National Library of Energy BETA

Sample records for metered peak demand

  1. Demand Response and Smart Metering Policy Actions Since the Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the ...

  2. 2010 Assessment of Demand Response and Advanced Metering - Staff Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Assessment of Demand Response and Advanced Metering - Staff Report 2010 Assessment of Demand Response and Advanced Metering - Staff Report 2010 Assessment of Demand Response and Advanced Metering - Staff Report. The Federal Energy Regulatory Commission's 2010 Demand Response and Advanced Metering Survey (2010 FERC Survey, covering calendar year 2009) indicates that advanced metering penetration (i.e., the fraction of all installed meters that are advanced meters) reached

  3. Insights from Smart Meters: The Potential for Peak Hour Savings...

    Energy Savers [EERE]

    Technical Report Technical Report Appendix More Documents & Publications Insights from Smart Meters: Identifying Specific Actions, Behaviors, and Characteristics That Drive Savings ...

  4. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2015-01-01

    This study investigates how economically motivated customers will use energy storage for demand charge reduction, as well as how this changes in the presence of on-site photovoltaic power generation, to investigate the possible effects of incentivizing increased quantities of behind-the-meter storage. It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand. While profitable to the customer, such action is unlikely to adequately benefit the utility as may be desired, thus highlighting the need for modified utility rate structures or properly structured incentives.

  5. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant challenges from severe weather, hot summers, and about 2% annual load growth. To better control costs and manage electric reliability under these conditions, OG&E is pursuing demand response strategies made possible by implementation of smart grid technologies, tools, and techniques from

  6. Demand Response and Smart Metering Policy Actions Since the Energy Policy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act of 2005: A Summary for State Officials | Department of Energy Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials This report represents a review of policy developments on demand response and other related areas such as smart meters and smart grid. It has been prepared by the Demand Response Coordinating

  7. ,"Table 3A.1. January Monthly Peak Hour Demand, by North American...

    U.S. Energy Information Administration (EIA) Indexed Site

    A.1. January Monthly Peak Hour Demand, by North American Electric Reliability Corporation ... February Monthly Peak Hour Demand, by North American Electric Reliability Corporation ...

  8. ,"Table 3B.1. FRCC Monthly Peak Hour Demand, by North American...

    U.S. Energy Information Administration (EIA) Indexed Site

    B.1. FRCC Monthly Peak Hour Demand, by North American Electric Reliability Corporation ... 3B.2. NPCC Monthly Peak Hour Demand, by North American Electric Reliability Corporation ...

  9. Insights from Smart Meters: The Potential for Peak Hour Savings from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Behavior-Based Programs | Department of Energy The Potential for Peak Hour Savings from Behavior-Based Programs Insights from Smart Meters: The Potential for Peak Hour Savings from Behavior-Based Programs This report focuses on one example of the value that analysis of this data can provide: insights into whether BB efficiency programs have the potential to provide peak-hour energy savings. This is important because there is increasing interest in using BB programs as a stand-alone peak

  10. Demand Reductions from the Application of Advanced Metering Infrastruc...

    Broader source: Energy.gov (indexed) [DOE]

    ... objectives: (1) reducing electricity consumption during peak periods and (2) reducing ... Toward this end, the projects are working with DOE-OE and Lawrence Berkeley National ...

  11. Insights from Smart Meters: The Potential for Peak-Hour Savings from Behavior-Based Programs

    SciTech Connect (OSTI)

    Todd, Annika; Perry, Michael; Smith, Brian; Sullivan, Michael; Cappers, Peter; Goldman, Charles

    2014-03-25

    The rollout of smart meters in the last several years has opened up new forms of previously unavailable energy data. Many utilities are now able in real-time to capture granular, household level interval usage data at very high-frequency levels for a large proportion of their residential and small commercial customer population. This can be linked to other time and locationspecific information, providing vast, constantly growing streams of rich data (sometimes referred to by the recently popular buzz word, “big data”). Within the energy industry there is increasing interest in tapping into the opportunities that these data can provide. What can we do with all of these data? The richness and granularity of these data enable many types of creative and cutting-edge analytics. Technically sophisticated and rigorous statistical techniques can be used to pull interesting insights out of this highfrequency, human-focused data. We at LBNL are calling this “behavior analytics”. This kind of analytics has the potential to provide tremendous value to a wide range of energy programs. For example, highly disaggregated and heterogeneous information about actual energy use would allow energy efficiency (EE) and/or demand response (DR) program implementers to target specific programs to specific households; would enable evaluation, measurement and verification (EM&V) of energy efficiency programs to be performed on a much shorter time horizon than was previously possible; and would provide better insights in to the energy and peak hour savings associated with specifics types of EE and DR programs (e.g., behavior-based (BB) programs). In this series, “Insights from Smart Meters”, we will present concrete, illustrative examples of the type of value that insights from behavior analytics of these data can provide (as well as pointing out its limitations). We will supply several types of key findings, including: • Novel results, which answer questions the industry

  12. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available on a first-come, first-served basis until the cumulative generating capacity of net-metered systems equals 0.5% of a utility’s peak demand during 1996.* At least one-half...

  13. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Broader source: Energy.gov (indexed) [DOE]

    To better control costs and manage electric reliability under these conditions, OG&E is pursuing demand response strategies made possible by implementation of smart grid ...

  14. Evidence is growing on demand side of an oil peak

    SciTech Connect (OSTI)

    2009-07-15

    After years of continued growth, the number of miles driven by Americans started falling in December 2007. Not only are the number of miles driven falling, but as cars become more fuel efficient, they go further on fewer gallons - further reducing demand for gasoline. This trend is expected to accelerate. Drivers include, along with higher-efficiency cars, mass transit, reversal in urban sprawl, biofuels, and plug-in hybrid vehicles.

  15. Building America Top Innovations 2012: High-Performance with Solar Electric Reduced Peak Demand

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America solar home research that has demonstrated the ability to reduce peak demand by 75%. Numerous field studies have monitored power production and system effectiveness.

  16. How are flat demand charges based on the highest peak over the...

    Open Energy Info (EERE)

    How are flat demand charges based on the highest peak over the past 12 months designated in the database (LADWP does this) Home > Groups > Utility Rate Submitted by Marcroper on 11...

  17. Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California

    SciTech Connect (OSTI)

    Yin, Rongxin; Kiliccote, Sila; Piette, Mary Ann; Parrish, Kristen

    2010-05-14

    This paper reports on the potential impact of demand response (DR) strategies in commercial buildings in California based on the Demand Response Quick Assessment Tool (DRQAT), which uses EnergyPlus simulation prototypes for office and retail buildings. The study describes the potential impact of building size, thermal mass, climate, and DR strategies on demand savings in commercial buildings. Sensitivity analyses are performed to evaluate how these factors influence the demand shift and shed during the peak period. The whole-building peak demand of a commercial building with high thermal mass in a hot climate zone can be reduced by 30percent using an optimized demand response strategy. Results are summarized for various simulation scenarios designed to help owners and managers understand the potential savings for demand response deployment. Simulated demand savings under various scenarios were compared to field-measured data in numerous climate zones, allowing calibration of the prototype models. The simulation results are compared to the peak demand data from the Commercial End-Use Survey for commercial buildings in California. On the economic side, a set of electricity rates are used to evaluate the impact of the DR strategies on economic savings for different thermal mass and climate conditions. Our comparison of recent simulation to field test results provides an understanding of the DR potential in commercial buildings.

  18. Meters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and RP-1 Agreement and Guide For Use and Utilization of the RadEye B20-ER Survey Meters The Rad Eye B20-ER is a pancake GM detector capable of measuring low levels of Alpha, Beta, and Gamma radiation. User authorization under this agreement is for use of the RadEye B20-ER radiation survey instrument for Process Knowledge surveys and user informational purposes only. These instruments cannot be used for official surveys. An RP-1 RCT must be contacted for official surveys or item release surveys.

  19. Modeling of GE Appliances in GridLAB-D: Peak Demand Reduction

    SciTech Connect (OSTI)

    Fuller, Jason C.; Vyakaranam, Bharat GNVSR; Prakash Kumar, Nirupama; Leistritz, Sean M.; Parker, Graham B.

    2012-04-29

    The widespread adoption of demand response enabled appliances and thermostats can result in significant reduction to peak electrical demand and provide potential grid stabilization benefits. GE has developed a line of appliances that will have the capability of offering several levels of demand reduction actions based on information from the utility grid, often in the form of price. However due to a number of factors, including the number of demand response enabled appliances available at any given time, the reduction of diversity factor due to the synchronizing control signal, and the percentage of consumers who may override the utility signal, it can be difficult to predict the aggregate response of a large number of residences. The effects of these behaviors can be modeled and simulated in open-source software, GridLAB-D, including evaluation of appliance controls, improvement to current algorithms, and development of aggregate control methodologies. This report is the first in a series of three reports describing the potential of GE's demand response enabled appliances to provide benefits to the utility grid. The first report will describe the modeling methodology used to represent the GE appliances in the GridLAB-D simulation environment and the estimated potential for peak demand reduction at various deployment levels. The second and third reports will explore the potential of aggregated group actions to positively impact grid stability, including frequency and voltage regulation and spinning reserves, and the impacts on distribution feeder voltage regulation, including mitigation of fluctuations caused by high penetration of photovoltaic distributed generation and the effects on volt-var control schemes.

  20. Reducing Residential Peak Electricity Demand with Mechanical Pre-Cooling of Building Thermal Mass

    SciTech Connect (OSTI)

    Turner, Will; Walker, Iain; Roux, Jordan

    2014-08-01

    This study uses an advanced airflow, energy and humidity modelling tool to evaluate the potential for residential mechanical pre-cooling of building thermal mass to shift electricity loads away from the peak electricity demand period. The focus of this study is residential buildings with low thermal mass, such as timber-frame houses typical to the US. Simulations were performed for homes in 12 US DOE climate zones. The results show that the effectiveness of mechanical pre-cooling is highly dependent on climate zone and the selected pre-cooling strategy. The expected energy trade-off between cooling peak energy savings and increased off-peak energy use is also shown.

  1. Impacts of Climate Change on Energy Consumption and Peak Demand in Buildings: A Detailed Regional Approach

    SciTech Connect (OSTI)

    Dirks, James A.; Gorrissen, Willy J.; Hathaway, John E.; Skorski, Daniel C.; Scott, Michael J.; Pulsipher, Trenton C.; Huang, Maoyi; Liu, Ying; Rice, Jennie S.

