146779,88220 "Residential",155125,147140,142398,122329,133724,128395,82814 "Commercial",21730,20916,20529,19850,17042,17904,5401 "Industrial",638,629,640,580,238,480,5 "Transportation",0,0,0,0,0,0,0 "AMI meters",548969,542009,536130,353867,225474,49380,0

  11. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",997408,973664,998081,1002378,973505,851285,549055 "Residential",888394,869121,894434,902092,872418,773309,493378 "Commercial",105317,101051,100648,97601,98067,75669,54444 "Industrial",3382,3492,2999,2685,3018,2305,1227 "Transportation",315,0,0,0,2,2,6 "AMI meters",381906,305272,181667,150202,19121,9954,28114

  12. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1251574,1284613,1095102,1059678,1038172,951160,382580 "Residential",1115322,1167245,990346,965867,947409,868170,371539 "Commercial",131027,113006,102278,91550,88929,81696,10751 "Industrial",4729,4362,2478,2261,1834,1294,290 "Transportation",496,0,0,0,0,0,0 "AMI meters",414513,303192,257567,211145,164837,72679,11028

  13. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",744438,722583,713567,710239,697696,559054,139256 "Residential",646196,624355,620170,615649,612354,495955,124347 "Commercial",97104,97466,93000,92968,85137,62661,14851 "Industrial",1134,762,397,1622,205,438,58 "Transportation",4,0,0,0,0,0,0 "AMI meters",150555,143163,128116,121751,74120,48847,14946

  14. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",349836,335293,320708,400083,308859,300734,53919 "Residential",303782,289091,276856,343492,264664,260503,41763 "Commercial",44125,41789,39968,52910,41425,38520,10237 "Industrial",1929,4413,3884,3681,2770,1711,1919 "Transportation",0,0,0,0,0,0,0 "AMI meters",242858,184292,108395,41781,20570,25047,5878

  15. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",532871,607590,548321,495475,529171,526410,445146 "Residential",465927,534181,484008,439680,479635,480572,422463 "Commercial",65386,71883,62353,54453,48318,44688,22493 "Industrial",1558,1526,1960,1342,1218,1150,190 "Transportation",0,0,0,0,0,0,0 "AMI meters",505780,355451,330218,211996,147835,118209,23961

  16. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",371841,357579,344263,342766,331557,283997,203389 "Residential",344167,330690,318544,316995,309010,267588,192187 "Commercial",24657,24380,24208,24551,21202,14922,9945 "Industrial",3017,2509,1511,1220,1345,1487,1257 "Transportation",0,0,0,0,0,0,0 "AMI meters",396398,220128,40063,34087,12021,3597,2

  17. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",6822,6415,5210,4499,116826,103242,101084 "Residential",6455,6075,4920,3375,101823,101363,99995 "Commercial",307,240,190,822,14701,1577,749 "Industrial",60,100,100,302,302,302,340 "Transportation",0,0,0,0,0,0,0 "AMI meters",739583,735415,669482,193415,0,0,0 "Residential",657380,654512,602750,170941,0,0,0

  18. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",611045,877019,903093,889901,875440,845154,725634 "Residential",549148,799807,823936,815476,804226,782901,659322 "Commercial",61658,76998,78818,74100,71203,62242,66226 "Industrial",239,214,339,325,11,11,0 "Transportation",0,0,0,0,0,0,86 "AMI meters",1159371,498806,912,896,1034,810,0

  19. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2815732,2753089,2717020,2634758,2605159,2389547,2327751 "Residential",2579059,2527224,2500177,2325333,2300444,2103743,2072453 "Commercial",234458,224070,215022,306584,303458,284904,253942 "Industrial",2215,1795,1821,2841,1257,900,1356 "Transportation",0,0,0,0,0,0,0 "AMI meters",71178,59601,46241,39076,35489,37270,28021

  20. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",337976,324455,314211,359361,333902,272851,189606 "Residential",292051,283561,272718,318011,299426,246630,174020 "Commercial",44463,41134,40083,38141,32779,24761,14476 "Industrial",1462,1390,1410,3209,1697,1460,1110 "Transportation",0,0,0,0,0,0,0 "AMI meters",1351082,947546,735450,334065,198442,200415,187349

  1. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1913337,1922706,1909106,1985873,1874104,1718448,363947 "Residential",1730915,1735168,1733724,1805096,1709999,1567837,333575 "Commercial",172309,176721,165245,170062,162297,149294,29352 "Industrial",10087,10817,10137,10715,1808,1317,1020 "Transportation",26,0,0,0,0,0,0 "AMI meters",245897,121264,172810,91395,66777,53561,10203

  2. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",273118,136678,116456,144254,103645,91623,24243 "Residential",237034,117623,101376,130228,90425,80463,20942 "Commercial",32633,16705,12952,12658,11393,10084,2156 "Industrial",3451,2350,2128,1368,1827,1076,1145 "Transportation",0,0,0,0,0,0,0 "AMI meters",363360,274884,153279,48308,9465,1610,0

  3. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1920471,1935078,1917474,1959937,1921343,1933413,1546006 "Residential",1696195,1709394,1698061,1736715,1705866,1728577,1372572 "Commercial",216779,219525,213325,217255,210496,199759,167190 "Industrial",7497,6159,6088,5967,4981,5077,6243 "Transportation",0,0,0,0,0,0,1 "AMI meters",357449,314812,295556,222019,160446,60909,1882

  4. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",520018,495676,489407,482732,481682,397693,347611 "Residential",448313,430824,429479,423471,417166,345119,304959 "Commercial",67155,61129,57161,56837,62129,51022,41698 "Industrial",4550,3723,2767,2424,2387,1552,954 "Transportation",0,0,0,0,0,0,0 "AMI meters",18851,18830,17593,11991,6459,3532,212

  5. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",535042,523950,503996,484383,454089,399845,380008 "Residential",451388,444819,430631,415589,392296,349786,333774 "Commercial",69711,67398,62997,59285,52508,44771,43230 "Industrial",13943,11733,10368,9509,9285,5288,3004 "Transportation",0,0,0,0,0,0,0 "AMI meters",123139,106301,91917,70111,40182,10725,25

  6. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",53483,38201,81499,78292,96058,81992,63856 "Residential",44206,30907,72579,69795,85984,74356,59256 "Commercial",7729,5975,7473,7374,9197,7333,4305 "Industrial",1548,1319,1447,1123,877,303,295 "Transportation",0,0,0,0,0,0,0 "AMI meters",1125193,1021241,555414,20665,0,0,0 "Residential",994812,919971,542609,18237,0,0,0

  7. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    New Hampshire" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",69251,61857,59512,53293,50098,48310,46505 "Residential",67647,60510,58467,47171,43959,42402,41078 "Commercial",1604,1347,1045,5910,5929,5864,5401 "Industrial",0,0,0,212,210,44,26 "Transportation",0,0,0,0,0,0,0 "AMI meters",156960,153882,100345,76125,76085,72512,75094

  8. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",38125,41827,35412,43254,27018,21054,8132 "Residential",35775,28906,23442,31700,15987,11031,7263 "Commercial",1455,10789,10095,9635,8772,8234,621 "Industrial",876,2122,1866,1909,2258,1789,236 "Transportation",19,10,9,10,1,0,12 "AMI meters",34919,11533,11610,0,0,0,0 "Residential",22109,11454,11531,0,0,0,0

  9. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",214695,229210,220279,228503,244759,216434,112719 "Residential",192195,206606,198130,207663,226923,209009,110488 "Commercial",21811,21656,21246,19675,16998,7022,2000 "Industrial",689,948,903,1165,838,403,231 "Transportation",0,0,0,0,0,0,0 "AMI meters",108505,80808,72506,46139,24384,6215,0

  10. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",3052524,2515127,2328801,2223645,2164329,1701366,1534285 "Residential",2848664,2295268,2140229,2044476,2005137,1555371,1410652 "Commercial",202417,218735,187424,178662,158992,145798,123436 "Industrial",1255,1124,1148,507,199,196,196 "Transportation",188,0,0,0,1,1,1 "AMI meters",28411,23758,18785,12675,11162,10872,1553

  11. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",3708639,3613936,3768269,4027965,3718103,3521887,2048869 "Residential",3322965,3255122,3396907,3656223,3322323,3250613,1878066 "Commercial",381832,355716,368487,369622,393894,268784,169438 "Industrial",3842,3098,2875,2120,1886,2490,1365 "Transportation",0,0,0,0,0,0,0 "AMI meters",869185,716349,556214,420956,285532,206150,30759

  12. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",274775,171896,165282,181060,149553,123861,41003 "Residential",225851,141249,139162,154904,129384,111817,37069 "Commercial",42282,26052,22916,23171,18971,11124,3873 "Industrial",6642,4595,3204,2985,1198,920,61 "Transportation",0,0,0,0,0,0,0 "AMI meters",85007,72431,64037,42676,25380,11406,14500

  13. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1068626,948564,727112,622965,563380,512000,277489 "Residential",976072,867682,680331,582725,525578,475653,257499 "Commercial",86314,75747,44209,37864,35575,34425,18264 "Industrial",6221,5135,2572,2376,2227,1922,1726 "Transportation",19,0,0,0,0,0,0 "AMI meters",953964,716772,506635,287441,95769,27974,16631

  14. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",385000,430870,427117,459002,392071,400426,277880 "Residential",332981,377207,376188,400471,342530,351012,244516 "Commercial",49803,51627,49838,54788,48517,48392,33162 "Industrial",2216,2036,1091,3743,1024,1022,202 "Transportation",0,0,0,0,0,0,0 "AMI meters",1082432,968785,715368,332888,124060,44245,17169

  15. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",183897,173477,180073,180305,182669,179104,91950 "Residential",168007,158650,161735,163234,167965,167090,86244 "Commercial",14848,13699,17315,15885,13539,10954,5115 "Industrial",1042,1128,1023,1186,1165,1060,591 "Transportation",0,0,0,0,0,0,0 "AMI meters",1044864,1034711,939933,900290,190480,21408,6334

  16. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",471388,470428,467346,457508,458475,451138,450668 "Residential",461380,461788,460721,409497,407884,406169,400631 "Commercial",10008,8640,6625,47728,50591,44969,50037 "Industrial",0,0,0,283,0,0,0 "Transportation",0,0,0,0,0,0,0 "AMI meters",211,211,205,0,0,0,0 "Residential",0,0,0,0,0,0,0

  17. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1848300,1816190,1809822,1897976,1700354,1510892,963079 "Residential",1621880,1600626,1596247,1678999,1490280,1348053,862204 "Commercial",225016,213938,212061,218049,209287,161774,99865 "Industrial",1404,1626,1514,928,787,1065,1010 "Transportation",0,0,0,0,0,0,0 "AMI meters",354418,271427,230942,205017,150689,119149,49293

  18. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",162490,163750,181907,193350,89054,66943,33995 "Residential",140673,143049,159847,171557,79340,60552,31632 "Commercial",20385,19257,20260,19532,8695,5801,2011 "Industrial",1432,1444,1800,2261,1019,590,352 "Transportation",0,0,0,0,0,0,0 "AMI meters",152199,127805,102671,95155,22793,16820,0

  19. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",730599,309569,320041,45373,43870,43861,46240 "Residential",643429,276292,285239,41482,41208,41115,40438 "Commercial",85467,32375,34115,3830,2629,2711,5802 "Industrial",1703,902,687,61,33,35,0 "Transportation",0,0,0,0,0,0,0 "AMI meters",1094256,515971,336940,0,0,0,0 "Residential",926872,450089,304126,0,0,0,0

  20. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2278989,2649814,2362245,2609078,3758758,2513848,1019510 "Residential",2073428,2396415,2160965,2378327,3560320,2294696,942621 "Commercial",178381,230398,177755,219325,186979,214217,74475 "Industrial",27180,23001,23525,11426,11459,4935,2414 "Transportation",0,0,0,0,0,0,0 "AMI meters",7840588,6880155,5658595,3337913,296252,174508,20600

  1. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",947887,931692,903266,912616,851283,791097,374299 "Residential",861955,849405,821766,814440,772961,722710,361979 "Commercial",81853,78179,77565,92519,77666,67851,12272 "Industrial",4079,4100,3935,5657,656,536,48 "Transportation",0,8,0,0,0,0,0 "AMI meters",44150,22480,35163,17080,12860,2485,1

  2. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",53266,44430,84409,81030,77963,71278,58477 "Residential",48343,39930,76274,73703,71100,65176,53306 "Commercial",4901,4481,8121,7325,6861,6100,5169 "Industrial",22,19,14,2,2,2,2 "Transportation",0,0,0,0,0,0,0 "AMI meters",271526,343769,123,0,0,0,0 "Residential",229844,294918,116,0,0,0,0

  3. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2978913,3094379,3079891,3159249,3047610,3053272,2934487 "Residential",2742598,2851174,2841255,2930873,2825185,2842167,2730183 "Commercial",234244,240960,236618,226654,220991,209453,204144 "Industrial",2071,2245,2018,1722,1434,1652,160 "Transportation",0,0,0,0,0,0,0 "AMI meters",532415,400698,306378,158244,105371,8402,0

  4. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1715708,1681481,1656936,1611285,1326509,1346041,1143057 "Residential",1525473,1494345,1474547,1436056,1177320,1203954,1014025 "Commercial",182666,182010,177498,170267,144934,137882,124770 "Industrial",7569,5126,4891,4962,4255,4205,4261 "Transportation",0,0,0,0,0,0,1 "AMI meters",133299,85171,83353,76591,54484,46121,10670

  5. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",520857,464502,473117,474077,436376,438764,448444 "Residential",439830,394660,399243,402817,387552,389596,381604 "Commercial",78280,67228,70415,67890,47130,47431,66840 "Industrial",2747,2614,3459,3370,1694,1737,0 "Transportation",0,0,0,0,0,0,0 "AMI meters",116,81,0,0,95,0,0 "Residential",116,81,0,0,88,0,0

  6. Table 12. Advanced metering, 2007 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Technology by sector", 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",225895,210204,206764,147885,175769,139584,26178 "Residential",181206,166730,162523,114344,141179,114795,24873 "Commercial",37340,36283,37200,27897,29852,20219,1204 "Industrial",7349,7176,7041,5644,4738,4570,101 "Transportation",0,15,0,0,0,0,0 "AMI meters",84587,79675,77029,72260,10442,8609,0

  7. News Media Contact: For Immediate Release Amy C. Scales, DOE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact: For Immediate Release Amy C. Scales, DOE-SR Wednesday, June 11, 2014 (803) 952-7213 amy.caver@srs.gov U.S. Department of Energy Names New Deputy Manager AIKEN, S.C. (June...

  8. Saturation meter

    DOE Patents [OSTI]

    Gregurech, S.

    1984-08-01

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  9. JEA Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    customer control of their electricity use and costs.3 Equipment 3,000 Smart Meters AMI Communication Systems Meter Communications Network Backhaul Communications Meter Data...

  10. Iowa Association of Municipal Utilities Smart Grid Project |...

    Open Energy Info (EERE)

    demand reductions during peak periods.3 Equipment Approx. 5,450 Smart Meters AMI Communication Systems Meter Communications Network Backhaul Communications Meter Data...

  11. New Hampshire Electric Cooperative Smart Grid Project | Open...

    Open Energy Info (EERE)

    AMI Communication Systems Meter Communications Network Backhaul Communications Meter Data Management System 2,000 In-Home Displays Targeted Benefits Reduced Meter Reading Costs...

  12. Fabrication of AMI Demonstration Blade Begun

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabrication of AMI Demonstration Blade Begun - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  13. AMI (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    is the introduction of remote meter reading, control and demand management of the electricity and also water, gas and heat consumption in the area of Gorenjska. References...

  14. AMIS (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    map Period Jan 2005 - Jun 2012 References EU Smart Grid Projects Map1 Overview Automation of metering and customer processes, further automation of grid components, creation...

  15. Palau- Net Metering

    Broader source: Energy.gov [DOE]

    The Palau Net Metering Act of 2009 established net metering on the Island of Palau. Net metering was implemented in order to:

  16. To: Ashley Armstrong, U.S. Department of Energy From: Amy Shepherd, General Counsel, AHRI

    Energy Savers [EERE]

    9, 2015 To: Ashley Armstrong, U.S. Department of Energy From: Amy Shepherd, General Counsel, AHRI Re: Ex Parte Communication on Central Air-Conditioner Test Procedure - ICM Issues On October 8, 2015, AHRI staff and Independent Coil Manufacturer (ICM) Representatives met with a representative from the Department of Energy (DOE) to discuss proposed amended test procedures for central air conditioners and how they would impact ICM manufacturers. The meeting was held at AHRI offices in Arlington,

  17. To: John Cymbalsky, United States Department of Energy From: Amy Shepherd, General Counsel, AHRI

    Energy Savers [EERE]

    25, 2015 To: John Cymbalsky, United States Department of Energy From: Amy Shepherd, General Counsel, AHRI Re: Ex Parte Communication on Commercial Unitary Equipment Rulemaking On February 5, 2015, AHRI staff, Industry Representatives and Energy Efficiency Advocates met to discuss Department of Energy (DOE) rulemakings for commercial furnaces and unitary large equipment. The meeting was held at AHRI offices in Arlington, Virginia. A list of attendees is provided below. At the meeting, the group

  18. To: Laura Barhydt, U.S. Department of Energy From: Amy Shepherd, General Counsel, AHRI

    Energy Savers [EERE]

    December 21, 2015 To: Laura Barhydt, U.S. Department of Energy From: Amy Shepherd, General Counsel, AHRI Re: Ex Parte Communication on Department of Energy Guidance for Dry Charged R- 22 Air Conditioning Units and Proposed Test Procedure Language on Units With No Match On December 1, 2015, AHRI staff and representatives of stakeholders who manufacture central air conditioning and heat pump systems met with representatives from the Department of Energy (DOE) to seek clarification and guidance on

  19. AmiGO: online access to ontology and annotation data

    SciTech Connect (OSTI)

    Carbon, Seth; Ireland, Amelia; Mungall, Christopher J.; Shu, ShengQiang; Marshall, Brad; Lewis, Suzanna

    2009-01-15

    AmiGO is a web application that allows users to query, browse, and visualize ontologies and related gene product annotation (association) data. AmiGO can be used online at the Gene Ontology (GO) website to access the data provided by the GO Consortium; it can also be downloaded and installed to browse local ontologies and annotations. AmiGO is free open source software developed and maintained by the GO Consortium.

  20. ARM - Field Campaign - AMIE (ACRF MJO Investigation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment): Observations of the Madden Julian Oscillation for Modeling Studies Campaign Links AMIE Website ARM Data Discovery Browse Data Comments? We would love to hear...

  1. PECO Energy Company Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AMI Communication Systems Meter Communications Network Backhaul Communications Meter Data Management System Customer Web Portal In-Home Displays Programmable Communicating...

  2. Wellsboro Electric Company Smart Grid Project | Open Energy Informatio...

    Open Energy Info (EERE)

    4,589 Smart Meters AMI Communication Systems Meter Communications Network Meter Data Management System Customer Web Portal Access for 100% of Customers 200 In-Home Displays...

  3. Lafayette Consolidated Government, LA Smart Grid Project | Open...

    Open Energy Info (EERE)

    AMI Communication Systems Meter Communications Network Backhaul Communications Meter Data Management System Customer Web Portal Access for 62,300 Customers 1,000 In-Home Displays...

  4. Indianapolis Power and Light Company Smart Grid Project | Open...

    Open Energy Info (EERE)

    AMI Communication Systems Meter Communications Network Backhaul Communications Meter Data Management System Customer Systems for 10,400 customers 4,000 Home Area Networks 1,900...

  5. Detroit Edison Company Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AMI Communication Systems Meter Communications Network Backhaul Communications Meter Data Management System Home Area Networks Customer Web Portal Access for 5,000 Customers 1,050...

  6. Pacific Northwest Generating Cooperative Smart Grid Project ...

    Open Energy Info (EERE)

    AMI Communication Systems Meter Communications Network Backhaul Communications Meter Data Management System Customer Web Portal 8,650 In-Home Displays 11,780 Direct Load Control...

  7. Golden Spread Electric Cooperative, Inc. Smart Grid Project ...

    Open Energy Info (EERE)

    AMI Communication Systems Meter Communications Network Backhaul Communications Meter Data Management System Web Portal Access for Select Customers 1,500 In-Home Displays 1,500...

  8. Vermont Transco, LLC Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AMI Communication Systems Meter Communications Network Backhaul Communications Meter Data Management System Customer Web Portal 500 Home Area Networks Distribution Automation...

