National Library of Energy BETA

Sample records for metering facilities initiatives

  1. RCRA facility stabilization initiative

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The RCRA Facility Stabilization Initiative was developed as a means of implementing the Corrective Action Program`s management goals recommended by the RIS for stabilizing actual or imminent releases from solid waste management units that threaten human health and the environment. The overall goal of stabilization is to, as situations warrant, control or abate threats to human health and/or the environment from releases at RCRA facilities, and/or to prevent or minimize the further spread of contamination while long-term remedies are pursued. The Stabilization initiative is a management philosophy and should not be confused with stabilization technologies.

  2. Facilities Initiatives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Initiatives Facilities Initiatives The Headquarters Office of Administration, Office of Logistics and Facility Operations, has several energy saving initiatives in place or in progress at their Headquarters' facilities in the Forrestal Building in Washington, DC, and Germantown Maryland. Many of these initiatives are part of their Energy Savings Performance Contract (ESPC). ESPCs allow Federal agencies to accomplish energy savings projects without up-front capital costs and without

  3. Akwesasne Housing Authority - Go Solar Initiative: Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Akwesasne Housing Authority Go Solar Initiative: Net Metering Indian Energy Webinar: Understanding the Energy Policy and Regulatory Environment Theresa Cole, Special Projects Coordinator * Intro Akwesasne Housing Authority * Energy Vision * Sunrise Acres Complex * Technical Assistance/Strategic Plan * Project Goals & Outcomes * Community Awareness Campaign * Solar Initiative Goals * AHA's Unique Energy Conservation & Education Programming * Funding Sources * New York State and Utility

  4. Meters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and RP-1 Agreement and Guide For Use and Utilization of the RadEye B20-ER Survey Meters The Rad Eye B20-ER is a pancake GM detector capable of measuring low levels of Alpha, Beta, and Gamma radiation. User authorization under this agreement is for use of the RadEye B20-ER radiation survey instrument for Process Knowledge surveys and user informational purposes only. These instruments cannot be used for official surveys. An RP-1 RCT must be contacted for official surveys or item release surveys.

  5. ODUSD (I&E) Facilities Energy Program Advanced Metering Policy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers the U.S. Department of Defense's (DoD's) metering policy, including implementation challenges and utility partnerships.

  6. Gas-metering test and research facility to meet North Sea needs

    SciTech Connect (OSTI)

    Bosio, J.; Wilcox, P.; Sembsmoen, O. )

    1988-12-12

    A joint-venture, high-pressure, large-flow-rate facility to test, qualify, and research new natural-gas metering systems has been built by Den Norske Stats Oljeselskap A.S. (Statoil) and Total Marine Norsk A.S. Located near Haugesund in the Stavanger area, the lab, designated the Karsto Metering and Technology Laboratory, or K-Lab, is adjacent to Norway's first natural-gas-processing plant. It receives natural gas from across the Norwegian Trench from the Statfjord complex and after processing it sends it on to Emden, West Germany. The gas, which is produced in the North Sea, is transported to United Kingdom and the European continent through a high-pressure pipeline network. The importance of gas-metering technology has been emphasized by oil and gas companies as well as by national regulatory authorities.

  7. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Net metering is available to all "qualifying facilities" (QFs), as defined by the federal Public Utility Regulatory Policies Act of 1978 (PURPA), which pertains to renewable energy systems and co...

  8. Prioritizing Building Water Meter Applications | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Water Efficiency Prioritizing Building Water Meter Applications Prioritizing Building Water Meter Applications Executive Order 13693: Planning for Federal ...

  9. Net Metering

    Broader source: Energy.gov [DOE]

    Note: Illinois is currently undergoing a rulemaking that would change its existing net metering rules. The proposed rules include provisions clarifying virtual net metering policies, facilitating...

  10. Net Metering

    Broader source: Energy.gov [DOE]

    Kansas adopted the Net Metering and Easy Connection Act in May 2009, which established net metering for customers of investor-owned utilities (IOUs). 

  11. Net Metering

    Broader source: Energy.gov [DOE]

    Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas, hydropower, fu...

  12. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    commercial) as long as the base requirements are met. All net-metered facilities must be behind a customer's meter, but only a minimal amount of load located on-site is required....

  13. Electric Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Metering Electric Metering Saving Money by Saving Energy The Department of Energy has installed meters in the James Forrestal Building that will enable DOE to measure electricity use and costs in its headquarters facility. You may explore this data further by visiting our Forrestal Metering Dashboard at the following website: http://forrestal.nrel.gov The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power

  14. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    who generate electricity using solar, wind, hydroelectric, geothermal, biomass, biogas, combined heat and power, or fuel cell technologies.* A net metering facility must be...

  15. Net Metering

    Broader source: Energy.gov [DOE]

    New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives) to offer net metering at non-...

  16. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to all customers of investor-owned utilities and rural electric cooperatives, exempting TVA utilities. Kentucky's requires the use of a single, bi-directional meter for...

  17. Net Metering

    Broader source: Energy.gov [DOE]

    NOTE: On October 21, 2015, the NY Public Service Commission denied the Orange and Rockland Utility’s petition to cease offering net-metering and interconnections once the 6% net-metering cap was...

  18. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    NOTE: Although, this post is categorized as netmetering, the policy adopted by MS does not meet DSIRE's standards for a typical net metering policy. Net metering policy allows a customer to offset...

  19. Plugging meter

    DOE Patents [OSTI]

    Nagai, Akinori

    1979-01-01

    A plugging meter for automatically measuring the impurity concentration in a liquid metal is designed to have parallel passages including a cooling passage provided with a plugging orifice and with a flow meter, and a by-pass passage connected in series to a main passage having another flow meter, so that the plugging points may be obtained from the outputs of both flow meters. The plugging meter has a program signal generator, a flow-rate ratio setter and a comparator, and is adapted to change the temperature of the plugging orifice in accordance with a predetermined pattern or gradient, by means of a signal representative of the temperature of plugging orifice and a flow-rate ratio signal obtained from the outputs of both flow meters. This plugging meter affords an automatic and accurate measurement of a multi-plugging phenomenon taking place at the plugging orifice.

  20. Net Metering

    Broader source: Energy.gov [DOE]

    Missouri enacted legislation in June 2007 requiring all electric utilities—investor-owned utilities, municipal utilities, and electric cooperatives—to offer net metering to customers with systems...

  1. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available on a first-come, first-served basis until the cumulative generating capacity of net-metered systems equals 0.5% of a utility’s peak demand during 1996.* At least one-half...

  2. Net Metering

    Broader source: Energy.gov [DOE]

    Note: The California Public Utilities Commission (CPUC) issued a decision in April 2016 establishing rules for net metering PV systems paired with storage devices 10 kW or smaller. See below for...

  3. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering in Virginia is available on a first-come, first-served basis until the rated generating capacity owned and operated by customer-generators reaches 1% of an electric distribution...

  4. Net Metering

    Broader source: Energy.gov [DOE]

    With these regulations, renewable energy systems with a capacity up to 25 kilowatts (kW) are eligible for net metering. Overall enrollment is limited to 1.5% of a utility's retail sales from the...

  5. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    NOTE: On February 2016, the PA Public Service Commission (PUC) issued a final rulemaking order amending net metering regulations to provide clarity and to comply with the statutes. Changes include...

  6. Net Metering

    Broader source: Energy.gov [DOE]

    There is no stated limit on the aggregate capacity of net-metered systems in a utility's service territory. Any net excess generation (NEG) during a monthly billing period is carried over to the...

  7. Net Metering

    Broader source: Energy.gov [DOE]

    Iowa's statutes do not explicitly authorize the Iowa Utilities Board (IUB) to mandate net metering, but this authority is implicit through the board's enforcement of PURPA and Iowa Code § 476.41 ...

  8. Net Metering

    Broader source: Energy.gov [DOE]

    Nevada's original net-metering law for renewable-energy systems was enacted in 1997 and amended in 2001, 2003, 2005, 2007, 2011, 2013, and 2015. Systems up to one megawatt (MW) in capacity that...

  9. Net Metering

    Broader source: Energy.gov [DOE]

    In Delaware, net metering is available to any customer that generates electricity using solar, wind or hydro resources, anaerobic digesters, or fuel cells capable of being powered by renewable fu...

  10. Net Metering

    Broader source: Energy.gov [DOE]

    Note: On October 12th, 2015 the Hawaii PUC voted to end net metering in favor of 3 alternative options: a grid supply option, a self-supply option, and a time of use tariff. Customers with net...

  11. Net Metering

    Broader source: Energy.gov [DOE]

    Net excess generation (NEG) is credited to the customer's next monthly bill. The customer may choose to start the net metering period at the beginning of January, April, July or October to match...

  12. Net Metering

    Broader source: Energy.gov [DOE]

    In April 2001, Arkansas enacted legislation (HB 2325) directing the Arkansas Public Service Commission (PSC) to establish net-metering rules for certain renewable-energy systems.* The PSC approved...

  13. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    North Dakota's net metering policy, adopted in 1991 by the state Public Service Commission (PSC), applies to renewable energy systems and combined heat and power (CHP) systems up to 100 kilowatts...

  14. Net Metering

    Broader source: Energy.gov [DOE]

    In October 2008, Michigan enacted P.A. 295, requiring the Michigan Public Service Commission (MPSC) to establish a statewide net metering program for renewable energy systems. On May 26, 2009 the...

  15. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

     NOTE: The program website listed above links to the Maryland Public Service Commission's Net Metering Working Group page, which contains a variety of information resources related to the ongoing...

  16. Net Metering

    Broader source: Energy.gov [DOE]

    Utah law requires their only investor-owned utility, Rocky Mountain Power (RMP), and most electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wi...

  17. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE)

    Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005.

  18. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency

    SciTech Connect (OSTI)

    2015-03-02

    Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005.

  19. Recovery of Information from the Fast Flux Test Facility for the Advanced Fuel Cycle Initiative

    SciTech Connect (OSTI)

    Nielsen, Deborah L.; Makenas, Bruce J.; Wootan, David W.; Butner, R. Scott; Omberg, Ronald P.

    2009-09-30

    The Fast Flux Test Facility is the most recent Liquid Metal Reactor to operate in the United States. Information from the design, construction, and operation of this reactor was at risk as the facilities associated with the reactor are being shut down. The Advanced Fuel Cycle Initiative is a program managed by the Office of Nuclear Energy of the U.S. Department of Energy with a mission to develop new fuel cycle technologies to support both current and advanced reactors. Securing and preserving the knowledge gained from operation and testing in the Fast Flux Test Facility is an important part of the Knowledge Preservation activity in this program.

  20. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable energy facilities established on military property for on-site military consumption may net meter for systems up to 2.2 megawatts (MW, AC). Aggregate Capacity Limit...

  1. Saturation meter

    DOE Patents [OSTI]

    Gregurech, S.

