National Library of Energy BETA

Sample records for meters altitude altitude

  1. Altitude release mechanism

    DOE Patents [OSTI]

    Kulhanek, Frank C.

    1977-01-01

    An altitude release mechanism for releasing a radiosonde or other measuring instrument from a balloon carrying it up into the atmosphere includes a bottle partially filled with water, a tube sealed into the bottle having one end submerged in the water in the bottle and the free end extending above the top of the bottle and a strip of water-disintegrable paper held within the free end of the tube linking the balloon to the remainder of the package. As the balloon ascends, the lowered atmospheric air pressure causes the air in the bottle to expand, forcing the water in the bottle up the tubing to wet and disintegrate the paper, releasing the package from the balloon.

  2. Solar collector with altitude tracking

    DOE Patents [OSTI]

    Barak, Amitzur Z.

    1977-01-01

    A device is provided for turning a solar collector about an east-west horizontal axis so that the collector is tilted toward the sun as the EWV altitude of the sun varies each day. It includes one or more heat responsive elements and a shading means aligned so that within a range of EWV altitudes of the sun during daylight hours the shading means shades the element or elements while during the rest of the daylight hours the elements or elements are heated by the sun to assume heated, stable states. Mechanical linkage between the collector and the element is responsive to the states of the element or elements to tilt the collector in accordance with variations in the EWV altitude of the sun.

  3. The radiation protection problems of high altitude and space flight

    SciTech Connect (OSTI)

    Fry, R.J.M.

    1993-04-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers.

  4. The radiation protection problems of high altitude and space flight

    SciTech Connect (OSTI)

    Fry, R.J.M.

    1993-01-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers.

  5. ARM - Evaluation Product - Radar Contoured Frequency by Altitude Diagram

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from ARM Radar Simulator ProductsRadar Contoured Frequency by Altitude Diagram from ARM Radar Simulator ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Radar Contoured Frequency by Altitude Diagram from ARM Radar Simulator [ ARM research - evaluation data product ] The data products are generated from

  6. Key issues of ultraviolet radiation of OH at high altitudes

    SciTech Connect (OSTI)

    Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng; Fan, Jing

    2014-12-09

    Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A{sup 2}?{sup +}?X{sup 2}? ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the vertical distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.

  7. Efforts toward achieving an unmanned, high-altitude LTA platform

    SciTech Connect (OSTI)

    Onda, Masahiko; Ford, M.L.

    1996-10-01

    The modern demands for an unmanned aerospace platform, capable of long-duration stationkeeping at high-altitudes, are well-known. Satellites, balloons, and aircraft have traditionally served in the role of platform, facilitating tasks ranging from telecommunications to deep-space astronomy. However, limitations on the performance and flexibility of these systems, as well as the intrinsically high-cost of satellite construction, operation, and repair, warrants development of a supplemental technology for the platform. Much has been written in the literature on the possible advantages of a lighter-than-air (LTA) platform, if such an LTA could be constructed. Potential applications include remote sensing, environmental monitoring, mobile communications, space and polar observations, cargo delivery, military reconnaissance, and others. At present, conventional LTA`s are not capable of serving in the manner specified. Within this context, a research program known as HALROP (High Altitude Long Range Observational Platform) is currently underway. The goal is to create a stratospheric platform, possibly in the form of a next generation LTA vehicle. The authors present a qualitative review of their efforts, focusing on milestones in the HALROP Program. 12 refs., 6 figs., 2 tabs.

  8. From Hydrogen Fuel Cells to High-Altitude-Pilot Protection Suits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    From Hydrogen Fuel Cells to High-Altitude-Pilot Protection Suits- Mound Science and Energy Museum Programs Cover a Wide Range of Topics From Hydrogen Fuel Cells to ...

  9. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    SciTech Connect (OSTI)

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1?, IL-6, and TNF-?), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: Iron supplementation at high altitudes induced lung histological changes in rats. Iron induced oxidative stress in lung tissues of rats at high altitudes. Iron increased

  10. Macroscopic time and altitude distribution of plasma turbulence induced in ionospheric modification experiments

    SciTech Connect (OSTI)

    Rose, H.; Dubois, D.; Russell, D.; Hanssen, A.

    1996-03-01

    This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This research concentrated on the time dependence of the heater, induced-turbulence, and electron-density profiles excited in the ionosphere by a powerful radio-frequency heater wave. The macroscopic density is driven by the ponderomotive pressure and the density self-consistently determines the heater propagation. For typical parameters of the current Arecibo heater, a dramatic quasi-periodic behavior was found. For about 50 ms after turn-on of the heater wave, the turbulence is concentrated at the first standing-wave maximum of the heater near reflection altitude. From 50--100 ms the standing-wave pattern drops by about 1--2 km in altitude and the quasi-periodicity reappears at the higher altitudes with a period of roughly 50 ms. This behavior is due to the half-wavelength density depletion grating that is set up by the ponderomotive pressure at the maxima of the heater standing-wave pattern. Once the grating is established the heater can no longer propagate to higher altitudes. The grating is then unsupported by the heater at these altitudes and decays, allowing the heater to propagate again and initiate another cycle. For stronger heater powers, corresponding to the Arecibo upgrade and the HAARP heater now under construction, the effects are much more dramatic.

  11. System for beaming power from earth to a high altitude platform

    DOE Patents [OSTI]

    Friedman, Herbert W.; Porter, Terry J.

    2002-01-01

    Power is transmitted to a high altitude platform by an array of diode pumped solid state lasers each operated at a single range of laser wavelengths outside of infrared and without using adaptive optics. Each laser produces a beam with a desired arrival spot size. An aircraft avoidance system uses a radar system for automatic control of the shutters of the lasers.

  12. Engine gaseous, aerosol precursor and particulate at simulated flight altitude conditions. Technical memo

    SciTech Connect (OSTI)

    Wey, C.C.

    1998-10-01

    The overall objective of the NASA Atmospheric Effects of Aviation Project (AEAP) is to develop scientific bases for assessing atmospheric impacts of the exhaust emissions by both current and future fleets of subsonic and supersonic aircraft. Among the six primary elements of the AEAP is Emissions Characterization. The objective of the Emission Characterization effort is to determine the exhaust emission constituents and concentrations at the engine exit plane. The specific objective of this engine test is to obtain a database of gaseous and particulate emissions as a function of fuel sulfur and engine operating conditions. The database of the particulate emission properties is to be used as a comparative baseline with subsequent flight measurement. The engine used in this test was a Pratt and Whitney F100-200E turbofan engine. Aviation fuel (Jet A) with a range of fuel sulfur was used. Low and high sulfur values are limited by commercially available fuels and by fuel specification limits of 0.3% by weight. Test matrix was set by parametrically varying the combustor inlet temperature (T3) between idle and maximum power setting at simulated SLS and up to five other altitudes for each fuel. Four diagnostic systems, extractive and non-intrusive, were assembled for the gaseous and particulate emissions characterization measurements study. NASA extractive system includes smoke meter and analyzers for measurement of CO, CO{sub 2}, NO, NOx, O{sub 2}, total unburnt hydrocarbons (THC), and SO{sub 2}. Particulate emissions were characterized by University of Missouri-Rolla Mobile Aerosol Sampling System.

  13. LOS ALAMOS, N.M., Aug. 21, 2013-The High-Altitude Water Cherenkov (HAWC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gamma-ray observatory begins operations at Sierra Negra volcano in the state of Puebla, Mexico August 21, 2013 New site to observe supernovas and supermassive black holes LOS ALAMOS, N.M., Aug. 21, 2013-The High-Altitude Water Cherenkov (HAWC) Gamma Ray Observatory has begun formal operations at its site in Mexico. HAWC is designed to study the origin of very high-energy cosmic rays and observe the most energetic objects in the known universe. This extraordinary observatory, using a unique

  14. Estimate of air carrier and air taxi crash frequencies from high altitude en route flight operations

    SciTech Connect (OSTI)

    Sanzo, D.; Kimura, C.Y.; Prassinos, P.G.

    1996-06-03

    In estimating the frequency of an aircraft crashing into a facility, it has been found convenient to break the problem down into two broad categories. One category estimates the aircraft crash frequency due to air traffic from nearby airports, the so-called near-airport environment. The other category estimates the aircraft crash frequency onto facilities due to air traffic from airways, jet routes, and other traffic flying outside the near-airport environment The total aircraft crash frequency is the summation of the crash frequencies from each airport near the facility under evaluation and from all airways, jet routes, and other traffic near the facility of interest. This paper will examine the problems associated with the determining the aircraft crash frequencies onto facilities outside the near-airport environment. This paper will further concentrate on the estimating the risk of aircraft crashes to ground facilities due to high altitude air carrier and air taxi traffic. High altitude air carrier and air taxi traffic will be defined as all air carrier and air taxi flights above 18,000 feet Mean Sea Level (MSL).

  15. Measuring the seeds of ion outflow: auroral sounding rocket observations of low-altitude ion heating and circulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fernandes, P. A.; Lynch, K. A.; Zettergren, M.; Hampton, D. L.; Bekkeng, T. A.; Cohen, I. J.; Conde, M.; Fisher, L. E.; Horak, P.; Lessard, M. R.; et al

    2016-01-25

    Here, we present an analysis of in situ measurements from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) nightside auroral sounding rocket with comparisons to a multifluid ionospheric model. MICA made observations at altitudes below 325 km of the thermal ion kinetic particle distributions that are the origins of ion outflow. Late flight, in the vicinity of an auroral arc, we observe frictional processes controlling the ion temperature. Upflow of these cold ions is attributed to either the ambipolar field resulting from the heated electrons or possibly to ion-neutral collisions. We measure E→xB→ convection away from the arc (poleward) andmore » downflows of hundreds of m s-1 poleward of this arc, indicating small-scale low-altitude plasma circulation. In the early flight we observe DC electromagnetic Poynting flux and associated ELF wave activity influencing the thermal ion temperature in regions of Alfvénic aurora. We observe enhanced, anisotropic ion temperatures which we conjecture are caused by transverse heating by wave-particle interactions (WPI) even at these low altitudes. Throughout this region we observe several hundred m s-1 upflow of the bulk thermal ions colocated with WPI; however, the mirror force is negligible at these low energies; thus, the upflow is attributed to ambipolar fields (or possibly neutral upwelling drivers). Moreover, the low-altitude MICA observations serve to inform future ionospheric modeling and simulations of (a) the need to consider the effects of heating by WPI at altitudes lower than previously considered viable and (b) the occurrence of structured and localized upflows/downflows below where higher-altitude heating rocesses are expected.« less

  16. Low-altitude remote sensing dataset of DEM and RGB mosaic for AB corridor on July 13 2013 and L2 corridor on July 21 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Baptiste Dafflon

    2015-04-07

    Low-altitude remote sensing dataset including DEM and RGB mosaic for AB (July 13 2013) and L2 corridor (July 21 2013)

  17. The behavior of measured SEU at low altitude during periods of high solar activity

    SciTech Connect (OSTI)

    Harboe-Sorensen, R.; Daly, E.J.; Adams, L. ); Underwood, C.I.; Ward, J. )

    1990-12-01

    The UoSAT-2 spacecraft, launched in 1984 into a polar orbit of altitude 700 km has a number of systems which have been observed to experience single-event upsets at significant rates. Geographically, the upsets are strongly concentrated in the South-Atlantic Anomaly region from which it has been deduced that in this region they are due to the products of proton-induced nuclear reactions in the devices. During the year 1989, several solar flare events occurred which elevated the upset rates at high latitudes. The October 19 event, in particular, resulted in very high high-latitude upset rates. The authors separate and analyze these data, deriving upset rates for the various memory devices under quiet cosmic-ray, South Atlantic anomaly and solar flare conditions. The authors report on the results of the heavy ion and proton testing of UoSAT memories which were undertaken in order to compare predictions and observations.

