Powered by Deep Web Technologies
Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Grazing and Browsing: How Plants are Affected  

E-Print Network [OSTI]

Grazing and browsing can have a neutral, positive or negative effect on rangeland plants. This publication explains the effects of grazing and browsing on plants, details the indicators of overuse of the range, and lists grazing management practices...

Lyons, Robert K.; Hanselka, C. Wayne

2001-12-13T23:59:59.000Z

2

Optimization Online - Search or Browse Submissions  

E-Print Network [OSTI]

Search or Browse Optimization Online Submissions. Advanced Search using Our Search Engine. Enter your search terms: name of author(s), title, keywords, ...

3

Optimization Online - Search or Browse Submissions  

E-Print Network [OSTI]

Search or Browse Optimization Online Submissions. Google Search. Enter your search terms: name of author(s), title, keywords, journal, etc. The Web

4

A Learning Apprentice For Browsing Robert C. Holte Chris Drummond  

E-Print Network [OSTI]

A Learning Apprentice For Browsing Robert C. Holte Chris Drummond Computer Science Department of browsing. The agent is a learning apprentice: it monitors the user's normal browsing actions and learns task for learning apprentice research. 1 THE BROWSING TASK "Browsing" is the searching of a computer

Holte, Robert

5

myPublications: Searching and browsing v4 myPublications: Searching and browsing  

E-Print Network [OSTI]

to conduct either a simple search or an advanced search. You can enter keywords and dates, and restrict searches You can save the terms used for a search of the database so that they can be used again without1 myPublications: Searching and browsing v4 myPublications: Searching and browsing Within my

Oakley, Jeremy

6

Meteorological services annual data report for 2012  

SciTech Connect (OSTI)

This document presents the meteorological data collected at Brookhaven National Laboratory (BNL) by Meteorological Services (Met Services) for the calendar year 2012. The purpose is to publicize the data sets available to emergency personnel, researchers and facility operations. Met services has been collecting data at BNL since 1949. Data from 1994 to the present is available in digital format. Data is presented in monthly plots of one-minute data. This allows the reader the ability to peruse the data for trends or anomalies that may be of interest to them. Full data sets are available to BNL personnel and to a limited degree outside researchers. The full data sets allow plotting the data on expanded time scales to obtain greater details (e.g., daily solar variability, inversions, etc.).

Heiser J.; Smith, S.

2013-02-01T23:59:59.000Z

7

Speed-dependent Automatic Zooming for Browsing Large Documents  

E-Print Network [OSTI]

@microsoft.com ABSTRACT We propose a navigation technique for browsing large documents that integrates rate. With typical scrolling interfaces, it is difficult to browse a large document efficiently. UsingSpeed-dependent Automatic Zooming for Browsing Large Documents Takeo Igarashi Computer Science

Igarashi, Takeo

8

Aircraft as a meteorological sensor  

E-Print Network [OSTI]

Meteorological Institute 2 | The aircraft as a meteorological sensor Photo cover: A KLM Airbus A330-200 landsAircraft as a meteorological sensor Using Mode-S Enhanced Surveillance data to derive upper air Meteorological Institute 3 | The aircraft as a meteorological sensor Aircraft as a meteorological sensor Using

Haak, Hein

9

METEOROLOGICAL Journal of Climate  

E-Print Network [OSTI]

AMERICAN METEOROLOGICAL SOCIETY Journal of Climate EARLY ONLINE RELEASE This is a preliminary PDF it is available. © 201 American Meteorological Society1 #12;Sun et al. climate downscaling of the Australian currents 1 Marine downscaling of a future climate scenario for Australian boundary currents Chaojiao Sun

Feng, Ming

10

Browse Success Stories - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M.ExtracellularBradburyBrianforRequirementsBrowse

11

METEOROLOGICAL Bulletin of the American Meteorological Society  

E-Print Network [OSTI]

Science Foundation.36 37 #12;2 Capsule Summary1 The Community Earth System Model provides the research for earth system15 studies, making it a true community tool. Here we describe this earth system model, its16 at the above DOI once it is available. © 2013 American Meteorological Society #12;1 The Community Earth System

12

Concrete Browsing Of A Graphical Toolkit Library Denys Duchier  

E-Print Network [OSTI]

Concrete Browsing Of A Graphical Toolkit Library Denys Duchier Department of Computer Science and promote reuse. This paper introduces Concrete Browsing as an improved method of consult- ing a graphical library, and Spreading Computation as novel paradigm for search and retrieval. A concrete browser allows

Duchier, Denys

13

Concrete Browsing Of A Graphical Toolkit Library Denys Duchier  

E-Print Network [OSTI]

Concrete Browsing Of A Graphical Toolkit Library Denys Duchier Department of Computer Science and promote reuse. This paper introduces Concrete Browsing as an improved method of consult­ ing a graphical library, and Spreading Computation as novel paradigm for search and retrieval. A concrete browser allows

Duchier, Denys

14

An immersive system for browsing and visualizing surveillance video  

E-Print Network [OSTI]

HouseFly is an interactive data browsing and visualization system that synthesizes audio-visual recordings from multiple sensors, as well as the meta-data derived from those recordings, into a unified viewing experience. ...

DeCamp, Philip James

15

METEOROLOGICAL Journal of Climate  

E-Print Network [OSTI]

, the statistical estimates of the differences between the various air-sea heat flux products tend to be largest. © 201 American Meteorological Society1 #12;A comparison of Southern Ocean air-sea buoyancy flux from an ocean state estimate with five other products Ivana Cerovecki, Lynne D. Talley and Matthew R. Mazloff

Talley, Lynne D.

16

Portable FORTRAN contour-plotting subprogram  

SciTech Connect (OSTI)

In this report we discuss a contour plotting Fortran subprogram. While contour plotting subroutines are available in many commercial plotting packages, this routine has the following advantages: (1) since it uses the Weasel and VDI plot routines developed at Sandia, it occupies little storage and can be used on most of the Sandia time-sharing systems as part of a larger program. In the past, the size of plotting packages often forced a user to perform plotting operations in a completely separate program; (2) the contour computation algorithm is efficient and robust, and computes accurate contours for sets of data with low resolution; and (3) the subprogram is easy to use. A simple contour plot can be produced with a minimum of information provided by a user in one Fortran subroutine call. Through the use of a wide variety of subroutine options, many additional features can be used. These include such items as plot titles, grid lines, placement of text on the page, etc. The subroutine is written in portable Fortran 77, and is designed to run on any system which supports the Weasel and VDI plot packages. It also uses routines from the SLATEC mathematical subroutine library.

Haskell, K.H.

1983-07-01T23:59:59.000Z

17

White-tailed Deer Browse Preferences for South Texas and the Edwards Plateau  

E-Print Network [OSTI]

Used plants usually are protected from browsing by physical or chemical deterrents. For example, cedar has volatile oils (terpenes) that dis- courage browsing. Agarito has a physical defense; young leaves are tender and readily eaten, but mature agarito... on your property and their relative abundance. ? Monitor deer and livestock use of the dif- ferent categories of browse on your prop- erty. ? Manage for herbivore densities that prevent severe hedging or the disappearance of highly preferred browse species...

Wright, Byron D.; Lyons, Robert K.; Cooper, Susan; Cathey, James

2003-01-06T23:59:59.000Z

18

Sextant: Browsing and Mapping the Ocean of Linked Geospatial Data  

E-Print Network [OSTI]

Sextant: Browsing and Mapping the Ocean of Linked Geospatial Data Charalampos Nikolaou, Kallirroi {charnik,kallirroi,kkyzir,koubarak}@di.uoa.gr Abstract. Linked geospatial data has recently received available on the Web. With the rapid population of the Web of data with geospatial information, applications

Koubarakis, Manolis

19

DBDOC: Querying and Browsing Databases and Interrelated Documents  

E-Print Network [OSTI]

]: Database Administra- tion--Data warehouse and repository General Terms Management, Documentation, Design 1 to describe this structured data. Managing semi- structured sources, such as documents, text files, web pagesDBDOC: Querying and Browsing Databases and Interrelated Documents Carlos Garcia-Alvarado University

Ordonez, Carlos

20

ScentTrails: Integrating Browsing and Searching on the Web  

E-Print Network [OSTI]

. Searching is the process of entering a search query (usually a list of keywords) into a search engine, which are more appropriately termed by Jul and Furnas [1997] as "search by navigation" and "search by query," respectively, but we will use the more common terms "browsing" and "searching.") Authors' addresses: Chris

Chi, Ed Huai-hsin

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fast Browsing of Archived Web Contents Sangchul Song  

E-Print Network [OSTI]

and deep contents, web contents involve a wide variety of objects such as html pages, documents, multimediaFast Browsing of Archived Web Contents Sangchul Song Department of Electrical and Computer The web is becoming the preferred medium for communicating and storing information pertaining to almost

JaJa, Joseph F.

22

Meteorological database for the United States  

E-Print Network [OSTI]

to Indoor Air Meteorological Database for the United StatesUC-402 Meteorological Database for the United States M.G.Abstract A meteorological database has been developed to aid

Apte, M.G.

2011-01-01T23:59:59.000Z

23

Generalised Recurrence Plot Analysis for Spatial Data  

E-Print Network [OSTI]

Recurrence plot based methods are highly efficient and widely accepted tools for the investigation of time series or one-dimensional data. We present an extension of the recurrence plots and their quantifications in order to study recurrent structures in higher-dimensional spatial data. The capability of this extension is illustrated on prototypical 2D models. Next, the tested and proved approach is applied to assess the bone structure from CT images of human proximal tibia. We find that the spatial structures in trabecular bone become more self-similar during the bone loss in osteoporosis.

Norbert Marwan; Juergen Kurths; Peter Saparin

2006-06-20T23:59:59.000Z

24

USB Interfacing and Real Time Data Plotting with MATLAB  

E-Print Network [OSTI]

USB Interfacing and Real Time Data Plotting with MATLAB Department of Electrical and Computer................................................................................................................................3 MATLAB Programming....................................................................................................................................................6 MATLAB Realtime Plot Code

Ashrafi, Ashkan

25

Data Polling Routine (PlotHood) to Generate Weekly Inspection Plots for Fort Hood, Texas  

E-Print Network [OSTI]

. For this part of the project, a weather station that includes temperature, humidity and solar sensors was installed at the west substation of Ft. Hood as part of Phase I of this project. Weekly inspection plots of electricity use at the main substation of Ft...-Phase II, p. ii TABLE OF CONTENTS General Abstract i Disclaimer iii Acknowledgments iv Provide Data Polling and Inspection Plots Generation Routine (PlotHood) Executive Summary 2 Existing Monitoring System 3 a- ESL Weather Station at the West Substation. 3...

Saman, N. F.; Reddy, T. A.; Haberl, J. S.; Claridge, D. E.; Turner, W. D.

1996-01-01T23:59:59.000Z

26

Home | Login | Logout | Access Information | Ale Top 100 Documents BROWSE SEARCH IEEE XPLORE GUIDE  

E-Print Network [OSTI]

Home | Login | Logout | Access Information | Ale Top 100 Documents BROWSE SEARCH IEEE XPLORE GUIDE Information 1. Subtly different facial expression recognition and expressionintensity estimation Lien, J

Yang, Liuqing

27

E-Print Network 3.0 - analysis browsing server Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

>> 1 UBB Mining: Finding Unexpected Browsing Behaviour in Clickstream Data to Improve a Web Site's Design Summary: algorithm can discover the relationship between different user's...

28

Browse by region (RaphaelSVGMap) | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder, CO) JumpNREL BiofuelsBrowse by region

29

Browse Draft Directives - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M.ExtracellularBradburyBrianforRequirementsBrowse Draft

30

Computational methods in wind power meteorology  

E-Print Network [OSTI]

Computational methods in wind power meteorology Bo Hoffmann Jørgensen, Søren Ott, Niels Nørmark, Jakob Mann and Jake Badger Title: Computational methods in wind power meteorology Department: Wind in connection with the project called Computational meth- ods in wind power meteorology which was supported

31

Effective Browsing and Serendipitous Discovery with an Experience-Infused Browser  

E-Print Network [OSTI]

Effective Browsing and Serendipitous Discovery with an Experience-Infused Browser Sudheendra Hangal explore how this recall can be leveraged during web browsing. We have built a system called the Experience-Infused, an experience-infused browser can enhance the effect of a user noticing personally relevant terms on a page

Pratt, Vaughan

32

PetroPlot: A plotting and data management tool set for Microsoft Excel  

E-Print Network [OSTI]

efficiency of data manipulation and visualization by orders of magnitude and allows exploration of large data: 1525-2027 Copyright 2003 by the American Geophysical Union 1 of 14 #12;However, in order to make a multiseries XY plot, it is necessary to manually select the data range for each series in the ``Chart Wizard

Langmuir, Charles H.

33

GlobPlot: exploring protein sequences for globularity and disorder  

E-Print Network [OSTI]

ordered. Thus GlobPlot may be of use in the design of constructs corresponding to globular proteins, as needed for many biochemical studies, parti- cularly structural biology. GlobPlot has a pipeline interface a graphical tool GlobPlot and a pipeline companion GlobPipe that do just this: they measure and display

34

Repellents to prevent cattle browsing of pine seedlings  

E-Print Network [OSTI]

is little other green forage available. There have be n numerous theory co cnd. Opinions advas ed ac to why c"tule browse pinon?erhal. s the mst comon being that xhc cattle c 'o asm~lug gre. n feed end. there ls little other green vegetation availablo... jjv 0(x-, . oocrpv Gqx Jox (9TT+J~w 3UT. 'OJq-vov eqx Uaqn 9uepr(co GT 0 jtU, 'Gpujipao- etp. Co 90agga GGJG((pt( xo -6=:&p ei os jsq XTguapjrta GgUGTTG~TJ TTG '(Ig(I go UoyqcTaorca eqx tjtg[", 'sagJoguarcUZ 63smt(p atjt UT Jatj(63' pa(InoJ3 GJc9x E...

Duncan, Don Arlen

1959-01-01T23:59:59.000Z

35

Fast Clustering of Web Users Based on Browsing Patterns Yongjian Fu Kanwalpreet Sandhu Ming-Yi Shih  

E-Print Network [OSTI]

Fast Clustering of Web Users Based on Browsing Patterns Yongjian Fu Kanwalpreet Sandhu Ming-Yi Shih propose the clustering of the Web users based on patterns of their browsing activities on the Web. The browsing pattern of a Web user consists of the pages the user visited and the times spent on them

Fu, Yongjian

36

Atmospheric Radiation Measurement (ARM) Data Plots and Figures  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

ARM Program data is available in daily diagnostic plots that can be easily grouped into daily, weekly, monthly, and even yearly increments. By visualizing ARM data in thumbnail-sized data plots, users experience highly-browsable subsets of data available at the Data Archive including complimentary data products derived from data processed by ARM. These thumbnails allow users to quickly scan for a particular type of condition, like a clear day or a day with persistent cirrus. From a diagnostics perspective, the data plots assist in looking for missing data, for data exceeding a particular range, or for loading multiple variables (e.g., shortwave fluxes and precipitation), and to determine whether a certain science or data quality condition is associated with some other parameter (e.g., high wind or rain).[taken from http://www.arm.gov/data/data_plots.stm] Several interfaces and tools have been developed to make data plots easy to generate and manipulate. For example, the NCVWeb is an interactive NetCDF data plotting tool that ARM users can use to plot data as they order it or to plot regular standing data orders. It allows production of detailed tables, extraction of data, statistics output, comparison plotting, etc. without the need for separate visualization software. Users will be requested to create a password, but the data plots are free for viewing and downloading.

37

BOX: Browsing Objects in XML Christian Nentwich, Wolfgang Emmerich, Anthony Finkelstein and Andrea Zisman  

E-Print Network [OSTI]

BOX: Browsing Objects in XML Christian Nentwich, Wolfgang Emmerich, Anthony Finkelstein and Andrea|W.Emmerich|A.Finkelstein|A.Zismang@cs.ucl.ac.uk Abstract The latest Internet markup languages

Finkelstein, Anthony

38

Recurrence plots from altimetry data of some lakes in Africa  

E-Print Network [OSTI]

The paper shows recurrence plots obtained from time series of the level variations of four lakes in Africa (Nasser, Tana, Chad and Kainji). The data, coming from remote sensing, are provided by the United States Department of Agriculture. The recurrence plots allow a good visual comparison of the behaviours of local drainage basins.

Amelia Carolina Sparavigna

2014-07-02T23:59:59.000Z

39

Recurrence plots from altimetry data of some lakes in Africa  

E-Print Network [OSTI]

The paper shows recurrence plots obtained from time series of the level variations of four lakes in Africa (Nasser, Tana, Chad and Kainji). The data, coming from remote sensing, are provided by the United States Department of Agriculture. The recurrence plots allow a good visual comparison of the behaviours of local drainage basins.

Sparavigna, Amelia Carolina

2014-01-01T23:59:59.000Z

40

PLOT2K: a graphics interface to System 2000  

SciTech Connect (OSTI)

PLOT2K is a versatile tool for generating graphs from a System 2000 data base. Its chief virtue is the ease with which it can be used, modified, and developed. This makes the graphics plot accessible to a wide range of users and allows it to be altered to suit a wide range of needs.

Creel, L.R.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Satellite Meteorology and Climatology Division Roadmap  

E-Print Network [OSTI]

Satellite Meteorology and Climatology Division Roadmap NOAA NESDIS Center for Satellite Applications and Research #12;SMCD Roadmap 2 NOAA/NESDIS/STAR Satellite Meteorology and Climatology Division Roadmap September 2005 NOAA Science Center, 5200 Auth Road, Room 712, Camp Springs, MD 20746 #12;SMCD

Kuligowski, Bob

42

Solar Radiation and Meteorological Data Support  

E-Print Network [OSTI]

Solar Radiation and Meteorological Data Support for the Long Island Solar Farm and NSERCand NSERC-9 2011March 8 9, 2011 #12;LISF Solar Radiation and Meteorological Sensor Network ·· Technology Needs on intermittent source of solar radiationintermittent source of solar radiation #12;LISF Solar Radiation

Homes, Christopher C.

43

Extreme hydro-meteorological events and their probabilities  

E-Print Network [OSTI]

Extreme hydro-meteorological events and their probabilities Jules Beersma #12;Promotor: Prof. dr. A Onderzoekschool (BBOS) #12;Extreme hydro-meteorological events and their probabilities Extreme hydro

Beersma, Jules

44

Description of the RDCDS Meteorological Component  

SciTech Connect (OSTI)

This report provides a detailed description of the Rapidly Deployable Chemical Defense System (RDCDS) Meteorological Component. The Meteorological Component includes four surface meteorological stations, miniSODAR, laptop computers, and communications equipment. This report describes the equipment that is used, explains the operation of the network, and gives instructions for setting up the Component and replacing defective parts. A detailed description of operation and use of the individual sensors, including the data loggers is not covered in the current document, and the interested reader should refer to the manufacturer’s documentation.

Pekour, Mikhail S.; Berg, Larry K.

2007-10-01T23:59:59.000Z

45

Automatic Analysis of Plot for Story Rewriting Harry Halpin  

E-Print Network [OSTI]

Automatic Analysis of Plot for Story Rewriting Harry Halpin School of Informatics University of Informatics University of Edinburgh 2 Buccleuch Place Edinburgh, EH8 9LW Scotland, UK J.Moore@ed.ac.uk Judy

Moore, Johanna D.

46

Advanced OpenModelica plotting package for Modelica.  

E-Print Network [OSTI]

?? OpenModelica is an open-source based development environment for Modelica coordinated by the Programming Environments Laboratory (PELAB) at Linköpings Universitet. Previously an external tool, PtPlot,… (more)

Eriksson, Henrik

2008-01-01T23:59:59.000Z

47

Slope stability of geosynthetic clay liner test plots  

SciTech Connect (OSTI)

Fourteen full-scale field test plots containing five types of geosynthetic clay liners (GCLs) were constructed on 2H:1V and 3H:1V slopes for the purpose of assessing slope stability. The test plots were designed to simulate typical final cover systems for landfills. Slides occurred in two of the 2H:1V test plots along interfaces between textured geomembranes and the woven geotextile components of internally reinforced GCLs. One additional slide occurred within the unreinforced GCL component of a 2H:1V test plot, when the GCL unexpectedly became hydrated. All 3H:1V slopes have remained stable. Results of laboratory direct shear tests compared favorably with field observations, providing support for the current design procedures that engineers are using for assessing the stability of slopes containing GCLs.