    1984-08-01

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  2. Community Net Energy Metering: How Novel Policies Expand Benefits of Net Metering to Non-Generators

    SciTech Connect (OSTI)

    Rose, James; Varnado, Laurel

    2009-04-01

    As interest in community solutions to renewable energy grows, more states are beginning to develop policies that encourage properties with more than one meter to install shared renewable energy systems. State net metering policies are evolving to allow the aggregation of multiple meters on a customer’s property and to dissolve conventional geographical boundaries. This trend means net metering is expanding out of its traditional function as an enabling incentive to offset onsite customer load at a single facility. This paper analyzes community net energy metering (CNEM) as an emerging vehicle by which farmers, neighborhoods, and municipalities may more easily finance and reap the benefits of renewable energy. Specifically, it aims to compare and contrast the definition of geographical boundaries among different CNEM models and examine the benefits and limitations of each approach. As state policies begin to stretch the geographic boundaries of net metering, they allow inventive solutions to encourage renewable energy investment. This paper attempts to initiate the conversation on this emerging policy mechanism and offers recommendations for further development of these policies.

  3. Advanced Metering Infrastructure

    SciTech Connect (OSTI)

    2007-10-15

    The report provides an overview of the development of Advanced Metering Infrastructure (AMI). Metering has historically served as the cash register for the utility industry. It measured the amount of energy used and supported the billing of customers for that usage. However, utilities are starting to look at meters in a whole different way, viewing them as the point of contact with customers in supporting a number of operational imperatives. The combination of smart meters and advanced communications has opened up a variety of methods for utilities to reduce operating costs while offering new services to customers. A concise look is given at what's driving interest in AMI, the components of AMI, and the creation of a business case for AMI. Topics covered include: an overview of AMI including the history of metering and development of smart meters; a description of the key technologies involved in AMI; a description of key government initiatives to support AMI; an evaluation of the current market position of AMI; an analysis of business case development for AMI; and, profiles of 21 key AMI vendors.

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30, 2008 [Facility News] Scout Team Surveys Storm Peak Area Bookmark and Share Storm Peak Laboratory, at an elevation of 3200 meters, will supplement measurements obtained by the AMF2 during its debut in 2010 near Steamboat Springs, Colorado. Storm Peak Laboratory, at an elevation of 3200 meters, will supplement measurements obtained by the AMF2 during its debut in 2010 near Steamboat Springs, Colorado. The U.S. Department of Energy recently announced the initial deployment of the second ARM

  5. Palau- Net Metering

    Broader source: Energy.gov [DOE]

    The Palau Net Metering Act of 2009 established net metering on the Island of Palau. Net metering was implemented in order to:

  6. Healthcare Energy Metering Guidance (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This brochure is intended to help facility and energy managers plan and prioritize investments in energy metering. It offers healthcare-specific examples of metering applications, benefits, and steps that other health systems can reproduce. It reflects collaborative input from the U.S. Department of Energy national laboratories and the health system members of the DOE Hospital Energy Alliance's Benchmarking and Measurement Project Team.

  7. Initial Activation and Operation of the Power Conditioning System for the National Ignition Facility

    SciTech Connect (OSTI)

    Newton, M A; Kamm, R E; Fulkerson, E S; Hulsey, S D; Lao, N; Parrish, G L; Pendleton, D L; Petersen, D E; Polk, M; Tuck, J M; Ullery, G T; Moore, W B

    2003-08-20

    The NIF Power Conditioning System (PCS) resides in four Capacitor Bays, supplying energy to the Master and Power Amplifiers which reside in the two adjacent laser bays. Each capacitor bay will initially house 48 individual power conditioning modules, shown in Figure 2, with space reserved for expansion to 54 modules. The National Ignition Facility (NIF) Power Conditioning System (PCS) is a modular capacitive energy storage system that will be capable of storing nearly 400 MJ of electrical energy and delivering that energy to the nearly 8000 flashlamps in the NIF laser. The first sixteen modules of the power conditioning system have been built, tested and installed. Activation of the first nine power conditioning modules has been completed and commissioning of the first ''bundle'' of laser beamlines has begun. This paper will provide an overview of the power conditioning system design and describe the status and results of initial testing and activation of the first ''bundle'' of power conditioning modules.

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eddy Correlation Deployments Completed Bookmark and Share In mid-March, the last of a series of new eddy covariance or "eddy correlation" (ECOR) systems was installed at the ARM Climate Research Facility's Southern Great Plains (SGP) extended facility at Cyril, Oklahoma. This completes the replacement of the original ECOR systems initiated in 2002. In all, nine new ECOR systems have been deployed, including one on the 18-meter tower at the SGP forest locale at Okmulgee, Oklahoma. The

  9. Is revenue metering feasible

    SciTech Connect (OSTI)

    Taylor, N.R.

    1985-02-01

    Revenue metering for thermal systems has been in use for more than 100 years. There is an infinite variety of meters based on flow principles, but very limited choice of steam condensate meters. Progress is being made in the application of computer technology to thermal metering. Btu meters are showing substantial progress as the U.S. market increases. There is a lack of traceable standards, application guidelines and approved materials. Strongly needed are educational programs designed for the thermal metering technician. Costs of thermal measurements is, in general, out of balance with other utility type service meters.

  10. BENCHMARK EVALUATION OF THE INITIAL ISOTHERMAL PHYSICS MEASUREMENTS AT THE FAST FLUX TEST FACILITY

    SciTech Connect (OSTI)

    John Darrell Bess

    2010-05-01

    The benchmark evaluation of the initial isothermal physics tests performed at the Fast Flux Test Facility, in support of Fuel Cycle Research and Development and Generation-IV activities at the Idaho National Laboratory, has been completed. The evaluation was performed using MCNP5 with ENDF/B-VII.0 nuclear data libraries and according to guidelines provided for inclusion in the International Reactor Physics Experiment Evaluation Project Handbook. Results provided include evaluation of the initial fully-loaded core critical, two neutron spectra measurements near the axial core center, 32 reactivity effects measurements (21 control rod worths, two control rod bank worths, six differential control rod worths, two shutdown margins, and one excess reactivity), isothermal temperature coefficient, and low-energy electron and gamma spectra measurements at the core center. All measurements were performed at 400 ºF. There was good agreement between the calculated and benchmark values for the fully-loaded core critical eigenvalue, reactivity effects measurements, and isothermal temperature coefficient. General agreement between benchmark experiment measurements and calculated spectra for neutrons and low-energy gammas at the core midplane exists, but calculations of the neutron spectra below the core and the low-energy gamma spectra at core midplane did not agree well. Homogenization of core components may have had a significant impact upon computational assessment of these effects. Future work includes development of a fully-heterogeneous model for comprehensive evaluation. The reactor physics measurement data can be used in nuclear data adjustment and validation of computational methods for advanced fuel cycle and nuclear reactor systems using Liquid Metal Fast Reactor technology.

  11. NASA's Solar Tower Test of the 1-Meter Aeroshell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NASA's Solar Tower Test of the 1-Meter Aeroshell - Sandia Energy Energy Search Icon Sandia ... Applications National Solar Thermal Test Facility Nuclear Energy Systems ...

  12. LADWP- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    LADWP allows its customers to net meter their photovoltaic (PV), wind, and hybrid systems with a capacity of not more than one megawatt. LADWP will provide the necessary metering equipment unless...

  13. Utility Metering- AGL Resources

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—discusses AGL Resources metering, including interruptible rate customers, large users, and meeting federal metering goals.

  14. Innovation and Success in Solar Net Metering and Interconnection |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Net Metering and Interconnection Innovation and Success in Solar Net Metering and Interconnection This document summarizes the latest developments in solar net metering and interconnection. webinar_080713_solar_net_metering_connection.pdf (2.09 MB) More Documents & Publications webinar_innovation_net_metering_interconnection.doc PRESENTATION: OVERVIEW OF THE SUNSHOT INITIATIVE Final Report - Chicago Region Solar Market Transformation Team

  15. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support the Lab's security mission

  16. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure and Sustainable Energy Future Mission/Facilities Facilities Tara Camacho-Lopez 2016-04-06T18:06:13+00:00 National Solar Thermal Test Facility (NSTTF) facility_nsttf_slide NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants, which have three generic system architectures: line-focus (trough and continuous linear Fresnel reflector systems), point-focus central

  17. Smart Meter Company Boosting Production, Workforce

    Office of Energy Efficiency and Renewable Energy (EERE)

    A manufacturing facility in South Carolina is producing enough smart meters to reduce annual electricity use by approximately 1.7 million megawatt hours -- and through advanced manufacturing tax credits, just increased the facility's production capability by 20 percent and created 420 jobs.

  18. Initial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Initial operation of the first amplifier stage resulted in self-lasing due to an optical cavity between the polarizing beam-splitter cube and the 0 reflecting mirror a setup ...

  19. Canyon Disposal Initiative - Numerical Modeling of Contaminant Transport from Grouted Residual Waste in the 221-U Facility (U Plant)

    SciTech Connect (OSTI)

    Rockhold, Mark L.; White, Mark D.; Freeman, Eugene J.

    2004-10-12

    This letter report documents initial numerical analyses conducted by PNNL to provide support for a feasibility study on decommissioning of the canyon buildings at Hanford. The 221-U facility is the first of the major canyon buildings to be decommissioned. The specific objective of this modeling effort was to provide estimates of potential rates of migration of residual contaminants out of the 221-U facility during the first 40 years after decommissioning. If minimal contaminant migration is predicted to occur from the facility during this time period, then the structure may be deemed to provide a level of groundwater protection that is essentially equivalent to the liner and leachate collection systems that are required at conventional landfills. The STOMP code was used to simulate transport of selected radionuclides out of a canyon building, representative of the 221-U facility after decommissioning, for a period of 40 years. Simulation results indicate that none of the selected radionuclides that were modeled migrated beyond the concrete structure of the facility during the 40-year period of interest. Jacques (2001) identified other potential contaminants in the 221-U facility that were not modeled, however, including kerosene, phenol, and various metals. Modeling of these contaminants was beyond the scope of this preliminary effort due to increased complexity. Simulation results indicate that contaminant release from the canyon buildings will be diffusion controlled at early times. Advection is expected to become much more important at later times, after contaminants have diffused out of the facility and into the surrounding soil environment. After contaminants have diffused out of the facility, surface infiltration covers will become very important for mitigating further transport of contaminants in the underlying vadose zone and groundwater.

  20. Metering Best Practices Applied in the National Renewable Energy Laboratory's Research Support Facility: A Primer to the 2011 Measured and Modeled Energy Consumption Datasets

    SciTech Connect (OSTI)

    Sheppy, M.; Beach, A.; Pless, S.