    2015-01-01

    This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, and end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability to

  2. AVTA: EVSE Charging Protocol for On and Off-Peak Demand

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is a description of development of a charge protocol to take advantage of off and on-peak demand economics at facilities, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  3. OG&E Uses Time-Based Rate Program to Reduce Peak Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 OG&E Uses Time-Based Rate Program to Reduce Peak Demand As part of its Smart Grid Investment Grant (SGIG) project for the U.S. Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE), Oklahoma Gas and Electric Company (OG&E) has successfully tested over a two-year period a new time-based rate, which provided about 4,670 participating customers with pric es that varied daily in order to induce a change in their patterns of electricity consumption and a

  4. High-Performance with Solar Electric Reduced Peak Demand: Premier Homes Rancho Cordoba, CA- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes Building America solar home research that has demonstrated the ability to reduce peak demand by 75%. Numerous field studies have monitored power production and system effectiveness.

  5. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Form EIA-411, ""Coordinated Bulk Power Supply and Demand Program Report.""" " ","Form EIA-411 for 2008" ,"Released: February 2010" ,"Next Update: October 2010" ,"Table 3d. ...

  6. The development of a charge protocol to take advantage of off- and on-peak demand economics at facilities

    SciTech Connect (OSTI)

    Jeffrey Wishart

    2012-02-01

    This document reports the work performed under Task 1.2.1.1: 'The development of a charge protocol to take advantage of off- and on-peak demand economics at facilities'. The work involved in this task included understanding the experimental results of the other tasks of SOW-5799 in order to take advantage of the economics of electricity pricing differences between on- and off-peak hours and the demonstrated charging and facility energy demand profiles. To undertake this task and to demonstrate the feasibility of plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) bi-directional electricity exchange potential, BEA has subcontracted Electric Transportation Applications (now known as ECOtality North America and hereafter ECOtality NA) to use the data from the demand and energy study to focus on reducing the electrical power demand of the charging facility. The use of delayed charging as well as vehicle-to-grid (V2G) and vehicle-to-building (V2B) operations were to be considered.

  7. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    SciTech Connect (OSTI)

    DeForest, Nicholas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

    2013-06-02

    In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity demand. In the developing world a steadily increasing utilization of air-conditioning places additional strain on already-congested grids. This common thread represents a large and growing threat to the reliable delivery of electricity around the world, requiring capital-intensive expansion of capacity and draining available investment resources. Thermal energy storage (TES), in the form of ice or chilled water, may be one of the few technologies currently capable of mitigating this problem cost effectively and at scale. The installation of TES capacity allows a building to meet its on-peak air conditioning load without interruption using electricity purchased off-peak and operating with improved thermodynamic efficiency. In this way, TES has the potential to fundamentally alter consumption dynamics and reduce impacts of air conditioning. This investigation presents a simulation study of a large office building in four distinct geographical contexts: Miami, Lisbon, Shanghai, and Mumbai. The optimization tool DER-CAM (Distributed Energy Resources Customer Adoption Model) is applied to optimally size TES systems for each location. Summer load profiles are investigated to assess the effectiveness and consistency in reducing peak electricity demand. Additionally, annual energy requirements are used to determine system cost feasibility, payback periods and customer savings under local utility tariffs.

  8. Cost-effective retrofit technology for reducing peak power demand in small and medium commercial buildings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nutaro, James J.; Fugate, David L.; Kuruganti, Teja; Sanyal, Jibonananda; Starke, Michael R.

    2015-05-27

    We describe a cost-effective retrofit technology that uses collective control of multiple rooftop air conditioning units to reduce the peak power consumption of small and medium commercial buildings. The proposed control uses a model of the building and air conditioning units to select an operating schedule for the air conditioning units that maintains a temperature set point subject to a constraint on the number of units that may operate simultaneously. A prototype of this new control system was built and deployed in a large gymnasium to coordinate four rooftop air conditioning units. Based on data collected while operating this prototype,more » we estimate that the cost savings achieved by reducing peak power consumption is sufficient to repay the cost of the prototype within a year.« less

  9. Cost-effective retrofit technology for reducing peak power demand in small and medium commercial buildings

    SciTech Connect (OSTI)

    Nutaro, James J.; Fugate, David L.; Kuruganti, Teja; Sanyal, Jibonananda; Starke, Michael R.

    2015-05-27

    We describe a cost-effective retrofit technology that uses collective control of multiple rooftop air conditioning units to reduce the peak power consumption of small and medium commercial buildings. The proposed control uses a model of the building and air conditioning units to select an operating schedule for the air conditioning units that maintains a temperature set point subject to a constraint on the number of units that may operate simultaneously. A prototype of this new control system was built and deployed in a large gymnasium to coordinate four rooftop air conditioning units. Based on data collected while operating this prototype, we estimate that the cost savings achieved by reducing peak power consumption is sufficient to repay the cost of the prototype within a year.

  10. Chapter 10, Peak Demand and Time-Differentiated Energy Savings Cross-Cutting Protocols: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Peak Demand and Time-Differentiated Energy Savings Cross-Cutting Protocols Frank Stern, Navigant Consulting Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 10 - 1 Chapter 10 - Table of Contents 1 Introduction .............................................................................................................................2 2 Purpose of Peak Demand and Time-differentiated Energy

  11. Program Design Analysis using BEopt Building Energy Optimization Software: Defining a Technology Pathway Leading to New Homes with Zero Peak Cooling Demand; Preprint

    SciTech Connect (OSTI)

    Anderson, R.; Christensen, C.; Horowitz, S.

    2006-08-01

    An optimization method based on the evaluation of a broad range of different combinations of specific energy efficiency and renewable-energy options is used to determine the least-cost pathway to the development of new homes with zero peak cooling demand. The optimization approach conducts a sequential search of a large number of possible option combinations and uses the most cost-effective alternatives to generate a least-cost curve to achieve home-performance levels ranging from a Title 24-compliant home to a home that uses zero net source energy on an annual basis. By evaluating peak cooling load reductions on the least-cost curve, it is then possible to determine the most cost-effective combination of energy efficiency and renewable-energy options that both maximize annual energy savings and minimize peak-cooling demand.

  12. monthly_peak_2005.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    3a . January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, 2005 and Projected 2006 through 2010 (Megawatts and 2005 Base Year) Projected Monthly Base Year Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid FRCC MRO NPCC RFC SERC SPP ERCOT WECC Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak

  13. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, " ,"2005 and Projected 2006 through 2010 " ,"(Megawatts and 2005 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  14. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    SciTech Connect (OSTI)

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    2013-05-01

    Buildings consume more than one third of the world?s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small

  15. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    6" ,"Released: February 7, 2008" ,"Next Update: October 2008" ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Megawatts and 2006 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  16. Net Metering

    Broader source: Energy.gov [DOE]

    Note: Illinois is currently undergoing a rulemaking that would change its existing net metering rules. The proposed rules include provisions clarifying virtual net metering policies, facilitating...

  17. Net Metering

    Broader source: Energy.gov [DOE]

    Kansas adopted the Net Metering and Easy Connection Act in May 2009, which established net metering for customers of investor-owned utilities (IOUs). 

  18. Net Metering

    Broader source: Energy.gov [DOE]

    Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas, hydropower, fu...

  19. monthly_peak_2006.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Released: February 7, 2008 Next Update: October 2008 Table 3a . January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region 2006 and Projected 2007 through 2011 (Megawatts and 2006 Base Year) Projected Monthly Base Year Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid FRCC MRO NPCC RFC SERC SPP ERCOT WECC Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW) Peak

  20. Net Metering

    Broader source: Energy.gov [DOE]

    New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives) to offer net metering at non-...

  1. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to all customers of investor-owned utilities and rural electric cooperatives, exempting TVA utilities. Kentucky's requires the use of a single, bi-directional meter for...

  2. Net Metering

    Broader source: Energy.gov [DOE]

    NOTE: On October 21, 2015, the NY Public Service Commission denied the Orange and Rockland Utility’s petition to cease offering net-metering and interconnections once the 6% net-metering cap was...

  3. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    NOTE: Although, this post is categorized as netmetering, the policy adopted by MS does not meet DSIRE's standards for a typical net metering policy. Net metering policy allows a customer to offset...

  4. Plugging meter

    DOE Patents [OSTI]

    Nagai, Akinori

    1979-01-01

    A plugging meter for automatically measuring the impurity concentration in a liquid metal is designed to have parallel passages including a cooling passage provided with a plugging orifice and with a flow meter, and a by-pass passage connected in series to a main passage having another flow meter, so that the plugging points may be obtained from the outputs of both flow meters. The plugging meter has a program signal generator, a flow-rate ratio setter and a comparator, and is adapted to change the temperature of the plugging orifice in accordance with a predetermined pattern or gradient, by means of a signal representative of the temperature of plugging orifice and a flow-rate ratio signal obtained from the outputs of both flow meters. This plugging meter affords an automatic and accurate measurement of a multi-plugging phenomenon taking place at the plugging orifice.

  5. Net Metering

    Broader source: Energy.gov [DOE]

    Missouri enacted legislation in June 2007 requiring all electric utilities—investor-owned utilities, municipal utilities, and electric cooperatives—to offer net metering to customers with systems...

  6. Net Metering Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Net Metering Resources Net Metering Resources State net metering policies allow customers to produce onsite electricity and sell excess generation to the utility at a set price, which creates an incentive for private investment in distributed renewable energy technologies by providing value to the electricity generation that, during certain times of day or season, exceeds the customer's electricity demand. Find net metering resources below. DOE Resource Net Metering Policy Development in

  7. Net Metering

    Broader source: Energy.gov [DOE]

    Note: The California Public Utilities Commission (CPUC) issued a decision in April 2016 establishing rules for net metering PV systems paired with storage devices 10 kW or smaller. See below for...

  8. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering in Virginia is available on a first-come, first-served basis until the rated generating capacity owned and operated by customer-generators reaches 1% of an electric distribution...

  9. Net Metering

    Broader source: Energy.gov [DOE]

    With these regulations, renewable energy systems with a capacity up to 25 kilowatts (kW) are eligible for net metering. Overall enrollment is limited to 1.5% of a utility's retail sales from the...

  10. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    NOTE: On February 2016, the PA Public Service Commission (PUC) issued a final rulemaking order amending net metering regulations to provide clarity and to comply with the statutes. Changes include...

  11. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Net metering is available to all "qualifying facilities" (QFs), as defined by the federal Public Utility Regulatory Policies Act of 1978 (PURPA), which pertains to renewable energy systems and co...

  12. Net Metering

    Broader source: Energy.gov [DOE]

    There is no stated limit on the aggregate capacity of net-metered systems in a utility's service territory. Any net excess generation (NEG) during a monthly billing period is carried over to the...

  13. Net Metering

    Broader source: Energy.gov [DOE]

    Iowa's statutes do not explicitly authorize the Iowa Utilities Board (IUB) to mandate net metering, but this authority is implicit through the board's enforcement of PURPA and Iowa Code § 476.41 ...