  18. Effect of altitude on the carbon-isotope composition of forest and grassland soils from Papua New Guinea

    SciTech Connect (OSTI)

    Bird, M.I.; Haberle, S.G.; Chivas, A.R. )

    1994-03-01

    The stable isotope composition of carbon can be used to provide information on the origin of carbon in soil organic matter. This study looks at the effect of decreasing temperature and atmospheric pressure (altitude) on the carbon-isotope composition of soil organic carbon from forests and grasslands in tropical regions. Investigators examine whether a predictable relationship exists between vegetation type, the 13C value of surface soil organic matter, and altitude. The results provide a framework within which to more accurately constrain the carbon-isotope composition of terrestrial carbon ppls and to interpret the observed variations in the isotopic composition of rivere particulate organic carbon. 31 refs., 5 figs., 1 tab.

  19. Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Y.; Ramanathan, V.; Washington, W. M.

    2015-07-10

    Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In-situ observations of snow cover fraction since the 1960s suggest that the snow pack in the region have retreated significantly, accompanied by a surface warming of 22.5 C observed over the peak altitudes (5000 m). Using a high-resolution oceanatmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover fraction to various anthropogenic factors. Atmorethe Tibetan Plateau altitudes, the increase of atmospheric CO2 concentration exerted a warming of 1.7 C, BC 1.3 C where as cooling aerosols cause about 0.7 C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO2 has contributed to the snow retreat trends. Especially, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow are coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. These findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.less

  20. Simulation of high-altitude effects on heavy-duty diesel emissions. Final report, 31 October 1988-30 September 1989

    SciTech Connect (OSTI)

    Human, D.M.; Ullman, T.L.

    1989-09-01

    Exhaust emissions from heavy-duty diesel engines operating at high altitude are of concern. EPA and Colorado Department of Health sponsored the project to characterize regulated and selected unregulated emissions from a naturally-aspirated Caterpillar 3208 and a turbocharged Cummins NTC-350 diesel engine at both low and simulated high altitude conditions (about 6000 ft). Emissions testing was performed over cold- and hot-start transient cycles as well as selected steady-state modes. Additionally, the turbocharged engine was operated with mechanically variable and fixed retarded fuel injection timing to represent normal and malfunction conditions, respectively. High altitude operation generally reduced NOx emissions approximately 10% for both engines. Average composite transient emissions of HC, CO, particulate matter, and aldehydes measured at high altitude for the naturally-aspirated engine were 2 to 4 times the levels noted for low altitude conditions. The same emission constituents from the turbocharged engine at high altitude with normal timing were 1.2 to 2 times the low altitude levels, but were 2 to 4 times the low altitude levels with malfunction timing.

  1. THREE-DIMENSIONAL NON-VACUUM PULSAR OUTER-GAP MODEL: LOCALIZED ACCELERATION ELECTRIC FIELD IN THE HIGHER ALTITUDES

    SciTech Connect (OSTI)

    Hirotani, Kouichi

    2015-01-10

    We investigate the particle accelerator that arises in a rotating neutron-star magnetosphere. Simultaneously solving the Poisson equation for the electro-static potential, the Boltzmann equations for relativistic electrons and positrons, and the radiative transfer equation, we demonstrate that the electric field is substantially screened along the magnetic field lines by pairs that are created and separated within the accelerator. As a result, the magnetic-field-aligned electric field is localized in higher altitudes near the light cylinder and efficiently accelerates the positrons created in the lower altitudes outward but does not accelerate the electrons inward. The resulting photon flux becomes predominantly outward, leading to typical double-peak light curves, which are commonly observed from many high-energy pulsars.

  2. Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Y.; Ramanathan, V.; Washington, W. M.

    2016-02-05

    Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In situ observations of snow cover extent since the 1960s suggest that the snowpack in the region have retreated significantly, accompanied by a surface warming of 2–2.5°C observed over the peak altitudes (5000 m). Using a high-resolution ocean–atmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover extent to various anthropogenic factors. At themore » Tibetan Plateau altitudes, the increase in atmospheric CO2 concentration exerted a warming of 1.7°C, BC 1.3°C where as cooling aerosols cause about 0.7°C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO2 has contributed to the snow retreat trends. In particular, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow is coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. Here, these findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.« less

  3. Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Y.; Ramanathan, V.; Washington, W. M.

    2016-02-05

    Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In situ observations of snow cover extent since the 1960s suggest that the snowpack in the region have retreated significantly, accompanied by a surface warming of 2–2.5 °C observed over the peak altitudes (5000 m). Using a high-resolution ocean–atmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover extent to various anthropogenic factors. At the Tibetanmore » Plateau altitudes, the increase in atmospheric CO2 concentration exerted a warming of 1.7 °C, BC 1.3 °C where as cooling aerosols cause about 0.7 °C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO2 has contributed to the snow retreat trends. In particular, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow is coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. These findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.« less

  4. Development and application of procedures to evaluate air quality and visibility impacts of low-altitude flying operations

    SciTech Connect (OSTI)

    Liebsch, E.J.

    1990-08-01

    This report describes the development and application of procedures to evaluate the effects of low-altitude aircraft flights on air quality and visibility. The work summarized in this report was undertaken as part of the larger task of assessing the various potential environmental impacts associated with low-altitude military airspaces. Accomplishing the air quality/visibility analysis for the GEIS included (1) development and application of an integrated air quality model and aircraft emissions database specifically for Military Training Route (MTR) or similar flight operations, (2) selection and application of an existing air quality model to analyze the more widespread and less concentrated aircraft emissions from military Operations Areas (MOAs) and Restricted Areas (RAs), and (3) development and application of procedures to assess impacts of aircraft emissions on visibility. Existing air quality models were considered to be inadequate for predicting ground-level concentrations of pollutants emitted by aircraft along MTRs; therefore, the Single-Aircraft Instantaneous Line Source (SAILS) and Multiple-Aircraft Instantaneous Line Source (MAILS) models were developed to estimate potential impacts along MTRs. Furthermore, a protocol was developed and then applied in the field to determine the degree of visibility impairment caused by aircraft engine exhaust plumes. 19 refs., 2 figs., 3 tabs.

  5. Meters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and RP-1 Agreement and Guide For Use and Utilization of the RadEye B20-ER Survey Meters The Rad Eye B20-ER is a pancake GM detector capable of measuring low levels of Alpha, Beta, and Gamma radiation. User authorization under this agreement is for use of the RadEye B20-ER radiation survey instrument for Process Knowledge surveys and user informational purposes only. These instruments cannot be used for official surveys. An RP-1 RCT must be contacted for official surveys or item release surveys.

  6. Ecological Risk Assessment Framework for Low-Altitude Overflights by Fixed-Wing and Rotary-Wing Military Aircraft

    SciTech Connect (OSTI)

    Efroymson, R.A.

    2001-01-12

    This is a companion report to the risk assessment framework proposed by Suter et al. (1998): ''A Framework for Assessment of Risks of Military Training and Testing to Natural Resources,'' hereafter referred to as the ''generic framework.'' The generic framework is an ecological risk assessment methodology for use in environmental assessments on Department of Defense (DoD) installations. In the generic framework, the ecological risk assessment framework of the US Environmental Protection Agency (EPA 1998) is modified for use in the context of (1) multiple and diverse stressors and activities at a military installation and (2) risks resulting from causal chains, e.g., effects on habitat that indirectly impact wildlife. Both modifications are important if the EPA framework is to be used on military installations. In order for the generic risk assessment framework to be useful to DoD environmental staff and contractors, the framework must be applied to specific training and testing activities. Three activity-specific ecological risk assessment frameworks have been written (1) to aid environmental staff in conducting risk assessments that involve these activities and (2) to guide staff in the development of analogous frameworks for other DoD activities. The three activities are: (1) low-altitude overflights by fixed-wing and rotary-wing aircraft (this volume), (2) firing at targets on land, and (3) ocean explosions. The activities were selected as priority training and testing activities by the advisory committee for this project.

  7. Low-altitude remote sensing dataset of DEM and RGB mosaic for AB corridor on July 13 2013 and L2 corridor on July 21 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Baptiste Dafflon

    2015-04-07

    Low-altitude remote sensing dataset including DEM and RGB mosaic for AB (July 13 2013) and L2 corridor (July 21 2013).Processing flowchart for each corridor:Ground control points (GCP, 20.3 cm square white targets, every 20 m) surveyed with RTK GPS. Acquisition of RGB pictures using a Kite-based platform. Structure from Motion based reconstruction using hundreds of pictures and GCP coordinates. Export of DEM and RGB mosaic in geotiff format (NAD 83, 2012 geoid, UTM zone 4 north) with pixel resolution of about 2 cm, and x,y,z accuracy in centimeter range (less than 10 cm). High-accuracy and high-resolution inside GCPs zone for L2 corridor (500x20m), AB corridor (500x40) DEM will be updated once all GCPs will be measured. Only zones between GCPs are accurate although all the mosaic is provided.

  8. HST Rotational Spectral Mapping Of Two L-Type Brown Dwarfs: Variability In And Out Of Water Bands Indicates High-Altitude Haze Layers

    SciTech Connect (OSTI)

    Yang, Hao; Apai, Dániel; Marley, Mark S.; Saumon, Didier; Morley, Caroline V.; Buenzli, Esther; Artigau, Étienne; Radigan, Jacqueline; Metchev, Stanimir; Burgasser, Adam J.; Mohanty, Subhanjoy; Lowrance, Patrick J.; Showman, Adam P.; Karalidi, Theodora; Flateau, Davin; Heinze, Aren N.

    2014-12-17

    We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759-1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rotation-modulated flux variations between 1.1 μm and 1.7 μm. We find that the water absorption bands of the two L5 dwarfs at 1.15 μm and 1.4 μm vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 μm displays variations of about half of the amplitude at other wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon & Marley (2008) and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altitude haze layers above the condensate clouds. Therefore, our observations show that the heterogeneity of haze layers - the driver of the variability - must be located at very low pressures, where even the water opacity is negligible. In the near future, the rotational spectral mapping technique could be utilized for other atomic and molecular species to probe different pressure levels in the atmospheres of brown dwarfs and exoplanets and uncover both horizontal and vertical cloud structures.

  9. HST ROTATIONAL SPECTRAL MAPPING OF TWO L-TYPE BROWN DWARFS: VARIABILITY IN AND OUT OF WATER BANDS INDICATES HIGH-ALTITUDE HAZE LAYERS

    SciTech Connect (OSTI)

    Yang, Hao; Apai, Dániel; Karalidi, Theodora; Marley, Mark S.; Saumon, Didier; Morley, Caroline V.; Buenzli, Esther; Artigau, Étienne; Radigan, Jacqueline; Metchev, Stanimir; Burgasser, Adam J.; Mohanty, Subhanjoy; Lowrance, Patrick J.; Showman, Adam P.; Flateau, Davin; Heinze, Aren N.

    2015-01-01

    We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759–1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rotation-modulated flux variations between 1.1 μm and 1.7 μm. We find that the water absorption bands of the two L5 dwarfs at 1.15 μm and 1.4 μm vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 μm displays variations of about half of the amplitude at other wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon and Marley and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altitude haze layers above the condensate clouds. Therefore, our observations show that the heterogeneity of haze layers—the driver of the variability—must be located at very low pressures, where even the water opacity is negligible. In the near future, the rotational spectral mapping technique could be utilized for other atomic and molecular species to probe different pressure levels in the atmospheres of brown dwarfs and exoplanets and uncover both horizontal and vertical cloud structures.