  9. Designing and Operating Through Compromise: Architectural Analysis of CKMS for the Advanced Metering Infrastructure

    SciTech Connect (OSTI)

    Duren, Mike; Aldridge, Hal; Abercrombie, Robert K; Sheldon, Frederick T

    2013-01-01

    Compromises attributable to the Advanced Persistent Threat (APT) highlight the necessity for constant vigilance. The APT provides a new perspective on security metrics (e.g., statistics based cyber security) and quantitative risk assessments. We consider design principals and models/tools that provide high assurance for energy delivery systems (EDS) operations regardless of the state of compromise. Cryptographic keys must be securely exchanged, then held and protected on either end of a communications link. This is challenging for a utility with numerous substations that must secure the intelligent electronic devices (IEDs) that may comprise complex control system of systems. For example, distribution and management of keys among the millions of intelligent meters within the Advanced Metering Infrastructure (AMI) is being implemented as part of the National Smart Grid initiative. Without a means for a secure cryptographic key management system (CKMS) no cryptographic solution can be widely deployed to protect the EDS infrastructure from cyber-attack. We consider 1) how security modeling is applied to key management and cyber security concerns on a continuous basis from design through operation, 2) how trusted models and key management architectures greatly impact failure scenarios, and 3) how hardware-enabled trust is a critical element to detecting, surviving, and recovering from attack.

  10. Ami M. DuBois, John David Lee, ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high time resolution x-ray diagnostic on the Madison Symmetric Torus Ami M. DuBois, John David Lee, and Abdulgadar F. Almagri Citation: Review of Scientific Instruments 86, 073512...

  11. ARM - Field Campaign - AMIE-Gan Ancillary Disdrometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : AMIE-Gan Ancillary Disdrometer 2012.01.01 - 2012.02.10 Lead Scientist : Mariko Oue...

  12. Is revenue metering feasible

    SciTech Connect (OSTI)

    Taylor, N.R.

    1985-02-01

    Revenue metering for thermal systems has been in use for more than 100 years. There is an infinite variety of meters based on flow principles, but very limited choice of steam condensate meters. Progress is being made in the application of computer technology to thermal metering. Btu meters are showing substantial progress as the U.S. market increases. There is a lack of traceable standards, application guidelines and approved materials. Strongly needed are educational programs designed for the thermal metering technician. Costs of thermal measurements is, in general, out of balance with other utility type service meters.

  13. What Makes AMIE, the 3D printed home and vehicle, unique? | Department of

    Office of Environmental Management (EM)

    Energy What Makes AMIE, the 3D printed home and vehicle, unique? What Makes AMIE, the 3D printed home and vehicle, unique? February 22, 2016 - 3:39pm Addthis Meet AMIE - the Additive Manufacturing Integrated Energy demonstration project. Led by the Energy Department's Oak Ridge National Laboratory and many industry partners, the AMIE project changes the way we think about generating, storing, and using electrical power. AMIE uses an integrated energy system that shares energy. Karma Sawyer,

  14. Failure Impact Analysis of Key Management in AMI Using Cybernomic Situational Assessment (CSA)

    SciTech Connect (OSTI)

    Abercrombie, Robert K; Sheldon, Frederick T; Hauser, Katie R; Lantz, Margaret W; Mili, Ali

    2013-01-01

    In earlier work, we presented a computational framework for quantifying the security of a system in terms of the average loss a stakeholder stands to sustain as a result of threats to the system. We named this system, the Cyberspace Security Econometrics System (CSES). In this paper, we refine the framework and apply it to cryptographic key management within the Advanced Metering Infrastructure (AMI) as an example. The stakeholders, requirements, components, and threats are determined. We then populate the matrices with justified values by addressing the AMI at a higher level, rather than trying to consider every piece of hardware and software involved. We accomplish this task by leveraging the recently established NISTR 7628 guideline for smart grid security. This allowed us to choose the stakeholders, requirements, components, and threats realistically. We reviewed the literature and selected an industry technical working group to select three representative threats from a collection of 29 threats. From this subset, we populate the stakes, dependency, and impact matrices, and the threat vector with realistic numbers. Each Stakeholder s Mean Failure Cost is then computed.

  15. Mode Meter - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Energy Analysis Find More Like This Return to Search Mode Meter Pacific Northwest National Laboratory Contact PNNL About This Technology Technology Marketing Summary Electricity grids have traditionally been monitored using systems based upon dated and slow communications and computational technologies. A large effort is underway in the electricity industry to replace those legacy systems with high-speed and accurate monitoring units call "phasor monitoring units," or PMUs.

  16. LADWP- Net Metering

    Broader source: Energy.gov [DOE]

    LADWP allows its customers to net meter their photovoltaic (PV), wind, and hybrid systems with a capacity of not more than one megawatt. LADWP will provide the necessary metering equipment unless...

  17. Utility Metering- AGL Resources

    Broader source: Energy.gov [DOE]

    Presentationgiven at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meetingdiscusses AGL Resources metering, including interruptible rate customers, large users, and meeting federal metering goals.

  18. AMI (Smart Grid Project) (Poland) | Open Energy Information

    Open Energy Info (EERE)

    Remote management of meter systems and obtaining meter data; Activation of clients in energy effectiveness and dispersed generation; Completion of regulatory requirements in...

  19. SRP- Net Metering

    Broader source: Energy.gov [DOE]

    Note: Salt River Project (SRP) modified its existing net-metering program for residential customers in February 2015. These changes are effective with the April 2015 billing cycle.

  20. Campo Net Meter Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Campo Net Meter Project Michael Connolly Miskwish, MA EconomistEngineer Campo Kumeyaay Nation Location map Tribal Energy Planning Current 50 MW project Proposed 160 MW ...

  1. DC attenuation meter

    DOE Patents [OSTI]

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  2. Idaho Power- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    In July 2013, the PUC issued an order in response to Idaho Power's application to modify its net metering program. The ruling removed a previously existing service capacity cap of 2.9 MW and chan...

  3. Lesson Plan: Power Metering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Metering Project Grades: 9-12 Topic: Energy Basics Owner: ACTS This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency and...

  4. EWEB- Net Metering

    Broader source: Energy.gov [DOE]

    The Eugene Water and Electric Board (EWEB) offers net metering for customers with renewable energy generation systems with an installed capacity of 25 kW or less. Eligible systems use solar power,...

  5. Austin Energy- Net Metering

    Broader source: Energy.gov [DOE]

    Austin Energy, the municipal utility of Austin Texas, offers net metering to its non-residential retail electricity customers for renewable energy systems up to 20 kilowatts (kW). Austin Energy o...

  6. Guam- Net Metering

    Broader source: Energy.gov [DOE]

    Note: As of October 2015, the net metering program had around 700 customers. According to the Guam Daily Post, the program is expected to reach the current 1,000-customer cap in mid-2016. This cap...

  7. PSEG Long Island- Net Metering

    Broader source: Energy.gov [DOE]

    Although PSEG Long Island’s net metering policy is not governed by the State’s net metering law, the provisions are similar to the State law. Net metering is available for residential, non-reside...

  8. Net Metering | Open Energy Information

    Open Energy Info (EERE)

    Gas Wind Biomass Geothermal Electric Anaerobic Digestion Small Hydroelectric Tidal Energy Wave Energy No Ashland Electric - Net Metering (Oregon) Net Metering Oregon Commercial...

  9. Entergy New Orleans, Inc. Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    Entergy New Orleans' (ENO) Advanced Metering Infrastructure (AMI) Pilot program includes smart meters, in-home displays (IHDs), programmable communicating thermostats (PCTs), and...

  10. 2010 U.S. Smart Grid Vendor Ecosystem Report on the companies...

    Energy Savers [EERE]

    The Smart Grid vendor ecosystem is an increasingly interdependent web of companies. Vendors of Advanced Metering Infrastructure (AMI) products (meters, communication units, and ...

  11. AMIS (Smart Grid Project) (Vcklabruck, Austria) | Open Energy...

    Open Energy Info (EERE)

    map Period Jan 2005 - Jun 2012 References EU Smart Grid Projects Map1 Overview Automation of metering and customer processes, further automation of grid components, creation...

  12. AMIS (Smart Grid Project) (Traun, Austria) | Open Energy Information

    Open Energy Info (EERE)

    map Period Jan 2005 - Jun 2012 References EU Smart Grid Projects Map1 Overview Automation of metering and customer processes, further automation of grid components, creation...

  13. Microsoft Word - eMeter 10-11-01 Response to DOE RFI.doc

    Office of Environmental Management (EM)

    Addressing Policy and Logistical Challenges to smart grid Implementation: Response to Department of Energy RFI November 1, 2010 eMeter Strategic Consulting Background eMeter is a smart grid software company that provides smart network application platform (SNAP) software to integrate smart meters and smart grid communications networks and devices with utility IT systems. eMeter also provides smart grid application software such as meter data management (MDM) and consumer engagement software.

  14. Schlumberger Electricity Metering | Open Energy Information

    Open Energy Info (EERE)

    Electricity Metering Jump to: navigation, search Name: Schlumberger Electricity Metering Place: Oconee, South Carolina Product: Manufacturer of electricity meters. Coordinates:...

  15. Neutron dose equivalent meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Hsu, Hsiao-Hua (Los Alamos, NM); Casson, William H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM); Kleck, Jeffrey H. (Menlo Park, CA); Beverding, Anthony (Foster City, CA)

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  16. Microsoft PowerPoint - 6_AMY_JOHNSON_MMSS 2014 AJohnson UUSA...

    National Nuclear Security Administration (NNSA)

    Lessons Learned Associated with Obtaining License for a New Enrichment Plant Amy Johnson, URENCO USA URENCO USA History June to June - Combined License (COL) approval to production...

  17. Smart Meters and a Smarter Grid | Department of Energy

    Energy Savers [EERE]

    Smart Meters and a Smarter Grid Smart Meters and a Smarter Grid May 16, 2011 - 4:40pm Addthis Andrea Spikes Former Communicator at DOE's National Renewable Energy Laboratory Have you heard of smart meters? Do you understand them? If so, you've had a leg up on me until now. I've heard of smart meters here and there from the odd news article or website, but to me the grapevine has been more like an invisible beehive: all buzz and no honey. Where are they? Why don't I have one yet, and will I have

  18. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  19. Electric Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Metering Electric Metering Saving Money by Saving Energy The Department of Energy has installed meters in the James Forrestal Building that will enable DOE to measure electricity use and costs in its headquarters facility. You may explore this data further by visiting our Forrestal Metering Dashboard at the following website: http://forrestal.nrel.gov The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power

  20. Flow metering valve

    DOE Patents [OSTI]

    Blaedel, K.L.

    1983-11-03

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  1. Flow metering valve

    DOE Patents [OSTI]

    Blaedel, Kenneth L. (Dublin, CA)

    1985-01-01

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  2. Period meter for reactors

    DOE Patents [OSTI]

    Rusch, Gordon K.

    1976-01-06

    An improved log N amplifier type nuclear reactor period meter with reduced probability for noise-induced scrams is provided. With the reactor at low power levels a sampling circuit is provided to determine the reactor period by measuring the finite change in the amplitude of the log N amplifier output signal for a predetermined time period, while at high power levels, differentiation of the log N amplifier output signal provides an additional measure of the reactor period.

  3. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the limit on individual system size from 100 kilowatts (kW) to 1 MW . Net Excess Generation: The District's net-metering rules specify that metering equipment must be capable...

  4. Montana Electric Cooperatives- Net Metering

    Broader source: Energy.gov [DOE]

    The Montana Electric Cooperatives' Association (MECA) adopted model interconnection guidelines in 2001 and a revised net-metering policy in September 2008. Net metering is available in whole or...

  5. Washington City Power- Net Metering

    Broader source: Energy.gov [DOE]

    Washington City adopted a net-metering program, including interconnection procedures, in January 2008, and updated the policy in December 2014.* Net metering is available to any customer of...

  6. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    commercial) as long as the base requirements are met. All net-metered facilities must be behind a customer's meter, but only a minimal amount of load located on-site is required....

  7. N. Mariana Islands- Net Metering

    Broader source: Energy.gov [DOE]

    Note: The Commonwealth Utility Corporation issued a moratorium on net metering. However, Public Law 18-62 signed September 6, 2014 states that net metering should be available to all residential...

  8. The Purpose and Value of Successful Technology Demonstrations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Utility of the Near Future Utility of the Future New Communications Infrastructure New communications system to support Advanced Metering Infrastructure (AMI) and Demand Response ...

  9. Meters Roads N Streams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Meters Roads N Streams o Openwells E3i APT Site *. TES Plants (1) E2J Other Set-Asides lEI] Hydric Soils . 370 o 370 Soils Soil Series and Phase DBaB DBaC .Pk .TrB DTrC DTrD .TuE !iii TuF 740 Compartment 52 Compartment 53 N A sc Figure 5-1. Area. Plant communities and soils associated with the Oak Hickory Forest #1 Set-Aside 5-7 Set-Aside 5: Oak-Hickory Forest 1

  10. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  11. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  12. Net Metering Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Net Metering Resources Net Metering Resources State net metering policies allow customers to produce onsite electricity and sell excess generation to the utility at a set price,...

  13. Communication re NEMA | Department of Energy

    Energy Savers [EERE]

    Communication re NEMA Communication re NEMA On December 12, 2013, Dan Cohen, Ami Grace-Tardy and Michael Kido (all of DOE, Office of the General Counsel) contacted Clark Silcox (NEMA's general counsel) PDF icon Exparte_DOE_Silcox.pdf More Documents & Publications EERE-2010-BT-STD-0027 Ex Parte Letter NEMA Motor Training re DOE Motors Rule 15 July 2013. UL Ex Parte communications Ex Parte Memorandum

  14. ARM MJO Investigation Experiment on Gan Island (AMIE-Gan) Science Plan

    SciTech Connect (OSTI)

    Long, CL; Del Genio, A; Deng, M; Fu, X; Gustafson, W; Houze, R; Jakob, C; Jensen, M; Johnson, R; Liu, X; Luke, E; May, P; McFarlane, S; Minnis, P; Schumacher, C; Vogelmann, A; Wang, Y; Webster, P; Xie, S; Zhang, C

    2011-04-11

    The overarching campaign, which includes the ARM Mobile Facility 2 (AMF2) deployment in conjunction with the Dynamics of the Madden-Julian Oscillation (DYNAMO) and the Cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011 (CINDY2011) campaigns, is designed to test several current hypotheses regarding the mechanisms responsible for Madden-Julian Oscillation (MJO) initiation and propagation in the Indian Ocean area. The synergy between the proposed AMF2 deployment with DYNAMO/CINDY2011, and the corresponding funded experiment on Manus, combine for an overarching ARM MJO Investigation Experiment (AMIE) with two components: AMF2 on Gan Island in the Indian Ocean (AMIE-Gan), where the MJO initiates and starts its eastward propagation; and the ARM Manus site (AMIE-Manus), which is in the general area where the MJO usually starts to weaken in climate models. AMIE-Gan will provide measurements of particular interest to Atmospheric System Research (ASR) researchers relevant to improving the representation of MJO initiation in climate models. The framework of DYNAMO/CINDY2011 includes two proposed island-based sites and two ship-based locations forming a square pattern with sonde profiles and scanning precipitation and cloud radars at both island and ship sites. These data will be used to produce a Variational Analysis data set coinciding with the one produced for AMIE-Manus. The synergy between AMIE-Manus and AMIE-Gan will allow studies of the initiation, propagation, and evolution of the convective cloud population within the framework of the MJO. As with AMIE-Manus, AMIE-Gan/DYNAMO also includes a significant modeling component geared toward improving the representation of MJO initiation and propagation in climate and forecast models. This campaign involves the deployment of the second, marine-capable, AMF; all of the included measurement systems; and especially the scanning and vertically pointing radars. The campaign will include sonde launches at a rate of eight per day for the duration of the deployment. The increased sonde launches for the entire period matches that of the AMIE-Manus campaign and makes possible a far more robust Variational Analysis forcing data set product for the entire campaign, and thus better capabilities for modeling studies and synergistic research using the data from both AMIE sites.

  15. XTD-4's Amy Bauer | National Security Science Magazine | Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Home Phone Library Subscribe Low-bandwidth twitter flickr youtube linked in Search NSS banner Current Issue Past Issues Contacts XTD-4's Amy Bauer LANL staff member Amy L. Bauer is without question extraordinary. With a background in finance and mathematics, she has found ways to apply her skills and education to problems such as cancer, tuberculosis (TB), AIDS research, and national security. continue article... In this issue... Charles McMillan How People Become

  16. Electric Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power outlets. The purpose is to measure the ...

  17. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of retail renewable distributed generation and net metering. Details will be posted once a final order is issued. Eligibility and Availability In December 2005 the Colorado...

  18. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    who generate electricity using solar, wind, hydroelectric, geothermal, biomass, biogas, combined heat and power, or fuel cell technologies.* A net metering facility must be...

  19. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Anaerobic Digestion Fuel Cells using Renewable Fuels Program Info Sector Name State State North Carolina Program Type Net Metering Summary The North Carolina Utilities Commission...

  20. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    after 12312014) are eligible. Net-metered systems must be intended primarily to offset part or all of a customer's electricity requirements. Public utilities may not limit...

  1. Microsoft Word - AMI White paper final 013108 _2_.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL Modern Grid Strategy Powering our 21st-Century Economy ADVANCED METERING INFRASTRUCTURE Conducted by the National Energy Technology Laboratory for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability February 2008 Office of Electricity Delivery and Energy Reliability V1.0 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of

  2. Microsoft Word - NSTB_AMI_SecurityConsiderationsV4.doc

    Office of Environmental Management (EM)

    SANDIA REPORT SAND2007-7327 Unlimited Release Printed November 2007 Advanced Metering Infrastructure Security Considerations Raymond C. Parks Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Approved for public release; further

  3. ESB Smart Meter Projects (Smart Grid Project) | Open Energy Informatio...

    Open Energy Info (EERE)

    Customer Behavior; assessing the available technologies for AMI roll out in an Irish context. The above will input to the cost benefit analysis for the full roll out of AMI in...

  4. ESB Smart Meter Projects (Smart Grid Project) (Limerick, Ireland...

    Open Energy Info (EERE)

    Customer Behavior; assessing the available technologies for AMI roll out in an Irish context. The above will input to the cost benefit analysis for the full roll out of AMI in...

  5. Completion processing for data communications instructions

    DOE Patents [OSTI]

    Blocksome, Michael A.; Kumar, Sameer; Parker, Jeffrey J.

    2014-07-01

    Completion processing of data communications instructions in a distributed computing environment with computers coupled for data communications through communications adapters and an active messaging interface (`AMI`), injecting for data communications instructions into slots in an injection FIFO buffer a transfer descriptor, at least some of the instructions specifying callback functions; injecting a completion descriptor for each instruction that specifies a callback function into an injection FIFO buffer slot having a corresponding slot in a pending callback list; listing in the pending callback list callback functions specified by data communications instructions; processing each descriptor in the injection FIFO buffer, setting a bit in a completion bit mask corresponding to the slot in the FIFO where the completion descriptor was injected; and calling by the AMI any callback functions in the pending callback list as indicated by set bits in the completion bit mask.

  6. Wavelength meter having elliptical wedge

    DOE Patents [OSTI]

    Hackel, R.P.; Feldman, M.

    1992-12-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10[sup 8]. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing. 7 figs.

  7. Grays Harbor PUD- Net Metering

    Broader source: Energy.gov [DOE]

    Washington's original net-metering law, which applies to all electric utilities, was enacted in 1998 and amended in 2006. Individual systems are limited to 100 kilowatts (kW) in capacity. Net...

  8. Advanced Sub-Metering Program

    Broader source: Energy.gov [DOE]

    The program is designed to provide information about energy usage for each residences at a multi-residential buildings. Residences living in multi-residential buildings that are not sub-metered d...

  9. Blue Ridge EMC- Net Metering

    Broader source: Energy.gov [DOE]

    The Blue Ridge Electric Membership Corporation offers net metering to its residential customers with solar photovoltaic, wind, or micro-hydro generators up to 25 kilowatts. There is no aggregate...

  10. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable energy facilities established on military property for on-site military consumption may net meter for systems up to 2.2 megawatts (MW, AC). Aggregate Capacity Limit...

  11. Valley Electric Association- Net Metering

    Broader source: Energy.gov [DOE]

    The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

  12. Healthcare Energy Metering Guidance (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This brochure is intended to help facility and energy managers plan and prioritize investments in energy metering. It offers healthcare-specific examples of metering applications, benefits, and steps that other health systems can reproduce. It reflects collaborative input from the U.S. Department of Energy national laboratories and the health system members of the DOE Hospital Energy Alliance's Benchmarking and Measurement Project Team.

  13. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  14. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  15. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  16. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  17. Insert metering plates for gas turbine nozzles

    DOE Patents [OSTI]

    Burdgick, Steven S.; Itzel, Gary; Chopra, Sanjay; Abuaf, Nesim; Correia, Victor H.

    2004-05-11

    The invention comprises a metering plate which is assembled to an impingement insert for use in the nozzle of a gas turbine. The metering plate can have one or more metering holes and is used to balance the cooling flow within the nozzle. A metering plate with multiple holes reduces static pressure variations which result from the cooling airflow through the metering plate. The metering plate can be assembled to the insert before or after the insert is inserted into the nozzle.

  18. Town of Danvers, MA Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    Smart Meters AMI Communications Systems 75 Home Area Networks Customer Web Portal In-Home Displays Distribution Automation Upgrades for 5 of 34 Circuits Distribution...

  19. Cleco Power LLC Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    backbone for future customer systems, advanced electricity service options, and possible time-based rate programs.3 Equipment 279,000 Smart Meters AMI Communications Systems...