    2013-04-01

    Modern buildings are complex energy systems that must be controlled for energy efficiency. The Research Support Facility (RSF) at the National Renewable Energy Laboratory (NREL) has hundreds of controllers -- computers that communicate with the building's various control systems -- to control the building based on tens of thousands of variables and sensor points. These control strategies were designed for the RSF's systems to efficiently support research activities. Many events that affect energy use cannot be reliably predicted, but certain decisions (such as control strategies) must be made ahead of time. NREL researchers modeled the RSF systems to predict how they might perform. They then monitor these systems to understand how they are actually performing and reacting to the dynamic conditions of weather, occupancy, and maintenance.

  1. Initial electron-beam characterizations for the Los Alamos APEX Facility

    SciTech Connect (OSTI)

    Lumpkin, A.H.; Feldman, R.B.; Apgar, S.A.; Feldman, D.W.; O'Shea, P.G. ); Fiorito, R.B.; Rule, D.W. )

    1991-01-01

    The ongoing upgrade of the Los Alamos Free-Electron Laser (FEL) Facility involves the addition of a photoelectric injector (PEI) and acceleration capability to about 40 MeV. The electron-beam and high-speed diagnostics provide key measurements of charge, beam position and profile, divergence emittance, energy (centroid, spread, slew, and extraction efficiency), micropulse duration, and phase stability. Preliminary results on the facility include optical transition radiation interferometer measurements of divergence (1 to 2 mrad), FEL extraction efficiency (0.6 {plus minus} 0.2%), and drive laser phase stability (< 2 ps (rms)). 10 refs.

  2. Initial electron-beam characterizations for the Los Alamos APEX Facility

    SciTech Connect (OSTI)

    Lumpkin, A.H.; Feldman, R.B.; Apgar, S.A.; Feldman, D.W.; O`Shea, P.G.; Fiorito, R.B.; Rule, D.W.

    1991-12-31

    The ongoing upgrade of the Los Alamos Free-Electron Laser (FEL) Facility involves the addition of a photoelectric injector (PEI) and acceleration capability to about 40 MeV. The electron-beam and high-speed diagnostics provide key measurements of charge, beam position and profile, divergence emittance, energy (centroid, spread, slew, and extraction efficiency), micropulse duration, and phase stability. Preliminary results on the facility include optical transition radiation interferometer measurements of divergence (1 to 2 mrad), FEL extraction efficiency (0.6 {plus_minus} 0.2%), and drive laser phase stability (< 2 ps [rms]). 10 refs.

  3. Campo Net Meter Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Campo Net Meter Project Michael Connolly Miskwish, MA Economist/Engineer Campo Kumeyaay Nation Location map Tribal Energy Planning  Current 50 MW project  Proposed 160 MW project  DOE energy grant  Land use planning, renewable energy zones overlay  Economic analysis  Transmission, queue, PPA  Energy Resource Agreement analysis  Tribal Net meter turbine planning California SGIP program  Self Generation Incentive Program  Requires utilities to allow net metering

  4. SRP- Net Metering

    Broader source: Energy.gov [DOE]

    Note: Salt River Project (SRP) modified its existing net-metering program for residential customers in February 2015. These changes are effective with the April 2015 billing cycle.

  5. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities The the WTGa1 turbine (aka DOE/SNL #1) retuns to power as part of a final series of commissioning tests. Permalink Gallery First Power for SWiFT Turbine Achieved during Recommissioning Facilities, News, Renewable Energy, SWIFT, Wind Energy, Wind News First Power for SWiFT Turbine Achieved during Recommissioning The Department of Energy's Scaled Wind Farm Technology (SWiFT) Facility reached an exciting milestone with the return to power production of the WTGa1 turbine (aka DOE/SNL #1)

  6. DC attenuation meter

    DOE Patents [OSTI]

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  7. EWEB- Net Metering

    Broader source: Energy.gov [DOE]

    The Eugene Water and Electric Board (EWEB) offers net metering for customers with renewable energy generation systems with an installed capacity of 25 kW or less. Eligible systems use solar power,...

  8. Idaho Power- Net Metering

    Broader source: Energy.gov [DOE]

    In July 2013, the PUC issued an order in response to Idaho Power's application to modify its net metering program. The ruling removed a previously existing service capacity cap of 2.9 MW and chan...

  9. Guam- Net Metering

    Broader source: Energy.gov [DOE]

    Note: As of October 2015, the net metering program had around 700 customers. According to the Guam Daily Post, the program is expected to reach the current 1,000-customer cap in mid-2016. This cap...

  10. Austin Energy- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Austin Energy, the municipal utility of Austin Texas, offers net metering to its non-residential retail electricity customers for renewable energy systems up to 20 kilowatts (kW). Austin Energy o...

  11. Lesson Plan: Power Metering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Metering Project Grades: 9-12 Topic: Energy Basics Owner: ACTS This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency and...

  12. Calibration Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities DOE supports the development, standardization, and maintenance of calibration facilities for environmental radiation sensors. Radiation standards at the facilities are primarily used to calibrate portable surface gamma-ray survey meters and borehole logging instruments used for uranium and other mineral exploration and remedial action measurements. Standards

  13. DIGITAL Q METER

    DOE Patents [OSTI]

    Briscoe, W.L.

    1962-02-13

    A digital Q meter is described for measuring the Q of mechanical or electrical devices. The meter comprises in combination a transducer coupled to an input amplifier, and an upper and lower level discriminator coupled to the amplifier and having their outputs coupled to an anticoincidence gate. The output of the gate is connected to a scaler. The lower level discriminator is adjusted to a threshold level of 36.8 percent of the operating threshold level of the upper level discriminator. (AEC)

  14. PSEG Long Island- Net Metering

    Broader source: Energy.gov [DOE]

    Although PSEG Long Island’s net metering policy is not governed by the State’s net metering law, the provisions are similar to the State law. Net metering is available for residential, non-reside...

  15. Net Metering | Open Energy Information

    Open Energy Info (EERE)

    Gas Wind Biomass Geothermal Electric Anaerobic Digestion Small Hydroelectric Tidal Energy Wave Energy No Ashland Electric - Net Metering (Oregon) Net Metering Oregon Commercial...

  16. Schlumberger Electricity Metering | Open Energy Information

    Open Energy Info (EERE)

    Electricity Metering Jump to: navigation, search Name: Schlumberger Electricity Metering Place: Oconee, South Carolina Product: Manufacturer of electricity meters. Coordinates:...

  17. Neutron dose equivalent meter

    DOE Patents [OSTI]

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  18. San Antonio City Public Service (CPS Energy)- Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to customers of CPS Energy. There is no aggregate capacity limit or maximum system size. There are also no commissioning fees or facilities charges for customers.

  19. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  20. Meters Roads N Streams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Meters Roads N Streams o Openwells E3i APT Site *. TES Plants (1) E2J Other Set-Asides lEI Hydric Soils . 370 o 370 Soils Soil Series and Phase DBaB DBaC .Pk .TrB DTrC DTrD .TuE...

  1. Flow metering valve

    DOE Patents [OSTI]

    Blaedel, Kenneth L.

    1985-01-01

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  2. Flow metering valve

    DOE Patents [OSTI]

    Blaedel, K.L.

    1983-11-03

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  3. Period meter for reactors

    DOE Patents [OSTI]

    Rusch, Gordon K.

    1976-01-06

    An improved log N amplifier type nuclear reactor period meter with reduced probability for noise-induced scrams is provided. With the reactor at low power levels a sampling circuit is provided to determine the reactor period by measuring the finite change in the amplitude of the log N amplifier output signal for a predetermined time period, while at high power levels, differentiation of the log N amplifier output signal provides an additional measure of the reactor period.

  4. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    SciTech Connect (OSTI)

    John D. Bess

    2010-03-01

    experiments were of particular importance because they provide extensive information which can be directly applied to the design of large LMFBR’s. It should be recognized that the data presented in the initial report were evaluated only to the extent necessary to ensure that adequate data were obtained. Later reports provided further interpretation and detailed comparisons with prediction techniques. The conclusion of the isothermal physics measurements was that the FFTF nuclear characteristics were essentially as designed and all safety requirements were satisfied. From a nuclear point of view, the FFTF was qualified to proceed into power operation mode. The FFTF was completed in 1978 and first achieved criticality on February 9, 1980. Upon completion of the isothermal physics and reactor characterization programs, the FFTF operated for ten years from April 1982 to April 1992. Reactor operations of the FFTF were terminated and the reactor facility was then defueled, deactivated, and placed into cold standby condition. Deactivation of the reactor was put on hold from 1996 to 2000 while the U.S. Department of Energy examined alternative uses for the FFTF but then announced the permanent deactivation of the FFTF in December 2001. Its core support basket was later drilled in May 2005, so as to remove all remaining sodium coolant. On April 17, 2006, the American Nuclear Society designated the FFTF as a “National Nuclear Historic Landmark”.

  5. Montana Electric Cooperatives- Net Metering

    Broader source: Energy.gov [DOE]

    The Montana Electric Cooperatives' Association (MECA) adopted model interconnection guidelines in 2001 and a revised net-metering policy in September 2008. Net metering is available in whole or...

  6. N. Mariana Islands- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: The Commonwealth Utility Corporation issued a moratorium on net metering. However, Public Law 18-62 signed September 6, 2014 states that net metering should be available to all residential...

  7. Washington City Power- Net Metering

    Broader source: Energy.gov [DOE]

    Washington City adopted a net-metering program, including interconnection procedures, in January 2008, and updated the policy in December 2014.* Net metering is available to any customer of...

  8. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the limit on individual system size from 100 kilowatts (kW) to 1 MW . Net Excess Generation: The District's net-metering rules specify that metering equipment must be capable...

  9. Utility-Scale Smart Meter Deployments, Plans & Proposals | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Utility-Scale Smart Meter Deployments, Plans & Proposals Utility-Scale Smart Meter Deployments, Plans & Proposals The Edison Foundation's chart of plans and proposals for utility-scale smart meter deployments. Utility-Scale Smart Meter Deployments, Plans & Proposals (687.9 KB) More Documents & Publications Government Program Briefing: Smart Metering Comments of the New America Foundation's Open Technology Initiative 2014 Smart Grid System Report (August 2014

  10. Facility Floorplan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility floorplan Facility Floorplan

  11. Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Guidance defines which federal buildings are appropriate to meter, provides metering prioritization ...

  12. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  13. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  14. Fisher Controls introduces Snug Meter to gas industry

    SciTech Connect (OSTI)

    Share, J.

    1996-04-01

    Spurred by an industry demanding a sleeker look that will appeal to consumers, Fisher Controls International inc., has introduced a compact natural gas meter that not only is considerably smaller than existing models, but also incorporates features that company officials feel may set new standards. Termed the Snug meter, the four-chamber device is particularly designed for multi-dwelling buildings and is also the initial foray of Fisher--a recognized leader in North America for pressure-control and regulation equipment--into the meter industry. This paper reviews the design features of this new meter.

  15. Summary of activities at the Engineered Barriers Test Facility, October 1, 1995 to January 31, 1997, and initial data

    SciTech Connect (OSTI)

    Porro, I.; Keck, K.N.