  10. HST Rotational Spectral Mapping Of Two L-Type Brown Dwarfs: Variability In And Out Of Water Bands Indicates High-Altitude Haze Layers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Hao; Apai, Dániel; Marley, Mark S.; Saumon, Didier; Morley, Caroline V.; Buenzli, Esther; Artigau, Étienne; Radigan, Jacqueline; Metchev, Stanimir; Burgasser, Adam J.; et al

    2014-12-17

    We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759-1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rotation-modulated flux variations between 1.1 μm and 1.7 μm. We find that the water absorption bands of the two L5 dwarfs at 1.15 μm and 1.4 μm vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 μm displays variations of about half of the amplitude at othermore » wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon & Marley (2008) and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altitude haze layers above the condensate clouds. Therefore, our observations show that the heterogeneity of haze layers - the driver of the variability - must be located at very low pressures, where even the water opacity is negligible. In the near future, the rotational spectral mapping technique could be utilized for other atomic and molecular species to probe different pressure levels in the atmospheres of brown dwarfs and exoplanets and uncover both horizontal and vertical cloud structures.« less

  11. Net Metering

    Broader source: Energy.gov [DOE]

    Note: Illinois is currently undergoing a rulemaking that would change its existing net metering rules. The proposed rules include provisions clarifying virtual net metering policies, facilitating...

  12. Net Metering

    Broader source: Energy.gov [DOE]

    Kansas adopted the Net Metering and Easy Connection Act in May 2009, which established net metering for customers of investor-owned utilities (IOUs). 

  13. Net Metering

    Broader source: Energy.gov [DOE]

    Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas, hydropower, fu...

  14. Net Metering

    Broader source: Energy.gov [DOE]

    New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives) to offer net metering at non-...

  15. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to all customers of investor-owned utilities and rural electric cooperatives, exempting TVA utilities. Kentucky's requires the use of a single, bi-directional meter for...

  16. Net Metering

    Broader source: Energy.gov [DOE]

    NOTE: On October 21, 2015, the NY Public Service Commission denied the Orange and Rockland Utility’s petition to cease offering net-metering and interconnections once the 6% net-metering cap was...

  17. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    NOTE: Although, this post is categorized as netmetering, the policy adopted by MS does not meet DSIRE's standards for a typical net metering policy. Net metering policy allows a customer to offset...

  18. Plugging meter

    DOE Patents [OSTI]

    Nagai, Akinori

    1979-01-01

    A plugging meter for automatically measuring the impurity concentration in a liquid metal is designed to have parallel passages including a cooling passage provided with a plugging orifice and with a flow meter, and a by-pass passage connected in series to a main passage having another flow meter, so that the plugging points may be obtained from the outputs of both flow meters. The plugging meter has a program signal generator, a flow-rate ratio setter and a comparator, and is adapted to change the temperature of the plugging orifice in accordance with a predetermined pattern or gradient, by means of a signal representative of the temperature of plugging orifice and a flow-rate ratio signal obtained from the outputs of both flow meters. This plugging meter affords an automatic and accurate measurement of a multi-plugging phenomenon taking place at the plugging orifice.

  19. Net Metering

    Broader source: Energy.gov [DOE]

    Missouri enacted legislation in June 2007 requiring all electric utilities—investor-owned utilities, municipal utilities, and electric cooperatives—to offer net metering to customers with systems...

  20. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available on a first-come, first-served basis until the cumulative generating capacity of net-metered systems equals 0.5% of a utility’s peak demand during 1996.* At least one-half...

  1. Net Metering

    Broader source: Energy.gov [DOE]

    Note: The California Public Utilities Commission (CPUC) issued a decision in April 2016 establishing rules for net metering PV systems paired with storage devices 10 kW or smaller. See below for...

  2. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering in Virginia is available on a first-come, first-served basis until the rated generating capacity owned and operated by customer-generators reaches 1% of an electric distribution...

  3. Net Metering

    Broader source: Energy.gov [DOE]

    With these regulations, renewable energy systems with a capacity up to 25 kilowatts (kW) are eligible for net metering. Overall enrollment is limited to 1.5% of a utility's retail sales from the...

  4. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    NOTE: On February 2016, the PA Public Service Commission (PUC) issued a final rulemaking order amending net metering regulations to provide clarity and to comply with the statutes. Changes include...

  5. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Net metering is available to all "qualifying facilities" (QFs), as defined by the federal Public Utility Regulatory Policies Act of 1978 (PURPA), which pertains to renewable energy systems and co...

  6. Net Metering

    Broader source: Energy.gov [DOE]

    There is no stated limit on the aggregate capacity of net-metered systems in a utility's service territory. Any net excess generation (NEG) during a monthly billing period is carried over to the...

  7. Net Metering

    Broader source: Energy.gov [DOE]

    Iowa's statutes do not explicitly authorize the Iowa Utilities Board (IUB) to mandate net metering, but this authority is implicit through the board's enforcement of PURPA and Iowa Code § 476.41 ...

  8. Net Metering

    Broader source: Energy.gov [DOE]

    Nevada's original net-metering law for renewable-energy systems was enacted in 1997 and amended in 2001, 2003, 2005, 2007, 2011, 2013, and 2015. Systems up to one megawatt (MW) in capacity that...

  9. Net Metering

    Broader source: Energy.gov [DOE]

    In Delaware, net metering is available to any customer that generates electricity using solar, wind or hydro resources, anaerobic digesters, or fuel cells capable of being powered by renewable fu...

  10. Net Metering

    Broader source: Energy.gov [DOE]

    Note: On October 12th, 2015 the Hawaii PUC voted to end net metering in favor of 3 alternative options: a grid supply option, a self-supply option, and a time of use tariff. Customers with net...

  11. Net Metering

    Broader source: Energy.gov [DOE]

    Net excess generation (NEG) is credited to the customer's next monthly bill. The customer may choose to start the net metering period at the beginning of January, April, July or October to match...

  12. Net Metering

    Broader source: Energy.gov [DOE]

    In April 2001, Arkansas enacted legislation (HB 2325) directing the Arkansas Public Service Commission (PSC) to establish net-metering rules for certain renewable-energy systems.* The PSC approved...

  13. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    North Dakota's net metering policy, adopted in 1991 by the state Public Service Commission (PSC), applies to renewable energy systems and combined heat and power (CHP) systems up to 100 kilowatts...

  14. Net Metering

    Broader source: Energy.gov [DOE]

    In October 2008, Michigan enacted P.A. 295, requiring the Michigan Public Service Commission (MPSC) to establish a statewide net metering program for renewable energy systems. On May 26, 2009 the...

  15. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

     NOTE: The program website listed above links to the Maryland Public Service Commission's Net Metering Working Group page, which contains a variety of information resources related to the ongoing...

  16. Net Metering

    Broader source: Energy.gov [DOE]

    Utah law requires their only investor-owned utility, Rocky Mountain Power (RMP), and most electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wi...

  17. Saturation meter

    DOE Patents [OSTI]

    Gregurech, S.

    1984-08-01

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  18. Palau- Net Metering

    Broader source: Energy.gov [DOE]

    The Palau Net Metering Act of 2009 established net metering on the Island of Palau. Net metering was implemented in order to:

  19. Is revenue metering feasible

    SciTech Connect (OSTI)

    Taylor, N.R.

    1985-02-01

    Revenue metering for thermal systems has been in use for more than 100 years. There is an infinite variety of meters based on flow principles, but very limited choice of steam condensate meters. Progress is being made in the application of computer technology to thermal metering. Btu meters are showing substantial progress as the U.S. market increases. There is a lack of traceable standards, application guidelines and approved materials. Strongly needed are educational programs designed for the thermal metering technician. Costs of thermal measurements is, in general, out of balance with other utility type service meters.

  20. Experiments and Modeling of High Altitude Chemical Agent Release

    SciTech Connect (OSTI)

    Nakafuji, G.; Greenman, R.; Theofanous, T.

    2002-07-08

    Using ASCA data, we find, contrary to other researchers using ROSAT data, that the X-ray spectra of the VY Scl stars TT Ari and KR Aur are poorly fit by an absorbed blackbody model but are well fit by an absorbed thermal plasma model. The different conclusions about the nature of the X-ray spectrum of KR Aur may be due to differences in the accretion rate, since this Star was in a high optical state during the ROSAT observation, but in an intermediate optical state during the ASCA observation. TT Ari, on the other hand, was in a high optical state during both observations, so directly contradicts the hypothesis that the X-ray spectra of VY Sol stars in their high optical states are blackbodies. Instead, based on theoretical expectations and the ASCA, Chandra, and XMM spectra of other nonmagnetic cataclysmic variables, we believe that the X-ray spectra of VY Sol stars in their low and high optical states are due to hot thermal plasma in the boundary layer between the accretion disk and the surface of the white dwarf, and appeal to the acquisition of Chandra and XMM grating spectra to test this prediction.

  1. Mycorrhizal and Dark-Septate Fungi in Plant Roots above 4270 Meters Elevation in the Andes and Rocky Mountains

    SciTech Connect (OSTI)

    Schmidt, Steven K.; Sobieniak-Wiseman, L. Cheyanne; Kageyama, Stacy A.; Halloy, Stephen; Schadt, Christopher Warren

    2008-01-01

    Arbuscular mycorrhizal (AM) and dark-septate endophytic (DSE) fungi were quantified in plant roots from high-elevation sites in the Cordillera Vilcanota of the Andes (Per ) and the Front Range of the Colorado Rocky Mountains (U.S.A.). At the highest sites in the Andes (5391 m) AM fungi were absent in the two species of plants sampled (both Compositae) but roots of both were heavily colonized by DSE fungi. At slightly lower elevations (5240 5250 m) AM fungi were present in roots while DSE fungi were rare in plants outside of the composite family. At the highest sites sampled in Colorado (4300 m) AM fungi were present, but at very low levels and all plants sampled contained DSE fungi. Hyphae of coarse AM fungi decreased significantly in plant roots at higher altitude in Colorado, but no other structures showed significant decreases with altitude. These new findings indicate that the altitudinal distribution of mycorrhizal fungi observed for European mountains do not necessarily apply to higher and drier mountains that cover much of the Earth (e.g. the Himalaya, Hindu Kush, Andes, and Rockies) where plant growth is more limited by nutrients and water than in European mountains. This paper describes the highest altitudinal records for both AM and DSE fungi, surpassing previous reported altitudinal maxima by about 1500 meters.

  2. LADWP- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    LADWP allows its customers to net meter their photovoltaic (PV), wind, and hybrid systems with a capacity of not more than one megawatt. LADWP will provide the necessary metering equipment unless...

  3. Utility Metering- AGL Resources

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—discusses AGL Resources metering, including interruptible rate customers, large users, and meeting federal metering goals.

  4. Campo Net Meter Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Campo Net Meter Project Michael Connolly Miskwish, MA Economist/Engineer Campo Kumeyaay Nation Location map Tribal Energy Planning  Current 50 MW project  Proposed 160 MW project  DOE energy grant  Land use planning, renewable energy zones overlay  Economic analysis  Transmission, queue, PPA  Energy Resource Agreement analysis  Tribal Net meter turbine planning California SGIP program  Self Generation Incentive Program  Requires utilities to allow net metering

  5. SRP- Net Metering

    Broader source: Energy.gov [DOE]

    Note: Salt River Project (SRP) modified its existing net-metering program for residential customers in February 2015. These changes are effective with the April 2015 billing cycle.

  6. Icing rate meter estimation of in-cloud cable icing

    SciTech Connect (OSTI)

    McComber, P.; Druez, J.; Laflamme, J.