  20. FIA-12-0068 - In the Matter of Amy Woodward | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 - In the Matter of Amy Woodward FIA-12-0068 - In the Matter of Amy Woodward On November 29, 2012, the Office of Hearings and Appeals (OHA) issued a decision denying an appeal (Appeal) from a Freedom of Information Act (FOIA) determination issued by the Golden Field Office (GFO). The Appellant appealed the GFO's decision to withhold portions of the released documents pursuant to Exemption 4. The Appellant claimed that Exemption 4 could not apply as the company whose records the Appellant was

  1. Completion processing for data communications instructions

    DOE Patents [OSTI]

    Blocksome, Michael A; Kumar, Sameer; Parker, Jeffrey J

    2014-05-20

    Completion processing of data communications instructions in a distributed computing environment, including receiving, in an active messaging interface (`AMI`) data communications instructions, at least one instruction specifying a callback function; injecting into an injection FIFO buffer of a data communication adapter, an injection descriptor, each slot in the injection FIFO buffer having a corresponding slot in a pending callback list; listing in the pending callback list any callback function specified by an instruction, incrementing a pending callback counter for each listed callback function; transferring payload data as per each injection descriptor, incrementing a transfer counter upon completion of each transfer; determining from counter values whether the pending callback list presently includes callback functions whose data transfers have been completed; calling by the AMI any such callback functions from the pending callback list, decrementing the pending callback counter for each callback function called.

  2. Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use) | Department of Energy Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy. PDF icon Download the Federal Building

  3. Government Program Briefing: Smart Metering

    SciTech Connect (OSTI)

    Doris, E.; Peterson, K.

    2011-09-01

    This document is adapted and updated from a memo delivered to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the U.S. Department of Energy (DOE) Project Officer in March 2008. This briefing piece provides an overview of the benefits, costs, and challenges of smart metering.

  4. Government Program Briefing: Smart Metering

    Broader source: Energy.gov [DOE]

    This document is adapted and updated from a memo delivered to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the U.S. Department of Energy (DOE) Project Officer in March 2008. This briefing piece provides an overview of the benefits, costs, and challenges of smart metering.

  5. greenMeter | Open Energy Information

    Open Energy Info (EERE)

    physics engine from the gMeter app, greenMeter computes power, fuel usagecost, crude oil consumption, and carbon emission (data can be shown in US or metric units). Thanks to...

  6. Laser Power Meter Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2002-09-19

    Laser Power Meter integrates the digital output of a Newport 1835-C Laser Energy Meter and inserts the results into the file header of a WinSpec experimental file.

  7. Metering in Federal Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Maintenance » Metering in Federal Buildings Metering in Federal Buildings The U.S. Department of Energy is required by the Energy Policy Act of 2005 and Executive Order 13693 to establish guidelines for agencies to meter their federal buildings for energy (electricity, natural gas, and steam) and water use. To help agencies meet these metering requirements, the Federal Energy Management Program (FEMP) provides guidance materials, an implementation plan template, and a best practices

  8. Meter and Relay Craftsman- Journeyman

    Broader source: Energy.gov [DOE]

    Where would I be working? Western Area Power Administration Desert Southwest Region Protection and Communication Maintenance (G5300) 615 S. 43rd Avenue Phoenix, AZ 85009 Duty Location: Page, AZ...

  9. El Paso Electric - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Website http:www.epelectric.comtxbusinessrollback-net-metering-approved-in-... State Texas Program Type Net Metering Summary El Paso Electric (EPE) has offered net metering to...

  10. Amy Ross

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ross is a volunteer pilot and coordinator for the Experimental Aircraft Association's Young Eagles Program, which introduces kids ages 8 to 17 to the joy of flying during free...

  11. Federal Building Metering Implementation Plan Template | Department of

    Energy Savers [EERE]

    Energy Building Metering Implementation Plan Template Federal Building Metering Implementation Plan Template Document provides a template for a federal building metering implementation plan. File metering_implementation_template.docx

  12. City of St. George- Net Metering

    Broader source: Energy.gov [DOE]

    The City of St. George Energy Services Department (SGESD) offers a net metering program to its customers, and updated program guidelines and fees in September 2015.* 

  13. A Million Meter Milestone | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Million Meter Milestone A Million Meter Milestone March 4, 2011 - 2:36pm Addthis To see what installing the 1 millionth meter looked like, check out this video. Don Macdonald Don Macdonald Senior Advisor for Strategic Projects What does this mean for me? Smart meters allow consumers to take personal control and ownership of her energy usage in a way not possible before. As program manager for the Department of Energy's Recovery Act funded Smart Grid Investment Grant (SGIG) program, I've had

  14. BPA Metering Services Editing and Estimating Procedures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an unmetered condition An unmetered event will be identified through one of the following methods: 1) The Field Forms application (via Metering Services email), 2) An email...

  15. DOE Releases Federal Building Metering Guidance | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management (Dec. 5, 2013), re-emphasized the requirements for installing electricity, natural gas, and steam meters and provided an additional requirement for installing water...

  16. Smart Meters on Tap for Owasso, Oklahoma

    Broader source: Energy.gov [DOE]

    Saving 10 percent of annual energy and increasing response time for electrical emergencies? Find out how smart meters can make cities smarter.

  17. Proton recoil scintillator neutron rem meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Seagraves, David T. (Los Alamos, NM)

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  18. Investigations of Possible Low-Level Temperature and Moisture Anomalies During the AMIE Field Campaign on Manus Island

    SciTech Connect (OSTI)

    Long, CN; Holdridge, DJ

    2012-11-19

    This document discusses results stemming from the investigation of near-surface temperature and moisture “oddities” that were brought to light as part of the Atmospheric Radiation Measurement (ARM) Madden-Julian Oscillation (MJO) Investigation Experiment (AMIE), Dynamics of the Madden-Julian Oscillation (DYNAMO), and Cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011 (CINDY2011) campaigns.

  19. Smart Meters | OpenEI Community

    Open Energy Info (EERE)

    Smart Meters Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 16 January, 2013 - 11:09 SDG&E Customers Can Connect Home Area Network Devices With Smart...

  20. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity. This option is available for photovoltaic (PV), wind, hydro...

  1. June 25 Webinar to Explore Net Metering

    Broader source: Energy.gov [DOE]

    Register for the Net Metering webinar, which will be held on Wednesday, June 25, 2014, from 11 a.m. to 12:30 p.m. Mountain time.

  2. meter data | OpenEI Community

    Open Energy Info (EERE)

    by Graham7781(2017) Super contributor 26 June, 2013 - 09:17 NREL's Energy Databus storing big energy data campus databus energy meter data NREL OpenEI Tool The Energy Databus began...

  3. Aggregate Net Metering Opportunities for Local Governments

    Broader source: Energy.gov [DOE]

    This guide summarizes the variations in state laws that determine whether or not meter aggregation is an option for local governments, explores the unique opportunities that it can extend to public...

  4. Murray City Power- Net Metering Pilot Program

    Broader source: Energy.gov [DOE]

    Under a pilot program, Murray City Power offers net metering to customers that generate electricity using photovoltaic (PV), wind-electric or hydroelectric systems with a maximum capacity of 10...

  5. U.S. Virgin Islands- Net Metering

    Broader source: Energy.gov [DOE]

    In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energ...

  6. How to Read Residential Electric and Natural Gas Meters | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How to Read Residential Electric and Natural Gas Meters How to Read Residential Electric and Natural Gas Meters An electromechanical electric meter on the side of a house. | Photo...

  7. Working With Your Utility to Obtain Metering Services

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers the government metering requirement, the U.S. Department of Defense (DoD) metering directive, and customer metering services available from utilities.

  8. RWE Metering GmbH | Open Energy Information

    Open Energy Info (EERE)

    GmbH Jump to: navigation, search Name: RWE Metering GmbH Place: Germany Product: Smart metering subsidiary of Germany's second largest utility RWE AG. References: RWE Metering...

  9. Leveraging AMI data for distribution system model calibration and situational awareness

    SciTech Connect (OSTI)

    Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini; Grijalva, Santiago; Harley, Ronald G.

    2015-01-15

    The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation and regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.

  10. Leveraging AMI data for distribution system model calibration and situational awareness

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini; Grijalva, Santiago; Harley, Ronald G.

    2015-01-15

    The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation andmore » regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.« less

  11. Nevada Smart Meter Program Launches | Department of Energy

    Energy Savers [EERE]

    Smart Meter Program Launches Nevada Smart Meter Program Launches October 18, 2010 - 11:30am Addthis Workers began installing smart meters for NV Energy's smart meter project three weeks ago. The project is expected to create 200 jobs, according to NV Energy. | Photo courtesy of NV Energy Workers began installing smart meters for NV Energy's smart meter project three weeks ago. The project is expected to create 200 jobs, according to NV Energy. | Photo courtesy of NV Energy Paul Lester Paul

  12. Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Federal Building Metering Implementation Plan Template Federal Building Energy Use Benchmarking Guidance, August 2014 Update Guidance for the ...

  13. Metering Best Practices: A Guide to Achieving Utility Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Guide describes information...

  14. Meter Scale Plasma Source for Plasma Wakefield Experiments (Journal...

    Office of Scientific and Technical Information (OSTI)

    Meter Scale Plasma Source for Plasma Wakefield Experiments Citation Details In-Document Search Title: Meter Scale Plasma Source for Plasma Wakefield Experiments Authors:...

  15. Energy Secretary Chu Announces Five Million Smart Meters Installed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Five Million Smart Meters Installed Nationwide as Part of Grid Modernization Effort Energy Secretary Chu Announces Five Million Smart Meters Installed Nationwide as Part of Grid...

  16. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency

    SciTech Connect (OSTI)

    2015-03-02

    Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005.

  17. Extreme Adaptive Optics for the Thirty Meter Telescope (Conference...

    Office of Scientific and Technical Information (OSTI)

    Extreme Adaptive Optics for the Thirty Meter Telescope Citation Details In-Document Search Title: Extreme Adaptive Optics for the Thirty Meter Telescope You are accessing a...

  18. Demand Response and Smart Metering Policy Actions Since the Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the ...

  19. 2010 Assessment of Demand Response and Advanced Metering - Staff...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Demand Response and Advanced Metering - Staff Report 2010 Assessment of Demand Response and Advanced Metering - Staff Report 2010 Assessment of Demand Response and ...

  20. Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilizing Sub-Metering to Drive Energy Project Approvals Through Data Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals Through Data This case study describes how...

  1. OTRA-THS MAC to reduce Power Outage Data Collection Latency in a smart meter network

    SciTech Connect (OSTI)

    Garlapati, Shravan K; Kuruganti, Phani Teja; Buehrer, Richard M; Reed, Jeffrey H

    2014-01-01

    The deployment of advanced metering infrastructure by the electric utilities poses unique communication challenges, particularly as the number of meters per aggregator increases. During a power outage, a smart meter tries to report it instantaneously to the electric utility. In a densely populated residential/industrial locality, it is possible that a large number of smart meters simultaneously try to get access to the communication network to report the power outage. If the number of smart meters is very high of the order of tens of thousands (metropolitan areas), the power outage data flooding can lead to Random Access CHannel (RACH) congestion. Several utilities are considering the use of cellular network for smart meter communications. In 3G/4G cellular networks, RACH congestion not only leads to collisions, retransmissions and increased RACH delays, but also has the potential to disrupt the dedicated traffic flow by increasing the interference levels (3G CDMA). In order to overcome this problem, in this paper we propose a Time Hierarchical Scheme (THS) that reduces the intensity of power outage data flooding and power outage reporting delay by 6/7th, and 17/18th when compared to their respective values without THS. Also, we propose an Optimum Transmission Rate Adaptive (OTRA) MAC to optimize the latency in power outage data collection. The analysis and simulation results presented in this paper show that both the OTRA and THS features of the proposed MAC results in a Power Outage Data Collection Latency (PODCL) that is 1/10th of the 4G LTE PODCL.

  2. SOLVENT DISPERSION AND FLOW METER CALCULATION RESULTS

    SciTech Connect (OSTI)

    Nash, C.; Fondeur, F.; Peters, T.

    2013-06-21

    Savannah River National Laboratory (SRNL) found that the dispersion numbers for the six combinations of CSSX:Next Generation Solvent (NGS) blend and pure NGS versus salt solution, caustic wash, and strip aqueous solutions are all good. The dispersion numbers are indications of processability with centrifugal contactors. A comparison of solvent physical and thermal properties shows that the Intek solvent flow meter in the plant has a reading biased high versus calibrated flow when NGS is used, versus the standard CSSX solvent. The flow meter, calibrated for CSSX solvent, is predicted to read 2.8 gpm of NGS in a case where the true flow of NGS is 2.16 gpm.

  3. Liquid metal Flow Meter - Final Report

    SciTech Connect (OSTI)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  4. Microsoft PowerPoint - 6_AMY_JOHNSON_MMSS 2014 AJohnson UUSA 06MAY14.ppt [Compatibility Mode]

    National Nuclear Security Administration (NNSA)

    Lessons Learned Associated with Obtaining License for a New Enrichment Plant Amy Johnson, URENCO USA URENCO USA History June to June - Combined License (COL) approval to production in 4 years  2003: License application to build in New Mexico  2006, June: COL issued by the NRC  2006, August: ground breaking  2007, July: first concrete placement - Central Utilities Building  2008, October: access to the Centrifuge Assembly Building  2009, September: first centrifuge installed 

  5. Smart Meter Company Boosting Production, Workforce

    Office of Energy Efficiency and Renewable Energy (EERE)

    A manufacturing facility in South Carolina is producing enough smart meters to reduce annual electricity use by approximately 1.7 million megawatt hours -- and through advanced manufacturing tax credits, just increased the facility's production capability by 20 percent and created 420 jobs.

  6. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency |

    Office of Environmental Management (EM)

    Department of Energy Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005. PDF icon Download the Metering Best Practices Guide. More Documents & Publications Improving Steam System Performance: A Sourcebook for Industry, Second Edition A

  7. Federal Building Metering Guidance (per U.S.C. 8253 (e), Metering of Energy Use)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Building Metering Guidance (per 42 U.S.C. § 8253(e), Metering of Energy Use) November 2014 Update United States Department of Energy Washington, DC 20585 Department of Energy |November 2014 U.S. Department of Energy 1 I. Background The U.S. Department of Energy (DOE) is required by statute and Presidential Memorandum 1 to establish guidelines for agencies to meter their Federal buildings for energy (electricity, natural gas, and steam) and water. See 42 U.S.C. § 8253(e). DOE issued

  8. Stratiform and Convective Precipitation Observed by Multiple Radars during the DYNAMO/AMIE Experiment

    SciTech Connect (OSTI)

    Deng, Min; Kollias, Pavlos; Feng, Zhe; Zhang, Chidong; Long, Charles N.; Kalesse, Heike; Chandra, Arunchandra; Kumar, Vickal; Protat, Alain

    2014-11-01

    The motivation for this research is to develop a precipitation classification and rain rate estimation method using cloud radar-only measurements for Atmospheric Radiation Measurement (ARM) long-term cloud observation analysis, which are crucial and unique for studying cloud lifecycle and precipitation features under different weather and climate regimes. Based on simultaneous and collocated observations of the Ka-band ARM zenith radar (KAZR), two precipitation radars (NCAR S-PolKa and Texas A&M University SMART-R), and surface precipitation during the DYNAMO/AMIE field campaign, a new cloud radar-only based precipitation classification and rain rate estimation method has been developed and evaluated. The resulting precipitation classification is equivalent to those collocated SMART-R and S-PolKa observations. Both cloud and precipitation radars detected about 5% precipitation occurrence during this period. The convective (stratiform) precipitation fraction is about 18% (82%). The 2-day collocated disdrometer observations show an increased number concentration of large raindrops in convective rain compared to dominant concentration of small raindrops in stratiform rain. The composite distributions of KAZR reflectivity and Doppler velocity also show two distinct structures for convective and stratiform rain. These indicate that the method produces physically consistent results for two types of rain. The cloud radar-only rainfall estimation is developed based on the gradient of accumulative radar reflectivity below 1 km, near-surface Ze, and collocated surface rainfall (R) measurement. The parameterization is compared with the Z-R exponential relation. The relative difference between estimated and surface measured rainfall rate shows that the two-parameter relation can improve rainfall estimation.

  9. Community Net Energy Metering: How Novel Policies Expand Benefits of Net Metering to Non-Generators

    SciTech Connect (OSTI)

    Rose, James; Varnado, Laurel

    2009-04-01

    As interest in community solutions to renewable energy grows, more states are beginning to develop policies that encourage properties with more than one meter to install shared renewable energy systems. State net metering policies are evolving to allow the aggregation of multiple meters on a customer???¢????????s property and to dissolve conventional geographical boundaries. This trend means net metering is expanding out of its traditional function as an enabling incentive to offset onsite customer load at a single facility. This paper analyzes community net energy metering (CNEM) as an emerging vehicle by which farmers, neighborhoods, and municipalities may more easily finance and reap the benefits of renewable energy. Specifically, it aims to compare and contrast the definition of geographical boundaries among different CNEM models and examine the benefits and limitations of each approach. As state policies begin to stretch the geographic boundaries of net metering, they allow inventive solutions to encourage renewable energy investment. This paper attempts to initiate the conversation on this emerging policy mechanism and offers recommendations for further development of these policies.

  10. Fuel cell membrane hydration and fluid metering

    DOE Patents [OSTI]

    Jones, Daniel O.; Walsh, Michael M.

    2003-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  11. Fuel cell membrane hydration and fluid metering

    DOE Patents [OSTI]

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  12. High Performance Computing Data Center Metering Protocol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Computing Data Center Metering Protocol Prepared for: U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Federal Energy Management Program Prepared by: Thomas Wenning Michael MacDonald Oak Ridge National Laboratory September 2010 ii Introduction Data centers in general are continually using more compact and energy intensive central processing units, but the total number and size of data centers continues to increase to meet progressive computing

  13. Periodic review enhances LPG metering performance

    SciTech Connect (OSTI)

    Van Orsdol, F.G.

    1988-01-25

    Because of the loss of experienced personnel throughout the industry, the author says one must start over teaching the basics of liquid measurement. Warren Petroleum Co., a division of Chevron U.S.A. Inc., has developed a checklist review method for its metering systems, complete with enough explanation to allow the reviewer to understand why each item is important. Simultaneously, it continues with more in-depth and theoretical training in training course. This article describes the review process.

  14. New Technologies Bring New Opportunities for Meter Reader | Department of

    Office of Environmental Management (EM)

    Energy Technologies Bring New Opportunities for Meter Reader New Technologies Bring New Opportunities for Meter Reader September 22, 2011 - 2:03pm Addthis Brian Andrews is a former meter reader who now works with smart meter and intelligent grid projects. | Image courtesy of CenterPoint Energy. Brian Andrews is a former meter reader who now works with smart meter and intelligent grid projects. | Image courtesy of CenterPoint Energy. Liisa O'Neill Liisa O'Neill Former New Media Specialist,

  15. SCE&G - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of net metering programs offered by the IOUs. South Carolina Electric & Gas (SCE&G) designed two net-metering options for its South Carolina customers. These options are...

  16. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005. PDF icon mbpg2015.pdf More Documents & Publications Review of Orifice Plate Steam Traps Improving Steam System Performance: A Sourcebook for Industry, Second Edition

  17. Coriolis Meters for Hydrogen Dispensing Measurement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coriolis Meters for Hydrogen Dispensing Measurement Coriolis Meters for Hydrogen Dispensing Measurement This presentation by John Daly of GE Measurement and Control Solutions was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013. PDF icon csd_workshop_14_daly.pdf More Documents & Publications 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report Report on RFI DE-FOA-000753: High-Accuracy Hydrogen Meters Metering Best

  18. ARM: Three Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ARM: Three Meter Tower: video camera Citation Details In-Document Search Title: ARM: Three Meter Tower: video camera Three Meter Tower: video camera Authors: Scott Smith ; Martin...

  19. ARM: Three Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Three Meter Tower: video camera Citation Details In-Document Search Title: ARM: Three Meter Tower: video camera Three Meter Tower: video camera Authors: Scott Smith ; Martin...

  20. ARM: Forty Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Forty Meter Tower: video camera Citation Details In-Document Search Title: ARM: Forty Meter Tower: video camera Forty Meter Tower: video camera Authors: Scott Smith ; Martin...

  1. Logic elements for reactor period meter

    DOE Patents [OSTI]

    McDowell, William P.; Bobis, James P.

    1976-01-01

    Logic elements are provided for a reactor period meter trip circuit. For one element, first and second inputs are applied to first and second chopper comparators, respectively. The output of each comparator is O if the input applied to it is greater than or equal to a trip level associated with each input and each output is a square wave of frequency f if the input applied to it is less than the associated trip level. The outputs of the comparators are algebraically summed and applied to a bandpass filter tuned to f. For another element, the output of each comparator is applied to a bandpass filter which is tuned to f to give a sine wave of frequency f. The outputs of the filters are multiplied by an analog multiplier whose output is 0 if either input is 0 and a sine wave of frequency 2f if both inputs are a frequency f.

