Powered by Deep Web Technologies
Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

REAL ANALYSIS: DRIPPED VERSION  

E-Print Network [OSTI]

i ELEMENTARY REAL ANALYSIS: DRIPPED VERSION -------------------------- thomson·bruckner2 -------------------------- Brian S. Thomson Judith B. Bruckner Andrew M. Bruckner www.classicalrealanalysis.com (2008) ClassicalRealAnalysis.com [TBB-Dripped] Elementary Real Analysis - Dripped Version Thomson*Bruckner*Bruckner #12;ii D

California at Santa Cruz, University of

2

Drip Shield Emplacement Gantry Concept  

SciTech Connect (OSTI)

This design analysis has shown that, on a conceptual level, the emplacement of drip shields is feasible with current technology and equipment. A plan for drip shield emplacement was presented using a Drip Shield Transporter, a Drip Shield Emplacement Gantry, a locomotive, and a Drip Shield Gantry Carrier. The use of a Drip Shield Emplacement Gantry as an emplacement concept results in a system that is simple, reliable, and interfaces with the numerous other exising repository systems. Using the Waste Emplacement/Retrieval System design as a basis for the drip shield emplacement concept proved to simplify the system by using existing equipment, such as the gantry carrier, locomotive, Electrical and Control systems, and many other systems, structures, and components. Restricted working envelopes for the Drip Shield Emplacement System require further consideration and must be addressed to show that the emplacement operations can be performed as the repository design evolves. Section 6.1 describes how the Drip Shield Emplacement System may use existing equipment. Depending on the length of time between the conclusion of waste emplacement and the commencement of drip shield emplacement, this equipment could include the locomotives, the gantry carrier, and the electrical, control, and rail systems. If the exisiting equipment is selected for use in the Drip Shield Emplacement System, then the length of time after the final stages of waste emplacement and start of drip shield emplacement may pose a concern for the life cycle of the system (e.g., reliability, maintainability, availability, etc.). Further investigation should be performed to consider the use of existing equipment for drip shield emplacement operations. Further investigation will also be needed regarding the interfaces and heat transfer and thermal effects aspects. The conceptual design also requires further design development. Although the findings of this analysis are accurate for the assumptions made, further refinements of this analysis are needed as the project parameters change. The designs of the drip shield, the Emplacement Drift, and the other drip shield emplacement equipment all have a direct effect on the overall design feasibility.

Silva, R.A.; Cron, J.

2000-03-29T23:59:59.000Z

3

Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases  

DOE Patents [OSTI]

This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

Ayala, Raul E. (Clifton Park, NY)

1993-01-01T23:59:59.000Z

4

Effect of residual gases in high vacuum on the energy-level alignment at noble metal/organic interfaces  

SciTech Connect (OSTI)

The energy-level alignment at metal/organic interfaces has traditionally been studied using ultraviolet photoelectron spectroscopy (UPS) in ultra-high vacuum (UHV). However, since most devices are fabricated in high vacuum (HV), these studies do not accurately reflect the interfaces in real devices. We demonstrate, using UPS measurements of samples prepared in HV and UHV and current-voltage measurements of devices prepared in HV, that the small amounts of residual gases that are adsorbed on the surface of clean Cu, Ag, and Au (i.e., the noble metals) in HV can significantly alter the energy-level alignment at metal/organic interfaces.

Helander, M. G.; Wang, Z. B.; Lu, Z. H.

2011-10-31T23:59:59.000Z

5

The simulation of condensation removal of a heavy metal from exhaust gases onto sorbent particles  

SciTech Connect (OSTI)

A numerical model BAEROSOL for solving the general dynamic equation (GDE) of aerosols is presented. The goal was to model the capture of volatilized metals by sorbents under incinerator-like conditions. The model is based on algorithms presented by Jacobson and Turco [Aerosol Science and Technology 22 (1995) 73]. A hybrid size bin was used to model growth and formation of particles from the continuum phase and the coagulation of existing particles. Condensation and evaporation growth were calculated in a moving size bin approach, where coagulation and nucleation was modeled in the fixed size bin model of the hybrid grid. To account for the thermodynamic equilibrium in the gas phase, a thermodynamic equilibrium code CET89 was implemented. The particle size distribution (PSD) calculated with the model was then compared to analytical solutions provided for growth, coagulation and both combined. Finally, experimental findings by Rodriguez and Hall [Waste Management 21 (2001) 589-607] were compared to the PSD predicted by the developed model and the applicability of the model under incineration conditions is discussed.

Rodriguez, A.; Hall, M.J

2003-07-01T23:59:59.000Z

6

Synthesize Neutron-Drip-Line-Nuclides with Free-Neutron Bose-Einstein Condensates Experimentally  

E-Print Network [OSTI]

We first show a possible way to create a new type of matter, free-neutron Bose-Einstein condensate by the ultracold free-neutron-pair Bose-Einstein condensation and then determine the neutron drip line experimentally. The Bose-Einstein condensation of bosonic and fermionic atoms in atomic gases was performed experimentally and predicted theoretically early. Neutrons are similar to fermionic atoms. We found free neutrons could be cooled to ultracold neutrons with very low energy by other colder neutral atoms which are cooled by the laser. These neutrons form neutron pairs with spin zero, and then ultracold neutron-pairs form Bose-Einstein condensate. Our results demonstrate how these condensates can react with accelerated ion beams at different energy to synthesize very neutron-rich nuclides near, on or/and beyond the neutron drip line, to determine the neutron drip line and whether there are long-life nuclide or isomer islands beyond the neutron drip line experimentally. Otherwise, these experimental results will confirm our prediction that is in the whole interacting region or distance of nuclear force in all energy region from zero to infinite, Only repulsive nuclear force exists among identical nucleons and only among different nucleons exists attractive nuclear force.

Bao-Guo Dong

2014-09-22T23:59:59.000Z

7

On-Site Wastewater Treatment Systems: Subsurface Drip Distribution (Spanish)  

E-Print Network [OSTI]

A subsurface drip system distributes wastewater to the lawn through a system of tubing installed below the ground surface. This publication explains the advantages, disadvantages, maintenance steps and estimated costs of subsurface drip distribution...

Lesikar, Bruce J.; Enciso, Juan

1999-08-12T23:59:59.000Z

8

On-Site Wastewater Treatment Systems: Subsurface Drip Distribution  

E-Print Network [OSTI]

A subsurface drip system distributes wastewater to the lawn through a system of tubing installed below the ground. This publication explains the advantages and disadvantages of subsurface drip distribution systems, as well as estimated costs...

Lesikar, Bruce J.

1999-09-06T23:59:59.000Z

9

Characterization of Drip Emitters and Computing Distribution Uniformity in a Drip Irrigation System at Low Pressure Under Uniform Land Slopes  

E-Print Network [OSTI]

Characteristics of emitters under low pressure are essential for designing drip irrigation systems. Low pressure data for drip emitters are not available from manufacturers. A laboratory test was conducted to evaluate the performance of five types...

Dutta, Deba P.

2010-01-15T23:59:59.000Z

10

Adsorption and Separation of Light Gases on an Amino-Functionalized Metal–Organic Framework: An Adsorption and In Situ XRD Study  

SciTech Connect (OSTI)

The NH{sub 2}-MIL-53(Al) metal-organic framework was studied for its use in the separation of CO{sub 2} from CH{sub 4}, H{sub 2}, N{sub 2} C{sub 2}H{sub 6} and C{sub 3}H{sub 8} mixtures. Isotherms of methane, ethane, propane, hydrogen, nitrogen, and CO{sub 2} were measured. The atypical shape of these isotherms is attributed to the breathing properties of the material, in which a transition from a very narrow pore form to a narrow pore form and from a narrow pore form to a large pore form occurs, depending on the total pressure and the nature of the adsorbate, as demonstrated by in-situ XRD patterns measured during adsorption. Apart from CO{sub 2}, all tested gases interacted weakly with the adsorbent. As a result, they are excluded from adsorption in the narrow pore form of the material at low pressure. CO{sub 2} interacted much more strongly and was adsorbed in significant amounts at low pressure. This gives the material excellent properties to separate CO{sub 2} from other gases. The separation of CO{sub 2} from methane, nitrogen, hydrogen, or a combination of these gases has been demonstrated by breakthrough experiments using pellets of NH{sub 2}-MIL-53(Al). The effect of total pressure (1-30 bar), gas composition, temperature (303-403 K) and contact time has been examined. In all cases, CO{sub 2} was selectively adsorbed, whereas methane, nitrogen, and hydrogen nearly did not adsorb at all. Regeneration of the adsorbent by thermal treatment, inert purge gas stripping, and pressure swing has been demonstrated. The NH{sub 2}-MIL-53(Al) pellets retained their selectivity and capacity for more than two years.

Couck S.; Stavitski E.; Gobehiya, E.; Kirschhock, C.E.A.; Serra-Crespo, P.; Juan-Alcaniz, J.; Martinez Joaristi, A.; Gascon, J.; Kapteijn, F.; Baron, G. V.; Denayer J.F.M.

2012-02-29T23:59:59.000Z

11

A Sensor System Based on Semi-Conductor Metal Oxide Technology for In Situ Detection of Coal Fired Combustion Gases  

SciTech Connect (OSTI)

Sensor Research and Development Corporation (SRD) proposed a two-phase program to develop a robust, autonomous prototype analyzer for in situ, real-time detection, identification, and measurement of coal-fired combustion gases and perform field-testing at an approved power generation facility. SRD developed and selected sensor materials showing selective responses to carbon monoxide, carbon dioxide, nitric oxide, nitrogen dioxide, ammonia, sulfur dioxide and hydrogen chloride. Sensor support electronics were also developed to enable prototype to function in elevated temperatures without any issues. Field-testing at DOE approved facility showed the ability of the prototype to detect and estimate the concentration of combustion by-products accurately with relatively low false-alarm rates at very fast sampling intervals.

Brent Marquis

2007-05-31T23:59:59.000Z

12

General Corrosion and Localized Corrosion of the Drip Shield  

SciTech Connect (OSTI)

The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall. The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared according to ''Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The models developed in this report are used by the waste package degradation analyses for TSPA-LA and serve as a basis to determine the performance of the drip shield. The drip shield may suffer from other forms of failure such as the hydrogen induced cracking (HIC) or stress corrosion cracking (SCC), or both. Stress corrosion cracking of the drip shield material is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]). Hydrogen induced cracking of the drip shield material is discussed in ''Hydrogen Induced Cracking of Drip Shield'' (BSC 2004 [DIRS 169847]).

F. Hua

2004-09-16T23:59:59.000Z

13

Use of impure inert gases in the controlled heating and cooling of mixed conducting metal oxide materials  

DOE Patents [OSTI]

Method for processing an article comprising mixed conducting metal oxide material. The method comprises contacting the article with an oxygen-containing gas and either reducing the temperature of the oxygen-containing gas during a cooling period or increasing the temperature of the oxygen-containing gas during a heating period; during the cooling period, reducing the oxygen activity in the oxygen-containing gas during at least a portion of the cooling period and increasing the rate at which the temperature of the oxygen-containing gas is reduced during at least a portion of the cooling period; and during the heating period, increasing the oxygen activity in the oxygen-containing gas during at least a portion of the heating period and decreasing the rate at which the temperature of the oxygen-containing gas is increased during at least a portion of the heating period.

Carolan, Michael Francis (Allentown, PA); Bernhart, John Charles (Fleetwood, PA)

2012-08-21T23:59:59.000Z

14

Hydro-dynamical models for the chaotic dripping faucet  

E-Print Network [OSTI]

We give a hydrodynamical explanation for the chaotic behaviour of a dripping faucet using the results of the stability analysis of a static pendant drop and a proper orthogonal decomposition (POD) of the complete dynamics. We find that the only relevant modes are the two classical normal forms associated with a Saddle-Node-Andronov bifurcation and a Shilnikov homoclinic bifurcation. This allows us to construct a hierarchy of reduced order models including maps and ordinary differential equations which are able to qualitatively explain prior experiments and numerical simulations of the governing partial differential equations and provide an explanation for the complexity in dripping. We also provide a new mechanical analogue for the dripping faucet and a simple rationale for the transition from dripping to jetting modes in the flow from a faucet.

P. Coullet; L. Mahadevan; C. S. Riera

2004-08-20T23:59:59.000Z

15

Evaluation of the application uniformity of subsurface drip distribution systems  

E-Print Network [OSTI]

The goal of this research was to evaluate the application uniformity of subsurface drip distribution systems and the recovery of emitter flow rates. Emission volume in the field, and laboratory measured flow rates were determined for emitters from...

Weynand, Vance Leo

2004-09-30T23:59:59.000Z

16

Evaluation of pre-packaged agricultural drip irrigation kits  

E-Print Network [OSTI]

The purpose of this thesis is to conduct user testing and performance evaluation of two different agricultural pre-packaged drip irrigation kit (PDIK) systems: Chapin Bucket Kit and International Design Enterprises (IDE) ...

Huang, Shen, S.B. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

17

Self drying roofs: What! No dripping!  

SciTech Connect (OSTI)

Many roofs are replaced because water accumulates in portions of the roofing system.These accumulations can cause dripping, accelerated membrane failure, poor thermal performance, the threat of structural decay, and the depreciation of building assets. Traditionally, the roofing industry has been concerned with controlling the inflow of water into the roof. An example of this strategy would be the development of a more reliable membrane. However, roof membranes inevitably leak. For this reason, the roof design strategy of the future must be concerned with controlling water outflow. The requirements of this type of roof system are described. Under normal operating conditions (no leaks), the total moisture content of a self-drying roof system shall not increase with time and condensation shall not occur under the membrane during winter uptake. Moisture vapor movement by convection must be eliminated and the flow of water by gravity through imperfections in the roof system must be controlled. After a leak has occurred, no condensation on the upper surface of the deck shall be tolerated and the water introduced by the leak must be dissipated to the building interior in a minimum amount of time. Finite difference computer modeling is used to demonstrate the effectiveness of the design. The impact of deck and insulation permeance, climate, leaks, and wintertime water uptake are simulated. A database of simulations is qualitatively described; this database will be used in future work to produce a simplified means of assessing the design parameters of a self-drying roof system.

Desjarlais, A.

1995-12-31T23:59:59.000Z

18

Movement and treatment of water containing Escherichia coli applied to soil by subsurface drip emitters  

E-Print Network [OSTI]

Drip tubing as a means of applying domestic wastewater to soil is increasing in use, especially in clayey soils that are unsuitable for traditional disposal systems. Experiments were undertaken to evaluate operational constraints of drip tubing...

Franti, Jason M

2001-01-01T23:59:59.000Z

19

Installing a Subsurface Drip Irrigation System for Row Crops  

E-Print Network [OSTI]

. The manifold can be placed at the soil surface or buried. B-6151 7/04 Installing a Subsurface Drip Irrigation System for Row Crops Juan Enciso* *Assistant Professor and Extension Agricultural Engineer, The Texas A&M University System. Figure 1. Typical layout... of a drip irrigation system. Main Field block Flushing valve Valve Flushing manifold Water source Supplying manifold Lateral Tape injection The injector consists of a roll that holds the tape and a shank that opens the soil to bury the tape (Figs. 3...

Enciso, Juan

2004-09-07T23:59:59.000Z

20

Glass Membrane For Controlled Diffusion Of Gases  

DOE Patents [OSTI]

A glass structure for controlled permeability of gases includes a glass vessel. The glass vessel has walls and a hollow center for receiving a gas. The glass vessel contains a metal oxide dopant formed with at least one metal selected from the group consisting of transition metals and rare earth metals for controlling diffusion of the gas through the walls of the glass vessel. The vessel releases the gas through its walls upon exposure to a radiation source.

Shelby, James E. (Alfred Station, NY); Kenyon, Brian E. (Pittsburgh, PA)

2001-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Uniformity of wastewater dispersal using subsurface drip emitters  

E-Print Network [OSTI]

An on-site wastewater treatment project site with two separate drip fields produced data on emitter flow rates and uniformity after 6 years of operation. The site served a two-bedroom residence in Weslaco, Texas, with treatment through a septic...

Persyn, Russell Alan

2000-01-01T23:59:59.000Z

22

Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material  

SciTech Connect (OSTI)

Stress corrosion cracking is one of the most common corrosion-related causes for premature breach of metal structural components. Stress corrosion cracking is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. This report was prepared according to ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of this report is to provide an evaluation of the potential for stress corrosion cracking of the engineered barrier system components (i.e., the drip shield, waste package outer barrier, and waste package stainless steel inner structural cylinder) under exposure conditions consistent with the repository during the regulatory period of 10,000 years after permanent closure. For the drip shield and waste package outer barrier, the critical environment is conservatively taken as any aqueous environment contacting the metal surfaces. Appendix B of this report describes the development of the SCC-relevant seismic crack density model (SCDM). The consequence of a stress corrosion cracking breach of the drip shield, the waste package outer barrier, or the stainless steel inner structural cylinder material is the initiation and propagation of tight, sometimes branching, cracks that might be induced by the combination of an aggressive environment and various tensile stresses that can develop in the drip shields or the waste packages. The Stainless Steel Type 316 inner structural cylinder of the waste package is excluded from the stress corrosion cracking evaluation because the Total System Performance Assessment for License Application (TSPA-LA) does not take credit for the inner cylinder. This document provides a detailed description of the process-level models that can be applied to assess the performance of Alloy 22 (used for the waste package outer barrier) and Titanium Grade 7 (used for the drip shield) that are subjected to the effects of stress corrosion cracking. The use of laser peening or other residual stress mitigation techniques is considered as a means of mitigating stress corrosion cracking in the waste package final closure lid weld.

G. Gordon

2004-10-13T23:59:59.000Z

23

Separation of polar gases from nonpolar gases  

DOE Patents [OSTI]

Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

Kulprathipanja, S.; Kulkarni, S.S.

1986-08-26T23:59:59.000Z

24

Separation of polar gases from nonpolar gases  

DOE Patents [OSTI]

Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

Kulprathipanja, Santi (Hoffman Estates, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL)

1986-01-01T23:59:59.000Z

25

Separation of polar gases from nonpolar gases  

DOE Patents [OSTI]

The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

Kulprathipanja, S.

1986-08-19T23:59:59.000Z

26

Separation of polar gases from nonpolar gases  

DOE Patents [OSTI]

The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

Kulprathipanja, Santi (Hoffman Estates, IL)

1986-01-01T23:59:59.000Z

27

WAPDEG Analysis of Waste Package and Drip shield Degradation  

SciTech Connect (OSTI)

As directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), an analysis of the degradation of the engineered barrier system (EBS) drip shields and waste packages at the Yucca Mountain repository is developed. The purpose of this activity is to provide the TSPA with inputs and methodologies used to evaluate waste package and drip shield degradation as a function of exposure time under exposure conditions anticipated in the repository. This analysis provides information useful to satisfy ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]) requirements. Several features, events, and processes (FEPs) are also discussed (Section 6.2, Table 15). The previous revision of this report was prepared as a model report in accordance with AP-SIII.10Q, Models. Due to changes in the role of this report since the site recommendation, it no longer contains model development. This revision is prepared as a scientific analysis in accordance with AP-SIII.9Q, ''Scientific Analyses'' and uses models previously validated in (1) ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]); (2) ''General Corrosion and Localized Corrosion of Waste Package Outer Barrier'' (BSC 2004 [DIRS 169984]); and (3) ''General Corrosion and Localized Corrosion of Drip Shield'' (BSC 2004 [DIRS 169845]). The integrated waste package degradation (IWPD) analysis presented in this report treats several implementation-related issues, such as defining the number and size of patches per waste package that undergo stress corrosion cracking; recasting the weld flaw analysis in a form as implemented in the Closure Weld Defects (CWD) software; and, general corrosion rate manipulations (e.g., change of scale in Section 6.3.4). The weld flaw portion of this report takes input from an engineering calculation (BSC 2004 [DIRS 170024]) and uses standard mathematical methods to enable easier implementation. The IWPD analysis also provides guidance on implementation of early failures (importance sampling and multinomial distribution usage). These manipulations are evident from standard scientific practices, approaches, or methods and do not require changes to the previously validated models. The IWPD analysis itself (Section 6.4), not the resultant curves from executing the IWPD analysis presented in Section 6.5 (which are for illustrative purposes), is used directly in total system performance assessment (TSPA). The IWPD analysis simulates general corrosion and stress corrosion cracking of the waste package outer barrier and general corrosion of the drip shield. The effects of igneous and seismic events and localized corrosion on drip shield and waste package performance are not evaluated in this report. The outputs of this report are inputs and methodologies used by TSPA to evaluate waste package and drip shield degradation as a function of exposure time under exposure conditions anticipated in the repository. The analyses presented in this report are for the current repository design (BSC 2004 [DIRS 168489]).

K. Mon

2004-09-29T23:59:59.000Z

28

RCRA, superfund and EPCRA hotline training module. Introduction to: Drip pads (40 cfr parts 264/265, subpart w) updated July 1996  

SciTech Connect (OSTI)

In 1990, EPA promulgated listings for wastes from wood preserving processes. Many of these wastes are generated by allowing preservative to drip from wood onto concrete pads, called drip pads. To facilitate proper handling of these wastes, EPA developed design and operating standards for drip pads used to manage hazardous wastes. This module explains these standards. It defines a drip pad and summarizes the design and operating standards for drip pads. It describes the relationship between generator accumulation provisions and drip pads.

NONE

1996-07-01T23:59:59.000Z

29

RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Drip pads (40 CFR parts 264/265, subpart W) updated as of July 1995  

SciTech Connect (OSTI)

In 1990, EPA promulgated listings for wastes from wood preserving processes. Many of these wastes are generated by allowing preservative to drip from wood onto concrete pads, called drip pads. To facilitate proper handling of these wastes, EPA developed design and operating standards for drip pads used to manage hazardous wastes. This module defines a drip pad, summarizes the design and operating standards for drip pads and describes the relationship between generator accumulation provisions and drip pads.

NONE

1995-11-01T23:59:59.000Z

30

Direct mass measurements beyond the proton drip-line  

E-Print Network [OSTI]

First on-line mass measurements were performed at the SHIPTRAP Penning trap mass spectrometer. The masses of 18 neutron-deficient isotopes in the terbium-to-thulium region produced in fusion-evaporation reactions were determined with relative uncertainties of about $7\\cdot 10^{-8}$, nine of them for the first time. Four nuclides ($^{144, 145}$Ho and $^{147, 148}$Tm) were found to be proton-unbound. The implication of the results on the location of the proton drip-line is discussed by analyzing the one-proton separation energies.