    1994-12-31

    In many northern countries, the design and reliability of power transmission lines are closely related to atmospheric icing overloads. It is becoming increasingly important to have reliable instrument systems to warn of icing conditions before icing loads become sufficient to damage the power transmission network. Various instruments are presently being developed to provide better monitoring of icing conditions. One such instrument is the icing rate meter (IRM) which counts icing and de-icing cycles per unit time on a standard probe and can be used to estimate the icing rate on nearby cables. The calibration presently used was originally based on experiments conducted in a cold room. Even though this calibration has shown that the IRM estimation already offers an improvement over model prediction based on standard meteorological parameters, it can certainly be improved further with appropriate field data. For this purpose, the instrument was tested on an icing test site at Mt. Valin (altitude 902 m) Quebec, Canada. In this paper measurements from twelve in-cloud icing events during the 1991--92 winter are divided into one hour periods of icing to provide the experimental icing rate data. The icing rates measured on a 12.5 mm and a 35 mm cables are then compared with the number of IRM signals, also for one hour periods, in relation to initial ice load, temperature, wind velocity and direction. From this analysis, a better calibration for the IRM instrument is suggested. The improvement of the IRM estimation is illustrated by making a comparison with measurements, of the icing load estimation with the old and new calibrations for two complete icing events.

  7. DC attenuation meter

    DOE Patents [OSTI]

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  8. EWEB- Net Metering

    Broader source: Energy.gov [DOE]

    The Eugene Water and Electric Board (EWEB) offers net metering for customers with renewable energy generation systems with an installed capacity of 25 kW or less. Eligible systems use solar power,...

  9. Idaho Power- Net Metering

    Broader source: Energy.gov [DOE]

    In July 2013, the PUC issued an order in response to Idaho Power's application to modify its net metering program. The ruling removed a previously existing service capacity cap of 2.9 MW and chan...

  10. Guam- Net Metering

    Broader source: Energy.gov [DOE]

    Note: As of October 2015, the net metering program had around 700 customers. According to the Guam Daily Post, the program is expected to reach the current 1,000-customer cap in mid-2016. This cap...

  11. Austin Energy- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Austin Energy, the municipal utility of Austin Texas, offers net metering to its non-residential retail electricity customers for renewable energy systems up to 20 kilowatts (kW). Austin Energy o...

  12. Lesson Plan: Power Metering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Metering Project Grades: 9-12 Topic: Energy Basics Owner: ACTS This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency and...

  13. DIGITAL Q METER

    DOE Patents [OSTI]

    Briscoe, W.L.

    1962-02-13

    A digital Q meter is described for measuring the Q of mechanical or electrical devices. The meter comprises in combination a transducer coupled to an input amplifier, and an upper and lower level discriminator coupled to the amplifier and having their outputs coupled to an anticoincidence gate. The output of the gate is connected to a scaler. The lower level discriminator is adjusted to a threshold level of 36.8 percent of the operating threshold level of the upper level discriminator. (AEC)

  14. Advanced Metering Infrastructure

    SciTech Connect (OSTI)

    2007-10-15

    The report provides an overview of the development of Advanced Metering Infrastructure (AMI). Metering has historically served as the cash register for the utility industry. It measured the amount of energy used and supported the billing of customers for that usage. However, utilities are starting to look at meters in a whole different way, viewing them as the point of contact with customers in supporting a number of operational imperatives. The combination of smart meters and advanced communications has opened up a variety of methods for utilities to reduce operating costs while offering new services to customers. A concise look is given at what's driving interest in AMI, the components of AMI, and the creation of a business case for AMI. Topics covered include: an overview of AMI including the history of metering and development of smart meters; a description of the key technologies involved in AMI; a description of key government initiatives to support AMI; an evaluation of the current market position of AMI; an analysis of business case development for AMI; and, profiles of 21 key AMI vendors.

  15. PSEG Long Island- Net Metering

    Broader source: Energy.gov [DOE]

    Although PSEG Long Island’s net metering policy is not governed by the State’s net metering law, the provisions are similar to the State law. Net metering is available for residential, non-reside...

  16. Net Metering | Open Energy Information

    Open Energy Info (EERE)

    Gas Wind Biomass Geothermal Electric Anaerobic Digestion Small Hydroelectric Tidal Energy Wave Energy No Ashland Electric - Net Metering (Oregon) Net Metering Oregon Commercial...

  17. Schlumberger Electricity Metering | Open Energy Information

    Open Energy Info (EERE)

    Electricity Metering Jump to: navigation, search Name: Schlumberger Electricity Metering Place: Oconee, South Carolina Product: Manufacturer of electricity meters. Coordinates:...

  18. Neutron dose equivalent meter

    DOE Patents [OSTI]

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  19. Electric Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Metering Electric Metering Saving Money by Saving Energy The Department of Energy has installed meters in the James Forrestal Building that will enable DOE to measure electricity use and costs in its headquarters facility. You may explore this data further by visiting our Forrestal Metering Dashboard at the following website: http://forrestal.nrel.gov The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power

  20. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  1. Meters Roads N Streams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Meters Roads N Streams o Openwells E3i APT Site *. TES Plants (1) E2J Other Set-Asides lEI Hydric Soils . 370 o 370 Soils Soil Series and Phase DBaB DBaC .Pk .TrB DTrC DTrD .TuE...

  2. Flow metering valve

    DOE Patents [OSTI]

    Blaedel, Kenneth L.

    1985-01-01

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  3. Flow metering valve

    DOE Patents [OSTI]

    Blaedel, K.L.

    1983-11-03

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  4. Period meter for reactors

    DOE Patents [OSTI]

    Rusch, Gordon K.

    1976-01-06

    An improved log N amplifier type nuclear reactor period meter with reduced probability for noise-induced scrams is provided. With the reactor at low power levels a sampling circuit is provided to determine the reactor period by measuring the finite change in the amplitude of the log N amplifier output signal for a predetermined time period, while at high power levels, differentiation of the log N amplifier output signal provides an additional measure of the reactor period.

  5. Montana Electric Cooperatives- Net Metering

    Broader source: Energy.gov [DOE]

    The Montana Electric Cooperatives' Association (MECA) adopted model interconnection guidelines in 2001 and a revised net-metering policy in September 2008. Net metering is available in whole or...

  6. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    commercial) as long as the base requirements are met. All net-metered facilities must be behind a customer's meter, but only a minimal amount of load located on-site is required....

  7. N. Mariana Islands- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: The Commonwealth Utility Corporation issued a moratorium on net metering. However, Public Law 18-62 signed September 6, 2014 states that net metering should be available to all residential...

  8. Washington City Power- Net Metering

    Broader source: Energy.gov [DOE]

    Washington City adopted a net-metering program, including interconnection procedures, in January 2008, and updated the policy in December 2014.* Net metering is available to any customer of...

  9. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the limit on individual system size from 100 kilowatts (kW) to 1 MW . Net Excess Generation: The District's net-metering rules specify that metering equipment must be capable...

  10. Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Guidance defines which federal buildings are appropriate to meter, provides metering prioritization ...

  11. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  12. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  13. GAS METERING PUMP

    DOE Patents [OSTI]

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  14. Microwave fluid flow meter

    DOE Patents [OSTI]

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  15. Metering Technology Corporation | Open Energy Information

    Open Energy Info (EERE)

    Technology Corporation Jump to: navigation, search Name: Metering Technology Corporation Place: Scotts Valley, California Product: Engineering related to communicating meters....

  16. Federal Building Metering Implementation Plan Template | Department...

    Office of Environmental Management (EM)

    Implementation Plan Template Federal Building Metering Implementation Plan Template Document provides a template for a federal building metering implementation plan....

  17. Prioritizing Building Water Meter Applications | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Water Efficiency Prioritizing Building Water Meter Applications Prioritizing Building Water Meter Applications Executive Order 13693: Planning for Federal ...

  18. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    after 12312014) are eligible. Net-metered systems must be intended primarily to offset part or all of a customer's electricity requirements. Public utilities may not limit...

  19. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Anaerobic Digestion Fuel Cells using Renewable Fuels Program Info Sector Name State State North Carolina Program Type Net Metering Summary The North Carolina Utilities Commission...

  20. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of retail renewable distributed generation and net metering. Details will be posted once a final order is issued. Eligibility and Availability In December 2005 the Colorado...

  1. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    who generate electricity using solar, wind, hydroelectric, geothermal, biomass, biogas, combined heat and power, or fuel cell technologies.* A net metering facility must be...

  2. Wavelength meter having elliptical wedge

    DOE Patents [OSTI]

    Hackel, Richard P.; Feldman, Mark

    1992-01-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10.sup.8. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing.

  3. Wavelength meter having elliptical wedge

    DOE Patents [OSTI]

    Hackel, R.P.; Feldman, M.

    1992-12-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10[sup 8]. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing. 7 figs.

  4. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "AMR meters",46829659,47321320,48330822,45965762,48685043 "Residential",41830781,42491242,43455437,41451888,43913225 "Commercial",4781167,4632744,4691018,4341105,4611877 "Industrial",216459,196132,185862,172692,159315 "Transportation",1252,1202,125,77,626 "AMI meters",58545938,53341422,43165183,37290373,20334525

  5. Advanced Metering Infrastructure Security Considerations | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Metering Infrastructure Security Considerations Advanced Metering Infrastructure Security Considerations The purpose of this report is to provide utilities implementing Advanced Metering Infrastructure (AMI) with the knowledge necessary to secure that implementation appropriately. We intend that utilities use this report to guide their planning, procurement, roll-out, and assessment of the security of Advanced Metering Infrastructure. Advanced Metering Infrastructure Security

  6. Valley Electric Association- Net Metering

    Broader source: Energy.gov [DOE]

    The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

  7. Blue Ridge EMC- Net Metering

    Broader source: Energy.gov [DOE]

    The Blue Ridge Electric Membership Corporation offers net metering to its residential customers with solar photovoltaic, wind, or micro-hydro generators up to 25 kilowatts. There is no aggregate...

  8. Advanced Sub-Metering Program

    Broader source: Energy.gov [DOE]

    The program is designed to provide information about energy usage for each residences at a multi-residential buildings. Residences living in multi-residential buildings that are not sub-metered d...

  9. Grays Harbor PUD- Net Metering

    Broader source: Energy.gov [DOE]

    Washington's original net-metering law, which applies to all electric utilities, was enacted in 1998 and amended in 2006. Individual systems are limited to 100 kilowatts (kW) in capacity. Net...

  10. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable energy facilities established on military property for on-site military consumption may net meter for systems up to 2.2 megawatts (MW, AC). Aggregate Capacity Limit...

  11. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  12. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  13. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  14. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  15. Healthcare Energy Metering Guidance (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This brochure is intended to help facility and energy managers plan and prioritize investments in energy metering. It offers healthcare-specific examples of metering applications, benefits, and steps that other health systems can reproduce. It reflects collaborative input from the U.S. Department of Energy national laboratories and the health system members of the DOE Hospital Energy Alliance's Benchmarking and Measurement Project Team.

  16. Electric Meters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity & Fuel » Appliances & Electronics » Electric Meters Electric Meters The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. The basic unit of measure of electric power is the Watt. One

  17. Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use) | Department of Energy Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy. Download the Federal Building Metering

  18. Insert metering plates for gas turbine nozzles

    DOE Patents [OSTI]

    Burdgick, Steven S.; Itzel, Gary; Chopra, Sanjay; Abuaf, Nesim; Correia, Victor H.

    2004-05-11

    The invention comprises a metering plate which is assembled to an impingement insert for use in the nozzle of a gas turbine. The metering plate can have one or more metering holes and is used to balance the cooling flow within the nozzle. A metering plate with multiple holes reduces static pressure variations which result from the cooling airflow through the metering plate. The metering plate can be assembled to the insert before or after the insert is inserted into the nozzle.