  14. Net Metering

    Broader source: Energy.gov [DOE]

    Nevada's original net-metering law for renewable-energy systems was enacted in 1997 and amended in 2001, 2003, 2005, 2007, 2011, 2013, and 2015. Systems up to one megawatt (MW) in capacity that...

  15. Net Metering

    Broader source: Energy.gov [DOE]

    In Delaware, net metering is available to any customer that generates electricity using solar, wind or hydro resources, anaerobic digesters, or fuel cells capable of being powered by renewable fu...

  16. Net Metering

    Broader source: Energy.gov [DOE]

    Note: On October 12th, 2015 the Hawaii PUC voted to end net metering in favor of 3 alternative options: a grid supply option, a self-supply option, and a time of use tariff. Customers with net...

  17. Net Metering

    Broader source: Energy.gov [DOE]

    Net excess generation (NEG) is credited to the customer's next monthly bill. The customer may choose to start the net metering period at the beginning of January, April, July or October to match...

  18. Net Metering

    Broader source: Energy.gov [DOE]

    In April 2001, Arkansas enacted legislation (HB 2325) directing the Arkansas Public Service Commission (PSC) to establish net-metering rules for certain renewable-energy systems.* The PSC approved...

  19. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    North Dakota's net metering policy, adopted in 1991 by the state Public Service Commission (PSC), applies to renewable energy systems and combined heat and power (CHP) systems up to 100 kilowatts...

  20. Net Metering

    Broader source: Energy.gov [DOE]

    In October 2008, Michigan enacted P.A. 295, requiring the Michigan Public Service Commission (MPSC) to establish a statewide net metering program for renewable energy systems. On May 26, 2009 the...

  1. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

     NOTE: The program website listed above links to the Maryland Public Service Commission's Net Metering Working Group page, which contains a variety of information resources related to the ongoing...

  2. Net Metering

    Broader source: Energy.gov [DOE]

    Utah law requires their only investor-owned utility, Rocky Mountain Power (RMP), and most electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wi...

  3. Saturation meter

    DOE Patents [OSTI]

    Gregurech, S.

    1984-08-01

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  4. monthly_peak_2003.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    O Form EIA-411 for 2005 Released: February 7, 2008 Next Update: October 2007 Table 3a . January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, 1996 through 2003 and Projected 2004 through 2005 (Megawatts and 2003 Base Year) Projected Monthly Base Year Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid ECAR FRCC MAAC MAIN MAPP/MR NPCC SERC SPP ERCOT WECC Peak Hour Demand (MW) Peak Hour Demand (MW) Peak Hour Demand (MW)

  5. Palau- Net Metering

    Broader source: Energy.gov [DOE]

    The Palau Net Metering Act of 2009 established net metering on the Island of Palau. Net metering was implemented in order to:

  6. Peak power ratio generator

    DOE Patents [OSTI]

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  7. Peak power ratio generator

    DOE Patents [OSTI]

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  8. China's coal market: is peak demand insight?

    U.S. Energy Information Administration (EIA) Indexed Site

    a slight recovery by 2020. * Coal-fired generation will continue to be squeezed by non-fossil generation resources. * Renewable, nuclear, and gas plant additions will remain ...

  9. Long Island Smart Metering Pilot Project

    SciTech Connect (OSTI)

    2012-03-30

    The Long Island Power Authority (LIPA) Smart Meter Pilots provided invaluable information and experience for future deployments of Advanced Metering Infrastructure (AMI), including the deployment planned as part of LIPA’s Smart Grid Demonstration Project (DE-OE0000220). LIPA will incorporate lessons learned from this pilot in future deployments, including lessons relating to equipment performance specifications and testing, as well as equipment deployment and tracking issues. LIPA ultimately deployed three AMI technologies instead of the two that were originally contemplated. This enabled LIPA to evaluate multiple systems in field conditions with a relatively small number of meter installations. LIPA experienced a number of equipment and software issues that it did not anticipate, including issues relating to equipment integration, ability to upgrade firmware and software “over the air” (as opposed to physically interacting with every meter), and logistical challenges associated with tracking inventory and upgrade status of deployed meters. In addition to evaluating the technology, LIPA also piloted new Time-of-Use (TOU) rates to assess customer acceptance of time-differentiated pricing and to evaluate whether customers would respond by adjusting their activities from peak to non-peak periods. LIPA developed a marketing program to educate customers who received AMI in the pilot areas and to seek voluntary participation in TOU pricing. LIPA also guaranteed participating customers that, for their initial year on the rates, their electricity costs under the TOU rate would not exceed the amount they would have paid under the flat rates they would otherwise enjoy. 62 residential customers chose to participate in the TOU rates, and every one of them saved money during the first year. 61 of them also elected to stay on the TOU rate – without the cost guarantee – at the end of that year. The customer who chose not to continue on the rate was also

  10. Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2013-10-01

    Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

  11. Is revenue metering feasible

    SciTech Connect (OSTI)

    Taylor, N.R.

    1985-02-01

    Revenue metering for thermal systems has been in use for more than 100 years. There is an infinite variety of meters based on flow principles, but very limited choice of steam condensate meters. Progress is being made in the application of computer technology to thermal metering. Btu meters are showing substantial progress as the U.S. market increases. There is a lack of traceable standards, application guidelines and approved materials. Strongly needed are educational programs designed for the thermal metering technician. Costs of thermal measurements is, in general, out of balance with other utility type service meters.

  12. Optimization Based Data Mining Approah for Forecasting Real-Time Energy Demand

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Li, Xueping; Zhou, Shengchao

    2015-01-01

    The worldwide concern over environmental degradation, increasing pressure on electric utility companies to meet peak energy demand, and the requirement to avoid purchasing power from the real-time energy market are motivating the utility companies to explore new approaches for forecasting energy demand. Until now, most approaches for forecasting energy demand rely on monthly electrical consumption data. The emergence of smart meters data is changing the data space for electric utility companies, and creating opportunities for utility companies to collect and analyze energy consumption data at a much finer temporal resolution of at least 15-minutes interval. While the data granularity provided by smart meters is important, there are still other challenges in forecasting energy demand; these challenges include lack of information about appliances usage and occupants behavior. Consequently, in this paper, we develop an optimization based data mining approach for forecasting real-time energy demand using smart meters data. The objective of our approach is to develop a robust estimation of energy demand without access to these other building and behavior data. Specifically, the forecasting problem is formulated as a quadratic programming problem and solved using the so-called support vector machine (SVM) technique in an online setting. The parameters of the SVM technique are optimized using simulated annealing approach. The proposed approach is applied to hourly smart meters data for several residential customers over several days.

  13. LADWP- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    LADWP allows its customers to net meter their photovoltaic (PV), wind, and hybrid systems with a capacity of not more than one megawatt. LADWP will provide the necessary metering equipment unless...

  14. Utility Metering- AGL Resources

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—discusses AGL Resources metering, including interruptible rate customers, large users, and meeting federal metering goals.

  15. Demand Response | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in

  16. Campo Net Meter Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Campo Net Meter Project Michael Connolly Miskwish, MA Economist/Engineer Campo Kumeyaay Nation Location map Tribal Energy Planning  Current 50 MW project  Proposed 160 MW project  DOE energy grant  Land use planning, renewable energy zones overlay  Economic analysis  Transmission, queue, PPA  Energy Resource Agreement analysis  Tribal Net meter turbine planning California SGIP program  Self Generation Incentive Program  Requires utilities to allow net metering

  17. SRP- Net Metering

    Broader source: Energy.gov [DOE]

    Note: Salt River Project (SRP) modified its existing net-metering program for residential customers in February 2015. These changes are effective with the April 2015 billing cycle.

  18. Chilled Water Thermal Storage System and Demand Response at the University of California at Merced

    SciTech Connect (OSTI)

    Granderson, Jessica; Dudley, Junqiao Han; Kiliccote, Sila; Piette, Mary Ann

    2009-10-08

    The University of California at Merced is a unique campus that has benefited from intensive efforts to maximize energy efficiency, and has participated in a demand response program for the past two years. Campus demand response evaluations are often difficult because of the complexities introduced by central heating and cooling, non-coincident and diverse building loads, and existence of a single electrical meter for the entire campus. At the University of California at Merced, a two million gallon chilled water storage system is charged daily during off-peak price periods and used to flatten the load profile during peak demand periods. This makes demand response more subtle and challenges typical evaluation protocols. The goal of this research is to study demand response savings in the presence of storage systems in a campus setting. First, University of California at Merced summer electric loads are characterized; second, its participation in two demand response events is detailed. In each event a set of strategies were pre-programmed into the campus control system to enable semi-automated response. Finally, demand savings results are applied to the utility's DR incentives structure to calculate the financial savings under various DR programs and tariffs. A key conclusion to this research is that there is significant demand reduction using a zone temperature set point change event with the full off peak storage cooling in use.

  19. DC attenuation meter

    DOE Patents [OSTI]

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  20. Demand Reduction

    Broader source: Energy.gov [DOE]

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  1. AMI Communication Requirements to Implement Demand-Response: Applicability of Hybrid Spread Spectrum Wireless

    SciTech Connect (OSTI)

    Hadley, Mark D.; Clements, Samuel L.; Carroll, Thomas E.

    2011-09-30

    While holistically defining the smart grid is a challenge, one area of interest is demand-response. In 2009, the Department of Energy announced over $4 billion in grant and project funding for the Smart Grid. A significant amount of this funding was allotted to utilities for cost sharing projects to deploy Smart Grid technologies, many of whom have deployed and are deploying advanced metering infrastructure (AMI). AMI is an enabler to increase the efficiency of utilities and the bulk power grid. The bulk electrical system is unique in that it produces electricity as it is consumed. Most other industries have a delay between generation and consumption. This aspect of the power grid means that there must be enough generation capacity to meet the highest demand whereas other industries could over produce during off-peak times. This requires significant investment in generation capacity to cover the few days a year of peak consumption. Since bulk electrical storage doesn't yet exist at scale another way to curb the need for new peak period generation is through demand-response; that is to incentivize consumers (demand) to curtail (respond) electrical usage during peak periods. Of the various methods proposed for enabling demand-response, this paper will focus on the communication requirements for creating an energy market using transactional controls. More specifically, the paper will focus on the communication requirements needed to send the peak period notices and receive the response back from the consumers.

  2. EWEB- Net Metering

    Broader source: Energy.gov [DOE]

    The Eugene Water and Electric Board (EWEB) offers net metering for customers with renewable energy generation systems with an installed capacity of 25 kW or less. Eligible systems use solar power,...

  3. Idaho Power- Net Metering

    Broader source: Energy.gov [DOE]

    In July 2013, the PUC issued an order in response to Idaho Power's application to modify its net metering program. The ruling removed a previously existing service capacity cap of 2.9 MW and chan...