C. Rauth; D. Ackermann; K. Blaum; M. Block; A. Chaudhuri; S. Eliseev; R. Ferrer; D. Habs; F. Herfurth; F. P. Hessberger; S. Hofmann; H. -J. Kluge; G. Maero; A. Martin; G. Marx; M. Mukherjee; J. B. Neumayr; W. R. Plass; W. Quint; S. Rahaman; D. Rodriguez; C. Scheidenberger; L. Schweikhard; P. G. Thirolf; G. Vorobjev; C. Weber; Z. Di

2007-01-22T23:59:59.000Z

31

Greenhouse Gases | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Greenhouse Gases Greenhouse Gases Executive Order 13514 requires Federal agencies to inventory and manage greenhouse gas (GHG) emissions to meet Federal goals and mitigate climate...

32

Strongly interacting Fermi gases  

E-Print Network [OSTI]

Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision ...

Bakr, W.

33

Review Article Chronic Cough, Reflux, Postnasal Drip Syndrome, and  

E-Print Network [OSTI]

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Objectives. Chronic cough is a multifactorial symptom that requires multidisciplinary approach. Over the last years, general practitioners refer increasingly more chronic cough patients directly to the otolaryngologist. The aim of this paper is to highlight the issues in diagnosis and management of chronic cough patients from the otolaryngologist perspective. Design. Literature review. Results. Gastroesophageal reflux and postnasal drip syndrome remain one of the most common causes of chronic cough. Better diagnostic modalities, noninvasive tests, and high technology radiological and endoscopic innovations have made diagnosis of these difficult-to-treat patients relatively easier. Multidisciplinary assessment has also meant that at least some of these cases can be dealt with confidently in one stop clinics. Conclusions. As the number of referrals of chronic cough patients to an Ear Nose Throat Clinic increases, the otolaryngologist plays a pivotal role in managing these difficult cases. 1.

The Otolaryngologist; Deborahc. Sylvester; Petros D. Karkos; James Johnston; Raghav C. Dwivedi; Helen Atkinson; Shah Kortequee

2012-01-01T23:59:59.000Z

34

Synthesis and Exploratory Catalysis of 3d Metals: Group-Transfer Reactions, and the Activation and Functionalization of Small Molecules Including Greenhouse Gases  

SciTech Connect (OSTI)

Our work over the past three years has resulted in the development of electron rich and low-coordinate vanadium fragments, molecular nitrides of vanadium and parent imide systems of titanium, and the synthesis of phosphorus containing molecules of the 3d transition metal series. Likewise, with financial support from BES Division in DOE (DE-FG02-07ER15893), we now completed the full characterization of the first single molecular magnet (SMM) of Fe(III). We demonstrated that this monomeric form of Fe(III) has an unusual slow relaxation of the magnetization under zero applied field. To make matters more interesting, this system also undergoes a rare example of an intermediate to high-spin transition (an S = 3/2 to S = 5/2 transition). In 2010 we reported the synthesis of the first neutral and low-coordinate vanadium complexes having the terminal nitride functionality. We have now completed a full study to understand formation of the nitride ligand from the metastable azide precursor, and have also explored the reactivity of the nitride ligand in the context of incomplete and complete N-atom transfer. During the 2010-2013 period we also discovered a facile approach to assemble low-coordinate and low-valent vanadium(II) complexes and exploit their multielectron chemistry ranging from 1-3 electrons. Consequently, we can now access 3d ligand frameworks such as cyclo-P3 (and its corresponding radical anion), nitride radical anions and cations, low-coordinate vanadium oxo’s, and the first example of a vanadium thionitrosyl complex. A cis-divacant iron(IV) imido having some ligand centered radical has been also discovered, and we are in the process of elucidating its electronic structure (in particular the sign of zero field splitting and the origin of its magnitude), bonding and reactivity. We have also revisited some paramagnetic and classic metallocene compounds with S >1/2 ground states in order to understand their reactivity patterns and electronic structure. Lastly, we are completing the synthesis and characterization of a titanium nitride anion and formation of the first example of boryl and aluminyl imido titanium complexes.

Mindiola, Daniel J.

2014-05-07T23:59:59.000Z

35

Tenderness, drip loss, and postmortem metabilism of broiler pectoralis from electrically stimulated and air chilled carcasses  

E-Print Network [OSTI]

This study was conducted to evaluate the effects of postmortem electrical stimulation (ES) on tenderness, absorbance ratio (r-value), pH, and drip loss of breast fillets following air chilling. In each of four replications, eight birds were...

Skarovsky, Clinton John

1997-01-01T23:59:59.000Z

36

Characterization of wastewater subsurface drip emitters and design approaches concerning system application uniformity  

E-Print Network [OSTI]

applications showed low application uniformities, which was reflected in overloading of the field near the supply manifold while low emitter discharge rates occurred at the end of lateral. Designers are seeking appropriate operation pressures and drip zone...

Duan, Xiaojing

2009-06-02T23:59:59.000Z

37

Metal sponge for cryosorption pumping applications  

DOE Patents [OSTI]

A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area.

Myneni, Ganapati R. (Yorktown, VA); Kneisel, Peter (Williamsburg, VA)

1995-01-01T23:59:59.000Z

38

Metal sponge for cryosorption pumping applications  

DOE Patents [OSTI]

A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area. 4 figs.

Myneni, G.R.; Kneisel, P.

1995-12-26T23:59:59.000Z

39

Spectroscopy of $^{28}$Na: shell evolution toward the drip line  

E-Print Network [OSTI]

Excited states in $^{28}$Na have been studied using the $\\beta$-decay of implanted $^{28}$Ne ions at GANIL/LISE as well as the in-beam $\\gamma$-ray spectroscopy at the NSCL/S800 facility. New states of positive (J$^{\\pi}$=3,4$^+$) and negative (J$^{\\pi}$=1-5$^-$) parity are proposed. The former arise from the coupling between 0d$\\_{5/2}$ protons and a 0d$\\_{3/2}$ neutron, while the latter are due to couplings with 1p$\\_{3/2}$ or 0f$\\_{7/2}$ neutrons. While the relative energies between the J$^{\\pi}$=1-4$^+$ states are well reproduced with the USDA interaction in the N=17 isotones, a progressive shift in the ground state binding energy (by about 500 keV) is observed between $^{26}$F and $^{30}$Al. This points to a possible change in the proton-neutron 0d$\\_{5/2}$-0d$\\_{3/2}$ effective interaction when moving from stability to the drip line. The presence of J$^{\\pi}$=1-4$^-$ negative parity states around 1.5 MeV as well as of a candidate for a J$^{\\pi}$=5$^-$ state around 2.5 MeV give further support to the col...

Lepailleur, A; Mutschler, A; Sorlin, O; Bader, V; Bancroft, C; Barofsky, D; Bastin, B; Baugher, T; Bazin, D; Bildstein, V; Borcea, C; Borcea, R; Brown, B A; Caceres, L; Gade, A; Gaudefroy, L; Grévy, S; Grinyer, G F; Iwasaki, H; Khan, E; Kröll, T; Langer, C; Lemasson, A; Llidoo, O; Lloyd, J; Negoita, F; Santos, F de Oliveira; Perdikakis, G; Recchia, F; Redpath, T; Roger, T; Rotaru, F; Saenz, S; Saint-Laurent, M -G; Smalley, D; Sohler, D; Stanoiu, M; Stroberg, S R; Thomas, J C; Vandebrouck, M; Weisshaar, D; Westerberg, A

2015-01-01T23:59:59.000Z

40

General Corrosion and Localized Corrosion of the Drip Shield  

SciTech Connect (OSTI)

The recommended waste package (WP) design is described in BSC (2001a). The design includes a double-wall WP underneath a protective drip shield (DS) (BSC 2003a). The purpose of the process-level models developed in this report is to model dry oxidation (DOX), general corrosion (GC) and localized corrosion (LC) of the DS plate material, which is made of Ti Grade 7. The DS design also includes structural supports fabricated from Ti Grade 24. Degradation of Ti Grade 24 is not considered in this report. The DS provides protection for the waste package outer barrier (WPOB) both as a barrier to seepage water contact and a physical barrier to potential rockfall. This Model Report (MR) serves as a feed to the Integrated Waste Package Degradation Model (IWPD) analyses, and was developed in accordance with the Technical Work Plan (TWP) (BSC 2002a). The models contained in this report serve as a basis to determine whether or not the performance requirements for the DS can be met.

F. Hua; K. Mon

2003-06-24T23:59:59.000Z

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Spectroscopy of $^{28}$Na: shell evolution toward the drip line  

E-Print Network [OSTI]

Excited states in $^{28}$Na have been studied using the $\\beta$-decay of implanted $^{28}$Ne ions at GANIL/LISE as well as the in-beam $\\gamma$-ray spectroscopy at the NSCL/S800 facility. New states of positive (J$^{\\pi}$=3,4$^+$) and negative (J$^{\\pi}$=1-5$^-$) parity are proposed. The former arise from the coupling between 0d$\\_{5/2}$ protons and a 0d$\\_{3/2}$ neutron, while the latter are due to couplings with 1p$\\_{3/2}$ or 0f$\\_{7/2}$ neutrons. While the relative energies between the J$^{\\pi}$=1-4$^+$ states are well reproduced with the USDA interaction in the N=17 isotones, a progressive shift in the ground state binding energy (by about 500 keV) is observed between $^{26}$F and $^{30}$Al. This points to a possible change in the proton-neutron 0d$\\_{5/2}$-0d$\\_{3/2}$ effective interaction when moving from stability to the drip line. The presence of J$^{\\pi}$=1-4$^-$ negative parity states around 1.5 MeV as well as of a candidate for a J$^{\\pi}$=5$^-$ state around 2.5 MeV give further support to the collapse of the N=20 gap and to the inversion between the 0f$\\_{7/2}$ and 1p$\\_{3/2}$ levels below Z=12. These features are discussed in the framework of Shell Model and EDF calculations, leading to predicted negative parity states in the low energy spectra of the $^{26}$F and $^{25}$O nuclei.

A. Lepailleur; K. Wimmer; A. Mutschler; O. Sorlin; V. Bader; C. Bancroft; D. Barofsky; B. Bastin; T. Baugher; D. Bazin; V. Bildstein; C. Borcea; R. Borcea; B. A. Brown; L. Caceres; A. Gade; L. Gaudefroy; S. Grévy; G. F. Grinyer; H. Iwasaki; E. Khan; T. Kröll; C. Langer; A. Lemasson; O. Llidoo; J. Lloyd; F. Negoita; F. de Oliveira Santos; G. Perdikakis; F. Recchia; T. Redpath; T. Roger; F. Rotaru; S. Saenz; M. -G. Saint-Laurent; D. Smalley; D. Sohler; M. Stanoiu; S. R. Stroberg; J. C. Thomas; M. Vandebrouck; D. Weisshaar; A. Westerberg

2015-03-30T23:59:59.000Z

42

Nuclear vorticity and the low-energy nuclear response - Towards the neutron drip line  

E-Print Network [OSTI]

The transition density and current provide valuable insight into the nature of nuclear vibrations. Nuclear vorticity is a quantity related to the transverse transition current. In this work, we study the evolution of the strength distribution, related to density fluctuations, and the vorticity strength distribution, as the neutron drip line is approached. Our results on the isoscalar, natural-parity multipole response of Ni isotopes, obtained by using a self-consistent Skyrme-Hartree-Fock + Continuum RPA model, indicate that, close to the drip line, the low-energy response is dominated by L>1 vortical transitions.

P. Papakonstantinou; J. Wambach; E. Mavrommatis; V. Yu. Ponomarev

2004-11-16T23:59:59.000Z

43

Neutron drip line and the equation of state of nuclear matter  

E-Print Network [OSTI]

We investigate how the neutron drip line is related to the density dependence of the symmetry energy, by using a macroscopic nuclear model that allows us to calculate nuclear masses in a way dependent on the equation of state of asymmetric nuclear matter. The neutron drip line obtained from these masses is shown to appreciably shift to a neutron-rich side in a nuclear chart as the density derivative of the symmetry energy increases. Such shift is clearly seen for light nuclei, a feature coming mainly from the surface property of neutron-rich nuclei.

Kazuhiro Oyamatsu; Kei Iida; Hiroyuki Koura

2010-05-18T23:59:59.000Z

44

Delayed and In-beam Spectroscopy on Francium and Astatine Nuclei at the Proton Drip Line  

SciTech Connect (OSTI)

Delayed and in-beam spectroscopy on francium and astatine nuclei at and beyond the proton drip line has been performed. In neutron deficient astatine nuclei a shift to deformed shapes as a function of decreasing neutron has been obtained. In neutron deficient francium isotope the same shift is evident.

Uusitalo, J.; Jakobsson, U. [Department of Physics, University of Jyvaeskylae (Finland); Collaboration: RITU-Gamma Gollaboration

2011-11-30T23:59:59.000Z

45

Rainwater harvesting system with roof catchment, gutter, downspout, storage and drip irrigation system.  

E-Print Network [OSTI]

and without access to municipal water may collect and store rainwater after obtaining a permit from the state) Basics of rainwater collection, calculation of: needs, collection and storage 2) Outdoor use 3) IndoorRainwater harvesting system with roof catchment, gutter, downspout, storage and drip irrigation

Stephens, Graeme L.

46

Greenhouse Gases | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to inventory and manage greenhouse gas (GHG) emissions to meet Federal goals and mitigate climate change. Learn about: Basics: Read an overview of greenhouse gases Federal...

47

Method and apparatus for melting metals  

DOE Patents [OSTI]

A method and apparatus for melting metals uses microwave energy as the primary source of heat. The metal or mixture of metals are placed in a ceramic crucible which couples, at least partially, with the microwaves to be used. The crucible is encased in a ceramic casket for insulation and placed within a microwave chamber. The chamber may be evacuated and refilled to exclude oxygen. After melting, the crucible may be removed for pouring or poured within the chamber by dripping or running into a heated mold within the chamber. Apparent coupling of the microwaves with softened or molten metal produces high temperatures with great energy savings.

Moore, Alan F.; Schechter, Donald E.; Morrow, Marvin Stanley

2006-03-14T23:59:59.000Z

48

Control of pollutants in flue gases and fuel gases  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.2 Flue gases and fuel gases: combustion, gasification, pyrolysis, incineration and other and gasification technologies for heat and power . . . . . . . . 2-3 2.4 Waste incineration and waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.3 Formation of sulphur compounds during combustion and gasification . . 3-5 3.4 Emission

Zevenhoven, Ron

49

Control of pollutants in flue gases and fuel gases  

E-Print Network [OSTI]

and gasification technologies for heat and power . . . . . . . . 2-3 2.4 Waste incineration and waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.2 Flue gases and fuel gases: combustion, gasification, pyrolysis, incineration and other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.3 Formation of sulphur compounds during combustion and gasification . 3-5 3.4 Emission

Laughlin, Robert B.

50

Voluntary Reporting of Greenhouse Gases  

Reports and Publications (EIA)

The Voluntary Reporting of Greenhouse Gases Program was suspended May 2011. It was a mechanism by which corporations, government agencies, individuals, voluntary organizations, etc., could report to the Energy Information Administration, any actions taken that have or are expected to reduce/avoid emissions of greenhouse gases or sequester carbon.

2011-01-01T23:59:59.000Z

51

Spatio-temporal theory of lasing action in optically-pumped rotationally excited molecular gases  

E-Print Network [OSTI]

We investigate laser emission from optically-pumped rotationally excited molecular gases confined in a metallic cavity. To this end, we have developed a theoretical framework able to accurately describe, both in the spatial ...

Chua, Song-Liang

52

Methods, systems, and devices for deep desulfurization of fuel gases  

DOE Patents [OSTI]

A highly effective and regenerable method, system and device that enables the desulfurization of warm fuel gases by passing these warm gasses over metal-based sorbents arranged in a mesoporous substrate. This technology will protect Fischer-Tropsch synthesis catalysts and other sulfur sensitive catalysts, without drastic cooling of the fuel gases. This invention can be utilized in a process either alone or alongside other separation processes, and allows the total sulfur in such a gas to be reduced to less than 500 ppb and in some instances as low as 50 ppb.

Li, Liyu (Richland, WA); King, David L. (Richland, WA); Liu, Jun (Richland, WA); Huo, Qisheng (Richland, WA)

2012-04-17T23:59:59.000Z

53

Deep subsurface drip irrigation using coal-bed sodic water: Part I. Water and solute movement  

SciTech Connect (OSTI)

Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300–480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

2013-02-01T23:59:59.000Z

54

Guidance Document CompressedGases  

E-Print Network [OSTI]

electricity. Oxygen by itself does not burn, but it will support or accelerate combustion of flammable the regulator is completely closed. 3. When possible use flammable and reactive gases in a fume hood. Certain

55

Degenerate quantum gases of strontium  

E-Print Network [OSTI]

Degenerate quantum gases of alkaline-earth-like elements open new opportunities in research areas ranging from molecular physics to the study of strongly correlated systems. These experiments exploit the rich electronic structure of these elements, which is markedly different from the one of other species for which quantum degeneracy has been attained. Specifically, alkaline-earth-like atoms, such as strontium, feature metastable triplet states, narrow intercombination lines, and a non-magnetic, closed-shell ground state. This review covers the creation of quantum degenerate gases of strontium and the first experiments performed with this new system. It focuses on laser-cooling and evaporation schemes, which enable the creation of Bose-Einstein condensates and degenerate Fermi gases of all strontium isotopes, and shows how they are used for the investigation of optical Feshbach resonances, the study of degenerate gases loaded into an optical lattice, as well as the coherent creation of Sr_2 molecules.

Stellmer, Simon; Killian, Thomas C

2013-01-01T23:59:59.000Z

56

The neutron drip line: single-particle degrees of freedom and pairing properties as sources of theoretical uncertainties  

E-Print Network [OSTI]

The sources of theoretical uncertainties in the prediction of the two-neutron drip line are analyzed in the framework of covariant density functional theory. We concentrate on single-particle and pairing properties as potential sources of these uncertainties. The major source of these uncertainties can be traced back to the differences in the underlying single-particle structure of the various covariant energy density functionals (CEDF). It is found that the uncertainties in the description of single-particle energies at the two-neutron drip line are dominated by those existing already in known nuclei. Only approximately one third of these uncertainties are due to the uncertainties in the isovector channel of CEDF's. Thus, improving the CEDF description of single-particle energies in known nuclei will also reduce the uncertainties in the prediction of the position of two-neutron drip line. The predictions of pairing properties in neutron rich nuclei depend on the CEDF. Although pairing properties affect moderately the position of the two-neutron drip line they represent only a secondary source for the uncertainties in the definition of the position of the two-neutron drip line.

A. V. Afanasjev; S. E. Agbemava; D. Ray; P. Ray

2015-01-17T23:59:59.000Z

57

High- and low-temperature-stable thermite composition for producing high-pressure, high-velocity gases  

DOE Patents [OSTI]

A high- and low-temperature-stable thermite composition for producing high-pressure and high-velocity gases comprises an oxidizable metal, an oxidizing reagent, and a high-temperature-stable gas-producing additive selected from the group consisting of metal carbides and metal nitrides.

Halcomb, Danny L. (Camden, OH); Mohler, Jonathan H. (Spring Valley, OH)

1990-10-16T23:59:59.000Z

58

Industrial Gases as a Vehicle for Competitiveness  

E-Print Network [OSTI]

the diversity and options available to enable cost savings and environmentally driven process improvements. Industrial gases have come of age during the last fifteen years. Engineers and scientists have looked beyond the paradigms of their operations...INDUSTRIAL GASES AS A VEHICLE FOR COMPETITIVENESS James R. Dale, Director, Technology Programs, Airco Industrial Gases Division, The BOC Group, Inc., Murray Hill, New Jersey ABSTRACT Industrial gases are produced using compressed air...

Dale, J. R.

59

Environment on the Surfaces of the Drip Shield and Waste Package Outer Barrier  

SciTech Connect (OSTI)

This report provides supporting analysis of the conditions at which an aqueous solution can exist on the drip shield or waste package surfaces, including theoretical underpinning for the evolution of concentrated brines that could form by deliquescence or evaporation, and evaluation of the effects of acid-gas generation on brine composition. This analysis does not directly feed the total system performance assessment for the license application (TSPA-LA), but supports modeling and abstraction of the in-drift chemical environment (BSC 2004 [DIRS 169863]; BSC 2004 [DIRS 169860]). It also provides analyses that may support screening of features, events, and processes, and input for response to regulatory inquiries. This report emphasizes conditions of low relative humidity (RH) that, depending on temperature and chemical conditions, may be dry or may be associated with an aqueous phase containing concentrated electrolytes. Concentrated solutions at low RH may evolve by evaporative concentration of water that seeps into emplacement drifts, or by deliquescence of dust on the waste package or drip shield surfaces. The minimum RH for occurrence of aqueous conditions is calculated for various chemical systems based on current understanding of site geochemistry and equilibrium thermodynamics. The analysis makes use of known characteristics of Yucca Mountain waters and dust from existing tunnels, laboratory data, and relevant information from the technical literature and handbooks.

T. Wolery

2005-02-22T23:59:59.000Z

60

Neutron shell structure and deformation in neutron-drip-line nuclei  

E-Print Network [OSTI]

Neutron shell-structure and the resulting possible deformation in the neighborhood of neutron-drip-line nuclei are systematically discussed, based on both bound and resonant neutron one-particle energies obtained from spherical and deformed Woods-Saxon potentials. Due to the unique behavior of weakly-bound and resonant neutron one-particle levels with smaller orbital angular-momenta $\\ell$, a systematic change of the shell structure and thereby the change of neutron magic-numbers are pointed out, compared with those of stable nuclei expected from the conventional j-j shell-model. For spherical shape with the operator of the spin-orbit potential conventionally used, the $\\ell_{j}$ levels belonging to a given oscillator major shell with parallel spin- and orbital-angular-momenta tend to gather together in the energetically lower half of the major shell, while those levels with anti-parallel spin- and orbital-angular-momenta gather in the upper half. The tendency leads to a unique shell structure and possible deformation when neutrons start to occupy the orbits in the lower half of the major shell. Among others, the neutron magic-number N=28 disappears and N=50 may disappear, while the magic number N=82 may presumably survive due to the large $\\ell =5$ spin-orbit splitting for the $1h_{11/2}$ orbit. On the other hand, an appreciable amount of energy gap may appear at N=16 and 40 for spherical shape, while neutron-drip-line nuclei in the region of neutron number above N=20, 40 and 82, namely N $\\approx$ 21-28, N $\\approx$ 41-54, and N $\\approx$ 83-90, may be quadrupole-deformed though the possible deformation depends also on the proton number of respective nuclei.