  19. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",33865,33662,57269,46871,44911,41201,28512,22820 "Residential",30803,32688,53083,44459,42324,38779,26141,21191 "Commercial",3062,974,4186,2412,2587,2394,2350,1629 "Industrial",0,0,0,0,0,28,21,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",29909,29489,30,758,9213,8713,8126,6571

  20. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",17894,6822,6415,5210,4499,116826,103242,101084 "Residential",15963,6455,6075,4920,3375,101823,101363,99995 "Commercial",1828,307,240,190,822,14701,1577,749 "Industrial",103,60,100,100,302,302,302,340 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",741819,739583,735415,669482,193415,0,0,0

  1. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",52528,53483,38201,81499,78292,96058,81992,63856 "Residential",43410,44206,30907,72579,69795,85984,74356,59256 "Commercial",7661,7729,5975,7473,7374,9197,7333,4305 "Industrial",1457,1548,1319,1447,1123,877,303,295 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",1213192,1125193,1021241,555414,20665,0,0,0

  2. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",40233,38125,41827,35412,43254,27018,21054,8132 "Residential",37473,35775,28906,23442,31700,15987,11031,7263 "Commercial",1873,1455,10789,10095,9635,8772,8234,621 "Industrial",868,876,2122,1866,1909,2258,1789,236 "Transportation",19,19,10,9,10,1,0,12 "AMI meters",36345,34919,11533,11610,0,0,0,0

  3. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",42342,53266,44430,84409,81030,77963,71278,58477 "Residential",37948,48343,39930,76274,73703,71100,65176,53306 "Commercial",4394,4901,4481,8121,7325,6861,6100,5169 "Industrial",0,22,19,14,2,2,2,2 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",296824,271526,343769,123,0,0,0,0 "Residential",253659,229844,294918,116,0,0,0,0

  4. LINEAR COUNT-RATE METER

    DOE Patents [OSTI]

    Henry, J.J.

    1961-09-01

    A linear count-rate meter is designed to provide a highly linear output while receiving counting rates from one cycle per second to 100,000 cycles per second. Input pulses enter a linear discriminator and then are fed to a trigger circuit which produces positive pulses of uniform width and amplitude. The trigger circuit is connected to a one-shot multivibrator. The multivibrator output pulses have a selected width. Feedback means are provided for preventing transistor saturation in the multivibrator which improves the rise and decay times of the output pulses. The multivibrator is connected to a diode-switched, constant current metering circuit. A selected constant current is switched to an averaging circuit for each pulse received, and for a time determined by the received pulse width. The average output meter current is proportional to the product of the counting rate, the constant current, and the multivibrator output pulse width.

  5. Net Metering Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Net Metering Resources Net Metering Resources State net metering policies allow customers to produce onsite electricity and sell excess generation to the utility at a set price, which creates an incentive for private investment in distributed renewable energy technologies by providing value to the electricity generation that, during certain times of day or season, exceeds the customer's electricity demand. Find net metering resources below. DOE Resource Net Metering Policy Development in

  6. Meters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HardwOOd %. EJ :1o,;"'a'" W. Monitoring wells :W o Wa"""'" :' m .y WWE:tI' s N Roads . et-Asld lidL:sndfili ;;;;>. Figure 28-1. Plant...

  7. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2103,2188,2991,4659,35987,29770,32000,3562 "Residential",935,1046,1722,3108,32964,27174,29415,892 "Commercial",1165,1139,1266,1548,3022,2595,2584,2670 "Industrial",3,3,3,3,1,1,1,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",277998,269876,246642,29650,0,0,0,0 "Residential",252040,245295,230705,27695,0,0,0,0

  8. LOW-ALTITUDE RECONNECTION INFLOW-OUTFLOW OBSERVATIONS DURING A 2010 NOVEMBER 3 SOLAR ERUPTION

    SciTech Connect (OSTI)

    Savage, Sabrina L.; Holman, Gordon; Su, Yang; Seaton, Daniel B.; McKenzie, David E.

    2012-07-20

    For a solar flare occurring on 2010 November 3, we present observations using several SDO/AIA extreme-ultraviolet (EUV) passbands of an erupting flux rope followed by inflows sweeping into a current sheet region. The inflows are soon followed by outflows appearing to originate from near the termination point of the inflowing motion-an observation in line with standard magnetic reconnection models. We measure average inflow plane-of-sky speeds to range from {approx}150 to 690 km s{sup -1} with the initial, high-temperature inflows being the fastest. Using the inflow speeds and a range of Alfven speeds, we estimate the Alfvenic Mach number which appears to decrease with time. We also provide inflow and outflow times with respect to RHESSI count rates and find that the fast, high-temperature inflows occur simultaneously with a peak in the RHESSI thermal light curve. Five candidate inflow-outflow pairs are identified with no more than a minute delay between detections. The inflow speeds of these pairs are measured to be {approx}10{sup 2} km s{sup -1} with outflow speeds ranging from {approx}10{sup 2} to 10{sup 3} km s{sup -1}-indicating acceleration during the reconnection process. The fastest of these outflows are in the form of apparently traveling density enhancements along the legs of the loops rather than the loop apexes themselves. These flows could possibly either be accelerated plasma, shocks, or waves prompted by reconnection. The measurements presented here show an order of magnitude difference between the retraction speeds of the loops and the speed of the density enhancements within the loops-presumably exiting the reconnection site.

  9. Low-altitude aeromagnetic survey of a portion of the Coso Hot...

    Open Energy Info (EERE)

    (927 line-km) was completed over a portion of the Coso Hot Springs KGRA in September 1977. The survey has defined a pronounced magnetic low that could help delineate the...

  10. Federal Building Metering Guidance (per 42 U.S.C. 8253(e), Metering of Energy Use)

    SciTech Connect (OSTI)

    2014-11-01

    Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy.

  11. Government Program Briefing: Smart Metering

    Broader source: Energy.gov [DOE]

    This document is adapted and updated from a memo delivered to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the U.S. Department of Energy (DOE) Project Officer in March 2008. This briefing piece provides an overview of the benefits, costs, and challenges of smart metering.

  12. Government Program Briefing: Smart Metering

    SciTech Connect (OSTI)

    Doris, E.; Peterson, K.

    2011-09-01

    This document is adapted and updated from a memo delivered to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the U.S. Department of Energy (DOE) Project Officer in March 2008. This briefing piece provides an overview of the benefits, costs, and challenges of smart metering.

  13. Laser Power Meter Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2002-09-19

    Laser Power Meter integrates the digital output of a Newport 1835-C Laser Energy Meter and inserts the results into the file header of a WinSpec experimental file.

  14. Power-factor metering gains new interest

    SciTech Connect (OSTI)

    Womack, D.L.

    1980-01-01

    The combined effect of increased energy costs, advances in digital metering techniques, and regulatory pressures is stimulating utility interest in charging smaller customers the full cost of their burden on the electric system, by metering reactive power and billing for poor power factor. Oklahoma Gas and Electric Co. adopted the Q-meter method, made practical with the advent of magnetic-tape metering. Digital metering and new techniques now being developed will add more options for utilities interested in metering power factor. There are three commonly used methods of determining power factor, all of which require the use of the standard induction watthour meter, plus at least one other meter, to obtain a second value in the power triangle. In all cases, the third value, if required, is obtained by calculation.

  15. greenMeter | Open Energy Information

    Open Energy Info (EERE)

    physics engine from the gMeter app, greenMeter computes power, fuel usagecost, crude oil consumption, and carbon emission (data can be shown in US or metric units). Thanks to...

  16. Metering in Federal Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Maintenance » Metering in Federal Buildings Metering in Federal Buildings The U.S. Department of Energy is required by the Energy Policy Act of 2005 and Executive Order 13693 to establish guidelines for agencies to meter their federal buildings for energy (electricity, natural gas, and steam) and water use. To help agencies meet these metering requirements, the Federal Energy Management Program (FEMP) provides guidance materials, an implementation plan template, and a best practices

  17. DOE Releases Federal Building Metering Guidance

    Broader source: Energy.gov [DOE]

    The guidance requires federal agencies to review, revise, and submit to FEMP its metering implementation plan within one year.

  18. El Paso Electric - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Website http:www.epelectric.comtxbusinessrollback-net-metering-approved-in-... State Texas Program Type Net Metering Summary El Paso Electric (EPE) has offered net metering to...

  19. Smart Meters on Tap for Owasso, Oklahoma

    Office of Energy Efficiency and Renewable Energy (EERE)

    Saving 10 percent of annual energy and increasing response time for electrical emergencies? Find out how smart meters can make cities smarter.

  20. BPA Metering Services Editing and Estimating Procedures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an unmetered condition An unmetered event will be identified through one of the following methods: 1) The Field Forms application (via Metering Services email), 2) An email...

  1. City of St. George- Net Metering

    Broader source: Energy.gov [DOE]

    The City of St. George Energy Services Department (SGESD) offers a net metering program to its customers, and updated program guidelines and fees in September 2015.* 

  2. Proton recoil scintillator neutron rem meter

    DOE Patents [OSTI]

    Olsher, Richard H.; Seagraves, David T.

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  3. Simplified Processing Method for Meter Data Analysis

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Colotelo, Alison H. A.; Downs, Janelle L.; Ham, Kenneth D.; Henderson, Jordan W.; Montgomery, Sadie A.; Vernon, Christopher R.; Parker, Steven A.

    2015-11-01

    Simple/Quick metered data processing method that can be used for Army Metered Data Management System (MDMS) and Logistics Innovation Agency data, but may also be useful for other large data sets. Intended for large data sets when analyst has little information about the buildings.

  4. 2010 Assessment of Demand Response and Advanced Metering - Staff Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Assessment of Demand Response and Advanced Metering - Staff Report 2010 Assessment of Demand Response and Advanced Metering - Staff Report 2010 Assessment of Demand Response and Advanced Metering - Staff Report. The Federal Energy Regulatory Commission's 2010 Demand Response and Advanced Metering Survey (2010 FERC Survey, covering calendar year 2009) indicates that advanced metering penetration (i.e., the fraction of all installed meters that are advanced meters) reached

  5. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    New Hampshire" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",222183,69251,61857,59512,53293,50098,48310,46505 "Residential",218780,67647,60510...

  6. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity. This option is available for photovoltaic (PV), wind, hydro...

  7. Smart Meters | OpenEI Community

    Open Energy Info (EERE)

    Smart Meters Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 16 January, 2013 - 11:09 SDG&E Customers Can Connect Home Area Network Devices With Smart...

  8. meter data | OpenEI Community

    Open Energy Info (EERE)

    by Graham7781(2017) Super contributor 26 June, 2013 - 09:17 NREL's Energy Databus storing big energy data campus databus energy meter data NREL OpenEI Tool The Energy Databus began...

  9. Murray City Power- Net Metering Pilot Program

    Broader source: Energy.gov [DOE]

    Under a pilot program, Murray City Power offers net metering to customers that generate electricity using photovoltaic (PV), wind-electric or hydroelectric systems with a maximum capacity of 10...

  10. Green Pricing and Net Metering Programs 2010

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    294 2,971 650 Rhode Island 2 136 58 194 172 September 2012 U.S. Energy Information Administration | Green Pricing and Net Metering Programs 2010 6 Table 2. Estimated U.S. net ...

  11. Green Pricing and Net Metering Programs 2010

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Green Pricing and Net Metering Programs 2010 i This report was prepared by ...

  12. Green Pricing and Net Metering Programs 2010

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    30,060 27,750 Vermont 2 4,453 239 4,692 4,936 September 2012 U.S. Energy Information Administration | Green Pricing and Net Metering Programs 2010 4 Table 1. Estimated U.S. ...

  13. U.S. Virgin Islands- Net Metering

    Broader source: Energy.gov [DOE]

    In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energ...

  14. June 25 Webinar to Explore Net Metering

    Broader source: Energy.gov [DOE]

    Register for the Net Metering webinar, which will be held on Wednesday, June 25, 2014, from 11 a.m. to 12:30 p.m. Mountain time.

  15. RWE Metering GmbH | Open Energy Information

    Open Energy Info (EERE)

    GmbH Jump to: navigation, search Name: RWE Metering GmbH Place: Germany Product: Smart metering subsidiary of Germany's second largest utility RWE AG. References: RWE Metering...