Daniel, D.E. [Univ. of Illinois, Urbana, IL (United States); Koerner, R.M. [Drexel Univ., Philadelphia, PA (United States). Geosynthetic Research Inst.; Bonaparte, R. [GeoSyntec Consultants, Atlanta, GA (United States); Landreth, R.E. [Landreth, (Robert E.), West Chester, OH (United States); Carson, D.A. [Environmental Protection Agency, Cincinnati, OH (United States); Scranton, H.B. [Haley and Aldrich, Boston, MA (United States)

1998-07-01T23:59:59.000Z

48

NASA Surface meteorology and Solar Energy: Methodology  

E-Print Network [OSTI]

1 NASA Surface meteorology and Solar Energy: Methodology Energy Technology (RET) projects. These climatological profiles are used for designing systems that have for implementing RETs, there are inherent problems in using them for resource assessment. Ground measurement

Firestone, Jeremy

49

Improving the web browsing environment for dyslexics by elaborating the viewing and reading functionalities  

E-Print Network [OSTI]

functionalities by R. Nagatsuma, S. Iizuka, M. Takizawa, T. Ohko, T. Wada, and T. Saito, IBM Abstract Dyslexia of people who experience dyslexia may be around 6-10% of the population. It varies from language to language for people with dyslexia when they are browsing the Web. In this paper, we investigate effective support

50

RESHAPING REMINISCENCE, WEB BROWSING AND WEB SEARCH USING PERSONAL DIGITAL ARCHIVES  

E-Print Network [OSTI]

RESHAPING REMINISCENCE, WEB BROWSING AND WEB SEARCH USING PERSONAL DIGITAL ARCHIVES A DISSERTATION important examples of such applications. The first is an experience- infused web browser that annotates web studies find that this tech- nique is useful to personalize crowded web pages and to serendipitously s

Straight, Aaron

51

Browse > Journals> Smart Grid, IEEE Transactions ...> Top Accessed Articles 1. Smart Transmission Grid: Vision and Framework  

E-Print Network [OSTI]

Browse > Journals> Smart Grid, IEEE Transactions ...> Top Accessed Articles 1. Smart Transmission.2080328 3. A Reliability Perspective of the Smart Grid Moslehi, K. Kumar, R. Page(s): 57 - 64 Digital Object Consumption Scheduling for the Future Smart Grid Mohsenian-Rad, A. Wong, V.W.S. Jatskevich, J. Schober, R

Tennessee, University of

52

E-Print Network 3.0 - applied meteorology unit Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2005 Meteorology applied Summary: ACPD 5, 7903-7927, 2005 Meteorology applied to urban air pollution problems B. Fisher et al. Title... and Physics Discussions Meteorology...

53

XMGRACE TUTORIAL We will be plotting the data points using  

E-Print Network [OSTI]

---> TRANSFORMATION ---> REGRESSION Select the SET Choose LINEAR FIT Press the ACCEPT button Save the information for each experiment will be plotted. You will have to fit the obtained data using one of the following: Linear fit Nonlinear fit Quadratic fit These will be discussed one by one. #12;XMGRACE TUTORIAL SAVE

Elster, Charlotte

54

Surveillance of Site A and Plot M report for 2010.  

SciTech Connect (OSTI)

The results of the environmental surveillance program conducted at Site A/Plot M in the Palos Forest Preserve area for Calendar Year 2010 are presented. Based on the results of the 1976-1978 radiological characterization of the site, a determination was made that a surveillance program be established. The characterization study determined that very low levels of hydrogen-3 (as tritiated water) had migrated from the burial ground and were present in two nearby hand-pumped picnic wells. The current surveillance program began in 1980 and consists of sample collection and analysis of surface and subsurface water. The results of the analyses are used to monitor the migration pathway of hydrogen-3 contaminated water from the burial ground (Plot M) to the hand-pumped picnic wells and monitor for the presence of radioactive materials in the environment of the area. Hydrogen-3 in the Red Gate Woods picnic wells was still detected this year, but the average and maximum concentrations were significantly less than found earlier. Hydrogen-3 continues to be detected in a number of wells, boreholes, dolomite holes, and a surface stream. Analyses since 1984 have indicated the presence of low levels of strontium-90 in water from a number of boreholes next to Plot M. The results of the surveillance program continue to indicate that the radioactivity remaining at Site A/Plot M does not endanger the health or safety of the public visiting the site, using the picnic area, or living in the vicinity.

Golchert, N. W. (ESQ)

2011-05-31T23:59:59.000Z

55

Meteorological aspects of siting large wind turbines  

SciTech Connect (OSTI)

This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

Hiester, T.R.; Pennell, W.T.

1981-01-01T23:59:59.000Z

56

Meteorological Support at the Savanna River Site  

SciTech Connect (OSTI)

The Department of Energy (DOE) operates many nuclear facilities on large complexes across the United States in support of national defense. The operation of these many and varied facilities and processes require meteorological support for many purposes, including: for routine operations, to respond to severe weather events, such as lightning, tornadoes and hurricanes, to support the emergency response functions in the event of a release of materials to the environment, for engineering baseline and safety documentation, as well as hazards assessments etc. This paper describes a program of meteorological support to the Savannah River Site, a DOE complex located in South Carolina.

Addis, Robert P.

2005-10-14T23:59:59.000Z

57

ARM Surface Meteorology Systems Instrument Handbook  

SciTech Connect (OSTI)

The ARM Surface Meteorology Systems consist mainly of conventional in situ sensors that obtain a defined “core” set of measurements. The core set of measurements is: Barometric Pressure (kPa), Temperature (°C), Relative Humidity (%), Arithmetic-Averaged Wind Speed (m/s), Vector-Averaged Wind Speed (m/s), and Vector-Averaged Wind Direction (deg).

Ritsche, MT

2011-03-08T23:59:59.000Z

58

2 Bureau of Meteorology Annual Report 201314 Dr Rob Vertessy  

E-Print Network [OSTI]

OF METEOROLOGY #12;3Bureau of Meteorology Annual Report 2013­14 1 Overview Review by the Director | IntroductionOverview #12;2 Bureau of Meteorology Annual Report 2013­14 Dr Rob Vertessy DIRECTOR, energy and transport sectors as well as the general community. We also trialled a thunderstorm tracker

Greenslade, Diana

59

E-Print Network 3.0 - air medical meteorology Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

institutes Disciplines Systemanalysis science Medical science Statistics Meteorology... - Air pollution - CO2 costs - Climate + meteorology Base-line definition: Geographical...

60

Dalitz plot analysis of Ds+ --> K+ K- pi+  

E-Print Network [OSTI]

We perform a Dalitz plot analysis of about 100,000 Ds+ decays to K+ K- pi+ and measure the complex amplitudes of the intermediate resonances which contribute to this decay mode. We also measure the relative branching fractions of Ds+ --> K+ K+ pi- and Ds+ --> K+ K+ K-. For this analysis we use a 384 fb-1 data sample, recorded by the BABAR detector at the PEP-II asymmetric-energy e+e- collider running at center-of-mass energies near 10.58 GeV.

P. del Amo Sanchez et al.

2011-03-09T23:59:59.000Z

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fermilab E866 (NuSea) Figures and Data Plots  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The NuSea Experiment at Fermilab studied the internal structure of protons, in particular the difference between up quarks and down quarks. This experiment also addressed at least two other physics questions: nuclear effects on the production of charmonia states (bound states of charm and anti-charm quarks) and energy loss of quarks in nuclei from Drell-Yan measurements on nuclei. While much of the NuSea data are available only to the collaboration, figures, data plots, and tables are presented as stand-alone items for viewing or download. They are listed in conjunction with the published papers, theses, or presentations in which they first appeared. The date range is 1998 to 2008. To see these figures and plots, click on E866 publications or go directly to http://p25ext.lanl.gov/e866/papers/papers.html. Theses are at http://p25ext.lanl.gov/e866/papers/e866theses/e866theses.html and the presentations are found at http://p25ext.lanl.gov/e866/papers/e866talks/e866talks.html. Many of the items are postscript files.

E866 NuSea Collaboration

62

Long-term research impacts on seedling community structure and composition in a permanent forest plot  

E-Print Network [OSTI]

plot Gregory R. Goldsmith a , Liza S. Comita b,*, Leslie L. Morefield c , Rick Condit d,e , Stephen P

Bermingham, Eldredge

63

NOvA (Fermilab E929) Official Plots and Figures  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The NOvA collaboration, consisting of 180 researchers across 28 institutions and managed by the Fermi National Accelerator Laboratory (FNAL), is developing instruments for a neutrino-focused experiment that will attempt to answer three fundamental questions in neutrino physics: 1) Can we observe the oscillation of muon neutrinos to electron neutrinos; 2) What is the ordering of the neutrino masses; and 3) What is the symmetry between matter and antimatter? The collaboration makes various data plots and figures available. These are grouped under five headings, with brief descriptions included for each individual figure: Neutrino Spectra, Detector Overview, Theta12 Mass Hierarchy CP phase, Theta 23 Delta Msqr23, and NuSterile.

64

Career Map: Meteorological Technician | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy-Chevron U.S.A.CAMPAIGNINGcivilMeteorological Technicians

65

Max-Planck-Institute for Meteorology, Hamburg, Germany Swedish Meteorological and Hydrological Institute, Norrkoping, Sweden  

E-Print Network [OSTI]

Institute, NorrkoĂ?ping, Sweden 3 Finnish Meteorological Institute, Helsinki, Finland 4 Rossby Centre, NorrkoĂ?ping, Sweden 5 German Weather Service, Offenbach, Germany 6 Institute for Marine Research, University of Kiel, Sweden A comprehensive model inter-comparison study investigating the water budget during the BALTEX

Lindau, Ralf

66

CHAPTER III MARINE METEOROLOGY OF THE GULF OF MEXICO  

E-Print Network [OSTI]

CHAPTER III MARINE METEOROLOGY OF THE GULF OF MEXICO #12;Blank page retained for pagination #12;MARINE METEOROLOGY OF THE GULF OF MEXICO, A BRIEF REVIEW 1 By DALE F. LEIPPER, Department oj Oceonography, Agricultural and Mechanical College oj Tuas The best general summary of the weather over the Gulf of Mexico

67

Educational Innovations in Radar Meteorology Prof. S. A. Rutledge  

E-Print Network [OSTI]

of the most memorable aspects of your graduate level education in radar meteorology? 2. Briefly describe and integrating the radar measurements with other observations #12;NCAR CPNCAR CP--3 and CP3 and CP--3 mobile C3Educational Innovations in Radar Meteorology Prof. S. A. Rutledge Department of Atmospheric Science

Rutledge, Steven

68

UNIDATA AND THE SYNERGY BETWEEN GEODESY AND METEOROLOGY  

E-Print Network [OSTI]

beneficial relationships have more staying power. Geodesy needs more meteorological input. · If meteorology is associated with the induced dipole moment of all atmospheric components (including water vapor). The wet involves using GPS to sense Z, isolate the wet delay Zw, and transform Zw to PW (the total vertical column

69

Brookhaven National Laboratory meteorological services instrument calibration plan and procedures  

SciTech Connect (OSTI)

This document describes the Meteorological Services (Met Services) Calibration and Maintenance Schedule and Procedures, The purpose is to establish the frequency and mechanism for the calibration and maintenance of the network of meteorological instrumentation operated by Met Services. The goal is to maintain the network in a manner that will result in accurate, precise and reliable readings from the instrumentation.

Heiser .

2013-02-16T23:59:59.000Z

70

METEOROLOGY OF SO CLOUD REGIMES WORKSHOP ON SOUTHERN OCEAN CLOUDS & AND  

E-Print Network [OSTI]

regimes Regime meteorology Vertical pressure velocity Potential temperature Relative humidity Wind speed regimes Regime meteorology Vertical pressure velocity Potential temperature Relative humidity Wind speed Regime meteorology Vertical pressure velocity Potential temperature Relative humidity Wind speed

Jakob, Christian

71

ARM Surface Meteorology Systems Instrument Handbook  

SciTech Connect (OSTI)

The ARM Surface Meteorology Systems consist mainly of conventional in situ sensors that obtain a defined “core” set of measurements. The core set of measurements is: Barometric Pressure (kPa), Temperature (°C), Relative Humidity (%), Arithmetic-Averaged Wind Speed (m/s), Vector-Averaged Wind Speed (m/s), and Vector-Averaged Wind Direction (deg). The sensors that collect the core variables are mounted at the standard heights defined for each variable: • Winds: 10 meters • Temperature and Relative Humidity: 2 meters • Barometric Pressure: 1 meter. Depending upon the geographical location, different models and types of sensors may be used to measure the core variables due to the conditions experienced at those locations. Most sites have additional sensors that measure other variables that are unique to that site or are well suited for the climate of the location but not at others.

Ritsche, MT

2011-03-08T23:59:59.000Z

72

Digital meteorological radar data compared with digital infrared data from a geostationary meteorological satellite  

E-Print Network [OSTI]

OF CONTENTS Page ABSTRACT. ACKNOWLEDGMENTS. DEDICATION . iv vi TABLE OF CONTENTS . vii LIST OF TABLES. IX LIST OF FIGURES . LIST OF ACRONYMS CHAPTER xii I. INTRODUCTION 1. The Need for This Investigation 2. Present Status of Research Relating... to This Investigation 3. Objectives of the Investigation 4. Techniques and Scope of the Investigation. II. METEOROLOGICAL RADAR DATA . 10 1. Basic Radar Theory . 2. Earth Curvature Correction . 3. The TAMU Weather Radar System. 4. Data Reduction and Display 10...

Henderson, Rodney Stuart

1979-01-01T23:59:59.000Z

73

Data Archive of Tracer Experiments and Meteorology Roland R. Draxler  

E-Print Network [OSTI]

to address these issues. In particular there has been consistent emphasis on nuclear reactor accidents since the Chernobyl accident by the International Atomic Energy Agency (IAEA) and the World Meteorological

74

Letter of transmittal Office of the Director of Meteorology  

E-Print Network [OSTI]

............................................ 138 South Australia....................................... 140 Western Australia Melbourne VIC 3001 Australia Australia's National Meteorological Service 700 Collins Street Docklands VIC continued its work of observing, analysing and predicting Australia's weather, climate, oceans and water

Greenslade, Diana

75

Letter of transmittal Office of the Director of Meteorology  

E-Print Network [OSTI]

.................................................... 92 South Australia ............................................... 94 Western Australia Melbourne VIC 3001 Australia Australia's National Meteorological Service 700 Collins Street Docklands VIC continued its work of observing, analysing and predicting Australia's weather, climate, oceans, water

Greenslade, Diana

76

Applications of Climatology and Meteorology to Hydrologic Simulation  

E-Print Network [OSTI]

TR-38 1971 Applications of Climatology and Meteorology to Hydrologic Simulation R.A. Clark G.E. O?Connor Texas Water Resources Institute Texas A&M University ...

Clark, R. A.; O'Connor, G. E.

77

Analysis of Spatial Performance of Meteorological Drought Indices  

E-Print Network [OSTI]

by policy makers and the general public. This study analyzes the spatial performance of interpolation methods for meteorological drought indices in the United States based on data from the Co-operative Observer Network (COOP) and United States Historical...

Patil, Sandeep 1986-

2013-01-14T23:59:59.000Z

78

Canonical Correlation Analysis (CCA) of GRACE, hydrological and hydro-meteorological signals  

E-Print Network [OSTI]

1 Canonical Correlation Analysis (CCA) of GRACE, hydrological and hydro-meteorological signals M. J and Hydro-meteorology Hydrology GRACE Hydro-meteorology RQ dt dS dt dMdS RETP . dt AH a #12;3 GRACE, times based signals #12;12 CCA on catchments based ­ GRACE and hydro-meteorology T GDGDGD T VUQ dt d

Stuttgart, Universität

79

ASSESSMENT OF POTENTIAL BIAS WITH SNOWSHOE HARE FECAL PELLET-PLOT COUNTS  

E-Print Network [OSTI]

385 ASSESSMENT OF POTENTIAL BIAS WITH SNOWSHOE HARE FECAL PELLET-PLOT COUNTS DENNIS MURRAY, 1 National Forest, Coeur d'Alene, ID 83815, USA Abstract: The fecal pellet-plot method has been used biases associated with the technique have not been addressed ade- quately. We studied hare pellet

80

Analysis of the raw data of sample plots in NFIMAP Cycle IV ...  

Open Energy Info (EERE)

Action Plan (PRAP). The report details the results of an analysis of the raw data of primary sample plots (PSPs) collected during Cycle IV of the National Forest Inventory and...

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Data Plots from FNAL-E907: Main Injector Particle Production Experiment (MIPP)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

There are approximately 40 data plots available to the public from E907. A proposal to upgrade the MIPP experiment (E-P-960) has been deferred. See the MIPP homepage at http://ppd.fnal.gov/experiments/e907/

82

The Meteorological Monitoring program at a former nuclear weapons plant  

SciTech Connect (OSTI)

The purpose of the Meteorological Monitoring program at Rocky Flats Plant (RFP) is to provide meteorological information for use in assessing the transport, and diffusion, and deposition of effluent actually or potentially released into the atmosphere by plant operations. Achievement of this objective aids in protecting health and safety of the public, employees, and environment, and directly supports Emergency Response programs at RFP. Meteorological information supports the design of environmental monitoring networks for impact assessments, environmental surveillance activities, remediation activities, and emergency responses. As the mission of the plant changes from production of nuclear weapons parts to environmental cleanup and economic development, smaller releases resulting from remediation activities become more likely. These possible releases could result from airborne fugitive dust, evaporation from collection ponds, or grass fires.

Maxwell, D.R.; Bowen, B.M.

1994-02-01T23:59:59.000Z

83

Technical Work Plan For: Meteorological Monitoring Data Analysis  

SciTech Connect (OSTI)

The meteorological monitoring and analysis program has five objectives. (1) Acquire qualified meteorological data from YMP meteorological monitoring network using appropriate controls on measuring and test equipment. Because this activity is monitoring (i.e., recording naturally occurring events) pre-test predictions are not applicable. All work will be completed in accordance with U.S. Department of Energy (DOE) Office of Repository Development (ORD) administrative procedures and Bechtel SAIC Co., LLC (BSC) line procedures. The meteorological monitoring program includes measuring and test equipment calibrations, operational checks, preventive and corrective maintenance, and data collection. (2) Process the raw monitoring data collected in the field and submit technically reviewed, traceable data to the Technical Data Management System (TDMS) and the Records Processing Center. (3) Develop analyses or calculations to provide information to data requesters and provide data sets as requested. (4) Provide precipitation amounts to Site Operations to support requirements to perform inspections in the Stormwater Pollution Prevention Plan (implemented in LP-OM-050Q-BSC) following storm events of greater than 0.5 inches. The program also provides meteorological data during extreme weather conditions (e.g., high winds, rainstorms, etc.) to support decisions regarding worker safety. (5) Collect samples of precipitation for chemical and isotopic analysis by the United States Geological Survey (USGS). The BSC ES&H Environmental Compliance organization is responsible for performing this work. Data from calendar-year periods are submitted to the TDMS to provide YMP users with qualified meteorological data for scientific modeling and analyses, engineering designs of surface facilities, performance assessment analyses, and operational safety issues.

R. Green

2006-02-06T23:59:59.000Z

84

Annual report 2008 | 1Ministry of Transport, Public Works and Water Management | Royal Netherlands Meteorological Institute Royal Netherlands  

E-Print Network [OSTI]

Annual report 2008 | 1Ministry of Transport, Public Works and Water Management | Royal Netherlands Meteorological Institute Royal Netherlands Meteorological Institute Ministry of Transport, Public Works and Water Management | Royal Netherlands Meteorological Institute Foreword ]| Annual report ]| Water ]| Interview

Stoffelen, Ad

85

Reduciblity, Arrhenius plots and the Uroboros Dragon, a reply to the preprint "Correlations in Nuclear Arrhenius-Type Plots" by M.B. Tsang and P. Danielewicz  

E-Print Network [OSTI]

In a recent preprint by Tsang and Danielewicz, the authors attempt to give alternative or trivial explanations for the reducible and "thermal" nature of the intermediate mass fragment excitation functions reported previously (Phys. Rev. Lett. 74, 1530 (1995), Phys. Lett B 361, 25 (1995), Phys. Rep. 287, 249 (1997)). We demonstrate that their proposed "self-correlation" explanation for linear Arrhenius plots is based upon a flawed autocorrelation analysis involving circular reasoning.

L. G. Moretto; L. Beaulieu; L. Phair; G. J. Wozniak

1997-09-08T23:59:59.000Z

86

81Bulletin of the American Meteorological Society 1. Introduction  

E-Print Network [OSTI]

1998. © 1999 American Meteorological Society ABSTRACT Shipborne Doppler radar operations were conducted 50 km of each other to conduct coordinated dual-Doppler scanning. The dual- Doppler operations were and Lukas 1992) was conducted in the warm- pool region of the western Pacific Ocean. The scien- tific goals

Rutledge, Steven

87

42 Bureau of Meteorology Annual Report 201314 Environment and research  

E-Print Network [OSTI]

and hydrology to build world-class systems and prediction services to support decision-makers in government services, and energy and services sectors; · Australian, State and local governments and their agencies; · international organisations including the World Meteorological Organization and Pacific Island National

Greenslade, Diana

88

1819Bulletin of the American Meteorological Society 1. Introduction  

E-Print Network [OSTI]

reduc- tions in expenditures (and costs) for natural gas and heating oil, record seasonal sales their strategy for pur- chasing natural gas, leading to major savings to their customers. #12;1820 Vol. 80, No. 9 Meteorological Society ABSTRACT This paper assesses the major impacts on human lives and the economy

Catling, David C.