    1997-03-01

    Replicates of two engineered barrier designs (a thick soil barrier and a bio/capillary barrier) were constructed in the test plots of the facility. Prior to placement of any soil in the test plots, instruments were calibrated and attached to plot instrument towers, which were then installed in the test plots. Soil from Spreading Area B was installed in the test plots in lifts and compacted. Instruments attached to the instrument tower were placed in shallow trenches dug in the lifts and buried. Each instrument was checked to make sure it functioned prior to installation of the next lift. Soil samples were collected from each lift in one plot during construction for later determination of physical and hydraulic properties. After completion of the test plots, the data acquisition system was finalized, and data collection began. Appropriate instrument calibration equations and equation coefficients are presented, and data reduction techniques are described. Initial data show test plot soils drying throughout the summer and early fall. This corresponds to low rainfall during this period. Infiltration of water into the test plots was first detected around mid-November with several subsequent episodes in December. Infiltration was verified by corresponding measurements from several different instruments [time domain reflectometry (TDR), neutron probe, thermocouple psychrometers, and heat dissipation sensors]. Tensiometer data does not appear to corroborate data from the other instruments. Test plots were warmer on the side closest to the access trench indicating a temperature effect from the trench. This resulted in greater soil moisture freezing with less and shallower infiltration on the far side of the plots than on the side closest to the trench. At the end of this monitoring period, infiltration in all but two of the test plots has reached the 155-cm depth. Infiltration in test plots B2 and S3 has reached only the 140-cm depth. The monitored infiltration events have

  16. GAS METERING PUMP

    DOE Patents [OSTI]

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  17. Microwave fluid flow meter

    DOE Patents [OSTI]

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  18. High-Performance Computing Data Center Metering Protocol | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High-Performance Computing Data Center Metering Protocol High-Performance Computing Data Center Metering Protocol Guide details the methods for measurement in High-Performance Computing (HPC) data center facilities and documents system strategies that have been used in Department of Energy data centers to increase data center energy efficiency. Download the guide. (1.34 MB) More Documents & Publications Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance

  19. Metering Technology Corporation | Open Energy Information

    Open Energy Info (EERE)

    Technology Corporation Jump to: navigation, search Name: Metering Technology Corporation Place: Scotts Valley, California Product: Engineering related to communicating meters....

  20. Federal Building Metering Implementation Plan Template | Department...

    Office of Environmental Management (EM)

    Implementation Plan Template Federal Building Metering Implementation Plan Template Document provides a template for a federal building metering implementation plan....

  1. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    after 12312014) are eligible. Net-metered systems must be intended primarily to offset part or all of a customer's electricity requirements. Public utilities may not limit...

  2. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Anaerobic Digestion Fuel Cells using Renewable Fuels Program Info Sector Name State State North Carolina Program Type Net Metering Summary The North Carolina Utilities Commission...

  3. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of retail renewable distributed generation and net metering. Details will be posted once a final order is issued. Eligibility and Availability In December 2005 the Colorado...

  4. Multiphase pumps and flow meters avoid platform construction

    SciTech Connect (OSTI)

    Elde, J.

    1999-02-01

    One of the newest wrinkles in efficiency in BP`s Eastern Trough Area Project (ETAP) is the system for moving multiphase oil, water and gas fluids from the Machar satellite field to the Marnock Central Processing Facility (CPF). Using water-turbine-driven multiphase pumps and multiphase flow meters, the system moves fluid with no need for a production platform. In addition, BP has designed the installation so it reduces and controls water coning, thereby increasing recoverable reserves. Both subsea multiphase booster stations (SMUBS) and meters grew out of extensive development work and experience at Framo Engineering AS (Framo) in multiphase meters and multiphase pump systems for subsea installation. Multiphase meter development began in 1990 and the first subsea multiphase meters were installed in the East Spar Project in Australia in 1996. By September 1998, the meters had been operating successfully for more than 1 year. A single multiphase meter installed in Marathon`s West Brae Project has also successfully operated for more than 1 year. Subsea meters for ETAP were installed and began operating in July 1998.

  5. Wavelength meter having elliptical wedge

    DOE Patents [OSTI]

    Hackel, Richard P.; Feldman, Mark

    1992-01-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10.sup.8. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing.

  6. Wavelength meter having elliptical wedge

    DOE Patents [OSTI]

    Hackel, R.P.; Feldman, M.

    1992-12-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10[sup 8]. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing. 7 figs.

  7. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "AMR meters",46829659,47321320,48330822,45965762,48685043 "Residential",41830781,42491242,43455437,41451888,43913225 "Commercial",4781167,4632744,4691018,4341105,4611877 "Industrial",216459,196132,185862,172692,159315 "Transportation",1252,1202,125,77,626 "AMI meters",58545938,53341422,43165183,37290373,20334525

  8. Advanced Metering Infrastructure Security Considerations | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Metering Infrastructure Security Considerations Advanced Metering Infrastructure Security Considerations The purpose of this report is to provide utilities implementing Advanced Metering Infrastructure (AMI) with the knowledge necessary to secure that implementation appropriately. We intend that utilities use this report to guide their planning, procurement, roll-out, and assessment of the security of Advanced Metering Infrastructure. Advanced Metering Infrastructure Security

  9. Valley Electric Association- Net Metering

    Broader source: Energy.gov [DOE]

    The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

  10. Blue Ridge EMC- Net Metering

    Broader source: Energy.gov [DOE]

    The Blue Ridge Electric Membership Corporation offers net metering to its residential customers with solar photovoltaic, wind, or micro-hydro generators up to 25 kilowatts. There is no aggregate...

  11. Advanced Sub-Metering Program

    Broader source: Energy.gov [DOE]

    The program is designed to provide information about energy usage for each residences at a multi-residential buildings. Residences living in multi-residential buildings that are not sub-metered d...

  12. Grays Harbor PUD- Net Metering

    Broader source: Energy.gov [DOE]

    Washington's original net-metering law, which applies to all electric utilities, was enacted in 1998 and amended in 2006. Individual systems are limited to 100 kilowatts (kW) in capacity. Net...

  13. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  14. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  15. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  16. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  17. Electric Meters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity & Fuel » Appliances & Electronics » Electric Meters Electric Meters The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. The basic unit of measure of electric power is the Watt. One

  18. Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use) | Department of Energy Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy. Download the Federal Building Metering

  19. Insert metering plates for gas turbine nozzles

    DOE Patents [OSTI]

    Burdgick, Steven S.; Itzel, Gary; Chopra, Sanjay; Abuaf, Nesim; Correia, Victor H.

    2004-05-11

    The invention comprises a metering plate which is assembled to an impingement insert for use in the nozzle of a gas turbine. The metering plate can have one or more metering holes and is used to balance the cooling flow within the nozzle. A metering plate with multiple holes reduces static pressure variations which result from the cooling airflow through the metering plate. The metering plate can be assembled to the insert before or after the insert is inserted into the nozzle.

  20. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",33865,33662,57269,46871,44911,41201,28512,22820 "Residential",30803,32688,53083,44459,42324,38779,26141,21191 "Commercial",3062,974,4186,2412,2587,2394,2350,1629 "Industrial",0,0,0,0,0,28,21,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",29909,29489,30,758,9213,8713,8126,6571

  1. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",17894,6822,6415,5210,4499,116826,103242,101084 "Residential",15963,6455,6075,4920,3375,101823,101363,99995 "Commercial",1828,307,240,190,822,14701,1577,749 "Industrial",103,60,100,100,302,302,302,340 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",741819,739583,735415,669482,193415,0,0,0

  2. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",52528,53483,38201,81499,78292,96058,81992,63856 "Residential",43410,44206,30907,72579,69795,85984,74356,59256 "Commercial",7661,7729,5975,7473,7374,9197,7333,4305 "Industrial",1457,1548,1319,1447,1123,877,303,295 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",1213192,1125193,1021241,555414,20665,0,0,0

  3. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",40233,38125,41827,35412,43254,27018,21054,8132 "Residential",37473,35775,28906,23442,31700,15987,11031,7263 "Commercial",1873,1455,10789,10095,9635,8772,8234,621 "Industrial",868,876,2122,1866,1909,2258,1789,236 "Transportation",19,19,10,9,10,1,0,12 "AMI meters",36345,34919,11533,11610,0,0,0,0

  4. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",42342,53266,44430,84409,81030,77963,71278,58477 "Residential",37948,48343,39930,76274,73703,71100,65176,53306 "Commercial",4394,4901,4481,8121,7325,6861,6100,5169 "Industrial",0,22,19,14,2,2,2,2 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",296824,271526,343769,123,0,0,0,0 "Residential",253659,229844,294918,116,0,0,0,0

  5. DOE TEAM Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presented by: Geoffrey C. Bell, PE Geoffrey C. Bell, PE High Tech Buildings High Tech Buildings ~ ~ Berkeley Fume Hood Berkeley Fume Hood ~ ~ Aerosol Duct Sealing Aerosol Duct Sealing DOE TEAM Initiative DOE TEAM Initiative Facilities and Environmental Energy Technologies Facilities and Environmental Energy Technologies 1 Facilities and Environmental Energy Technologies Facilities and Environmental Energy Technologies 2 DOE TEAM Initiative DOE TEAM Initiative High Tech Buildings High Tech

  6. LINEAR COUNT-RATE METER

    DOE Patents [OSTI]

    Henry, J.J.

    1961-09-01

    A linear count-rate meter is designed to provide a highly linear output while receiving counting rates from one cycle per second to 100,000 cycles per second. Input pulses enter a linear discriminator and then are fed to a trigger circuit which produces positive pulses of uniform width and amplitude. The trigger circuit is connected to a one-shot multivibrator. The multivibrator output pulses have a selected width. Feedback means are provided for preventing transistor saturation in the multivibrator which improves the rise and decay times of the output pulses. The multivibrator is connected to a diode-switched, constant current metering circuit. A selected constant current is switched to an averaging circuit for each pulse received, and for a time determined by the received pulse width. The average output meter current is proportional to the product of the counting rate, the constant current, and the multivibrator output pulse width.

  7. Analysis of results from a loss-of-offsite-power-initiated ATWS experiment in the LOFT facility. [PWR

    SciTech Connect (OSTI)

    Varacalle, D.J. Jr.; Koizumi, Y.; Giri, A.H.; Koske, J.E.; Sanchez-Pope, A.E.

    1983-01-01

    An anticipated transient without scram (ATWS), initiated by loss-of-offsite power, was experimentally simulated in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). Primary system pressure was controlled using a scaled safety relief valve (SRV) representative of those in a commercial PWR, while reactor power was reduced by moderator reactivity feedback in a natural circulation mode. The experiment showed that reactor power decreases more rapidly when the primary pumps are tripped in a loss-of-offsite-power ATWS than in a loss-of-feedwater induced ATWS when the primary pumps are left on. During the experiment, the SRV had sufficient relief capacity to control primary system pressure. Natural circulation was effective in removing core heat at high temperature, pressure, and core power. The system transient response predicted using the RELAP5/MOD1 computer code showed good agreement with the experimental data.