  4. Guam- Net Metering

    Broader source: Energy.gov [DOE]

    Note: As of October 2015, the net metering program had around 700 customers. According to the Guam Daily Post, the program is expected to reach the current 1,000-customer cap in mid-2016. This cap...

  5. Austin Energy- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Austin Energy, the municipal utility of Austin Texas, offers net metering to its non-residential retail electricity customers for renewable energy systems up to 20 kilowatts (kW). Austin Energy o...

  6. Lesson Plan: Power Metering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Metering Project Grades: 9-12 Topic: Energy Basics Owner: ACTS This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency and...

  7. DIGITAL Q METER

    DOE Patents [OSTI]

    Briscoe, W.L.

    1962-02-13

    A digital Q meter is described for measuring the Q of mechanical or electrical devices. The meter comprises in combination a transducer coupled to an input amplifier, and an upper and lower level discriminator coupled to the amplifier and having their outputs coupled to an anticoincidence gate. The output of the gate is connected to a scaler. The lower level discriminator is adjusted to a threshold level of 36.8 percent of the operating threshold level of the upper level discriminator. (AEC)

  8. Advanced Metering Infrastructure

    SciTech Connect (OSTI)

    2007-10-15

    The report provides an overview of the development of Advanced Metering Infrastructure (AMI). Metering has historically served as the cash register for the utility industry. It measured the amount of energy used and supported the billing of customers for that usage. However, utilities are starting to look at meters in a whole different way, viewing them as the point of contact with customers in supporting a number of operational imperatives. The combination of smart meters and advanced communications has opened up a variety of methods for utilities to reduce operating costs while offering new services to customers. A concise look is given at what's driving interest in AMI, the components of AMI, and the creation of a business case for AMI. Topics covered include: an overview of AMI including the history of metering and development of smart meters; a description of the key technologies involved in AMI; a description of key government initiatives to support AMI; an evaluation of the current market position of AMI; an analysis of business case development for AMI; and, profiles of 21 key AMI vendors.

  9. PSEG Long Island- Net Metering

    Broader source: Energy.gov [DOE]

    Although PSEG Long Island’s net metering policy is not governed by the State’s net metering law, the provisions are similar to the State law. Net metering is available for residential, non-reside...

  10. Net Metering | Open Energy Information

    Open Energy Info (EERE)

    Gas Wind Biomass Geothermal Electric Anaerobic Digestion Small Hydroelectric Tidal Energy Wave Energy No Ashland Electric - Net Metering (Oregon) Net Metering Oregon Commercial...

  11. Fisher Controls introduces Snug Meter to gas industry

    SciTech Connect (OSTI)

    Share, J.

    1996-04-01

    Spurred by an industry demanding a sleeker look that will appeal to consumers, Fisher Controls International inc., has introduced a compact natural gas meter that not only is considerably smaller than existing models, but also incorporates features that company officials feel may set new standards. Termed the Snug meter, the four-chamber device is particularly designed for multi-dwelling buildings and is also the initial foray of Fisher--a recognized leader in North America for pressure-control and regulation equipment--into the meter industry. This paper reviews the design features of this new meter.

  12. Schlumberger Electricity Metering | Open Energy Information

    Open Energy Info (EERE)

    Electricity Metering Jump to: navigation, search Name: Schlumberger Electricity Metering Place: Oconee, South Carolina Product: Manufacturer of electricity meters. Coordinates:...

  13. Neutron dose equivalent meter

    DOE Patents [OSTI]

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  14. Electric Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Metering Electric Metering Saving Money by Saving Energy The Department of Energy has installed meters in the James Forrestal Building that will enable DOE to measure electricity use and costs in its headquarters facility. You may explore this data further by visiting our Forrestal Metering Dashboard at the following website: http://forrestal.nrel.gov The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power

  15. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  16. Meters Roads N Streams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Meters Roads N Streams o Openwells E3i APT Site *. TES Plants (1) E2J Other Set-Asides lEI Hydric Soils . 370 o 370 Soils Soil Series and Phase DBaB DBaC .Pk .TrB DTrC DTrD .TuE...

  17. Desert Peak EGS Project

    Broader source: Energy.gov [DOE]

    Desert Peak EGS Project presentation at the April 2013 peer review meeting held in Denver, Colorado.

  18. Flow metering valve

    DOE Patents [OSTI]

    Blaedel, Kenneth L.

    1985-01-01

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  19. Flow metering valve

    DOE Patents [OSTI]

    Blaedel, K.L.

    1983-11-03

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  20. Period meter for reactors

    DOE Patents [OSTI]

    Rusch, Gordon K.

    1976-01-06

    An improved log N amplifier type nuclear reactor period meter with reduced probability for noise-induced scrams is provided. With the reactor at low power levels a sampling circuit is provided to determine the reactor period by measuring the finite change in the amplitude of the log N amplifier output signal for a predetermined time period, while at high power levels, differentiation of the log N amplifier output signal provides an additional measure of the reactor period.

  1. Demand Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee ...

  2. Montana Electric Cooperatives- Net Metering

    Broader source: Energy.gov [DOE]

    The Montana Electric Cooperatives' Association (MECA) adopted model interconnection guidelines in 2001 and a revised net-metering policy in September 2008. Net metering is available in whole or...

  3. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    commercial) as long as the base requirements are met. All net-metered facilities must be behind a customer's meter, but only a minimal amount of load located on-site is required....

  4. N. Mariana Islands- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: The Commonwealth Utility Corporation issued a moratorium on net metering. However, Public Law 18-62 signed September 6, 2014 states that net metering should be available to all residential...

  5. Washington City Power- Net Metering

    Broader source: Energy.gov [DOE]

    Washington City adopted a net-metering program, including interconnection procedures, in January 2008, and updated the policy in December 2014.* Net metering is available to any customer of...

  6. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the limit on individual system size from 100 kilowatts (kW) to 1 MW . Net Excess Generation: The District's net-metering rules specify that metering equipment must be capable...

  7. Demand Response Performance and Communication Strategy: AHRI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Demand Response Performance and Communication Strategy: AHRI and CEE DOE Building Technologies Office Conference NREL, Golden, Colorado, May 1, 2014 | 2 A Growing Crisis: Peak ...

  8. Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Guidance defines which federal buildings are appropriate to meter, provides metering prioritization ...

  9. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  10. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  11. High-Performance with Solar Electric Reduced Peak Demand: Premier...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Builder Business Case: CaliforniaFlorida Production Builders - Building America Top Innovation Building America Top Innovations 2013 Profile - Zero Energy-Ready Single-Family ...

  12. Bandwidth Historical Peak Days

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bandwidth Historical Peak Days Bandwidth Historical Peak Days These plots show yearly peak days from 2000 to the present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for current year shows the data for the year-to-date peak. Transfer Rate vs. Size Transfer Rate vs. Size Transfer Rate vs. Size Transfer Rate vs. Size Transfer Rate vs. Size Transfer Rate vs. Size Transfer Rate vs. Size Transfer Rate vs. Size Transfer

  13. GAS METERING PUMP

    DOE Patents [OSTI]

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  14. Microwave fluid flow meter

    DOE Patents [OSTI]

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  15. The alchemy of demand response: turning demand into supply

    SciTech Connect (OSTI)

    Rochlin, Cliff

    2009-11-15

    Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

  16. Metering Technology Corporation | Open Energy Information

    Open Energy Info (EERE)

    Technology Corporation Jump to: navigation, search Name: Metering Technology Corporation Place: Scotts Valley, California Product: Engineering related to communicating meters....

  17. Federal Building Metering Implementation Plan Template | Department...

    Office of Environmental Management (EM)

    Implementation Plan Template Federal Building Metering Implementation Plan Template Document provides a template for a federal building metering implementation plan....

  18. Prioritizing Building Water Meter Applications | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Water Efficiency Prioritizing Building Water Meter Applications Prioritizing Building Water Meter Applications Executive Order 13693: Planning for Federal ...

  19. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    after 12312014) are eligible. Net-metered systems must be intended primarily to offset part or all of a customer's electricity requirements. Public utilities may not limit...

  20. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Anaerobic Digestion Fuel Cells using Renewable Fuels Program Info Sector Name State State North Carolina Program Type Net Metering Summary The North Carolina Utilities Commission...

  1. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of retail renewable distributed generation and net metering. Details will be posted once a final order is issued. Eligibility and Availability In December 2005 the Colorado...

  2. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    who generate electricity using solar, wind, hydroelectric, geothermal, biomass, biogas, combined heat and power, or fuel cell technologies.* A net metering facility must be...

  3. Wavelength meter having elliptical wedge

    DOE Patents [OSTI]

    Hackel, Richard P.; Feldman, Mark

    1992-01-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10.sup.8. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing.

  4. Wavelength meter having elliptical wedge

    DOE Patents [OSTI]

    Hackel, R.P.; Feldman, M.

    1992-12-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10[sup 8]. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing. 7 figs.

  5. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  6. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "AMR meters",46829659,47321320,48330822,45965762,48685043 "Residential",41830781,42491242,43455437,41451888,43913225 "Commercial",4781167,4632744,4691018,4341105,4611877 "Industrial",216459,196132,185862,172692,159315 "Transportation",1252,1202,125,77,626 "AMI meters",58545938,53341422,43165183,37290373,20334525

  7. Advanced Metering Infrastructure Security Considerations | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Metering Infrastructure Security Considerations Advanced Metering Infrastructure Security Considerations The purpose of this report is to provide utilities implementing Advanced Metering Infrastructure (AMI) with the knowledge necessary to secure that implementation appropriately. We intend that utilities use this report to guide their planning, procurement, roll-out, and assessment of the security of Advanced Metering Infrastructure. Advanced Metering Infrastructure Security

  8. LNG production for peak shaving operations

    SciTech Connect (OSTI)

    Price, B.C.

    1999-07-01

    LNG production facilities are being developed as an alternative or in addition to underground storage throughout the US to provide gas supply during peak gas demand periods. These facilities typically involved a small liquefaction unit with a large LNG storage tank and gas sendout facilities capable of responding to peak loads during the winter. Black and Veatch is active in the development of LNG peak shaving projects for clients using a patented mixed refrigerant technology for efficient production of LNG at a low installed cost. The mixed refrigerant technology has been applied in a range of project sizes both with gas turbine and electric motor driven compression systems. This paper will cover peak shaving concepts as well as specific designs and projects which have been completed to meet this market need.

  9. Valley Electric Association- Net Metering

    Broader source: Energy.gov [DOE]

    The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

  10. Blue Ridge EMC- Net Metering

    Broader source: Energy.gov [DOE]

    The Blue Ridge Electric Membership Corporation offers net metering to its residential customers with solar photovoltaic, wind, or micro-hydro generators up to 25 kilowatts. There is no aggregate...