  16. How to Read Residential Electric and Natural Gas Meters | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How to Read Residential Electric and Natural Gas Meters How to Read Residential Electric and Natural Gas Meters An electromechanical electric meter on the side of a house. | Photo...

  17. Working With Your Utility to Obtain Metering Services

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers the government metering requirement, the U.S. Department of Defense (DoD) metering directive, and customer metering services available from utilities.

  18. Insights from Smart Meters: Identifying Specific Actions, Behaviors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insights from Smart Meters: Identifying Specific Actions, Behaviors, and Characteristics That Drive Savings in Behavior-Based Programs In this report, we use smart meter data to ...

  19. Metering Best Practices: A Guide to Achieving Utility Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Guide describes information ...

  20. Smart Meters Help Balance Energy Consumption at Solar Decathlon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Meters Help Balance Energy Consumption at Solar Decathlon Smart Meters Help Balance Energy Consumption at Solar Decathlon September 28, 2011 - 10:57am Addthis The Team...

  1. Metering Best Practices: A Guide to Achieving Utility Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Guide describes information...

  2. CBEI: Virtual Refrigerant Charge Sensing and Load Metering -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review Presenter: James Braun, Purdue ...

  3. Demand Response and Smart Metering Policy Actions Since the Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the ...

  4. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE)

    Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005.

  5. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency

    SciTech Connect (OSTI)

    2015-03-02

    Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005.

  6. Liquid metal Flow Meter - Final Report

    SciTech Connect (OSTI)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  7. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",251619,232888,233270,230916,221262,139874,58993,27057 "Residential",217995,204000,206539,204690,195920,124976,51007,24817 "Commercial",32890,28129,26000,25582,24807,14408,7529,2220 "Industrial",734,759,731,644,535,490,457,20 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",25553,12272,3766,3408,3213,3106,2753,4

  8. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",118318,116714,114296,113252,405728,56702,110087,20750 "Residential",106626,105342,103234,102397,364709,52679,106326,20361 "Commercial",11496,11207,10828,10619,40773,3989,3637,389 "Industrial",196,165,234,236,246,34,124,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",307168,307904,297247,297308,100,72000,48603,0

  9. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",183892,177493,168685,163567,142759,151004,146779,88220 "Residential",160763,155125,147140,142398,122329,133724,128395,82814 "Commercial",22512,21730,20916,20529,19850,17042,17904,5401 "Industrial",617,638,629,640,580,238,480,5 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",576309,548969,542009,536130,353867,225474,49380,0

  10. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",756473,744438,722583,713567,710239,697696,559054,139256 "Residential",655474,646196,624355,620170,615649,612354,495955,124347 "Commercial",99632,97104,97466,93000,92968,85137,62661,14851 "Industrial",1356,1134,762,397,1622,205,438,58 "Transportation",11,4,0,0,0,0,0,0 "AMI meters",161963,150555,143163,128116,121751,74120,48847,14946

  11. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",399663,371841,357579,344263,342766,331557,283997,203389 "Residential",371003,344167,330690,318544,316995,309010,267588,192187 "Commercial",25678,24657,24380,24208,24551,21202,14922,9945 "Industrial",2982,3017,2509,1511,1220,1345,1487,1257 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",400098,396398,220128,40063,34087,12021,3597,2

  12. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",319494,611045,877019,903093,889901,875440,845154,725634 "Residential",281386,549148,799807,823936,815476,804226,782901,659322 "Commercial",37868,61658,76998,78818,74100,71203,62242,66226 "Industrial",238,239,214,339,325,11,11,0 "Transportation",2,0,0,0,0,0,0,86 "AMI meters",1608027,1159371,498806,912,896,1034,810,0

  13. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",236654,273118,136678,116456,144254,103645,91623,24243 "Residential",197928,237034,117623,101376,130228,90425,80463,20942 "Commercial",37012,32633,16705,12952,12658,11393,10084,2156 "Industrial",1714,3451,2350,2128,1368,1827,1076,1145 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",445502,363360,274884,153279,48308,9465,1610,0

  14. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",467870,520018,495676,489407,482732,481682,397693,347611 "Residential",405276,448313,430824,429479,423471,417166,345119,304959 "Commercial",58023,67155,61129,57161,56837,62129,51022,41698 "Industrial",4539,4550,3723,2767,2424,2387,1552,954 "Transportation",32,0,0,0,0,0,0,0 "AMI meters",80864,18851,18830,17593,11991,6459,3532,212

  15. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",243727,214695,229210,220279,228503,244759,216434,112719 "Residential",217140,192195,206606,198130,207663,226923,209009,110488 "Commercial",25863,21811,21656,21246,19675,16998,7022,2000 "Industrial",724,689,948,903,1165,838,403,231 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",83802,108505,80808,72506,46139,24384,6215,0

  16. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",281284,274775,171896,165282,181060,149553,123861,41003 "Residential",229712,225851,141249,139162,154904,129384,111817,37069 "Commercial",44264,42282,26052,22916,23171,18971,11124,3873 "Industrial",7308,6642,4595,3204,2985,1198,920,61 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",100537,85007,72431,64037,42676,25380,11406,14500

  17. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",160541,162490,163750,181907,193350,89054,66943,33995 "Residential",138247,140673,143049,159847,171557,79340,60552,31632 "Commercial",20871,20385,19257,20260,19532,8695,5801,2011 "Industrial",1423,1432,1444,1800,2261,1019,590,352 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",160557,152199,127805,102671,95155,22793,16820,0

  18. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",709716,730599,309569,320041,45373,43870,43861,46240 "Residential",613484,643429,276292,285239,41482,41208,41115,40438 "Commercial",95689,85467,32375,34115,3830,2629,2711,5802 "Industrial",543,1703,902,687,61,33,35,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",1184894,1094256,515971,336940,0,0,0,0

  19. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",969524,947887,931692,903266,912616,851283,791097,374299 "Residential",880637,861955,849405,821766,814440,772961,722710,361979 "Commercial",84742,81853,78179,77565,92519,77666,67851,12272 "Industrial",4145,4079,4100,3935,5657,656,536,48 "Transportation",0,0,8,0,0,0,0,0 "AMI meters",46185,44150,22480,35163,17080,12860,2485,1

  20. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",513140,520857,464502,473117,474077,436376,438764,448444 "Residential",431517,439830,394660,399243,402817,387552,389596,381604 "Commercial",78717,78280,67228,70415,67890,47130,47431,66840 "Industrial",2906,2747,2614,3459,3370,1694,1737,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",6792,116,81,0,0,95,0,0

  1. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",228950,225895,210204,206764,147885,175769,139584,26178 "Residential",183907,181206,166730,162523,114344,141179,114795,24873 "Commercial",37536,37340,36283,37200,27897,29852,20219,1204 "Industrial",7507,7349,7176,7041,5644,4738,4570,101 "Transportation",0,0,15,0,0,0,0,0 "AMI meters",85136,84587,79675,77029,72260,10442,8609,0

  2. Innovation and Success in Solar Net Metering and Interconnection |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Net Metering and Interconnection Innovation and Success in Solar Net Metering and Interconnection This document summarizes the latest developments in solar net metering and interconnection. webinar_080713_solar_net_metering_connection.pdf (2.09 MB) More Documents & Publications webinar_innovation_net_metering_interconnection.doc PRESENTATION: OVERVIEW OF THE SUNSHOT INITIATIVE Final Report - Chicago Region Solar Market Transformation Team

  3. Societal Benefits of smart metering investments

    SciTech Connect (OSTI)

    Neenan, Bernard; Hemphill, Ross C.

    2008-10-15

    Implementing smart metering involves complex interactions that may generate many new sources of benefits. It is a potentially powerful enabler, one with considerable - but still speculative - potential that is highly dependent on how the technology is utilized by utilities and supported by their regulators. (author)

  4. Smart Meter Company Boosting Production, Workforce

    Office of Energy Efficiency and Renewable Energy (EERE)

    A manufacturing facility in South Carolina is producing enough smart meters to reduce annual electricity use by approximately 1.7 million megawatt hours -- and through advanced manufacturing tax credits, just increased the facility's production capability by 20 percent and created 420 jobs.

  5. Estimation of the mixing layer height over a high altitude site in Central Himalayan region by using Doppler lidar

    SciTech Connect (OSTI)

    Shukla, K. K.; Phanikumar, D. V.; Newsom, Rob K.; Kumar, Niranjan; Ratnam, Venkat; Naja, M.; Singh, Narendra

    2014-03-01

    A Doppler lidar was installed at Manora Peak, Nainital (29.4 N; 79.2 E, 1958 amsl) to estimate mixing layer height for the first time by using vertical velocity variance as basic measurement parameter for the period September-November 2011. Mixing layer height is found to be located ~0.57 +/- 0.1and 0.45 +/- 0.05km AGL during day and nighttime, respectively. The estimation of mixing layer height shows good correlation (R>0.8) between different instruments and with different methods. Our results show that wavelet co-variance transform is a robust method for mixing layer height estimation.

  6. Dissipative ion-cyclotron oscillitons in a form of solitons with chirp in Earth's low-altitude ionosphere

    SciTech Connect (OSTI)

    Kovaleva, I. Kh.

    2012-10-15

    In this paper, we consider theoretically nonlinear ion-cyclotron gradient-drift dissipative structures (oscillitons) in low ionospheric plasmas. Similar to Nonlinear Optics and Condensed Matter Physics, the Ginzburg-Landau equation for the envelope of electric wave fields is derived, and solutions for oscillitons in the form of solitons with chirp are examined. The whole dissipative structure constitutes a soliton with a moving charge-neutral density hump. Conditions for excitation and properties of the structures are considered.

  7. Chirped dissipative ion-cyclotron solitons in the Earth's low-altitude ionospheric plasma with two ion species

    SciTech Connect (OSTI)

    Kovaleva, I. Kh.

    2013-03-15

    Conditions for the excitation of small-scale nonlinear ion-cyclotron gradient-drift dissipative structures in cold ionospheric plasma are considered. The solution for the wave electric field in this structure in the form of a chirped soliton satisfying the equation of the Ginzburg-Landau type is derived in the electrostatic approach. The dissipative structure as a whole represents the chirped soliton accompanied by the comoving quasineutral plasma hump. The possibility of the excitation of two modes of this type (the high- and low-frequency ones) in plasma containing light and heavy ion impurities is considered. The role of electromagnetic corrections and the possible contribution introduced by these structures to the transport processes in the ionosphere are discussed.

  8. Community Net Energy Metering: How Novel Policies Expand Benefits of Net Metering to Non-Generators

    SciTech Connect (OSTI)

    Rose, James; Varnado, Laurel

    2009-04-01

    As interest in community solutions to renewable energy grows, more states are beginning to develop policies that encourage properties with more than one meter to install shared renewable energy systems. State net metering policies are evolving to allow the aggregation of multiple meters on a customer’s property and to dissolve conventional geographical boundaries. This trend means net metering is expanding out of its traditional function as an enabling incentive to offset onsite customer load at a single facility. This paper analyzes community net energy metering (CNEM) as an emerging vehicle by which farmers, neighborhoods, and municipalities may more easily finance and reap the benefits of renewable energy. Specifically, it aims to compare and contrast the definition of geographical boundaries among different CNEM models and examine the benefits and limitations of each approach. As state policies begin to stretch the geographic boundaries of net metering, they allow inventive solutions to encourage renewable energy investment. This paper attempts to initiate the conversation on this emerging policy mechanism and offers recommendations for further development of these policies.

  9. Estimation of m.w.e (meter water equivalent) depth of the salt mine of Slanic Prahova, Romania

    SciTech Connect (OSTI)

    Mitrica, B.; Margineanu, R.; Stoica, S.; Petcu, M.; Brancus, I. M.; Petre, M.; Toma, G.; Saftoiu, A.; Apostu, A.; Jipa, A.; Lazanu, I.; Sima, O.; Haungs, A.; Rebel, H.