Ikuko Hamamoto

2012-06-18T23:59:59.000Z

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Removal of field and embedded metal by spin spray etching  

DOE Patents [OSTI]

A process of removing both the field metal, such as copper, and a metal, such as copper, embedded into a dielectric or substrate at substantially the same rate by dripping or spraying a suitable metal etchant onto a spinning wafer to etch the metal evenly on the entire surface of the wafer. By this process the field metal is etched away completely while etching of the metal inside patterned features in the dielectric at the same or a lesser rate. This process is dependent on the type of chemical etchant used, the concentration and the temperature of the solution, and also the rate of spin speed of the wafer during the etching. The process substantially reduces the metal removal time compared to mechanical polishing, for example, and can be carried out using significantly less expensive equipment. 6 figs.

Contolini, R.J.; Mayer, S.T.; Tarte, L.A.

1996-01-23T23:59:59.000Z

62

Particle entanglement in rotating gases  

SciTech Connect (OSTI)

In this paper, we investigate the particle entanglement in two-dimensional (2D) weakly interacting rotating Bose and Fermi gases. We find that both particle localization and vortex localization can be indicated by particle entanglement. We also use particle entanglement to show the occurrence of edge reconstruction of rotating fermions. The different properties of condensate phase and vortex liquid phase of bosons can be reflected by particle entanglement and in vortex liquid phase we construct the same trial wave function with that in [Phys. Rev. Lett. 87, 120405 (2001)] from the viewpoint of entanglement to relate the ground state with quantum Hall state. Finally, the relation between particle entanglement and interaction strength is studied.

Liu Zhao; Fan Heng [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

2010-06-15T23:59:59.000Z

63

Oxidative corrosion of spent UO{sub 2} fuel in vapor and dripping groundwater at 90{degree}C.  

SciTech Connect (OSTI)

Corrosion of spent UO{sub 2} fuel has been studied in experiments conducted for nearly six years. Oxidative dissolution in vapor and dripping groundwater at 90 C occurs via general corrosion at fuel-fragment surfaces. Dissolution along fuel-grain boundaries is also evident in samples contacted by the largest volumes of groundwater, and corroded grain boundaries extend at least 20 or 30 grains deep (> 200 {micro}m), possibly throughout millimeter-sized fragments. Apparent dissolution of fuel along defects that intersect grain boundaries has created dissolution pits that are 50 to 200 nm in diameter. Dissolution pits penetrate 1-2 {micro}m into each grain, producing a ''worm-like'' texture along fuel-grain-boundaries. Sub-micrometer-sized fuel shards are common between fuel grains and may contribute to the reactive surface area of fuel exposed to groundwater. Outer surfaces of reacted fuel fragments develop a fine-grained layer of corrosion products adjacent to the fuel (5-15 {micro}m thick). A more coarsely crystalline layer of corrosion products commonly covers the fine-grained layer, the thickness of which varies considerably among samples (from less than 5 {micro}m to greater than 40 {micro}m). The thickest and most porous corrosion layers develop on fuel fragments exposed to the largest volumes of groundwater. Corrosion-layer compositions depend strongly on water flux, with uranyl oxy-hydroxides predominating in vapor experiments, and alkali and alkaline earth uranyl silicates predominating in high drip-rate experiments. Low drip-rate experiments exhibit a complex assemblage of corrosion products, including phases identified in vapor and high drip-rate experiments.

Finch, R. J.

1999-04-29T23:59:59.000Z

64

Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water  

SciTech Connect (OSTI)

Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (?3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO{sub 4} salts more soluble than gypsum. Irrigation with high SAR (?24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

Bern, C. R.; Boehlke, A. R.; Engle, M. A.; Geboy, N. J.; Schroeder, K. T.; Zupancic, J. W.

2013-12-01T23:59:59.000Z

65

The neutron drip line: single-particle degrees of freedom and pairing properties as sources of theoretical uncertainties  

E-Print Network [OSTI]

The sources of theoretical uncertainties in the prediction of the two-neutron drip line are analyzed in the framework of covariant density functional theory. We concentrate on single-particle and pairing properties as potential sources of these uncertainties. The major source of these uncertainties can be traced back to the differences in the underlying single-particle structure of the various covariant energy density functionals (CEDF). It is found that the uncertainties in the description of single-particle energies at the two-neutron drip line are dominated by those existing already in known nuclei. Only approximately one third of these uncertainties are due to the uncertainties in the isovector channel of CEDF's. Thus, improving the CEDF description of single-particle energies in known nuclei will also reduce the uncertainties in the prediction of the position of two-neutron drip line. The predictions of pairing properties in neutron rich nuclei depend on the CEDF. Although pairing properties affect moder...

Afanasjev, A V; Ray, D; Ray, P

2015-01-01T23:59:59.000Z

66

Light Collection in Liquid Noble Gases  

SciTech Connect (OSTI)

Liquid noble gases are increasingly used as active detector materials in particle and nuclear physics. Applications include calorimeters and neutrino oscillation experiments as well as searches for neutrinoless double beta decay, direct dark matter, muon electron conversion, and the neutron electric dipole moment. One of the great advantages of liquid noble gases is their copious production of ultraviolet scintillation light, which contains information about event energy and particle type. I will review the scintillation properties of the various liquid noble gases and the means used to collect their scintillation light, including recent advances in photomultiplier technology and wavelength shifters.

McKinsey, Dan [Yale University

2013-05-29T23:59:59.000Z

67

aerosol precursor gases: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sunlight 11 GREENHOUSE GASES GREENHOUSE GASES BACKGROUND CiteSeer Summary: The Earths climate depends on the amount of solar radiation received and the atmospheric abundance of...

68

An Infrared Spectral Database for Detection of Gases Emitted...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Database for Detection of Gases Emitted by Biomass Burning. An Infrared Spectral Database for Detection of Gases Emitted by Biomass Burning. Abstract: We report the construction of...

69

Denitrification of combustion gases. [Patent application  

DOE Patents [OSTI]

A method for treating waste combustion gas to remove the nitrogen oxygen gases therefrom is disclosed wherein the waste gas is first contacted with calcium oxide which absorbs and chemically reacts with the nitrogen oxide gases therein at a temperature from about 100/sup 0/ to 430/sup 0/C. The thus reacted calcium oxide (now calcium nitrate) is then heated at a temperature range between about 430/sup 0/ and 900/sup 0/C, resulting in regeneration of the calcium oxide and production of the decomposition gas composed of nitrogen and nitrogen oxide gas. The decomposition gases can be recycled to the calcium oxide contacting step to minimize the amount of nitrogen oxide gases in the final product gas.

Yang, R.T.

1980-10-09T23:59:59.000Z

70

Voluntary reporting of greenhouse gases, 1995  

SciTech Connect (OSTI)

The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

NONE

1996-07-01T23:59:59.000Z

71

Biological production of products from waste gases  

DOE Patents [OSTI]

A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

Gaddy, James L. (Fayetteville, AR)

2002-01-22T23:59:59.000Z

72

Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts  

DOE Patents [OSTI]

A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption process, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gases from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or passivating the heavy metals on the spent FCC catalyst as an intermediate step.

Gangwal, S.; Jothimurugesan, K.

1999-07-27T23:59:59.000Z

73

THE FUTURE OF ENERGY GASES David G. Howell, Editor  

E-Print Network [OSTI]

totally independent of oil. Methane is found in association with coal; it is a byproduct of metabolic the term "energy gases" to distinguish those natural gases, primarily methane, that have utility for energy consequences associated with an expanded role of energy gases? Energy gases, particularly methane, are commonly

74

Measuring the Isotopic Composition of Solar Wind Noble Gases  

E-Print Network [OSTI]

noble gases. #12;Exploring the Solar Wind94 Light solar wind noble gases were directly measured by mass of the light gases are known to vary with energy, so none of these provided solar isotopic and elemental5 Measuring the Isotopic Composition of Solar Wind Noble Gases Alex Meshik, Charles Hohenberg, Olga

75

Method for detecting toxic gases  

DOE Patents [OSTI]

A method is disclosed which is capable of detecting low concentrations of a pollutant or other component in air or other gas. This method utilizes a combination of a heating filament having a catalytic surface of a noble metal for exposure to the gas and producing a derivative chemical product from the component. An electrochemical sensor responds to the derivative chemical product for providing a signal indicative of the product. At concentrations in the order of about 1-100 ppm of tetrachloroethylene, neither the heating filament nor the electrochemical sensor is individually capable of sensing the pollutant. In the combination, the heating filament converts the benzyl chloride to one or more derivative chemical products which may be detected by the electrochemical sensor. 6 figures.

Stetter, J.R.; Zaromb, S.; Findlay, M.W. Jr.

1991-10-08T23:59:59.000Z

76

HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 Greenhouse gases andGreenhouse gases and  

E-Print Network [OSTI]

in gas turbinecombustion in gas turbine HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 Effect of COEffect-depleting gases ·· COCO22 removal for gas purificationremoval for gas purification ·· COCO22 removal for greenhouse gas emissions reductionremoval for greenhouse gas emissions reduction ·· Other greenhouse gases

Zevenhoven, Ron

77

Where do California's greenhouse gases come from?  

ScienceCinema (OSTI)

Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

Fischer, Marc

2013-05-29T23:59:59.000Z

78

Perdido LF-Gase to Electricity | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Perdido LF-Gase to Electricity Perdido LF-Gase to Electricity This presentation was given at the July 17, 2012, Community Renewable Energy Deployment webinar on successful landfill...

79

Method for enhancing microbial utilization rates of gases using perfluorocarbons  

DOE Patents [OSTI]

A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases.

Turick, Charles E. (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

80

Method for enhancing microbial utilization rates of gases using perfluorocarbons  

DOE Patents [OSTI]

A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases. 3 figs.

Turick, C.E.

1997-06-10T23:59:59.000Z

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Development of a metal hydride electrode waste treatment process  

SciTech Connect (OSTI)

Manufacturing residues of metal hydride electrodes for nickel - metal hydride batteries were chemically processed to recover the metal part and heat treated for the organic part. Chemical recovery yielded Ni-Co alloy after electrolysis of the solution and hydroxides of other metal, mainly rare earths. The organic part, pyrolyzed at 700 C, led to separation between carbon and fluorinated matter. Infrared coupling at the output of the pyrolysis furnace was used to identify the pyrolysis gases.

Bianco, J.C.; Martin, D.; Ansart, F.; Castillo, S.

1999-12-01T23:59:59.000Z

82

Thermodynamic formalism for field driven Lorentz gases  

E-Print Network [OSTI]

We analytically determine the dynamical properties of two dimensional field driven Lorentz gases within the thermodynamic formalism. For dilute gases subjected to an iso-kinetic thermostat, we calculate the topological pressure as a function of a temperature-like parameter $\\ba$ up to second order in the strength of the applied field. The Kolmogorov-Sinai entropy and the topological entropy can be extracted from a dynamical entropy defined as a Legendre transform of the topological pressure. Our calculations of the Kolmogorov-Sinai entropy exactly agree with previous calculations based on a Lorentz-Boltzmann equation approach. We give analytic results for the topological entropy and calculate the dimension spectrum from the dynamical entropy function.

Oliver Muelken; Henk van Beijeren

2003-12-22T23:59:59.000Z

83

Method for introduction of gases into microspheres  

DOE Patents [OSTI]

A method for producing small hollow glass spheres filled with a gas by introduction of the gas during formation of the hollow glass spheres. Hollow glass microspheres having a diameter up to about 500.mu. with both thin walls (0.5 to 4.mu.) and thick walls (5 to 20.mu.) that contain various fill gases, such as Ar, Kr, Xe, Br, DT, H.sub.2, D.sub.2, He, N.sub.2, Ne, CO.sub.2, etc. in the interior thereof, can be produced by the diffusion of the fill gas or gases into the microsphere during the formation thereof from a liquid droplet of glass-forming solution. This is accomplished by filling at least a portion of the multiple-zone drop-furnace used in producing hollow microspheres with the gas or gases of interest, and then taking advantage of the high rate of gaseous diffusion of the fill gas through the wall of the gel membrane before it transforms into a glass microsphere as it is processed in the multiple-zone furnace. Almost any gas can be introduced into the inner cavity of a glass microsphere by this method during the formation of the microsphere provided that the gas is diffused into the gel membrane or microsphere prior to its transformation into glass. The process of this invention provides a significant savings of time and related expense of filling glass microspheres with various gases. For example, the time for filling a glass microballoon with 1 atmosphere of DT is reduced from about two hours to a few seconds.

Hendricks, Charles D. (Livermore, CA); Koo, Jackson C. (San Ramon, CA); Rosencwaig, Allan (Danville, CA)

1981-01-01T23:59:59.000Z

84

Horizontal electromagnetic casting of thin metal sheets  

DOE Patents [OSTI]

Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

1987-01-01T23:59:59.000Z

85

Horizontal electromagnetic casting of thin metal sheets  

DOE Patents [OSTI]

Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

1988-01-01T23:59:59.000Z

86

Technical Work Plan For: Calculation of Waste Packave and Drip Shield Response to Vibratory Ground Motion and Revision of the Seismic Consequence Abstraction  

SciTech Connect (OSTI)

The overall objective of the work scope covered by this technical work plan (TWP) is to develop new damage abstractions for the seismic scenario class in total system performance assessment (TSPA). The new abstractions will be based on a new set of waste package and drip shield damage calculations in response to vibratory ground motion and fault displacement. The new damage calculations, which are collectively referred to as damage models in this TWP, are required to represent recent changes in waste form packaging and in the regulatory time frame. The new damage models also respond to comments from the Independent Validation Review Team (IVRT) postvalidation review of the draft TSPA model regarding performance of the drip shield and to an Additional Information Need (AIN) from the U.S. Nuclear Regulatory Commission (NRC).

M. Gross

2006-12-08T23:59:59.000Z

87

Stabilization of Electrocatalytic Metal Nanoparticles at Metal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points. Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene...

88

Asia-wide emissions of greenhouse gases  

SciTech Connect (OSTI)

Emissions of principal greenhouse gases (GHGs) from Asia are increasing faster than those from any other continent. This is a result of rapid economic growth, as well as the fact that almost half of the world`s population lives in Asian countries. In this paper, the author provides estimates of emissions of the two principal greenhouse gases, carbon dioxide (CO{sub 2}) and methane (CH{sub 4}), from individual countries and areas. Recent literature has been reviewed for emission estimates for individual sources, such as carbon dioxide from cement manufacture, and methane from rice fields. There are very large uncertainties in many of these estimates, so several estimates are provided, where available. The largest anthropogenic source of CO{sub 2} emissions is the use of fossil fuels. Energy consumption data from 1992 have been used to calculate estimated emissions of CO{sub 2} from this source. In view of the ongoing negotiations to limit future greenhouse gas emissions, estimates of projected CO{sub 2} emissions from the developing countries of Asia are also provided. These are likely to be 3 times their 1986 levels by 2010, under business as usual scenarios. Even with the implementation of energy efficiency measures and fuel switching where feasible, the emissions of CO{sub 2} are likely to double within the same time period.

Siddiqi, T.A. [East-West Center, Honolulu, HI (United States). Program on Environment

1995-11-01T23:59:59.000Z

89

Theory of ultracold atomic Fermi gases  

SciTech Connect (OSTI)

The physics of quantum degenerate atomic Fermi gases in uniform as well as in harmonically trapped configurations is reviewed from a theoretical perspective. Emphasis is given to the effect of interactions that play a crucial role, bringing the gas into a superfluid phase at low temperature. In these dilute systems, interactions are characterized by a single parameter, the s-wave scattering length, whose value can be tuned using an external magnetic field near a broad Feshbach resonance. The BCS limit of ordinary Fermi superfluidity, the Bose-Einstein condensation (BEC) of dimers, and the unitary limit of large scattering length are important regimes exhibited by interacting Fermi gases. In particular, the BEC and the unitary regimes are characterized by a high value of the superfluid critical temperature, on the order of the Fermi temperature. Different physical properties are discussed, including the density profiles and the energy of the ground-state configurations, the momentum distribution, the fraction of condensed pairs, collective oscillations and pair-breaking effects, the expansion of the gas, the main thermodynamic properties, the behavior in the presence of optical lattices, and the signatures of superfluidity, such as the existence of quantized vortices, the quenching of the moment of inertia, and the consequences of spin polarization. Various theoretical approaches are considered, ranging from the mean-field description of the BCS-BEC crossover to nonperturbative methods based on quantum Monte Carlo techniques. A major goal of the review is to compare theoretical predictions with available experimental results.

Giorgini, Stefano; Pitaevskii, Lev P.; Stringari, Sandro [Dipartimento di Fisica, Universita di Trento and CNR-INFM BEC Center, I-38050 Povo, Trento (Italy); Dipartimento di Fisica, Universita di Trento and CNR-INFM BEC Center, I-38050 Povo, Trento, Italy and Kapitza Institute for Physical Problems, ul. Kosygina 2, 117334 Moscow (Russian Federation); Dipartimento di Fisica, Universita di Trento and CNR-INFM BEC Center, I-38050 Povo, Trento (Italy)

2008-10-15T23:59:59.000Z

90

The greenhouse gases HFCs, PFCs Danish consumption and emissions, 2007  

E-Print Network [OSTI]

The greenhouse gases HFCs, PFCs and SF6 Danish consumption and emissions, 2007 Tomas Sander Poulsen AND EMISSION OF F-GASES 7 1.1.1 Consumption 7 1.1.2 Emission 7 1.1.3 Trends in total GWP contribution from F 21 4 EMISSION OF F-GASES 23 4.1.1 Emissions of HFCs from refrigerants 23 4.1.2 Emissions of HFCs from

91

Suspended two-dimensional electron and hole gases  

SciTech Connect (OSTI)

We report on the fabrication of fully suspended two-dimensional electron and hole gases in III-V heterostructures. Low temperature transport measurements verify that the properties of the suspended gases are only slightly degraded with respect to the non-suspended gases. Focused ion beam technology is used to pattern suspended nanostructures with minimum damage from the ion beam, due to the small width of the suspended membrane.

Kazazis, D.; Bourhis, E.; Gierak, J.; Gennser, U. [Laboratoire de Photonique et de Nanostructures, CNRS-LPN, Route de Nozay, 91460 Marcoussis (France); Bourgeois, O. [Institut Néel, CNRS-UJF, BP 166, 38042 Grenoble Cedex 9 (France); Antoni, T. [Laboratoire de Photonique et de Nanostructures, CNRS-LPN, Route de Nozay, 91460 Marcoussis, France and Laboratoire Kastler Brossel, Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris (France)

2013-12-04T23:59:59.000Z

92

Method for controlling corrosion in thermal vapor injection gases  

DOE Patents [OSTI]

An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

1981-01-01T23:59:59.000Z

93

adjacente dos gases: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nature Le Roy, Robert J. 437 Classical disordered ground states: Super-ideal gases and stealth and equi-luminous materials Chemistry Websites Summary: Classical disordered...

94

Finalize Historic National Program to Reduce Greenhouse Gases...  

Open Energy Info (EERE)

Finalize Historic National Program to Reduce Greenhouse Gases and Improve Fuel Economy for Cars and Trucks Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Finalize...

95

Shortcuts to adiabaticity for trapped ultracold gases  

E-Print Network [OSTI]

We study, experimentally and theoretically, the controlled transfer of harmonically trapped ultracold gases between different quantum states. In particular we experimentally demonstrate a fast decompression and displacement of both a non-interacting gas and an interacting Bose-Einstein condensate which are initially at equilibrium. The decompression parameters are engineered such that the final state is identical to that obtained after a perfectly adiabatic transformation despite the fact that the fast decompression is performed in the strongly non-adiabatic regime. During the transfer the atomic sample goes through strongly out-of-equilibrium states while the external confinement is modified until the system reaches the desired stationary state. The scheme is theoretically based on the invariants of motion and scaling equations techniques and can be generalized to decompression trajectories including an arbitrary deformation of the trap. It is also directly applicable to arbitrary initial non-equilibrium sta...

Schaff, Jean-François; Labeyrie, Guillaume; Vignolo, Patrizia

2011-01-01T23:59:59.000Z

96

Shortcuts to adiabaticity for trapped ultracold gases  

E-Print Network [OSTI]

We study, experimentally and theoretically, the controlled transfer of harmonically trapped ultracold gases between different quantum states. In particular we experimentally demonstrate a fast decompression and displacement of both a non-interacting gas and an interacting Bose-Einstein condensate which are initially at equilibrium. The decompression parameters are engineered such that the final state is identical to that obtained after a perfectly adiabatic transformation despite the fact that the fast decompression is performed in the strongly non-adiabatic regime. During the transfer the atomic sample goes through strongly out-of-equilibrium states while the external confinement is modified until the system reaches the desired stationary state. The scheme is theoretically based on the invariants of motion and scaling equations techniques and can be generalized to decompression trajectories including an arbitrary deformation of the trap. It is also directly applicable to arbitrary initial non-equilibrium states.

Jean-François Schaff; Pablo Capuzzi; Guillaume Labeyrie; Patrizia Vignolo

2011-05-11T23:59:59.000Z

97

Finite Temperature Gases of Fermionic Strings  

E-Print Network [OSTI]

We show that in the absence of a Ramond-Ramond sector both the type IIA and type IIB free string gases have a thermal instability due to low temperature tachyon modes. The gas of free IIA strings undergoes a thermal duality transition into a gas of free IIB strings at the self-dual temperature. The free heterotic string gas is a tachyon-free ensemble with gauge symmetry SO(16)$\\times$SO(16) in the presence of a timelike Wilson line background. It exhibits a holographic duality relation undergoing a self-dual phase transition with positive free energy and positive specific heat. The type IB open and closed string ensemble is related by thermal duality to the type I' string ensemble. We identify the order parameter for the Kosterlitz-Thouless phase transition from a low temperature gas of short open strings to a high temperature long string phase at or below T_C. Note Added (Sep 2005).