  11. Advanced Sub-Metering Program

    Broader source: Energy.gov [DOE]

    The program is designed to provide information about energy usage for each residences at a multi-residential buildings. Residences living in multi-residential buildings that are not sub-metered d...

  12. Grays Harbor PUD- Net Metering

    Broader source: Energy.gov [DOE]

    Washington's original net-metering law, which applies to all electric utilities, was enacted in 1998 and amended in 2006. Individual systems are limited to 100 kilowatts (kW) in capacity. Net...

  13. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable energy facilities established on military property for on-site military consumption may net meter for systems up to 2.2 megawatts (MW, AC). Aggregate Capacity Limit...

  14. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  15. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  16. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  17. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  18. Healthcare Energy Metering Guidance (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This brochure is intended to help facility and energy managers plan and prioritize investments in energy metering. It offers healthcare-specific examples of metering applications, benefits, and steps that other health systems can reproduce. It reflects collaborative input from the U.S. Department of Energy national laboratories and the health system members of the DOE Hospital Energy Alliance's Benchmarking and Measurement Project Team.

  19. Electric Meters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity & Fuel » Appliances & Electronics » Electric Meters Electric Meters The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. The basic unit of measure of electric power is the Watt. One

  20. PEAK READING VOLTMETER

    DOE Patents [OSTI]

    Dyer, A.L.

    1958-07-29

    An improvement in peak reading voltmeters is described, which provides for storing an electrical charge representative of the magnitude of a transient voltage pulse and thereafter measuring the stored charge, drawing oniy negligible energy from the storage element. The incoming voltage is rectified and stored in a condenser. The voltage of the capacitor is applied across a piezoelectric crystal between two parallel plates. Amy change in the voltage of the capacitor is reflected in a change in the dielectric constant of the crystal and the capacitance between a second pair of plates affixed to the crystal is altered. The latter capacitor forms part of the frequency determlning circuit of an oscillator and means is provided for indicating the frequency deviation which is a measure of the peak voltage applied to the voltmeter.

  1. PEAK LIMITING AMPLIFIER

    DOE Patents [OSTI]

    Goldsworthy, W.W.; Robinson, J.B.

    1959-03-31

    A peak voltage amplitude limiting system adapted for use with a cascade type amplifier is described. In its detailed aspects, the invention includes an amplifier having at least a first triode tube and a second triode tube, the cathode of the second tube being connected to the anode of the first tube. A peak limiter triode tube has its control grid coupled to thc anode of the second tube and its anode connected to the cathode of the second tube. The operation of the limiter is controlled by a bias voltage source connected to the control grid of the limiter tube and the output of the system is taken from the anode of the second tube.

  2. Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use) | Department of Energy Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy. Download the Federal Building Metering

  3. Insert metering plates for gas turbine nozzles

    DOE Patents [OSTI]

    Burdgick, Steven S.; Itzel, Gary; Chopra, Sanjay; Abuaf, Nesim; Correia, Victor H.

    2004-05-11

    The invention comprises a metering plate which is assembled to an impingement insert for use in the nozzle of a gas turbine. The metering plate can have one or more metering holes and is used to balance the cooling flow within the nozzle. A metering plate with multiple holes reduces static pressure variations which result from the cooling airflow through the metering plate. The metering plate can be assembled to the insert before or after the insert is inserted into the nozzle.

  4. Promising Technology: Demand Control Ventilation

    Broader source: Energy.gov [DOE]

    Demand control ventilation (DCV) measures carbon dioxide concentrations in return air or other strategies to measure occupancy, and accurately matches the ventilation requirement. This system reduces ventilation when spaces are vacant or at lower than peak occupancy. When ventilation is reduced, energy savings are accrued because it is not necessary to heat, cool, or dehumidify as much outside air.

  5. Providing Reliability Services through Demand Response: A Prelimnary Evaluation of the Demand Response Capabilities of Alcoa Inc.

    SciTech Connect (OSTI)

    Starke, Michael R; Kirby, Brendan J; Kueck, John D; Todd, Duane; Caulfield, Michael; Helms, Brian

    2009-02-01

    Demand response is the largest underutilized reliability resource in North America. Historic demand response programs have focused on reducing overall electricity consumption (increasing efficiency) and shaving peaks but have not typically been used for immediate reliability response. Many of these programs have been successful but demand response remains a limited resource. The Federal Energy Regulatory Commission (FERC) report, 'Assessment of Demand Response and Advanced Metering' (FERC 2006) found that only five percent of customers are on some form of demand response program. Collectively they represent an estimated 37,000 MW of response potential. These programs reduce overall energy consumption, lower green house gas emissions by allowing fossil fuel generators to operate at increased efficiency and reduce stress on the power system during periods of peak loading. As the country continues to restructure energy markets with sophisticated marginal cost models that attempt to minimize total energy costs, the ability of demand response to create meaningful shifts in the supply and demand equations is critical to creating a sustainable and balanced economic response to energy issues. Restructured energy market prices are set by the cost of the next incremental unit of energy, so that as additional generation is brought into the market, the cost for the entire market increases. The benefit of demand response is that it reduces overall demand and shifts the entire market to a lower pricing level. This can be very effective in mitigating price volatility or scarcity pricing as the power system responds to changing demand schedules, loss of large generators, or loss of transmission. As a global producer of alumina, primary aluminum, and fabricated aluminum products, Alcoa Inc., has the capability to provide demand response services through its manufacturing facilities and uniquely through its aluminum smelting facilities. For a typical aluminum smelter, electric power

  6. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",33865,33662,57269,46871,44911,41201,28512,22820 "Residential",30803,32688,53083,44459,42324,38779,26141,21191 "Commercial",3062,974,4186,2412,2587,2394,2350,1629 "Industrial",0,0,0,0,0,28,21,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",29909,29489,30,758,9213,8713,8126,6571

  7. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",17894,6822,6415,5210,4499,116826,103242,101084 "Residential",15963,6455,6075,4920,3375,101823,101363,99995 "Commercial",1828,307,240,190,822,14701,1577,749 "Industrial",103,60,100,100,302,302,302,340 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",741819,739583,735415,669482,193415,0,0,0

  8. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",52528,53483,38201,81499,78292,96058,81992,63856 "Residential",43410,44206,30907,72579,69795,85984,74356,59256 "Commercial",7661,7729,5975,7473,7374,9197,7333,4305 "Industrial",1457,1548,1319,1447,1123,877,303,295 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",1213192,1125193,1021241,555414,20665,0,0,0

  9. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",40233,38125,41827,35412,43254,27018,21054,8132 "Residential",37473,35775,28906,23442,31700,15987,11031,7263 "Commercial",1873,1455,10789,10095,9635,8772,8234,621 "Industrial",868,876,2122,1866,1909,2258,1789,236 "Transportation",19,19,10,9,10,1,0,12 "AMI meters",36345,34919,11533,11610,0,0,0,0

  10. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",42342,53266,44430,84409,81030,77963,71278,58477 "Residential",37948,48343,39930,76274,73703,71100,65176,53306 "Commercial",4394,4901,4481,8121,7325,6861,6100,5169 "Industrial",0,22,19,14,2,2,2,2 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",296824,271526,343769,123,0,0,0,0 "Residential",253659,229844,294918,116,0,0,0,0

  11. LINEAR COUNT-RATE METER

    DOE Patents [OSTI]

    Henry, J.J.

    1961-09-01

    A linear count-rate meter is designed to provide a highly linear output while receiving counting rates from one cycle per second to 100,000 cycles per second. Input pulses enter a linear discriminator and then are fed to a trigger circuit which produces positive pulses of uniform width and amplitude. The trigger circuit is connected to a one-shot multivibrator. The multivibrator output pulses have a selected width. Feedback means are provided for preventing transistor saturation in the multivibrator which improves the rise and decay times of the output pulses. The multivibrator is connected to a diode-switched, constant current metering circuit. A selected constant current is switched to an averaging circuit for each pulse received, and for a time determined by the received pulse width. The average output meter current is proportional to the product of the counting rate, the constant current, and the multivibrator output pulse width.

  12. Measuring the capacity impacts of demand response

    SciTech Connect (OSTI)

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  13. Meters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HardwOOd %. EJ :1o,;"'a'" W. Monitoring wells :W o Wa"""'" :' m .y WWE:tI' s N Roads . et-Asld lidL:sndfili ;;;;>. Figure 28-1. Plant...

  14. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",2103,2188,2991,4659,35987,29770,32000,3562 "Residential",935,1046,1722,3108,32964,27174,29415,892 "Commercial",1165,1139,1266,1548,3022,2595,2584,2670 "Industrial",3,3,3,3,1,1,1,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",277998,269876,246642,29650,0,0,0,0 "Residential",252040,245295,230705,27695,0,0,0,0

  15. FERC sees huge potential for demand response

    SciTech Connect (OSTI)

    2010-04-15

    The FERC study concludes that U.S. peak demand can be reduced by as much as 188 GW -- roughly 20 percent -- under the most aggressive scenario. More moderate -- and realistic -- scenarios produce smaller but still significant reductions in peak demand. The FERC report is quick to point out that these are estimates of the potential, not projections of what could actually be achieved. The main varieties of demand response programs include interruptible tariffs, direct load control (DLC), and a number of pricing schemes.

  16. Saving Power at Peak Hours (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Piette, Mary Ann

    2011-04-28

    California needs new, responsive, demand-side energy technologies to ensure that periods of tight electricity supply on the grid don't turn into power outages. Led by Berkeley Lab's Mary Ann Piette, the California Energy Commission (through its Public Interest Energy Research Program) has established a Demand Response Research Center that addresses two motivations for adopting demand responsiveness: reducing average electricity prices and preventing future electricity crises. The research seeks to understand factors that influence "what works" in Demand Response. Piette's team is investigating the two types of demand response, load response and price response, that may influence and reduce the use of peak electric power through automated controls, peak pricing, advanced communications, and other strategies.

  17. Federal Building Metering Guidance (per 42 U.S.C. 8253(e), Metering of Energy Use)

    SciTech Connect (OSTI)

    2014-11-01

    Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy.

  18. Government Program Briefing: Smart Metering

    Broader source: Energy.gov [DOE]

    This document is adapted and updated from a memo delivered to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the U.S. Department of Energy (DOE) Project Officer in March 2008. This briefing piece provides an overview of the benefits, costs, and challenges of smart metering.

  19. Government Program Briefing: Smart Metering

    SciTech Connect (OSTI)

    Doris, E.; Peterson, K.

    2011-09-01

    This document is adapted and updated from a memo delivered to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the U.S. Department of Energy (DOE) Project Officer in March 2008. This briefing piece provides an overview of the benefits, costs, and challenges of smart metering.