  8. Analysis of results from a loss-of-offsite-power-initiated ATWS experiment in the LOFT Facility

    SciTech Connect (OSTI)

    Varacalle, D.J.; Giri, A.M.; Koizumi, Y.; Koske, J.E.

    1983-07-01

    An anticipated transient without scram (ATWS), initiated by loss-of-offsite power, was experimentally simulated in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). Primary system pressure was controlled using a scaled safety relief valve (SRV) representative of those in a commercial PWR, while reactor power was reduced by moderator reactivity feedback in a natural circulation mode. The experiment showed that reactor power decreases more rapidly when the primary pumps are tripped in a loss-of-offsite-power ATWS than in a loss-of-feedwater induced ATWS when the primary pumps are left on. During the experiment, the SRV had sufficient relief capacity to control primary system pressure. Natural circulation was effective in removing core heat at high temperature, pressure, and core power. The system transient response predicted using the RELAPS/MOD1 computer code showed good agreement with the experimental data.

  9. Net Metering Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Net Metering Resources Net Metering Resources State net metering policies allow customers to produce onsite electricity and sell excess generation to the utility at a set price, which creates an incentive for private investment in distributed renewable energy technologies by providing value to the electricity generation that, during certain times of day or season, exceeds the customer's electricity demand. Find net metering resources below. DOE Resource Net Metering Policy Development in

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Aerial Facility's Lofty Goal: Collect Crucial Arctic Climate Change Data with Unmanned Aerial Systems Bookmark and Share ARM bolsters aerial data collection capabilities with new aircraft, instruments for 2016 With a wingspan of about a meter, the DataHawk UAS can fly in relatively calm conditions, gathering data in areas not easily measured by ground-based or tethered-balloon instruments. With a wingspan of about a meter, the DataHawk UAS can fly in relatively calm conditions, gathering

  11. Net Metering and Interconnection Procedures-- Incorporating Best Practices

    SciTech Connect (OSTI)

    Jason Keyes, Kevin Fox, Joseph Wiedman, Staff at North Carolina Solar Center

    2009-04-01

    State utility commissions and utilities themselves are actively developing and revising their procedures for the interconnection and net metering of distributed generation. However, the procedures most often used by regulators and utilities as models have not been updated in the past three years, in which time most of the distributed solar facilities in the United States have been installed. In that period, the Interstate Renewable Energy Council (IREC) has been a participant in more than thirty state utility commission rulemakings regarding interconnection and net metering of distributed generation. With the knowledge gained from this experience, IREC has updated its model procedures to incorporate current best practices. This paper presents the most significant changes made to IREC’s model interconnection and net metering procedures.

  12. Scaling and design analyses of a scaled-down, high-temperature test facility for experimental investigation of the initial stages of a VHTR air-ingress accident

    SciTech Connect (OSTI)

    Arcilesi, David J.; Ham, Tae Kyu; Kim, In Hun; Sun, Xiaodong; Christensen, Richard N.; Oh, Chang H.

    2015-07-01

    A critical event in the safety analysis of the very high-temperature gas-cooled reactor (VHTR) is an air-ingress accident. This accident is initiated, in its worst case scenario, by a double-ended guillotine break of the coaxial cross vessel, which leads to a rapid reactor vessel depressurization. In a VHTR, the reactor vessel is located within a reactor cavity that is filled with air during normal operating conditions. Following the vessel depressurization, the dominant mode of ingress of an air–helium mixture into the reactor vessel will either be molecular diffusion or density-driven stratified flow. The mode of ingress is hypothesized to depend largely on the break conditions of the cross vessel. Since the time scales of these two ingress phenomena differ by orders of magnitude, it is imperative to understand under which conditions each of these mechanisms will dominate in the air ingress process. Computer models have been developed to analyze this type of accident scenario. There are, however, limited experimental data available to understand the phenomenology of the air-ingress accident and to validate these models. Therefore, there is a need to design and construct a scaled-down experimental test facility to simulate the air-ingress accident scenarios and to collect experimental data. The current paper focuses on the analyses performed for the design and operation of a 1/8th geometric scale (by height and diameter), high-temperature test facility. A geometric scaling analysis for the VHTR, a time scale analysis of the air-ingress phenomenon, a transient depressurization analysis of the reactor vessel, a hydraulic similarity analysis of the test facility, a heat transfer characterization of the hot plenum, a power scaling analysis for the reactor system, and a design analysis of the containment vessel are discussed.

  13. Meters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HardwOOd %. EJ :1o,;"'a'" W. Monitoring wells :W o Wa"""'" :' m .y WWE:tI' s N Roads . et-Asld lidL:sndfili ;;;;>. Figure 28-1. Plant...

  14. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2103,2188,2991,4659,35987,29770,32000,3562 "Residential",935,1046,1722,3108,32964,27174,29415,892 "Commercial",1165,1139,1266,1548,3022,2595,2584,2670 "Industrial",3,3,3,3,1,1,1,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",277998,269876,246642,29650,0,0,0,0 "Residential",252040,245295,230705,27695,0,0,0,0

  15. Federal Building Metering Guidance (per 42 U.S.C. 8253(e), Metering of Energy Use)

    SciTech Connect (OSTI)

    2014-11-01

    Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy.

  16. Government Program Briefing: Smart Metering

    Broader source: Energy.gov [DOE]

    This document is adapted and updated from a memo delivered to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the U.S. Department of Energy (DOE) Project Officer in March 2008. This briefing piece provides an overview of the benefits, costs, and challenges of smart metering.

  17. Government Program Briefing: Smart Metering

    SciTech Connect (OSTI)

    Doris, E.; Peterson, K.

    2011-09-01

    This document is adapted and updated from a memo delivered to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the U.S. Department of Energy (DOE) Project Officer in March 2008. This briefing piece provides an overview of the benefits, costs, and challenges of smart metering.

  18. Operations and Maintenance Savings from Advanced Metering Infrastructure - Initial Results

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy |December 2012 Table of Contents Executive Summary ............................................................................................................... ii 1. Introduction ................................................................................................................... 1 1.1 Purpose and Scope...................................................................................................... 1 1.2 Organization of this

  19. Laser Power Meter Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2002-09-19

    Laser Power Meter integrates the digital output of a Newport 1835-C Laser Energy Meter and inserts the results into the file header of a WinSpec experimental file.

  20. Power-factor metering gains new interest

    SciTech Connect (OSTI)

    Womack, D.L.

    1980-01-01

    The combined effect of increased energy costs, advances in digital metering techniques, and regulatory pressures is stimulating utility interest in charging smaller customers the full cost of their burden on the electric system, by metering reactive power and billing for poor power factor. Oklahoma Gas and Electric Co. adopted the Q-meter method, made practical with the advent of magnetic-tape metering. Digital metering and new techniques now being developed will add more options for utilities interested in metering power factor. There are three commonly used methods of determining power factor, all of which require the use of the standard induction watthour meter, plus at least one other meter, to obtain a second value in the power triangle. In all cases, the third value, if required, is obtained by calculation.

  1. greenMeter | Open Energy Information

    Open Energy Info (EERE)

    physics engine from the gMeter app, greenMeter computes power, fuel usagecost, crude oil consumption, and carbon emission (data can be shown in US or metric units). Thanks to...

  2. Facilities Initiatives | Department of Energy

    Office of Environmental Management (EM)

    ... Forrestal and Germantown Cool Roofs The white membrane reflects energy from the building in the summer, reducing cooling requirements. The roof insulation was also improved to help ...

  3. Metering in Federal Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Maintenance » Metering in Federal Buildings Metering in Federal Buildings The U.S. Department of Energy is required by the Energy Policy Act of 2005 and Executive Order 13693 to establish guidelines for agencies to meter their federal buildings for energy (electricity, natural gas, and steam) and water use. To help agencies meet these metering requirements, the Federal Energy Management Program (FEMP) provides guidance materials, an implementation plan template, and a best practices

  4. DOE Releases Federal Building Metering Guidance

    Broader source: Energy.gov [DOE]

    The guidance requires federal agencies to review, revise, and submit to FEMP its metering implementation plan within one year.

  5. Large Campus Innovative Change Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    laws and requirements, maintain their missions, and manage large facility portfolios. ... focus on multiple, often conflicting, missions Campus energy and water metering ...

  6. NSA Atqasuk Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inactive NSA Related Links Virtual Tour Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA Fact Sheet Images Information for Guest Scientists Contacts NSA Atqasuk Facility-Inactive Location: 70° 28' 19.11" N, 157° 24' 28.99" W Altitude: 20 meters The Atqasuk facility, which was part of the larger ARM Climate Research Facility (ARM) North Slope of Alaska site, was installed the summer of

  7. NSA Barrow Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow Facility NSA Related Links Virtual Tour Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA Fact Sheet Images Information for Guest Scientists Contacts NSA Barrow Facility Location: 71° 19' 23.73" N, 156° 36' 56.70" W Altitude: 8 meters The Barrow facility was dedicated in July 1997 and chosen because the Arctic is particularly sensitive to climate changes. Barrow is located at the

  8. Long Island Smart Metering Pilot Project

    SciTech Connect (OSTI)

    2012-03-30

    The Long Island Power Authority (LIPA) Smart Meter Pilots provided invaluable information and experience for future deployments of Advanced Metering Infrastructure (AMI), including the deployment planned as part of LIPA’s Smart Grid Demonstration Project (DE-OE0000220). LIPA will incorporate lessons learned from this pilot in future deployments, including lessons relating to equipment performance specifications and testing, as well as equipment deployment and tracking issues. LIPA ultimately deployed three AMI technologies instead of the two that were originally contemplated. This enabled LIPA to evaluate multiple systems in field conditions with a relatively small number of meter installations. LIPA experienced a number of equipment and software issues that it did not anticipate, including issues relating to equipment integration, ability to upgrade firmware and software “over the air” (as opposed to physically interacting with every meter), and logistical challenges associated with tracking inventory and upgrade status of deployed meters. In addition to evaluating the technology, LIPA also piloted new Time-of-Use (TOU) rates to assess customer acceptance of time-differentiated pricing and to evaluate whether customers would respond by adjusting their activities from peak to non-peak periods. LIPA developed a marketing program to educate customers who received AMI in the pilot areas and to seek voluntary participation in TOU pricing. LIPA also guaranteed participating customers that, for their initial year on the rates, their electricity costs under the TOU rate would not exceed the amount they would have paid under the flat rates they would otherwise enjoy. 62 residential customers chose to participate in the TOU rates, and every one of them saved money during the first year. 61 of them also elected to stay on the TOU rate – without the cost guarantee – at the end of that year. The customer who chose not to continue on the rate was also

  9. El Paso Electric - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Website http:www.epelectric.comtxbusinessrollback-net-metering-approved-in-... State Texas Program Type Net Metering Summary El Paso Electric (EPE) has offered net metering to...