Shyamoli Chaudhuri

2005-09-12T23:59:59.000Z

98

Bogoliubov spectrum of interacting Bose gases  

E-Print Network [OSTI]

We study the large-N limit of a system of N bosons interacting with a potential of intensity 1/N. When the ground state energy is to the first order given by Hartree's theory, we study the next order, predicted by Bogoliubov's theory. We show the convergence of the lower eigenvalues and eigenfunctions towards that of the Bogoliubov Hamiltonian (up to a convenient unitary transform). We also prove the convergence of the free energy when the system is sufficiently trapped. Our results are valid in an abstract setting, our main assumptions being that the Hartree ground state is unique and non-degenerate, and that there is complete Bose-Einstein condensation on this state. Using our method we then treat two applications: atoms with ''bosonic'' electrons on one hand, and trapped 2D and 3D Coulomb gases on the other hand.

Mathieu Lewin; Phan Thành Nam; Sylvia Serfaty; Jan Philip Solovej

2014-03-11T23:59:59.000Z

99

Voluntary reporting of greenhouse gases 1997  

SciTech Connect (OSTI)

The Voluntary Reporting of Greenhouse Gases Program, required by Section 1605(b) of the Energy Policy Act of 1992, records the results of voluntary measures to reduce, avoid, or sequester greenhouse gas emissions. In 1998, 156 US companies and other organizations reported to the Energy information Administration that, during 1997, they had achieved greenhouse gas emission reductions and carbon sequestration equivalent to 166 million tons of carbon dioxide, or about 2.5% of total US emissions for the year. For the 1,229 emission reduction projects reported, reductions usually were measured by comparing an estimate of actual emissions with an estimate of what emissions would have been had the project not been implemented.

NONE

1999-05-01T23:59:59.000Z

100

Metal aminoboranes  

DOE Patents [OSTI]

Metal aminoboranes of the formula M(NH2BH3)n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya; Shrestha, Roshan P.

2010-05-11T23:59:59.000Z

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Method of converting environmentally pollutant waste gases to methanol  

SciTech Connect (OSTI)

A continuous flow method is described of converting environmentally pollutant by-product gases emitted during the manufacture of silicon carbide to methanol comprising: (a) operating a plurality of batch furnaces of a silicon carbide manufacturing plant thereby producing silicon carbide and emitting by-product gases during the operation of the furnaces; (b) staggering the operation of the batch furnaces to achieve a continuous emission of the by-product gases; (c) continuously flowing the by-product gases as emitted from the batch furnaces directly to a methanol manufacturing plant; (d) cleansing the by-product gases of particulate matter, including removing the element sulfur from the by-product gases, as they are flowed to the methanol manufacturing plant, sufficiently for use of the by-product gases in producing methanol; and (e) immediately producing methanol from the by-product gases at the methanol manufacturing plant whereby the producing of silicon carbide is joined with the producing of methanol as a unified process.

Pfingstl, H.; Martyniuk, W.; Hennepin, A. Ill; McNally, T.; Myers, R.; Eberle, L.

1993-08-03T23:59:59.000Z

102

Continuous cryopump with a method for removal of solidified gases  

DOE Patents [OSTI]

An improved cryopump for the removal of gases from a high vacuum, comprising a cryopanel incorporating honeycomb structure, refrigerant means thermally connected to the cryopanel, and a rotatable channel moving azimuthally around an axis located near the center of the cryopanel, removing gases adsorbed within the honeycomb structure by subliming them and conducting them outside the vacuum vessel. 4 figs.

Carlson, L.W.; Herman, H.

1988-05-05T23:59:59.000Z

103

Carbide and carbonitride surface treatment method for refractory metals  

DOE Patents [OSTI]

A carbide and carbonitride surface treatment method for refractory metals is provided, in steps including, heating a part formed of boron, chromium, hafnium, molybdenum, niobium, tantalum, titanium, tungsten or zirconium, or alloys thereof, in an evacuated chamber and then introducing reaction gases including nitrogen and hydrogen, either in elemental or water vapor form, which react with a source of elemental carbon to form carbon-containing gaseous reactants which then react with the metal part to form the desired surface layer. Apparatus for practicing the method is also provided, in the form of a carbide and carbonitride surface treatment system including a reaction chamber, a source of elemental carbon, a heating subassembly and a source of reaction gases. Alternative methods of providing the elemental carbon and the reaction gases are provided, as well as methods of supporting the metal part, evacuating the chamber with a vacuum subassembly and heating all of the components to the desired temperature. 5 figs.

Meyer, G.A.; Schildbach, M.A.

1996-12-03T23:59:59.000Z

104

Particulate removal from high-temperature, high-pressure combustion gases  

SciTech Connect (OSTI)

The adoption by utilities of coal-fired pressurized fluidized-bed/combined cycle combustion systems for electric power generation depends to a large extent on the development of an efficient and economic cleanup system for the high-temperature, high-pressure combustion gases. For adequate turbine protection, these gases must be sufficiently cleaned to bring particulate erosion and alkali vapor corrosion to a level acceptable to gas turbine manufacturers. At the same time, the total particulate content of the flue gas must be reduced to the limit set by the Environmental Protection Agency. To accomplish particulate removal from a dust-laden gas stream, a number of separation devices have been developed. These include conventional and augmented cyclones; porous metal, fiber, fabric, and ceramic filters, as well as fixed, moving, and fluidized-bed granular filters; and electrostatic precipitators. Several other novel separation devices have been proposed and developed to different degrees such as: contactors using molten salt, metal, or glass, dry scrubbers, acoustic agglomerators, as well as cyclones and granular-bed filters with external electrostatic or magnetic fields. Some of these separation devices in various combinations have been tested in process development units or in hot gas simulators by ANL, CPC, CURL, C-W, Exxon, GE, Westinghouse, etc. The results are discussed and evaluated for PFBC applications.

Henry, R.F.; Saxena, S.C.; Podolski, W.F.

1983-10-01T23:59:59.000Z

105

Measuring non-condensable gases in steam  

SciTech Connect (OSTI)

In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1 %) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3M{sup TM} Electronic Test System (ETS). In this paper, a physical model is presented that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation.

Doornmalen, J. P. C. M. van; Kopinga, K., E-mail: k.kopinga@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

2013-11-15T23:59:59.000Z

106

Cryogenic method for measuring nuclides and fission gases  

DOE Patents [OSTI]

A cryogenic method is provided for determining airborne gases and particulates from which gamma rays are emitted. A special dewar counting vessel is filled with the contents of the sampling flask which is immersed in liquid nitrogen. A vertically placed sodium-iodide or germanium-lithium gamma-ray detector is used. The device and method are of particular use in measuring and identifying the radioactive noble gases including emissions from coal-fired power plants, as well as fission gases released or escaping from nuclear power plants.

Perdue, P.T.; Haywood, F.F.

1980-05-02T23:59:59.000Z

107

Analysis of air pollution and greenhouse gases  

SciTech Connect (OSTI)

The current objective of the project Analysis of Air Pollution and Greenhouse Gases'' is to develop a study of emissions and emission sources that could easily be linked to models of economic activity. Initial studies were conducted to evaluate data currently available linking activity rates and emissions estimates. The emissions inventory developed for the National Acid Precipitation Assessment Program (NAPAP) presents one of the most comprehensive data sets, and was chosen for our initial studies, which are described in this report. Over 99% of the SO{sub 2} emissions, 98% of the NO{sub x} emission and 57% of the VOC emissions from area sources are related to fuel combustion. The majority of emission from these sources are generated by the transportation sector. Activity rates for area sources are not archived with the NAPAP inventory; alternative derivations of these data will be part of the future activities of this project. The availability and completeness of the fuel heat content data in the NAPAP inventory were also studied. Approximately 10% of the SO{sub 2} emissions, 13% of the NO{sub x} emissions and 46% of the VOC emissions are generated by sources with unavailable data for fuel heat content. Initial estimates of pollutant emission rate per unit fuel heat content. Initial estimates of pollutant emission rate per unit fuel heat content were generated. Future studies for this project include the derivation of activity rates for area sources, improved explanations for the default fuel parameters defined in the NAPAP inventory and the development of links to data bases of economic activity.

Benkovitz, C.M.

1992-03-01T23:59:59.000Z

108

Metal inks  

DOE Patents [OSTI]

Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

2014-02-04T23:59:59.000Z

109

Process for the removal of acid forming gases from exhaust gases  

DOE Patents [OSTI]

Exhaust gases are treated to remove NO or NO[sub x] and SO[sub 2] by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50 C is attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO[sub x] and SO[sub 2], alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO[sub x] and SO[sub 2] can be removed in an economic fashion. 9 figs.

Chang, S.G.; Liu, D.K.

1992-11-17T23:59:59.000Z

110

Process for the removal of acid forming gases from exhaust gases  

DOE Patents [OSTI]

Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. are attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO and SO.sub.2 can be removed in an economic fashion.

Chang, Shih-Ger (El Cerrito, CA); Liu, David K. (San Pablo, CA)

1992-01-01T23:59:59.000Z

111

Geochemical Data on Waters, Gases, Scales, and Rocks from the...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geochemical Data on Waters, Gases, Scales, and Rocks from the Dixie Valley Region, Nevada (1996-1999)...

112

Method of producing pyrolysis gases from carbon-containing materials  

DOE Patents [OSTI]

A gasification process of improved efficiency is disclosed. A dual bed reactor system is used in which carbon-containing feedstock materials are first treated in a gasification reactor to form pyrolysis gases. The pyrolysis gases are then directed into a catalytic reactor for the destruction of residual tars/oils in the gases. Temperatures are maintained within the catalytic reactor at a level sufficient to crack the tars/oils in the gases, while avoiding thermal breakdown of the catalysts. In order to minimize problems associated with the deposition of carbon-containing materials on the catalysts during cracking, a gaseous oxidizing agent preferably consisting of air, oxygen, steam, and/or mixtures thereof is introduced into the catalytic reactor at a high flow rate in a direction perpendicular to the longitudinal axis of the reactor. This oxidizes any carbon deposits on the catalysts, which would normally cause catalyst deactivation.

Mudge, Lyle K. (Richland, WA); Brown, Michael D. (West Richland, WA); Wilcox, Wayne A. (Kennewick, WA); Baker, Eddie G. (Richland, WA)

1989-01-01T23:59:59.000Z

113

Method for monitoring stack gases for uranium activity  

DOE Patents [OSTI]

A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.

Beverly, Claude R. (Paducah, KY); Ernstberger, Harold G. (Paducah, KY)

1988-01-01T23:59:59.000Z

114

Low-Value Waste Gases as an Energy Source  

E-Print Network [OSTI]

Waste gases with potentially useful fuel value are generated at any number of points in refineries, chemical plants and other industrial and commercial sites. The higher quality streams have been utilized successfully in fuel systems for years...

Waibel, R. T.

115

Viscosities of natural gases at high pressures and high temperatures  

E-Print Network [OSTI]

Estimation of viscosities of naturally occurring petroleum gases provides the information needed to accurately work out reservoir-engineering problems. Existing models for viscosity prediction are limited by data, especially at high pressures...

Viswanathan, Anup

2007-09-17T23:59:59.000Z

116

Method for monitoring stack gases for uranium activity  

DOE Patents [OSTI]

A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.

Beverly, C.R.; Ernstberger, E.G.

1985-07-03T23:59:59.000Z

117

Studying coherence in ultra-cold atomic gases  

E-Print Network [OSTI]

This thesis will discuss the study of coherence properties of ultra-cold atomic gases. The atomic systems investigated include a thermal cloud of atoms, a Bose-Einstein condensate and a fermion pair condensate. In each ...

Miller, Daniel E. (Daniel Edward)

2007-01-01T23:59:59.000Z

118

Chapter 4 The Gaseous State Chemistry of Gases  

E-Print Network [OSTI]

.15 V = V0[1+(t/273.15oC)] Kelvin T = 273.15 + t(Celsius) #12;Boyle's Law · The stirling engine, a heatChapter 4 The Gaseous State NO2 #12;AIR #12;Chemistry of Gases SO3 .. corrosive gas SO2...burning) ~1760 Charle The definition of the Temperature All gases expand with increasing temperature by the same

Ihee, Hyotcherl

119

Biological production of ethanol from waste gases with Clostridium ljungdahlii  

DOE Patents [OSTI]

A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products is disclosed. The method includes introducing the waste gases into a bioreactor where they are fermented to various product, such as organic acids, alcohols H.sub.2, SCP, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

Gaddy, James L. (Fayetteville, AR)

2000-01-01T23:59:59.000Z

120

Process for removing sulfur dioxide from flue gases  

SciTech Connect (OSTI)

This patent describes an improvement in a dry process for the removal of sulfur dioxide from flue gases by the addition thereto of hydrated lime containing sugar in a coal combustion unit, wherein the flue gases result from the combustion of a coal in a combustion chamber, and the flue gases are treated in an electrostatic precipitator prior to discharge to the atmosphere the improvement comprising: passing the flue gases, after the addition of the hydrated lime is of fine particles of a specific surface of 7 to 25 square meters per gram, through a conduit towards the electrostatic precipitator; and adding an aqueous media to the flue gases in the conduit in an amount to increase the water content of the flue gases and cool the same by evaporative cooling to a temperature no lower than 20{sup 0}F. about the dew point of the gas, so as to avoid forming water droplets in the gas, so as to prevent condensation of water therefrom.

Robinson, M.W. Jr.

1989-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Silicone metalization  

DOE Patents [OSTI]

A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

2008-12-09T23:59:59.000Z

122

Silicone metalization  

DOE Patents [OSTI]

A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

2006-12-05T23:59:59.000Z

123

VOLUME 86, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 12 FEBRUARY 2001 Suppression of Dripping from a Ceiling  

E-Print Network [OSTI]

-dependent surface tension (thermocapillarity) can stabilize the layer. Our measurements of the most unstable wave: 47.20.Dr, 47.20.Ma, 68.15.+e A layer of water suspended from a ceiling will drip, as anyoneT; r, n, and k are the liquid density, kinematic viscosity, and thermal diffusivity, respectively. Time

Texas at Austin. University of

124

VOLUME 86, NUMBER 7 P HY S I CA L R E V I E W L E T T E R S 12 FEBRUARY 2001 Suppression of Dripping from a Ceiling  

E-Print Network [OSTI]

­dependent surface tension (thermocapillarity) can stabilize the layer. Our measurements of the most unstable wave numbers: 47.20.Dr, 47.20.Ma, 68.15.+e A layer of water suspended from a ceiling will drip, as anyone]. The temperature coefficient of surface tension is s T # 2ds#dT ; r, n, andk are the liquid density, kinematic

Texas at Austin. University of

125

Mechanisms of coactivation of estrogen receptor alpha (ER alpha)- and ER alpha/Sp-mediated gene transactivation by vitamin D receptor interacting protein 205 (DRIP205) in breast cancer cells  

E-Print Network [OSTI]

Vitamin D interacting protein 205 (DRIP205) is a mediator complex protein that anchors the complex to the estrogen receptor (ER) and other nuclear receptors (NRs). In ZR-75 breast cancer cells treated with 17?-estradiol (E2) and transfected with a...

Wu, Qian

2009-05-15T23:59:59.000Z

126

Energy loss characteristics of heavy ions in nitrogen, carbon dioxide, argon, hydrocarbon gases and tradescantia tissue  

E-Print Network [OSTI]

Energy loss characteristics of heavy ions in nitrogen, carbon dioxide, argon, hydrocarbon gases and tradescantia tissue

Dennis, J A

1971-01-01T23:59:59.000Z

127

Realization of effective super Tonks-Girardeau gases via strongly attractive one-dimensional Fermi gases  

SciTech Connect (OSTI)

A significant feature of the one-dimensional super Tonks-Girardeau gas is its metastable gas-like state with a stronger Fermi-like pressure than for free fermions which prevents a collapse of atoms. This naturally suggests a way to search for such strongly correlated behavior in systems of interacting fermions in one dimension. We thus show that the strongly attractive Fermi gas without polarization can be effectively described by a super Tonks-Girardeau gas composed of bosonic Fermi pairs with attractive pair-pair interaction. A natural description of such super Tonks-Girardeau gases is provided by Haldane generalized exclusion statistics. In particular, they are equivalent to ideal particles obeying more exclusive statistics than Fermi-Dirac statistics.

Chen Shu; Yin Xiangguo; Guan Liming [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Guan Xiwen [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Batchelor, M. T. [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Mathematical Sciences Institute, Australian National University, Canberra ACT 0200 (Australia)

2010-03-15T23:59:59.000Z

128

Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases  

DOE Patents [OSTI]

An apparatus and method for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir.

Gross, Kenneth C. (Bolingbrook, IL); Markun, Francis (Joliet, IL); Zawadzki, Mary T. (South Bend, IN)

1998-01-01T23:59:59.000Z

129

Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases  

DOE Patents [OSTI]

An apparatus and method are disclosed for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir. 6 figs.

Gross, K.C.; Markun, F.; Zawadzki, M.T.

1998-04-28T23:59:59.000Z

130

Process for the removal of acid forming gases from exhaust gases and production of phosphoric acid  

DOE Patents [OSTI]

Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorous preferably in a wet scrubber. The addition of yellow phosphorous in the system induces the production of O.sub.3 which subsequently oxidizes NO to NO.sub.2. The resulting NO.sub.2 dissolves readily and can be reduced to form ammonium ions by dissolved SO.sub.2 under appropriate conditions. In a 20 acfm system, yellow phosphorous is oxidized to yield P.sub.2 O.sub.5 which picks up water to form H.sub.3 PO.sub.4 mists and can be collected as a valuable product. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, better than 90% of SO.sub.2 and NO in simulated flue gas can be removed. Stoichiometric ratios (P/NO) ranging between 0.6 and 1.5 were obtained.

Chang, Shih-Ger (El Cerrito, CA); Liu, David K. (San Pablo, CA)

1992-01-01T23:59:59.000Z

131

Novel Metallic Membranes for Hydrogen Separation  

SciTech Connect (OSTI)

To reduce dependence on oil and emission of greenhouse gases, hydrogen is favored as an energy carrier for the near future. Hydrogen can be converted to electrical energy utilizing fuel cells and turbines. One way to produce hydrogen is to gasify coal which is abundant in the U.S. The coal gasification produces syngas from which hydrogen is then separated. Designing metallic alloys for hydrogen separation membranes which will work in a syngas environment poses significant challenges. In this presentation, a review of technical targets, metallic membrane development activities at NETL and challenges that are facing the development of new technologies will be given.

Dogan, Omer

2011-02-27T23:59:59.000Z

132

THERMODYNAMIC STUDY OF HEAVY METALS BEHAVIOUR DURING MUNICIPAL WASTE INCINERATION  

E-Print Network [OSTI]

, heat and mass transfer, drying, pyrolysis, combustion of pyrolysis gases, combustion and gasificationTHERMODYNAMIC STUDY OF HEAVY METALS BEHAVIOUR DURING MUNICIPAL WASTE INCINERATION Y. ME´ NARD, A Me´tallurgie (LSG2M) Nancy, France T he incineration of municipal solid waste (MSW) contributes

Boyer, Edmond

133

Recombination luminescence and trap levels in undoped and Al-doped ZnO thin films on quartz and GaSe (0 0 0 1) substrates  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer ZnO films on GaSe create electron trapping states and PL recombination levels. Black-Right-Pointing-Pointer Zn and Al diffusion in GaSe produces low-energy widening of its PL emission. Black-Right-Pointing-Pointer ZnO:Al films on GaSe lamellas are suitable for gas-discharge lamp applications. -- Abstract: Photoluminescence spectra of ZnO and ZnO:Al (1.00, 2.00 and 5.00 at.%) films on GaSe (0 0 0 1) lamellas and amorphous quartz substrates, obtained by annealing, at 700 K, of undoped and Al-doped metal films, are investigated. For all samples, the nonequilibrium charge carriers recombine by radiative band-to-band transitions with energy of 3.27 eV, via recombination levels created by the monoionized oxygen atoms, forming the impurity band laying in the region 2.00 - 2.70 eV. Al doping induces an additional recombination level at 1.13 eV above the top of the valence band of ZnO films on GaSe substrates. As a result of thermal diffusion of Zn and Al into the GaSe interface layer from ZnO:Al/GaSe heterojunction, electron trap levels located at 0.22 eV and 0.26 eV below the conduction band edge of GaSe, as well as a deep recombination level, responsible for the luminescent emission in the region 1.10 - 1.40 eV, are created.

Evtodiev, I. [Moldova State University, 60 A. Mateevici Str., Chisinau, MD 2009, Republic of Moldova (Moldova, Republic of)] [Moldova State University, 60 A. Mateevici Str., Chisinau, MD 2009, Republic of Moldova (Moldova, Republic of); Caraman, I. [Vasile Alecsandri University of Bacau, 157 Calea Marasesti, RO 600115 Bacau (Romania)] [Vasile Alecsandri University of Bacau, 157 Calea Marasesti, RO 600115 Bacau (Romania); Leontie, L., E-mail: lleontie@uaic.ro [Alexandru Ioan Cuza University of Iasi, Bd. Carol I, Nr. 11, RO 700506 Iasi (Romania); Rusu, D.-I. [Vasile Alecsandri University of Bacau, 157 Calea Marasesti, RO 600115 Bacau (Romania)] [Vasile Alecsandri University of Bacau, 157 Calea Marasesti, RO 600115 Bacau (Romania); Dafinei, A. [Faculty of Physics, University of Bucharest, Platforma Magurele, Str. Fizicienilor nr. 1, CP Mg - 11, Bucharest-Magurele, RO 76900 (Romania)] [Faculty of Physics, University of Bucharest, Platforma Magurele, Str. Fizicienilor nr. 1, CP Mg - 11, Bucharest-Magurele, RO 76900 (Romania); Nedeff, V.; Lazar, G. [Vasile Alecsandri University of Bacau, 157 Calea Marasesti, RO 600115 Bacau (Romania)] [Vasile Alecsandri University of Bacau, 157 Calea Marasesti, RO 600115 Bacau (Romania)

2012-03-15T23:59:59.000Z

134

Emissions Of Greenhouse Gases From Rice Agriculture  

SciTech Connect (OSTI)

This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small. 4). Nitrous Oxide Emissions From Rice Fields Increase as Methane Emissions Drop. Inundated conditions favor anaerobic methane production with high emission rates and de-nitrification resulting in modest nitrous oxide emissions. Under drier conditions such as intermittent flooding, methane emissions fall and nitrous oxide emissions increase. Increased nitrogen fertilizer use increases nitrous oxide emissions and is usually accompanied by reduced organic matter applications which decreases methane emissions. These mechanisms cause a generally inverse relationship between methane and nitrous oxide emissions. Reduction of methane from rice agriculture to control global warming comes with tradeoffs with increased nitrous oxide emissions. 5). High Spatial Resolution Maps of Emissions Produced. Maps of methane and nitrous oxide emissions at a resolution of 5 min × 5 min have been produced based on the composite results of this research. These maps are necessary for both scientific and policy uses.