  20. Aggregate Transfers Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfers Historical Yearly Peak Aggregate Transfers Historical Yearly Peak These plots show the yearly peak days from 2000 to the present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for current year shows the data for the year-to-date peak. Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate

  1. Concurrent Transfers Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfers Historical Yearly Peak Concurrent Transfers Historical Yearly Peak These plots show the yearly peak days from 2000 to present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for current year shows the data for the year-to-date peak. Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage

  2. Laser Power Meter Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2002-09-19

    Laser Power Meter integrates the digital output of a Newport 1835-C Laser Energy Meter and inserts the results into the file header of a WinSpec experimental file.

  3. Power-factor metering gains new interest

    SciTech Connect (OSTI)

    Womack, D.L.

    1980-01-01

    The combined effect of increased energy costs, advances in digital metering techniques, and regulatory pressures is stimulating utility interest in charging smaller customers the full cost of their burden on the electric system, by metering reactive power and billing for poor power factor. Oklahoma Gas and Electric Co. adopted the Q-meter method, made practical with the advent of magnetic-tape metering. Digital metering and new techniques now being developed will add more options for utilities interested in metering power factor. There are three commonly used methods of determining power factor, all of which require the use of the standard induction watthour meter, plus at least one other meter, to obtain a second value in the power triangle. In all cases, the third value, if required, is obtained by calculation.

  4. greenMeter | Open Energy Information

    Open Energy Info (EERE)

    physics engine from the gMeter app, greenMeter computes power, fuel usagecost, crude oil consumption, and carbon emission (data can be shown in US or metric units). Thanks to...

  5. Insights from Smart Meters: The Potential for Peak-Hour Savings...

    Office of Scientific and Technical Information (OSTI)

    ... Authors: Todd, Annika ; Perry, Michael ; Smith, Brian ; Sullivan, Michael ; Cappers, Peter ; Goldman, Charles Publication Date: 2014-03-25 OSTI Identifier: 1129523 Report ...

  6. Metering in Federal Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Maintenance » Metering in Federal Buildings Metering in Federal Buildings The U.S. Department of Energy is required by the Energy Policy Act of 2005 and Executive Order 13693 to establish guidelines for agencies to meter their federal buildings for energy (electricity, natural gas, and steam) and water use. To help agencies meet these metering requirements, the Federal Energy Management Program (FEMP) provides guidance materials, an implementation plan template, and a best practices

  7. DOE Releases Federal Building Metering Guidance

    Broader source: Energy.gov [DOE]

    The guidance requires federal agencies to review, revise, and submit to FEMP its metering implementation plan within one year.

  8. Application of IEEE Standard 519-1992 harmonic limits for revenue billing meters

    SciTech Connect (OSTI)

    Arseneau, R.; Heydt, G.T.; Kempker, M.J.

    1997-01-01

    This paper identifies the potential for billing inequities at harmonic generating loads due to different measuring methods implemented in revenue meters. Potential problems are almost exclusively in the commercial and industrial sectors where demand and power factor charges are common. Field data are used to illustrate that compliance with IEEE Standard 519-1992 reduces the possibility of meter reading differences thus promoting a more equitable treatment of all customers.

  9. Transfer Activity Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activity Historical Yearly Peak Transfer Activity Historical Yearly Peak The plots below show the yearly peak days from 2000 to the present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for the current year shows the data for the year-to-date peak. Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In

  10. Concurrent Transfers Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the graph for current year shows the data for the year-to-date peak. Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily...

  11. El Paso Electric - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Website http:www.epelectric.comtxbusinessrollback-net-metering-approved-in-... State Texas Program Type Net Metering Summary El Paso Electric (EPE) has offered net metering to...

  12. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  13. Demand Response | Department of Energy

    Energy Savers [EERE]

    Technology Development Smart Grid Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the ...

  14. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  15. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  16. Smart Meters on Tap for Owasso, Oklahoma

    Office of Energy Efficiency and Renewable Energy (EERE)

    Saving 10 percent of annual energy and increasing response time for electrical emergencies? Find out how smart meters can make cities smarter.

  17. BPA Metering Services Editing and Estimating Procedures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an unmetered condition An unmetered event will be identified through one of the following methods: 1) The Field Forms application (via Metering Services email), 2) An email...

  18. City of St. George- Net Metering

    Broader source: Energy.gov [DOE]

    The City of St. George Energy Services Department (SGESD) offers a net metering program to its customers, and updated program guidelines and fees in September 2015.* 

  19. Measurement and evaluation techniques for automated demand response demonstration

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann; Watson, David S.; Sezgen, Osman; ten Hope, Laurie

    2004-08-01

    The recent electricity crisis in California and elsewhere has prompted new research to evaluate demand response strategies in large facilities. This paper describes an evaluation of fully automated demand response technologies (Auto-DR) in five large facilities. Auto-DR does not involve human intervention, but is initiated at a facility through receipt of an external communications signal. This paper summarizes the measurement and evaluation of the performance of demand response technologies and strategies in five large facilities. All the sites have data trending systems such as energy management and control systems (EMCS) and/or energy information systems (EIS). Additional sub-metering was applied where necessary to evaluate the facility's demand response performance. This paper reviews the control responses during the test period, and analyzes demand savings achieved at each site. Occupant comfort issues are investigated where data are available. This paper discusses methods to estimate demand savings and results from demand response strategies at five large facilities.

  20. An Informatics Approach to Demand Response Optimization in Smart Grids

    SciTech Connect (OSTI)

    Simmhan, Yogesh; Aman, Saima; Cao, Baohua; Giakkoupis, Mike; Kumbhare, Alok; Zhou, Qunzhi; Paul, Donald; Fern, Carol; Sharma, Aditya; Prasanna, Viktor K

    2011-03-03

    Power utilities are increasingly rolling out “smart” grids with the ability to track consumer power usage in near real-time using smart meters that enable bidirectional communication. However, the true value of smart grids is unlocked only when the veritable explosion of data that will become available is ingested, processed, analyzed and translated into meaningful decisions. These include the ability to forecast electricity demand, respond to peak load events, and improve sustainable use of energy by consumers, and are made possible by energy informatics. Information and software system techniques for a smarter power grid include pattern mining and machine learning over complex events and integrated semantic information, distributed stream processing for low latency response,Cloud platforms for scalable operations and privacy policies to mitigate information leakage in an information rich environment. Such an informatics approach is being used in the DoE sponsored Los Angeles Smart Grid Demonstration Project, and the resulting software architecture will lead to an agile and adaptive Los Angeles Smart Grid.

  1. Hot Water Electric Energy Use in Single-Family Residences in the Pacific Northwest : Regional End-Use Metering Project (REMP).

    SciTech Connect (OSTI)

    Taylor, Megan E., Ritland, Keith G., Pratt, R.G.

    1991-09-01

    The Office of Energy Resources of the Bonneville Power Administration carriers out generation and conservation resource planning. The analysis of historical trends in and determinants of energy consumption is carried out by the office's End-Use Research Section. The End-Use Research Section operates a comprehensive data collection program to provide pertinent information to support demand-side conservation planning, load forecasting, and conservation program development and delivery. Part of this on-going program, commonly known as the End-Use Load and Consumer Assessment Program (ELCAP), was recently renamed the Regional End-Use Metering Project (REMP) to reflect an emphasis on metering rather than analytical activities. REMP is designed to collect electricity usage data through direct monitoring of end-use loads in buildings in the residential and commercial sectors and is conducted for Bonneville by Pacific Northwest Laboratories (Battelle). The detailed summary information in this report is on energy used for water heaters in the residential sector and is based on data collected from September 1985 through December 1990 for 336 of the 499 REMP metered homes. Specific information is provided on annual loads averaged over the years and their variation across residences. Descriptions are given of use as associated with demographic and energy-related characteristics. Summaries are also provided for electricity use by each year, month, and daytype, as well as at peak hot water load and peak system times. This is the second residential report. This report focuses on a specific end use and adds detail to the first report. Subsequent reports are planned on other individual end uses or sets of end uses. 15 refs., 29 figs., 10 tabs.

  2. summer_peak_2004.xls

    Gasoline and Diesel Fuel Update (EIA)

    2009 (Megawatts and 2004 Base Year) Summer Noncoincident Peak Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year ECAR FRCC MAAC...

  3. summer_peak_2003.xls

    Gasoline and Diesel Fuel Update (EIA)

    2008 (Megawatts and 2003 Base Year) Summer Noncoincident Peak Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year ECAR FRCC MAAC...

  4. Desert Peak Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Desert Peak Geothermal Area (Redirected from Desert Peak Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Desert Peak Geothermal Area Contents 1 Area Overview 2...

  5. Proton recoil scintillator neutron rem meter

    DOE Patents [OSTI]

    Olsher, Richard H.; Seagraves, David T.

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  6. Simplified Processing Method for Meter Data Analysis

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Colotelo, Alison H. A.; Downs, Janelle L.; Ham, Kenneth D.; Henderson, Jordan W.; Montgomery, Sadie A.; Vernon, Christopher R.; Parker, Steven A.

    2015-11-01

    Simple/Quick metered data processing method that can be used for Army Metered Data Management System (MDMS) and Logistics Innovation Agency data, but may also be useful for other large data sets. Intended for large data sets when analyst has little information about the buildings.

  7. monthly_peak_byarea_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    B.1. FRCC Monthly Peak Hour Demand, by North American Electric Reliability Corporation Assesment Area, 1996-2010 Actual, 2011-2012 Projected (Megawatts) FRCC Year January February March April May June July August September October November December 1996 39,860 41,896 32,781 28,609 32,059 33,886 35,444 34,341 34,797 30,037 29,033 34,191 1997 37,127 28,144 27,998 28,458 33,859 34,125 35,356 35,375 33,620 31,798 27,669 31,189 1998 27,122 28,116 29,032 28,008 32,879 37,153 36,576 38,730 34,650

  8. monthly_peak_bymonth_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    A.1. January Monthly Peak Hour Demand, by North American Electric Reliability Corporation Assesment Area, 1996-2010 Actual, 2011-2012 Projected (Megawatts) January NERC Regional Assesment Area 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011E 2012E FRCC 39,860 37,127 27,122 38,581 37,521 40,258 39,675 45,033 35,545 41,247 34,464 38,352 41,705 44,945 53,093 46,839 47,613 NPCC 41,680 41,208 40,009 44,199 45,227 43,553 42,039 45,987 66,215 47,041 43,661 45,002 46,803

  9. Demand Response Analysis Tool

    Energy Science and Technology Software Center (OSTI)

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be usedmore » by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.« less

  10. Demand Response Analysis Tool

    SciTech Connect (OSTI)

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be used by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.