  10. Smart Meters on Tap for Owasso, Oklahoma

    Office of Energy Efficiency and Renewable Energy (EERE)

    Saving 10 percent of annual energy and increasing response time for electrical emergencies? Find out how smart meters can make cities smarter.

  11. BPA Metering Services Editing and Estimating Procedures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an unmetered condition An unmetered event will be identified through one of the following methods: 1) The Field Forms application (via Metering Services email), 2) An email...

  12. City of St. George- Net Metering

    Broader source: Energy.gov [DOE]

    The City of St. George Energy Services Department (SGESD) offers a net metering program to its customers, and updated program guidelines and fees in September 2015.* 

  13. Proton recoil scintillator neutron rem meter

    DOE Patents [OSTI]

    Olsher, Richard H.; Seagraves, David T.

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  14. Simplified Processing Method for Meter Data Analysis

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Colotelo, Alison H. A.; Downs, Janelle L.; Ham, Kenneth D.; Henderson, Jordan W.; Montgomery, Sadie A.; Vernon, Christopher R.; Parker, Steven A.

    2015-11-01

    Simple/Quick metered data processing method that can be used for Army Metered Data Management System (MDMS) and Logistics Innovation Agency data, but may also be useful for other large data sets. Intended for large data sets when analyst has little information about the buildings.

  15. 2010 Assessment of Demand Response and Advanced Metering - Staff Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Assessment of Demand Response and Advanced Metering - Staff Report 2010 Assessment of Demand Response and Advanced Metering - Staff Report 2010 Assessment of Demand Response and Advanced Metering - Staff Report. The Federal Energy Regulatory Commission's 2010 Demand Response and Advanced Metering Survey (2010 FERC Survey, covering calendar year 2009) indicates that advanced metering penetration (i.e., the fraction of all installed meters that are advanced meters) reached

  16. City of Tallahassee Innovative Energy Initiatives

    SciTech Connect (OSTI)

    Wilder, Todd; Moragne, Corliss L.

    2014-06-25

    The City of Tallahassee's Innovative Energy Initiatives program sought, first, to evaluate customer response and acceptance to in-home Smart Meter-enabled technologies that allow customers intelligent control of their energy usage. Additionally, this project is in furtherance of the City of Tallahassee's ongoing efforts to expand and enhance the City's Smart Grid capacity and give consumers more tools with which to effectively manage their energy consumption. This enhancement would become possible by establishing an "operations or command center" environment that would be designed as a dual use facility for the City's employees - field and network staff - and systems responsible for a Smart Grid network. A command center would also support the City's Office of Electric Delivery and Energy Reliability's objective to overcome barriers to the deployment of new technologies that will ensure a truly modern and robust grid capable of meeting the demands of the 2151 century.

  17. Clean Electricity Initiatives in California

    U.S. Energy Information Administration (EIA) Indexed Site

    Edward Randolph Director, Energy Division California Public Utilities Commission July 14, 2014 2014 EIA Energy Conference Clean Electricity Policy Initiatives In California (Partial) * Wholesale Renewables : - Renewables Portfolio Standard - Feet in Tariffs (RAM & ReMAT) - All source procurement (under development) * Customer Renewable Generation - California Solar Initiative - Net Energy Metering - Green Tariffs - Energy Efficiency - Demand Response - Rate Reform - Storage - Retirement of

  18. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    New Hampshire" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",222183,69251,61857,59512,53293,50098,48310,46505 "Residential",218780,67647,60510...

  19. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity. This option is available for photovoltaic (PV), wind, hydro...

  20. Smart Meters | OpenEI Community

    Open Energy Info (EERE)

    Smart Meters Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 16 January, 2013 - 11:09 SDG&E Customers Can Connect Home Area Network Devices With Smart...

  1. meter data | OpenEI Community

    Open Energy Info (EERE)

    by Graham7781(2017) Super contributor 26 June, 2013 - 09:17 NREL's Energy Databus storing big energy data campus databus energy meter data NREL OpenEI Tool The Energy Databus began...

  2. Murray City Power- Net Metering Pilot Program

    Broader source: Energy.gov [DOE]

    Under a pilot program, Murray City Power offers net metering to customers that generate electricity using photovoltaic (PV), wind-electric or hydroelectric systems with a maximum capacity of 10...

  3. Green Pricing and Net Metering Programs 2010

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    294 2,971 650 Rhode Island 2 136 58 194 172 September 2012 U.S. Energy Information Administration | Green Pricing and Net Metering Programs 2010 6 Table 2. Estimated U.S. net ...

  4. Green Pricing and Net Metering Programs 2010

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Green Pricing and Net Metering Programs 2010 i This report was prepared by ...

  5. Green Pricing and Net Metering Programs 2010

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    30,060 27,750 Vermont 2 4,453 239 4,692 4,936 September 2012 U.S. Energy Information Administration | Green Pricing and Net Metering Programs 2010 4 Table 1. Estimated U.S. ...

  6. U.S. Virgin Islands- Net Metering

    Broader source: Energy.gov [DOE]

    In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energ...

  7. June 25 Webinar to Explore Net Metering

    Broader source: Energy.gov [DOE]

    Register for the Net Metering webinar, which will be held on Wednesday, June 25, 2014, from 11 a.m. to 12:30 p.m. Mountain time.

  8. Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals Through Data

    Broader source: Energy.gov [DOE]

    This case study describes how Solutia uses sub-meters at all of its U.S. facilities to understand how equipment is running and to identify quick and inexpensive energy efficiency solutions, like reducing the run-time for a compressed air system at its Trenton, Michican plant.

  9. RWE Metering GmbH | Open Energy Information

    Open Energy Info (EERE)

    GmbH Jump to: navigation, search Name: RWE Metering GmbH Place: Germany Product: Smart metering subsidiary of Germany's second largest utility RWE AG. References: RWE Metering...

  10. How to Read Residential Electric and Natural Gas Meters | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How to Read Residential Electric and Natural Gas Meters How to Read Residential Electric and Natural Gas Meters An electromechanical electric meter on the side of a house. | Photo...

  11. Working With Your Utility to Obtain Metering Services

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers the government metering requirement, the U.S. Department of Defense (DoD) metering directive, and customer metering services available from utilities.

  12. High resolution time interval meter

    DOE Patents [OSTI]

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radon Measurements to Help Scientists Estimate Carbon Dioxide Exchange Bookmark and Share Researchers installed a continuous 222Rn monitor at the base of the 60-meter tower at the SGP Central Facility. A sampling tube connected to the tower supplies air to the container, where the radon is measured. In November, ARM scientists and researchers from the National Oceanic and Atmospheric Administration's Climate Monitoring and Diagnostics Laboratory began a collaborative field campaign at the

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31, 2010 [Facility News] Instruments on Mt. Pico to Supplement Measurements from Graciosa Island Bookmark and Share At an elevation of about 2225 meters-usually above the marine boundary layer-the Pico Observatory is able to measure properties in the atmosphere transported from North America and Europe. Located high on Mount Pico in the Azores, the University of the Azores, the University of Colorado, and Michigan Technological University operate an instrumented observation station, the Pico

  15. Insights from Smart Meters: Identifying Specific Actions, Behaviors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insights from Smart Meters: Identifying Specific Actions, Behaviors, and Characteristics That Drive Savings in Behavior-Based Programs In this report, we use smart meter data to ...

  16. Metering Best Practices: A Guide to Achieving Utility Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Guide describes information ...

  17. Smart Meters Help Balance Energy Consumption at Solar Decathlon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Meters Help Balance Energy Consumption at Solar Decathlon Smart Meters Help Balance Energy Consumption at Solar Decathlon September 28, 2011 - 10:57am Addthis The Team...

  18. Metering Best Practices: A Guide to Achieving Utility Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Guide describes information...

  19. CBEI: Virtual Refrigerant Charge Sensing and Load Metering -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review Presenter: James Braun, Purdue ...

  20. Demand Response and Smart Metering Policy Actions Since the Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the ...

  1. Liquid metal Flow Meter - Final Report

    SciTech Connect (OSTI)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  2. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",251619,232888,233270,230916,221262,139874,58993,27057 "Residential",217995,204000,206539,204690,195920,124976,51007,24817 "Commercial",32890,28129,26000,25582,24807,14408,7529,2220 "Industrial",734,759,731,644,535,490,457,20 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",25553,12272,3766,3408,3213,3106,2753,4

  3. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",118318,116714,114296,113252,405728,56702,110087,20750 "Residential",106626,105342,103234,102397,364709,52679,106326,20361 "Commercial",11496,11207,10828,10619,40773,3989,3637,389 "Industrial",196,165,234,236,246,34,124,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",307168,307904,297247,297308,100,72000,48603,0

  4. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",183892,177493,168685,163567,142759,151004,146779,88220 "Residential",160763,155125,147140,142398,122329,133724,128395,82814 "Commercial",22512,21730,20916,20529,19850,17042,17904,5401 "Industrial",617,638,629,640,580,238,480,5 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",576309,548969,542009,536130,353867,225474,49380,0

  5. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",756473,744438,722583,713567,710239,697696,559054,139256 "Residential",655474,646196,624355,620170,615649,612354,495955,124347 "Commercial",99632,97104,97466,93000,92968,85137,62661,14851 "Industrial",1356,1134,762,397,1622,205,438,58 "Transportation",11,4,0,0,0,0,0,0 "AMI meters",161963,150555,143163,128116,121751,74120,48847,14946

  6. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",399663,371841,357579,344263,342766,331557,283997,203389 "Residential",371003,344167,330690,318544,316995,309010,267588,192187 "Commercial",25678,24657,24380,24208,24551,21202,14922,9945 "Industrial",2982,3017,2509,1511,1220,1345,1487,1257 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",400098,396398,220128,40063,34087,12021,3597,2

  7. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",319494,611045,877019,903093,889901,875440,845154,725634 "Residential",281386,549148,799807,823936,815476,804226,782901,659322 "Commercial",37868,61658,76998,78818,74100,71203,62242,66226 "Industrial",238,239,214,339,325,11,11,0 "Transportation",2,0,0,0,0,0,0,86 "AMI meters",1608027,1159371,498806,912,896,1034,810,0

  8. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",236654,273118,136678,116456,144254,103645,91623,24243 "Residential",197928,237034,117623,101376,130228,90425,80463,20942 "Commercial",37012,32633,16705,12952,12658,11393,10084,2156 "Industrial",1714,3451,2350,2128,1368,1827,1076,1145 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",445502,363360,274884,153279,48308,9465,1610,0

  9. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",467870,520018,495676,489407,482732,481682,397693,347611 "Residential",405276,448313,430824,429479,423471,417166,345119,304959 "Commercial",58023,67155,61129,57161,56837,62129,51022,41698 "Industrial",4539,4550,3723,2767,2424,2387,1552,954 "Transportation",32,0,0,0,0,0,0,0 "AMI meters",80864,18851,18830,17593,11991,6459,3532,212