    2010-11-24

    A new mobile detector was developed in IFIN-HH, Romania, for measuring muon flux at surface and in underground. The measurements have been performed in the salt mines of Slanic Prahova, Romania. The muon flux was determined for 2 different galleries of the Slanic mine at different depths. In order to test the stability of the method, also measurements of the muon flux at surface at different altitudes were performed. Based on the results, the depth of the 2 galleries was established at 610 and 790 m.w.e. respectively.

  10. New Technologies Bring New Opportunities for Meter Reader | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technologies Bring New Opportunities for Meter Reader New Technologies Bring New Opportunities for Meter Reader September 22, 2011 - 2:03pm Addthis Brian Andrews is a former meter reader who now works with smart meter and intelligent grid projects. | Image courtesy of CenterPoint Energy. Brian Andrews is a former meter reader who now works with smart meter and intelligent grid projects. | Image courtesy of CenterPoint Energy. Liisa O'Neill Liisa O'Neill Former New Media Specialist,

  11. Fuel cell membrane hydration and fluid metering

    DOE Patents [OSTI]

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  12. Fuel cell membrane hydration and fluid metering

    DOE Patents [OSTI]

    Jones, Daniel O.; Walsh, Michael M.

    2003-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  13. SOLVENT DISPERSION AND FLOW METER CALCULATION RESULTS

    SciTech Connect (OSTI)

    Nash, C.; Fondeur, F.; Peters, T.

    2013-06-21

    Savannah River National Laboratory (SRNL) found that the dispersion numbers for the six combinations of CSSX:Next Generation Solvent (NGS) “blend” and pure NGS versus salt solution, caustic wash, and strip aqueous solutions are all good. The dispersion numbers are indications of processability with centrifugal contactors. A comparison of solvent physical and thermal properties shows that the Intek™ solvent flow meter in the plant has a reading biased high versus calibrated flow when NGS is used, versus the standard CSSX solvent. The flow meter, calibrated for CSSX solvent, is predicted to read 2.8 gpm of NGS in a case where the true flow of NGS is 2.16 gpm.

  14. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",480329,471388,470428,467346,457508,458475,451138,450668 "Residential",468728,461380,461788,460721,409497,407884,406169,400631 "Commercial",11601,10008,8640,6625,47728,50591,44969,50037 "Industrial",0,0,0,0,283,0,0,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",247,211,211,205,0,0,0,0 "Residential",0,0,0,0,0,0,0,0

  15. Periodic review enhances LPG metering performance

    SciTech Connect (OSTI)

    Van Orsdol, F.G.

    1988-01-25

    Because of the loss of experienced personnel throughout the industry, the author says one must start over teaching the basics of liquid measurement. Warren Petroleum Co., a division of Chevron U.S.A. Inc., has developed a checklist review method for its metering systems, complete with enough explanation to allow the reviewer to understand why each item is important. Simultaneously, it continues with more in-depth and theoretical training in training course. This article describes the review process.

  16. Coriolis Meters for Hydrogen Dispensing Measurement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coriolis Meters for Hydrogen Dispensing Measurement John Daly NA Lead Flow Specialist GE Measurement and Control Solutions Flow Technologies at GE MS Clamp-on Ultrasonic * Install on existing pipes * Low over cost of ownership * Focused on liquid but also for gas Wetted Ultrasonic * Higher accuracy * Difficult applications * Very low operational costs * Strong performance for liquid and gas Coriolis * Direct mass measurement * High accuracy over wide range * Liquid and Gas * Pipes up to 12"

  17. SCE&G - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of net metering programs offered by the IOUs. South Carolina Electric & Gas (SCE&G) designed two net-metering options for its South Carolina customers. These options are...

  18. The Need for Essential Consumer Protections: Smart Metering Proposals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metering Proposals and the Move to Time-Based Pricing The Need for Essential Consumer Protections: Smart Metering Proposals and the Move to Time-Based Pricing There is a widespread ...

  19. Stick-on Electricity Meter - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Stick-on Electricity Meter Lawrence Berkeley National ... J., Lanzisera, S. "COTS-based stick-on electricity meters for building submetering," IEEE ...

  20. How to Read Your Electric Meter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Your Electric Meter How to Read Your Electric Meter The difference between one month's reading and the next is the amount of energy units that have been used for that billing...

  1. Meter and Relay Craftsman - Journeyman | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meter and Relay Craftsman - Journeyman Meter and Relay Craftsman - Journeyman Submitted by admin on Sun, 2016-06-26 00:15 Job Summary Organization Name Department Of Energy Agency ...

  2. Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    extremely receptive to expanding the use of the sub-meter data to drive decision making. ... Amp meter used at a Trenton, Michigan, plant to gather data on electrical usage. Courtesy ...

  3. The Intersection of Net Metering and Retail Choice: An Overview...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Intersection of Net Metering and Retail Choice: An Overview of Policy, Practice and Issues The Intersection of Net Metering and Retail Choice: An Overview of Policy, Practice and ...

  4. Data Center Metering and Power Usage Effectiveness | Department...

    Office of Environmental Management (EM)

    Data Center Metering and Power Usage Effectiveness Data Center Metering and Power Usage Effectiveness July 28, 2016 2:00PM to 3:00PM EDT Webinar will cover material from the Data ...

  5. How to Read Residential Electric and Natural Gas Meters | Department...

    Office of Environmental Management (EM)

    How to Read Residential Electric and Natural Gas Meters How to Read Residential Electric ... You can read your own meters to help monitor your electric or gas energy use. During the ...

  6. Overcoming Net Metering and Interconnection Objections: New Jersey MSR Partnership

    SciTech Connect (OSTI)

    Not Available

    2005-09-01

    This fact sheet explains how the New Jersey MSR Partnership successfully revised net metering rules to make solar installations easier.

  7. Aggregate Net Metering Opportunities for Local Governments | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Aggregate Net Metering Opportunities for Local Governments Aggregate Net Metering Opportunities for Local Governments This guide summarizes the variations in state laws that determine whether or not meter aggregation is an option for local governments, explores the unique opportunities that it can extend to public-sector photovoltaic projects, and describes the important details that must be considered when promoting or pursuing such a policy. Aggregate net metering is the practice of

  8. Coriolis Meters for Hydrogen Dispensing Measurement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coriolis Meters for Hydrogen Dispensing Measurement Coriolis Meters for Hydrogen Dispensing Measurement This presentation by John Daly of GE Measurement and Control Solutions was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013. csd_workshop_14_daly.pdf (572.19 KB) More Documents & Publications 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report Report on RFI DE-FOA-000753: High-Accuracy Hydrogen Meters Metering Best

  9. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",332650,329079,1582760,137399,1546233,1175077,110675,105694 "Residential",286796,281898,1381543,121843,1352435,1029039,98707,92194 "Commercial",45661,46368,195291,15383,188053,142132,11957,11999 "Industrial",193,813,5926,173,5745,3906,11,1501 "Transportation",0,0,0,0,0,0,0,0 "AMI

  10. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",248444,230418,261023,262683,318606,300790,239851,109188 "Residential",222458,205920,231422,236070,287123,272669,223219,105408 "Commercial",23607,22594,22467,19931,24091,21425,11089,3772 "Industrial",2379,1904,7134,6682,7392,6696,5543,8 "Transportation",0,0,0,0,0,0,0,0 "AMI

  11. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",465753,380098,339368,314854,246497,666915,500476,354452 "Residential",421384,342033,307265,287712,225362,631062,480824,351548 "Commercial",43384,26918,23326,21051,17703,35711,19592,2898 "Industrial",985,11147,8777,6091,3432,142,60,6 "Transportation",0,0,0,0,0,0,0,0 "AMI

  12. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",868579,827670,580957,431858,1696965,345864,238634,181180 "Residential",736745,699209,481305,319842,1520278,278976,221857,167236 "Commercial",118539,115318,90939,97104,164498,57736,15597,12701 "Industrial",13222,13070,8699,14912,12189,9152,1178,1241 "Transportation",73,73,14,0,0,0,2,2 "AMI

  13. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1719454,1643794,1552727,1622740,1636242,1495425,1410712,231119 "Residential",1561074,1491944,1425970,1502253,1517327,1387937,1306346,206747 "Commercial",152693,146263,121673,115391,115899,106007,102596,23667 "Industrial",5687,5587,5084,5096,3016,1481,1770,705 "Transportation",0,0,0,0,0,0,0,0 "AMI

  14. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1453004,1469876,1481357,1496432,1536716,1530906,1534171,1478640 "Residential",1307338,1324280,1334604,1350835,1393474,1391016,1394732,1343996 "Commercial",140814,141213,142227,141092,138781,138239,137617,132856 "Industrial",4852,4383,4526,4505,4461,1651,1822,1788 "Transportation",0,0,0,0,0,0,0,0 "AMI

  15. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",3474452,3395748,3755977,3637527,3231398,3216922,2579337,2416630 "Residential",3208228,3139468,3455396,3325863,3024574,2953200,2378958,2351242 "Commercial",265169,254631,298694,308099,204383,262736,199331,64901 "Industrial",1054,1649,1886,3565,1893,986,1047,487 "Transportation",1,0,1,0,548,0,1,0 "AMI

  16. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",470136,627008,613969,521331,487830,435276,317642,295425 "Residential",407551,556807,552232,467749,440914,393533,292233,269843 "Commercial",60005,68008,59406,51774,44378,39314,23245,24111 "Industrial",2580,2193,2331,1808,2538,2429,2164,1471 "Transportation",0,0,0,0,0,0,0,0 "AMI

  17. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1018377,997408,973664,998081,1002378,973505,851285,549055 "Residential",905665,888394,869121,894434,902092,872418,773309,493378 "Commercial",109744,105317,101051,100648,97601,98067,75669,54444 "Industrial",2710,3382,3492,2999,2685,3018,2305,1227 "Transportation",258,315,0,0,0,2,2,6 "AMI

  18. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1199243,1251574,1284613,1095102,1059678,1038172,951160,382580 "Residential",1070706,1115322,1167245,990346,965867,947409,868170,371539 "Commercial",123315,131027,113006,102278,91550,88929,81696,10751 "Industrial",4728,4729,4362,2478,2261,1834,1294,290 "Transportation",494,496,0,0,0,0,0,0 "AMI

  19. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",135823,349836,335293,320708,400083,308859,300734,53919 "Residential",115628,303782,289091,276856,343492,264664,260503,41763 "Commercial",18934,44125,41789,39968,52910,41425,38520,10237 "Industrial",1261,1929,4413,3884,3681,2770,1711,1919 "Transportation",0,0,0,0,0,0,0,0 "AMI

  20. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",520625,532871,607590,548321,495475,529171,526410,445146 "Residential",459091,465927,534181,484008,439680,479635,480572,422463 "Commercial",60064,65386,71883,62353,54453,48318,44688,22493 "Industrial",1470,1558,1526,1960,1342,1218,1150,190 "Transportation",0,0,0,0,0,0,0,0 "AMI

  1. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2869249,2815732,2753089,2717020,2634758,2605159,2389547,2327751 "Residential",2618243,2579059,2527224,2500177,2325333,2300444,2103743,2072453 "Commercial",245237,234458,224070,215022,306584,303458,284904,253942 "Industrial",5746,2215,1795,1821,2841,1257,900,1356 "Transportation",23,0,0,0,0,0,0,0 "AMI

  2. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",354444,337976,324455,314211,359361,333902,272851,189606 "Residential",306626,292051,283561,272718,318011,299426,246630,174020 "Commercial",46331,44463,41134,40083,38141,32779,24761,14476 "Industrial",1487,1462,1390,1410,3209,1697,1460,1110 "Transportation",0,0,0,0,0,0,0,0 "AMI