  11. Peaking of world oil production: Impacts, mitigation, & risk management

    SciTech Connect (OSTI)

    Hirsch, R.L.; Bezdek, Roger; Wendling, Robert

    2005-02-01

    The peaking of world oil production presents the U.S. and the world with an unprecedented risk management problem. As peaking is approached, liquid fuel prices and price volatility will increase dramatically, and, without timely mitigation, the economic, social, and political costs will be unprecedented. Viable mitigation options exist on both the supply and demand sides, but to have substantial impact, they must be initiated more than a decade in advance of peaking.... The purpose of this analysis was to identify the critical issues surrounding the occurrence and mitigation of world oil production peaking. We simplified many of the complexities in an effort to provide a transparent analysis. Nevertheless, our study is neither simple nor brief. We recognize that when oil prices escalate dramatically, there will be demand and economic impacts that will alter our simplified assumptions. Consideration of those feedbacks will be a daunting task but one that should be undertaken. Our aim in this study is to-- • Summarize the difficulties of oil production forecasting; • Identify the fundamentals that show why world oil production peaking is such a unique challenge; • Show why mitigation will take a decade or more of intense effort; • Examine the potential economic effects of oil peaking; • Describe what might be accomplished under three example mitigation scenarios. • Stimulate serious discussion of the problem, suggest more definitive studies, and engender interest in timely action to mitigate its impacts.

  12. Addressing Energy Demand through Demand Response. International Experiences and Practices

    SciTech Connect (OSTI)

    Shen, Bo; Ghatikar, Girish; Ni, Chun Chun; Dudley, Junqiao; Martin, Phil; Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects “changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 1 The California Energy Commission (CEC) defines DR as “a reduction in customers’ electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.” 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  13. Peak finding using biorthogonal wavelets

    SciTech Connect (OSTI)

    Tan, C.Y.

    2000-02-01

    The authors show in this paper how they can find the peaks in the input data if the underlying signal is a sum of Lorentzians. In order to project the data into a space of Lorentzian like functions, they show explicitly the construction of scaling functions which look like Lorentzians. From this construction, they can calculate the biorthogonal filter coefficients for both the analysis and synthesis functions. They then compare their biorthogonal wavelets to the FBI (Federal Bureau of Investigations) wavelets when used for peak finding in noisy data. They will show that in this instance, their filters perform much better than the FBI wavelets.

  14. Stochastic acceleration in peaked spectrum

    SciTech Connect (OSTI)

    Zasenko, V.; Zagorodny, A.; Weiland, J.

    2005-06-15

    Diffusion in velocity space of test particles undergoing external random electric fields with spectra varying from low intensive and broad to high intensive and narrow (peaked) is considered. It is shown that to achieve consistency between simulation and prediction of the microscopic model, which is reduced to Fokker-Planck-type equation, it is necessary, in the case of peaked spectrum, to account for temporal variation of diffusion coefficient occurring in the early stage. An analytical approximation for the solution of the Fokker-Planck equation with a time and velocity dependent diffusion coefficients is proposed.

  15. winter_peak_2003.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    ) Form EIA-411 for 2005 Released: February 7, 2008 Next Update: October 2007 Table 2b . Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, 1990 through 2003 and Projected 2004 through 2008 (Megawatts and 2003 Base Year) Winter Noncoincident Peak Load Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year ECAR FRCC MAAC MAIN MAPP (U.S. NPCC (U.S.) SERC SPP ERCOT WECC (U.S.) 1990/1991 484,231 67,097

  16. winter_peak_2004.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    b . Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, 1990 through 2004 and Projected 2005 through 2009 (Megawatts and 2004 Base Year) Winter Noncoincident Peak Load Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year ECAR FRCC MAAC MAIN MAPP/MRO (U.S.) NPCC (U.S.) SERC SPP ERCOT WECC (U.S.) 1990/1991 484,231 67,097 30,800 36,551 32,461 21,113 40,545 86,648 38,949 35,815 94,252 1991/1992 485,761

  17. winter_peak_2005.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    2b . Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, 2005 and Projected 2006 through 2010 (Megawatts and 2005 Base Year) Winter Noncoincident Peak Load Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP ERCOT WECC (U.S.) 2005/2006 626,365 42,657 33,748 46,828 151,600 164,638 31,260 48,141 107,493 Contiguous U.S. Projected FRCC MRO (U.S.) NPCC (U.S.)

  18. Northwest Open Automated Demand Response Technology Demonstration Project

    SciTech Connect (OSTI)

    Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann

    2009-08-01

    Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) performed a technology demonstration and evaluation for Bonneville Power Administration (BPA) in Seattle City Light's (SCL) service territory. This report summarizes the process and results of deploying open automated demand response (OpenADR) in Seattle area with winter morning peaking commercial buildings. The field tests were designed to evaluate the feasibility of deploying fully automated demand response (DR) in four to six sites in the winter and the savings from various building systems. The project started in November of 2008 and lasted 6 months. The methodology for the study included site recruitment, control strategy development, automation system deployment and enhancements, and evaluation of sites participation in DR test events. LBNL subcontracted McKinstry and Akuacom for this project. McKinstry assisted with recruitment, site survey collection, strategy development and overall participant and control vendor management. Akuacom established a new server and enhanced its operations to allow for scheduling winter morning day-of and day-ahead events. Each site signed a Memorandum of Agreement with SCL. SCL offered each site $3,000 for agreeing to participate in the study and an additional $1,000 for each event they participated. Each facility and their control vendor worked with LBNL and McKinstry to select and implement control strategies for DR and developed their automation based on the existing Internet connectivity and building control system. Once the DR strategies were programmed, McKinstry commissioned them before actual test events. McKinstry worked with LBNL to identify control points that can be archived at each facility. For each site LBNL collected meter data and trend logs from the energy management and control system. The communication system allowed the sites to receive day-ahead as well as day-of DR test event signals. Measurement of DR was

  19. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Contract: DE-FE0004001 Demand Dispatch- ... ISO Independent System Operators LMP Locational Marginal Price MW Mega-watt MWh ... today My generator may come on and off ...

  20. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you...

  1. Residential Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in-home displays with controllable home area network capabilities and thermal storage devices for home heating. Goals and objectives: Reduce the City's NCP demand above...

  2. METHOD OF PEAK CURRENT MEASUREMENT

    DOE Patents [OSTI]

    Baker, G.E.

    1959-01-20

    The measurement and recording of peak electrical currents are described, and a method for utilizing the magnetic field of the current to erase a portion of an alternating constant frequency and amplitude signal from a magnetic mediums such as a magnetic tapes is presented. A portion of the flux from the current carrying conductor is concentrated into a magnetic path of defined area on the tape. After the current has been recorded, the tape is played back. The amplitude of the signal from the portion of the tape immediately adjacent the defined flux area and the amplitude of the signal from the portion of the tape within the area are compared with the amplitude of the signal from an unerased portion of the tape to determine the percentage of signal erasure, and thereby obtain the peak value of currents flowing in the conductor.

  3. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    New Hampshire" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",222183,69251,61857,59512,53293,50098,48310,46505 "Residential",218780,67647,60510...

  4. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity. This option is available for photovoltaic (PV), wind, hydro...

  5. Smart Meters | OpenEI Community

    Open Energy Info (EERE)

    Smart Meters Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 16 January, 2013 - 11:09 SDG&E Customers Can Connect Home Area Network Devices With Smart...

  6. meter data | OpenEI Community

    Open Energy Info (EERE)

    by Graham7781(2017) Super contributor 26 June, 2013 - 09:17 NREL's Energy Databus storing big energy data campus databus energy meter data NREL OpenEI Tool The Energy Databus began...

  7. Murray City Power- Net Metering Pilot Program

    Broader source: Energy.gov [DOE]

    Under a pilot program, Murray City Power offers net metering to customers that generate electricity using photovoltaic (PV), wind-electric or hydroelectric systems with a maximum capacity of 10...

  8. Green Pricing and Net Metering Programs 2010

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    294 2,971 650 Rhode Island 2 136 58 194 172 September 2012 U.S. Energy Information Administration | Green Pricing and Net Metering Programs 2010 6 Table 2. Estimated U.S. net ...

  9. Green Pricing and Net Metering Programs 2010

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Green Pricing and Net Metering Programs 2010 i This report was prepared by ...

  10. Green Pricing and Net Metering Programs 2010

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    30,060 27,750 Vermont 2 4,453 239 4,692 4,936 September 2012 U.S. Energy Information Administration | Green Pricing and Net Metering Programs 2010 4 Table 1. Estimated U.S. ...

  11. U.S. Virgin Islands- Net Metering

    Broader source: Energy.gov [DOE]

    In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energ...

  12. June 25 Webinar to Explore Net Metering

    Broader source: Energy.gov [DOE]

    Register for the Net Metering webinar, which will be held on Wednesday, June 25, 2014, from 11 a.m. to 12:30 p.m. Mountain time.

  13. Silver Peak Innovative Exploration Project

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Reduce the high level of risk during the early stages of geothermal project development by conducting a multi-faceted and innovative exploration and drilling program at Silver Peak. Determine the combination of techniques that are most useful and cost-effective in identifying the geothermal resource through a detailed, post-project evaluation of the exploration and drilling program.

  14. Texas Nuclear Profile - Comanche Peak

    U.S. Energy Information Administration (EIA) Indexed Site

    Comanche Peak" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,209","9,677",91.4,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  15. RWE Metering GmbH | Open Energy Information

    Open Energy Info (EERE)

    GmbH Jump to: navigation, search Name: RWE Metering GmbH Place: Germany Product: Smart metering subsidiary of Germany's second largest utility RWE AG. References: RWE Metering...

  16. How to Read Residential Electric and Natural Gas Meters | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How to Read Residential Electric and Natural Gas Meters How to Read Residential Electric and Natural Gas Meters An electromechanical electric meter on the side of a house. | Photo...

  17. Working With Your Utility to Obtain Metering Services

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers the government metering requirement, the U.S. Department of Defense (DoD) metering directive, and customer metering services available from utilities.

  18. Open Automated Demand Response for Small Commerical Buildings

    SciTech Connect (OSTI)

    Dudley, June Han; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2009-05-01

    This report characterizes small commercial buildings by market segments, systems and end-uses; develops a framework for identifying demand response (DR) enabling technologies and communication means; and reports on the design and development of a low-cost OpenADR enabling technology that delivers demand reductions as a percentage of the total predicted building peak electric demand. The results show that small offices, restaurants and retail buildings are the major contributors making up over one third of the small commercial peak demand. The majority of the small commercial buildings in California are located in southern inland areas and the central valley. Single-zone packaged units with manual and programmable thermostat controls make up the majority of heating ventilation and air conditioning (HVAC) systems for small commercial buildings with less than 200 kW peak electric demand. Fluorescent tubes with magnetic ballast and manual controls dominate this customer group's lighting systems. There are various ways, each with its pros and cons for a particular application, to communicate with these systems and three methods to enable automated DR in small commercial buildings using the Open Automated Demand Response (or OpenADR) communications infrastructure. Development of DR strategies must consider building characteristics, such as weather sensitivity and load variability, as well as system design (i.e. under-sizing, under-lighting, over-sizing, etc). Finally, field tests show that requesting demand reductions as a percentage of the total building predicted peak electric demand is feasible using the OpenADR infrastructure.