  10. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",243727,214695,229210,220279,228503,244759,216434,112719 "Residential",217140,192195,206606,198130,207663,226923,209009,110488 "Commercial",25863,21811,21656,21246,19675,16998,7022,2000 "Industrial",724,689,948,903,1165,838,403,231 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",83802,108505,80808,72506,46139,24384,6215,0

  11. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",281284,274775,171896,165282,181060,149553,123861,41003 "Residential",229712,225851,141249,139162,154904,129384,111817,37069 "Commercial",44264,42282,26052,22916,23171,18971,11124,3873 "Industrial",7308,6642,4595,3204,2985,1198,920,61 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",100537,85007,72431,64037,42676,25380,11406,14500

  12. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",160541,162490,163750,181907,193350,89054,66943,33995 "Residential",138247,140673,143049,159847,171557,79340,60552,31632 "Commercial",20871,20385,19257,20260,19532,8695,5801,2011 "Industrial",1423,1432,1444,1800,2261,1019,590,352 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",160557,152199,127805,102671,95155,22793,16820,0

  13. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",709716,730599,309569,320041,45373,43870,43861,46240 "Residential",613484,643429,276292,285239,41482,41208,41115,40438 "Commercial",95689,85467,32375,34115,3830,2629,2711,5802 "Industrial",543,1703,902,687,61,33,35,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",1184894,1094256,515971,336940,0,0,0,0

  14. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",969524,947887,931692,903266,912616,851283,791097,374299 "Residential",880637,861955,849405,821766,814440,772961,722710,361979 "Commercial",84742,81853,78179,77565,92519,77666,67851,12272 "Industrial",4145,4079,4100,3935,5657,656,536,48 "Transportation",0,0,8,0,0,0,0,0 "AMI meters",46185,44150,22480,35163,17080,12860,2485,1

  15. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",513140,520857,464502,473117,474077,436376,438764,448444 "Residential",431517,439830,394660,399243,402817,387552,389596,381604 "Commercial",78717,78280,67228,70415,67890,47130,47431,66840 "Industrial",2906,2747,2614,3459,3370,1694,1737,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",6792,116,81,0,0,95,0,0

  16. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",228950,225895,210204,206764,147885,175769,139584,26178 "Residential",183907,181206,166730,162523,114344,141179,114795,24873 "Commercial",37536,37340,36283,37200,27897,29852,20219,1204 "Industrial",7507,7349,7176,7041,5644,4738,4570,101 "Transportation",0,0,15,0,0,0,0,0 "AMI meters",85136,84587,79675,77029,72260,10442,8609,0

  17. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    Facilities Production Facilities Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for the irradiation of experiments with high-intensity gamma ray sources. The main features

  18. Societal Benefits of smart metering investments

    SciTech Connect (OSTI)

    Neenan, Bernard; Hemphill, Ross C.

    2008-10-15

    Implementing smart metering involves complex interactions that may generate many new sources of benefits. It is a potentially powerful enabler, one with considerable - but still speculative - potential that is highly dependent on how the technology is utilized by utilities and supported by their regulators. (author)

  19. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers National Solar Thermal Test Facility HomeTag:National Solar Thermal Test Facility Molten Nitrate Salt Initial Flow Testing is a ...

  20. Determining initial enrichment, burnup, and cooling time of pressurized-water reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Favalli, Andrea; Vo, D.; Grogan, Brandon R.; Jansson, Peter; Liljenfeldt, Henrik; Mozin, Vladimir; Schwalbach, P.; Sjoland, A.; Tobin, Stephen J.; Trellue, Holly; et al

    2016-02-26

    The purpose of the Next Generation Safeguards Initiative (NGSI)–Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuelmore » assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/137Cs, 134Cs/137Cs, 106Ru/137Cs, and 144Ce/137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity’s behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. Furthermore, the results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.« less

  1. National Nanotechnology Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Nanotechnology Initiative (NNI) Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Nanomaterials ES&H Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC)

  2. Initiatives | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS Support Center Center for Computational Excellence Coordinating Panel for Advanced Detectors Publications News & Events Upcoming Events Press Releases Feature Stories In the News Videos Downloads About HEP at Work Career Opportunities Staff Directory About HEP at Work Career Opportunities Staff Directory Argonne National Laboratory High Energy Physics Research Facilities Capabilities Initiatives Publications News & Events Initiatives ATLAS Support Center Center for Computational

  3. Development of the prototype Munitions Case Moisture Meter, Model ORNL-1

    SciTech Connect (OSTI)

    Agouridis, D.C.; Gayle, T.M.; Griest, W.H.

    1993-02-24

    There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental results on empty cccs in laboratory conditions demonstrate satisfactory performance of the instrument. Additional work is needed to bring the prototype to its optimum usefulness and accuracy for field measurements. This includes: Calibration of the meter scale with full-up munitions; Data and evaluation procedures to adjust the performance of the meter for different environmental conditions such as temperature and humidity; and Studies of the dielectric properties of moist ccc materials, as a function of frequency and temperature, are needed for adjustment of the meter for optimal performance.

  4. Development of the prototype Munitions Case Moisture Meter, Model ORNL-1. Final report

    SciTech Connect (OSTI)

    Agouridis, D.C.; Gayle, T.M.; Griest, W.H.

    1993-02-24

    There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental results on empty cccs in laboratory conditions demonstrate satisfactory performance of the instrument. Additional work is needed to bring the prototype to its optimum usefulness and accuracy for field measurements. This includes: Calibration of the meter scale with full-up munitions; Data and evaluation procedures to adjust the performance of the meter for different environmental conditions such as temperature and humidity; and Studies of the dielectric properties of moist ccc materials, as a function of frequency and temperature, are needed for adjustment of the meter for optimal performance.

  5. ARM - SGP Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  6. ARM - SGP Intermediate Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermediate Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  7. ARM - SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  8. New Technologies Bring New Opportunities for Meter Reader | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technologies Bring New Opportunities for Meter Reader New Technologies Bring New Opportunities for Meter Reader September 22, 2011 - 2:03pm Addthis Brian Andrews is a former meter reader who now works with smart meter and intelligent grid projects. | Image courtesy of CenterPoint Energy. Brian Andrews is a former meter reader who now works with smart meter and intelligent grid projects. | Image courtesy of CenterPoint Energy. Liisa O'Neill Liisa O'Neill Former New Media Specialist,

  9. Fuel cell membrane hydration and fluid metering

    DOE Patents [OSTI]

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  10. Fuel cell membrane hydration and fluid metering

    DOE Patents [OSTI]

    Jones, Daniel O.; Walsh, Michael M.

    2003-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  11. SOLVENT DISPERSION AND FLOW METER CALCULATION RESULTS

    SciTech Connect (OSTI)

    Nash, C.; Fondeur, F.; Peters, T.

    2013-06-21

    Savannah River National Laboratory (SRNL) found that the dispersion numbers for the six combinations of CSSX:Next Generation Solvent (NGS) “blend” and pure NGS versus salt solution, caustic wash, and strip aqueous solutions are all good. The dispersion numbers are indications of processability with centrifugal contactors. A comparison of solvent physical and thermal properties shows that the Intek™ solvent flow meter in the plant has a reading biased high versus calibrated flow when NGS is used, versus the standard CSSX solvent. The flow meter, calibrated for CSSX solvent, is predicted to read 2.8 gpm of NGS in a case where the true flow of NGS is 2.16 gpm.

  12. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",480329,471388,470428,467346,457508,458475,451138,450668 "Residential",468728,461380,461788,460721,409497,407884,406169,400631 "Commercial",11601,10008,8640,6625,47728,50591,44969,50037 "Industrial",0,0,0,0,283,0,0,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",247,211,211,205,0,0,0,0 "Residential",0,0,0,0,0,0,0,0

  13. Periodic review enhances LPG metering performance

    SciTech Connect (OSTI)

    Van Orsdol, F.G.

    1988-01-25

    Because of the loss of experienced personnel throughout the industry, the author says one must start over teaching the basics of liquid measurement. Warren Petroleum Co., a division of Chevron U.S.A. Inc., has developed a checklist review method for its metering systems, complete with enough explanation to allow the reviewer to understand why each item is important. Simultaneously, it continues with more in-depth and theoretical training in training course. This article describes the review process.

  14. Coriolis Meters for Hydrogen Dispensing Measurement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coriolis Meters for Hydrogen Dispensing Measurement John Daly NA Lead Flow Specialist GE Measurement and Control Solutions Flow Technologies at GE MS Clamp-on Ultrasonic * Install on existing pipes * Low over cost of ownership * Focused on liquid but also for gas Wetted Ultrasonic * Higher accuracy * Difficult applications * Very low operational costs * Strong performance for liquid and gas Coriolis * Direct mass measurement * High accuracy over wide range * Liquid and Gas * Pipes up to 12"

  15. Advanced Metering Plan for Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings

    SciTech Connect (OSTI)

    Pope, Jason E.; Olson, Norman J.; Berman, Marc J.; Schielke, Dale R.

    2011-08-17

    This updated Advanced Metering Plan for monitoring whole building energy use in Pacific Northwest National Laboratory (PNNL) EMS4 buildings on the PNNL campus has been prepared in accordance with the requirements of the Energy Policy Act of 2005 (EPAct 2005), Section 103, U.S. Department of Energy (DOE) Order 430.2B, and Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Federal Energy Management Program, October 2007 (Sullivan et al. 2007). The initial PNNL plan was developed in July 2007 (Olson 2007), updated in September 2008 (Olson et al. 2008), updated in September 2009 (Olson et al. 2009), and updated again in August 2010 (Olson et al. 2010).

  16. ARM - NSA Atqasuk Facility-Inactive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atqasuk Facility-Inactive NSA Related Links Virtual Tour Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA Fact Sheet Images Information for Guest Scientists Contacts NSA Atqasuk Facility-Inactive Location: 70° 28' 19.11" N, 157° 24' 28.99" W Altitude: 20 meters The Atqasuk facility, which was part of the larger ARM Climate Research Facility (ARM) North Slope of Alaska site, was

  17. Genesis of a three-phase subsea metering system. [Oil and gas metering systems for subsea operations

    SciTech Connect (OSTI)

    Dowty, E.L.; Hatton, G.J.; Durrett, M.G. ); Dean, T.L.; Jiskoot, R.J.J.

    1993-08-01

    Periodic well flow testing is necessary to monitor well and reservoir performance over time to optimize decisions on well production rates and new well requirements through improved reservoir models, to determine the timing of well workovers, and to identify when wells become uneconomical to produce. A dedicated test separator' conventionally is used to meter individual wells. Fluids from a well are separated into the three component phases (oil, gas, and water) in a large vessel, and the flow rate of each phase is measured on the respective outlet lines from the vessel. The same method currently is used for subsea satellite developments by providing a dedicated test pipeline' from the subsea field to carry a selected well's production to a test separator for metering on the host platform. The capital cost of these systems rises rapidly with distance. Greater distances between the wellhead and flow test system increase the cost of the test pipeline and require larger and hence more expensive slug catchers and risers. Clearly, a subsea-based well-test system could result in large capital cost savings by eliminating the need for conventional test systems. This paper tracks the development of one subsea well test system from conception to field testing on the Tartan. A platform in the North Sea. This work defines the design requirements of the system, reviews system development and fabrication, describes modifications made as a result of initial field tests, and reports the results of topside tests completed through Dec. 1990.