  3. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1910556,1913337,1922706,1909106,1985873,1874104,1718448,363947 "Residential",1722688,1730915,1735168,1733724,1805096,1709999,1567837,333575 "Commercial",177021,172309,176721,165245,170062,162297,149294,29352 "Industrial",10821,10087,10817,10137,10715,1808,1317,1020 "Transportation",26,26,0,0,0,0,0,0 "AMI

  4. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1925736,1920471,1935078,1917474,1959937,1921343,1933413,1546006 "Residential",1701539,1696195,1709394,1698061,1736715,1705866,1728577,1372572 "Commercial",216604,216779,219525,213325,217255,210496,199759,167190 "Industrial",7537,7497,6159,6088,5967,4981,5077,6243 "Transportation",56,0,0,0,0,0,0,1 "AMI

  5. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",542577,535042,523950,503996,484383,454089,399845,380008 "Residential",462384,451388,444819,430631,415589,392296,349786,333774 "Commercial",49197,69711,67398,62997,59285,52508,44771,43230 "Industrial",30996,13943,11733,10368,9509,9285,5288,3004 "Transportation",0,0,0,0,0,0,0,0 "AMI

  6. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",3467586,3052524,2515127,2328801,2223645,2164329,1701366,1534285 "Residential",3044860,2848664,2295268,2140229,2044476,2005137,1555371,1410652 "Commercial",421467,202417,218735,187424,178662,158992,145798,123436 "Industrial",1095,1255,1124,1148,507,199,196,196 "Transportation",164,188,0,0,0,1,1,1 "AMI

  7. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",3592602,3708639,3613936,3768269,4027965,3718103,3521887,2048869 "Residential",3207225,3322965,3255122,3396907,3656223,3322323,3250613,1878066 "Commercial",381477,381832,355716,368487,369622,393894,268784,169438 "Industrial",3900,3842,3098,2875,2120,1886,2490,1365 "Transportation",0,0,0,0,0,0,0,0 "AMI

  8. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1200096,1068626,948564,727112,622965,563380,512000,277489 "Residential",1083593,976072,867682,680331,582725,525578,475653,257499 "Commercial",108652,86314,75747,44209,37864,35575,34425,18264 "Industrial",7831,6221,5135,2572,2376,2227,1922,1726 "Transportation",20,19,0,0,0,0,0,0 "AMI

  9. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",372720,385000,430870,427117,459002,392071,400426,277880 "Residential",323195,332981,377207,376188,400471,342530,351012,244516 "Commercial",47792,49803,51627,49838,54788,48517,48392,33162 "Industrial",1733,2216,2036,1091,3743,1024,1022,202 "Transportation",0,0,0,0,0,0,0,0 "AMI

  10. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",187890,183897,173477,180073,180305,182669,179104,91950 "Residential",171874,168007,158650,161735,163234,167965,167090,86244 "Commercial",14716,14848,13699,17315,15885,13539,10954,5115 "Industrial",1300,1042,1128,1023,1186,1165,1060,591 "Transportation",0,0,0,0,0,0,0,0 "AMI

  11. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",822579,1508995,2093902,2358735,2338527,2232621,2203630,1526540 "Residential",680993,1283786,1854282,2111101,2092893,1998214,1993991,1396097 "Commercial",133489,217043,231143,238676,237244,228706,203914,128444 "Industrial",8034,8104,8400,8890,8322,5694,5718,1999 "Transportation",63,62,77,68,68,7,7,0 "AMI

  12. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1819320,1848300,1816190,1809822,1897976,1700354,1510892,963079 "Residential",1597883,1621880,1600626,1596247,1678999,1490280,1348053,862204 "Commercial",220338,225016,213938,212061,218049,209287,161774,99865 "Industrial",1099,1404,1626,1514,928,787,1065,1010 "Transportation",0,0,0,0,0,0,0,0 "AMI

  13. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2305298,2278989,2649814,2362245,2609078,3758758,2513848,1019510 "Residential",2092754,2073428,2396415,2160965,2378327,3560320,2294696,942621 "Commercial",176555,178381,230398,177755,219325,186979,214217,74475 "Industrial",35989,27180,23001,23525,11426,11459,4935,2414 "Transportation",0,0,0,0,0,0,0,0 "AMI

  14. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2902638,2978913,3094379,3079891,3159249,3047610,3053272,2934487 "Residential",2670605,2742598,2851174,2841255,2930873,2825185,2842167,2730183 "Commercial",229930,234244,240960,236618,226654,220991,209453,204144 "Industrial",2103,2071,2245,2018,1722,1434,1652,160 "Transportation",0,0,0,0,0,0,0,0 "AMI

  15. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1736282,1715708,1681481,1656936,1611285,1326509,1346041,1143057 "Residential",1542833,1525473,1494345,1474547,1436056,1177320,1203954,1014025 "Commercial",185136,182666,182010,177498,170267,144934,137882,124770 "Industrial",8313,7569,5126,4891,4962,4255,4205,4261 "Transportation",0,0,0,0,0,0,0,1 "AMI

  16. Automatic ranging circuit for a digital panel meter

    DOE Patents [OSTI]

    Mueller, Theodore R.; Ross, Harley H.

    1976-01-01

    This invention relates to a range changing circuit that operates in conjunction with a digital panel meter of fixed sensitivity. The circuit decodes the output of the panel meter and uses that information to change the gain of an input amplifier to the panel meter in order to insure that the maximum number of significant figures is always displayed in the meter. The circuit monitors five conditions in the meter and responds to any of four combinations of these conditions by means of logic elements to carry out the function of the circuit.

  17. Long Island Smart Metering Pilot Project

    SciTech Connect (OSTI)

    2012-03-30

    The Long Island Power Authority (LIPA) Smart Meter Pilots provided invaluable information and experience for future deployments of Advanced Metering Infrastructure (AMI), including the deployment planned as part of LIPA’s Smart Grid Demonstration Project (DE-OE0000220). LIPA will incorporate lessons learned from this pilot in future deployments, including lessons relating to equipment performance specifications and testing, as well as equipment deployment and tracking issues. LIPA ultimately deployed three AMI technologies instead of the two that were originally contemplated. This enabled LIPA to evaluate multiple systems in field conditions with a relatively small number of meter installations. LIPA experienced a number of equipment and software issues that it did not anticipate, including issues relating to equipment integration, ability to upgrade firmware and software “over the air” (as opposed to physically interacting with every meter), and logistical challenges associated with tracking inventory and upgrade status of deployed meters. In addition to evaluating the technology, LIPA also piloted new Time-of-Use (TOU) rates to assess customer acceptance of time-differentiated pricing and to evaluate whether customers would respond by adjusting their activities from peak to non-peak periods. LIPA developed a marketing program to educate customers who received AMI in the pilot areas and to seek voluntary participation in TOU pricing. LIPA also guaranteed participating customers that, for their initial year on the rates, their electricity costs under the TOU rate would not exceed the amount they would have paid under the flat rates they would otherwise enjoy. 62 residential customers chose to participate in the TOU rates, and every one of them saved money during the first year. 61 of them also elected to stay on the TOU rate – without the cost guarantee – at the end of that year. The customer who chose not to continue on the rate was also

  18. ARM: Three Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ARM: Three Meter Tower: video camera Citation Details In-Document Search Title: ARM: Three Meter Tower: video camera Three Meter Tower: video camera Authors: Scott Smith ; Martin...

  19. ARM: Three Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Three Meter Tower: video camera Citation Details In-Document Search Title: ARM: Three Meter Tower: video camera Three Meter Tower: video camera Authors: Scott Smith ; Martin...

  20. ARM: Forty Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Forty Meter Tower: video camera Citation Details In-Document Search Title: ARM: Forty Meter Tower: video camera Forty Meter Tower: video camera Authors: Scott Smith ; Martin...

  1. Logic elements for reactor period meter

    DOE Patents [OSTI]

    McDowell, William P.; Bobis, James P.

    1976-01-01

    Logic elements are provided for a reactor period meter trip circuit. For one element, first and second inputs are applied to first and second chopper comparators, respectively. The output of each comparator is O if the input applied to it is greater than or equal to a trip level associated with each input and each output is a square wave of frequency f if the input applied to it is less than the associated trip level. The outputs of the comparators are algebraically summed and applied to a bandpass filter tuned to f. For another element, the output of each comparator is applied to a bandpass filter which is tuned to f to give a sine wave of frequency f. The outputs of the filters are multiplied by an analog multiplier whose output is 0 if either input is 0 and a sine wave of frequency 2f if both inputs are a frequency f.

  2. Method and apparatus for reading meters from a video image

    DOE Patents [OSTI]

    Lewis, Trevor J.; Ferguson, Jeffrey J.

    1997-01-01

    A method and system to enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relatively non-intrusive manner without making any complicated or expensive electronic connections, and without requiring intensive manpower.

  3. De Minimis Thresholds for Federal Building Metering Appropriateness

    SciTech Connect (OSTI)

    Henderson, Jordan W.

    2015-03-31

    The U.S. Department of Energy (DOE) is required by statute and Presidential Memorandum to establish guidelines for agencies to meter their Federal buildings for energy (electricity, natural gas, and steam) and water. See 42 U.S.C. § 8253(e). DOE issued guidance in February 2006 on the installation of electric meters in Federal buildings. A recent update to the 2006 guidance accounts for more current metering practices within the Federal Government. The updated metering guidance specifies that all Federal buildings shall be considered “appropriate” for energy or water metering unless identified for potential exclusion. In developing the updated guidance to carry out the statue, Congress also directed DOE to (among other things) establish exclusions from the metering requirements based on the de minimis quantity of energy use of a Federal building, industrial process, or structure. This paper discusses the method used to identify de minimis values.

  4. CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review Presenter: James Braun, Purdue University View the Presentation CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review (2.39 MB) More Documents & Publications CBEI: FDD for Advanced RTUs - 2015 Peer Review Control and Diagnostics for Rooftop Units - 2014 BTO Peer Review CBEI: Coordinating

  5. Secretary Chu Announces Two Million Smart Grid Meters Installed Nationwide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Million Smart Grid Meters Installed Nationwide Secretary Chu Announces Two Million Smart Grid Meters Installed Nationwide August 31, 2010 - 12:00am Addthis Columbus, OH - At an event today at Battelle headquarters in Columbus, Ohio, U.S. Energy Secretary Steven Chu announced that two million smart grid meters have been installed across the country, helping to reduce energy costs for families and businesses. As a result of funding from the Recovery Act, smart grid

  6. Energy Secretary Chu Announces Five Million Smart Meters Installed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nationwide as Part of Grid Modernization Effort | Department of Energy Five Million Smart Meters Installed Nationwide as Part of Grid Modernization Effort Energy Secretary Chu Announces Five Million Smart Meters Installed Nationwide as Part of Grid Modernization Effort June 13, 2011 - 12:00am Addthis Washington, DC - At a White House Grid Modernization event today, U.S. Department of Energy Secretary Steven Chu announced that more than five million smart meters have been installed nationwide

  7. Improvements in Shallow (Two-Meter) Temperature Measurements...

    Open Energy Info (EERE)

    Center for Geothermal Energy has been working on improvements in shallow (two-meter) temperature surveys in two areas: overcoming limitations posed by difficult ground...

  8. Wavelength meter having single mode fiber optics multiplexed inputs

    DOE Patents [OSTI]

    Hackel, R.P.; Paris, R.D.; Feldman, M.

    1993-02-23

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  9. Wavelength meter having single mode fiber optics multiplexed inputs

    DOE Patents [OSTI]

    Hackel, Richard P.; Paris, Robert D.; Feldman, Mark

    1993-01-01

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  10. Cyprus Smart metering demo (Smart Grid Project) | Open Energy...

    Open Energy Info (EERE)

    Installation of 3000 smart meters with the required infrastructure for full functionality evaluation of the best practice approach for full roll out. References "EU Smart Grid...