  19. Insights from Smart Meters: Identifying Specific Actions, Behaviors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insights from Smart Meters: Identifying Specific Actions, Behaviors, and Characteristics That Drive Savings in Behavior-Based Programs In this report, we use smart meter data to ...

  20. Metering Best Practices: A Guide to Achieving Utility Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Guide describes information ...

  1. Smart Meters Help Balance Energy Consumption at Solar Decathlon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Meters Help Balance Energy Consumption at Solar Decathlon Smart Meters Help Balance Energy Consumption at Solar Decathlon September 28, 2011 - 10:57am Addthis The Team...

  2. Metering Best Practices: A Guide to Achieving Utility Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Guide describes information...

  3. CBEI: Virtual Refrigerant Charge Sensing and Load Metering -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review Presenter: James Braun, Purdue ...

  4. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE)

    Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005.

  5. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency

    SciTech Connect (OSTI)

    2015-03-02

    Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005.

  6. Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings

    SciTech Connect (OSTI)

    Page, Janie; Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann; Chiu, Albert K.; Kellow, Bashar; Koch, Ed; Lipkin, Paul

    2011-07-01

    Small and medium commercial customers in California make up about 20-25% of electric peak load in California. With the roll out of smart meters to this customer group, which enable granular measurement of electricity consumption, the investor-owned utilities will offer dynamic prices as default tariffs by the end of 2011. Pacific Gas and Electric Company, which successfully deployed Automated Demand Response (AutoDR) Programs to its large commercial and industrial customers, started investigating the same infrastructures application to the small and medium commercial customers. This project aims to identify available technologies suitable for automating demand response for small-medium commercial buildings; to validate the extent to which that technology does what it claims to be able to do; and determine the extent to which customers find the technology useful for DR purpose. Ten sites, enabled by eight vendors, participated in at least four test AutoDR events per site in the summer of 2010. The results showed that while existing technology can reliably receive OpenADR signals and translate them into pre-programmed response strategies, it is likely that better levels of load sheds could be obtained than what is reported here if better understanding of the building systems were developed and the DR response strategies had been carefully designed and optimized for each site.

  7. Iowa Association of Municipal Utilities Smart Grid Project |...

    Open Energy Info (EERE)

    demand reductions during peak periods.3 Equipment Approx. 5,450 Smart Meters AMI Communication Systems Meter Communications Network Backhaul Communications Meter Data...

  8. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Previous Articles Previous Articles Estimates of Peak Underground Working Gas Storage Capacity in the United States, 2009 Update (Released, 8312009) Estimates of Peak Underground...

  9. Peak Treatment Systems | Open Energy Information

    Open Energy Info (EERE)

    Treatment Systems Jump to: navigation, search Name: Peak Treatment Systems Place: Golden, CO Website: www.peaktreatmentsystems.com References: Peak Treatment Systems1 Information...

  10. Demand Response- Policy

    Broader source: Energy.gov [DOE]

    Demand response is an electricity tariff or program established to motivate changes in electric use by end-use customers, designed to induce lower electricity use typically at times of high market prices or when grid reliability is jeopardized.

  11. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demand Dispatch-Intelligent Demand for a More Efficient Grid 10 August 2011 DOE/NETL- DE-FE0004001 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal

  12. Demand Response Dispatch Tool

    SciTech Connect (OSTI)

    2012-08-31

    The Demand Response (DR) Dispatch Tool uses price profiles to dispatch demand response resources and create load modifying profiles. These annual profiles are used as inputs to production cost models and regional planning tools (e.g., PROMOD). The tool has been effectively implemented in transmission planning studies conducted by the Western Electricity Coordinating Council via its Transmission Expansion Planning and Policy Committee. The DR Dispatch Tool can properly model the dispatch of DR resources for both reliability and economic conditions.

  13. peak_load_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Noncoincident Peak Load, by North American Electric Reliability Corporation Assessment Area, 1990-2010 Actual, 2011-2015 Projected (Megawatts) Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 FRCC 27,266 28,818 30,601 32,823 32,904 34,524 35,444 35,375 38,730 37,493 37,194 39,062 40,696 40,475 42,383 46,396 45,751 46,676 44,836 NPCC 44,116 46,594 43,658 46,706 47,581 47,705 45,094 49,269 49,566 52,855

  14. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Deploying Federal Talent to Build the Future STEM Workforce Deploying Federal Talent to Build the Future STEM Workforce February 10, 2014 - 11:14am Addthis Federal employees from all agencies were invited to attend the First Annual STEM Volunteer Fair at the Department of Energy on February 5, 2014, hosted by the Office of Economic Impact and Diversity. I Photo by Matty Greene, U.S. Department of Energy Federal employees from all agencies were invited to attend the First Annual STEM

  15. Liquid metal Flow Meter - Final Report

    SciTech Connect (OSTI)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  16. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",251619,232888,233270,230916,221262,139874,58993,27057 "Residential",217995,204000,206539,204690,195920,124976,51007,24817 "Commercial",32890,28129,26000,25582,24807,14408,7529,2220 "Industrial",734,759,731,644,535,490,457,20 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",25553,12272,3766,3408,3213,3106,2753,4

  17. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",118318,116714,114296,113252,405728,56702,110087,20750 "Residential",106626,105342,103234,102397,364709,52679,106326,20361 "Commercial",11496,11207,10828,10619,40773,3989,3637,389 "Industrial",196,165,234,236,246,34,124,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",307168,307904,297247,297308,100,72000,48603,0

  18. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",183892,177493,168685,163567,142759,151004,146779,88220 "Residential",160763,155125,147140,142398,122329,133724,128395,82814 "Commercial",22512,21730,20916,20529,19850,17042,17904,5401 "Industrial",617,638,629,640,580,238,480,5 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",576309,548969,542009,536130,353867,225474,49380,0

  19. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",756473,744438,722583,713567,710239,697696,559054,139256 "Residential",655474,646196,624355,620170,615649,612354,495955,124347 "Commercial",99632,97104,97466,93000,92968,85137,62661,14851 "Industrial",1356,1134,762,397,1622,205,438,58 "Transportation",11,4,0,0,0,0,0,0 "AMI meters",161963,150555,143163,128116,121751,74120,48847,14946

  20. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",399663,371841,357579,344263,342766,331557,283997,203389 "Residential",371003,344167,330690,318544,316995,309010,267588,192187 "Commercial",25678,24657,24380,24208,24551,21202,14922,9945 "Industrial",2982,3017,2509,1511,1220,1345,1487,1257 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",400098,396398,220128,40063,34087,12021,3597,2

  1. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",319494,611045,877019,903093,889901,875440,845154,725634 "Residential",281386,549148,799807,823936,815476,804226,782901,659322 "Commercial",37868,61658,76998,78818,74100,71203,62242,66226 "Industrial",238,239,214,339,325,11,11,0 "Transportation",2,0,0,0,0,0,0,86 "AMI meters",1608027,1159371,498806,912,896,1034,810,0

  2. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",236654,273118,136678,116456,144254,103645,91623,24243 "Residential",197928,237034,117623,101376,130228,90425,80463,20942 "Commercial",37012,32633,16705,12952,12658,11393,10084,2156 "Industrial",1714,3451,2350,2128,1368,1827,1076,1145 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",445502,363360,274884,153279,48308,9465,1610,0

  3. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",467870,520018,495676,489407,482732,481682,397693,347611 "Residential",405276,448313,430824,429479,423471,417166,345119,304959 "Commercial",58023,67155,61129,57161,56837,62129,51022,41698 "Industrial",4539,4550,3723,2767,2424,2387,1552,954 "Transportation",32,0,0,0,0,0,0,0 "AMI meters",80864,18851,18830,17593,11991,6459,3532,212

  4. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",243727,214695,229210,220279,228503,244759,216434,112719 "Residential",217140,192195,206606,198130,207663,226923,209009,110488 "Commercial",25863,21811,21656,21246,19675,16998,7022,2000 "Industrial",724,689,948,903,1165,838,403,231 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",83802,108505,80808,72506,46139,24384,6215,0

  5. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",281284,274775,171896,165282,181060,149553,123861,41003 "Residential",229712,225851,141249,139162,154904,129384,111817,37069 "Commercial",44264,42282,26052,22916,23171,18971,11124,3873 "Industrial",7308,6642,4595,3204,2985,1198,920,61 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",100537,85007,72431,64037,42676,25380,11406,14500

  6. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",160541,162490,163750,181907,193350,89054,66943,33995 "Residential",138247,140673,143049,159847,171557,79340,60552,31632 "Commercial",20871,20385,19257,20260,19532,8695,5801,2011 "Industrial",1423,1432,1444,1800,2261,1019,590,352 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",160557,152199,127805,102671,95155,22793,16820,0

  7. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",709716,730599,309569,320041,45373,43870,43861,46240 "Residential",613484,643429,276292,285239,41482,41208,41115,40438 "Commercial",95689,85467,32375,34115,3830,2629,2711,5802 "Industrial",543,1703,902,687,61,33,35,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",1184894,1094256,515971,336940,0,0,0,0

  8. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",969524,947887,931692,903266,912616,851283,791097,374299 "Residential",880637,861955,849405,821766,814440,772961,722710,361979 "Commercial",84742,81853,78179,77565,92519,77666,67851,12272 "Industrial",4145,4079,4100,3935,5657,656,536,48 "Transportation",0,0,8,0,0,0,0,0 "AMI meters",46185,44150,22480,35163,17080,12860,2485,1

  9. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",513140,520857,464502,473117,474077,436376,438764,448444 "Residential",431517,439830,394660,399243,402817,387552,389596,381604 "Commercial",78717,78280,67228,70415,67890,47130,47431,66840 "Industrial",2906,2747,2614,3459,3370,1694,1737,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",6792,116,81,0,0,95,0,0

  10. Table 12. Advanced metering, 2007 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",228950,225895,210204,206764,147885,175769,139584,26178 "Residential",183907,181206,166730,162523,114344,141179,114795,24873 "Commercial",37536,37340,36283,37200,27897,29852,20219,1204 "Industrial",7507,7349,7176,7041,5644,4738,4570,101 "Transportation",0,0,15,0,0,0,0,0 "AMI meters",85136,84587,79675,77029,72260,10442,8609,0