  18. SCE&G - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of net metering programs offered by the IOUs. South Carolina Electric & Gas (SCE&G) designed two net-metering options for its South Carolina customers. These options are...

  19. The Need for Essential Consumer Protections: Smart Metering Proposals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metering Proposals and the Move to Time-Based Pricing The Need for Essential Consumer Protections: Smart Metering Proposals and the Move to Time-Based Pricing There is a widespread ...

  20. Stick-on Electricity Meter - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Stick-on Electricity Meter Lawrence Berkeley National ... J., Lanzisera, S. "COTS-based stick-on electricity meters for building submetering," IEEE ...

  1. How to Read Your Electric Meter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Your Electric Meter How to Read Your Electric Meter The difference between one month's reading and the next is the amount of energy units that have been used for that billing...

  2. Meter and Relay Craftsman - Journeyman | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meter and Relay Craftsman - Journeyman Meter and Relay Craftsman - Journeyman Submitted by admin on Sun, 2016-06-26 00:15 Job Summary Organization Name Department Of Energy Agency ...

  3. Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    extremely receptive to expanding the use of the sub-meter data to drive decision making. ... Amp meter used at a Trenton, Michigan, plant to gather data on electrical usage. Courtesy ...

  4. The Intersection of Net Metering and Retail Choice: An Overview...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Intersection of Net Metering and Retail Choice: An Overview of Policy, Practice and Issues The Intersection of Net Metering and Retail Choice: An Overview of Policy, Practice and ...

  5. Data Center Metering and Power Usage Effectiveness | Department...

    Office of Environmental Management (EM)

    Data Center Metering and Power Usage Effectiveness Data Center Metering and Power Usage Effectiveness July 28, 2016 2:00PM to 3:00PM EDT Webinar will cover material from the Data ...

  6. How to Read Residential Electric and Natural Gas Meters | Department...

    Office of Environmental Management (EM)

    How to Read Residential Electric and Natural Gas Meters How to Read Residential Electric ... You can read your own meters to help monitor your electric or gas energy use. During the ...

  7. Facilities and Centers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Initiatives Facilities Initiatives The Headquarters Office of Administration, Office of Logistics and Facility Operations, has several energy saving initiatives in place or in progress at their Headquarters' facilities in the Forrestal Building in Washington, DC, and Germantown Maryland. Many of these initiatives are part of their Energy Savings Performance Contract (ESPC). ESPCs allow Federal agencies to accomplish energy savings projects without up-front capital costs and without

  8. Overcoming Net Metering and Interconnection Objections: New Jersey MSR Partnership

    SciTech Connect (OSTI)

    Not Available

    2005-09-01

    This fact sheet explains how the New Jersey MSR Partnership successfully revised net metering rules to make solar installations easier.

  9. Aggregate Net Metering Opportunities for Local Governments | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Aggregate Net Metering Opportunities for Local Governments Aggregate Net Metering Opportunities for Local Governments This guide summarizes the variations in state laws that determine whether or not meter aggregation is an option for local governments, explores the unique opportunities that it can extend to public-sector photovoltaic projects, and describes the important details that must be considered when promoting or pursuing such a policy. Aggregate net metering is the practice of

  10. Coriolis Meters for Hydrogen Dispensing Measurement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coriolis Meters for Hydrogen Dispensing Measurement Coriolis Meters for Hydrogen Dispensing Measurement This presentation by John Daly of GE Measurement and Control Solutions was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013. csd_workshop_14_daly.pdf (572.19 KB) More Documents & Publications 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report Report on RFI DE-FOA-000753: High-Accuracy Hydrogen Meters Metering Best

  11. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  12. Wheelabrator Sherman Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Sherman Energy Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Sherman Energy Facility Biomass Facility Facility Wheelabrator Sherman Energy Facility Sector...

  13. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",332650,329079,1582760,137399,1546233,1175077,110675,105694 "Residential",286796,281898,1381543,121843,1352435,1029039,98707,92194 "Commercial",45661,46368,195291,15383,188053,142132,11957,11999 "Industrial",193,813,5926,173,5745,3906,11,1501 "Transportation",0,0,0,0,0,0,0,0 "AMI

  14. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",248444,230418,261023,262683,318606,300790,239851,109188 "Residential",222458,205920,231422,236070,287123,272669,223219,105408 "Commercial",23607,22594,22467,19931,24091,21425,11089,3772 "Industrial",2379,1904,7134,6682,7392,6696,5543,8 "Transportation",0,0,0,0,0,0,0,0 "AMI

  15. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",465753,380098,339368,314854,246497,666915,500476,354452 "Residential",421384,342033,307265,287712,225362,631062,480824,351548 "Commercial",43384,26918,23326,21051,17703,35711,19592,2898 "Industrial",985,11147,8777,6091,3432,142,60,6 "Transportation",0,0,0,0,0,0,0,0 "AMI

  16. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",868579,827670,580957,431858,1696965,345864,238634,181180 "Residential",736745,699209,481305,319842,1520278,278976,221857,167236 "Commercial",118539,115318,90939,97104,164498,57736,15597,12701 "Industrial",13222,13070,8699,14912,12189,9152,1178,1241 "Transportation",73,73,14,0,0,0,2,2 "AMI

  17. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1719454,1643794,1552727,1622740,1636242,1495425,1410712,231119 "Residential",1561074,1491944,1425970,1502253,1517327,1387937,1306346,206747 "Commercial",152693,146263,121673,115391,115899,106007,102596,23667 "Industrial",5687,5587,5084,5096,3016,1481,1770,705 "Transportation",0,0,0,0,0,0,0,0 "AMI

  18. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1453004,1469876,1481357,1496432,1536716,1530906,1534171,1478640 "Residential",1307338,1324280,1334604,1350835,1393474,1391016,1394732,1343996 "Commercial",140814,141213,142227,141092,138781,138239,137617,132856 "Industrial",4852,4383,4526,4505,4461,1651,1822,1788 "Transportation",0,0,0,0,0,0,0,0 "AMI

  19. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",3474452,3395748,3755977,3637527,3231398,3216922,2579337,2416630 "Residential",3208228,3139468,3455396,3325863,3024574,2953200,2378958,2351242 "Commercial",265169,254631,298694,308099,204383,262736,199331,64901 "Industrial",1054,1649,1886,3565,1893,986,1047,487 "Transportation",1,0,1,0,548,0,1,0 "AMI

  20. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",470136,627008,613969,521331,487830,435276,317642,295425 "Residential",407551,556807,552232,467749,440914,393533,292233,269843 "Commercial",60005,68008,59406,51774,44378,39314,23245,24111 "Industrial",2580,2193,2331,1808,2538,2429,2164,1471 "Transportation",0,0,0,0,0,0,0,0 "AMI

  1. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1018377,997408,973664,998081,1002378,973505,851285,549055 "Residential",905665,888394,869121,894434,902092,872418,773309,493378 "Commercial",109744,105317,101051,100648,97601,98067,75669,54444 "Industrial",2710,3382,3492,2999,2685,3018,2305,1227 "Transportation",258,315,0,0,0,2,2,6 "AMI

  2. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1199243,1251574,1284613,1095102,1059678,1038172,951160,382580 "Residential",1070706,1115322,1167245,990346,965867,947409,868170,371539 "Commercial",123315,131027,113006,102278,91550,88929,81696,10751 "Industrial",4728,4729,4362,2478,2261,1834,1294,290 "Transportation",494,496,0,0,0,0,0,0 "AMI

  3. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",135823,349836,335293,320708,400083,308859,300734,53919 "Residential",115628,303782,289091,276856,343492,264664,260503,41763 "Commercial",18934,44125,41789,39968,52910,41425,38520,10237 "Industrial",1261,1929,4413,3884,3681,2770,1711,1919 "Transportation",0,0,0,0,0,0,0,0 "AMI

  4. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",520625,532871,607590,548321,495475,529171,526410,445146 "Residential",459091,465927,534181,484008,439680,479635,480572,422463 "Commercial",60064,65386,71883,62353,54453,48318,44688,22493 "Industrial",1470,1558,1526,1960,1342,1218,1150,190 "Transportation",0,0,0,0,0,0,0,0 "AMI

  5. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2869249,2815732,2753089,2717020,2634758,2605159,2389547,2327751 "Residential",2618243,2579059,2527224,2500177,2325333,2300444,2103743,2072453 "Commercial",245237,234458,224070,215022,306584,303458,284904,253942 "Industrial",5746,2215,1795,1821,2841,1257,900,1356 "Transportation",23,0,0,0,0,0,0,0 "AMI

  6. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",354444,337976,324455,314211,359361,333902,272851,189606 "Residential",306626,292051,283561,272718,318011,299426,246630,174020 "Commercial",46331,44463,41134,40083,38141,32779,24761,14476 "Industrial",1487,1462,1390,1410,3209,1697,1460,1110 "Transportation",0,0,0,0,0,0,0,0 "AMI

  7. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1910556,1913337,1922706,1909106,1985873,1874104,1718448,363947 "Residential",1722688,1730915,1735168,1733724,1805096,1709999,1567837,333575 "Commercial",177021,172309,176721,165245,170062,162297,149294,29352 "Industrial",10821,10087,10817,10137,10715,1808,1317,1020 "Transportation",26,26,0,0,0,0,0,0 "AMI

  8. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",1925736,1920471,1935078,1917474,1959937,1921343,1933413,1546006 "Residential",1701539,1696195,1709394,1698061,1736715,1705866,1728577,1372572 "Commercial",216604,216779,219525,213325,217255,210496,199759,167190 "Industrial",7537,7497,6159,6088,5967,4981,5077,6243 "Transportation",56,0,0,0,0,0,0,1 "AMI

  9. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",542577,535042,523950,503996,484383,454089,399845,380008 "Residential",462384,451388,444819,430631,415589,392296,349786,333774 "Commercial",49197,69711,67398,62997,59285,52508,44771,43230 "Industrial",30996,13943,11733,10368,9509,9285,5288,3004 "Transportation",0,0,0,0,0,0,0,0 "AMI

  10. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",3467586,3052524,2515127,2328801,2223645,2164329,1701366,1534285 "Residential",3044860,2848664,2295268,2140229,2044476,2005137,1555371,1410652 "Commercial",421467,202417,218735,187424,178662,158992,145798,123436 "Industrial",1095,1255,1124,1148,507,199,196,196 "Transportation",164,188,0,0,0,1,1,1 "AMI