  2. AMIE (ARM MJO Investigation Experiment): Observations of the Madden-Julian Oscillation for Modeling Studies Science Plan

    SciTech Connect (OSTI)

    Long, C; Del Genio, A; Gustafson, W; Houze, R; Jakob, C; Jensen, M; Klein, S; Leung, L Ruby; Liu, X; Luke, E; May, P; McFarlane, S; Minnis, P; Schumacher, C; Vogelmann, A; Wang, Y; Wu, X; Xie, S

    2010-03-22

    Deep convection in the tropics plays an important role in driving global circulations and the transport of energy from the tropics to the mid-latitudes. Understanding the mechanisms that control tropical convection is a key to improving climate modeling simulations of the global energy balance. One of the dominant sources of tropical convective variability is the Madden-Julian Oscillation (MJO), which has a period of approximately 3060 days. There is no agreed-upon explanation for the underlying physics that maintain the MJO. Many climate models do not show well-defined MJO signals, and those that do have problems accurately simulating the amplitude, propagation speed, and/or seasonality of the MJO signal. Therefore, the MJO is a very important modeling target for the ARM modeling community geared specifically toward improving climate models. The ARM MJO Investigation Experiment (AMIE) period coincides with a large international MJO initiation field campaign called CINDY2011 (Cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011) that will take place in and around the Indian Ocean from October 2011 to January 2012. AMIE, in conjunction with CINDY2011 efforts, will provide an unprecedented data set that will allow investigation of the evolution of convection within the framework of the MJO. AMIE observations will also complement the long-term MJO statistics produced using ARM Manus data and will allow testing of several of the current hypotheses related to the MJO phenomenon. Taking advantage of the expected deployment of a C-POL scanning precipitation radar and an ECOR surface flux tower at the ARM Manus site, we propose to increase the number of sonde launches to eight per day starting in about mid-October of the field experiment year, which is climatologically a period of generally suppressed conditions at Manus and just prior to the climatologically strongest MJO period. The field experiment will last until the end of the MJO season (typically March), affording the documentation of conditions before, during, and after the peak MJO season. The increased frequency of sonde launches throughout the experimental period will provide better diurnal understanding of the thermodynamic profiles, and thus a better representation within the variational analysis data set. Finally, a small surface radiation and ceilometer system will be deployed at the PNG Lombrum Naval Base about 6 km away from the ARM Manus site in order to provide some documentation of scale variability with respect to the representativeness of the ARM measurements.

  3. Non-invasive energy meter for fixed and variable flow systems

    DOE Patents [OSTI]

    Menicucci, David F.; Black, Billy D.

    2005-11-01

    An energy metering method and apparatus for liquid flow systems comprising first and second segments of one or more conduits through which a liquid flows, comprising: attaching a first temperature sensor for connection to an outside of the first conduit segment; attaching a second temperature sensor for connection to an outside of the second conduit segment; via a programmable control unit, receiving data from the sensors and calculating energy data therefrom; and communicating energy data from the meter; whereby the method and apparatus operate without need to temporarily disconnect or alter the first or second conduit segments. The invention operates with both variable and fixed flow systems, and is especially useful for both active and passive solar energy systems.

  4. Method and apparatus for reading meters from a video image

    DOE Patents [OSTI]

    Lewis, Trevor J. (Irwin, PA); Ferguson, Jeffrey J. (North Huntingdon, PA)

    1997-01-01

    A method and system to enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relatively non-intrusive manner without making any complicated or expensive electronic connections, and without requiring intensive manpower.

  5. De Minimis Thresholds for Federal Building Metering Appropriateness

    SciTech Connect (OSTI)

    Henderson, Jordan W.

    2015-03-31

    The U.S. Department of Energy (DOE) is required by statute and Presidential Memorandum to establish guidelines for agencies to meter their Federal buildings for energy (electricity, natural gas, and steam) and water. See 42 U.S.C. 8253(e). DOE issued guidance in February 2006 on the installation of electric meters in Federal buildings. A recent update to the 2006 guidance accounts for more current metering practices within the Federal Government. The updated metering guidance specifies that all Federal buildings shall be considered appropriate for energy or water metering unless identified for potential exclusion. In developing the updated guidance to carry out the statue, Congress also directed DOE to (among other things) establish exclusions from the metering requirements based on the de minimis quantity of energy use of a Federal building, industrial process, or structure. This paper discusses the method used to identify de minimis values.

  6. CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review Presenter: James Braun, Purdue University View the Presentation PDF icon CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review More Documents & Publications CBEI: FDD for Advanced RTUs - 2015 Peer Review Control and Diagnostics for Rooftop Units - 2014 BTO Peer Review CBEI: Coordinating

  7. Secretary Chu Announces Two Million Smart Grid Meters Installed Nationwide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Million Smart Grid Meters Installed Nationwide Secretary Chu Announces Two Million Smart Grid Meters Installed Nationwide August 31, 2010 - 12:00am Addthis Columbus, OH - At an event today at Battelle headquarters in Columbus, Ohio, U.S. Energy Secretary Steven Chu announced that two million smart grid meters have been installed across the country, helping to reduce energy costs for families and businesses. As a result of funding from the Recovery Act, smart grid

  8. Energy Secretary Chu Announces Five Million Smart Meters Installed

    Energy Savers [EERE]

    Nationwide as Part of Grid Modernization Effort | Department of Energy Five Million Smart Meters Installed Nationwide as Part of Grid Modernization Effort Energy Secretary Chu Announces Five Million Smart Meters Installed Nationwide as Part of Grid Modernization Effort June 13, 2011 - 12:00am Addthis Washington, DC - At a White House Grid Modernization event today, U.S. Department of Energy Secretary Steven Chu announced that more than five million smart meters have been installed nationwide

  9. Two Million Smart Meters and Counting | Department of Energy

    Energy Savers [EERE]

    Million Smart Meters and Counting Two Million Smart Meters and Counting August 31, 2010 - 6:02pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs What does this mean for me? Smart meter technology will help families and businesses cut their energy costs by reducing response time for energy disruptions and enabling consumers to better monitor their consumption. The implementation of smart grid technologies could reduce

  10. High-Performance Computing Data Center Metering Protocol | Department of

    Office of Environmental Management (EM)

    Energy High-Performance Computing Data Center Metering Protocol High-Performance Computing Data Center Metering Protocol Guide details the methods for measurement in High-Performance Computing (HPC) data center facilities and document system strategies that have been used in Department of Energy data centers to increase data center energy efficiency. PDF icon hpc_metering_protocol.pdf More Documents & Publications Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance

  11. Shallow (2-meter) temperature surveys in Colorado

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Geothermal Development Associates, Reno, Nevada Publication Date: 2012 Title: Colorado 2m Survey Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: Shallow temperature surveys are useful in early-stage geothermal exploration to delineate surface outflow zones, with the intent to identify the source of upwelling, usually a fault. Detailed descriptions of the 2-meter survey method and equipment design can be found in Coolbaugh et al. (2007) and Sladek et al. (2007), and are summarized here. The survey method was devised to measure temperature as far below the zone of solar influence as possible, have minimal equilibration time, and yet be portable enough to fit on the back of an all-terrain vehicle (ATV); Figure 2). This method utilizes a direct push technology (DPT) technique where 2.3 m long, 0.54 outer diameter hollow steel rods are pounded into the ground using a demolition hammer. Resistance temperature devices (RTD) are then inserted into the rods at 2-meter depths, and allowed to equilibrate for one hour. The temperatures are then measured and recorded, the rods pulled out of the ground, and re-used at future sites. Usually multiple rods are planted over the course of an hour, and then the sampler returns back to the first station, measures the temperatures, pulls the rods, and so on, to eliminate waiting time. At Wagon Wheel Gap, 32 rods were planted around the hot springs between June 20 and July 1, 2012. The purpose was to determine the direction of a possible upflow fault or other structure. Temperatures at 1.5m and 2m depths were measured and recorded in the attribute table of this point shapefile. Several anomalous temperatures suggest that outflow is coming from a ~N60W striking fault or shear zone that contains the quartz-fluorite-barite veins of the adjacent patented mining claims. It should be noted that temperatures at 2m depth vary according to the amount of solar heating from above, as well as possible geothermal heating from below. Spatial Domain: Extent: Top: 4490310.560635 m Left: 150307.008238 m Right: 433163.213617 m Bottom: 4009565.915398 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard Rick Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  12. Cost benefit analysis for the implementation of smart metering...

    Open Energy Info (EERE)

    with pilot project (Smart Grid Project) Jump to: navigation, search Project Name Cost benefit analysis for the implementation of smart metering with pilot project Country...

  13. Nevada Renewable Energy Application For Net Metering Customers...

    Open Energy Info (EERE)

    Renewable Energy Application For Net Metering Customers Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Nevada Renewable Energy Application For Net...

  14. Improvements in Shallow (Two-Meter) Temperature Measurements...

    Open Energy Info (EERE)

    Center for Geothermal Energy has been working on improvements in shallow (two-meter) temperature surveys in two areas: overcoming limitations posed by difficult ground...

  15. Insights from Smart Meters: Identifying Specific Actions, Behaviors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drive Savings in Behavior-Based Programs Insights from Smart Meters: Identifying Specific Actions, Behaviors, and Characteristics That Drive Savings in Behavior-Based Programs In ...

  16. Vermont Construction and Operation of Net Metering Systems Rules...

    Open Energy Info (EERE)

    rule is applicable to all net metered installations in Vermont, and applies to every person, firm, company, corporation and municipality engaged in the construction or operation...

  17. Vermont Construction and Operation of Net Metering Systems Rule...

    Open Energy Info (EERE)

    rule is applicable to all net metered installations in Vermont, and applies to every person, firm, company, corporation and municipality engaged in the construction or operation...

  18. Smart Meters Help Balance Energy Consumption at Solar Decathlon |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Smart Meters Help Balance Energy Consumption at Solar Decathlon Smart Meters Help Balance Energy Consumption at Solar Decathlon September 28, 2011 - 10:57am Addthis The Team Tidewater Virginia smart meter, as seen on opening day, indicates the team generated 5 kW hours of electricity in the first several hours of the competition. | Image courtesy of Lachlan Fletcher, Studio 18a The Team Tidewater Virginia smart meter, as seen on opening day, indicates the team generated

  19. Wavelength meter having single mode fiber optics multiplexed inputs

    DOE Patents [OSTI]

    Hackel, Richard P. (Livermore, CA); Paris, Robert D. (San Ramon, CA); Feldman, Mark (Pleasanton, CA)

    1993-01-01

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  20. Wavelength meter having single mode fiber optics multiplexed inputs

    DOE Patents [OSTI]

    Hackel, R.P.; Paris, R.D.; Feldman, M.

    1993-02-23

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  1. CBEI: Virtual Refrigerant Charge Sensing and Load Metering -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review Presenter: James Braun, Purdue University View the Presentation PDF icon CBEI: Virtual Refrigerant...

  2. Extreme Adaptive Optics for the Thirty Meter Telescope (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Extreme Adaptive Optics for the Thirty Meter Telescope Direct detection of ... instrument, the Planet Formation Imager (PFI) for TMT. It has four key science missions. ...

  3. Smart Meters Helping Oklahoma Consumers Save Hundreds During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat July 26, 2011 - ... on Good Morning America that he's saving over 320 per month compared to last ...

  4. Evaluating Behind-the-Meter Energy Storage Systems with NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluating Behind-the- Meter Energy Storage Systems with NREL's System Advisor Model A new model helps companies assess the performance and economic effects of integrating battery ...

  5. Cyprus Smart metering demo (Smart Grid Project) | Open Energy...

    Open Energy Info (EERE)

    Installation of 3000 smart meters with the required infrastructure for full functionality evaluation of the best practice approach for full roll out. References "EU Smart Grid...

  6. emergency communications

    National Nuclear Security Administration (NNSA)

    0%2A en Emergency Communications http:nnsa.energy.govaboutusourprogramsemergencyoperationscounterterrorismemergencycommunications

  7. Communicating Logistics

    Office of Environmental Management (EM)

    Communicating Logistics * Delayed or nonexistent communication * Lack of consistency-follow protocols * No overarching coordination * DUF6 communication is poor * Lesson learned: need enhanced, on-going, open communication prior to planning Routing * Re-examine avoiding population centers * Analyze delta between mixed vs. dedicated trains * Flexibility is key component of planning * Selection needs to include state infrastructure Inspections * Cooperate with federal, state, local parties for an

  8. Multiphase pumps and flow meters avoid platform construction

    SciTech Connect (OSTI)

    Elde, J.

    1999-02-01

    One of the newest wrinkles in efficiency in BP`s Eastern Trough Area Project (ETAP) is the system for moving multiphase oil, water and gas fluids from the Machar satellite field to the Marnock Central Processing Facility (CPF). Using water-turbine-driven multiphase pumps and multiphase flow meters, the system moves fluid with no need for a production platform. In addition, BP has designed the installation so it reduces and controls water coning, thereby increasing recoverable reserves. Both subsea multiphase booster stations (SMUBS) and meters grew out of extensive development work and experience at Framo Engineering AS (Framo) in multiphase meters and multiphase pump systems for subsea installation. Multiphase meter development began in 1990 and the first subsea multiphase meters were installed in the East Spar Project in Australia in 1996. By September 1998, the meters had been operating successfully for more than 1 year. A single multiphase meter installed in Marathon`s West Brae Project has also successfully operated for more than 1 year. Subsea meters for ETAP were installed and began operating in July 1998.

  9. Subsea fiber-optic communications

    SciTech Connect (OSTI)

    High, G.; Wright, P.J.

    1997-05-01

    High-cost and hazardous nature of recovering hydrocarbons offshore have led to the trend towards growth in subsea production control. The extended step-out distances of subsea completions is increasing the volume and complexity of subsea data communications beyond the capacity of conventional systems. Improved reservoir management using intelligent sensors, metering, and process equipment, requiring real-time monitoring and control, dictates the use of wideband communication. Fiber optics offers the necessary volume of data transmission, with the high-noise immunity needed for data integrity and safe operation, under the severe Electro-Magnetic Interference (EMI) environments created where high power motors and power cables are used subsea. The marinizing of optical, opto-electronic communication components for production control, data acquisition of subsea completions for the offshore oil industry are described.

  10. Plasma momentum meter for momentum flux measurements

    DOE Patents [OSTI]

    Zonca, F.; Cohen, S.A.; Bennett, T.; Timberlake, J.R.

    1993-08-24

    An apparatus is described for measuring momentum flux from an intense plasma stream, comprising: refractory target means oriented normal to the flow of said plasma stream for bombardment by said plasma stream where said bombardment by said plasma stream applies a pressure to said target means, pendulum means for communicating a translational displacement of said target to a force transducer where said translational displacement of said target is transferred to said force transducer by an elongated member coupled to said target, where said member is suspended by a pendulum configuration means and where said force transducer is responsive to said translational displacement of said member, and force transducer means for outputting a signal representing pressure data corresponding to said displacement.

  11. Smart Meters Offer 'Instant Gratification;' Help Houston Homeowners

    Broader source: Energy.gov (indexed) [DOE]

    Save | Department of Energy Houston resident Ruth Diorio explains to KPRC Local 2 News how much she's saved with her recently installed smart meter, which allows her to see her savings in real time. Houston resident Ruth Diorio explains to KPRC Local 2 News how much she's saved with her recently installed smart meter, which allows her to see her savings in real time. Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs What does this mean for me? Smart meters

  12. Federal metering data analysis needs and existing tools

    SciTech Connect (OSTI)

    Henderson, Jordan W.; Fowler, Kimberly M.

    2015-07-01

    Agencies have been working to improve their metering data collection, management, and analysis efforts over the last decade (since EPAct 2005) and will continue to address these challenges as new requirements and data needs come into place. Unfortunately there is no one-size-fits-all solution. As agencies continue to expand their capabilities to use metered consumption data to reducing resource use and improve operations, the hope is that shared knowledge will empower others to follow suit. This paper discusses the Federal metering data analysis needs and some existing tools.

  13. Emergency Communication

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources » Emergency Communication Emergency Communication Stay informed of emergencies, weather delays, closures, other alerts. Find links to many emergency-related resources in one place. Contact Communications Office (505) 667-7000 LAB EMERGENCY NEWS SOURCES Public website - closures, emergency messages Lab Update Hotline - closures, emergency messages (505) 667-6622 or (877) 723-4101 Facebook | Twitter Media contacts Road conditions Get updates on LANL emergencies Subscribe to the Lab's

  14. Scholarly Communication

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key issues in scholarly communication include trends in publishing models, open access, public access, copyright and author rights, data management and infrastructure. Questions? ...

  15. Report: Communications

    Office of Environmental Management (EM)

    The EMAB Communications Team comprising Ms. Jennifer Salisbury, Ms. Lorraine Anderson, Mr. A. James Barnes, and Mr. Tom Winston, has continued to monitor EM's...

  16. Departmental Communications

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1978-09-26

    The order establishes standards on eliminating gender-specific terminology from all DOE communications. Canceled by DOE O 1321.139.

  17. Stick-on Electricity Meter - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Stick-on Electricity Meter (SEM) generates current and voltage signals at a set sample rate to enable computation of real and apparent power and to capture harmonics created by ...

  18. ARRA Program Celebrates Milestone 600,000 Smart Meter Installations

    Broader source: Energy.gov [DOE]

    On April 11, 2012, DOE Recovery Act funding recipient Sacramento Municipal Utility District (SMUD) celebrated a major milestone in the development of a regional smart grid in California: the installation of over 600,000 smart meters.

  19. Application for a Certificate of Public Good for Net Metered...

    Open Energy Info (EERE)

    Certificate of Public Good for Net Metered Power Systems that are Non-Photovoltaic Systems Up to 150 kW (AC) in Capacity Jump to: navigation, search OpenEI Reference LibraryAdd to...

  20. Insights from Smart Meters: The Potential for Peak Hour Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Potential for Peak Hour Savings from Behavior-Based Programs Insights from Smart Meters: The Potential for Peak Hour Savings from Behavior-Based Programs This report focuses on ...

  1. Secretary Chu Announces Two Million Smart Grid Meters Installed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    meters are being installed in Ohio and across the country to create a more reliable, modern electrical grid and give consumers the ability to monitor and control their energy...

  2. San Antonio City Public Service (CPS Energy)- Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to customers of CPS Energy. There is no aggregate capacity limit or maximum system size. There are also no commissioning fees or facilities charges for customers.

  3. ODUSD (I&E) Facilities Energy Program Advanced Metering Policy

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers the U.S. Department of Defense's (DoD's) metering policy, including implementation challenges and utility partnerships.

  4. Meeting the "Applied" Accuracy Needs of Energy Metering

    Energy Savers [EERE]

    NOT worst case accuracy of meter * NOT the accuracy as a function of input value Working definition: Average accuracy a user can expect to achieve on the desired measurement that...

  5. Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat

    Broader source: Energy.gov [DOE]

    Smart meters -- just one of the advanced technologies being used to modernize the grid -- are helping Oklahoma businesses and home owners beat high electricity bills not only during these summer months, but year-round.

  6. Smart Meter Investments Yield Positive Results in Maine | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Meter Investments Yield Positive Results in Maine Smart Meter Investments Yield Positive Results in Maine February 28, 2014 - 12:06pm Addthis Since 2009, the U.S. Department of Energy (DOE) and the electricity industry have jointly invested over $7.9 billion in 99 cost-shared Smart Grid Investment Grant (SGIG) projects to modernize the electric grid, strengthen cybersecurity, improve interoperability, and collect an unprecedented level of data on improvements in grid operations and

  7. The Need for Essential Consumer Protections: Smart Metering Proposals and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Move to Time-Based Pricing | Department of Energy Metering Proposals and the Move to Time-Based Pricing The Need for Essential Consumer Protections: Smart Metering Proposals and the Move to Time-Based Pricing There is a widespread consensus that the U.S. distribution and transmission systems for vital electricity service need to be modernized and upgraded to handle not only load growth, but the integration of renewable resources and the potential for a significant increase in

  8. Novel Application of Metering Pump on Diesel Aftertreatment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Novel Application of Metering Pump on Diesel Aftertreatment Novel Application of Metering Pump on Diesel Aftertreatment Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_liu.pdf More Documents & Publications SCR Systems for Heavy Duty Trucks: Progress Towards

  9. WINDExchange: Community-Scale 50-Meter Wind Maps

    Wind Powering America (EERE)

    Community-Scale 50-Meter Wind Maps The U.S. Department of Energy provides 50-meter (m) height, high-resolution wind resource maps for most of the states and territories of Puerto Rico and the Virgin Islands in the United States. Counties, towns, utilities, and schools use community-scale wind resource maps to locate and quantify the wind resource, identifying potentially windy sites determining a potential site's economic and technical viability. Map of the updated wind resource assessment

  10. WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California

  11. Insights from Smart Meters: Identifying Specific Actions, Behaviors, and

    Office of Environmental Management (EM)

    Characteristics That Drive Savings in Behavior-Based Programs | Department of Energy Identifying Specific Actions, Behaviors, and Characteristics That Drive Savings in Behavior-Based Programs Insights from Smart Meters: Identifying Specific Actions, Behaviors, and Characteristics That Drive Savings in Behavior-Based Programs In this report, we use smart meter data to analyze specific actions, behaviors, and characteristics that drive energy savings in a BB program. Specifically, we examine a

  12. Mechanisms of Convective Cloud Organization by Cold Pools over Tropical Warm Ocean during the AMIE/DYNAMO Field Campaign

    SciTech Connect (OSTI)

    Feng, Zhe; Hagos, Samson M.; Rowe, Angela; Burleyson, Casey D.; Martini, Matus; de Szoeke, S.