89

Programperformance BUREAU OF METEOROLOGY ANNUAL REPORT 201213 121  

E-Print Network [OSTI]

and reliably provide weather, climate, ocean and water products and services. Highly resilient and reliable's supercomputer, and maintaining data communication links to observing sites, often in remote locations or extreme of meteorological and related data from the observational network to the Central Computing Facility and Regional

Greenslade, Diana

90

ORIGINAL PAPER Trends in meteorological and agricultural droughts in Iran  

E-Print Network [OSTI]

ORIGINAL PAPER Trends in meteorological and agricultural droughts in Iran S. Golian & O. Mazdiyasni droughts and their trends in Iran, as well as several subregions with different climate conditions from, northwestern, and central parts of Iran have experienced sig- nificant drying trends at a 95 % confidence level

AghaKouchak, Amir

91

Presented at the American Meteorological Society Summer Community Meeting Boulder, Colorado August 8 11, 2011 Meteorology and  

E-Print Network [OSTI]

in "green industries", particularly the maturing wind and emerging solar power industries. New BS and MS graduates in meteorology bring an excellent tool kit of quantitative skills and a unique perspective. Their educational backgrounds complement well those of the engineers who often lead power generation programs

Colorado at Boulder, University of

92

Dalitz plot analysis of B[superscript -]-->D[superscript +]pi[superscript -]pi[superscript -  

E-Print Network [OSTI]

We report on a Dalitz plot analysis of B-?D+?-?- decays, based on a sample of about 383×106 ?(4S)?BB? decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We find the total branching ...

Zhao, M.

93

Activists Fight Green Projects, Seeing U.N. Plot LESLIE KAUFMAN and KATE ZERNIKE  

E-Print Network [OSTI]

Activists Fight Green Projects, Seeing U.N. Plot LESLIE KAUFMAN and KATE ZERNIKE 3 February 2012 to the Tea Party are railing against all sorts of local and state efforts to control sprawl and conserve. In Maine, the Tea Party-backed Republican governor canceled a project to ease congestion along the Route 1

94

LBNL-41149 1 Resonant Magneto-Optical Rotation: New Twists in an Old Plot  

E-Print Network [OSTI]

LBNL-41149 1 Resonant Magneto-Optical Rotation: New Twists in an Old Plot Dmitry Budkera dispersion #12;LBNL-41149 2 curves) are sketched in Fig. 2. A characteristic width of these curves in the limit of large fields (Fig. 3). #12;LBNL-41149 3 This elementary discussion essentially summarizes

Budker, Dmitry

95

Story Understanding in Genesis: Exploring Automatic Plot Construction through Commonsense Reasoning  

E-Print Network [OSTI]

. Terman Chairman, Masters of Engineering Thesis Committee #12;2 #12;3 Story Understanding in Genesis1 Story Understanding in Genesis: Exploring Automatic Plot Construction through Commonsense Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Master

Jackson, Daniel

96

Fractal power spectra plotted upside-down Comment on ``Scaling of power spectrum of extinction events  

E-Print Network [OSTI]

Discussion Fractal power spectra plotted upside-down Comment on ``Scaling of power spectrum. Dimri and Pra- kash interpret their results as demonstrating a fractal pattern in the fossil record or not the underlying data are fractal. Similarly, their use of interpolated time series (in their ¢gures 1b,d, 2a,b, 3a

Kirchner, James W.

97

Geosynchronous Energetic Particle (EP) Data Plots from Los Alamos National Laboratory (LANL)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

LANL's Geosynchronous Energetic Particle activities include collecting and analyzing data from ten satellites in an ongoing program sponsored by DOE.  Data acquisition has been continuous since 1976 and is received in real time 24 hours a day.  The website provides access to Low Energy proton and electron summary plots, showing spin-averaged fluxes from each satellite for each day since July 4, 1976.

Belian, Dick; Reeves, Geoff; Dors, Eric

98

41JUNE 2005AMERICAN METEOROLOGICAL SOCIETY | (not shown). This warm,  

E-Print Network [OSTI]

41JUNE 2005AMERICAN METEOROLOGICAL SOCIETY | (not shown). This warm, southerly flow accelerates to intense solar radiation, which lead to an early onset of melt. Therefore, an early and pro- longed meltW South 2004 (1), 2003 (2) Egedesminde 68.7ÂşN, 52.8ÂşW Central west 2004 (2), 2003 (1) Tasiilaq 65.6ÂşN, 37

Box, Jason E.

99

NASA-Surface Meteorology and Solar Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area EnergyMohawkaccrediationNASA-Surface Meteorology and

100

Design of field test plots for a sloped waste rock surface  

SciTech Connect (OSTI)

Westmin Resources Limited is a Western Canadian mining company with producing interests in base and precious metals and coals. Westmin`s Myra Falls Operations produce copper, zinc, and gold concentrates. The Myra Falls Operations are located in the central interior of Vancouver Island in a hanging glacial valley. Mean annual precipitation is approximately 3,000 mm with more than 75% occurring during the months of October to April. Historic surface deposition of waste rock has resulted in acid rock drainage (ARD). An applied research program was initiated to develop a cover system for the waste rock material at the Myra Falls site. The objective is to develop a cover system which controls the ingress of oxygen and infiltration of water, while providing a medium for sustainable vegetation that is consistent with the end land use of the area. Progress to date suggests that modified local till materials (amended with either fly ash or bentonite) can be used in soil cover construction. Four test plots were designed using two-dimensional saturated-unsaturated modelling tools to ensure that the performance of each test plot was representative of a full scale ARD cover system. This paper summarizes the design philosophy and principles of the cover system as well as the methodology for the two-dimensional numerical modelling program. Conclusions and results from the numerical modelling program are presented with a focus on implications for construction of the field test plots and installation of the performance monitoring instruments. The numerical modelling demonstrated that the hydraulic performance of a soil cover system placed on a sloped waste rock surface will be much different than that predicted by idealized one-dimensional numerical models, and in general current design methodologies. The modelling clearly demonstrated that the design of small scale field test plots was not a simple task. The physical dimensions of the field test plots had a significant impact on the ideal location for monitoring instruments and incorrect placement of instruments would lead to an erroneous measure of test plot performance.

O`Kane, M. [O`Kane Consultants, Inc., Saskatoon, Saskatchewan (Canada); Stoicescu, J.; Haug, M. [M.D. Haug and Associates Ltd., Saskatoon, Saskatchewan (Canada); Januszewski, S. [Westmin Resources Ltd., Campbell River, British Columbia (Canada). Myra Falls Operations; Mchaina, D.M. [Westmin Resources Ltd., Vancouver, British Columbia (Canada)

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Amplitude Analysis of the $D^+ \\to K^0_S ?^+ ?^0$ Dalitz Plot  

E-Print Network [OSTI]

We perform an analysis of the $D^+ \\to K^0_S \\pi^+ \\pi^0$ Dalitz plot using a data set of 2.92 fb$^{-1}$ of $e^+e^-$ collisions at the $\\psi(3770)$ mass accumulated by the BESIII Experiment, in which 166694 candidate events are selected with a background of 15.1%. The Dalitz plot is found to be well-represented by a combination of six quasi-two-body decay channels ($K^0_S\\rho^+$, $K^0_S\\rho(1450)^+$, $\\overline{K}^{*0}\\pi^+$, $\\overline{K}_0(1430)^0\\pi^+$, $\\overline{K}(1680)^0\\pi^+$, $\\overline{\\kappa}^0\\pi^+$) plus a small non-resonant component. Using the fit fractions from this analysis, partial branching ratios are updated with higher precision than previous measurements.

BESIII Collaboration; M. Ablikim; M. N. Achasov; X. C. Ai; O. Albayrak; M. Albrecht; D. J. Ambrose; F. F. An; Q. An; J. Z. Bai; R. Baldini Ferroli; Y. Ban; J. V. Bennett; M. Bertani; J. M. Bian; E. Boger; O. Bondarenko; I. Boyko; S. Braun; R. A. Briere; H. Cai; X. Cai; O. Cakir; A. Calcaterra; G. F. Cao; S. A. Cetin; J. F. Chang; G. Chelkov; G. Chen; H. S. Chen; J. C. Chen; M. L. Chen; S. J. Chen; X. Chen; X. R. Chen; Y. B. Chen; H. P. Cheng; X. K. Chu; Y. P. Chu; D. Cronin-Hennessy; H. L. Dai; J. P. Dai; D. Dedovich; Z. Y. Deng; A. Denig; I. Denysenko; M. Destefanis; W. M. Ding; Y. Ding; C. Dong; J. Dong; L. Y. Dong; M. Y. Dong; S. X. Du; J. Z. Fan; J. Fang; S. S. Fang; Y. Fang; L. Fava; C. Q. Feng; C. D. Fu; O. Fuks; Q. Gao; Y. Gao; C. Geng; K. Goetzen; W. X. Gong; W. Gradl; M. Greco; M. H. Gu; Y. T. Gu; Y. H. Guan; A. Q. Guo; L. B. Guo; T. Guo; Y. P. Guo; Y. L. Han; F. A. Harris; K. L. He; M. He; Z. Y. He; T. Held; Y. K. Heng; Z. L. Hou; C. Hu; H. M. Hu; J. F. Hu; T. Hu; G. M. Huang; G. S. Huang; H. P. Huang; J. S. Huang; L. Huang; X. T. Huang; Y. Huang; T. Hussain; C. S. Ji; Q. Ji; Q. P. Ji; X. B. Ji; X. L. Ji; L. L. Jiang; L. W. Jiang; X. S. Jiang; J. B. Jiao; Z. Jiao; D. P. Jin; S. Jin; T. Johansson; N. Kalantar-Nayestanaki; X. L. Kang; X. S. Kang; M. Kavatsyuk; B. Kloss; B. Kopf; M. Kornicer; W. Kuehn; A. Kupsc; W. Lai; J. S. Lange; M. Lara; P. Larin; M. Leyhe; C. H. Li; Cheng Li; Cui Li; D. Li; D. M. Li; F. Li; G. Li; H. B. Li; J. C. Li; K. Li; K. Li; Lei Li; P. R. Li; Q. J. Li; T. Li; W. D. Li; W. G. Li; X. L. Li; X. N. Li; X. Q. Li; Z. B. Li; H. Liang; Y. F. Liang; Y. T. Liang; D. X. Lin; B. J. Liu; C. L. Liu; C. X. Liu; F. H. Liu; Fang Liu; Feng Liu; H. B. Liu; H. H. Liu; H. M. Liu; J. Liu; J. P. Liu; K. Liu; K. Y. Liu; P. L. Liu; Q. Liu; S. B. Liu; X. Liu; Y. B. Liu; Z. A. Liu; Zhiqiang Liu; Zhiqing Liu; H. Loehner; X. C. Lou; G. R. Lu; H. J. Lu; H. L. Lu; J. G. Lu; X. R. Lu; Y. Lu; Y. P. Lu; C. L. Luo; M. X. Luo; T. Luo; X. L. Luo; M. Lv; F. C. Ma; H. L. Ma; Q. M. Ma; S. Ma; T. Ma; X. Y. Ma; F. E. Maas; M. Maggiora; Q. A. Malik; Y. J. Mao; Z. P. Mao; J. G. Messchendorp; J. Min; T. J. Min; R. E. Mitchell; X. H. Mo; Y. J. Mo; H. Moeini; C. Morales Morales; K. Moriya; N. Yu. Muchnoi; H. Muramatsu; Y. Nefedov; I. B. Nikolaev; Z. Ning; S. Nisar; X. Y. Niu; S. L. Olsen; Q. Ouyang; S. Pacetti; M. Pelizaeus; H. P. Peng; K. Peters; J. L. Ping; R. G. Ping; R. Poling; N. Q.; M. Qi; S. Qian; C. F. Qiao; L. Q. Qin; X. S. Qin; Y. Qin; Z. H. Qin; J. F. Qiu; K. H. Rashid; C. F. Redmer; M. Ripka; G. Rong; X. D. Ruan; A. Sarantsev; K. Schoenning; S. Schumann; W. Shan; M. Shao; C. P. Shen; X. Y. Shen; H. Y. Sheng; M. R. Shepherd; W. M. Song; X. Y. Song; S. Spataro; B. Spruck; G. X. Sun; J. F. Sun; S. S. Sun; Y. J. Sun; Y. Z. Sun; Z. J. Sun; Z. T. Sun; C. J. Tang; X. Tang; I. Tapan; E. H. Thorndike; D. Toth; M. Ullrich; I. Uman; G. S. Varner; B. Wang; D. Wang; D. Y. Wang; K. Wang; L. L. Wang; L. S. Wang; M. Wang; P. Wang; P. L. Wang; Q. J. Wang; S. G. Wang; W. Wang; X. F. Wang; Y. D. Wang; Y. F. Wang; Y. Q. Wang; Z. Wang; Z. G. Wang; Z. H. Wang; Z. Y. Wang; D. H. Wei; J. B. Wei; P. Weidenkaff; S. P. Wen; M. Werner; U. Wiedner; M. Wolke; L. H. Wu; N. Wu; Z. Wu; L. G. Xia; Y. Xia; D. Xiao; Z. J. Xiao; Y. G. Xie; Q. L. Xiu; G. F. Xu; L. Xu; Q. J. Xu; Q. N. Xu; X. P. Xu; Z. Xue; L. Yan; W. B. Yan; W. C. Yan; Y. H. Yan; H. X. Yang; L. Yang; Y. Yang; Y. X. Yang; H. Ye; M. Ye; M. H. Ye; B. X. Yu; C. X. Yu; H. W. Yu; J. S. Yu; S. P. Yu; C. Z. Yuan; W. L. Yuan; Y. Yuan; A. A. Zafar; A. Zallo; S. L. Zang; Y. Zeng; B. X. Zhang; B. Y. Zhang; C. Zhang; C. B. Zhang; C. C. Zhang; D. H. Zhang; H. H. Zhang; H. Y. Zhang; J. J. Zhang; J. Q. Zhang; J. W. Zhang; J. Y. Zhang; J. Z. Zhang; S. H. Zhang; X. J. Zhang; X. Y. Zhang; Y. Zhang; Y. H. Zhang; Z. H. Zhang; Z. P. Zhang; Z. Y. Zhang; G. Zhao; J. W. Zhao; Lei Zhao; Ling Zhao; M. G. Zhao; Q. Zhao; Q. W. Zhao; S. J. Zhao; T. C. Zhao; X. H. Zhao; Y. B. Zhao; Z. G. Zhao; A. Zhemchugov; B. Zheng; J. P. Zheng; Y. H. Zheng; B. Zhong; L. Zhou; Li Zhou; X. Zhou; X. K. Zhou; X. R. Zhou; X. Y. Zhou; K. Zhu; K. J. Zhu; X. L. Zhu; Y. C. Zhu; Y. S. Zhu; Z. A. Zhu; J. Zhuang; B. S. Zou; J. H. Zou

2014-01-16T23:59:59.000Z

102

The effects of competition on family rankings in progeny tests of different plot design  

E-Print Network [OSTI]

Research Area Cherokee County, Texas A. J. Hodges Experimental Sabine Parish, Louisiana Temple Research Area Cherokee County, Texas Temple Research Area Cherokee County, Texas Stephen F. Austin Exp. Fo Nacogdoches County, Texas A. J. Hodges... was performed on Texas Forest Service plantation 006. The test was an open-pollinated superior loblolly pine progeny test made up of IOO-tree square block plots and was established in Cherokee 22 County, Texas in 1956-57. The test individuals were planted...

Morrow, Daniel Franklin

2012-06-07T23:59:59.000Z

103

Application of the transient, isochronal p/z plotting method to multilayered reservoirs  

E-Print Network [OSTI]

. The economic decisions concerning the optimum exploitation and management of the resources are made on the basis of the revenue to be earned from the sale of the produced hydrocarbons. Major reservoir engineering decisions are also made on the basis...APPLICATION OF THE TRANSIENT, ISOCHRONAL p/z PLOTTING METHOD TO MULTILAYERED RESERVOIRS A Thesis by RA SHMIN RAMESH DANDEKAR Submitted to the Office of Graduate Studies of Texas A&M University in panial fulfillment of the requirements...

Dandekar, Rashmin Ramesh

1992-01-01T23:59:59.000Z

104

TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions  

E-Print Network [OSTI]

Transverse-momentum-dependent distributions (TMDs) are central in high-energy physics from both theoretical and phenomenological points of view. In this manual we introduce the library, TMDlib, of fits and parameterisations for transverse-momentum-dependent parton distribution functions (TMD PDFs) and fragmentation functions (TMD FFs) together with an online plotting tool, TMDplotter. We provide a description of the program components and of the different physical frameworks the user can access via the available parameterisations.

F. Hautmann; H. Jung; M. Krämer; P. J. Mulders; E. R. Nocera; T. C. Rogers; A. Signori

2014-08-13T23:59:59.000Z

105

Using exploratory data analysis modified Box Plots to enhance Monte Carlo simulated Range Estimating Decision Technology  

E-Print Network [OSTI]

of the thesis is written with the intent of reviewing some of the significant pieces of literature relating to Monte Carlo simulated REDT and exploratory data analysis Box Plots. In 1964 David Hertz published an article in the Harvard Business Review... entitled, "Risk Analysis in Capital Investment" (Hertz 1964). While this article does not directly discuss range estimating, it is the foundation for the current REDT theory. In his atticle, Hertz discussed the problems associated with estimating...

Clutter, David John

1992-01-01T23:59:59.000Z

106

Dalitz Plot Analysis of D0-->K0bar K+ K-  

E-Print Network [OSTI]

A Dalitz plot analysis of approximately 12500 D0 events reconstructed in the hadronic decay D0-->K0bar K+ K- is presented. This analysis is based on a data sample of 91.5 fb-1 collected with the BaBar detector at the PEP-II asymmetric-energy e+ e- storage rings at SLAC running at center-of-mass energies on and 40 MeV below the Y4S resonance. The events are selected from e+ e- --> c cbar annihilations using the decay D*+ --> D0 pi+. The following ratio of branching fractions has been obtained: BR = Gamma(D0-->K0bar K+ K-)/Gamma(D0-->K0bar pi+ pi-) = (15.8+/-0.1(stat.)+/-0.5(syst.)x 10-2 Estimates of fractions and phases for resonant and non-resonant contributions to the Dalitz plot are also presented. The a0(980)-->K Kbar projection has been extracted with little background. A search for CP asymmetries on the Dalitz plot has been performed.

B. Aubert; BABAR Collaboration

2005-09-13T23:59:59.000Z

107

Overview of R Plots Base LTSA Nonlinear Wavelet SDE UnitRoot Topics in Statistical Computing with R  

E-Print Network [OSTI]

Overview of R Plots Base LTSA Nonlinear Wavelet SDE UnitRoot Topics in Statistical Computing with R Base LTSA Nonlinear Wavelet SDE UnitRoot What is R? Talk website My talk is based on the article website. #12;Overview of R Plots Base LTSA Nonlinear Wavelet SDE UnitRoot What is R? Quantitative

McLeod, Ian

108

GRAFLAB 2.3 for UNIX - A MATLAB database, plotting, and analysis tool: User`s guide  

SciTech Connect (OSTI)

This report is a user`s manual for GRAFLAB, which is a new database, analysis, and plotting package that has been written entirely in the MATLAB programming language. GRAFLAB is currently used for data reduction, analysis, and archival. GRAFLAB was written to replace GRAFAID, which is a FORTRAN database, analysis, and plotting package that runs on VAX/VMS.

Dunn, W.N.

1998-03-01T23:59:59.000Z

109

Relationship between meteorological variables and total suspended and heavy metal particulates in Little Rock, Arkansas  

E-Print Network [OSTI]

RELATIONSHIP BETWEEN METEOROLOGICAL VARIABLES AND TOTAL SUSPENDED AND HEAVY NFXAL PARTICULATES IN LITTLE ROCK, ARKANSAS A Thesis MARY GWENDOLl'N AVERY Submitted to the Graduate College of Texas ALM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1985 Major Subject: Meteorology RELATIONSHIP BETWEEN METEOROLOGICAL VARIABLES AND TOTAL SUSPENDED AND HEAVY METAL PARTICULATES IN LITTLE ROCK, ARKANSAS A Thesis MARY GWENDOLYN AVERY Approved...