M. Aslam K. Khalil

2009-07-16T23:59:59.000Z

135

Evaluation of exposures of hospital employees to anesthetic gases  

SciTech Connect (OSTI)

Hospital employees who work in hospital operating and recovery rooms are often exposed to a number of anesthetic gases. There is evidence to support the belief that such exposures have led to higher rates of miscarriages and spontaneous abortions of pregnancies among women directly exposed to these gases than among women not exposed. Most of the studies assessing exposure levels were conducted prior to the widespread use of scavenging systems. Air sampling was conducted in hospital operatories and recovery rooms of three large hospitals to assess the current exposure levels in these areas and determine the effectiveness of these systems in reducing exposures to fluoride-containing anesthetic gases. It was determined that recovery-room personnel are exposed to levels of anesthesia gases that often approach and exceed the recommended Threshold Limit Value-Time Weighted Average (TLV-TWA) of 2.0 ppm. Recovery-room personnel do not have the protection from exposure provided by scavenging systems in operating rooms. Operating-room personnel were exposed to anesthesia gas levels above the TLV-TWA only when patients were masked, or connected and disconnected from the scavenging systems. Recovery-room personnel also need to be protected from exposure to anesthesia gases by a scavenging system.

Lambeth, J.D.

1988-01-01T23:59:59.000Z

136

Directed light fabrication of refractory metals  

SciTech Connect (OSTI)

Directed Light Fabrication (DLF) is a metal, rapid fabrication process that fuses metal powders to full density into a solid replica of a computer modeled component. It has been shown feasible for forming nearly any metal and also intermetallics to near net shape with a single process. DLF of refractory pure metals is feasible, bypassing the extensive series of conventional processing steps used for processing these high melting point materials. Tungsten, tantalum, and rhenium were processed and show a continuous resolidified microstructure. Porosity was a problem for the tantalum and rhenium powders produced by chemical reduction processes but not for the tungsten powder spherodized in a plasma arc. Chemical analysis of powder compared to the DLF deposit showed reductions in carbon, oxygen and hydrogen, indicating that process parameters may also be optimized for evolution of residual gases in the deposits.

Lewis, G.K.; Thoma, D.J.; Nemec, R.B.; Milewski, J.O. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

1997-11-01T23:59:59.000Z

137

Summary of Inorganic Compositional Data for Groundwater, Soil-Water, and Surface-Water Samples at the Headgate Draw Subsurface Drip Irrigation Site  

SciTech Connect (OSTI)

As part of a 5-year project on the impact of subsurface drip irrigation (SDI) application of coalbed-methane (CBM) produced waters, water samples were collected from the Headgate Draw SDI site in the Powder River Basin, Wyoming, USA. This research is part of a larger study to understand short- and long-term impacts on both soil and water quality from the beneficial use of CBM waters to grow forage crops through use of SDI. This document provides a summary of the context, sampling methodology, and quality assurance and quality control documentation of samples collected prior to and over the first year of SDI operation at the site (May 2008-October 2009). This report contains an associated database containing inorganic compositional data, water-quality criteria parameters, and calculated geochemical parameters for samples of groundwater, soil water, surface water, treated CBM waters, and as-received CBM waters collected at the Headgate Draw SDI site.

Geboy, Nicholas J.; Engle, Mark A.; Schroeder, Karl T.; Zupanic, John W.

2007-01-01T23:59:59.000Z

138

“Hard probes” of strongly-interacting atomic gases  

SciTech Connect (OSTI)

We investigate properties of an energetic atom propagating through strongly interacting atomic gases. The operator product expansion is used to systematically compute a quasiparticle energy and its scattering rate both in a spin-1/2 Fermi gas and in a spinless Bose gas. Reasonable agreement with recent quantum Monte Carlo simulations even at a relatively small momentum k/kF > 1.5 indicates that our large-momentum expansions are valid in a wide range of momentum. We also study a differential scattering rate when a probe atom is shot into atomic gases. Because the number density and current density of the target atomic gas contribute to the forward scattering only, its contact density (measure of short-range pair correlation) gives the leading contribution to the backward scattering. Therefore, such an experiment can be used to measure the contact density and thus provides a new local probe of strongly interacting atomic gases.

Nishida, Yusuke [Los Alamos National Laboratory

2012-06-18T23:59:59.000Z

139

Emissions of greenhouse gases in the United States 1997  

SciTech Connect (OSTI)

This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

NONE

1998-10-01T23:59:59.000Z

140

Separating hydrogen from coal gasification gases with alumina membranes  

SciTech Connect (OSTI)

Synthesis gas produced in coal gasification processes contains hydrogen, along with carbon monoxide, carbon dioxide, hydrogen sulfide, water, nitrogen, and other gases, depending on the particular gasification process. Development of membrane technology to separate the hydrogen from the raw gas at the high operating temperatures and pressures near exit gas conditions would improve the efficiency of the process. Tubular porous alumina membranes with mean pore radii ranging from about 9 to 22 {Angstrom} have been fabricated and characterized. Based on hydrostatic tests, the burst strength of the membranes ranged from 800 to 1600 psig, with a mean value of about 1300 psig. These membranes were evaluated for separating hydrogen and other gases. Tests of membrane permeabilities were made with helium, nitrogen, and carbon dioxide. Measurements were made at room temperature in the pressure range of 15 to 589 psi. Selected membranes were tested further with mixed gases simulating a coal gasification product gas. 5 refs., 7 figs.

Egan, B.Z. (Oak Ridge National Lab., TN (USA)); Fain, D.E.; Roettger, G.E.; White, D.E. (Oak Ridge K-25 Site, TN (USA))

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Lattice vibrations of pure and doped GaSe  

SciTech Connect (OSTI)

The Bridgman method is used to grow especially undoped and doped single crystals of GaSe. Composition and impurity content of the grown crystals were determined using X-ray fluorescence (XRF) method. X-ray diffraction, Raman scattering, photoluminescence (PL), and IR transmission measurements were performed at room temperature. The long wavelength lattice vibrations of four modifications of GaSe were described in the framework of modified one-layer linear-chain model which also takes into consideration the interaction of the selenium (Se) atom with the second nearest neighbor gallium (Ga) atom in the same layer. The existence of an eight-layer modification of GaSe is suggested and the vibrational frequencies of this modification are explained in the framework of a lattice dynamical model considered in the present work. Frequencies and the type of vibrations (gap, local, or resonance) for the impurity atoms were calculated and compared with the experimental results.

Allakhverdiev, K. [Materials Institute, Marmara Research Center, TUBITAK, Gebze/Kocaeli 41470 (Turkey) and Institute of Physics, Azerbaijan National Academy of Sciences, Baku AZ1143 (Azerbaijan)]. E-mail: kerim.allahverdi@mam.gov.tr; Baykara, T. [Materials Institute, Marmara Research Center, TUBITAK, Gebze/Kocaeli 41470 (Turkey); Ellialtioglu, S. [Department of Physics, Middle East Technical University, Ankara 06531 (Turkey); Hashimzade, F. [Institute of Physics, Azerbaijan National Academy of Sciences, Baku AZ1143 (Azerbaijan); Huseinova, D. [Institute of Physics, Azerbaijan National Academy of Sciences, Baku AZ1143 (Azerbaijan); Kawamura, K. [Institute of Materials Science, University of Tsukuba 305-8573 (Japan); Kaya, A.A. [Materials Institute, Marmara Research Center, TUBITAK, Gebze/Kocaeli 41470 (Turkey); Kulibekov, A.M. [Department of Physics, Mugla University, Mugla 48000 (Turkey); Onari, S. [Institute of Materials Science, University of Tsukuba 305-8573 (Japan)

2006-04-13T23:59:59.000Z

142

Removal of sulfur and nitrogen containing pollutants from discharge gases  

DOE Patents [OSTI]

Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

Joubert, James I. (Pittsburgh, PA)

1986-01-01T23:59:59.000Z

143

Welcome to Greenhouse Gases: Science and Technology: Editorial  

SciTech Connect (OSTI)

This editorial introduces readers and contributors to a new online journal. Through the publication of articles ranging from peer-reviewed research papers and short communications, to editorials and interviews on greenhouse gas emissions science and technology, this journal will disseminate research results and information that address the global crisis of anthropogenic climate change. The scope of the journal includes the full spectrum of research areas from capture and separation of greenhouse gases from flue gases and ambient air, to beneficial utilization, and to sequestration in deep geologic formations and terrestrial (plant and soil) systems, as well as policy and technoeconomic analyses of these approaches.

Oldenburg, C.M.; Maroto-Valer, M.M.

2011-02-01T23:59:59.000Z

144

Dissipative dynamics of a Josephson junction in the Bose gases  

SciTech Connect (OSTI)

The dissipative dynamics of a Josephson junction in Bose gases is considered within the framework of the model of a tunneling Hamiltonian. The effective action that describes the dynamics of the phase difference across the junction is derived using the functional integration method. The dynamic equation obtained for the phase difference across the junction is analyzed for the finite temperatures in the low-frequency limit involving the radiation terms. The asymmetric case of the Bose gases with the different order parameters is calculated as well.

Barankov, R.A. [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Burmistrov, S.N. [RRC 'Kurchatov Institute', Kurchatov Sq.1, 123182 Moscow (Russian Federation)

2003-01-01T23:59:59.000Z

145

Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases  

DOE Patents [OSTI]

This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons.

Senum, Gunnar I. (Patchogue, NY); Dietz, Russell N. (Patchogue, NY)

1994-01-01T23:59:59.000Z

146

Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases  

DOE Patents [OSTI]

This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons. 8 figures.

Senum, G.I.; Dietz, R.N.

1994-04-05T23:59:59.000Z

147

THE GREENHOUSE EFFECT RISING GREENHOUSE GASES AND CLIMATE CHANGE  

E-Print Network [OSTI]

, methane, and nitrous oxides. The sun's energy passes through these gases, like light passing through risen by almost 40 percent. This is attributed primarily to the burning of fossil fuels (coal, oil, gasoline). Methane and nitrous oxides are also increasing rapidly, due in part to the expansion

148

Use of low temperature blowers for recirculation of hot gases  

DOE Patents [OSTI]

An apparatus is described for maintaining motors at low operating temperatures during recirculation of hot gases in fuel cell operations and chemical processes such as fluidized bed coal gasification. The apparatus includes a means for separating the hot process gas from the motor using a secondary lower temperature gas, thereby minimizing the temperature increase of the motor and associated accessories.

Maru, H.C.; Forooque, M.

1982-08-19T23:59:59.000Z

149

AER1301: KINETIC THEORY OF GASES Assignment #2  

E-Print Network [OSTI]

AER1301: KINETIC THEORY OF GASES Assignment #2 1. Using the formalism of the text book is as follows. Assume that the particle number density is a slowly varying function of the z coordinate #27; Ã? is a constant. 3. Show that if the potential function, U(r), varies as 1=r 4

Groth, Clinton P. T.

150

AER1301: KINETIC THEORY OF GASES Assignment #2  

E-Print Network [OSTI]

AER1301: KINETIC THEORY OF GASES Assignment #2 1. Using the formalism of the text book the particle number density and temperature are both slowly varying functions of the z coordinate of the previous problem is as follows. Assume that the particle number density is a slowly varying function

Groth, Clinton P. T.

151

Mitigation options for accidental releases of hazardous gases  

SciTech Connect (OSTI)

The objective of this paper is to review and compare technologies available for mitigation of unconfined releases of toxic and flammable gases. These technologies include: secondary confinement, deinventory, vapor barriers, foam spraying, and water sprays/monitors. Guidelines for the design and/or operation of effective post-release mitigation systems and case studies involving actual industrial mitigation systems are also presented.

Fthenakis, V.M.

1995-05-01T23:59:59.000Z

152

Nature of superfluidity in ultracold Fermi gases near Feshbach resonances  

SciTech Connect (OSTI)

We study the superfluid state of atomic Fermi gases using a BCS-Bose-Einstein-condensation crossover theory. Our approach emphasizes noncondensed fermion pairs which strongly hybridize with their (Feshbach-induced) molecular boson counterparts. These pairs lead to pseudogap effects above T{sub c} and non-BCS characteristics below. We discuss how these effects influence the experimental signatures of superfluidity.

Stajic, Jelena; Levin, K. [James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637 (United States); Milstein, J.N.; Holland, M.J. [JILA, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309 (United States); Chen Qijin [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Chiofalo, M.L. [Classe di Scienze and INFM, Scuola Normale Superiore, Piazza dei Cavelieri 7, I-56126 Pisa (Italy)

2004-06-01T23:59:59.000Z

153

INTRODUCTION Insects exchange respiratory gases through a complex network of  

E-Print Network [OSTI]

3409 INTRODUCTION Insects exchange respiratory gases through a complex network of tracheal tubes through the tracheal system using diffusion alone (Krogh, 1920a; Weis-Fogh, 1964), many species are known to augment gas exchange using convection (Buck, 1962; Miller, 1966a). Two general mechanisms are recognized

Socha, Jake

154

Atmospheric Modelling of Greenhouse Gases and Air Quality  

E-Print Network [OSTI]

. Increase in mixing height (h) entrains (draws in) air from above the box #12Atmospheric Modelling of Greenhouse Gases and Air Quality John C. Lin Courtenay Strong University of Utah: February 20th, 2013 Department of Atmospheric Sciences University of Utah #12;Outline ·CO2 ó Air

Tipple, Brett

155

Metal oxide films on metal  

DOE Patents [OSTI]

A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

1995-01-01T23:59:59.000Z

156

Strongly interacting Fermi gases : non-equilibrium dynamics and dimensional crossover  

E-Print Network [OSTI]

Experiments using ultracold atomic gases address fundamental problems in many-body physics. This thesis describes experiments on strongly-interacting gases of fermionic atoms, with a focus on non-equilibrium physics and ...

Sommer, Ariel T. (Ariel Tjodolv)

2013-01-01T23:59:59.000Z

157

E-Print Network 3.0 - atmospheric gases final Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on Climate and Planets http:icp.giss.nasa.gov The Role of the Atmosphere and Greenhouse Effect in Summary: gases, and scenario 3 - an atmosphere and greenhouse gases. Use...

158

Metals 2000  

SciTech Connect (OSTI)

This strategic planning exercise identified and characterized new and emerging advanced metallic technologies in the context of the drastic changes in global politics and decreasing fiscal resources. In consideration of a hierarchy of technology thrusts stated by various Department of Defense (DOD) spokesmen, and the need to find new and creative ways to acquire and organize programs within an evolving Wright Laboratory, five major candidate programs identified are: C-17 Flap, Transport Fuselage, Mach 5 Aircraft, 4.Fighter Structures, and 5. Missile Structures. These results were formed by extensive discussion with selected major contractors and other experts, and a survey of advanced metallic structure materials. Candidate structural applications with detailed metal structure descriptions bracket a wide variety of uses which warrant consideration for the suggested programs. An analysis on implementing smart skins and structures concepts is given from a metal structures perspective.

Allison, S.W.; Rogers, L.C.; Slaughter, G. [Oak Ridge National Lab., TN (United States); Boensch, F.D. [6025 Oak Hill Lane, Centerville, OH (United States); Claus, R.O.; de Vries, M. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

1993-05-01T23:59:59.000Z

159

Dendritic metal nanostructures  

DOE Patents [OSTI]

Dendritic metal nanostructures made using a surfactant structure template, a metal salt, and electron donor species.

Shelnutt, John A. (Tijeras, NM); Song, Yujiang (Albuquerque, NM); Pereira, Eulalia F. (Vila Nova de Gaia, PT); Medforth, Craig J. (Winters, CA)

2010-08-31T23:59:59.000Z

160

System for trapping and storing gases for subsequent chemical reduction to solids  

DOE Patents [OSTI]

A system for quantitatively reducing oxide gases. A pre-selected amount of zinc is provided in a vial. A tube is provided in the vial. The zinc and the tube are separated. A pre-selected amount of a catalyst is provided in the tube. Oxide gases are injected into the vial. The vial, tube, zinc, catalyst, and the oxide gases are cryogenically cooled. At least a portion of the vial, tube, zinc, catalyst, and oxide gases are heated.

Vogel, John S. (San Jose, CA); Ognibene, Ted J. (Oakland, CA); Bench, Graham S. (Livermore, CA); Peaslee, Graham F. (Holland, MI)

2009-11-03T23:59:59.000Z

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

E-Print Network 3.0 - atmospheric greenhouse gases Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to longwave radiation 12;Greenhouse Gases Polyatomic molecules... the greenhouse effect ... Source: Frierson, Dargan - Department of Atmospheric Sciences, University of...

162

Clostridium strain which produces acetic acid from waste gases  

DOE Patents [OSTI]

A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 4 figs.

Gaddy, J.L.

1997-01-14T23:59:59.000Z

163

The extreme nonlinear optics of gases and femtosecond optical filamentation  

SciTech Connect (OSTI)

Under certain conditions, powerful ultrashort laser pulses can form greatly extended, propagating filaments of concentrated high intensity in gases, leaving behind a very long trail of plasma. Such filaments can be much longer than the longitudinal scale over which a laser beam typically diverges by diffraction, with possible applications ranging from laser-guided electrical discharges to high power laser propagation in the atmosphere. Understanding in detail the microscopic processes leading to filamentation requires ultrafast measurements of the strong field nonlinear response of gas phase atoms and molecules, including absolute measurements of nonlinear laser-induced polarization and high field ionization. Such measurements enable the assessment of filamentation models and make possible the design of experiments pursuing applications. In this paper, we review filamentation in gases and some applications, and discuss results from diagnostics developed at Maryland for ultrafast measurements of laser-gas interactions.

Milchberg, H. M.; Chen, Y.-H.; Cheng, Y.-H.; Jhajj, N.; Palastro, J. P.; Rosenthal, E. W.; Varma, S.; Wahlstrand, J. K.; Zahedpour, S. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States)

2014-10-15T23:59:59.000Z

164

Apparatus for the plasma destruction of hazardous gases  

DOE Patents [OSTI]

A plasma cell for destroying hazardous gases is described. An electric-discharge cell having an electrically conducting electrode onto which an alternating high-voltage waveform is impressed and a dielectric barrier adjacent thereto, together forming a high-voltage electrode, generates self-terminating discharges throughout a volume formed between this electrode and a grounded conducting liquid electrode. The gas to be transformed is passed through this volume. The liquid may be flowed, generating thereby a renewable surface. Moreover, since hydrochloric and hydrofluoric acids may be formed from destruction of various chlorofluorocarbons in the presence of water, a conducting liquid may be selected which will neutralize these corrosive compounds. The gases exiting the discharge region may be further scrubbed if additional purification is required. 4 figs.

Kang, M.

1995-02-07T23:59:59.000Z

165

Decontamination of combustion gases in fluidized bed incinerators  

DOE Patents [OSTI]

Sulfur-containing atmospheric pollutants are effectively removed from exit gas streams produced in a fluidized bed combustion system by providing a fluidized bed of particulate material, i.e. limestone and/or dolomite wherein a concentration gradient is maintained in the vertical direction. Countercurrent contacting between upwardly directed sulfur containing combustion gases and descending sorbent particulate material creates a concentration gradient across the vertical extent of the bed characterized in progressively decreasing concentration of sulfur, sulfur dioxide and like contaminants upwardly and decreasing concentration of e.g. calcium oxide, downwardly. In this manner, gases having progressively decreasing sulfur contents contact correspondingly atmospheres having progressively increasing concentrations of calcium oxide thus assuring optimum sulfur removal.

Leon, Albert M. (Mamaroneck, NY)

1982-01-01T23:59:59.000Z

166

Apparatus for hot-gas desulfurization of fuel gases  

DOE Patents [OSTI]

An apparatus for removing sulfur values from a hot fuel gas stream in a fdized bed contactor containing particulate sorbent material by employing a riser tube regeneration arrangement. Sulfur-laden sorbent is continuously removed from the fluidized bed through a stand pipe to the riser tube and is rapidly regenerated in the riser tube during transport of the sorbent therethrough by employing an oxygen-containing sorbent regenerating gas stream. The riser tube extends from a location below the fluidized bed to an elevation above the fluidized bed where a gas-solid separating mechanism is utilized to separate the regenerated particulate sorbent from the regeneration gases and reaction gases so that the regenerated sorbent can be returned to the fluidized bed for reuse.

Bissett, Larry A. (Morgantown, WV)

1992-01-01T23:59:59.000Z

167

Clostridium stain which produces acetic acid from waste gases  

DOE Patents [OSTI]

A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

Gaddy, James L. (2207 Tall Oaks Dr., Fayetteville, AR 72703)

1997-01-01T23:59:59.000Z

168

Emissions of Non-CO2 Greenhouse Gases From the Production and Use of Transportation Fuels and Electricity  

E-Print Network [OSTI]

CO2 GREENHOUSE GASES FROM THE PRODUCTION AND USE OF TRANSPORTATION FUELS AND ELECTRICITYCO2 GREENHOUSE GASES FROM THE PRODUCTION AND USE OF TRANSPORTATION FUELS AND ELECTRICITY

Delucchi, Mark

1997-01-01T23:59:59.000Z

169

Wave Speed in the Macroscopic Extended Model for Ultrarelativistic Gases  

E-Print Network [OSTI]

An exact macroscopic extended model for ultrarelativistic gases, with an arbitrary number of moments, is present in the literature. Here we exploit equations determining wave speeds for that model. We find interesting results; for example, the whole system for their determination can be divided into independent subsystems and some, but not all, wave speeds are expressed by rational numbers. Moreover, the extraordinary property that these wave speeds for the macroscopic model are the same of those in the kinetic model, is proved.