    2015-06-01

    This paper investigates the mechanisms of convective cloud organization by precipitation-driven cold pools over the warm tropical Indian Ocean during the 2011 Atmospheric Radiation Measurement (ARM) Madden-Julian Oscillation (MJO) Investigation Experiment / Dynamics of the MJO (AMIE/DYNAMO) field campaign. A high-resolution regional model simulation is performed using the Weather Research and Forecasting model during the transition from suppressed to active phases of the November 2011 MJO. The simulated cold pool lifetimes, spatial extent and thermodynamic properties agree well with the radar and ship-borne observations from the field campaign. The thermodynamic and dynamic structures of the outflow boundaries of isolated and intersecting cold pools in the simulation and the associated secondary cloud populations are examined. Intersecting cold pools last more than twice as long, are twice as large, 41% more intense (measured by buoyancy), and 62% deeper than isolated cold pools. Consequently, intersecting cold pools trigger 73% more convective clouds than isolated ones. This is possibly due to stronger outflows that enhance secondary updraft velocities by up to 45%. However, cold pool-triggered convective clouds grow into deep convection not because of the stronger secondary updrafts at cloud base, but rather due to closer spacing (aggregation) between clouds and larger cloud clusters that formed along the cold pool boundaries when they intersect. The close spacing of large clouds moistens the local environment and reduces entrainment drying, allowing the clouds to further develop into deep convection. Implications to the design of future convective parameterization with cold pool-modulated entrainment rates are discussed.

  13. A Meter-Scale Plasma Wakefield Accelerator (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: A Meter-Scale Plasma Wakefield Accelerator Citation Details In-Document Search Title: A Meter-Scale Plasma Wakefield Accelerator No abstract prepared. Authors:...

  14. Metering Best Practices. A Guide to Achieving Utility Resource Efficiency, Release 3.0

    SciTech Connect (OSTI)

    Parker, Steven A.; Hunt, W. D.; McMordie Stoughton, Kate; Boyd, Brian K.; Fowler, Kimberly M.; Koehler, Theresa M.; Sandusky, William F.; Sullivan, Greg P.; Pugh, Ray

    2015-04-05

    DOE FEMP guide for metering best practices aligned with the DOE Metering Guidance revision required by the 12/2013 Presidential Memo.

  15. Compensated count-rate circuit for radiation survey meter

    DOE Patents [OSTI]

    Todd, Richard A. (Powell, TN)

    1981-01-01

    A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for counting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensated circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.

  16. Compensated count-rate circuit for radiation survey meter

    DOE Patents [OSTI]

    Todd, R.A.

    1980-05-12

    A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for couting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensation circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.

  17. Smart preamplifier for real-time turbine meter diagnostics

    SciTech Connect (OSTI)

    Breter, J.C.

    1995-12-31

    A new, dual-purpose device for turbine meters, which functions as a traditional signal preamplifier and accomplishes real-time performance diagnostics, is now available. This smart preamplifier (patent pending) utilizes high speed microprocessor technology to continuously monitor and analyze the rotation of a turbine meter rotor. Continuous monitoring allows the device to detect rotational anomalies that can lead to erroneous measurements as they occur. The smart preamplifier works on liquid or gas turbine meters that use a variable reluctance pickup coil for signal generation. This paper will discuss the technology and capabilities of the smart preamplifier. To simplify this discussion, it is assumed that the signal generated will be via a non-rimmed rotor. Thus, the term ``blade`` is used throughout. However, all discussions relevant to signal generation are also true for a rimmed rotor using either buttons or slots for signal generation.

  18. Advanced Metering Implementations - A Perspective from Federal Sector

    SciTech Connect (OSTI)

    Eaarni, Shankar

    2014-08-11

    Federal mandate (EPACT 2005) requires that federal buildings install advanced electrical meters-meters capable of providing data at least daily and measuring the consumption of electricity at least hourly. This work presents selected advanced metering implementations to understand some of the existing practices related to data capture and to understand how the data is being translated into information and knowledge that can be used to improve building energy and operational performance to meet federal energy reduction mandates. This study highlights case studies to represent some of the various actions that are being taken based on the data that are being collected to improve overall energy performance of these buildings. Some of these actions include- individualized tenant billing and energy forecasting, benchmarking, identifying energy conservation measures, measurement and verification.

  19. Scientist profile: Amy Bauer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    angiogenesis). Her research suggested a way to combat cancer by starving a tumor of its blood flow and rendering it harmless. She also studied tuberculosis and HIV co-infection,...

  20. ARM - AMIE Field Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Journal Articles Collaborations Atmospheric System Research (ASR) Propose a Campaign Submitting Proposals: Guidelines Featured Campaigns Campaign Data List of Campaigns...

  1. Women @ Energy: Amy Bauer

    Broader source: Energy.gov [DOE]

    "Do something you are passionate about. Don’t wait for your opportunities; position yourself opportunistically and create them! Develop and adhere to a strong work ethic. Think for yourself. Listen and be heard. Find a way to do what’s right, even if it is an unpopular thing."

  2. Recessed impingement insert metering plate for gas turbine nozzles

    DOE Patents [OSTI]

    Itzel, Gary Michael (218 Quail Ridge Dr., Greenville, SC 29680); Burdgick, Steven Sebastian (7006 Kevin La., Schenectady, NY 12303)

    2002-01-01

    An impingement insert sleeve is provided that is adapted to be disposed in a coolant cavity defined through a stator vane. The insert has a generally open inlet end and first and second diametrically opposed, perforated side walls. A metering plate having at least one opening defined therethrough for coolant flow is mounted to the side walls to generally transverse a longitudinal axis of the insert, and is disposed downstream from said inlet end. The metering plate improves flow distribution while reducing ballooning stresses within the insert and allowing for a more flexible insert attachment.

  3. The Need for Essential Consumer Protections: Smart metering proposals and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the move to time-based pricing. August 2010 | Department of Energy metering proposals and the move to time-based pricing. August 2010 The Need for Essential Consumer Protections: Smart metering proposals and the move to time-based pricing. August 2010 There is widespread consensus that the U.S. distribution and transmission systems for vital electricity service need to be modernized and upgraded. This modernization has been recently promoted under the rubric of the Smart Grid. The Smart Grid

  4. WINDExchange: Residential-Scale 30-Meter Wind Maps

    Wind Powering America (EERE)

    Residential-Scale 30-Meter Wind Maps The U.S. Department of Energy provides 30-meter (m) height, high-resolution wind resource maps for the United States. Businesses, farms, and homeowners use residential-scale wind resource maps to identify wind sites that may be appropriate for small-scale wind projects. A wind resource map of the United States. Go to the California wind resource map. Go to the Washington wind resource map. Go to the Oregon wind resource map. Go to the Idaho wind resource map.

  5. EDD-7 Electric Charge Point Meter test results

    SciTech Connect (OSTI)

    Mersman, C.R.

    1993-09-01

    The results of tests evaluating the electric switching portion of the EDD-7 Electric Charge Point Meter (ECPM) are presented. The ECPM is a modified parking meter that allows the purchase of 120 or 240 volt electric power. The ECPM is designed to make electricity available at any vehicle parking location. The test results indicate that the ECPM operated without failure thru a series of over current and ground fault tests at three different test temperatures. The magnitude of current required to trip the over current protection circuitry varied with temperature while the performance of the ground fault interruption circuitry did not change significantly with the test temperature.

  6. CBEI - Virtual Refrigerant Charge Sensing and Load Metering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Refrigerant Charge Sensing and Load Metering 2015 Building Technologies Office Peer Review Jim Braun, jbraun@purdue.edu CBEI/Purdue University Project Summary Timeline: Start date: 5/1/2014 Planned end date: 4/30/2016 Key Milestones 1. Accuracy of virtual charge sensor, 4/30/15 2. Accuracy of virtual BTU meter, 4/30/15 Budget: Total DOE $ to date: $400,000 Total future DOE $: $140,000 Target Market/Audience: Commercial buildings with either rooftop units (RTUs) or built-up air-handling

  7. How to Read Your Electric Meter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appliances & Electronics » How to Read Your Electric Meter How to Read Your Electric Meter The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. The basic unit of measure of electric power is the Watt. One

  8. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, J.R.

    1982-05-04

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

  9. Utility-Scale Smart Meter Deployments, Plans & Proposals | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Utility-Scale Smart Meter Deployments, Plans & Proposals Utility-Scale Smart Meter Deployments, Plans & Proposals The Edison Foundation's chart of plans and proposals for utility-scale smart meter deployments. PDF icon Utility-Scale Smart Meter Deployments, Plans & Proposals More Documents & Publications Government Program Briefing: Smart Metering Comments of the New America Foundation's Open Technology Initiative 2014 Smart Grid System Report (August 2014

  10. Magnetostatic communication

    DOE Patents [OSTI]

    Daily, William D. (Livermore, CA)

    2008-02-26

    A system for providing communication of information by modulating a magnetostatic field with a magnetostatic transmitter that modulates said magnetostatic field to contain the information and detecting the information in the modulated field at a distance with a magnetostatic detector that detects the modulated magnetic field containing the information.

  11. The Need for Essential Consumer Protections: Smart metering proposals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This modernization has been recently promoted under the rubric of the Smart Grid. The Smart Grid vision has three primary parts: (1) new communication and digital sensors and ...

  12. The Need for Essential Consumer Protections: Smart Metering Proposals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This modernization has been recently promoted under the rubric of the Smart Grid. The Smart Grid vision has three primary parts: (1) new communication and digital sensors and ...

  13. Dead-time compensation for a logarithmic display rate meter

    DOE Patents [OSTI]

    Larson, J.A.; Krueger, F.P.

    1987-10-05

    An improved circuit is provided for application to a radiation survey meter that uses a detector that is subject to dead time. The circuit compensates for dead time over a wide range of count rates by producing a dead-time pulse for each detected event, a live-time pulse that spans the interval between dead-time pulses, and circuits that average the value of these pulses over time. The logarithm of each of these values is obtained and the logarithms are subtracted to provide a signal that is proportional to a count rate that is corrected for the effects of dead time. The circuit produces a meter indication and is also capable of producing an audible indication of detected events. 5 figs.

  14. Dead-time compensation for a logarithmic display rate meter

    DOE Patents [OSTI]

    Larson, John A.; Krueger, Frederick P.

    1988-09-20

    An improved circuit is provided for application to a radiation survey meter that uses a detector that is subject to dead time. The circuit compensates for dead time over a wide range of count rates by producing a dead-time pulse for each detected event, a live-time pulse that spans the interval between dead-time pulses, and circuits that average the value of these pulses over time. The logarithm of each of these values is obtained and the logarithms are subtracted to provide a signal that is proportional to a count rate that is corrected for the effects of dead time. The circuit produces a meter indication and is also capable of producing an audible indication of detected events.

  15. Non-Invasive Energy Meter - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Solar Thermal Energy Storage Energy Storage Energy Analysis Energy Analysis Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Non-Invasive Energy Meter Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (805 KB) Technology Marketing SummarySandia has developed an energy monitoring device that measures energy from liquid flow systems (e.g., solar systems) using a simple technique

  16. Metered Evaporator for Tokamak Wall Conditioning --- Inventor(s): Charles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. Skinner, Dennis Mansfield, Henry Kugel, Hans Schneider and Lane Roquemore | Princeton Plasma Physics Lab Metered Evaporator for Tokamak Wall Conditioning --- Inventor(s): Charles H. Skinner, Dennis Mansfield, Henry Kugel, Hans Schneider and Lane Roquemore A novel lithium evaporator for the controlled introduction of lithium into tokamaks for wall conditioning is described. The concept uses a Li granule injector with a heated in-vessel yttrium crucible to evaporate a controlled amount of

  17. Smart Meter Investments Support Rural Economy in Arkansas

    Energy Savers [EERE]

    Smart Meter Investments Support Rural Economy in Arkansas Woodruff Electric Cooperative (Woodruff) serves customers in seven eastern Arkansas counties. The proportion of residents living in poverty in those counties is more than double the national average. As a member-owned rural electric cooperative, Woodruff is connected to its customers and engaged in economic development efforts to bring more jobs and higher incomes to local communities. In order to bring the capital investment and its

  18. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, J.R.

    1980-05-02

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  19. How to Read Residential Electric and Natural Gas Meters | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy How to Read Residential Electric and Natural Gas Meters How to Read Residential Electric and Natural Gas Meters An electromechanical electric meter on the side of a house. | Photo courtesy of ©iStockphoto/epantha An electromechanical electric meter on the side of a house. | Photo courtesy of ©iStockphoto/epantha A digital electric meter on the side of a house. | Photo courtesy of ©iStockphoto/nbehmans A digital electric meter on the side of a house. | Photo courtesy of

  20. Revenue-metering device for HVDC systems. Final report

    SciTech Connect (OSTI)

    Schweitzer, E.O. III; Ando, M.; Aliaga, A.; Baker, R.; Seamans, D.

    1984-05-01

    This final report describes a digital dc revenue metering device for HVDC systems developed by Washington State University researchers under a contract with the Electric Power Research Institute. The device was installed at the Sylmar Converter Station of the Los Angeles Department of Water and Power in November 1981, and has been operating satisfactorily for over 20 months. It uses voltage and current measurements from existing voltage dividers, current transductors, and a current shunt. The energy-computation algorithms are implemented using digital signal processing principles in a single eight-bit microprocessor (Motorola MC6809). The algorithms accommodate the different characteristics of the sensors, and tolerate the unavailability of some of the sensors, with some loss in accuracy. Comparisons of the dc Revenue Meter energy measurements with the ac revenue meter measurements plus the station losses reveal a 0.1 percent difference in one pole and a one percent difference in the other pole, for a net difference of about one-half percent.

  1. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Office of Environmental Management (EM)

    Tips: Smart Meters and a Smarter Power Grid Tips: Smart Meters and a Smarter Power Grid The Smart Grid will consist of controls, computers, automation, and new technologies and...

  2. Status of Net Metering: Assessing the Potential to Reach Program Caps

    SciTech Connect (OSTI)

    Heeter, J.; Gelman, R.; Bird, L.

    2014-09-01

    Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

  3. United States- Land Based and Offshore Annual Average Wind Speed at 100 Meters

    Broader source: Energy.gov [DOE]

    Full-size, high resolution version of the 100-meter land-based and offshore wind speed resource map.

  4. Status of Net Metering: Assessing the Potential to Reach Program Caps (Poster)

    SciTech Connect (OSTI)

    Heeter, J.; Bird, L.; Gelman, R.

    2014-10-01

    Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

  5. Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals Through Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals Through Data Solutia, Inc. has a long history with sub-metering, dating back to the construction of some of its frst manufacturing plants in the late 1950s by its then parent company, Monsanto. A progressive technology, sub-metering is the installation of metering devices to measure actual energy consumption for individual pieces of equipment or other loads. As part of its aggressive corporate sustainability goals, Solutia

  6. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meters and a Smarter Power Grid Tips: Smart Meters and a Smarter Power Grid The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home -- working together to respond digitally to our quickly changing electric demand. The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home -- working together to respond digitally to our quickly changing

  7. Constructing a Merged Cloud-Precipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

    SciTech Connect (OSTI)

    Feng, Zhe; McFarlane, Sally A.; Schumacher, Courtney; Ellis, Scott; Comstock, Jennifer M.; Bharadwaj, Nitin

    2014-05-16

    To improve understanding of the convective processes key to the Madden-Julian-Oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and Atmospheric Radiation Measurement MJO Investigation Experiment (AMIE) collected four months of observations from three radars, the S-band Polarization Radar (S-Pol), the C-band Shared Mobile Atmospheric Research & Teaching Radar (SMART-R), and Ka-band Zenith Radar (KAZR) on Addu Atoll in the tropical Indian Ocean. This study compares the measurements from the S-Pol and SMART-R to those from the more sensitive KAZR in order to characterize the hydrometeor detection capabilities of the two scanning precipitation radars. Frequency comparisons for precipitating convective clouds and non-precipitating high clouds agree much better than non-precipitating low clouds for both scanning radars due to issues in ground clutter. On average, SMART-R underestimates convective and high cloud tops by 0.3 to 1.1 km, while S-Pol underestimates cloud tops by less than 0.4 km for these cloud types. S-Pol shows excellent dynamic range in detecting various types of clouds and therefore its data are well suited for characterizing the evolution of the 3D cloud structures, complementing the profiling KAZR measurements. For detecting non-precipitating low clouds and thin cirrus clouds, KAZR remains the most reliable instrument. However, KAZR is attenuated in heavy precipitation and underestimates cloud top height due to rainfall attenuation 4.3% of the time during DYNAMO/AMIE. An empirical method to correct the KAZR cloud top heights is described, and a merged radar dataset is produced to provide improved cloud boundary estimates, microphysics and radiative heating retrievals.

  8. Metering Plan: Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings

    SciTech Connect (OSTI)

    Pope, Jason E.

    2012-07-25

    This Plan presents progress toward the metering goals shared by all national laboratories and discusses PNNL's contemporary approach to the installation of new meters. In addition, the Plan discusses the data analysis techniques with which PNNL is working to mature using endless data streams made available as a result of increased meter deployment.

  9. The magnetic flywheel flow meter: Theoretical and experimental contributions

    SciTech Connect (OSTI)

    Buchenau, D., E-mail: d.buchenau@hzdr.de; Galindo, V.; Eckert, S. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner Landstrae 400, 01328 Dresden (Germany)

    2014-06-02

    The development of contactless flow meters is an important issue for monitoring and controlling of processes in different application fields, like metallurgy, liquid metal casting, or cooling systems for nuclear reactors and transmutation machines. Shercliff described in his book The Theory of Electromagnetic Flow Measurement, Cambridge University Press, 1962 a simple and robust device for contact-less measurements of liquid metal flow rates which is known as magnetic flywheel. The sensor consists of several permanent magnets attached on a rotatable soft iron plate. This arrangement will be placed closely to the liquid metal flow to be measured, so that the field of the permanent magnets penetrates into the fluid volume. The flywheel will be accelerated by a Lorentz force arising from the interaction between the magnetic field and the moving liquid. Steady rotation rates of the flywheel can be taken as a measure for the mean flow rate inside the fluid channel. The present paper provides a detailed theoretical description of the sensor in order to gain a better insight into the functional principle of the magnetic flywheel. Theoretical predictions are confirmed by corresponding laboratory experiments. For that purpose, a laboratory model of such a flow meter was built and tested on a GaInSn-loop under various test conditions.

  10. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOE Patents [OSTI]

    Deaton, Juan D. (Menan, ID); Schmitt, Michael J. (Idaho Falls, ID); Jones, Warren F. (Idaho Falls, ID)

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  11. Genesis of a three-phase subsea metering system. [Oil and gas metering systems for subsea operations

    SciTech Connect (OSTI)

    Dowty, E.L.; Hatton, G.J.; Durrett, M.G. ); Dean, T.L.; Jiskoot, R.J.J.

    1993-08-01

    Periodic well flow testing is necessary to monitor well and reservoir performance over time to optimize decisions on well production rates and new well requirements through improved reservoir models, to determine the timing of well workovers, and to identify when wells become uneconomical to produce. A dedicated test separator' conventionally is used to meter individual wells. Fluids from a well are separated into the three component phases (oil, gas, and water) in a large vessel, and the flow rate of each phase is measured on the respective outlet lines from the vessel. The same method currently is used for subsea satellite developments by providing a dedicated test pipeline' from the subsea field to carry a selected well's production to a test separator for metering on the host platform. The capital cost of these systems rises rapidly with distance. Greater distances between the wellhead and flow test system increase the cost of the test pipeline and require larger and hence more expensive slug catchers and risers. Clearly, a subsea-based well-test system could result in large capital cost savings by eliminating the need for conventional test systems. This paper tracks the development of one subsea well test system from conception to field testing on the Tartan. A platform in the North Sea. This work defines the design requirements of the system, reviews system development and fabrication, describes modifications made as a result of initial field tests, and reports the results of topside tests completed through Dec. 1990.

  12. Sensus | Open Energy Information

    Open Energy Info (EERE)

    Carolina-based provider of advanced metering infrastructure (AMI) and Automatic Meter Reading (AMR) solutions for water, gas, electric, and heat utilities as well as sub-metering...

  13. Office of Communication - Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Fermilab Office of Communication Office of Communication home | Office of Communication staff | speakers' bureau | available materials | links | talk to Fermilab Communication Staff Office of Communication Staff Office of Communication staff. Front row, from left: Barb Kronkow, Cindy Arnold, Diana Brandonisio, Katie Yurkewicz, Leah Hesla, Kelen Tuttle. Middle row, from left: Reidar Hahn, Al Johnson, Kathryn Jepsen, Andre Salles, Ashley WennersHerron. Back row, from left: Jim Shultz, Kurt

  14. Gas flow meter and method for measuring gas flow rate

    DOE Patents [OSTI]

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  15. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Communications Group Print From left: Ashley White, Lori Tamura, Keri Troutman, and Carina Braun. The ALS Communications staff maintain the ALS Web site; write and edit all print...