Avery, Mary Gwendolyn

1985-01-01T23:59:59.000Z

110

Meteorological Observations for Renewable Energy Applications at Site 300  

SciTech Connect (OSTI)

In early October 2010, two Laser and Detection Ranging (LIDAR) units (LIDAR-96 and LIDAR-97), a 3 m tall flux tower, and a 3 m tall meteorological tower were installed in the northern section of Site 300 (Figure 1) as a first step in development of a renewable energy testbed facility. This section of the SMS project is aimed at supporting that effort with continuous maintenance of atmospheric monitoring instruments capable of measuring vertical profiles of wind speed and wind direction at heights encountered by future wind power turbines. In addition, fluxes of energy are monitored to estimate atmospheric mixing and its effects on wind flow properties at turbine rotor disk heights. Together, these measurements are critical for providing an accurate wind resource characterization and for validating LLNL atmospheric prediction codes for future renewable energy projects at Site 300. Accurate, high-resolution meteorological measurements of wind flow in the planetary boundary layer (PBL) and surface-atmosphere energy exchange are required for understanding the properties and quality of available wind power at Site 300. Wind speeds at heights found in a typical wind turbine rotor disk ({approx} 40-140 m) are driven by the synergistic impacts of atmospheric stability, orography, and land-surface characteristics on the mean wind flow in the PBL and related turbulence structures. This section of the report details the maintenance and labor required in FY11 to optimize the meteorological instruments and ensure high accuracy of their measurements. A detailed look at the observations from FY11 is also presented. This portion of the project met the following milestones: Milestone 1: successful maintenance and data collection of LIDAR and flux tower instruments; Milestone 2: successful installation of solar power for the LIDAR units; and Milestone 3: successful implementation of remote data transmission for the LIDAR units.

Wharton, S; Alai, M; Myers, K

2011-10-26T23:59:59.000Z

111

E-Print Network 3.0 - area-specific 1982--86 meteorological Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

junior year ... Source: Droegemeier, Kelvin K. - School of Meteorology, University of Oklahoma Collection: Geosciences 5 INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. 19:...

112

E-Print Network 3.0 - air pollution meteorology Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air pollution meteorology Page: << < 1 2 3 4 5 > >> 1 Air Pollution Physics and Chemistry...

113

Effects of valley meteorology on forest pesticide spraying  

SciTech Connect (OSTI)

Pacific Northwest Laboratory conducted this study for the Missoula Technology and Development Center of the US Department of Agriculture's Forest Service. The purpose of the study was to summarize recent research on valley meteorology during the morning transition period and to qualitatively evaluate the effects of the evolution of valley temperature inversions and wind systems on the aerial spraying of pesticides in National Forest areas of the western United States. Aerial spraying of pesticides and herbicides in forests of the western United States is usually accomplished in the morning hour after first light, during the period known to meteorologists as the morning transition period.'' This document describes the key physical processes that occur during the morning transition period on undisturbed days and the qualitative effects of these processes on the conduct of aerial spraying operations. Since the timing of valley meteorological events may be strongly influenced by conditions that are external to the valley, such as strong upper-level winds or the influence of clouds on the receipt of solar energy in the valley, some remarks are made on the qualitative influence of these processes. Section 4 of this report suggests ways to quantify some of the physical processes to provide useful guidance for the planning and conduct of spraying operations. 12 refs., 9 figs.

Whiteman, C.D.

1990-04-01T23:59:59.000Z

114

A Note on Several Meteorological Topics Related to Polar Regions  

E-Print Network [OSTI]

Analysis of the meteorology of Polar Regions is fundamental to the process of understanding the global climatology of the Earth and Earth-like planets. The nature of air circulation in a polar vortex is of preliminary importance. I have show that the local and continental spatiotemporal relationship between near surface wind events is self-organized criticality. In particular, the wind event size, wind event duration, and duration of quiescent wind event are well approximated by power-law distributions. On a continental scale, the wind events in the Antarctic tend to be self-organized criticality with ergodic properties. A similar self-organized criticality wind event was also found in Taylor Valley located at McMurdo Dry Valleys discovered by Captain Scott's expedition. Captain Scott's meteorological Terra Nova record was also examined. I have also revisited and re-analyzed wind events in Hornsund at Spitsbergen Island, in terms of marginal probabilities and marginal copulas which describe positive L\\'evy pr...

Sienicki, Krzysztof

2011-01-01T23:59:59.000Z

115

Fossil Fuel Carbon Dioxide Emissions Data and Data Plots from Project Vulcan  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Explore the Vulcan website for the Vulcan gridded data, methodological details, publications, plots and analysis.[Taken from "About Project Vulcan" at http://www.purdue.edu/eas/carbon/vulcan/index.php]Also, see the peer-reviewed paper that provides a "core" description for this project: Gurney, K.R., D. Mendoza, Y. Zhou, M Fischer, S. de la Rue du Can, S. Geethakumar, C. Miller (2009) The Vulcan Project: High resolution fossil fuel combustion CO2 emissions fluxes for the United States, Environ. Sci. Technol., 43, doi:10.1021/es900,806c.

Gurney, Kevin

116

Search for CP Violation in the Dalitz-Plot Analysis of D+/- -> K+ K- pi+/-  

E-Print Network [OSTI]

We report on a search for CP asymmetry in the singly Cabibbo-suppressed decay D+ -> K+ K- pi+ using a data sample of 818 pb-1 accumulated with the CLEO-c detector on the psi(3770) resonance. A Dalitz-plot analysis is used to determine the amplitudes of the intermediate states. We find no evidence for CP violation either in specific two-body amplitudes or integrated over the entire phase space. The CP asymmetry in the latter case is measured to be (-0.03+-0.84+-0.29)%.

CLEO Collaboration; P. Rubin

2008-10-09T23:59:59.000Z

117

Dalitz-Plot Analysis of the Decays B+/- -> K+/- pi-/+ pi+/-  

SciTech Connect (OSTI)

We report a Dalitz-plot analysis of the charmless hadronic decays of charged B mesons to the state K{sup {+-}} {pi}{sup {-+}}{pi}{sup {+-}}. Using a sample of 226.0 {+-} 2.5 million B{bar B}pairs collected by the BABAR detector, measure the magnitudes and phases of the intermediate resonant and nonresonant amplitudes both charge conjugate decays. We present measurements of the corresponding branching and their charge asymmetries that supersede those of previous BABAR analyses. We find the asymmetries to be consistent with zero.

Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San

2005-10-04T23:59:59.000Z

118

Site A/Plot M Disposal Site, Chicago, Illinois, Fact Sheet  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28SacandagaSite A/Plot M Disposal

119

Site A/Plot M, Illinois, Decommissioned Reactor Site Fact Sheet  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28SacandagaSite A/Plot M DisposalSite

120

Master thesis Solar Energy Meteorology Comparison of different methods to estimate cloud height for solar  

E-Print Network [OSTI]

Master thesis ­ Solar Energy Meteorology Comparison of different methods to estimate cloud height: · Interest in meteorology and solar energy · Experiences with data handling and analysis · Good programming for solar irradiance calculations In order to derive incoming solar irradiance at the earths surface

Peinke, Joachim

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Solar Energy Prediction: An International Contest to Initiate1 Interdisciplinary Research on Compelling Meteorological2  

E-Print Network [OSTI]

of meteorological problems in-44 cluding wind energy, air pollution, winter hydrometeor classification, and storm puter scientists, and specifically machine learning and data mining researchers, are develop-18 ing of meteorological problems including wind energy,22 storm classification, winter hydrometeor classification, and air

Hamill, Tom

122

Agricultural and Forest Meteorology 181 (2013) 143151 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

of the turbulence kinetic energy and fluxes above and beneath a tall open pine forest canopy Dean VickersAgricultural and Forest Meteorology 181 (2013) 143­151 Contents lists available at ScienceDirect Agricultural and Forest Meteorology journal homepage: www.elsevier.com/locate/agrformet Some aspects

Vickers, Dean

123

Workshop on Advances in Meteorology in Texas Department of Atmospheric Sciences, Texas A&M University  

E-Print Network [OSTI]

French · Meteorological education Chair - Craig Epifanio (TAMU) 10:15 AMS education guidelines and NWS) 10:55 Mentoring broadcast meteorology interns: Bob French (KBTX) 11:15 Questions for discussion Center, radar room, broad- cast facility, and observatory will be available. · Forecasting Chair - Gene

124

QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY Q. J. R. Meteorol. Soc. 133: 101106 (2007)  

E-Print Network [OSTI]

R. Durranc a Meteorological and Hydrological Service, Croatia b Department of Geophysics, Faculty of Science, University of Zagreb, Croatia c Department of Atmospheric Sciences, University of Washington, WA Stiperski, Meteorological and Hydrological Service, Gric 3, HR -10000 Zagreb, Croatia. E-mail: stiperski

125

AFFILIATIONS: Neggers--Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands; siebesma--Royal  

E-Print Network [OSTI]

AFFILIATIONS: Neggers--Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands; siebesma--Royal Netherlands Meteorological Institute (KNMI), De Bilt, and Delft University of Technology, Delft, Netherlands; Heus--Max Planck Institut fĂĽr Meteorologie, Hamburg, Germany CORRESPONDING AUTHOR: R

Siebesma, Pier

126

Master thesis in Leipzig Cooperation of TROPOS Leipzig and Solar Energy Meteorology at Uni Oldenburg  

E-Print Network [OSTI]

Master thesis in Leipzig ­ Cooperation of TROPOS Leipzig and Solar Energy Meteorology at Uni in meteorology, satellite remote sensing and solar energy · Experiences with data handling and analysis · Good at the surface can be determined from satellite data using the Heliosat method, which is widely used for solar

Peinke, Joachim

127

Plots and Figures from the Main Injector Neutrino Oscillation Search (MINOS) at Fermilab  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

MINOS, or Main Injector Neutrino Oscillation Search, is an experiment at Fermilab designed to study the phenomena known as neutrino oscillations. It uses a beam of neutrino particles produced by the NuMI beamline facility - Neutrinos at the Main Injector. The beam of neutrinos is sent through the two MINOS detectors, one at Fermilab and one in the Soudan Mine in northern Minnesota. The Minos for Scientists page provides a link to the data plots that are available to the public and also provides explanations for some of the recent results of the experiment. Another links leads to a long listing of MINOS publications in refereed journals. Photo galleries are found by checking the links on the left menu.

128

Performance and energy costs associated with scaling infrared heater arrays for warming field plots from 1 to 100 m  

SciTech Connect (OSTI)

To study the likely effects of global warming on open-field vegetation, hexagonal arrays of infrared heaters are currently being used for low-stature (<1 m) plants in small ({le}3 m) plots. To address larger ecosystem scales, herein we show that excellent uniformity of the warming can be achieved using nested hexagonal and rectangular arrays. Energy costs depend on the overall efficiency (useable infrared energy on the plot per electrical energy in), which varies with the radiometric efficiency (infrared radiation out per electrical energy in) of the individual heaters and with the geometric efficiency (fraction of thermal radiation that falls on useable plot area) associated with the arrangement of the heaters in an array. Overall efficiency would be about 26% at 4 ms{sup -1} wind speed for a single hexagonal array over a 3-m-diameter plot and 67% for a 199-hexagon honeycomb array over a 100-m-diameter plot, thereby resulting in an economy of scale.

Kimball B. A.; Lewin K.; Conley, M. M.

2012-04-01T23:59:59.000Z

129

Surface Meteorology, Barrow, Alaska, Area A, B, C and D, Ongoing from 2012  

SciTech Connect (OSTI)

Meteorological data are being collected at several points within four intensive study areas in Barrow. These data assist in the calculation of the energy balance at the land surface and are also useful as inputs into modeling activities.

Hinzman, Larry; Busey, Bob; Cable, William; Romanovsky, Vladimir

2014-12-04T23:59:59.000Z

130

METR 3223: Physical Meteorology II: Cloud Physics, Atmospheric Electricity and Optics  

E-Print Network [OSTI]

METR 3223: Physical Meteorology II: Cloud Physics, Atmospheric Electricity and Optics CLASS: Monday as atmospheric electricity and optics. Specific topics that will be covered are as follows: Cloud physics: Review Observation studies Atmospheric electricity: Electrostatics Electromagnetic wave Thunderstorm charging

Droegemeier, Kelvin K.

131

Surface Meteorology, Barrow, Alaska, Area A, B, C and D, Ongoing from 2012  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Meteorological data are being collected at several points within four intensive study areas in Barrow. These data assist in the calculation of the energy balance at the land surface and are also useful as inputs into modeling activities.

Hinzman, Larry; Busey, Bob; Cable, William; Romanovsky, Vladimir

132

Impact of land use change on a hydro-meteorological event in Kampala, Uganda  

E-Print Network [OSTI]

Impact of land use change on a hydro-meteorological event in Kampala, Uganda Problem statement Kampala is the capital city of Uganda on the northern shores of Lake Victoria. Here, future climate change

Jetten, Victor

133

11971197AUGUST 2007AMERICAN METEOROLOGICAL SOCIETY | The Global Ocean Data Assimilation  

E-Print Network [OSTI]

and in situ observations, for NWP, ocean forecasting, ecosystem applications, and climate research. BY C forecasting, military and defence operations, validating or forcing ocean and atmospheric models, ecosystem11971197AUGUST 2007AMERICAN METEOROLOGICAL SOCIETY | The Global Ocean Data Assimilation Experiment

Merchant, Chris

134

Ozone predictabilities due to meteorological uncertainties in the Mexico City basin using ensemble forecasts  

E-Print Network [OSTI]

The purpose of the present study is to investigate the sensitivity of ozone (O3)[(O subscript 3)] predictions in the Mexico City Metropolitan Area (MCMA) to meteorological initial uncertainties and planetary boundary layer ...

Bei, Naifang

135

Thermochemical plots using JCZS2i piece-wise curve fits.  

SciTech Connect (OSTI)

This report presents plots of specific heat, enthalpy, entropy, and Gibbs free energy for 1439 species in the JCZS2i database. Included in this set of species are 496 condensed-phase species and 943 gas-phase species. The gas phase species contain 80 anions and 112 cations for a total of 192 ions. The JCZS2i database is used in conjunction with the TIGER thermochemical code to predict thermodynamic states from ambient conditions to high temperatures and pressures. Predictions from the TIGER code using the JCZS2i database can be used in shock physics codes where temperatures may be as high as 20,000 K and ions may be present. Such high temperatures were not considered in the original JCZS database, and extrapolations made for these temperatures were unrealistic. For example, specific heat would sometimes go negative at high temperatures which fails the definition of specific heat. The JCZS2i database is a new version of the JCZS database that is being created to address these inaccuracies. The purpose of the current report is to visualize the high temperature extrapolations to insure that the specific heat, enthalpy, entropy, and Gibbs free energy predictions are reasonable up to 20,000 K.

Miller, David L.; Schoof, Justin C.; Hobbs, Michael L.

2013-10-01T23:59:59.000Z

136

Dalitz Plot Analysis of $B^0_d \\to K+ \\pi^- \\pi^0$ Decays  

SciTech Connect (OSTI)

This thesis describes a Dalitz plot analysis of B{sup 0} {yields} K{sup +}{pi}{sup -}{pi}{sup 0} decays. The data sample comprises 213 million {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Center in California (SLAC). Preliminary results are presented for measurements of the inclusive branching fraction, quasi-two-body fractions and CP-violating charge asymmetries for intermediate states including K*(892){sup +}{pi}{sup -} and {rho}(770){sup -}K{sup +}. Observations of B{sup 0} decays to the K{pi} S-wave intermediate states, K*{sub 0}(1430){sup +}{pi}{sup -} and K*{sub 0}(1430){sup 0}{pi}{sup 0}, are reported. Evidence of the decay B{sup 0} {yields} K*(892){sup 0}{pi}{sup 0} is seen. We set upper limits at 90% confidence level on branching fractions of the nonresonant and other less significant intermediate states.

Yu, Zhitang; /Wisconsin U., Madison

2006-05-05T23:59:59.000Z

137

Science Highlight June 2012 Catalyst Design: X-rays Cross-examine the Fuel Cell Volcano Plot  

E-Print Network [OSTI]

Science Highlight ­ June 2012 Catalyst Design: X-rays Cross-examine the Fuel Cell Volcano Plot, while fuel cells draw hydrogen or methanol from a tank and oxygen from air. While the overall chemical and examined the "tuning" of a bimetallic fuel cell catalyst using well-defined model systems, consisting

Wechsler, Risa H.

138

148 USDA Forest Service RMRS-P-53CD. 2008. The Hill Plots: A Rare Long-Term  

E-Print Network [OSTI]

of soil types and elevations. Materials associated with the Hill plots in- clude historical data, plant, historical personnel who worked on them, threats they have experienced, ecological insights they haveCoconinoNationalForest(J.Rolf,pers.comm.).Codes:PB=prescribed burn;PCT=pre-commercialthinning;PL=power/phonelinebuiltt

139

Analysis of 2011 Meteorological Data from the Knolls Atomic Power Laboratory and Kesselring Site Operations Facilities  

SciTech Connect (OSTI)

Both the Knolls Atomic Power Laboratory (KAPL) in Schenectady, NY and the Kesselring Site Operations (KSO) facility near Ballston Spa, NY are required to estimate the effects of hypothetical emissions of radiological material from their respective facilities by the US Environmental Protection Agency (EPA), which regulates these facilities. An atmospheric dispersion model known as CAP88, which was developed and approved by the EPA for such purposes, is used by KAPL and KSO to meet this requirement. CAP88 calculations over a given time period are based on statistical data on the meteorological conditions for that period. Both KAPL and KSO have on-site meteorological towers which take atmospheric measurements at a frequency ideal for EPA regulatory model input. However, an independent analysis and processing of the meteorological data from each tower is required to derive a data set appropriate for use in the CAP88 model. The National Atmospheric Release Advisory Center (NARAC) was contracted by KAPL to process the on-site data for the calendar year 2011. The purpose of this document is to: (1) summarize the procedures used in the preparation/analysis of the 2011 meteorological data; and (2) document adherence of these procedures to the guidance set forth in 'Meteorological Monitoring Guidance for Regulatory Modeling Applications', EPA document - EPA-454/R-99-005 (EPA-454). This document outlines the steps in analyzing and processing meteorological data from the Knolls Atomic Power Laboratory and Kesselring Site Operations facilities into a format that is compatible with the steady state dispersion model CAP88. This process is based on guidance from the EPA regarding the preparation of meteorological data for use in regulatory dispersion models. The analysis steps outlined in this document can be easily adapted to process data sets covering time period other than one year. The procedures will need to be modified should the guidance in EPA-454 be updated or revised.

Aluzzi, F J

2012-02-27T23:59:59.000Z

140

Climatic regulation of the Black Sea hydro-meteorological and ecological properties at interannual-to-decadal time scales  

E-Print Network [OSTI]

Climatic regulation of the Black Sea hydro-meteorological and ecological properties at interannual Available online 3 March 2006 Abstract An examination of a wide spectrum of hydro

Dippner, Joachim W.

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

AUGUST 2002 705H A N S T R U M E T A L . 2002 American Meteorological Society  

E-Print Network [OSTI]

-Season Tornadoes of California and Southern Australia BARRY N. HANSTRUM Bureau of Meteorology, Perth, Western Australia and Western Australia combined (gray) for each month for the 10 yr, 1987­96. FIG. 2. Map showing Australia, Australia GRAHAM A. MILLS Bureau of Meteorology Research Centre, Melbourne, Victoria, Australia

Doswell III, Charles A.

142

The New Mexico State Climate Office and CARSAME Portal for Community Access to Meteorological, Satellite, and Model Archives  

E-Print Network [OSTI]

The New Mexico State Climate Office and CARSAME Portal for Community Access to Meteorological and Environmental Sciences New Mexico State University dwdubois@nmsu.edu Our community data portal is using in Agriculture, Meteorology and Environment (CARSAME) and New Mexico Climate Center but not available

143

Abstract--Meteorological time series are characterized by important spatial and temporal variation. Model determination and  

E-Print Network [OSTI]

of the meteorological time series used, which includes the use of statistical techniques to detect whether there exist for the time series using an evolutionary algorithm that adaptively adjusts some of its parameters during its and temperatures collected in a region of Romania. The results are promising for the analysis of such time series

Fernandez, Thomas

144

Partial Support for the Federal Committee for Meteorological Services and Supporting Research  

SciTech Connect (OSTI)

DOE E-link Report Number DOE/ER62778 1999-2012 Please see attached Final Technical Report (size too large to post here). Annual Products Provided to DOE: Federal Plan for Meteorological Services and Supporting Research; National Hurricane Operations Plan; Interdepartmental Hurricane Conference Summary Report. All reports and publications can be found on the OFCM website, www.ofcm.noaa.gov.