F. Borghero; F. Demontis; S. Pennisi

2010-12-07T23:59:59.000Z

170

Extraction of uranium from spent fuels using liquefied gases  

SciTech Connect (OSTI)

For reprocessing of spent nuclear fuels, a novel method to extract actinides from spent fuel using highly compressed gases, nitrogen dioxide and carbon dioxide was proposed. As a fundamental study, the nitrate conversion with liquefied nitrogen dioxide and the nitrate extraction with supercritical carbon dioxide were demonstrated by using uranium dioxide powder, uranyl nitrate and tri-n-butylphosphate complex in the present study. (authors)

Sawada, Kayo; Hirabayashi, Daisuke; Enokida, Youichi [EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan)

2007-07-01T23:59:59.000Z

171

The Kolmogorov-Sinai Entropy for Dilute Gases in Equilibrium  

E-Print Network [OSTI]

We use the kinetic theory of gases to compute the Kolmogorov-Sinai entropy per particle for a dilute gas in equilibrium. For an equilibrium system, the KS entropy, h_KS is the sum of all of the positive Lyapunov exponents characterizing the chaotic behavior of the gas. We compute h_KS/N, where N is the number of particles in the gas. This quantity has a density expansion of the form h_KS/N = a\

H. van Beijeren; J. R. Dorfman; H. A. Posch; Ch. Dellago

1997-06-18T23:59:59.000Z

172

Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for headspace gases distributes sample gases of volatile organic compounds (VOCs) for analysis. Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility’s compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document. Participating measurement facilities must analyze PDP samples using the same procedures used for routine waste characterization analyses of WIPP samples.

Carlsbad Field Office

2006-04-01T23:59:59.000Z

173

Evaluación de la generación de gases de efecto invernadero asociados al ciclo de vida de los biocombustibles colombianos = Assessment of greenhouse gases emissions associated to colombian biofuels lifecycle.  

E-Print Network [OSTI]

??Valencia Botero, Monica Julieth (2012) Evaluación de la generación de gases de efecto invernadero asociados al ciclo de vida de los biocombustibles colombianos = Assessment… (more)

Valencia Botero, Monica Julieth

2012-01-01T23:59:59.000Z

174

Chemical production from industrial by-product gases: Final report  

SciTech Connect (OSTI)

The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

Lyke, S.E.; Moore, R.H.

1981-04-01T23:59:59.000Z

175

Production of quantum degenerate strontium gases: Larger, better, faster, colder  

E-Print Network [OSTI]

We report on an improved scheme to generate Bose-Einstein condensates (BECs) and degenerate Fermi gases of strontium. This scheme allows us to create quantum gases with higher atom number, a shorter time of the experimental cycle, or deeper quantum degeneracy than before. We create a BEC of 84-Sr exceeding 10^7 atoms, which is a 30-fold improvement over previously reported experiments. We increase the atom number of 86-Sr BECs to 2.5x10^4 (a fivefold improvement), and refine the generation of attractively interacting 88-Sr BECs. We present a scheme to generate 84-Sr BECs with a cycle time of 2s, which, to the best of our knowledge, is the shortest cycle time of BEC experiments ever reported. We create deeply-degenerate 87-Sr Fermi gases with T/T_F as low as 0.10(1), where the number of populated nuclear spin states can be set to any value between one and ten. Furthermore, we report on a total of five different double-degenerate Bose-Bose and Bose-Fermi mixtures. These studies prepare an excellent starting poi...

Stellmer, Simon; Schreck, Florian

2012-01-01T23:59:59.000Z

176

Emissions of greenhouse gases in the United States 1996  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1990, with annual updates thereafter. This report is the fifth annual update, covering national emissions over the period 1989--1995, with preliminary estimates of emissions for 1996. The estimates contained in this report have been revised from those in last year`s report. Emissions estimates for carbon dioxide are reported in metric tons of carbon; estimates for other gases are reported in metric tons of gas. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapter 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Five appendixes are included with this report. 216 refs., 11 figs., 38 tabs.

NONE

1997-10-01T23:59:59.000Z

177

Using ground based geophysics to evaluate hydrogeologic effects of subsurface drip irrigation systems used to manage produced water in the Powder River Basin, Wyoming  

SciTech Connect (OSTI)

The U.S Department of Energy’s National Energy Technology Laboratory has been evaluating various geophysical methods for site characterization regarding environmental issues associated with fossil fuels including produced water management. A relatively new method of managing produced water from coal bed natural gas production is through subsurface drip irrigation. This system involves disposing the produced water near the bottom of the root zone in agricultural fields, which would provide a beneficial use of this resource. The focus of this paper is to present results from a pre-injection geophysical survey for site assessment and background data. A pre-construction survey of approximately 1.2 km2 was completed in June 2007 using a Geophex GEM-2 broadband sensor over six fields along the Powder River floodplain. Quality assurance measures included drift checks, duplicate line surveys, and repeat field surveys using the Geometrics OhmMapper instrument. Subsequent surveys will be completed once the system is installed and operational. Geophysical inversion models were completed to provide a detailed cross-section of the subsurface geoelectrical structure along each line. Preliminary interpretations reveal that the subsurface conductivity distribution correlates to geomorphologic features.

Sams, J.I.; Lipinski, B.A.; Veloski, G.A.

2008-04-01T23:59:59.000Z

178

Semi-continuous detection of mercury in gases  

DOE Patents [OSTI]

A new method for the semi-continuous detection of heavy metals and metalloids including mercury in gaseous streams. The method entails mass measurement of heavy metal oxides and metalloid oxides with a surface acoustic wave (SAW) sensor having an uncoated substrate. An array of surface acoustic wave (SAW) sensors can be used where each sensor is for the semi-continuous emission monitoring of a particular heavy metal or metalloid.

Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

2011-12-06T23:59:59.000Z

179

Trending: Metal Oxo Bonds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing...

180

Composite metal membrane  

DOE Patents [OSTI]

A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

Peachey, Nathaniel M. (Espanola, NM); Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM); Birdsell, Stephan A. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Composite metal membrane  

DOE Patents [OSTI]

A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

1998-04-14T23:59:59.000Z

182

Kinetic Theory Estimates for the Kolmogorov-Sinai Entropy and the Largest Lyapunov Exponents for Dilute, Hard-Ball Gases and for Dilute, Random Lorentz Gases  

E-Print Network [OSTI]

The kinetic theory of gases provides methods for calculating Lyapunov exponents and other quantities, such as Kolmogorov-Sinai entropies, that characterize the chaotic behavior of hard-ball gases. Here we illustrate the use of these methods for calculating the Kolmogorov-Sinai entropy, and the largest positive Lyapunov exponent, for dilute hard-ball gases in equilibrium. The calculation of the largest Lyapunov exponent makes interesting connections with the theory of propagation of hydrodynamic fronts. Calculations are also presented for the Lyapunov spectrum of dilute, random Lorentz gases in two and three dimensions, which are considerably simpler than the corresponding calculations for hard-ball gases. The article concludes with a brief discussion of some interesting open problems.

H. van Beijeren; R. van Zon; J. R. Dorfman

2000-03-06T23:59:59.000Z

183

Flue gas desulfurization/denitrification using metal-chelate additives  

DOE Patents [OSTI]

A method of simultaneously removing SO/sub 2/ and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO/sub 2/ and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled. 3 figs.

Harkness, J.B.L.; Doctor, R.D.; Wingender, R.J.

1985-08-05T23:59:59.000Z

184

Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for headspace gases distributes blind audit samples in a gas matrix for analysis of volatile organic compounds (VOCs). Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility’s compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document. Participating measurement facilities must analyze PDP samples using the same procedures used for routine waste characterization analyses of WIPP samples.

Carlsbad Field Office

2007-11-19T23:59:59.000Z

185

Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for headspace gases distributes blind audit samples in a gas matrix for analysis of volatile organic compounds (VOCs). Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility’s compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document. Participating measurement facilities must analyze PDP samples using the same procedures used for routine waste characterization analyses of WIPP samples.

Carlsbad Field Office

2007-11-13T23:59:59.000Z

186

Direct conversion of light hydrocarbon gases to liquid fuel  

SciTech Connect (OSTI)

Amoco oil Company, has investigated the direct, non-catalytic conversion of light hydrocarbon gases to liquid fuels (particularly methanol) via partial oxidation. The primary hydrocarbon feed used in these studies was natural gas. This report describes work completed in the course of our two-year project. In general we determined that the methanol yields delivered by this system were not high enough to make it economically attractive. Process variables studied included hydrocarbon feed composition, oxygen concentration, temperature and pressure effects, residence time, reactor design, and reactor recycle.

Kaplan, R.D.; Foral, M.J.

1992-05-16T23:59:59.000Z

187

Compressibility factors for retrograde gases: a new correlation  

E-Print Network [OSTI]

deviations of proposed Methods 1 and 2, were 0. 96 and 1. 01 percent, respectively. DEDICATION Esta tesis es dedicada a: Mis padres que siempre me han guiado y ofrecido constante apoyo en todas mis metas y logros. Juan Sebastian por la dicha de ser tu... tested with an overall absolute deviation of 1. 01/o. Four condensate retrograde gases from published data were used for testing the accuracy of the proposed methods. Proposed method 2 presented the smallest overall average absolute deviation with 0...

Corredor Real, Jairo Hernando

2012-06-07T23:59:59.000Z

188

Prospecting by sampling and analysis of airborne particulates and gases  

DOE Patents [OSTI]

A method is claimed for prospecting by sampling airborne particulates or gases at a ground position and recording wind direction values at the time of sampling. The samples are subsequently analyzed to determine the concentrations of a desired material or the ratios of the desired material to other identifiable materials in the collected samples. By comparing the measured concentrations or ratios to expected background data in the vicinity sampled, one can select recorded wind directions indicative of the upwind position of the land-based source of the desired material.

Sehmel, G.A.

1984-05-01T23:59:59.000Z

189

Separation of gases through gas enrichment membrane composites  

DOE Patents [OSTI]

Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

Swedo, R.J.; Kurek, P.R.

1988-07-19T23:59:59.000Z

190

Carbide and carbonitride surface treatment method for refractory metals  

DOE Patents [OSTI]

A carbide and carbonitride surface treatment method for refractory metals is provided, in steps including, heating a part formed of boron, chromium, hafnium, molybdenum, niobium, tantalum, titanium, tungsten or zirconium, or alloys thereof, in an evacuated chamber and then introducing reaction gases including nitrogen and hydrogen, either in elemental or water vapor form, which react with a source of elemental carbon to form carbon-containing gaseous reactants which then react with the metal part to form the desired surface layer. Apparatus for practicing the method is also provided, in the form of a carbide and carbonitride surface treatment system (10) including a reaction chamber (14), a source of elemental carbon (17), a heating subassembly (20) and a source of reaction gases (23). Alternative methods of providing the elemental carbon (17) and the reaction gases (23) are provided, as well as methods of supporting the metal part (12), evacuating the chamber (14) with a vacuum subassembly (18) and heating all of the components to the desired temperature.

Meyer, Glenn A. (Danville, CA); Schildbach, Marcus A. (Livermore, CA)

1996-01-01T23:59:59.000Z

191

Metal Hydrides  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies |Charles Page -toMetabolic PathwaysMetal

192

Method of producing thermally sprayed metallic coating  

DOE Patents [OSTI]

The cylinder walls of light metal engine blocks are thermally spray coated with a ferrous-based coating using an HVOF device. A ferrous-based wire is fed to the HVOF device to locate a tip end of the wire in a high temperature zone of the device. Jet flows of oxygen and gaseous fuel are fed to the high temperature zone and are combusted to generate heat to melt the tip end. The oxygen is oversupplied in relation to the gaseous fuel. The excess oxygen reacts with and burns a fraction of the ferrous-based feed wire in an exothermic reaction to generate substantial supplemental heat to the HVOF device. The molten/combusted metal is sprayed by the device onto the walls of the cylinder by the jet flow of gases.

Byrnes, Larry Edward (Rochester Hills, MI); Kramer, Martin Stephen (Clarkston, MI); Neiser, Richard A. (Albuquerque, NM)

2003-08-26T23:59:59.000Z

193

Emissions of greenhouse gases in the United States 1995  

SciTech Connect (OSTI)

This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

NONE

1996-10-01T23:59:59.000Z

194

Process for recovery of sulfur from acid gases  

DOE Patents [OSTI]

Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

Towler, Gavin P. (Kirkbymoorside, GB2); Lynn, Scott (Pleasant Hill, CA)

1995-01-01T23:59:59.000Z

195

Self-pulsing of hollow cathode discharge in various gases  

SciTech Connect (OSTI)

In this paper, we investigate the self-pulsing phenomenon of cavity discharge in a cylindrical hollow cathode in various gases including argon, helium, nitrogen, oxygen, and air. The current-voltage characteristics of the cavity discharge, the waveforms of the self-pulsing current and voltage as well as the repetition frequency were measured. The results show that the pulsing frequency ranges from a few to tens kilohertz and depends on the averaged current and the pressure in all gases. The pulsing frequency will increase with the averaged current and decrease with the pressure. The rising time of the current pulse is nearly constant in a given gas or mixture. The self-pulsing does not depend on the external ballast but is affected significantly by the external capacitor in parallel with the discharge cell. The low-current self-pulsing in hollow cathode discharge is the mode transition between Townsend and glow discharges. It can be described by the charging-discharging process of an equivalent circuit consisting of capacitors and resistors.

Qin, Y.; He, F., E-mail: hefeng@bit.edu.cn; Jiang, X. X.; Ouyang, J. T., E-mail: jtouyang@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Xie, K. [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China)

2014-07-15T23:59:59.000Z

196

Instantaneous and efficient surface wave excitation of a low pressure gas or gases  

DOE Patents [OSTI]

A system for instantaneously ionizing and continuously delivering energy in the form of surface waves to a low pressure gas or mixture of low pressure gases, comprising a source of rf energy, a discharge container, (such as a fluorescent lamp discharge tube), an rf shield, and a coupling device responsive to rf energy from the source to couple rf energy directly and efficiently to the gas or mixture of gases to ionize at least a portion of the gas or gases and to provide energy to the gas or gases in the form of surface waves. The majority of the rf power is transferred to the gas or gases near the inner surface of the discharge container to efficiently transfer rf energy as excitation energy for at least one of the gases. The most important use of the invention is to provide more efficient fluorescent and/or ultraviolet lamps.

Levy, Donald J. (Berkeley, CA); Berman, Samuel M. (San Francisco, CA)

1988-01-01T23:59:59.000Z

197

E-Print Network 3.0 - automobile exhaust gases Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

exhaust gases Page: << < 1 2 3 4 5 > >> 1 Ability of Catalytic Converters to Reduce Air Pollution Summary: Air Pollution MEASUREMENT OF SELECTED AIR POLLUTANTS IN CAR EXHAUST...

198

E-Print Network 3.0 - aircraft exhaust gases Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gases FAA, 2005. Water in the aircraft exhaust at altitude may have a greenhouse effect... . Aircraft ... Source: Ecole Polytechnique, Centre de mathmatiques...

199

Fact #825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus...  

Energy Savers [EERE]

organic gases (NMOG) and nitrogen oxides (NOx) that new light vehicles with gasoline engines are allowed to produce for model years 2017 to 2025. These standards apply to...

200

Mechanochemical processing for metals and metal alloys  

DOE Patents [OSTI]

A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.

Froes, Francis H. (Moscow, ID); Eranezhuth, Baburaj G. (Moscow, ID); Prisbrey, Keith (Moscow, ID)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Free Energies of Dilute Bose gases: upper bound  

E-Print Network [OSTI]

We derive a upper bound on the free energy of a Bose gas system at density $\\rho$ and temperature $T$. In combination with the lower bound derived previously by Seiringer \\cite{RS1}, our result proves that in the low density limit, i.e., when $a^3\\rho\\ll 1$, where $a$ denotes the scattering length of the pair-interaction potential, the leading term of $\\Delta f$ the free energy difference per volume between interacting and ideal Bose gases is equal to $4\\pi a (2\\rho^2-[\\rho-\\rhoc]^2_+)$. Here, $\\rhoc(T)$ denotes the critical density for Bose-Einstein condensation (for the ideal gas), and $[\\cdot ]_+$ $=$ $\\max\\{\\cdot, 0\\}$ denotes the positive part.

Jun Yin

2010-12-19T23:59:59.000Z

202

Finite-size energy of non-interacting Fermi gases  

E-Print Network [OSTI]

We prove the asymptotics of the difference of the ground-state energies of two non-interacting $N$-particle Fermi gases on the half line of length $L$ in the thermodynamic limit up to order $1/L$. We are particularly interested in subdominant terms proportional to $1/L$, called finite-size energy. In the nineties Affleck and co-authors [Aff97, ZA97, AL94] claimed that the finite-size energy equals the decay exponent occuring in Anderson's orthogonality catastrophe. It turns out that the finite-size energy depends on the details of the thermodynamic limit and typically also includes a linear term in the scattering phase shift.

Martin Gebert

2014-06-14T23:59:59.000Z

203

Loschmidt echo in one-dimensional interacting Bose gases  

SciTech Connect (OSTI)

We explore Loschmidt echo in two regimes of one-dimensional interacting Bose gases: the strongly interacting Tonks-Girardeau (TG) regime, and the weakly interacting mean-field regime. We find that the Loschmidt echo of a TG gas decays as a Gaussian when small (random and time independent) perturbations are added to the Hamiltonian. The exponent is proportional to the number of particles and the magnitude of a small perturbation squared. In the mean-field regime the Loschmidt echo shows richer behavior: it decays faster for larger nonlinearity, and the decay becomes more abrupt as the nonlinearity increases; it can be very sensitive to the particular realization of the noise potential, especially for relatively small nonlinearities.

Lelas, K.; Seva, T.; Buljan, H. [Faculty of Electrical Engineering Mechanical Engineering and Naval Architecture, University of Split, Rudjera Boskovica BB, 21000 Split (Croatia); Department of Physics, University of Zagreb, Bijenicka c. 32, 10000 Zagreb (Croatia)

2011-12-15T23:59:59.000Z

204

Extracting metals directly from metal oxides  

DOE Patents [OSTI]

A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

Wai, C.M.; Smart, N.G.; Phelps, C.

1997-02-25T23:59:59.000Z

205

Extracting metals directly from metal oxides  

DOE Patents [OSTI]

A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Phelps, Cindy (Moscow, ID)

1997-01-01T23:59:59.000Z

206

Monte Carlo Simulation of Radiation in Gases with a NarrowBand Model  

E-Print Network [OSTI]

, France (\\Phi) now at the Institute of Energy and Power Plant Technology, TH Darmstadt, 64287 DarmstadtMonte Carlo Simulation of Radiation in Gases with a Narrow­Band Model and a Net is used for simulation of radiative heat transfers in non­gray gases. The proposed procedure is based

Dufresne, Jean-Louis

207

Abstract--Airborne pollution and explosive gases threaten human health and occupational safety, therefore generating high  

E-Print Network [OSTI]

Abstract--Airborne pollution and explosive gases threaten human health and occupational safety and a thumb-drive sized prototype system. I. INTRODUCTION xposure to air pollution consistently ranks among to occupational safety as energy demands rise. Airborne pollutants and explosive gases vary in both time and space

Mason, Andrew

208

Preserving noble gases in a convecting mantle Helge M. Gonnermann1  

E-Print Network [OSTI]

of a processed and out- gassed lower-mantle source, residues of mantle melting10,11 , depleted in uranium and mixing of noble-gas-depleted slabs dilutes the concentrations of noble gases in the mantle, thereby melt, which forms the ocean crust and leaves the residual mantle severely depleted of noble gases

Mukhopadhyay, Sujoy

209

Bose-Einstein condensates in 85 Rb gases at higher densities  

E-Print Network [OSTI]

Bose-Einstein condensates in 85 Rb gases at higher densities A. R. Sakhel, J. L. DuBois, and H. R August 2002; published 31 December 2002 The Bose-Einstein condensation in trapped gases of 85 Rb find that there is a significant depletion of the condensate at T 0 K, for example, 25% at na3 10 2

Glyde, Henry R.

210

Localization of Bogoliubov quasiparticles in interacting Bose gases with correlated disorder P. Lugan1,2  

E-Print Network [OSTI]

) in a weakly interacting Bose gas of chemical potential µ subjected to a disordered potential V . We introduce-Einstein condensates [40­48], interacting Bose gases at equilibrium [26, 49­72], strongly interacting Fermi gases [73 behaviors can be found in various situa- tions. For instance, weak repulsive interactions in a Bose gas

Boyer, Edmond

211

Subsurface Drip Irrigation As a Methold to Beneficiallly Use Coalbed Methane Produced Water: Initial Impacts to Groundwater, Soil Water, and Surface Water  

SciTech Connect (OSTI)

Coalbed methane (CBM) currently accounts for >8% of US natural gas production. Compared to traditional sources, CBM co-produces large volumes of water. Of particular interest is CBM development in the Powder River Basin of Wyoming and Montana, the 2nd largest CBM production field in the US, where CBM produced waters exhibit low to moderate TDS and relatively high sodium-adsorption ratio (SAR) that could potentially impact the surface environment. Subsurface drip irrigation (SDI) is an emerging technology for beneficial use of pre-treated CBM waters (injectate) which are emitted into the root zone of an agricultural field to aid in irrigation. The method is designed to minimize environmental impacts by storing potentially detrimental salts in the vadose zone. Research objectives include tracking the transport and fate of the water and salts from the injected CBM produced waters at an SDI site on an alluvial terrace, adjacent to the Powder River, Johnson County, Wyoming. This research utilizes soil science, geochemical, and geophysical methods. Initial results from pre-SDI data collection and the first 6-months of post-SDI operation will be presented. Substantial ranges in conductivity (2732-9830 {micro}S/cm) and dominant cation chemistry (Ca-SO{sub 4} to Na-SO{sub 4}) have been identified in pre-SDI analyses of groundwater samples from the site. Ratios of average composition of local ground water to injectate demonstrate that the injectate contains lower concentrations of most constituents except for Cr, Zn, and Tl (all below national water quality standards) but exhibits a higher SAR. Composition of soil water varies markedly with depth and between sites, suggesting large impacts from local controls, including ion exchange and equilibrium with gypsum and carbonates. Changes in chemical composition and specific conductivity along surface water transects adjacent to the site are minimal, suggesting that discharge to the Powder River from groundwater underlying the SDI fields is negligible. Findings from this project provide a critical understanding of water and salt dynamics associated with SDI systems using CBM produced water. The information obtained can be used to improve SDI and other CBM produced water use/disposal technologies in order to minimize adverse impacts.