  16. Evaluation of convection-permitting model simulations of cloud populations associated with the Madden-Julian Oscillation using data collected during the AMIE/DYNAMO field campaign

    SciTech Connect (OSTI)

    Hagos, Samson M.; Feng, Zhe; Burleyson, Casey D.; Lim, Kyo-Sun; Long, Charles N.; Wu, Di; Thompson, Gregory

    2014-11-12

    Regional cloud permitting model simulations of cloud populations observed during the 2011 ARM Madden Julian Oscillation Investigation Experiment/ Dynamics of Madden-Julian Experiment (AMIE/DYNAMO) field campaign are evaluated against radar and ship-based measurements. Sensitivity of model simulated surface rain rate statistics to parameters and parameterization of hydrometeor sizes in five commonly used WRF microphysics schemes are examined. It is shown that at 2 km grid spacing, the model generally overestimates rain rate from large and deep convective cores. Sensitivity runs involving variation of parameters that affect rain drop or ice particle size distribution (more aggressive break-up process etc) generally reduce the bias in rain-rate and boundary layer temperature statistics as the smaller particles become more vulnerable to evaporation. Furthermore significant improvement in the convective rain-rate statistics is observed when the horizontal grid-spacing is reduced to 1 km and 0.5 km, while it is worsened when run at 4 km grid spacing as increased turbulence enhances evaporation. The results suggest modulation of evaporation processes, through parameterization of turbulent mixing and break-up of hydrometeors may provide a potential avenue for correcting cloud statistics and associated boundary layer temperature biases in regional and global cloud permitting model simulations.

  17. Deployable telescope having a thin-film mirror and metering structure

    DOE Patents [OSTI]

    Krumel, Leslie J. (Cedar Crest, NM); Martin, Jeffrey W. (Albuquerque, NM)

    2010-08-24

    A deployable thin-film mirror telescope comprises a base structure and a metering structure. The base structure houses a thin-film mirror, which can be rolled for stowage and unrolled for deployment. The metering structure is coupled to the base structure and can be folded for stowage and unfolded for deployment. In the deployed state, the unrolled thin-film mirror forms a primary minor for the telescope and the unfolded metering structure positions a secondary minor for the telescope.

  18. Demand Response and Smart Metering Policy Actions Since the Energy Policy

    Energy Savers [EERE]

    Act of 2005: A Summary for State Officials | Department of Energy Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials This report represents a review of policy developments on demand response and other related areas such as smart meters and smart grid. It has been prepared by the Demand Response Coordinating

  19. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home -- working together to respond digitally to our quickly changing electric demand. The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home -- working together to respond digitally to our quickly changing electric demand. Millions of smart meters have been installed across the

  20. Fuel Quality and Metering: Current Status and Future Needs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Metering: Current Status and Future Needs Fuel Quality and Metering: Current Status and Future Needs These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. PDF icon fuelquality_metering_ostw.pdf More Documents & Publications Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles"" Workshop, December 10-11, 2009 BILIWG Meeting: DOE Hydrogen Quality Working Group Update

  1. The Intersection of Net Metering and Retail Choice: An Overview of Policy,

    Energy Savers [EERE]

    Practice and Issues | Department of Energy Intersection of Net Metering and Retail Choice: An Overview of Policy, Practice and Issues The Intersection of Net Metering and Retail Choice: An Overview of Policy, Practice and Issues In this report, the authors studied different facets of crediting mechanisms, and defined five different theoretical models describing different ways competitive suppliers and utilities provide net metering options for their customers. They then provided case studies

  2. NIST Releases Test Framework for Upgrading of Smart Meters | Department of

    Office of Environmental Management (EM)

    Energy Releases Test Framework for Upgrading of Smart Meters NIST Releases Test Framework for Upgrading of Smart Meters July 12, 2012 - 10:46am Addthis The National Institute of Standards and Technology (NIST) has released a draft set of guidelines that will help utilities test their procedures for upgrading their smart meters securely from a remote location and determine whether their procedures conform with the National Electrical Manufacturers Association (NEMA) Standard for Smart Grid

  3. Communication Consultant Contract

    Broader source: Energy.gov [DOE]

    Communication Consultant Contract, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  4. Communications Consultant RFP

    Broader source: Energy.gov [DOE]

    Communications Consultant RFP, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  5. Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture

    DOE Patents [OSTI]

    Steele, Kerry D [Kennewick, WA; Anderson, Gordon A [Benton City, WA; Gilbert, Ronald W [Morgan Hill, CA

    2011-02-01

    Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture are described. In one aspect, a communications device identification method includes providing identification information regarding a group of wireless identification devices within a wireless communications range of a reader, using the provided identification information, selecting one of a plurality of different search procedures for identifying unidentified ones of the wireless identification devices within the wireless communications range, and identifying at least some of the unidentified ones of the wireless identification devices using the selected one of the search procedures.

  6. Experience in the Application of Single-Beam Ultrasonic Flow Meters for Turbines

    SciTech Connect (OSTI)

    Krasilnikov, A. M.; Dmitriev, S. G.; Karyakin, V. A.

    2002-03-15

    Experience in the use of ultrasonic flow meters at the Bratskaya and Vilyuiskaya HPP is described. The article is of interest to field engineers.

  7. The Impact of Rate Design and Net Metering on the Bill Savings...

    Open Energy Info (EERE)

    Impact of Rate Design and Net Metering on the Bill Savings from Distributed Photovoltaics (PV) for Residential Customers in California Jump to: navigation, search Tool Summary...

  8. Nissan North America: How Sub-Metering Changed the Way a Plant Does

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business | Department of Energy North America: How Sub-Metering Changed the Way a Plant Does Business Nissan North America: How Sub-Metering Changed the Way a Plant Does Business This case study describes how Nissan North America uses sub-meters to measure a range of variables at its U.S. plants, including electricity and compressed air, and identify opportunities to reduce energy consumption. PDF icon Nissan North America: How Sub-Metering Changed the Way a Plant Does Business (June 2011)

  9. Sandia Energy - NASA's Solar Tower Test of the 1-Meter Aeroshell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NASA's Solar Tower Test of the 1-Meter Aeroshell Home Videos Renewable Energy Energy Facilities Partnership News Concentrating Solar Power Solar National Solar Thermal Test...

  10. Report on RFI DE-FOA-000753: High-Accuracy Hydrogen Meters | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy on RFI DE-FOA-000753: High-Accuracy Hydrogen Meters Report on RFI DE-FOA-000753: High-Accuracy Hydrogen Meters This Fuel Cell Technologies Office document presents a summary of information gathered on the current status and needs for high-accuracy hydrogen meters, from a 2012 Request for Information (RFI) and other sources. PDF icon Report on RFI DE-FOA-000753: High-Accuracy Hydrogen Meters More Documents & Publications Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling

  11. How Would You Use a Smart Meter to Manage Your Energy Use? | Department of

    Energy Savers [EERE]

    Energy How Would You Use a Smart Meter to Manage Your Energy Use? How Would You Use a Smart Meter to Manage Your Energy Use? May 19, 2011 - 7:30am Addthis On Monday, Andrea told you about smart meters and how they can help you monitor your home's energy usage. How would you use a smart meter to manage your energy use? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please e-mail your responses to the Energy

  12. NREL Tool Finds Effective Behind-the-Meter Energy Storage Configuratio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool Finds Effective Behind-the-Meter Energy Storage Configurations Small battery systems can offer attractive return on investment March 9, 2015 The Energy Department's (DOE) ...

  13. DOE Publishes New Report on the Performance of Flicker Meters | Department

    Office of Environmental Management (EM)

    of Energy New Report on the Performance of Flicker Meters DOE Publishes New Report on the Performance of Flicker Meters February 23, 2016 - 9:46am Addthis The U.S. Department of Energy (DOE) has published a report on the performance of newly commercially available flicker meters. The purpose of the study was simply to report on the availability and performance of these meters. Flicker is garnering increased attention across the lighting community, and gaining a better understanding of why

  14. Electricity Submetering on the Cheap: Stick-on Electricity Meters

    SciTech Connect (OSTI)

    Lanzisera, Steven; Lorek, Michael; Pister, Kristofer

    2014-08-17

    We demonstrate a low-cost, 21 x 12 mm prototype Stick-on Electricity Meter (SEM) to replace traditional in-circuit-breaker-panel current and voltage sensors for building submetering. A SEM sensor is installed on the external face of a circuit breaker to generate voltage and current signals. This allows for the computation of real and apparent power as well as capturing harmonics created by non-linear loads. The prototype sensor is built using commercially available components, resulting in a production cost of under $10 per SEM. With no highvoltage install work requiring an electrician, home owners or other individuals can install the system in a few minutes with no safety implications. This leads to an installed system cost that is much lower than traditional submetering technology.. Measurement results from lab characterization as well as a real-world residential dwelling installation are presented, verifying the operation of our proposed SEM sensor. The SEM sensor can resolve breaker power levels below 10W, and it can be used to provide data for non-intrusive load monitoring systems at full sample rate.

  15. Ash level meter for a fixed-bed coal gasifier

    DOE Patents [OSTI]

    Fasching, George E.

    1984-01-01

    An ash level meter for a fixed-bed coal gasifier is provided which utilizes the known ash level temperature profile to monitor the ash bed level. A bed stirrer which travels up and down through the extent of the bed ash level is modified by installing thermocouples to measure the bed temperature as the stirrer travels through the stirring cycle. The temperature measurement signals are transmitted to an electronic signal process system by an FM/FM telemetry system. The processing system uses the temperature signals together with an analog stirrer position signal, taken from a position transducer disposed to measure the stirrer position to compute the vertical location of the ash zone upper boundary. The circuit determines the fraction of each total stirrer cycle time the stirrer-derived bed temperature is below a selected set point, multiplies this fraction by the average stirrer signal level, multiplies this result by an appropriate constant and adds another constant such that a 1 to 5 volt signal from the processor corresponds to a 0 to 30 inch span of the ash upper boundary level. Three individual counters in the processor store clock counts that are representative of: (1) the time the stirrer temperature is below the set point (500.degree. F.), (2) the time duration of the corresponding stirrer travel cycle, and (3) the corresponding average stirrer vertical position. The inputs to all three counters are disconnected during any period that the stirrer is stopped, eliminating corruption of the measurement by stirrer stoppage.

  16. Smart Meter Driven Segmentation: What Your Consumption Says About You

    SciTech Connect (OSTI)

    Albert, A; Rajagopal, R

    2013-11-01

    With the rollout of smart metering infrastructure at scale, demand-response (DR) programs may now be tailored based on users' consumption patterns as mined from sensed data. For issuing DR events it is key to understand the inter-temporal consumption dynamics as to appropriately segment the user population. We propose to infer occupancy states from consumption time series data using a hidden Markov model framework. Occupancy is characterized in this model by 1) magnitude, 2) duration, and 3) variability. We show that users may be grouped according to their consumption patterns into groups that exhibit qualitatively different dynamics that may be exploited for program enrollment purposes. We investigate empirically the information that residential energy consumers' temporal energy demand patterns characterized by these three dimensions may convey about their demographic, household, and appliance stock characteristics. Our analysis shows that temporal patterns in the user's consumption data can predict with good accuracy certain user characteristics. We use this framework to argue that there is a large degree of individual predictability in user consumption at a population level.

  17. Robotic Intelligence Kernel: Communications

    Energy Science and Technology Software Center (OSTI)

    2009-09-16

    The INL Robotic Intelligence Kernel-Comms is the communication server that transmits information between one or more robots using the RIK and one or more user interfaces. It supports event handling and multiple hardware communication protocols.

  18. CRAD, Communications Assessment Plan

    Broader source: Energy.gov [DOE]

    Lines of authority are clearly defined with clear and open communications existing between all departments and all levels.

  19. Communications | Department of Energy

    Office of Environmental Management (EM)

    Communications Communications SI Communications graphic.png To effectively inform grid operations with high-level integration of solar, visibility is required across multiple spatial scales (from the end-user load through the distribution substation and beyond) and at multiple time scales (from microseconds to hours and days). Advances in information, communications, and sensor technologies are needed to adequately monitor the behavior and manage the impact of the solar technologies integrating

  20. Communications Records | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Communications Records Communications Records PDF icon ADM 120.pdf More Documents & Publications ADMINISTRATIVE RECORDS SCHEDULE 12: COMMUNICATIONS RECORDS ADM 12 PDF...

  1. Secure video communications system

    DOE Patents [OSTI]

    Smith, Robert L. (Idaho Falls, ID)

    1991-01-01

    A secure video communications system having at least one command network formed by a combination of subsystems. The combination of subsystems to include a video subsystem, an audio subsystem, a communications subsystem, and a control subsystem. The video communications system to be window driven and mouse operated, and having the ability to allow for secure point-to-point real-time teleconferencing.

  2. Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication

    SciTech Connect (OSTI)

    LaClair, Tim J; Verma, Rajeev; Norris, Sarah; Cochran, Robert

    2014-01-01

    In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

  3. 2010 U.S. Smart Grid Vendor Ecosystem Report on the companies and market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    dynamics shaping the current U.S. smart grid landscape | Department of Energy U.S. Smart Grid Vendor Ecosystem Report on the companies and market dynamics shaping the current U.S. smart grid landscape 2010 U.S. Smart Grid Vendor Ecosystem Report on the companies and market dynamics shaping the current U.S. smart grid landscape The Smart Grid vendor ecosystem is an increasingly interdependent web of companies. Vendors of Advanced Metering Infrastructure (AMI) products (meters, communication

  4. Instrument Qualification of Custom Fabricated Water Activity Meter for Hot Cell Use

    SciTech Connect (OSTI)

    McCoskey, Jacob K.

    2014-01-22

    This report describes a custom fabricated water activity meter and the results of the qualification of this meter as described in the laboratory test plan LAB-PLN-11-00012, Testing and Validation of an Enhanced Acquisition and Control System. It was calibrated against several NaOH solutions of varying concentrations to quantify the accuracy and precision of the instrument at 20 C and 60 C. Also, a schematic and parts list of the equipment used to make the water activity meter will be presented in this report.

  5. Amy Jiron | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Producing a High Impact Technology November 3 Springboarding Building Energy Savings in India and the U.S. October 5 The World's Largest 3D Printed House at EERE Industry Day ...

  6. Faces of Science: Amy Bauer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    her passion and since has applied her skills to discovering novel therapeutics for cancer, determining the effects of tuberculosis infection on AIDS, and issues related to...

  7. communications requirements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    communications requirements PDF icon communications requirements More Documents & Publications Re: NBP RFI: Communications Requirements- Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy Re: NBP RFI: Communications Requirements NBP RFI: Communications Requirements- Comments of Lake Region Electric Cooperative- Minnesota

  8. "I'd Like to Check Out Two Books, One DVD, and One Electrical Meter, Please."

    Broader source: Energy.gov [DOE]

    Yesterday I wrote about my experience using a digital electrical meter at home. Today I'll discuss what I'm doing with promoting their use in my home town.

  9. Integration of Behind-the-Meter PV Fleet Forecasts into Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean Power Research logo.jpg This project will address the need for a more accurate approach ...

  10. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 27, 2014 - 8:13pm Addthis The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home --...

  11. Microsoft Word - Understanding Smart Grid Benefits_final.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Advanced Metering Infrastructure (AMI) Customer Side Systems (CS) Demand Response (DR) Distribution Management SystemDistribution Automation (DMS) ...

  12. Five Million Smart Meters Installed Nationwide is Just the Beginning of

    Energy Savers [EERE]

    Smart Grid Progress | Department of Energy Million Smart Meters Installed Nationwide is Just the Beginning of Smart Grid Progress Five Million Smart Meters Installed Nationwide is Just the Beginning of Smart Grid Progress June 13, 2011 - 1:55pm Addthis A 21st Century Grid includes increasing the overall efficiency of our generating, transmission and distribution system to facilitate the growth of renewable energy sources. | Energy Department Image A 21st Century Grid includes increasing the

  13. Mapping Battery Activity at the Level of a Billionth of a Meter - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Mapping Battery Activity at the Level of a Billionth of a Meter Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryAn ORNL method and apparatus offer a new approach to revealing battery behavior at the nanoscale. With this invention, researchers successfully mapped lithium diffusivity and electrochemical activity, showing how the battery works at the level of a billionth of a meter. Future energy technologies will rely heavily on

  14. Application of IEEE Standard 519-1992 harmonic limits for revenue billing meters

    SciTech Connect (OSTI)

    Arseneau, R.; Heydt, G.T.; Kempker, M.J.

    1997-01-01

    This paper identifies the potential for billing inequities at harmonic generating loads due to different measuring methods implemented in revenue meters. Potential problems are almost exclusively in the commercial and industrial sectors where demand and power factor charges are common. Field data are used to illustrate that compliance with IEEE Standard 519-1992 reduces the possibility of meter reading differences thus promoting a more equitable treatment of all customers.

  15. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System

    Office of Environmental Management (EM)

    Operations | Department of Energy Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean Power Research logo.jpg This project will address the need for a more accurate approach to forecasting net utility load by taking into consideration the contribution of customer-sited PV energy generation. Tasks within the project are designed to integrate novel PV power

  16. ORISE: Public Health Communication

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Communication Public Health Communication The Oak Ridge Institute for Science and Education (ORISE) assists government agencies and organizations in addressing public health challenges by developing evidence-based communication programs and social marketing initiatives that resonate with target populations. Because approximately half of American adults do not understand basic health information, ORISE develops the types of messages that will attract attention and motivate people to address their

  17. Notifications and Communications

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume provides a description of appropriate notifications and communications during an emergency. Canceled by DOE G 151.1-4.

  18. Fusion Communication Summit cover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMMUNICATIONS SUMMIT for U.S. Magnetic Fusion September 12-13, 2012 Princeton University - Frist Campus Center Princeton, New Jersey, USA Mission Statement Announcements...

  19. Communication Standards Website Contact

    Broader source: Energy.gov [DOE]

    This form is used to submit comments, report problems, and/or ask questions about information on the Communication Standards website.

  20. Using Wireless Power Meters to Measure Energy Use of Miscellaneous and Electronic Devices in Buildings

    SciTech Connect (OSTI)

    UC Berkeley, Berkeley, CA USA; Brown, Richard; Lanzisera, Steven; Cheung, Hoi Ying; Lai, Judy; Jiang, Xiaofan; Dawson-Haggerty, Stephen; Taneja, Jay; Ortiz, Jorge; Culler, David

    2011-05-24

    Miscellaneous and electronic devices consume about one-third of the primary energy used in U.S. buildings, and their energy use is increasing faster than other end-uses. Despite the success of policies, such as Energy Star, that promote more efficient miscellaneous and electronic products, much remains to be done to address the energy use of these devices if we are to achieve our energy and carbon reduction goals. Developing efficiency strategies for these products depends on better data about their actual usage, but very few studies have collected field data on the long-term energy used by a large sample of devices due to the difficulty and expense of collecting device-level energy data. This paper describes the development of an improved method for collecting device-level energy and power data using small, relatively inexpensive wireless power meters. These meters form a mesh network based on Internet standard protocols and can form networks of hundreds of metering points in a single building. Because the meters are relatively inexpensive and do not require manual data downloading, they can be left in the field for months or years to collect long time-series energy use data. In addition to the metering technology, we also describe a field protocol used to collect comprehensive, robust data on the miscellaneous and electronic devices in a building. The paper presents sample results from several case study buildings, in which all the plug-in devices for several homes were metered, and a representative sample of several hundred plug-in devices in a commercial office building were metered for several months.

  1. Development of the prototype Munitions Case Moisture Meter, Model ORNL-1

    SciTech Connect (OSTI)

    Agouridis, D.C.; Gayle, T.M.; Griest, W.H.

    1993-02-24

    There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental results on empty cccs in laboratory conditions demonstrate satisfactory performance of the instrument. Additional work is needed to bring the prototype to its optimum usefulness and accuracy for field measurements. This includes: Calibration of the meter scale with full-up munitions; Data and evaluation procedures to adjust the performance of the meter for different environmental conditions such as temperature and humidity; and Studies of the dielectric properties of moist ccc materials, as a function of frequency and temperature, are needed for adjustment of the meter for optimal performance.

  2. Development of the prototype Munitions Case Moisture Meter, Model ORNL-1. Final report

    SciTech Connect (OSTI)

    Agouridis, D.C.; Gayle, T.M.; Griest, W.H.

    1993-02-24

    There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental results on empty cccs in laboratory conditions demonstrate satisfactory performance of the instrument. Additional work is needed to bring the prototype to its optimum usefulness and accuracy for field measurements. This includes: Calibration of the meter scale with full-up munitions; Data and evaluation procedures to adjust the performance of the meter for different environmental conditions such as temperature and humidity; and Studies of the dielectric properties of moist ccc materials, as a function of frequency and temperature, are needed for adjustment of the meter for optimal performance.

  3. Cybersecurity Intrusion Detection and Security Monitoring for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    metering infrastructure and distribution automation Background Advanced metering infrastructure (AMI) and distribution automation (DA) field area networks (FANs) are among the ...