Williamson, Samuel P

2012-04-30T23:59:59.000Z

145

QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY Q. J. R. Meteorol. Soc. 133: 21372141 (2007)  

E-Print Network [OSTI]

) Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/qj.179 A note on boundaryDepartment of Meteorology, University of Reading, UK bMet Office, Exeter, UK Abstract: The interaction between extratropical distributions and comparing the low-level winds, the differences are exposed and both of the proposed mechanisms

Reading, University of

146

15 NOVEMBER 2003 3585W A N G E T A L . 2003 American Meteorological Society  

E-Print Network [OSTI]

tropical to subtropical region is a relatively effective area for off-equatorial wind stress to generate-Equatorial Wind XIAOCHUN WANG* AND FEI-FEI JIN Department of Meteorology, School of Ocean and Earth Science and subtropical wind stress forcing. The results show that the wind stress forcing in the tropical and subtropical

Wang, Yuqing

147

Improvement of the European Wind Atlas Method by Spatial Interpolation of Meteorological Station Data  

E-Print Network [OSTI]

Improvement of the European Wind Atlas Method by Spatial Interpolation of Meteorological Station Data Hans Georg Beyer*, Matthias Bromeis, Detlev Heinemann, Thomas Pahlke**, Hans-Peter Waldl Energy of a spatial wind energy potential. We have investigated two types of spatial interpolation techniques

Heinemann, Detlev

148

Use of Advanced Meteorological Model Output for Coastal Ocean Modeling in Puget Sound  

SciTech Connect (OSTI)

It is a great challenge to specify meteorological forcing in estuarine and coastal circulation modeling using observed data because of the lack of complete datasets. As a result of this limitation, water temperature is often not simulated in estuarine and coastal modeling, with the assumption that density-induced currents are generally dominated by salinity gradients. However, in many situations, temperature gradients could be sufficiently large to influence the baroclinic motion. In this paper, we present an approach to simulate water temperature using outputs from advanced meteorological models. This modeling approach was applied to simulate annual variations of water temperatures of Puget Sound, a fjordal estuary in the Pacific Northwest of USA. Meteorological parameters from North American Region Re-analysis (NARR) model outputs were evaluated with comparisons to observed data at real-time meteorological stations. Model results demonstrated that NARR outputs can be used to drive coastal ocean models for realistic simulations of long-term water-temperature distributions in Puget Sound. Model results indicated that the net flux from NARR can be further improved with the additional information from real-time observations.

Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping

2011-06-01T23:59:59.000Z

149

Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with  

E-Print Network [OSTI]

Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent) In 2011, Lake Erie experienced the largest harmful algal bloom in its recorded history, with a peak blooms in Lake Erie. extreme precipitation events | climate change | aquatic ecology | Microcystis sp

150

Selected Studies in Mountain Meteorology From Downslope Windstorms to Air Pollution Transport  

E-Print Network [OSTI]

strong wind shear and triggers shear-flow instability, which leads to the formation of a turbulent wake of Innsbruck by Alexander Gohm Innsbruck, April 2010 #12;#12;To Eva mountain wind i #12;ii #12;Preface in the field of mountain meteorology form the basis of this habilitation thesis. The overall goal is to improve

Gohm, Alexander

151

Agricultural and Forest Meteorology 113 (2002) 223243 Energy balance closure at FLUXNET sites  

E-Print Network [OSTI]

Agricultural and Forest Meteorology 113 (2002) 223­243 Energy balance closure at FLUXNET sites Kell, USA p Department of Forest Science and Resources, University of Tuscia, 1-01100 Viterbo, Italy q Abstract A comprehensive evaluation of energy balance closure is performed across 22 sites and 50 site

Cohen, Ronald C.

152

Agricultural and Forest Meteorology 123 (2004) 159176 Comparison of different chamber techniques for  

E-Print Network [OSTI]

Agricultural and Forest Meteorology 123 (2004) 159­176 Comparison of different chamber techniques �strengl, Waldemar Zieglerm, Peter Anthonim, Anders Lindrothn, Pertti Haria a Department of Forest Ecology Sciences and Energy Research, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel h

Yakir, Dan

153

Meteorologically driven trends in sea level rise Alexander S. Kolker1  

E-Print Network [OSTI]

Meteorologically driven trends in sea level rise Alexander S. Kolker1 and Sultan Hameed2 Received] Determining the rate of global sea level rise (GSLR) during the past century is critical to understanding a suite of coastal oceanographic processes. These findings reduce variability in regional sea level rise

Hameed, Sultan

154

METR 3223: Physical Meteorology II: Cloud Physics, Atmospheric Electricity and Optics  

E-Print Network [OSTI]

METR 3223: Physical Meteorology II: Cloud Physics, Atmospheric Electricity and Optics CLASS: Monday of the physical states and processes of clouds and precipitation as well as atmospheric electricity and optics and results Radar observation and estimation Atmospheric electricity: Electrostatics Electromagnetic wave

Droegemeier, Kelvin K.

155

DECEMBER 2004 1117D A I E T A L . 2004 American Meteorological Society  

E-Print Network [OSTI]

Drought Severity Index for 1870­2002: Relationship with Soil Moisture and Effects of Surface Warming AIGUO.g., meteorological, hydrological, and agricultural droughts; see Wilhite 2000 and Keyantash and Dracup 2002 (Manuscript received 24 February 2004, in final form 26 May 2004) ABSTRACT A monthly dataset of Palmer Drought

Dai, Aiguo

156

Hanford Meteorological Station computer codes: Volume 8, The REVIEW computer code  

SciTech Connect (OSTI)

The Hanford Meteorological Station (HMS) routinely collects meteorological data from sources on and off the Hanford Site. The data are averaged over both 15 minutes and 1 hour and are maintained in separate databases on the Digital Equipment Corporation (DEC) VAX 11/750 at the HMS. The databases are transferred to the Emergency Management System (EMS) DEC VAX 11/750 computer. The EMS is part of the Unified Dose Assessment Center, which is located on on the ground-level floor of the Federal building in Richland and operated by Pacific Northwest Laboratory. The computer program REVIEW is used to display meteorological data in graphical and alphanumeric form from either the 15-minute or hourly database. The code is available on the HMS and EMS computer. The REVIEW program helps maintain a high level of quality assurance on the instruments that collect the data and provides a convenient mechanism for analyzing meteorological data on a routine basis and during emergency response situations.

Andrews, G.L.; Burk, K.W.

1988-08-01T23:59:59.000Z

157

1827DECEMBER 2003AMERICAN METEOROLOGICAL SOCIETY | otating tanks have been in use for many years  

E-Print Network [OSTI]

1827DECEMBER 2003AMERICAN METEOROLOGICAL SOCIETY | R otating tanks have been in use for many years in a wide variety of sizes, from small record-player-type turntables with 10-cm-diameter tanks to the world's largest turntable with its 13-m-diameter tank at Grenoble, France (Sommeria 2001). Rotating table

Schubert, Wayne H.

158

STATISTICAL METHODS FOR RELATING TEMPERATURE EXTREMES TO LARGE-SCALE METEOROLOGICAL PATTERNS  

E-Print Network [OSTI]

1 STATISTICAL METHODS FOR RELATING TEMPERATURE EXTREMES TO LARGE-SCALE METEOROLOGICAL PATTERNS Rick Extreme Value Analysis: Block Maxima (3) Conditional Extreme Value Analysis: Peaks over Threshold (4) Application to California Temperature Extremes (5) Remaining Work #12;3 #12;4 #12;5 (1) Introduction

Katz, Richard

159

The effect of time-since-treatment and other factors on the perceived scenic beauty of southern pine-oak forest plots  

E-Print Network [OSTI]

This study investigated the effects of silvicultural treatment, season, and time-since-treatment on the perceived scenic beauty of 20 pine-oak plots on the Ouachita National Forest, Arkansas. Treatments consisted of reproduction cuts in which...

Gritter, Molly Kay

1997-01-01T23:59:59.000Z

160

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Los Angeles, California (Data)  

SciTech Connect (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Stoffel, T.; Andreas, A.

2010-04-26T23:59:59.000Z

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Milford, Utah (Data)  

SciTech Connect (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2010-07-14T23:59:59.000Z

162

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); La Ola Lanai, Hawaii (Data)  

SciTech Connect (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2009-07-22T23:59:59.000Z

163

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Cedar City, Utah (Data)  

SciTech Connect (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2010-07-13T23:59:59.000Z

164

Solar Resource & Meteorological Assessment Project (SOLRMAP): Observed Atmospheric and Solar Information System (OASIS); Tucson, Arizona (Data)  

SciTech Connect (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2010-11-03T23:59:59.000Z

165

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Kalaeloa Oahu, Hawaii (Data)  

SciTech Connect (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2010-03-16T23:59:59.000Z

166

Solar Resource & Meteorological Assessment Project (SOLRMAP): Sun Spot Two; Swink, Colorado (Data)  

SciTech Connect (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2010-11-10T23:59:59.000Z

167

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Los Angeles, California (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Stoffel, T.; Andreas, A.

168

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Cedar City, Utah (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

169

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Milford, Utah (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

170

Hanford Meteorological Station computer codes: Volume 1, The GEN computer code  

SciTech Connect (OSTI)

The Hanford Meteorological Station, operated by Pacific Northwest Laboratory, issues general weather forecasts twice a day. The GEN computer code is used to archive the 24-hour forecasts and apply quality assurance checks to the forecast data. This code accesses an input file, which contains the date and hour of the previous forecast, and an output file, which contains 24-hour forecasts for the current month. As part of the program, a data entry form consisting of 14 fields that describe various weather conditions must be filled in. The information on the form is appended to the current 24-hour monthly forecast file, which provides an archive for the 24-hour general weather forecasts. This report consists of several volumes documenting the various computer codes used at the Hanford Meteorological Station. This volume describes the implementation and operation of the GEN computer code at the station.

Buck, J.W.; Andrews, G.L.

1987-07-01T23:59:59.000Z

171

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Kalaeloa Oahu, Hawaii (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

172

Solar Resource & Meteorological Assessment Project (SOLRMAP): Observed Atmospheric and Solar Information System (OASIS); Tucson, Arizona (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

173

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); La Ola Lanai, Hawaii (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

174

Solar Resource & Meteorological Assessment Project (SOLRMAP): Sun Spot Two; Swink, Colorado (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

175

24 M meteorological tower data report period: January--December, 1994  

SciTech Connect (OSTI)

This report was prepared by the Desert Research Institute (DRI) for the U.S. Department of Energy (DOE). It summarizes meteorological data collected at the 24 meter tower at the Nevada Test Site Hazardous Material Spill Center (HAZMAT) located at Frenchman Flat near Mercury, Nevada, approximately 75 miles northwest of Las Vegas, Nevada. The tower was originally installed in July, 1993 to characterize baseline conditions for an EPA sponsored experimental research program at the HAZMAT.

Freeman, D.; Bowen, J.; Egami, R. [and others] [and others

1997-08-01T23:59:59.000Z

176

Mesoscale convective complex vs. non-mesoscale convective complex thunderstorms: a comparison of selected meteorological variables  

E-Print Network [OSTI]

MESOSCALE CONVECTIVE CCMPLLX VS. NON-MESOSCALE CONVECTIVE COMPLEX THUNDERSTORMS: A COMPARISON OF SELECTED METEOROLOGICAL VARIABLES A Thesis MICHAkL EUGENE JJOOFARD Submitted to the Graduate College of Texas AJkM University in partial... by MICHAEL EUGENE HOOFARD Approved as to style and content by: a ter . enry (Chairman of Committee) %~5 44 c5 c usan gur c (Member) ona . oc ing (Member) ames . cogg (Head of Department) August 1986 ABSTRACT Nesoscale Convective Complex vs. Non...

Hoofard, Michael Eugene

1986-01-01T23:59:59.000Z

177

Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. (2013) Phenomenology of Sahelian convection observed in Niamey  

E-Print Network [OSTI]

Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. (2013) Phenomenology SM. 2013. Phenomenology of Sahelian convection observed in Niamey during the early monsoon. Q. J. R

Guichard, Francoise

178

Meteorological Tables for Determination of Precipitable Water, Temperatures and Pressures Aloft for a Saturated Pseudoadiabatic Atmosphere -- in the Metric System  

E-Print Network [OSTI]

TR-16 1968 Meteorological Tables for Determination of Precipitable Water, Temperatures and Pressures Aloft for a Saturated Pseudoadiabatic Atmosphere?in the Metric System W.O. Eihle R.J. Powers R.A. Clark...

Eihle, W. O.; Powers, R. J.; Clark, R.A.

179

24 m meteorological tower data report period: January through December, 1996  

SciTech Connect (OSTI)

This report was prepared by the Desert Research Institute (DRI) for the US Department of Energy (DOE). It summarizes meteorological data collected at the 24 meter tower at the Nevada Test Site Hazardous Material Spill Center (HAZMAT) located at Frenchman Flat near Mercury, Nevada, approximately 75 miles northwest of Las Vegas, Nevada. The tower was originally installed in July, 1993 to characterize baseline conditions for an EPA sponsored experimental research program at the HAZMAT. This report presents results of the monitoring for January--December, 1996, providing: a status of the measurement systems during the report period and a summary of the meteorological conditions at the HAZMAT during the report period. The scope of the report is limited to summary data analyses and does not include extensive meteorological analysis. The tower was instrumented at 8 levels. Wind speed, wind direction, and temperature were measured at all 8 levels. Relative humidity was measured at 3 levels. Solar and net radiation were measured at 2 meters above the ground. Barometric pressure was measured at the base of the tower and soil temperature was measured near the base of the tower.

Freeman, D.; Bowen, J.; Egami, R.; Coulombe, W.; Crow, D.; Cristani, B.; Schmidt, S.

1997-12-01T23:59:59.000Z

180

An application of a meteorological data assimilation system to an air quality simulation  

SciTech Connect (OSTI)

The need to calculate air pollutant exposure metrics for longer time periods, i.e., seasonal and annual, has generated a need to conduct long-term simulations using regional-scale Eulerian air quality models. Hourly-resolved meteorological and micro-meteorological fields for an entire year are required as input to the air quality models. In this paper, the authors describe the application of a meteorological data assimilation system to provide high-quality fields to drive a regional air quality model. The process of assimilation blends multiple data sources (large-scale gridded data, surface and upper air observations, satellite imagery, and radar data) into a unified atmospheric representation. The authors have used an assimilation system developed at the Center for the Analysis and Prediction of Storms at the University of Oklahoma. The modeling domain covers most of North America and 1995 was chosen as the simulation year. The data used in the assimilation include the NCAR/NCEP global reanalysis fields combined with North American surface and radiosonde data. The authors will describe modifications made to the assimilation system to enable estimation of a number of air-quality related quantities not normally calculated, such as Monin-Obhukov length and friction velocity. While the system supports a state-of-the-art three-dimensional cloud and hydrometeor field analysis based on background fields, surface observations, satellite, and radar; a simpler approach was developed in this study to estimate cloud fractional coverage based on the gridded relative humidity values.

Moon, D.; Pai, P.

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

24 m meteorological tower data report period: January through December, 1995  

SciTech Connect (OSTI)

This report was prepared by the Desert Research Institute (DRI) for the US Department of Energy (DOE). It summarizes meteorological data collected at the 24 meter tower at the Nevada Test Site Hazardous Material Spill Center (HAZMAT) located at Frenchman Flat near Mercury, Nevada, approximately 75 miles northwest of Las Vegas, Nevada. The tower was originally installed in July, 1993 to characterize baseline conditions for an EPA sponsored experimental research program at the HAZMAT. A previous report reported monitoring results for 1994. This report presents results of the monitoring for January--December, 1995, providing: a status of the measurement systems (including any quality assurance activities) during the report period and a summary of the meteorological conditions at the HAZMAT during the report period. The scope of the report is limited to summary data analyses and does not include extensive meteorological analysis. The tower was instrumented at 8 levels. Wind speed, wind direction, and temperature were measured at all 8 levels. Relative humidity was measured at 3 levels. Solar and net radiation were measured at 2 meters above the ground. Barometric pressure was measured at the base of the tower and soil temperature was measured near the base of the tower.

Freeman, D.; Bowen, J.B.; Egami, R.; Coulombe, W.; Crow, D.; Cristani, B.; Schmidt, S.

1997-12-01T23:59:59.000Z

182

Scatchard plots Pairing Rules  

E-Print Network [OSTI]

A A G A-5' 1 1 + + IPA + + IPA AR AR AR Pol II p160 p300 Transcription AR TBP Pol II Med p160 p300 Med

Stoltz, Brian M.

183

ARM - Data Plots  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncements Media Contact Hanna Goss7, 2015

184

NIMROD Visualizations Plot Gallery  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

NIMROD solves the extended magnetohydrodynamic equations using: 1) Spectral finite element discretization in two dimensions, 2) Finite Fourier series in the third dimension, 3) Semi-implicit and implicit temporal discretization for the range of temporal scales found in fusion experiments, 4) Simulation particles for kinetic effects from a minority species of energetic ions, and 5) Integro-differential methods for kinetic effects from free-streaming. [copied from the NIMROD home page

Sovinec, C. R. [Nimrod Team

185

ISDAC Data Plots  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSLthe U.S.;2cSupercomputing: The Top

186

ARM - AMF Data Plots  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRing Under79FacilitiesAMF

187

Meteorological Monitoring on bikini atoll: system description and data summary (May 2000 - April 2001)  

SciTech Connect (OSTI)

Meteorological data are continuously collected at three sites on Bikini Atoll in support of radioecological research and monitoring programs conducted by the Health and Ecological Assessments Division at the Lawrence Livermore National Laboratory (LLNL). Weather stations were first established on Bikini Atoll in April 1990, and provide information on rainfall, wind speed and direction, air temperature, humidity, and solar radiation. These data and information are used to interpret results of remediation experiments designed to evaluate the effectiveness of potassium fertilizer on reducing the uptake of {sup 137}Cs into locally grown foods. We have also demonstrated that {sup 137}Cs is slowly leached from surface soil by the action of rain water. Long-term meteorological data are crucial to our efforts of developing an understanding of environmental processes controlling the environment loss of {sup 137}Cs in coral atoll soil. In May 2000, older data collection platforms and the DOS-based system that downloaded data from National Oceanic & Atmospheric Administration (NOAA)'s Data Automatic Processing System (DAPS) was decommissioned, and new data loggers, GOES (Geostationary Operational Environmental Satellite) transmitters and antennas were installed. Consequently, new procedures were developed to maintain the field systems, download the data, and reduce and archive the data. This document provides an operational description and status report on the three new meteorological monitoring systems on Bikini Atoll as well as an computational summary of previously recorded data. Included are overviews of procedures for sensor exchange, data recovery and reduction, and specific information about the different sensors. We also provide a description of systems maintenance and trouble shooting activities. This report will be updated on an annual basis.

Gouveia F; Bradsher, R; Brunk, J; Hamilton, T

2002-01-01T23:59:59.000Z

188

Evolution of Meteorological Base Models for Estimating Hourly Global Solar Radiation in Texas  

E-Print Network [OSTI]

ESL-PA-13-11-01 Available online at www.sciencedirect.com Energy Procedia 00 (2013) 000–000 www.elsevier.com/locate/procedia 2013 ISES Solar World Congress Evaluation of Meteorological Base Models... for Estimating Hourly Global Solar Radiation in Texas Kee Han Kima,b*, Juan-Carlos Baltazarb, and Jeff S. Haberla,b aDepartment of Architecture, Texas A&M University, 3137 TAMU, College Station, TX 77843-3137, U.S.A. bEnergy Systems Laboratory, Texas A...

Kim, H.; Baltazar, J.C.; Haberl, J.S

189

3892 VOLUME 17J O U R N A L O F C L I M A T E 2004 American Meteorological Society  

E-Print Network [OSTI]

and Environmental Engineering, University of California, Irvine, Irvine, California E. SMALL Department considerable attention in the hydro- meteorology community. This is partially because most of the monsoon

Small, Eric

190

Are Boltzmann Plots of Hydrogen Balmer lines a tool for identifying a subclass of S1 AGN?  

E-Print Network [OSTI]

It is becoming clear that we can define two different types of nearby AGN belonging to the Seyfert 1 class (S1), on the basis of the match of the intensities of their Broad Balmer Lines (BBL) with the Boltzmann Plots (BP). These two types of S1 galaxies, that we call BP-S1 and NoBP-S1, are characterized, in first approximation, by Broad Line Regions (BLR) with different structural and physical properties. In this communication, we show that these features can be well pointed out by a multi-wavelength analysis of the continuum and of the broad recombination Hydrogen lines, that we carry out on a sample of objects detected at optical and X-ray frequencies. The investigation is addressed to verify whether BP-S1 are the ideal candidates for the study of the kinematical and structural properties of the BLR, in order to derive reliable estimates of the mass of their central engine and to constrain the properties of their nuclear continuum spectrum.

Rafanelli, P; Cracco, V; Di Mille, F; Ili?, D; La Mura, G; Popovi?, L ?

2013-01-01T23:59:59.000Z

191

HLYWD: a program for post-processing data files to generate selected plots or time-lapse graphics  

SciTech Connect (OSTI)

The program HLYWD is a post-processor of output files generated by large plasma simulation computations or of data files containing a time sequence of plasma diagnostics. It is intended to be used in a production mode for either type of application; i.e., it allows one to generate along with the graphics sequence, segments containing title, credits to those who performed the work, text to describe the graphics, and acknowledgement of funding agency. The current version is designed to generate 3D plots and allows one to select type of display (linear or semi-log scales), choice of normalization of function values for display purposes, viewing perspective, and an option to allow continuous rotations of surfaces. This program was developed with the intention of being relatively easy to use, reasonably flexible, and requiring a minimum investment of the user's time. It uses the TV80 library of graphics software and ORDERLIB system software on the CDC 7600 at the National Magnetic Fusion Energy Computing Center at Lawrence Livermore Laboratory in California.