Engle, M.A.: Bern, C: Healy, R: Sams, J: Zupancic, J.: Schroeder, K.

2009-10-18T23:59:59.000Z

212

Method for the purification of noble gases, nitrogen and hydrogen  

DOE Patents [OSTI]

A method and apparatus for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes.

Baker, John D. (Blackfoot, ID); Meikrantz, David H. (Idaho Falls, ID); Tuggle, Dale G. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

213

Method for the purification of noble gases, nitrogen and hydrogen  

DOE Patents [OSTI]

A method and apparatus are disclosed for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes. 15 figs.

Baker, J.D.; Meikrantz, D.H.; Tuggle, D.G.

1997-09-23T23:59:59.000Z

214

Compact reaction cell for homogenizing and down-blending highly enriched uranium metal  

DOE Patents [OSTI]

The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gases into the reaction chamber, the upper port allowing for the exit of gases from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gases into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell. 4 figs.

McLean, W. II; Miller, P.E.; Horton, J.A.

1995-05-02T23:59:59.000Z

215

Metal-phosphate binders  

DOE Patents [OSTI]

A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

2009-05-12T23:59:59.000Z

216

Metal Hydrides - Science Needs  

Broader source: Energy.gov (indexed) [DOE]

with traditions in metal hydride research Metal and Ceramic Sciences Condensed Matter Physics Materials Chemistry Chemical and Biological Sciences Located on campus of Tier...

217

Feasibility of reconstructing paleoatmospheric records of selected alkanes, methyl halides, and sulfur gases from Greenland ice cores  

E-Print Network [OSTI]

firn and ice at Summit, Greenland, J. Geophys. Res. , 98,AL. : TRACE GASES IN GREENLAND ICE CORE ¨ . Andreae Kettle,and sulfur gases from Greenland ice cores M. Aydin, 1 M. B.

Aydin, M.; Williams, M. B; Saltzman, E. S

2007-01-01T23:59:59.000Z

218

Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts  

SciTech Connect (OSTI)

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash coat, and catalytic metals, to develop a regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor. The task of developing kinetic rate equations and modeling the direct oxidation process to assist in the design of large-scale plants will be abandoned since formulation of catalysts suitable for the removal of H{sub 2}S and COS is being in progress. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 46-570 seconds under reaction conditions to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases and evaluate their capabilities in reducing hydrogen sulfide and COS in coal gases. Simulated coal gas mixtures consist of 3,200-4,000-ppmv hydrogen sulfide, 1,600-20,000-ppmv sulfur dioxide, 18-27 v% hydrogen, 29-41 v% CO, 8-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of simulated coal gas mixtures to the reactor are 30 - 180 cm{sup 3}/min at 1 atm and 25 C (SCCM). The temperature of the reactor is controlled in an oven at 120-155 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio

K.C. Kwon

2009-09-30T23:59:59.000Z

219

Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts  

SciTech Connect (OSTI)

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 130-156 seconds at 120-140 C to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases, evaluate removal capabilities of hydrogen sulfide and COS from coal gases with formulated catalysts, and develop an economic regeneration method of deactivated catalysts. Simulated coal gas mixtures consist of 3,300-3,800-ppmv hydrogen sulfide, 1,600-1,900 ppmv sulfur dioxide, 18-21 v% hydrogen, 29-34 v% CO, 8-10 v% CO{sub 2}, 5-18 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 114-132 SCCM. The temperature of the reactor is controlled in an oven at 120-140 C. The pressure of the reactor is maintained at 116-129 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is

K. C. Kwon

2007-09-30T23:59:59.000Z

220

Controlled in-situ dissolution of an alkali metal  

DOE Patents [OSTI]

A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.

Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald

2012-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

In-Situ Microbial Conversion of Sequestered Greenhouse Gases  

SciTech Connect (OSTI)

The objectives of the project are to use microbiological in situ bioconversion technology to convert sequestered or naturally-occurring greenhouse gases, including carbon dioxide and carbon monoxide, into methane and other useful organic compounds. The key factors affecting coal bioconversion identified in this research include (1) coal properties, (2) thermal maturation and coalification process, (3) microbial population dynamics, (4) hydrodynamics (5) reservoir conditions, and (6) the methodology of getting the nutrients into the coal seams. While nearly all cultures produced methane, we were unable to confirm sustained methane production from the enrichments. We believe that the methane generation may have been derived from readily metabolized organic matter in the coal samples and/or biosoluble organic material in the coal formation water. This raises the intriguing possibility that pretreatment of the coal in the subsurface to bioactivate the coal prior to the injection of microbes and nutrients might be possible. We determined that it would be more cost effective to inject nutrients into coal seams to stimulate indigenous microbes in the coal seams, than to grow microbes in fermentation vats and transport them to the well site. If the coal bioconversion process can be developed on a larger scale, then the cost to generate methane could be less than $1 per Mcf

Scott, A R; Mukhopadhyay, M; Balin, D F

2012-09-06T23:59:59.000Z

222

Maintaining Subsurface Drip Irrigation Systems  

E-Print Network [OSTI]

the lines, adding chlorine, and injecting acids. These preventive measures will reduce the need for major repairs and extend the life of the system. The purpose of preventive maintenance is to keep the emitters from plugging. Emitters can be plugged... determines the relative risk of emitter plugging and other problems; therefore, the properties of the water should be taken into account in the system maintenance program. Examples of water quality parameters and their effect on emitter plugging potential...

Enciso, Juan; Porter, Dana; Bordovsky, Jim; Fipps, Guy

2004-09-07T23:59:59.000Z

223

Oxygen buffering of Kilauea volcanic gases and the oxygen fugacity of Kilauea basalt  

SciTech Connect (OSTI)

Volcanic gases collected during episode 1 of the Puu Oo eruption along the east rift zone of Kilauea Volcano, Hawaii, have uniform C-O-H-S-Cl-F compositions that are sharply depleted in CO[sub 2]. The CO[sub 2]-poor gases are typical of Type II volcanic gases (GERLACH and GRAEBER, 1985) and were emitted from evolved magma stored for a prolonged period of time in the east rift zone after releasing CO[sub 2]-rich gases during an earlier period of temporary residence in the summit magma chamber. The samples are remarkably free of contamination by atmospheric gases and meteoric water. Thermodynamic evaluation of the analytical data shows that the episode 1 gases have equilibrium compositions appropriate for temperatures between 935 and 1032[degrees]C. Open- and closed-system equilibrium models of species distributions for the episode 1 gases show unequivocally that coexisting lavas buffered the gas oxygen fugacities during cooling. These models indicate that the F[sub o[sub 2

Gerlach, T.M. (Geological Survey, Vancouver, WA (United States))

1993-02-01T23:59:59.000Z

224

Atmospheric Trace Gases from the Carbon Dioxide Information Analysis Center (CDIAC)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication, Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. The collections under the CDIAC heading of Atmospheric Trace Gases include: Atmospheric Carbon Dioxide, Atmospheric Methane, Atmospheric Carbon Monoxide, Atmospheric Hydrogen, Isotopes in Greenhouse Gases, Radionuclides, Aerosols, and Other Trace Gases.

225

Heavy metal biosensor  

SciTech Connect (OSTI)

Compositions and methods are provided for detection of certain heavy metals using bacterial whole cell biosensors.

Hillson, Nathan J; Shapiro, Lucille; Hu, Ping; Andersen, Gary L

2014-04-15T23:59:59.000Z

226

Radiative precursors driven by converging blast waves in noble gases  

SciTech Connect (OSTI)

A detailed study of the radiative precursor that develops ahead of converging blast waves in gas-filled cylindrical liner z-pinch experiments is presented. The experiment is capable of magnetically driving 20?km s{sup ?1} blast waves through gases of densities of the order 10{sup ?5} g cm{sup ?3} (see Burdiak et al. [High Energy Density Phys. 9(1), 52–62 (2013)] for a thorough description). Data were collected for Ne, Ar, and Xe gas-fills. The geometry of the setup allows a determination of the plasma parameters both in the precursor and across the shock, along a nominally uniform line of sight that is perpendicular to the propagation of the shock waves. Radiation from the shock was able to excite NeI, ArII, and XeII/XeIII precursor spectral features. It is shown that the combination of interferometry and optical spectroscopy data is inconsistent with upstream plasmas being in LTE. Specifically, electron density gradients do not correspond to any apparent temperature change in the emission spectra. Experimental data are compared to 1D radiation hydrodynamics HELIOS-CR simulations and to PrismSPECT atomic physics calculations to assist in a physical interpretation of the observations. We show that upstream plasma is likely in the process of being radiatively heated and that the emission from a small percentage of ionised atoms within a cool background plasma dominates the emission spectra. Experiments were carried out on the MAGPIE and COBRA pulsed-power facilities at Imperial College London and Cornell University, respectively.

Burdiak, G. C.; Lebedev, S. V.; Harvey-Thompson, A. J.; Swadling, G. F.; Suzuki-Vidal, F.; Hall, G. N.; Khoory, E.; Pickworth, L.; Bland, S. N.; Grouchy, P. de; Skidmore, J.; Suttle, L.; Bennett, M.; Niasse, N. P. L. [Blackett Laboratory, Imperial College London SW7 2BW (United Kingdom)] [Blackett Laboratory, Imperial College London SW7 2BW (United Kingdom); Williams, R. J. R. [Atomic Weapons Establishment, Aldermaston RG7 4PR (United Kingdom)] [Atomic Weapons Establishment, Aldermaston RG7 4PR (United Kingdom); Blesener, K.; Atoyan, L.; Cahill, A.; Hoyt, C.; Potter, W. [Laboratory of Plasma Studies, Cornell University, Ithaca, New York 14853 (United States)] [Laboratory of Plasma Studies, Cornell University, Ithaca, New York 14853 (United States); and others

2014-03-15T23:59:59.000Z

227

Excitation spectrum and quasiparticles in quantum gases. A rigorous approach  

E-Print Network [OSTI]

This thesis is devoted to a rigorous study of interacting quantum gases. The main objects of interest are the closely related concepts of excitation spectrum and quasiparticles. The immediate motivation of this work is to propose a spectral point of view concerning these two concepts. In the first part of this thesis we discuss the concepts of excitation spectrum and quasiparticles. We provide an overview of physical motivations and based on that we propose a spectral and Hamiltonian-based approach towards these terms. Based on that, we formulate definitions and propositions related to these concepts. In the second part we recall the Bogoliubov and Hartree-Fock-Bogoliubov approximations, which in the physics literature are used to obtain the quasiparticle picture. We show how these two approaches fit into a universal scheme which allows us to arrive at a quasiparticle picture in a more general setup. This scheme is based on the minimization of Hamiltonians over the so-called Gaussian states. Its abstract formulation is the content of Beliaev's Theorem. In the last part we present a rigorous result concerning the justification of the Bogoliubov approximation. This justification employs the concept of the mean-field and infinite-volume limit. We show that for a large number of particles, a large volume and a sufficiently high density, the low-lying energy-momentum spectrum of the homogeneous Bose gas is well described by the Bogoliubov approximation. This result, which is formulated in the form of a theorem, can be seen as the main result of this thesis.

Marcin Napiórkowski

2014-09-02T23:59:59.000Z

228

ACID GASES IN CO2-RICH SUBSURFACE GEOLOGIC ENVIRONMENTS  

SciTech Connect (OSTI)

The analysis of species behavior involving dilute fluid environments has been crucial for the advance of modern solvation thermodynamics through molecular-based formalisms to guide the development of macroscopic regression tools in the description of fluid behavior and correlation of experimental data (Chialvo 2013). Dilute fluid environments involving geologic formations are of great theoretical and practical relevance regardless of the thermodynamic state conditions. The most challenging systems are those involving highly compressible and reactive confined environments, i.e., where small perturbations of pressure and/or temperature can trigger considerable density changes. This in turn can alter significantly the species solvation, their preferential solvation, and consequently, their reactivity with one another and with the surrounding mineral surfaces whose outcome is the modification of the substrate porosity and permeability, and ultimately, the integrity of the mineral substrates. Considering that changes in porosity and permeability resulting from dissolution and precipitation phenomena in confined environments are at the core of the aqueous CO2-mineral interactions, and that caprock integrity (e.g., sealing capacity) depends on these key parameters, it is imperative to gain fundamental understanding of the mineral-fluid interfacial phenomena and fluid-fluid equilibria under mineral confinement at subsurface conditions. In order to undertand the potential effects of acid gases as contaminants of supercritical CO2 streams, in the next section we will discuss the thermodynamic behavior of CO2 fluid systems by addressing two crucial issues in the context of carbon capture, utilization and sequestration (CCUS) technologies: (i) Why should we consider (acid gas) CO2 impurities? and (ii) Why are CO2 fluid - mineral interactions of paramount relevance?

Chialvo, Ariel A [ORNL] [ORNL; Vlcek, Lukas [ORNL] [ORNL; Cole, David [Ohio State University] [Ohio State University

2013-01-01T23:59:59.000Z

229

What's the Greenhouse Effect? The earth is surrounded by a blanket of gases. This  

E-Print Network [OSTI]

#12;What's the Greenhouse Effect? · The earth is surrounded by a blanket of gases. This blanket and climate change result from the greenhouse effect. #12;What's the Problem? · Eradica@on of en

Bowen, James D.

230

Eddy covariance flux measurements of pollutant gases in urban Mexico City  

E-Print Network [OSTI]

Eddy covariance (EC) flux measurements of the atmosphere/surface exchange of gases over an urban area are a direct way to improve and evaluate emissions inventories, and, in turn, to better understand urban atmospheric ...

Velasco, Erik

231

What are greenhouse gases? Many chemical compounds in the atmosphere act as  

E-Print Network [OSTI]

, Michigan State University, 2 Michigan State University Extension Climate Change and Agriculture Fact Sheet greenhouse gases carbon dioxide, methane, and nitrous oxide over the past 2000 years. Data are from ice core

232

Quantum coherence and magnetism in bosonic and fermionic gases of ultracold atoms  

E-Print Network [OSTI]

In this thesis, two sets of experimental studies in bosonic and fermionic gases are described. In the first part of the thesis, itinerant ferromagnetism was studied in a strongly interacting Fermi gas of ultracold atoms. ...

Jo, Gyu-Boong

2010-01-01T23:59:59.000Z

233

Adsorption Modeling of Coalbed Gases and the Effects of Water on Their Adsorption Behavior.  

E-Print Network [OSTI]

??The simplified local-density/Peng-Robinson (SLD-PR) adsorption model was utilized to investigate the adsorption behavior of coalbed gases on coals of varying rank. The model parameters were… (more)

Mohammad, Sayeed Ahmed

2009-01-01T23:59:59.000Z

234

Quantifying emissions of greenhouse gases from South Asia through a targeted measurement campaign  

E-Print Network [OSTI]

Methane (CH 4 ), nitrous oxide (N20) and sulfur hexafluoride (SF6) are powerful greenhouse gases with global budgets that are well-known but regional distributions that are not adequately constrained for the purposes of ...

Ganesan, Anita Lakshmi

2013-01-01T23:59:59.000Z

235

Field-driven dynamics of dilute gases, viscous liquids and polymer chains  

E-Print Network [OSTI]

This thesis is concerned with the exploration of field-induced dynamical phenomena arising in dilute gases, viscous liquids and polymer chains. The problems considered herein pertain to the slip-induced motion of a rigid, ...

Mohan, Aruna, 1981-

2007-01-01T23:59:59.000Z

236

Evolution and stability of shock waves in dissipative gases characterized by activated inelastic collisions  

E-Print Network [OSTI]

Previous experiments have revealed that shock waves driven through dissipative gases may become unstable, for example, in granular gases, and in molecular gases undergoing strong relaxation effects. The mechanisms controlling these instabilities are not well understood. We successfully isolated and investigated this instability in the canonical problem of piston driven shock waves propagating into a medium characterized by inelastic collision processes. We treat the standard model of granular gases, where particle collisions are taken as inelastic with constant coefficient of restitution. The inelasticity is activated for sufficiently strong collisions. Molecular dynamic simulations were performed for 30,000 particles. We find that all shock waves investigated become unstable, with density non-uniformities forming in the relaxation region. The wavelength of these fingers is found comparable to the characteristic relaxation thickness. Shock Hugoniot curves for both elastic and inelastic collisions were obtaine...

Sirmas, Nick

2015-01-01T23:59:59.000Z

237

Iron-based alloys with corrosion resistance to oxygen-sulfur mixed gases  

DOE Patents [OSTI]

An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9--30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000--1100 C. 7 figs.

Natesan, K.

1992-11-17T23:59:59.000Z

238

Iron-based alloys with corrosion resistance to oxygen-sulfur mixed gases  

DOE Patents [OSTI]

An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9-30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000.degree.-1100.degree. C.

Natesan, Krishnamurti (Naperville, IL)

1992-01-01T23:59:59.000Z

239

Emissions of greenhouse gases in the United States, 1985--1990  

SciTech Connect (OSTI)

The Earth`s capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ``greenhouse gases.`` Their warming capacity, called ``the greenhouse effect,`` is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth`s absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available.

Not Available

1993-11-10T23:59:59.000Z

240

Molecular extended thermodynamics of rarefied polyatomic gases and wave velocities for increasing number of moments  

SciTech Connect (OSTI)

Molecular extended thermodynamics of rarefied polyatomic gases is characterized by two hierarchies of equations for moments of a suitable distribution function in which the internal degrees of freedom of a molecule is taken into account. On the basis of physical relevance the truncation orders of the two hierarchies are proven to be not independent on each other, and the closure procedures based on the maximum entropy principle (MEP) and on the entropy principle (EP) are proven to be equivalent. The characteristic velocities of the emerging hyperbolic system of differential equations are compared to those obtained for monatomic gases and the lower bound estimate for the maximum equilibrium characteristic velocity established for monatomic gases (characterized by only one hierarchy for moments with truncation order of moments N) by Boillat and Ruggeri (1997) (?{sub (N)}{sup E,max})/(c{sub 0}) ??(6/5 (N?1/2 )),(c{sub 0}=?(5/3 k/m T)) is proven to hold also for rarefied polyatomic gases independently from the degrees of freedom of a molecule. -- Highlights: •Molecular extended thermodynamics of rarefied polyatomic gases is studied. •The relation between two hierarchies of equations for moments is derived. •The equivalence of maximum entropy principle and entropy principle is proven. •The characteristic velocities are compared to those of monatomic gases. •The lower bound of the maximum characteristic velocity is estimated.

Arima, Takashi, E-mail: tks@stat.nitech.ac.jp [Center for Social Contribution and Collaboration, Nagoya Institute of Technology (Japan); Mentrelli, Andrea, E-mail: andrea.mentrelli@unibo.it [Department of Mathematics and Research Center of Applied Mathematics (CIRAM), University of Bologna (Italy); Ruggeri, Tommaso, E-mail: tommaso.ruggeri@unibo.it [Department of Mathematics and Research Center of Applied Mathematics (CIRAM), University of Bologna (Italy)

2014-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Metal-Air Batteries  

SciTech Connect (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

242

Method of inducing surface ensembles on a metal catalyst  

DOE Patents [OSTI]

A method of inducing surface ensembles on a transition metal catalyst used in the conversion of a reactant gas or gas mixture, such as carbon monoxide and hydrogen into hydrocarbons (the Fischer-Tropsch reaction) is disclosed which comprises adding a Lewis base to the syngas (CO+H.sub.2) mixture before reaction takes place. The formation of surface ensembles in this manner restricts the number and types of reaction pathways which will be utilized, thus greatly narrowing the product distribution and maximizing the efficiency of the Fischer-Tropsch reaction. Similarly, amines may also be produced by the conversion of reactant gas or gases, such as nitrogen, hydrogen, or hydrocarbon constituents.

Miller, Steven S. (Morgantown, WV)

1989-01-01T23:59:59.000Z

243

Method of inducing surface ensembles on a metal catalyst  

DOE Patents [OSTI]

A method of inducing surface ensembles on a transition metal catalyst used in the conversion of a reactant gas or gas mixture, such as carbon monoxide and hydrogen into hydrocarbons (the Fischer-Tropsch reaction) is disclosed which comprises adding a Lewis base to the syngas (CO + H/sub 2/) mixture before reaction takes place. The formation of surface ensembles in this manner restricts the number and types of reaction pathways which will be utilized, thus greatly narrowing the product distribution and maximizing the efficiency of the Fischer-Tropsch reaction. Similarly, amines may also be produced by the conversion of reactant gas or gases, such as nitrogen, hydrogen, or hydrocarbon constituents.

Miller, S.S.

1987-10-02T23:59:59.000Z

244

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

3. Drip gases, and liquid hydrocarbons produced from oil sands, gilsonite, and oil shale. Liquids produced at natural gas processing plants are excluded. Crude oil is...

245

X:\\L6046\\Data_Publication\\Pma\\current\\ventura\\pma.vp  

U.S. Energy Information Administration (EIA) Indexed Site

3. Drip gases, and liquid hydrocarbons produced from oil sands, gilsonite, and oil shale. Liquids produced at natural gas processing plants are excluded. Crude oil is...

246

Liquid Metal Transformers  

E-Print Network [OSTI]

The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clar...