  4. West Virginia Smart Grid Implementation Plan (WV SGIP) Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... discussed, considering AMI (Advanced Metering Infrastructure), little or no DR (Demand Response) in place (none using smart meters), consumers questioning value of Smart Grid ...

  5. Hazard Communication Training - Upcoming Implementation Date...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hazard Communication Training - Upcoming Implementation Date for New Hazard Communication Standard Hazard Communication Training - Upcoming Implementation Date for New Hazard ...

  6. Coherent soliton communication lines

    SciTech Connect (OSTI)

    Yushko, O. V. Redyuk, A. A.; Fedoruk, M. P.; Turitsyn, S. K.

    2014-11-15

    The data transmission in coherent fiber-optical communication lines using solitons with a variable phase is studied. It is shown that nonlinear coherent structures (solitons) can be applied for effective signal transmission over a long distance using amplitude and optical-phase keying of information. The optimum ratio of the pulse width to the bit slot at which the spectral efficiency (transmitted bits per second and hertz) is maximal is determined. It is shown that soliton fiber-optical communication lines can ensure data transmission at a higher spectral efficiency as compared to traditional communication lines and at a high signal-to-noise ratio.

  7. Development and field evaluation of revenue metering device for HVDC Systems

    SciTech Connect (OSTI)

    Schweitzer, E.O.; Aliga, A.; Ando, M.; Baker, R.A.; Seamans, D.A.

    1985-02-01

    A prototype dc revenue metering device was developed under sponsorship of the Electrical Power Research Institute. The device was installed at the Sylmar Converter Station of the Pacific HVDC Intertie, owned by the Los Angeles Department of Water and Power (host utility) in November 1981, and has been operating satisfactorily for over two years. It uses voltage and current measurements from existing voltage dividers, current transductors, and a current shunt. The energy-computation algorithms are implemented using signal processing principles in a single eight-bit microprocessor. The algorithms accommodate the different characteristics of the sensors, and tolerate the unavailability of some of the sensors, with some loss in accuracy. Comparisons of the dc revenue meter energy measurements with the ac revenue meter measurements plus the station losses (estimated by the host utility) reveal a 0.1 percent difference in one pole and a one percent difference in the other pole, for a net difference of about one-half percent.

  8. Improvements to the Rocky Flats Metrology Laboratories Velocity Meter Calibration System

    SciTech Connect (OSTI)

    Abercrombie, K.R.

    1992-03-12

    The Rocky Flats Standards Laboratory has undertaken a project to improve calibration of air velocity meters by reducing the uncertainty of the Velocity Meter Calibration System. The project was accomplished by analyzing the governing equation in order to determine which areas within the system contributed most to the overall system uncertainty. Then, based upon this new analysis, new components were selected to replace the components identified in the analysis. Finally, the system was re-evaluated to determine the new systematic uncertainty for the system.

  9. Hydrogen consentration meter utilizing a diffusion tube composed of 2 1/4 C r

    DOE Patents [OSTI]

    Roy, Prodyot; Sandusky, David W.; Hartle, Robert T.

    1979-01-01

    A diffusion tube hydrogen meter for improving the sensitivity and response time for the measurement of hydrogen in liquid sodium. The improved hydrogen meter has a composite membrane composed of pure nickel sleeve fitted, for example, over a 2 1/4 Cr-1 Mo steel or niobium diffusion tube. Since the hydrogen permeation rate through 2 1/4 Cr-1 Mo steels is a factor of four higher than pure nickel, and the permeation rate of hydrogen through niobium is two orders of magnitude greater than the 2 1/4 Cr-1 Mo steel, this results in a decrease in response time and an increase in the sensitivity.

  10. Advanced Metering Plan for Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings

    SciTech Connect (OSTI)

    Pope, Jason E.; Olson, Norman J.; Berman, Marc J.; Schielke, Dale R.

    2011-08-17

    This updated Advanced Metering Plan for monitoring whole building energy use in Pacific Northwest National Laboratory (PNNL) EMS4 buildings on the PNNL campus has been prepared in accordance with the requirements of the Energy Policy Act of 2005 (EPAct 2005), Section 103, U.S. Department of Energy (DOE) Order 430.2B, and Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Federal Energy Management Program, October 2007 (Sullivan et al. 2007). The initial PNNL plan was developed in July 2007 (Olson 2007), updated in September 2008 (Olson et al. 2008), updated in September 2009 (Olson et al. 2009), and updated again in August 2010 (Olson et al. 2010).

  11. WINDExchange: Utility-Scale Land-Based 80-Meter Wind Maps

    Wind Powering America (EERE)

    Maps & Data Printable Version Bookmark and Share Land-Based Utility-Scale Maps Potential Capacity Maps Offshore Wind Maps Community-Scale Maps Residential-Scale Maps Installed Capacity Maps Utility-Scale Land-Based 80-Meter Wind Maps The U.S. Department of Energy provides an 80-meter (m) height, high-resolution wind resource map for the United States with links to state wind maps. States, utilities, and wind energy developers use utility-scale wind resource maps to locate and quantify the

  12. WINDExchange: Puerto Rico and U.S. Virgin Islands 50-Meter Wind Resource

    Wind Powering America (EERE)

    Map Maps & Data Printable Version Bookmark and Share Land-Based Utility-Scale Maps Potential Capacity Maps Offshore Wind Maps Community-Scale Maps Residential-Scale Maps Installed Capacity Maps Puerto Rico and U.S. Virgin Islands 50-Meter Wind Resource Map Puerto Rico and U.S. Virgin Islands wind resource map. Click on the image to view a larger version. Enlarge image This Puerto Rico wind map and the U.S. Virgin Islands wind map shows the wind resource at 50 meters. Download a printable

  13. Revenue metering error caused by induced voltage from adjacent transmission lines

    SciTech Connect (OSTI)

    Hughes, M.B. )

    1992-04-01

    A large zero sequence voltage was found to have been induced onto a 138 kV line from adjacent 500 kV lines where these share the same transmission right-of-way. This zero sequence voltage distorted the 2-1/2-element revenue metering schemes used for two large industrial customer supplied directly from the affected 138 kV line. As a result, these two customers were overcharged, on average, approximately 3.5% for 15 years. This paper describes the work done to trace the origins of the zero sequence voltage, quantify the metering error, and calculate customer refunds which, in the end, totalled $4 million.

  14. Microsoft PowerPoint - 03.2010_Metering Billing MDM America.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    METERING BILLING/MDM AMERICA Back-up Generation Sources (BUGS) Prepared by Steve Pullins March 9, 2010 Metering, Billing/MDM America - San Diego, CA This material is based upon work supported by the Department of Energy under Award Number DE- Department of Energy under Award Number DE AC26-04NT41817 This presentation was prepared as an account of work sponsored by an agency of This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the

  15. Communications Product Governance Team

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy (EERE) Product Governance Team (PGT) reviews and approves the publications, exhibits, logos, and templates for all EERE communications products. The PGT manages the product review process.

  16. Report: EM Communications

    Office of Environmental Management (EM)

    EMAB and specifically asked for the Board's input with regard to tools (e.g., plain language) and strategies that will allow EM to be proactive in its communications, and...

  17. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Communications Group Print From left: Ashley White, Lori Tamura, Keri Troutman, and Carina Braun. The ALS Communications staff maintain the ALS Web site; write and edit all print and electronic publications for the ALS, including Science Highlights, Science Briefs, brochures, handouts, and the monthly newsletter ALSNews; and create educational and scientific outreach materials. In addition, members of the group organize bi-monthly Science Cafés, create conference and workshop Web sites and

  18. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Communications Group Print From left: Ashley White, Lori Tamura, Keri Troutman, and Carina Braun. The ALS Communications staff maintain the ALS Web site; write and edit all print and electronic publications for the ALS, including Science Highlights, Science Briefs, brochures, handouts, and the monthly newsletter ALSNews; and create educational and scientific outreach materials. In addition, members of the group organize bi-monthly Science Cafés, create conference and workshop Web sites and

  19. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Communications Group Print From left: Ashley White, Lori Tamura, Keri Troutman, and Carina Braun. The ALS Communications staff maintain the ALS Web site; write and edit all print and electronic publications for the ALS, including Science Highlights, Science Briefs, brochures, handouts, and the monthly newsletter ALSNews; and create educational and scientific outreach materials. In addition, members of the group organize bi-monthly Science Cafés, create conference and workshop Web sites and

  20. Portable Instrumented Communication Library

    Energy Science and Technology Software Center (OSTI)

    1993-06-10

    PICL is a subroutine library that can be used to develop parallel programs that are portable across several distributed-memory multiprocessors. PICL provides a portable syntax for key communication primitives and related system calls. It also provides portable routines to perform certain widely-used, high-level communication operations, such as global broadcast and global summation. PICL provides execution tracing that can be used to monitor performance or to aid in debugging.

  1. Radiation dose-rate meter using an energy-sensitive counter

    DOE Patents [OSTI]

    Kopp, Manfred K. (Oak Ridge, TN)

    1988-01-01

    A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.

  2. Hanford Surpasses Transuranic Waste Milestone: 1,000 Cubic Meters Shipped Four Months Ahead of Schedule

    Broader source: Energy.gov [DOE]

    RICHLAND, WASH. The U.S. Department of Energy (DOE) at Hanford surpassed a Tri-Party Agreement Milestone by four months in shipping 1,000 cubic meters of transuranic waste off the Hanford Site in route to the Waste Isolation Pilot Plant (WIPP) in New Mexico before September 30, 2011.

  3. Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals Through Data

    Broader source: Energy.gov [DOE]

    This case study describes how Solutia uses sub-meters at all of its U.S. facilities to understand how equipment is running and to identify quick and inexpensive energy efficiency solutions, like reducing the run-time for a compressed air system at its Trenton, Michican plant.

  4. Net Metering

    Broader source: Energy.gov [DOE]

    * The PSC regulates investor-owned utilities and electric cooperatives in Louisiana; it does not regulate municipal-owned utilities, and its rules thereby do not apply to municipal utilities....

  5. Net Metering

    Broader source: Energy.gov [DOE]

    Customer net excess generation (NEG) is carried forward at the utility's retail rate (i.e., as a kilowatt-hour credit) to a customer's next bill for up to 12 months. At the end of a 12-month...

  6. Net Metering

    Broader source: Energy.gov [DOE]

    Note: On May 12, 2015 Georgia's governor signed House Bill 57 which allows residential and commercial customers to enter into third party financing deals for solar systems.

  7. Fission meter

    DOE Patents [OSTI]

    Rowland, Mark S. (Alamo, CA); Snyderman, Neal J. (Berkeley, CA)

    2012-04-10

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.

  8. Net Metering

    Broader source: Energy.gov [DOE]

    Net excess generation (NEG) is treated as a kilowatt-hour (kWh) credit or other compensation on the customer's following bill.* At the beginning of the calendar year, a utility will purchase any...

  9. Net Metering

    Broader source: Energy.gov [DOE]

    Note: Ongoing issues related to Minnesota's Community Solar Garden rules and program implementation are being considered in Docket No. E002/M-13-867. This entry will be updated as necessary to...

  10. Communications Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategic Programs » Communications Team Communications Team The Communications Team leads strategic communications and outreach activities for the Office of Energy Efficiency and Renewable Energy (EERE) by ensuring that key information about the nature and impact of EERE activities is accessible, reliable, and delivered through multiple communications channels to stakeholders and the public. Why it Matters We manage and continually update the EERE Web enterprise and its digital tools,

  11. BGE Communications Requirements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BGE Communications Requirements BGE Communications Requirements Chart of BGE Communications Requirements PDF icon BGE Communications Requirements More Documents & Publications Chart of communications requirements Lower Colorado River Authority Lower Colorado River Authority

  12. Future Communications Needs | Department of Energy

    Office of Environmental Management (EM)

    Future Communications Needs Future Communications Needs Chart of Oncor Electric Delivery's Future Communications Needs PDF icon Future Communications Needs More Documents & Publications Current Communications Needs AT&T, Inc.'s Reply Comments Comments of Utilities Telecom Council

  13. Chart of communications requirements | Department of Energy

    Office of Environmental Management (EM)

    Chart of communications requirements Chart of communications requirements Chart of communications requirements for BGE PDF icon Chart of communications requirements More Documents & Publications BGE Communications Requirements Lower Colorado River Authority Lower Colorado River Authority

  14. Current Communications Needs | Department of Energy

    Office of Environmental Management (EM)

    Current Communications Needs Current Communications Needs Oncor Electric Delivery chart of current communications needs PDF icon Current Communications Needs More Documents & Publications Future Communications Needs Comments of Utilities Telecom Council AT&T, Inc.'s Reply Comments

  15. To: Exparte Communications

    Energy Savers [EERE]

    mmarkweiss@aol.com [mailto:mmarkweiss@aol.com] Sent: Tuesday, March 24, 2015 11:12 PM To: Exparte Communications Subject: Memorandum of MHARR Meeting with DOE Officials on March 16, 2015 March 24, 2015 Office of General Counsel U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585 Memorandum for the record Ex-Parte Communication U.S. Department of Energy Meeting - Tuesday, March 16, 2015, 2:30-3:00 P.M. The purpose of this meeting was to provide additional information

  16. Anonymous authenticated communications

    DOE Patents [OSTI]

    Beaver, Cheryl L. (Albuquerque, NM); Schroeppel, Richard C. (Woodland Hills, UT); Snyder, Lillian A. (Corrales, NM)

    2007-06-19

    A method of performing electronic communications between members of a group wherein the communications are authenticated as being from a member of the group and have not been altered, comprising: generating a plurality of random numbers; distributing in a digital medium the plurality of random numbers to the members of the group; publishing a hash value of contents of the digital medium; distributing to the members of the group public-key-encrypted messages each containing a same token comprising a random number; and encrypting a message with a key generated from the token and the plurality of random numbers.

  17. Chapter 9, Metering Cross-Cutting Protocols: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Metering Cross- Cutting Protocols Dan Mort, ADM Associates, Inc. Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 9 - 1 Chapter 9 - Table of Contents 1 Introduction ............................................................................................................................ 3 2 Metering Application and Considerations

  18. The SNL100-01 blade : carbon design studies for the Sandia 100-meter blade.

    SciTech Connect (OSTI)

    Griffith, Daniel Todd

    2013-02-01

    A series of design studies to investigate the effect of carbon on blade weight and performance for large blades was performed using the Sandia 100-meter All-glass Baseline Blade design as a starting point. This document provides a description of the final carbon blade design, which is termed as SNL100-01. This report includes a summary of the design modifications applied to the baseline all-glass 100-meter design and a description of the NuMAD model files that are made publicly available. This document is intended primarily to be a companion document to the distribution of the NuMAD blade model files for SNL100-01.

  19. Deployment of High Resolution Real-Time Distribution Level Metering on Maui: Preprint

    SciTech Connect (OSTI)

    Bank, J.

    2013-01-01

    In order to support the ongoing Maui Smart Grid demonstration project advanced metering has been deployed at the distribution transformer level in Maui Electric Company's Kihei Circuit on the Island of Maui. This equipment has been custom designed to provide accurately time-stamped Phasor and Power Quality data in real time. Additionally, irradiance sensors have been deployed at a few selected locations in proximity to photovoltaic (PV) installations. The received data is being used for validation of existing system models and for impact studies of future system hardware. Descriptions of the hardware and its installation, and some preliminary metering results are presented. Real-time circuit visualization applications for the data are also under development.

  20. Optical voltage and current sensors used in a revenue metering system

    SciTech Connect (OSTI)

    Cease, T.W.; Driggans, J.G. ); Weikel, S.J. )

    1991-10-01

    This paper discusses the development of an optical voltage sensor as part of an all optic or Faraday effect was used to implement a Magneto-Optic Voltage Transducer (MOVT) to measure voltage by sensing the current flow through a capacitor connected from a 161 kV transmission line to ground. The current sensor was a Magneto-Optic Current Transducer (MOCT), developed previously. The unique design of the voltage sensors using the magneto-optic effects allows the implementation of that revenue metering system using all optical sensors. This method of measuring voltage was previously unproven. The components of the all optical sensor revenue metering system, the site installation, and the data acquisition system used to monitor the system are described. Decisions leading to the design of the MOVT are discussed.

  1. Digital revenue metering algorithm: development, analysis, implementation, testing, and evaluation. Final report

    SciTech Connect (OSTI)

    Schweitzer III, E.O.; To, H.W.; Ando, M.

    1980-11-01

    A digital revenue metering algorithm is described. The algorithm has been tested in a microcomputer system using two 8-bit MC6800 microprocessors and 12-bit analog-to-digital converters. The tests show that the system meets the accuracy requirements of ANSI C12-1975. The algorithm demands modest computing requirements and low data sampling rates. The algorithm uses Walsh-functions and will operate with as few as 4 samples per 60-Hz cycle. For proper response to odd harmonic frequencies, higher sampling rates must be used. Third harmonic power can be handled with an 8-sample per cycle Walsh function. However, even harmonics are effectively suppressed by the algorithm. The developed algorithm is intended for use in digital data acquisition systems for substations where interchange metering is required.

  2. Borehole Gravity Meter Surveys at the Waste Treatment Plant, Hanford, Washington.

    SciTech Connect (OSTI)

    MacQueen, Jeffrey D.; Mann, Ethan

    2007-04-06

    Microg-LaCoste (MGL) was contracted by Pacfic Northwest National Laboratories (PNNL) to record borehole gravity density data in 3 wells at the HanfordWaste Treatment Plant (WTP) site. The survey was designed to provide highly accurate density information for use in seismic modeling. The borehole gravity meter (BHGM) tool has a very large depth of investigation (hundreds of feet) compared to other density tools so it is not influenced by casing or near welbore effects, such as washouts.

  3. The Economic Value of PV and Net Metering to Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-05-17

    In this paper, we analyze the bill savings from PV for residential customers of the California's two largest electric utilities, under existing net metering tariffs as well as under several alternative compensation mechanisms. We find that economic value of PV to the customer is dependent on the structure of the underlying retail electricity rate and can vary quite significantly from one customer to another. In addition, we find that the value of the bill savings from PV generally declines with PV penetration level, as increased PV generation tends to offset lower-priced usage. Customers in our sample from both utilities are significantly better off with net metering than with a feed-in tariff where all PV generation is compensated at long-run avoided generation supply costs. Other compensation schemeswhich allow customers to displace their consumption with PV generation within each hour or each month, and are also based on the avoided costs, yield similar value to the customer as net metering.

  4. Hallmark Cryptographic Serial Communication | Department of Energy

    Energy Savers [EERE]

    Cryptographic Serial Communication Hallmark Cryptographic Serial Communication A cryptographic card and link module integrating the Secure SCADA Communications Protocol to provide secure serial communications for existing and new energy control systems PDF icon Hallmark Cryptographic Serial Communication More Documents & Publications Hallmark Project Commercialization of the Secure SCADA Communications Protocol, a cryptographic security solution for device-to-device communication

  5. CAT Communicator | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Archives CAT Communicator CAT Communicator was a newsletter intended to provide APS information to CAT members. 1994 (Volume 5) Number 2 1995 (Volume 6) Number 1 Number 2...

  6. Communicating Accomplishments to All Stakeholders

    Broader source: Energy.gov [DOE]

    This presentation discusses the value of communicating accomplishments related to energy efficiency project implementation and provides suggestions for communications tools. Raytheon Corporation provides tips from their own experience implementing projects.

  7. ORISE: Crisis and Risk Communication

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crisis and Risk Communication Crisis and Risk Communication Because a natural disaster, act of terrorism or other public emergency can happen without notice, having a planned, coordinated communication effort is necessary to help alleviate public anxiety during times of uncertainty. The Oak Ridge Institute for Science and Education (ORISE) helps prepare government agencies and organizations manage the communication aspects of emergency response. Whether this involves creating crisis

  8. Communications and Media Relations Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Communications and Media Relations Group Public Affairs Communications Community Public Affairs Org Chart Education Creative Services ⇒ Navigate Section Public Affairs Communications Community Public Affairs Org Chart Education Creative Services Berkeley Lab's Communications and Media Relations Group is responsible for gathering, reporting, and disseminating news about the Lab to both internal and external audiences, including employees, the media, and the community. The latest news can be

  9. Marketing and Communications Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Communications Plan Marketing and Communications Plan This is a document from Energy ... PDF icon Marketing and Communications Plan More Documents & Publications Sonoma County ...

  10. TEC Communications Topic Group

    Office of Environmental Management (EM)

    Tribal Issues Topic Group Judith Holm, Chair April 21, 2004 Albuquerque, NM Tribal Issues Topic Group * February Tribal Summit with Secretary of Energy (Kristen Ellis, CI) - Held in conjunction with NCAI mid-year conference - First Summit held in response to DOE Indian Policy - Addressed barriers to communication and developing framework for interaction Tribal Issues Topic Group * Summit (continued) - Federal Register Notice published in March soliciting input on how to improve summit process

  11. Involvement and Communication Committee.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2016 Public Involvement and Communication Committee Chair 1 : Liz Mattson 4 , Member Vice Chair 1 : Ken Niles 4 , Member Committee Members 2 : Shelley Cimon Peggy Maze Johnson Alissa Cordner Ken Niles Rob Davis Ed Pacheco Tom Galioto Dan Serres Floyd Hodges Jean Vanni Paige Knight Steve White Liz Mattson Unofficial Committee Members or Other Interested Parties 3 : Earl Fordham Gerry Pollet Paige Knight Steve Hudson 4 Susan Leckband 4 Facilitator: Cathy McCague 4 Agency & Technical

  12. Biomonitoring with Wireless Communications

    SciTech Connect (OSTI)

    Budinger, Thomas F.