Munro, J.K. Jr.

1980-05-01T23:59:59.000Z

192

Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)  

SciTech Connect (OSTI)

Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2011-02-11T23:59:59.000Z

193

Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

194

Meteorological Simulations of Ozone Episode Case Days during the 1996 Paso del Norte Ozone Study  

SciTech Connect (OSTI)

Meteorological simulations centered around the border cities of El Paso and Ciudad Juarez have been performed during an ozone episode that occurred on Aug. 13,1996 during the 1996 Paso del Norte Ozone Study field campaign. Simulations were petiormed using the HOTMAC mesoscale meteorological model using a 1,2,4, and 8 km horizontal grid size nested mesh system. Investigation of the vertical structure and evolution of the atmospheric boundary layer for the Aug. 11-13 time period is emphasized in this paper. Comparison of model-produced wind speed profiles to rawirisonde and radar profiler measurements shows reasonable agreement. A persistent upper-level jet was captured in the model simulations through data assimilation. In the evening hours, the model was not able to produce the strong wind direction shear seen in the radar wind profiles. Based on virtual potential temperature profile comparisons, the model appears to correctly simulate the daytime growth of the convective mixed layer. However, the model underestimates the cooling of the surface layer at night. We found that the upper-level jet significantly impacted the turbulence structure of the boundary layer, leading to relatively high turbulent kinetic energy (tke) values aloft at night. The model indicates that these high tke values aloft enhance the mid-morning growth of the boundary layer. No upper-level turbulence measurements were available to verify this finding, however. Radar profiler-derived mixing heights do indicate relatively rapid morning growth of the mixed layer.

Brown, M.J.; Costigan, K.; Muller, C.; Wang, G.

1999-02-01T23:59:59.000Z

195

Numerical experiments with assimilation of the mean and unresolved meteorological conditions into large-eddy simulation model  

E-Print Network [OSTI]

Micrometeorology, city comfort, land use management and air quality monitoring increasingly become important environmental issues. To serve the needs, meteorology needs to achieve a serious advance in representation and forecast on micro-scales (meters to 100 km) called meteorological terra incognita. There is a suitable numerical tool, namely, the large-eddy simulation modelling (LES) to support the development. However, at present, the LES is of limited utility for applications. The study addresses two problems. First, the data assimilation problem on micro-scales is investigated as a possibility to recover the turbulent fields consistent with the mean meteorological profiles. Second, the methods to incorporate of the unresolved surface structures are investigated in a priopi numerical experiments. The numerical experiments demonstrated that the simplest nudging or Newtonian relaxation technique for the data assimilation is applicable on the turbulence scales. It is also shown that the filtering property of...

Esau, Igor

2010-01-01T23:59:59.000Z

196

Table 1. Canola 2010 large-plot variety and systems trial at Roseau. Yield, Lb/Acre at Test Wt, Lb/Bu at  

E-Print Network [OSTI]

Table 1. Canola 2010 large-plot variety and systems trial at Roseau. Yield, Lb/Acre at Test Wt, Lb Ready, LL = LibertyLink and CL = Clearfield. 51 Varietal Trials Results Canola Canola (Brassica napus and B. rapa) is a crop developed from oilseed rape by Canadian plant breeders; the first canola variety

Thomas, David D.

197

Enhancing mobile browsing and reading  

E-Print Network [OSTI]

Although the web browser has become a standard interface for information access on the Web, the mobile web browser on the smartphone does not hold the same interest to mobile users. A survey with 11 mobile users shows that ...

Yu, Chen-Hsiang

198

Browse the archive Show summaries  

E-Print Network [OSTI]

- China, the European Union (EU), Japan, Russia, South Korea and the US - at a ministerial meeting to be a safe and sustainable source of energy that does not produce any greenhouse-gas emissions or long-lived nuclear waste. A fusion reactor would need just 100 grams of deuterium and 3 tons of natural lithium

199

Operational hydro-meteorological warning and real-time flood forecasting:the Piemonte region case study Hydrology and Earth System Sciences, 9(4), 457466 (2005) EGU  

E-Print Network [OSTI]

Operational hydro-meteorological warning and real-time flood forecasting:the Piemonte region case study 457 Hydrology and Earth System Sciences, 9(4), 457466 (2005) © EGU Operational hydro forecasting system in the context of the Piemonte Regions hydro-meteorological operational alert procedure

Paris-Sud XI, Université de

200

ARCHITECTURE OF THE MERCURY MESOSCALE METEOROLOGICAL DATA FUSION C. Fields, C. Cavendish, M. Coombs, T. Eskridge, R. Hartley, H. Pfeiffer, and C. Soderlund  

E-Print Network [OSTI]

ARCHITECTURE OF THE MERCURY MESOSCALE METEOROLOGICAL DATA FUSION C. Fields, C. Cavendish, M. Coombs Atmospheric Sciences Laboratory White Sands Missile Range, NM 88002-5501 USA 1. INTRODUCTION The MERCURY) that require meteorological data as input (McWilliams or al., this volume). MERCURY addresses, at the mesoscale

Hartley, Roger

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Comparison of surface meteorological data representativeness for the Weldon Spring transport and dispersion modeling analysis  

SciTech Connect (OSTI)

The US Department of Energy is conducting the Weldon Spring Site Remedial Action Project under the Surplus Facilities Management Program (SFMP). The major goals of the SFMP are to eliminate potential hazards to the public and the environment that associated with contamination at SFMP sites and to make surplus property available for other uses to the extent possible. This report presents the results of analysis of available meteorological data from stations near the Weldon Spring site. Data that are most representative of site conditions are needed to accurately model the transport and dispersion of air pollutants associated with remedial activities. Such modeling will assist the development of mitigative measures. 17 refs., 12 figs., 6 tabs.

Lazaro, M.

1989-06-01T23:59:59.000Z

202

Copyright 2004, School of Meteorology, University of Oklahoma. Rev 04/04 Knowledge Expectations for METR 4424  

E-Print Network [OSTI]

the specific topics and order listed here. Pre-requisites: Grade of C or better in METR 3123, METR 3223, School of Meteorology, University of Oklahoma. Rev 04/04 · Understand the utility and limitations of data devices (i.e., radar and satellites). · Understand the utility and limitations of numerical methods used

Droegemeier, Kelvin K.

203

Bulletin of the Australian Meteorological and Oceanographic Society Vol.18 page 104 BLUElink> Progress on operational ocean prediction for Australia  

E-Print Network [OSTI]

BLUElink> Progress on operational ocean prediction for Australia Gary B. Brassington1 , Graham Warren1 , Neville Smith1 , Andreas Schiller2 , Peter R. Oke2 1. Bureau of Meteorology, Melbourne Australia. 2. CSIRO Centre, PO Box 1289K, Melbourne, Victoria, Australia. Email: g.brassington@bom.gov.au Introduction "...a

Oke, Peter

204

METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST & 200 WEST TANK FARMS FROM CY1995 TO CY2004  

SciTech Connect (OSTI)

Revised for a more comprehensive overview of vapor incidents reported at the Hanford Tank Farms. Investigation into the meteorological influences on vapor incidents in the tank farm to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems. The purpose of this document is to gather and evaluate the meteorological and weather information for the Tank Farms Shift Log Vapor Incident entries and determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases such as propane. A part of the evaluation will be determining which of the incidents are related to actual ''intrusive'' work, and which are ''transient.'' Transient vapor incidents are herein defined as those vapors encountered during walkdowns, surveys, or other activities that did not require working directly with the tanks, pits, transfer lines, etc. Another part of the investigation will involve determining if there are barometric pressures or other weather related phenomena that might cause or contribute vapors being released when there are no ''intrusive'' activities. A final purpose is to evaluate whether there is any correlation between the 242-A Evaporator operations and Vapor Incidents entered on the Shift Log.

HOCKING, M.J.

2005-01-31T23:59:59.000Z

205

APRIL 1999 1101S I E G E L E T A L . 1999 American Meteorological Society  

E-Print Network [OSTI]

of ocean radiant heating rates and solar radiation transmission are assessed using both model resultsAPRIL 1999 1101S I E G E L E T A L . 1999 American Meteorological Society Cloud Color and Ocean the flux of solar radiation reaching the sea surface. Clouds also affect the spectral distribution

Siegel, David A.

206

Long-period fading in atmospherics during severe meteorological activity and associated solar geophysical phenomena at low latitudes  

E-Print Network [OSTI]

Long-period fading in atmospherics during severe meteorological activity and associated solar activity with the solar geophysical phenomena was studied. The results are indicative of an interesting sequence of solar- terrestrial events. A tentative conclusion is reached, suggesting an origin

Boyer, Edmond

207

Assessment of the Performance of the Chilbolton 3-GHz Advanced Meteorological Radar for Cloud-Top-Height Retrieval  

E-Print Network [OSTI]

. The potential for this radar to make useful measurements of low-altitude liquid water cloud structure is investigated. To assess the cloud-height assignment capabilities of the 3-GHz radar, low-level cloudAssessment of the Performance of the Chilbolton 3-GHz Advanced Meteorological Radar for Cloud

208

1 JULY 2002 1537W A T A N A B E E T A L . 2002 American Meteorological Society  

E-Print Network [OSTI]

AND FEI-FEI JIN Department of Meteorology, School of Ocean and Earth Science and Technology, University, Tokyo, Japan (Manuscript received 24 August 2001, in final form 6 December 2001) ABSTRACT by the leading principal component of the observed 300-hPa streamfunction anomalies, shows quite significant

Wang, Yuqing

209

1 JUNE 2001 2443G U A N D L I O U 2001 American Meteorological Society  

E-Print Network [OSTI]

and are parameterized in terms of the ice water content and mean effective ice crystal size. The correlated k-function adjustment is used to account for the strong forward-diffraction nature in the phase function of ice1 JUNE 2001 2443G U A N D L I O U 2001 American Meteorological Society Radiation Parameterization

Liou, K. N.

210

JANUARY 2004 157Z H A N G A N D Z H E N G 2004 American Meteorological Society  

E-Print Network [OSTI]

JANUARY 2004 157Z H A N G A N D Z H E N G 2004 American Meteorological Society Diurnal Cycles is evaluated using the 3-day mesoscale simulations of summertime weak-gradient flows over the central United is directed upward after sunrise. As more solar energy is absorbed by the earth's surface, free convective

Zhang, Da-Lin

211

MARCH 1999 857Z E N G A N D N E E L I N 1999 American Meteorological Society  

E-Print Network [OSTI]

MARCH 1999 857Z E N G A N D N E E L I N 1999 American Meteorological Society A Land surface albedo reflects more solar radiation into space. A positive feedback by moisture convergence: central Africa, the Maritime Continent, and the Amazon. A mean an- nual rainfall of over 2000 mm sustains

Zeng, Ning

212

Annual Report 2010 | 1Ministry of Infrastructure and the Environment | Royal Netherlands Meteorological Institute Annual Report 2010  

E-Print Network [OSTI]

Annual Report 2010 | 1Ministry of Infrastructure and the Environment | Royal Netherlands of Infrastructure and the Environment | Royal Netherlands Meteorological Institute Annual Report 2010 KNMI round the clock #12;2 | Annual report 2010 Ministry of Infrastructure and the Environment | Royal Netherlands

Stoffelen, Ad

213

Meteorological and air quality data quarterly report. WIPP site: Eddy County, New Mexico. Summer quarter, June 1977-August 1977  

SciTech Connect (OSTI)

The purpose of the WIPP meteorological, air quality, and radiological measurements program was to support the environmental effort for the evaluation of the site suitability. This data report is the latest in a series of seasonal quarterly data summaries to be issued for the southeastern New Mexico site.

Pocalujka, L.P.; Babij, E.; Catizone, P.A.; Church, H.W.

1980-06-01T23:59:59.000Z

214

Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations  

SciTech Connect (OSTI)

In 1963, the Atomic Energy Commission (AEC), predecessor to the US Department of Energy (DOE), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range (NAFR)). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in dispersal of plutonium over the ground surface downwind of the test ground zero. Three tests, Clean Slate 1, 2, and 3, were conducted on the TTR in Cactus Flat; the fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. DOE is working to clean up and close all four sites. Substantial cleaned up has been accomplished at Double Tracks and Clean Slate 1. Cleanup of Clean Slate 2 and 3 is on the DOE planning horizon for some time in the next several years. The Desert Research Institute installed two monitoring stations, number 400 at the Sandia National Laboratories Range Operations Center and number 401 at Clean Slate 3, in 2008 and a third monitoring station, number 402 at Clean Slate 1, in 2011 to measure radiological, meteorological, and dust conditions. The primary objectives of the data collection and analysis effort are to (1) monitor the concentration of radiological parameters in dust particles suspended in air, (2) determine whether winds are re-distributing radionuclides or contaminated soil material, (3) evaluate the controlling meteorological conditions if wind transport is occurring, and (4) measure ancillary radiological, meteorological, and environmental parameters that might provide insight to the above assessments. The following observations are based on data collected during CY2012. The mean annual concentration of gross alpha and gross beta is highest at Station 400 and lowest at Station 401. This difference may be the result of using filter media at Station 400 with a smaller pore size than the media used at the other two stations. Average annual gamma exposure at Station 401 is slightly greater than at Station 400 and 402. Average annual gamma exposure at all three TTR stations are in the upper range to slightly higher than values reported for the CEMP stations surrounding the TTR. At higher wind speeds, the saltation counts are greater at Station 401 than at Station 402 while the suspended particulate concentrations are greater at Station 402 than at Statin 401. Although these observations seem counterintuitive, they are likely the result of differences in the soil material present at the two sites. Station 401 is located on an interfluve elevated above two adjacent drainage channels where the soil surface is likely to be composed of coarser material. Station 402 is located in finer sediments at the playa edge and is also subject to dust from a dirt road only 500 m to the north. During prolonged high wind events, suspended dust concentrations at Station 401 peaked with the initial winds then decreased whereas dust concentrations at Station 402 peaked with each peak in the wind speed. This likely reflects a limited PM10 source that is quickly expended at Station 401 relative to an abundant PM10 source at Station 402. In CY2013, to facilitate comparisons between radiological analyses of collected dust, the filter media at all three stations will be standardized. In addition, a sequence of samples will be collected at Station 400 using both types of filter media to enable development of a mathematical relationship between the results derived from the two filter types. Additionally, having acquired approximately four years of observations at Stations 400 and 401 and a year of observations at Station 402, a period-of-record analysis of the radiological and airborne dust conditions will be undertaken.

Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

2013-07-01T23:59:59.000Z

215

Solar Resource and Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Escalante Tri-State - Prewitt, New Mexico (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

216

Solar Resource and Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Escalante Tri-State - Prewitt, New Mexico (Data)  

SciTech Connect (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2012-11-03T23:59:59.000Z

217

Daily pollution forecast using optimal meteorological data at synoptic and local scales  

E-Print Network [OSTI]

We present a simple framework to easily pre-select the most essential data for accurately forecasting the concentration of the pollutant PM$_{10}$, based on pollutants observations for the years 2002 until 2006 in the metropolitan region of Lisbon, Portugal. Starting from a broad panoply of different data sets collected at several meteorological stations, we apply a forward stepwise regression procedure that enables us not only to identify the most important variables for forecasting the pollutant but also to rank them in order of importance. We argue the importance of this variable ranking, showing that the ranking is very sensitive to the urban spot where measurements are taken. Having this pre-selection, we then present the potential of linear and non-linear neural network models when applied to the concentration of pollutant PM$_{10}$. Similarly to previous studies for other pollutants, our validation results show that non-linear models in average perform as well or worse as linear models for PM$_{10}$. F...

Russo, Ana; Raischel, Frank; Trigo, Ricardo; Mendes, Manuel

2014-01-01T23:59:59.000Z

218

Meteorological measurements in the vicinity of a coal burning power plant  

SciTech Connect (OSTI)

High concentrations of sulfur dioxide (SO2) are commonly observed during the cool season in the vicinity of a 2.5 GW coal burning power plant located in the Mae Moh Valley of northern Thailand. The power plant is the source for nearly all of the observed SO2 since there are no other major industrial activities in this region. These high pollution fumigation events occur almost on a daily basis, usually lasting for several hours between late morning and early afternoon. One-hour average SO2 concentrations commonly exceed 1,000 micrograms/cu m. As a result, an increase in the number of respiratory type health complaints have been observed by local clinics during this time of the year. Meteorological data were acquired from a variety of observing platforms during an intensive field study from December 1993 to February 1994. The measurements included horizontal and vertical wind velocity, air temperature, relative humidity, and solar radiation. In addition, turbulent flux measurements were acquired by a sonic anemometer. SO2 measurements were made at seven monitoring sites scattered throughout the valley. These data were used to examine the atmospheric processes which are responsible for these high pollution fumigation events.

Crescenti, G.H.; Gaynor, J.E.

1995-05-01T23:59:59.000Z

219

Improvement of weather analysis in isolated areas of the southern hemisphere by meteorological satellite information: a case study.  

E-Print Network [OSTI]

pressure Temperature Wind Upper-air circulation Fronts Cloudiness Cyclonic and anticyclonic activity. Weather patterns Summary of the status of available information Status of the Use of Information from Meteorological Satellites as Applied... del Fuego and South Patagonia, unpredictable most of the time except for the orographic effects, is due to the changes in the atmospheric circulation in the vicinity of the Drake Passage . Aircraft of Argentine and Chilean airlines operate...

Alvarez, Jose? Angel

1963-01-01T23:59:59.000Z

220

A recent study of meteorological conditions around the Pentagon will support development of a system to protect its 25,000+ occupants from chemical, biological, and radiological attack.  

E-Print Network [OSTI]

of a system to protect its 25,000+ occupants from chemical, biological, and radiological attack. I nFEBRUARY 2007AMERICAN METEOROLOGICAL SOCIETY | #12;of the most likely targets for a future terrorist attack

Knievel, Jason Clark

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

1052 VOLUME 18W E A T H E R A N D F O R E C A S T I N G 2003 American Meteorological Society  

E-Print Network [OSTI]

of Meteorology, Perth, Western Australia, Australia i European Centre for Medium-Range Weather Forecasts, Reading to frontogenesis, the mechanisms responsible for precipitation, and the energy budget during ET. Finally, a summary

Smith, Roger K.

222

A Review of "The Horrid Popish Plot’: Roger L’Estrange and the Circulation of Political Discourse in Late Seventeenth-Century London" by Peter Hinds  

E-Print Network [OSTI]

Horrid Popish Plot?: Roger L?Estrange and the Circulation of Political Discourse in Late Seventeenth-Century London. Oxford: Oxford University Press, 2010. xiv + 457 pp. + 37 illus. ?60.00. Review by adam swann, university of glasgow. Roger L... by a neglect that is out of all proportion to his importance and prolific writing output? (43), as Anne Dunan-Page and Beth Lynch?s Roger L?Estrange and the Making of Restoration Culture (2008) was the first in-depth study since the publication...

Swann, Adam

2011-01-01T23:59:59.000Z

223

Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations  

SciTech Connect (OSTI)

In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

Mizell, Steve A [DRI; Nikolich, George [DRI; Shadel, Craig [DRI; McCurdy, Greg [DRI; Etyemezian, Vicken [DRI; Miller, Julianne J [DRI

2014-10-01T23:59:59.000Z

224

Meteorological and air quality impacts of increased urban albedo and vegetative cover in the Greater Toronto Area, Canada  

SciTech Connect (OSTI)

The study described in this report is part of a project sponsored by the Toronto Atmospheric Fund, performed at the Lawrence Berkeley National Laboratory, to assess the potential role of surface property modifications on energy, meteorology, and air quality in the Greater Toronto Area (GTA), Canada. Numerical models were used to establish the possible meteorological and ozone air-quality impacts of increased urban albedo and vegetative fraction, i.e., ''cool-city'' strategies that can mitigate the urban heat island (UHI), significantly reduce urban energy consumption, and improve thermal comfort, particularly during periods of hot weather in summer. Mitigation is even more important during critical heat wave periods with possible increased heat-related hospitalization and mortality. The evidence suggests that on an annual basis cool-city strategies are beneficial, and the implementation of such measures is currently being investigated in the U.S. and Canada. We simulated possible scenari os for urban heat-island mitigation in the GTA and investigated consequent meteorological changes, and also performed limited air-quality analysis to assess related impacts. The study was based on a combination of mesoscale meteorological modeling, Lagrangian (trajectory), and photochemical trajectory modeling to assess the potential meteorological and ozone air-quality impacts of cool-city strategies. As available air-quality and emissions data are incompatible with models currently in use at LBNL, our air-quality analysis was based on photochemical trajectory modeling. Because of questions as to the accuracy and appropriateness of this approach, in our opinion this aspect of the study can be improved in the future, and the air-quality results discussed in this report should be viewed as relatively qualitative. The MM5 meteorological model predicts a UHI in the order of 2 to 3 degrees C in locations of maxima, and about 1 degree C as a typical value over most of the urban area. Our si mulations suggest that cool-city strategies can typically reduce local urban air temperature by 0.5-1 degrees C; as more sporadic events, larger decreases (1.5 degrees C, 2.5-2.7 degrees C and 4-6 degrees C) were also simulated. With regard to ozone mixing ratios along the simulated trajectories, the effects of cool-city strategies appear to be on the order of 2 ppb, a typical decrease. The photochemical trajectory model (CIT) also simulates larger decreases (e.g., 4 to 8 ppb), but these are not taken as representative of the potential impacts in this report. A comparison with other simulations suggest very crudely that a decrease of this magnitude corresponds to significant ''equivalent'' decreases in both NOx and VOCs emissions in the region. Our preliminary results suggest that significant UHI control can be achieved with cool-cities strategies in the GTA and is therefore worth further study. We recommend that better input data and more accurate modeling schemes be used to carry out f uture studies in the same direction.

Taha, Haider; Hammer, Hillel; Akbari, Hashem

2002-04-30T23:59:59.000Z

225

WIMP Dark Matter Limit-Direct Detection Data and Sensitivity Plots from the Cryogenic Dark Matter Search II and the University of California at Santa Barbara  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Expectations for non-baryonic dark matter are founded principally in Big Bang nucleosynthesis calculations, which indicate that the missing mass of the universe is not likely to be baryonic. The supersymmetric standard model (SUSY) offers a promising framework for expectations of particle species which could satisfy the observed properties of dark matter. WIMPs are the most likely SUSY candidate for a dark matter particle. The High Energy Physics Group at University of California, Santa Barbara, is part of the CDMSII Collaboration and have provided the Interactive Plotter for WIMP Dark Matter Limit-Direct Detection Data on their website. They invite other collaborations working on dark matter research to submit datasets and, as a result, have more than 150 data sets now available for use with the plotting tool. The published source of the data is provided with each data set.

226

Adsorption mechanisms and effect of temperature in reversed-phase liquid chromatography-Meaning of the classical Van't Hoff plot in chromatography  

SciTech Connect (OSTI)

The effect of temperature on the adsorption and retention behaviors of a low molecular weight compound (phenol) on a C{sub 18}-bonded silica column (C{sub 18}-Sunfire, Waters) from aqueous solutions of methanol (20%) or acetonitrile (15%) was investigated. The results of the measurements were interpreted successively on the basis of the linear (i.e., overall retention factors) and the nonlinear (i.e., adsorption isotherms, surface heterogeneity, saturation capacities, and equilibrium constants) chromatographic methods. The confrontation of these two approaches confirmed the impossibility of a sound physical interpretation of the conventional Van't Hoff plot. The classical linear chromatography theory assumes that retention is determined by the equilibrium thermodynamics of analytes between a homogeneous stationary phase and a homogeneous mobile phase (although there may be two or several types of interactions). From values of the experimental retention factors in a temperature interval and estimates of the activity coefficients at infinite dilution in the same temperature interval provided by the UNIFAC group contribution method, evidence is provided that such a retention model cannot hold. The classical Van't Hoff plot appears meaningless and its linear behavior a mere accident. Results from nonlinear chromatography confirm these conclusions and provide explanations. The retention factors seem to fulfill the Van't Hoff equation, not the Henry constants corresponding to the different types of adsorption sites. The saturation capacities and the adsorption energies are clearly temperature dependent. The temperature dependence of these characteristics of the different assorption sites are different in aqueous methanol and acetonitrile solutions.

Gritti, Fabrice [University of Tennessee, Knoxville (UTK); Guiochon, Georges A [ORNL

2006-07-01T23:59:59.000Z

227

Air Pollution Physics and Chemistry EAS 6790 Home Work Assignment No. 1, Air Pollution Meteorology Part 2 of 2  

E-Print Network [OSTI]

. The wind speed is now 1.95 m/s. At this downwind distance there is perfect mixing in the vertical, 0 the 200-m mast at Cabauw in the Netherlands (0.7 m below sea level): Height Wind Speed Wind Dir 11.1 112 18.73 160 10.6 122 19.71 200 9.8 127 19.77 a. Plot the wind speed, wind direction

Weber, Rodney

228

curve plotting and animations 1 Curve Plotting with Matplotlib  

E-Print Network [OSTI]

and animations 30 September 2013 3 / 38 #12;ipython --pylab In [1]: x = arange(0.0,2.0,0.05) In [2]: noise = 0

Verschelde, Jan

229

ARM - SPARTICUS Planning - Data Plots  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops AtmosphericApplication andAnthe Infrared LandSystem W-Band ARM Cloud Radar

230

ARM - AMIE Manus - Data Plots  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2AP-XPSAPS50

231

ARM - AOS Aerosol Properties Plots  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRingFacilitiesAMF1FacilitiesAMF3

232

AutoSaved SDDS Plots  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience Program Cumulus Humilis, 2014 SEABINVERTER98-3484

233

B. MAPES et al.November 2008 175Journal of the Meteorological Society of Japan, Vol. 86A, pp. 175-185, 2008 Predictability Aspects of Global Aqua-planet Simulations  

E-Print Network [OSTI]

B. MAPES et al.November 2008 175Journal of the Meteorological Society of Japan, Vol. 86A, pp. 175;Journal of the Meteorological Society of Japan Vol. 86A176 1. Introduction In principle, anything Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder

Mapes, Brian

234

Observation of Discrete Oscillations in a Model-independent Plot of Cosmological Scale Factor vs. Lookback Time and a Scalar Field Model  

E-Print Network [OSTI]

We have observed damped longitudinal cosmological-scale oscillations in a unique model-independent plot of scale factor against lookback time for Type Ia supernovae data. We found several first-derivative relative maxima/minima spanning the range of reported transition-redshifts. These extrema comprise 2 full cycles with a period of approximately 0.15 Hubble times (H0=68 km/s/Mpc). This period corresponds to a fundamental frequency of approximately 7 cycles over the Hubble time. Transition-z values quoted in the literature generally fall near these minima and may explain the reported wide spread up to the predicted LCDM value of approximately z = 0.77. We also observe second and third harmonics of the fundamental. The scale factor data is analyzed several different ways including smoothing, Fourier transform and autocorrelation. We propose a cosmological scalar field harmonic oscillator model for the observation. On this time scale, for a quantum scalar field, the scalar field mass is extraordinarily small at...

Ringermacher, H I

2015-01-01T23:59:59.000Z

235

1088 VOLUME 15J O U R N A L O F C L I M A T E 2002 American Meteorological Society  

E-Print Network [OSTI]

1088 VOLUME 15J O U R N A L O F C L I M A T E 2002 American Meteorological Society NOTES instability: the latter predominantly generates the seasonal phase locking of ENSO but has little effect periodic forcing, such as the annual cycle of solar insolation or monsoon wind. Using a conceptual ENSO

Wisconsin at Madison, University of

236

Meteorology Group, Departament de Fsica, Universitat de les Illes Balears, Palma de Mallorca, Spain IMEDEA, UIB-CSIC, Palma de Mallorca, Spain  

E-Print Network [OSTI]

, Spain 2 IMEDEA, UIB-CSIC, Palma de Mallorca, Spain 3 Instituto Nacional de Meteorologõ�a, Madrid, Spain Geltru, Barcelona, Spain A Case of Convection Development over the Western Mediterranean Sea: A Study of precipitation were recorded in coastal lands of eastern Spain, and 180 mm were estimated over the sea with radar

Romero, Romu

237

Oumbe A., Blanc Ph., Schroedter-Homscheidt M., Wald L., 2010. Solar surface irradiance from new meteorological satellite data. In Proceedings of the 29th  

E-Print Network [OSTI]

Tech, Center for Energy and Processes, BP 207, 06904 Sophia Antipolis, France b German Aerospace CenterOumbe A., Blanc Ph., Schroedter-Homscheidt M., Wald L., 2010. Solar surface irradiance from new, 320-328, doi:10.3233/978-1-60750-494-8-320 Solar surface irradiance from new meteorological satellite

Paris-Sud XI, Université de

238

VOLUME 12 APRIL 1999J O U R N A L O F C L I M A T E 1999 American Meteorological Society 917  

E-Print Network [OSTI]

VOLUME 12 APRIL 1999J O U R N A L O F C L I M A T E 1999 American Meteorological Society 917 Remote the solar radiation absorbed by the ocean, thereby leading to enhanced SSTs. In the tropical North Atlantic. These relationships fit the concept of an ``atmospheric bridge'' that connects SST anomalies in the central equatorial

239

1 JULY 2000 2261Z H A N G A N D M C P H A D E N 2000 American Meteorological Society  

E-Print Network [OSTI]

1 JULY 2000 2261Z H A N G A N D M C P H A D E N 2000 American Meteorological Society Intraseasonal in solar radiation flux and net buoyancy flux. The phase of net buoyancy flux is determined by the net heat intraseasonal Kelvin waves propagate eastward from the western Pacific into the central and eastern Pacific

Zhang, Chidong

240

15 JUNE 2003 1967L ' E C U Y E R A N D S T E P H E N S 2003 American Meteorological Society  

E-Print Network [OSTI]

15 JUNE 2003 1967L ' E C U Y E R A N D S T E P H E N S 2003 American Meteorological Society, and space--enhancing reflection of solar radiation to space, trapping thermal emission from the surface. Central to this issue is the role of the hydrological cycle governing the exchange of water between

Stephens, Graeme L.

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

3698 VOLUME 15J O U R N A L O F C L I M A T E 2002 American Meteorological Society  

E-Print Network [OSTI]

3698 VOLUME 15J O U R N A L O F C L I M A T E 2002 American Meteorological Society Surface in detecting clouds in the frequent surface-based temperature inversion and when solar radiation is absent 1991. Large positive trends in POLES over the central Arctic during spring are absent in TOVS in part

242

METEOROLOGICAL Bulletin of the American Meteorological Society  

E-Print Network [OSTI]

for Lagrangian Trajectory Models2 Kenneth P. Bowman4 Department of Atmospheric Sciences, Texas A&M University of Atmospheric Sciences, University of Utah, Salt Lake City, UT, USA 10 Andreas Stohl Norwegian Institute for Air, Boulder, CO, USA 22 Dominik Brunner Laboratory for Air Pollution and Environmental Technology, Empa

243

METEOROLOGICAL Bulletin of the American Meteorological Society  

E-Print Network [OSTI]

in the Marine Boundary Layer (CAP-MBL)38 deployment at Graciosa Island in the Azores generated a 21 month (April, distributed, and cited, but please be aware that there will be visual differences and possibly some content to Graciosa Island in the northeastern Atlantic Ocean is providing an unprecedented record of the clouds

244

Browse By Region | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder, CO) JumpNREL Biofuels

245

DOE Research and Development Accomplishments Database Browse  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublicDNALostPlasma PhysicsDOE

246

Browse Archived Directives - DOE Directives, Delegations, and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M.ExtracellularBradburyBrianforRequirements Accessibility

247

Browse Designations - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M.ExtracellularBradburyBrianforRequirements

248

Browse Archived Directives - DOE Directives, Delegations, and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBESEnergyArchaeology onEnergy InnovationBook

249

Browse Designations - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers ApplyResistant:NOAA-EPA UVBrown carbon formation from

250

Solar Resource & Meteorological Assessment Project (SOLRMAP): Southwest Solar Research Park (Formerly SolarCAT) Rotating Shadowband Radiometer (RSR); Phoenix, Arizona (Data)  

SciTech Connect (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2010-09-27T23:59:59.000Z

251

Solar Resource & Meteorological Assessment Project (SOLRMAP): Southwest Solar Research Park (Formerly SolarCAT) Rotating Shadowband Radiometer (RSR); Phoenix, Arizona (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

252

Implementing Best Practices for Data Quality Assessment of the National Renewable Energy Laboratory's Solar Resource and Meteorological Assessment Project  

SciTech Connect (OSTI)

Effective solar radiation measurements for research and economic analyses require a strict protocol for maintenance, calibration, and documentation to minimize station down-time and data corruption. The National Renewable Energy Laboratory's Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (1) includes guidelines for operating a solar measure-ment station. This paper describes a suite of automated and semi-automated routines based on the best practices hand-book as developed for the National Renewable Energy La-boratory Solar Resource and Meteorological Assessment Project. These routines allow efficient inspection and data flagging to alert operators of conditions that require imme-diate attention. Although the handbook is targeted for con-centrating solar power applications, the quality-assessment procedures described are generic and should benefit many solar measurement applications. The routines use data in one-minute measurement resolution, as suggested by the handbook, but they could be modified for other time scales.

Wilcox, S. M.; McCormack, P.

2011-01-01T23:59:59.000Z

253

Improved Meteorological Input for Atmospheric Release Decision support Systems and an Integrated LES Modeling System for Atmospheric Dispersion of Toxic Agents: Homeland Security Applications  

SciTech Connect (OSTI)

When hazardous material is accidently or intentionally released into the atmosphere, emergency response organizations look to decision support systems (DSSs) to translate contaminant information provided by atmospheric models into effective decisions to protect the public and emergency responders and to mitigate subsequent consequences. The Department of Homeland Security (DHS)-led Interagency Modeling and Atmospheric Assessment Center (IMAAC) is one of the primary DSSs utilized by emergency management organizations. IMAAC is responsible for providing 'a single piont for the coordination and dissemination of Federal dispersion modeling and hazard prediction products that represent the Federal position' during actual or potential incidents under the National Response Plan. The Department of Energy's (DOE) National Atmospheric Release Advisory Center (NARAC), locatec at the Lawrence Livermore National Laboratory (LLNL), serves as the primary operations center of the IMAAC. A key component of atmospheric release decision support systems is meteorological information - models and data of winds, turbulence, and other atmospheric boundary-layer parameters. The accuracy of contaminant predictions is strongly dependent on the quality of this information. Therefore, the effectiveness of DSSs can be enhanced by improving the meteorological options available to drive atmospheric transport and fate models. The overall goal of this project was to develop and evaluate new meteorological modeling capabilities for DSSs based on the use of NASA Earth-science data sets in order to enhance the atmospheric-hazard information provided to emergency managers and responders. The final report describes the LLNL contributions to this multi-institutional effort. LLNL developed an approach to utilize NCAR meteorological predictions using NASA MODIS data for the New York City (NYC) region and demonstrated the potential impact of the use of different data sources and data parameterizations on IMAAC/NARAC fate and transport predictions. A case study involving coastal sea breeze circulation patterns in the NYC region was used to investigate the sensitivity of atmospheric dispersion results on the source of three-dimensional wind field data.

Arnold, E; Simpson, M; Larsen, S; Gash, J; Aluzzi, F; Lundquist, J; Sugiyama, G

2010-04-26T23:59:59.000Z

254

Sequence of surface meteorological variables with the passage of winter cold fronts in the United States east of the Rocky Mountains  

E-Print Network [OSTI]

and dramatically alter weather conditions. Since these surface boundaries often mark distinct weather changes, locating their positions and forecasting their movement is critical to accurate forecasting. By analyzing the timing of changes in meteorological... than synoptic-scale processes, depend upon accurate synoptic analysis. As Bosart (1989) so appropriately stated, "the evolution of mesoscale features is critically dependent upon the configuration of the synoptic-scale flow. " Therefore, forecasting...

Huckaby, Daniel Dale

2001-01-01T23:59:59.000Z

255

1406 VOLUME 61J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S 2004 American Meteorological Society  

E-Print Network [OSTI]

Meteorological Institute, De Bilt, and Department of Mathematics, Utrecht University, Utrecht, Netherlands J. D Research, Utrecht University, Utrecht, Netherlands F. VERHULST Department of Mathematics, Utrecht University, Utrecht, Netherlands (Manuscript received 22 October 2002, in final form 21 November 2003

Verhulst, Ferdinand

256

Modeling SF{sub 6} plume dispersion in complex terrain and meteorology with a limited data set  

SciTech Connect (OSTI)

Early actions of emergency responders during hazardous material releases are intended to assess contamination and potential public exposure. As measurements are collected, an integration of model calculations and measurements can assist to better understand the situation. This study applied a high resolution version of the operational 3-D numerical models used by Lawrence Livermore National Laboratory to a limited meteorological and tracer data set to assist in the interpretation of the dispersion pattern on a 140 km scale. The data set was collected from a tracer release during the morning surface inversion and transition period in the complex terrain of the Snake River Plain near Idaho Falls, Idaho in November 1993 by the United States Air Force. Sensitivity studies were conducted to determine model input parameters that best represented the study environment. These studies showed that mixing and boundary layer heights, atmospheric stability, and rawinsonde data are the most important model input parameters affecting wind field generation and tracer dispersion. Numerical models and limited measurement data were used to interpret dispersion patterns through the use of data analysis, model input determination, and sensitivity studies. Comparison of the best-estimate calculation to measurement data showed that model results compared well with the aircraft data, but had moderate success with the few surface measurements taken. The moderate success of the surface measurement comparison, may be due to limited downward mixing of the tracer as a result of the model resolution determined by the domain size selected to study the overall plume dispersion. 8 refs., 40 figs., 7 tabs.

Schalk, W.W. III

1996-10-01T23:59:59.000Z

257

METEOROLOGICAL Journal of Climate  

E-Print Network [OSTI]

for Coastal Research, GKSS Research Centre, Geesthacht, Germany y CREST, City College of New York, NY, USA z

Siebesma, Pier

258

METEOROLOGY 5503 CLIMATE DYNAMICS  

E-Print Network [OSTI]

­ Present Average Climate System Behavior (14 lectures) History; Vision of Victor Starr; Global Budgets of Angular Momentum, Energy, Water Vapor; Regional Water Budget; Meridional Ocean Heat Transport 3 and Indices: Diagnostic Tools (wind stress curl, velocity potential, outgoing LW radiation); ENSO cycles

Droegemeier, Kelvin K.

259

METEOROLOGICAL Monthly Weather Review  

E-Print Network [OSTI]

the lofting of supercooled water above the melting level, and an enhanced LDR "cap" above the column implied warm-cloud depths, increased ice mass observed just above the melting level, and a narrower with precipitation-sized ice extending to 15 km. In addition, the presence of ZDR columns in these cells indicated

Rutledge, Steven

260

FINNISH METEOROLOGICAL INSTITUTE CONTRIBUTIONS  

E-Print Network [OSTI]

aurora borealis or the Northern Lights. The solar wind, the magnetosphere and the ionosphere and ambiguous images. Time-series of images are analysed by utilising an auroral arc tracker. The feasibility

Syrjäsuo, Mikko

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

SATELLITE METEOROLOGY Guosheng Liu  

E-Print Network [OSTI]

, USA Key Words: absorption, brightness temperature, radiometer, radiative transfer equation, remote Remote Sensing 2.1 Radiative Transfer in the Atmosphere 2.2 Thermal Radiation under Clear-Sky 2 Variation 3.2.4 Latent Heating 3.3 Clouds and Surface Energy Fluxes 3.3.1 Cloud Properties 3.3.2 Surface

Wang, Yuqing

262

Implementing Best Practices for Data Quality Assessment of the National Renewable Energy Laboratory?s Solar Resource and Meteorological Assessment Project: Preprint  

SciTech Connect (OSTI)

Effective solar radiation measurements for research and economic analyses require a strict protocol for maintenance, calibration, and documentation to minimize station downtime and data corruption. The National Renewable Energy Laboratory's Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data includes guidelines for operating a solar measurement station. This paper describes a suite of automated and semi-automated routines based on the best practices handbook as developed for the National Renewable Energy Laboratory Solar Resource and Meteorological Assessment Project. These routines allow efficient inspection and data flagging to alert operators of conditions that require immediate attention. Although the handbook is targeted for concentrating solar power applications, the quality-assessment procedures described are generic and should benefit many solar measurement applications. The routines use data in one-minute measurement resolution, as suggested by the handbook, but they could be modified for other time scales.

Wilcox, S. M.; McCormack, P.

2011-04-01T23:59:59.000Z

263

2072 VOLUME 32J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y 2002 American Meteorological Society  

E-Print Network [OSTI]

2072 VOLUME 32J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y 2002 American Meteorological Society Stabilization of Climate Regimes by Noise in a Simple Model of the Thermohaline hysteresis responses to steady changes in freshwater forcing, such that the transitions between regimes

Monahan, Adam Hugh

264

1094 VOLUME 32J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y 2002 American Meteorological Society  

E-Print Network [OSTI]

Meteorological Society NOTES AND CORRESPONDENCE Midlatitude Wind Forcing and Subduction of Temperature Anomalies may also be generated by remote wind-forcing effects, through their impact on the position of the LPVP response to localized anomalous surface wind and buoyancy forcings. Wind stress and surface cooling

Wisconsin at Madison, University of

265

1036 VOLUME 34J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y 2004 American Meteorological Society  

E-Print Network [OSTI]

or deeper in the thermocline as well. Subsurface cooling in the wind-forcing region reduces the remote Meteorological Society Remote Wind-Driven Overturning in the Absence of the Drake Passage Effect BARRY A. KLINGER winds to drive strong remote meridional overturning. Here, idealized numerical experiments examine

Drijfhout, Sybren

266

1550 VOLUME 31J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y 2001 American Meteorological Society  

E-Print Network [OSTI]

Meteorological Society Radiation of Mixed Layer Near-Inertial Oscillations into the Ocean Interior J. MOEHLIS (Manuscript received 17 December 1999, in final form 28 August 2000) ABSTRACT The radiation from the mixed layer into the interior of the ocean of near-inertial oscillations in the presence of the beta effect

Moehlis, Jeff

267

A13G-0330: Evaluation of 3-dimensional winds measured by the Aircraft Integrated Meteorological Measurement System (AIMMS) Christopher G Kruse, David J Delene, and Cedric Grainger, University of North Dakota (christopher.kruse@und.edu)  

E-Print Network [OSTI]

A13G-0330: Evaluation of 3-dimensional winds measured by the Aircraft Integrated Meteorological, and IMU to derive the winds. The IMU and CPU were mounted in the cabin, the ADP was mounted under The time intervals and mean magnitude of vertical wind during the straight and level and porpoise maneuvers

Delene, David J.