    2003-03-01

    This review is divided into three sections: technologies for monitoring physiological parameters; biosensors for chemical assays and wireless communications technologies including image transmissions. Applications range from monitoring high risk patients for heart, respiratory activity and falls to sensing levels of physical activity in military, rescue, and sports personnel. The range of measurements include, heart rate, pulse wave form, respiratory rate, blood oxygen, tissue pCO2, exhaled carbon dioxide and physical activity. Other feasible measurements will employ miniature chemical laboratories on silicon or plastic chips. The measurements can be extended to clinical chemical assays ranging from common blood assays to protein or specialized protein measurements (e.g., troponin, creatine, and cytokines such as TNF and IL6). Though the feasibility of using wireless technology to communicate vital signs has been demonstrated 32 years ago (1) it has been only recently that practical and portable devices and communications net works have become generally available for inexpensive deployment of comfortable and affordable devices and systems.

  13. Subsea fiber optic communications for production control and data acquisition

    SciTech Connect (OSTI)

    High, G.; Wright, P.J.

    1996-12-31

    The trend to reduce topside facilities and the frequent use of subsea completions over extended step-out distances has increased the volume and complexity of subsea data communications beyond the capacity of conventional systems. Improved reservoir management using intelligent sensors, metering and process equipment, requiring real-time monitoring and control, dictates the use of wideband communication. Fiber optics offers the necessary volume of data transmission, with the high noise immunity needed for data integrity and safety, for the severe EMI environments created where motors and power cables are used. The system uses conventional optical fiber conductors with 1,550 nm laser generated optical pulses as the information carrier. Data rates of 2.0 Mb/s are achievable, unrepeated, over distances in excess of 100 Km, with extremely low error rates,. Equipment and installation costs will be comparable with current hard-wired technology, demonstrating that single mode optical communication is a technically and commercially feasible, and reliable, alternative to existing electrical systems.

  14. Acquisitions___Communications.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisitions___Communications.pdf Acquisitions___Communications.pdf PDF icon Acquisitions___Communications.pdf More Documents & Publications 7pt1AcquisitionPlanning.pdf 37pt.2PerformanceBasedServiceAcquisition.pdf DOE Vendor Communications Plan

  15. Memorandum Memorializing Ex Parte Communication, DOE impending...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memorandum Memorializing Ex Parte Communication, DOE impending determination of coverage ... More Documents & Publications Memorandum Memorializing Ex Parte Communication, November 9, ...

  16. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-03-30

    Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods are under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.

  17. Communications 101 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Communications 101 August 18, 2011 Nuclear Physics is a big science. In fact, if you are a student of 20th Century science history, nuclear physics was the first big science. We work in groups of ten, twenty, one hundred, two hundred ... how many collaborators sign a Hall B paper? In order to build the apparatus, more people still, the designers, engineers and technicians need to know what is needed. So, there have to be some interactions with exchange of information. When the results start to

  18. OVERCOMING THE METER BARRIER AND THE FORMATION OF SYSTEMS WITH TIGHTLY PACKED INNER PLANETS (STIPs)

    SciTech Connect (OSTI)

    Boley, A. C.; Morris, M. A.; Ford, E. B.

    2014-09-10

    We present a solution to the long outstanding meter barrier problem in planet formation theory. As solids spiral inward due to aerodynamic drag, they will enter disk regions that are characterized by high temperatures, densities, and pressures. High partial pressures of rock vapor can suppress solid evaporation, and promote collisions between partially molten solids, allowing rapid growth. This process should be ubiquitous in planet-forming disks, which may be evidenced by the abundant class of Systems with Tightly packed Inner Planets discovered by the NASA Kepler Mission.

  19. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2015-01-01

    This study investigates how economically motivated customers will use energy storage for demand charge reduction, as well as how this changes in the presence of on-site photovoltaic power generation, to investigate the possible effects of incentivizing increased quantities of behind-the-meter storage. It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand. While profitable to the customer, such action is unlikely to adequately benefit the utility as may be desired, thus highlighting the need for modified utility rate structures or properly structured incentives.

  20. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deployment of Behind-The- Meter Energy Storage for Demand Charge Reduction J. Neubauer and M. Simpson Technical Report NREL/TP-5400-63162 January 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable Energy

  1. Google's looking smarter about advanced metering than long-laboring utilities

    SciTech Connect (OSTI)

    2009-07-15

    In late May, Google announced a partnership with eight utilities in six states in the U.S. plus Canada and India to enable roughly 10 million customers to 'access detailed information on their home energy use.' What is different about the new product is that consumers can view simple graphical displays of their power usage more or less in real time from anywhere there is access to the Internet. That may ultimately turn PowerMeter into a powerful tool to manage electricity consumption on truly large scale and at very low cost.

  2. Insights from Smart Meters: The Potential for Peak Hour Savings from

    Office of Environmental Management (EM)

    Behavior-Based Programs | Department of Energy The Potential for Peak Hour Savings from Behavior-Based Programs Insights from Smart Meters: The Potential for Peak Hour Savings from Behavior-Based Programs This report focuses on one example of the value that analysis of this data can provide: insights into whether BB efficiency programs have the potential to provide peak-hour energy savings. This is important because there is increasing interest in using BB programs as a stand-alone peak

  3. Ex parte Communication | Department of Energy

    Energy Savers [EERE]

    Communication Ex parte Communication Ex parte communication on AHAM's development of an ice maker energy test procedure PDF icon Ex parte Communication More Documents & Publications Memorandum from VP Technical Services, Association of Home Appliance Manufacturers to the Department of Energy Ex Parte Communication Ex parte Communication Memo

  4. Administrative Records Schedule: Communication Records | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Administrative Records Schedule: Communication Records Administrative Records Schedule: Communication Records The principal records documenting communication function PDF icon Administrative Records Schedule: Communication Records More Documents & Publications ADMINISTRATIVE RECORDS SCHEDULE 12: COMMUNICATIONS RECORDS ADM 12 PDF Communications Records

  5. Uncertainty quantification in application of the enrichment meter principle for nondestructive assay of special nuclear material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burr, Tom; Croft, Stephen; Jarman, Kenneth D.

    2015-09-05

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings, and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically quantify total uncertainty in terms of “random” and “systematic” components, and then specify error bars for the total mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed andmore » achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we propose improvements over GUM for NDA by illustrating UQ challenges that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using low-resolution NaI spectra and applying the enrichment meter principle to estimate the U-235 mass in an item. The case study illustrates how to update the current American Society for Testing and Materials guide for application of the enrichment meter principle using gamma spectra from a NaI detector.« less

  6. Uncertainty quantification in application of the enrichment meter principle for nondestructive assay of special nuclear material

    SciTech Connect (OSTI)

    Burr, Tom; Croft, Stephen; Jarman, Kenneth D.

    2015-09-05

    The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings, and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without error bars, which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically quantify total uncertainty in terms of random and systematic components, and then specify error bars for the total mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed and achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we propose improvements over GUM for NDA by illustrating UQ challenges that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using low-resolution NaI spectra and applying the enrichment meter principle to estimate the U-235 mass in an item. The case study illustrates how to update the current American Society for Testing and Materials guide for application of the enrichment meter principle using gamma spectra from a NaI detector.

  7. CRIBB Communications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CRIBB Communications CRIBB Communications This presentation comes from the U.S. Department of Energy Better Buildings Neighborhood Program and the Chicago Metropolitan Agency for Planning. PDF icon CRIBB Communications More Documents & Publications Motivating Home Energy Improvements-Focus Groups for the U.S. Department of Energy Workforce Development and Sales Training for EE Contractors Transcript.doc Five Steps to a Profitable Contractor Base

  8. Communicating Results | Department of Energy

    Office of Environmental Management (EM)

    Communicating Results Communicating Results Communicating Results: Provide exam results to participants, as well as information regarding any conditions that may require follow-up medical care with their personal physicians or specialists, and provide information regarding possible compensation for work-related illnesses. Follow-up care is not covered by the program. Occupational medicine physicians review the results from the screening exams, along with the completed medical and occupational

  9. ORISE: Crisis and Risk Communication

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of Energy (DOE) Oak Ridge Office (ORO), ORISE provides crisis and risk communication support through the management of its Joint Information Center (JIC)...

  10. Loan Performance Data and Communication

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Financing and Revenue Peer Exchange Call: Loan Performance Data and Communication, Call Slides and Discussion Summary, May 23, 2013.

  11. Calculating and Communicating Program Results

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Data and Evaluation Peer Exchange Call: Calculating and Communicating Program Results, Call Slides and Summary, February 23, 2012.

  12. Communication Product Quality Assurance Checklists

    Broader source: Energy.gov [DOE]

    These quality assurance checklists list the requirements for Office of Energy Efficiency and Renewable Energy (EERE) publication and exhibit communication products.

  13. Communication devices for network-hopping communications and methods of network-hopping communications

    DOE Patents [OSTI]

    Buttles, John W

    2013-04-23

    Wireless communication devices include a software-defined radio coupled to processing circuitry. The system controller is configured to execute computer programming code. Storage media is coupled to the system controller and includes computer programming code configured to cause the system controller to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.

  14. Communication devices for network-hopping communications and methods of network-hopping communications

    DOE Patents [OSTI]

    Buttles, John W. (Idaho Falls, ID)

    2011-12-20

    Wireless communication devices include a software-defined radio coupled to processing circuitry. The processing circuitry is configured to execute computer programming code. Storage media is coupled to the processing circuitry and includes computer programming code configured to cause the processing circuitry to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.

  15. Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Release 2.0

    SciTech Connect (OSTI)

    Sullivan, Greg; Hunt, W. D.; Pugh, Ray; Sandusky, William F.; Koehler, Theresa M.; Boyd, Brian K.

    2011-08-31

    This release is an update and expansion of the information provided in Release 1.0 of the Metering Best Practice Guide that was issued in October 2007. This release, as was the previous release, was developed under the direction of the U.S. Department of Energy's Federal Energy Management Program (FEMP). The mission of FEMP is to facilitate the Federal Government's implementation of sound cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. Each of these activities is directly related to achieving requirements set forth in the Energy Policy Acts of 1992 and 2005, the Energy Independence and Security Act (EISA) of 2007, and the goals that have been established in Executive Orders 13423 and 13514 - and also those practices that are inherent in sound management of Federal financial and personnel resources.

  16. Communication Graph Generator for Parallel Programs

    Energy Science and Technology Software Center (OSTI)

    2014-04-08

    Graphator is a collection of relatively simple sequential programs that generate communication graphs/matrices for commonly occurring patterns in parallel programs. Currently, there is support for five communication patterns: two-dimensional 4-point stencil, four-dimensional 8-point stencil, all-to-alls over sub-communicators, random near-neighbor communication, and near-neighbor communication.

  17. Increasing security in inter-chip communication

    DOE Patents [OSTI]

    Edwards, Nathan J; Hamlet, Jason; Bauer, Todd; Helinski, Ryan

    2014-10-28

    An apparatus for increasing security in inter-chip communication includes a sending control module, a communication bus, and a receiving control module. The communication bus is coupled between the sending control module and the receiving control module. The sending control module operates to send data on the communication bus, disable the communication bus when threats are detected, or both.

  18. Tags, wireless communication systems, tag communication methods, and wireless communications methods

    DOE Patents [OSTI]

    Scott; Jeff W. (Pasco, WA), Pratt; Richard M. (Richland, WA)

    2006-09-12

    Tags, wireless communication systems, tag communication methods, and wireless communications methods are described. In one aspect, a tag includes a plurality of antennas configured to receive a plurality of first wireless communication signals comprising data from a reader, a plurality of rectifying circuits coupled with. respective individual ones of the antennas and configured to provide rectified signals corresponding to the first wireless communication signals, wherein the rectified signals are combined to produce a composite signal, an adaptive reference circuit configured to vary a reference signal responsive to the composite signal, a comparator coupled with the adaptive reference circuit and the rectifying circuits and configured to compare the composite signal with respect to the reference signal and to output the data responsive to the comparison, and processing circuitry configured to receive the data from the comparator and to process the data.

  19. Agent Communications using Distributed Metaobjects

    SciTech Connect (OSTI)

    Goldsmith, Steven Y.; Spires, Shannon V.

    1999-06-10

    There are currently two proposed standards for agent communication languages, namely, KQML (Finin, Lobrou, and Mayfield 1994) and the FIPA ACL. Neither standard has yet achieved primacy, and neither has been evaluated extensively in an open environment such as the Internet. It seems prudent therefore to design a general-purpose agent communications facility for new agent architectures that is flexible yet provides an architecture that accepts many different specializations. In this paper we exhibit the salient features of an agent communications architecture based on distributed metaobjects. This architecture captures design commitments at a metaobject level, leaving the base-level design and implementation up to the agent developer. The scope of the metamodel is broad enough to accommodate many different communication protocols, interaction protocols, and knowledge sharing regimes through extensions to the metaobject framework. We conclude that with a powerful distributed object substrate that supports metaobject communications, a general framework can be developed that will effectively enable different approaches to agent communications in the same agent system. We have implemented a KQML-based communications protocol and have several special-purpose interaction protocols under development.

  20. Gas energy meter for inferential determination of thermophysical properties of a gas mixture at multiple states of the gas

    DOE Patents [OSTI]

    Morrow, Thomas B. (San Antonio, TX); Kelner, Eric (San Antonio, TX); Owen, Thomas E. (Helotes, TX)

    2008-07-08

    A gas energy meter that acquires the data and performs the processing for an inferential determination of one or more gas properties, such as heating value, molecular weight, or density. The meter has a sensor module that acquires temperature, pressure, CO2, and speed of sound data. Data is acquired at two different states of the gas, which eliminates the need to determine the concentration of nitrogen in the gas. A processing module receives this data and uses it to perform a "two-state" inferential algorithm.

  1. Final Scientific/Technical Report Solar America Initiative: Solar Outreach and Communications

    SciTech Connect (OSTI)

    Weissman, Jane M.

    2011-09-10

    The purpose of the Solar America Initiative: Solar Outreach and Communications grant was to promote better communications among stakeholders; address infrastructure barriers to solar energy; and coordinate with industry, the U.S. Department of Energy, national laboratories, states, cities and counties. The Interstate Renewable Energy Council (IREC), a non-profit organization formed in 1982, approached this grant project by establishing a wide range of communication and outreach activities including newsletters, workshops, webinars, model practices and publications; by advancing easy and fair hook-up rules to the utility grid; and by upgrading training based on industry competency standards. The Connecting to the Grid project and the Solar Codes and Standards Public Hearings project offered communication coupled with technical assistance to overcome interconnection, net metering and other regulatory and program barriers. The Workforce Development Project tackled building a strong workforce through quality training and competency assessment programs. IREC?¢????s web site, the semi-monthly state and stakeholder newsletter and the metrics report resulted in better communications among stakeholders. Workshops and phone seminars offered technical assistance and kept stakeholders up-to-date on key issues. All of these activities resulted in implementing sustainable solutions to institutional and market barriers to solar energy and getting the right information to the right people.

  2. Power PLUS Communications AG | Open Energy Information

    Open Energy Info (EERE)

    PLUS Communications AG Jump to: navigation, search Name: Power PLUS Communications AG Place: Mannheim, Germany Zip: 68167 Product: String representation "Power Plus Comm ... nergy...

  3. Disclosure of Permitted Communication Concerning Fossil Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE-2010-BT-STD-0031; RIN 1904-AB96 Disclosure of Permitted Communication Concerning ... More Documents & Publications Disclosure of Permitted Communication Concerning Regional ...

  4. 2012 Independent Communication and Outreach Stakeholder Satisfaction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Independent Communication and Outreach Stakeholder Satisfaction Survey 2012 Independent Communication and Outreach Stakeholder Satisfaction Survey DOE-LM periodically surveys its ...

  5. Disclosure of Permitted Communication Concerning Regional Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE-2011-BT-CE-0077 Disclosure of Permitted Communication Concerning Regional Standards ... More Documents & Publications Disclosure of Permitted Communication Concerning Fossil Fuel ...

  6. Assured Power and Communications | Open Energy Information

    Open Energy Info (EERE)

    Assured Power and Communications Jump to: navigation, search Name: Assured Power and Communications Place: Los Angeles, California Zip: 90024 Product: A mobile power and...

  7. Studying the Communications Requirements of Electric Utilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities to...

  8. Trish Williams, Communications Specialist | Department of Energy

    Office of Environmental Management (EM)

    Trish Williams, Communications Specialist About Us Trish Williams, Communications Specialist Most Recent Energy Department Solid-State Lighting Efforts Spark New Paradigm March 4

  9. Millennium Communication Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Communication Co Ltd Jump to: navigation, search Name: Millennium Communication Co Ltd Place: Taiwan Sector: Solar Product: Focused on semiconductor photoelectric components...

  10. Memorandum Memorializing Ex Parte Communication | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memorandum Memorializing Ex Parte Communication Memorandum Memorializing Ex Parte Communication On March 31, 2011, a call was held between the Department of Energy and...

  11. NETL Publications Earn National Communications Awards

    Broader source: Energy.gov [DOE]

    Two National Energy Technology Laboratory publications have received National Association of Government Communicators first-place awards for superior government communications.

  12. Communication: Quantum molecular dynamics simulation of liquid...

    Office of Scientific and Technical Information (OSTI)

    Communication: Quantum molecular dynamics simulation of liquid para-hydrogen by nuclear and electron wave packet approach Citation Details In-Document Search Title: Communication:...

  13. Insights from Smart Meters: The Potential for Peak-Hour Savings from Behavior-Based Programs

    SciTech Connect (OSTI)

    Todd, Annika; Perry, Michael; Smith, Brian; Sullivan, Michael; Cappers, Peter; Goldman, Charles

    2014-03-25

    The rollout of smart meters in the last several years has opened up new forms of previously unavailable energy data. Many utilities are now able in real-time to capture granular, household level interval usage data at very high-frequency levels for a large proportion of their residential and small commercial customer population. This can be linked to other time and locationspecific information, providing vast, constantly growing streams of rich data (sometimes referred to by the recently popular buzz word, big data). Within the energy industry there is increasing interest in tapping into the opportunities that these data can provide. What can we do with all of these data? The richness and granularity of these data enable many types of creative and cutting-edge analytics. Technically sophisticated and rigorous statistical techniques can be used to pull interesting insights out of this highfrequency, human-focused data. We at LBNL are calling this behavior analytics. This kind of analytics has the potential to provide tremendous value to a wide range of energy programs. For example, highly disaggregated and heterogeneous information about actual energy use would allow energy efficiency (EE) and/or demand response (DR) program implementers to target specific programs to specific households; would enable evaluation, measurement and verification (EM&V) of energy efficiency programs to be performed on a much shorter time horizon than was previously possible; and would provide better insights in to the energy and peak hour savings associated with specifics types of EE and DR programs (e.g., behavior-based (BB) programs). In this series, Insights from Smart Meters, we will present concrete, illustrative examples of the type of value that insights from behavior analytics of these data can provide (as well as pointing out its limitations). We will supply several types of key findings, including: Novel results, which answer questions the industry previously was unable to answer; Proof-of-concept analytics tools that can be adapted and used by others; and Guidelines and protocols that summarize analytical best practices. This report focuses on one example of the kind of value that analysis of this data can provide: insights into whether behavior-based (BB) efficiency programs have the potential to provide peak-hour energy savings.

  14. Data & Communication for Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Communications for Buildings: Interoperability to Enable Efficiencies Across the Energy Value Chain Steve Widergren Pacific Northwest National Laboratory Technical Meeting on Data/Communication Standards and Interoperability of Building Appliances, Equipment, and Systems 1 May 2014 Topics Why are we here? Enabling building equipment and system interactions Framework for describing interactions Sample types of interactions Existing and emerging ecosystems to advance interactions Efforts to

  15. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

    2011-06-01

    Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.

  16. Trilliant Inc | Open Energy Information

    Open Energy Info (EERE)

    smart grid management solutions, including advanced metering infrastructure (AMI) and demand response services. References: Trilliant, Inc.1 This article is a stub. You can...

  17. Customer Value Proposition Smart Grid (KEL) (Smart Grid Project...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  18. GAD (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Projects in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Integrated System Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  19. Energy Department Invests Over $2 Million to Improve Grid Resiliency...

    Broader source: Energy.gov (indexed) [DOE]

    AMI technology will gather and transmit information generated by customers' smart meters. ... of microgrids which are localized grids that can disconnect from the traditional ...

  20. Madison Gas and Electric Company Smart Grid Project | Open Energy...

    Open Energy Info (EERE)

    installation of advanced metering infrastructure (AMI), deployment of a new distribution management system, and installation of electric vehicle charging stations. These...