268

Cite as: Lundquist, J.K., F. K. Chow, J. D. Mirocha, and K.A. Lundquist, 2007: An Improved WRF for Urban-Scale and Complex-Terrain Applications. American Meteorological Society's 7  

E-Print Network [OSTI]

method (IBM) approach to account for the effects of urban geometries and complex terrain. Companion of flow and dispersion in complex geometries such as urban areas, as well as new simulation capabilities for Urban-Scale and Complex-Terrain Applications. American Meteorological Society's 7 th Symposium

Chow, Fotini Katopodes

269

1462 VOLUME 54J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S 1997 American Meteorological Society  

E-Print Network [OSTI]

,* AND LIGUANG WU Department of Meteorology, School of Ocean and Earth Science and Technology, University experiments with a single-layer, primitive equation model. It is found that cyclonic (anticyclonic) shears of the beta gyre amplitude and phase angle is advanced to interpret the numerical model results. In this model

Wang, Bin

270

Rigollier C., Lefvre M., Cros S., Wald L., 2003, Heliosat 2: an improved method for the mapping of the solar radiation from Meteosat imagery. In Proceedings of the 2002 EUMETSAT Meteorological Satellite  

E-Print Network [OSTI]

of the solar radiation from Meteosat imagery. In Proceedings of the 2002 EUMETSAT Meteorological Satellite. HELIOSAT 2: AN IMPROVED METHOD FOR THE MAPPING OF THE SOLAR RADIATION FROM METEOSAT IMAGERY C. Rigollier, M INTRODUCTION Mapping solar radiation at the ground level is an important issue for several applications

Paris-Sud XI, Université de

271

Plotting vectors on a cathode ray oscilloscope  

E-Print Network [OSTI]

helpful saggestions and have made it possible for me to oomplete this pro)eot. C OHTEH TS I ~ Prefatory Hote II. Table of Figures I II. Introduction IV. Background Vs General Theory of Operation VI. Detailel Theory ani Design A, Square V... the be- havior of a network, almost all A~ C. network theory uses the veotor diagram as a means of illustrating how and when the curx'ants and voltages are varying, and it is the vector rela- tion between voltage and ourrent that is so imnortant when...

Foster, Kenneth William

2012-06-07T23:59:59.000Z

272

Perspective plotting of roadway using design data  

E-Print Network [OSTI]

and mounted on a head helmet, can be adjusted to allow various angles of vision. It was found that all drivers guide their vehicles by reference to the road edges and the center line. Two factors which seem to limit this method are: (a) the accuracy... of visually describing the roadway as the driver sees it, we must project each point from the roadway to his eye and measure this projection on some common reference surface. By relating this pro- jection both horizontally and vertically and by combining...

Park, Ross Alan

1965-01-01T23:59:59.000Z

273

Dalitz plot studies in hadronic charm decays  

E-Print Network [OSTI]

Recent studies of hadronic -meson decays are reported. Some experimental searches of CP-symmetry violation using model independent methods are presented. An importance of unitarity constraints in construction of phenomenological models of the D-meson decays is underlined. The theoretical model of the D0 --> K0S pi+ pi- decays, including some two-body unitarity constraints, is described. Then a comparison of the model results with the Belle collaboration data is made. The results on the CP-violation in the D0 --> K0S pi+ pi- decays are given and the necessity to consider the CP-violation in the subsequent K0S decays is emphasized.

Leonard Lesniak

2014-11-06T23:59:59.000Z

274

Rainfall Manipulation Plot Study (RaMPS)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Data sets are available as ASCII files, in Excel spreadsheets, and in SAS format. (Taken from http://www.konza.ksu.edu/ramps/backgrnd.html

Blair, John (Kansas State University); Fay, Phillip (USDA-ARS); Knapp, Alan (Colorado State University); Collins, Scott (University of New Mexico); Smith, Melinda (Yale University)

275

ARM - MC3E Planning - Data Plots  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperimentgovField CampaignsMidlatitude Continental Convective

276

ARM - AMIE Gan Island - Data Plots  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2AP-XPSAPS50 -IssuegovFieldOverviewGan

277

PlotWatt | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: EnergyPierceJump81647°Pleak,3.1237276°,Pleasantville

278

AGRICULTURAL AND FOREST METEOROLOGY 14 8 ( 20 0 8 ) 1 6 9 6 1 7 0 6; doi:10.1016/j.agrformet.2008.06.001 Efficient assessment of topographic solar radiation to improve  

E-Print Network [OSTI]

.06.001 Efficient assessment of topographic solar radiation to improve plant distribution models Christian Piedallu of solar radiation for decades but have difficulty measuring it on plots. Proxies recorded on the ground topographic solar radiation, from the simplest ones (proxies based on slope, and sine or cosine transformed

Paris-Sud XI, Université de

279

Data Report: Meteorological and Evapotranspiration Data from Sagebrush and Pinyon Pine/Juniper Communities at Pahute Mesa, Nevada National Security Site, 2011-2012  

SciTech Connect (OSTI)

Pahute Mesa is a groundwater recharge area at the Nevada National Security Site. Because underground nuclear testing was conducted at Pahute Mesa, groundwater recharge may transport radionuclides from underground test sites downward to the water table; the amount of groundwater recharge is also an important component of contaminant transport models. To estimate the amount of groundwater recharge at Pahute Mesa, an INFIL3.0 recharge-runoff model is being developed. Two eddy covariance (EC) stations were installed on Pahute Mesa to estimate evapotranspiration (ET) to support the groundwater recharge modeling project. This data report describes the methods that were used to estimate ET and collect meteorological data. Evapotranspiration was estimated for two predominant plant communities on Pahute Mesa; one site was located in a sagebrush plant community, the other site in a pinyon pine/juniper community. Annual ET was estimated to be 310±13.9 mm for the sagebrush site and 347±15.9 mm for the pinyon pine/juniper site (March 26, 2011 to March 26, 2012). Annual precipitation measured with unheated tipping bucket rain gauges was 179 mm at the sagebrush site and 159 mm at the pinyon pine/juniper site. Annual precipitation measured with bulk precipitation gauges was 222 mm at the sagebrush site and 227 mm at the pinyon pine/juniper site (March 21, 2011 to March 28, 2012). A comparison of tipping bucket versus bulk precipitation data showed that total precipitation measured by the tipping bucket rain gauges was 17 to 20 percent lower than the bulk precipitation gauges. These differences were most likely the result of the unheated tipping bucket precipitation gauges not measuring frozen precipitation as accurately as the bulk precipitation gauges. In this one-year study, ET exceeded precipitation at both study sites because estimates of ET included precipitation that fell during the winter of 2010-2011 prior to EC instrumentation and the precipitation gauges started collecting data in March 2011.

Jasoni, Richard L [DRI; Larsen, Jessica D [DRI; Lyles, Brad F. [DRI; Healey, John M [DRI; Cooper, Clay A [DRI; Hershey, Ronald L [DRI; Lefebre, Karen J [DRI

2013-04-01T23:59:59.000Z

280

Letter-Value Box Plots: Adjusting Box Plots for Large Data Sets Heike Hofmann, Karen Kafadar  

E-Print Network [OSTI]

, Hadley Wickham September 5, 2006 Abstract Conventional boxplots (Tukey 1977) are useful displays (Hoaglin, Iglewicz, and Tukey 1986). Large data sets (n 10, 000 - 100, 000) afford more precise estimates-value boxplot are actual observations, thus remaining faithful to the principles that governed Tukey's original

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Day Labour Mobile Electronic Data Capture and Browsing System  

E-Print Network [OSTI]

South Africa Tel +27 21 650 2663 chepken@gmail.com Edwin Blake Edwin Blake Department of Computer Science University of Cape Town Private Bag X3 Rondebosch 7701 South Africa edwin@cs.uct.ac.za Gary Marsden Gary Marsden ICT4D HPI Research Centre, Department of Computer Science University of Cape Town

Blake, Edwin

282

Breaking the Browsing Barrier for Historic Searching of Newspaper Texts.  

E-Print Network [OSTI]

government sources, from religious factions, and from indigenous sectors. Approximately 70% of the newspapers

Keegan, Te Taka

283

Dynamically exploiting available metadata for browsing and information retrieval  

E-Print Network [OSTI]

Systems trying to help users deal with information overload need to be able to support the user in an information-centric manner, and need to support portions of the information which are structured -like creation dates ...

Sinha, Vineet, 1978-

2004-01-01T23:59:59.000Z

284

JPEG2000-based Viewer Guidance for Mobile Image Browsing  

E-Print Network [OSTI]

is needed - the new image must only be decoded. The same principle is applied for image transmission, where properties of the new and flexible image coding standard JPEG2000 for creation and transmission- quires less bandwidth during image transmission. Regard- ing the main limitations of mobile devices

Rosenbaum, Rene

285

A Framework for Browsing, Manipulating and Maintaining Interoperable Learner Profiles  

E-Print Network [OSTI]

an extensible API to process heterogeneous profiles. The rest of the paper is structured as follows: Section 2. An API is designed and implemented to create/export and manipulate such learner profiles. The API is implemented for two cases, as a Java API and as web services with synchronized model exchange between multiple

Dolog, Peter

286

Dynamics of Tilt-based Browsing on Mobile Devices  

E-Print Network [OSTI]

Cho,S.J. Murray-Smith,R. Choi,C. Sung,Y. Lee,K. Kim,Y.B. CHI '07 extended abstracts on Human factors in computing systems, http://doi.acm.org/10.1145/1240866.1240930 pp 1947 - 1952 ACM Press

Cho, S.J.; Murray-Smith, R.

287

Dynamics of Tilt-based Browsing on Mobile Devices  

E-Print Network [OSTI]

with a button- based browser and an iPod wheel. We discuss the usability performance and contrast this with subjective experience from the users. The iPod wheel has significantly poorer performance than button pushing-handed use. An alternative is Apple's iPod click wheel [5] which enables users to scroll the list by rotating

Williamson, John

288

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite JC-118794ArgonneAnalysing thescience, and

289

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite JC-118794ArgonneAnalysing thescience,

290

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite JC-118794ArgonneAnalysing thescience,Energy,

291

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite JC-118794ArgonneAnalysing

292

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite JC-118794ArgonneAnalysingConversion andEnergy,

293

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite JC-118794ArgonneAnalysingConversion

294

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite JC-118794ArgonneAnalysingConversionSciences and

295

Browse by Discipline -- E-print Network Subject Pathways: Geosciences --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite

296

Browse by Discipline -- E-print Network Subject Pathways: Mathematics --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science, and technology for the

297

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science, and technology for theEnergy,

298

Browse by Discipline -- E-print Network Subject Pathways: Power  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science, and technology forTransmission,

299

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6

300

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, and technology for the research community --

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Browse Draft Directives - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers ApplyResistant:NOAA-EPA UVBrown carbon formation

302

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers ApplyResistant:NOAA-EPA UVBrownOther --science, and

303

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers ApplyResistant:NOAA-EPAMedicine

304

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers ApplyResistant:NOAA-EPAMedicineEnergy, science, and

305

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers ApplyResistant:NOAA-EPAMedicineEnergy, science,

306

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers ApplyResistant:NOAA-EPAMedicineEnergy, science,Energy,

307

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers ApplyResistant:NOAA-EPAMedicineEnergy,

308

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers ApplyResistant:NOAA-EPAMedicineEnergy,Energy, science,

309

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers ApplyResistant:NOAA-EPAMedicineEnergy,Energy,

310

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers ApplyResistant:NOAA-EPAMedicineEnergy,Energy,Energy,

311

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers

312

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, and technology for the research

313

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, and technology for the researchEnergy,

314

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, and technology for the

315

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, and technology for theEnergy, science,

316

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, and technology for theEnergy,

317

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, and technology for theEnergy,Energy,

318

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, and technology for

319

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, and technology forEnergy, science, and

320

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, and technology forEnergy, science,

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, and technology forEnergy,

322

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, and technology forEnergy,Energy,

323

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, and technology forEnergy,Energy,Energy,

324

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, and technology

325

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, and technologyEnergy, science, and

326

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, and technologyEnergy, science,

327

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, and technologyEnergy, science,Energy,

328

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, and technologyEnergy,

329

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, and technologyEnergy,Energy, science,

330

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, and technologyEnergy,Energy,Energy,

331

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, and

332

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, andEnergy, science, and technology for

333

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, andEnergy, science, and technology

334

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, andEnergy, science, and

335

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, andEnergy, science, andEnergy, science,

336

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, andEnergy, science, andEnergy,

337

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, andEnergy, science, andEnergy,Energy,

338

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, andEnergy, science,

339

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, andEnergy, science,Energy, science, and

340

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, andEnergy, science,Energy, science,

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, andEnergy, science,Energy,

342

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, andEnergy, science,Energy,Energy,

343

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, andEnergy,

344

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, andEnergy,Energy, science, and

345

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, andEnergy,Energy, science, andEnergy,

346

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, andEnergy,Energy, science,

347

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, andEnergy,Energy, science,Energy,

348

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, andEnergy,Energy,

349

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, andEnergy,Energy,Energy, science, and

350

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, andEnergy,Energy,Energy, science,

351

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, andEnergy,Energy,Energy,

352

Browse by Discipline -- E-print Network Subject Pathways: Engineering --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science, andEnergy,Energy,Energy,Energy,

353

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,

354

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology -- Energy, science,

355

Browse by Discipline -- E-print Network Subject Pathways: Geosciences --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology -- Energy,Energy,

356

Browse by Discipline -- E-print Network Subject Pathways: Mathematics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology-- Energy,--Energy,

357

Browse by Discipline -- E-print Network Subject Pathways: Multidisciplinary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology--

358

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology--Energy, science,

359

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology--Energy,

360

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology--Energy,Energy,

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and

362

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences andEnergy, science, and

363

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences andEnergy, science, andEnergy,

364

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences andEnergy, science,

365

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences andEnergy, science,Energy,

366

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences andEnergy,

367

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences andEnergy,Energy, science, and

368

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences andEnergy,Energy, science,

369

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences andEnergy,Energy,

370

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences andEnergy,Energy,Energy,

371

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences andEnergy,Energy,Energy,Energy,

372

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences

373

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,SciencesEnergy, science, and technology

374

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,SciencesEnergy, science, and

375

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,SciencesEnergy, science, andEnergy,

376

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,SciencesEnergy, science,

377

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,SciencesEnergy, science,Energy, science,

378

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,SciencesEnergy, science,Energy,

379

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,SciencesEnergy, science,Energy,Energy,

380

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,SciencesEnergy,

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,SciencesEnergy,Energy, science, and

382

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,SciencesEnergy,Energy, science,

383

Browse by Discipline -- E-print Network Subject Pathways: Physics --  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,SciencesEnergy,Energy, science,Energy,

384

Browse by Discipline -- E-print Network Subject Pathways: Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,SciencesEnergy,Energy,

385

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4 UCRL-JC- PREPRINT3Dscience, and

386

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4 UCRL-JC- PREPRINT3Dscience,

387

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4 UCRL-JC-

388

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4 UCRL-JC-science, and technology

389

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4 UCRL-JC-science, and

390

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4 UCRL-JC-science, andscience, and

391

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4 UCRL-JC-science, andscience,

392

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4 UCRL-JC-science,

393

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4 UCRL-JC-science,science, and

394

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4 UCRL-JC-science,science,

395

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4 UCRL-JC-science,science,science,

396

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4

397

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4science, and technology for the

398

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4science, and technology for

399

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4science, and technology

400

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4science, and technologyscience,

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4science, and

402

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4science, andscience, and

403

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4science, andscience, andscience,

404

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4science, andscience,

405

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4science, andscience,science, and

406

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4science, andscience,science,

407

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4science,

408

Browse by Discipline -- E-print Network Subject Pathways: -- Energy,  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4science,science, and technology

409

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4science,science, and

410

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4science,science, andEnergy,

411

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4science,science, andEnergy,Energy,

412

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4science,science,

413

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4science,science,Energy, science,

414

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4science,science,Energy,

415

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC 127249.4science,science,Energy,Energy,

416

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJC

417

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy, science, and technology for the

418

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy, science, and technology for

419

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy, science, and technology forEnergy,

420

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy, science, and technology

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy, science, and technologyEnergy,

422

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy, science, and

423

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy, science, andEnergy, science, and

424

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy, science, andEnergy, science,

425

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy, science, andEnergy, science,Energy,

426

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy, science, andEnergy,

427

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy, science, andEnergy,Energy, science,

428

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy, science, andEnergy,Energy,

429

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy, science, andEnergy,Energy,Energy,

430

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy, science,

431

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy, science,Energy, science, and

432

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy, science,Energy, science, andEnergy,

433

Browse by Discipline -- E-print Network Subject Pathways: Biotechnology --  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy, science,Energy, science,

434

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy, science,Energy,

435

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy, science,Energy,Technologies and

436

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy, science,Energy,Technologies

437

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy,

438

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy,Technologies and Information

439

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy,Technologies and

440

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy,Technologies andTechnologies and

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy,Technologies andTechnologies

442

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy,Technologies

443

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy,TechnologiesTechnologies and

444

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy,TechnologiesTechnologies

445

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National CarbonUJCEnergy,TechnologiesTechnologiesTechnologies

446

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National

447

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an NationalTechnologies and Information Sciences -- Energy,

448

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an NationalTechnologies and Information Sciences --

449

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an NationalTechnologies and Information Sciences --Technologies

450

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an NationalTechnologies and Information Sciences

451

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an NationalTechnologies and Information SciencesTechnologies and

452

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an NationalTechnologies and Information SciencesTechnologies

453

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an NationalTechnologies and Information

454

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an NationalTechnologies and InformationTechnologies and

455

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an NationalTechnologies and InformationTechnologies

456

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an NationalTechnologies and InformationTechnologiesTechnologies

457

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an NationalTechnologies and

458

Browse by Discipline -- E-print Network Subject Pathways: Computer  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an NationalTechnologies andTechnologies and Information Sciences

459

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an NationalTechnologiesConversion

460

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an NationalTechnologiesConversionManagement and Restoration

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an NationalTechnologiesConversionManagement and

462

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an NationalTechnologiesConversionManagement andManagement and

463

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an NationalTechnologiesConversionManagement andManagement

464

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an NationalTechnologiesConversionManagement

465

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an NationalTechnologiesConversionManagementManagement and

466

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an NationalTechnologiesConversionManagementManagement

467

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an NationalTechnologiesConversionManagementManagementManagement

468

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an

469

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and Restoration Technologies -- Energy, science,

470

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and Restoration Technologies -- Energy,

471

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and Restoration Technologies -- Energy,Management

472

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and Restoration Technologies --

473

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and Restoration Technologies --Management and

474

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and Restoration Technologies --Management

475

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and Restoration Technologies --ManagementManagement

476

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and Restoration Technologies

477

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and Restoration TechnologiesManagement and

478

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and Restoration TechnologiesManagement andSciences

479

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and Restoration TechnologiesManagement

480

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and Restoration TechnologiesManagementSciences and

Note: This page contains sample records for the topic "meteorology browse plots" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and Restoration TechnologiesManagementSciences

482

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and Restoration

483

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and RestorationSciences and Ecology -- Energy,

484

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and RestorationSciences and Ecology --

485

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and RestorationSciences and Ecology --Sciences and

486

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and RestorationSciences and Ecology --Sciences

487

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and RestorationSciences and Ecology

488

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and RestorationSciences and EcologySciences and

489

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and RestorationSciences and EcologySciences

490

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and RestorationSciences and EcologySciencesSciences

491

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and RestorationSciences and

492

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and RestorationSciences andSciences and Ecology --

493

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and RestorationSciences andSciences and Ecology

494

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and RestorationSciences andSciences and

495

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and RestorationSciences andSciences andSciences and

496

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and RestorationSciences andSciences andSciences

497

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and RestorationSciences andSciences

498

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and RestorationSciences andSciencesSciences and

499

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and RestorationSciences andSciencesSciences

500

Browse by Discipline -- E-print Network Subject Pathways: Environmental  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, anManagement and RestorationSciences andSciencesSciencesSciences