Sheng, Lei; Liu, Jing

2014-01-01T23:59:59.000Z

247

Metal phthalocyanine catalysts  

DOE Patents [OSTI]

As a new composition of matter, alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

1994-01-01T23:59:59.000Z

248

Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace  

SciTech Connect (OSTI)

This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

2014-01-01T23:59:59.000Z

249

Durable metallized polymer mirror  

DOE Patents [OSTI]

A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

Schissel, Paul O. (Golden, CO); Kennedy, Cheryl E. (Lafayette, CO); Jorgensen, Gary J. (Pine, CO); Shinton, Yvonne D. (Northglenn, CO); Goggin, Rita M. (Englewood, CO)

1994-01-01T23:59:59.000Z

250

Durable metallized polymer mirror  

DOE Patents [OSTI]

A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

1994-11-01T23:59:59.000Z

251

Phase Behavior of Light Gases in Hydrocarbon and Aqueous Solvents  

SciTech Connect (OSTI)

Under previous support from the Department of Energy, an experimental facility has been established and operated to measure valuable vapor-liquid equilibrium data for systems of interest in the production and processing of coal fluids. To facilitate the development and testing of models for prediction of the phase behavior for such systems, we have acquired substantial amounts of data on the equilibrium phase compositions for binary mixtures of heavy hydrocarbon solvents with a variety of supercritical solutes, including hydrogen, methane, ethane, carbon monoxide, and carbon dioxide. The present project focuses on measuring the phase behavior of light gases and water in Fischer-Tropsch (F-T) type solvents at conditions encountered in indirect liquefaction processes and evaluating and developing theoretically-based correlating frameworks to predict the phase behavior of such systems. Specific goals of the proposed work include (a) developing a state-of-the-art experimental facility to permit highly accurate measurements of equilibrium phase compositions (solubilities) of challenging F-T systems, (b) measuring these properties for systematically-selected binary, ternary and molten F-T wax mixtures to provide critically needed input data for correlation development, (c) developing and testing models suitable for describing the phase behavior of such mixtures, and (d) presenting the modeling results in generalized, practical formats suitable for use in process engineering calculations. During the present reporting period, our solubility apparatus was refurbished and restored to full service. To test the experimental apparatus and procedures used, measurements were obtained for the solubility Of C0{sub 2} in benzene at 160{degrees}F. Having confirmed the accuracy of the newly acquired data in comparison with our previous measurements and data reported in the literature for this test system, we have begun to measure the solubility of hydrogen in hexane. The measurements for this system will cover the temperature range from 160 to 280{degrees}F at pressures to 2,500 psia. As part of our model evaluation efforts, we examined the predictive abilities of an alternative approach we have proposed for calculating the phase behavior properties of highly non-ideal systems. Using this approach, the liquid phase fugacities generated from an equation of state (EOS) are augmented by a fugacity deviation function correction. The correlative abilities of this approach are compared with those of an EOS equipped with the recently introduced Wong-Sandler (MWS) mixing rules. These two approaches are compared with the current methods for vapor-liquid equilibrium (VLE) calculations, i.e., the EOS (0/0) approach with the van der Waals mixing rules and the split (y/0) approach. The evaluations were conducted on a database comprised of non-ideal low pressure binary systems as well as asymmetric high pressure binary systems. These systems are of interest in the coal liquefaction and utilization processes. The Peng-Robinson EOS was selected for the purposes of this evaluation.

Gasem, K.A.M.; Robinson, R.L., Jr.; Trvedi, N.J., Gao, W.

1997-09-01T23:59:59.000Z

252

Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature  

SciTech Connect (OSTI)

This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers, rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100oC have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800oC. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750oC, first distributed chemical measurements at the record high temperature up to 700oC, first distributed pressure measurement at the record high temperature up to 800oC, and the fiber laser sensors with the record high operation temperature up to 700oC. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.

Chen, Kevin

2014-08-31T23:59:59.000Z

253

Liquid Metal Transformers  

E-Print Network [OSTI]

The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clarified. Such events are hard to achieve otherwise on rigid metal or conventional liquid spheres. This finding has both fundamental and practical significances which suggest a generalized way of making smart soft machine, collecting discrete metal fluids, as well as flexibly manipulating liquid metal objects including accompanying devices.

Lei Sheng; Jie Zhang; Jing Liu

2014-01-30T23:59:59.000Z

254

Nitrogen containing shielding gases for GTAW duplex stainless steels  

SciTech Connect (OSTI)

The duplex stainless steel are alloys characterized as consisting of two phases; austenite and ferrite. As such, they combine the benefits of both phases i.e. good ductility and general corrosion resistance of austenite, but with improved stress corrosion cracking resistance and strength associate with ferrite. Carefully controlled manufacturing techniques are employed to produce this combination in roughly equal proportions to ensure optimum properties. The range of duplex alloys studied in this work covered both the standard grade (2205) and the latest generation of super duplex (2507) alloys; typical compositions are shown in Table 1. Although the standard duplex is the most commonly available and widely used, super duplexes, which are characterized by higher chromium, nickel, molybdenum and nitrogen contents, have even better corrosion properties and are finding increasing applications in the offshore industry. To benefit from the superior properties of duplex, it is vital that these alloys can be welded effectively and that the properties of the welded joint match those of the parent weld. The objective of the current investigation was to study the effect of nitrogen, in both the shielding and purge gas, on the weld metal nitrogen content, microstructure and corrosion resistance, with the eventual aim of recommending an effective shielding gas mixture for duplex stainless steels.

Creffield, G.K.; Cole, M.H.; Paciej, R.; Huang, W.; Urmston, S. [BOC Ltd., London (United Kingdom)

1993-12-31T23:59:59.000Z

255

Extraction process for removing metallic impurities from alkalide metals  

DOE Patents [OSTI]

A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

Royer, Lamar T. (Knoxville, TN)

1988-01-01T23:59:59.000Z

256

Dissipative Dynamics of a Josephson Junction In the Bose-Gases  

E-Print Network [OSTI]

The dissipative dynamics of a Josephson junction in the Bose-gases is considered within the framework of the model of a tunneling Hamiltonian. The effective action which describes the dynamics of the phase difference across the junction is derived using functional integration method. The dynamic equation obtained for the phase difference across the junction is analyzed for the finite temperatures in the low frequency limit involving the radiation terms. The asymmetric case of the Bose-gases with the different order parameters is calculated as well.

R. A. Barankov; S. N. Burmistrov

2003-01-09T23:59:59.000Z

257

Spin noise spectroscopy to probe quantum states of ultracold fermionic atom gases  

SciTech Connect (OSTI)

We theoretically demonstrate that optical measurements of electron spin noise can be a spectroscopic probe of the entangled quantum states of ultracold fermionic atom gases and unambiguously reveal the detailed nature of the underlying interatomic correlations. Different models of the effective interatomic interactions predict entirely new sets of resonances in the spin noise spectrum. Once the correct effective interatomic interaction model is identified, the detailed noise line shapes of the spin noise can be used to constrain this model. We estimate the magnitude of spin noise signals expected in ultracold fermionic atom gases via noise measurements in classical alkali vapors, which demonstrate the feasibility of this approach.

Mihaila, Bogdan; Blagoev, Krastan B.; Smith, Darryl L. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Crooker, Scott A.; Rickel, Dwight G. [National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Littlewood, Peter B. [Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom)

2006-12-15T23:59:59.000Z

258

High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures  

DOE Patents [OSTI]

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, John E. (Woodridge, IL); Jalan, Vinod M. (Concord, MA)

1984-01-01T23:59:59.000Z

259

High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures  

DOE Patents [OSTI]

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, J.E.; Jalan, V.M.

1982-07-07T23:59:59.000Z

260

High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures  

DOE Patents [OSTI]

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, J.E.; Jalan, V.M.

1984-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Metal atomization spray nozzle  

DOE Patents [OSTI]

A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

Huxford, T.J.

1993-11-16T23:59:59.000Z

262

Directed Light Fabrication of Refractory Metals and Alloys  

SciTech Connect (OSTI)

This report covers work performed under Order No. FA0000020 AN Contract DE-AC12-76SN00052 for deposition of refractory pure metals and alloys using the Directed Light Fabrication (DLF) process and represents the progress in depositing these materials through September 1998. In extending the DLF process technology to refractory metals for producing fully dense, structurally sound deposits, several problems have become evident. 1. Control of porosity in DLF-deposited refractory metal is difficult because of gases, apparently present in commercially purchased refractory metal powder starting materials. 2. The radiant heat from the molten pool during deposition melts the DLF powder feed nozzle. 3. The high reflectivity of molten refractory metals, at the Nd-YAG laser wavelength (1.06{micro}m), produces damaging back reflections to the optical train and fiber optic delivery system that can terminate DLF processing. 4. The current limits on the maximum available laser power to prevent back reflection damage limit the parameter range available for densification of refractory metals. The work to date concentrated on niobium, W-25Re, and spherodized tungsten. Niobium samples, made from hydride-dehydride powder, had minimal gas porosity and the deposition parameters were optimized; however, test plates were not made at this time. W-25Re samples, containing sodium and potassium from a precipitation process, were made and porosity was a problem for all samples although minimized with some process parameters. Deposits made from potassium reduced tungsten that was plasma spherodized were made with minimized porosity. Results of this work indicate that further gas analysis of starting powders and de-gassing of starting powders and/or gas removal during deposition of refractory metals is required.

Fonseca, J.C.; Lewis, G.K.; Dickerson, P.G.; Nemec, R.B.

1999-05-14T23:59:59.000Z

263

Directed light fabrication of refractory metals and alloys  

SciTech Connect (OSTI)

This report covers deposition of refractory pure metals and alloys using the Directed Light Fabrication (DLF) process and represents progress in depositing these materials through September 1998. In extending the DLF process technology to refractory metals for producing fully dense, structurally sound deposits, several problems have become evident. (1) Control of porosity in DLF-deposited refractory metal is difficult because of gases, apparently present in commercially purchased refractory metal powder starting materials. (2) The radiant heat from the molten pool during deposition melts the DLF powder feed nozzle. (3) The high reflectivity of molten refractory metals, at the Nd-YAG laser wavelength (1.06{micro}m), produces damaging back reflections to the optical train and fiber optic delivery system that can terminate DLF processing. (4) The current limits on the maximum available laser power to prevent back reflection damage limit the parameter range available for densification of refractory metals. The work to date concentrated on niobium, W-25Re, and spherodized tungsten. Niobium samples, made from hydride-dehydride powder, had minimal gas porosity and the deposition parameters were optimized; however, test plates were not made at this time. W-25Re samples, containing sodium and potassium from a precipitation process, were made and porosity was a problem for all samples although minimized with some process parameters. Deposits made from potassium reduced tungsten that was plasma spherodized were made with minimized porosity. Results of this work indicate that further gas analysis of starting powders and de-gassing of starting powders and/or gas removal during deposition of refractory metals is required.

Fonseca, J.C.; Lewis, G.K.; Dickerson, P.G.; Nemec, R.B.

1999-05-30T23:59:59.000Z

264

Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents  

DOE Patents [OSTI]

A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known pressure swing adsorption'' technique utilizing the same sorption material. 1 fig.

Judkins, R.R.; Burchell, T.D.

1999-07-20T23:59:59.000Z

265

Feasibility of reconstructing paleoatmospheric records of selected alkanes, methyl halides, and sulfur gases from Greenland ice cores  

E-Print Network [OSTI]

, and sulfur gases from Greenland ice cores M. Aydin,1 M. B. Williams,1 and E. S. Saltzman1 Received 7-lived atmospheric trace gases were measured in 25 ice core samples from Summit, Greenland. Samples were selected. The CH3Br results are consistent with previous observations of ``excess'' CH3Br in Greenland firn air

Saltzman, Eric

266

Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents  

DOE Patents [OSTI]

A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known "pressure swing adsorption" technique utilizing the same sorption material.

Judkins, Roddie R. (9917 Rainbow Dr., Knoxville, TN 37922); Burchell, Timothy D. (109 Greywood Pl., Oak Ridge, TN 37830)

1999-01-01T23:59:59.000Z

267

Bose-Einstein Condensation in Atomic Gases Jerzy Zachorowski and Wojciech Gawlik  

E-Print Network [OSTI]

. It is instructive to compare orders of magnitude typical for the thermal and condensed gas samples. For atom gasBose-Einstein Condensation in Atomic Gases Jerzy Zachorowski and Wojciech Gawlik M. Smoluchowski on the Bose-Einstein condensate. We also present main parameters and expected characteristics of the first Pol

268

Ion fragmentation in an electrospray ionization mass spectrometer interface with different gases  

E-Print Network [OSTI]

in the gas phase. However, particularly in multi- component samples, this may not be enough to unambigu predicts that the degree of ion fragmentation increases with increasing mass of the curtain gas. However with argon and krypton is caused by condensation of the gases within the free jet expansion between

Chen, David D.Y.

269

Electronic structure of the Si(111):GaSe van der Waals-like surface termination  

E-Print Network [OSTI]

Electronic structure of the Si(111):GaSe van der Waals-like surface termination Reiner Rudolph-like surface termination has been determined by angle-resolved photoelectron spectroscopy using photons. This explains both the absence of a surface core-level shift in Si 2p photoelectron spectra of the terminated

Olmstead, Marjorie

270

Investigadores de la UA disean un catalizador que neutraliza gases responsables del cambio climtico  

E-Print Network [OSTI]

industria, las plantas de combustión o de las emisiones de vehículos Alicante, 6 de junio de 2013 a reducir todas las emisiones de gases de efecto invernadero acordadas en el Protocolo de Kioto" explica emisiones de vehículos (motores de gasolina, motores diésel, etc.), entre otros. Actualidad Universitaria

Escolano, Francisco

271

Heat and Mass Transfer Modeling of Dry Gases in the Cathode of PEM Fuel Cells  

E-Print Network [OSTI]

Heat and Mass Transfer Modeling of Dry Gases in the Cathode of PEM Fuel Cells M.J. Kermani1 J and N2, through the cathode of a proton exchange membrane (PEM) fuel cell is studied numerically) an energy equation, written in a form that has enthalpy as the dependent variable. Keywords: PEM fuel cells

Stockie, John

272

Classical disordered ground states: Super-ideal gases and stealth and equi-luminous materials  

E-Print Network [OSTI]

Classical disordered ground states: Super-ideal gases and stealth and equi-luminous materials of Materials, Princeton University, Princeton, New Jersey 08544, USA 4 Program in Applied and Computational focus on three classes of configurations with unique radiation scattering characteristics: i "stealth

Torquato, Salvatore

273

A Biomass-based Model to Estimate the Plausibility of Exoplanet Biosignature Gases  

E-Print Network [OSTI]

Biosignature gas detection is one of the ultimate future goals for exoplanet atmosphere studies. We have created a framework for linking biosignature gas detectability to biomass estimates, including atmospheric photochemistry and biological thermodynamics. The new framework is intended to liberate predictive atmosphere models from requiring fixed, Earth-like biosignature gas source fluxes. New biosignature gases can be considered with a check that the biomass estimate is physically plausible. We have validated the models on terrestrial production of NO, H2S, CH4, CH3Cl, and DMS. We have applied the models to propose NH3 as a biosignature gas on a "cold Haber World," a planet with a N2-H2 atmosphere, and to demonstrate why gases such as CH3Cl must have too large of a biomass to be a plausible biosignature gas on planets with Earth or early-Earth-like atmospheres orbiting a Sun-like star. To construct the biomass models, we developed a functional classification of biosignature gases, and found that gases (such...

Seager, S; Hu, R

2013-01-01T23:59:59.000Z

274

Predictive Modeling of Mercury Speciation in Combustion Flue Gases Using GMDH-Based Abductive Networks  

E-Print Network [OSTI]

to develop. The use of modern data-based machine learning techniques has been recently introduced, including and boiler operating conditions. Prediction performance compares favourably with neural network models for future work to further improve performance. Index Terms: Mercury speciation, Flue gases, Boiler emissions

Abdel-Aal, Radwan E.

275

Nuclear fusion in gases of deuterium clusters heated with a femtosecond T. Ditmire,  

E-Print Network [OSTI]

Nuclear fusion in gases of deuterium clusters heated with a femtosecond laser* T. Ditmire, J deuterium­deuterium DD nuclear fusion. By diagnosing the fusion yield through measurements of 2.45 Me release of kinetic energy in fast ions can be harnessed to drive nuclear fusion between deuterium ions

Ditmire, Todd

276

Ballistic spin transport in exciton gases A. V. Kavokin,1, 2  

E-Print Network [OSTI]

, or spin-optronics challeng- ing. How possibly one can explore the current, which is carried by neutral are possible in exciton and exciton-polariton Bose gases. Bosonic spintronics or spin-optronics operates,28 . Combined with evident advantages of bosonic amplifica- tion and low dephasing, this makes spin-optronics

Paris-Sud XI, Université de

277

ESTABoues, a decision tool to assess greenhouse gases of sewage sludge treatment and di  

E-Print Network [OSTI]

digestion, aerobic digestion, dewatering, al composting, drying) and sludge disposal route (land applicationORBIT2012 G ESTABoues, a decision tool to assess greenhouse gases of sewage sludge treatment and di-laure.reverdy@irstea.fr EXECUTIVE SUMMARY Sewage sludge production increases continuously reaching almost 20% (946 700 t 1 118 795

Paris-Sud XI, Université de

278

1988 Pilot Institute on Global Change on trace gases and the biosphere  

SciTech Connect (OSTI)

This proposal seeks multi-agency funding to conduct an international, multidisciplinary 1988 Pilot Institute on Global Change to take place from August 7 through 21, 1988, on the topic: Trace Gases and the Biosphere. The institute, to be held in Snowmass, Colorado, is envisioned as a pilot version of a continuing series of institutes on Global Change (IGC). This proposal seeks support for the 1988 pilot institute only. The concept and structure for the continuing series, and the definition of the 1988 pilot institute, were developed at an intensive and multidisciplinary Summer Institute Planning Meeting in Boulder, Colorado, on August 24--25, 1987. The theme for the 1988 PIGC, Trace Gases and the Biosphere, will focus a concerted, high-level multidisciplinary effort on a scientific problem central to the Global Change Program. Dramatic year-to-year increases in the global concentrations of radiatively-active trace gases such as methane and carbon dioxide are now well documented. The predicted climatic effects of these changes lend special urgency to efforts to study the biospheric sources and sinks of these gases and to clarify their interactions and role in the geosphere-biosphere system.

Eddy, J.A.; Moore, B. III

1998-07-01T23:59:59.000Z

279

Greenhouse gases accounting and reporting for waste management - A South African perspective  

SciTech Connect (OSTI)

This paper investigates how greenhouse gases are accounted and reported in the waste sector in South Africa. Developing countries (including South Africa) do not have binding emission reduction targets, but many of them publish different greenhouse gas emissions data which have been accounted and reported in different ways. Results show that for South Africa, inventories at national and municipal level are the most important tools in the process of accounting and reporting greenhouse gases from waste. For the development of these inventories international initiatives were important catalysts at national and municipal levels, and assisted in developing local expertise, resulting in increased output quality. However, discrepancies in the methodology used to account greenhouse gases from waste between inventories still remain a concern. This is a challenging issue for developing countries, especially African ones, since higher accuracy methods are more data intensive. Analysis of the South African inventories shows that results from the recent inventories can not be compared with older ones due to the use of different accounting methodologies. More recently the use of Clean Development Mechanism (CDM) procedures in Africa, geared towards direct measurements of greenhouse gases from landfill sites, has increased and resulted in an improvement of the quality of greenhouse gas inventories at municipal level.

Friedrich, Elena, E-mail: Friedriche@ukzn.ac.z [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Surveying and Construction, Howard College Campus, Durban (South Africa); Trois, Cristina [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Surveying and Construction, Howard College Campus, Durban (South Africa)

2010-11-15T23:59:59.000Z

280

Intercomparison of tritium and noble gases analyses, 3 and derived parameters excess air and recharge temperature  

E-Print Network [OSTI]

Intercomparison of tritium and noble gases analyses, 3 H/3 He ages and derived parameters excess with the tritium­helium (3 H/3 He) method has become a powerful tool for hydrogeologists. The uncertainty in the inter- comparison for tritium analyses and ten laboratories participated in the noble gas

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Truck Stop Electrification as a Strategy To Reduce Greenhouse Gases, Fuel Consumption and Pollutant Emissions  

E-Print Network [OSTI]

Truck Stop Electrification as a Strategy To Reduce Greenhouse Gases, Fuel Consumption and Pollutant, Schneider, Lee, Bubbosh 2 ABSTRACT Extended truck idling is a very large source of fuel wastage, greenhouse, most long-haul truck drivers idle their vehicles for close to 10 hours per day to operate heating

282

UA Researchers design a catalyst that neutralizes the gases responsible for climate change  

E-Print Network [OSTI]

in a fixed bed reactor through which the gas stream to be purified passes. The composition and temperature gases coming from industry, combustion plants or vehicle emissions that are responsible for increasing with ammonia, combustion processes of fossil fuels (coal, biomass, waste, etc.). and vehicle emissions

Escolano, Francisco

283

Abstract--Energy consumption and the concomitant Green House Gases (GHG) emissions of network infrastructures are  

E-Print Network [OSTI]

Abstract--Energy consumption and the concomitant Green House Gases (GHG) emissions of network on the overall power consumption and on the GHG emissions with just 25% of green energy sources. I. INTRODUCTION]. In the zero carbon approach, renewable (green) energy sources (e.g. sun, wind, tide) are employed and no GHGs

Politècnica de Catalunya, Universitat

284

Towards a history of the international industrial gases industry Ray Stokes, Ralf Banken, and Matthias Phl  

E-Print Network [OSTI]

industrial revolution" and their component companies. From David Landes's classic study, The Unbound of the industries of the second industrial revolution has been virtually ignored in this scholarship to date1 Towards a history of the international industrial gases industry Ray Stokes, Ralf Banken

Guo, Zaoyang

285

Internal structure and expansion dynamics of laser ablation plumes into ambient gases  

E-Print Network [OSTI]

Internal structure and expansion dynamics of laser ablation plumes into ambient gases S. S. Harilal 13 December 2002 The effect of ambient gas on the expansion dynamics of the plasma generated by laser together with time resolved emission diagnostics, a triple structure of the plume was observed

Harilal, S. S.

286

Measurement and Analysis of the Relationship between Ammonia, Acid Gases, and Fine Particles in Eastern North  

E-Print Network [OSTI]

).2­4 Gas-to-particle conversion can be accomplished by condensation, which adds mass onto preMeasurement and Analysis of the Relationship between Ammonia, Acid Gases, and Fine Particles acid gas con- centrations of 0.23 g/m3 hydrochloric acid (standard deviation [SD] 0.2 g/m3 ); 1.14 g/m3

Aneja, Viney P.

287

Atmospheric Environment 42 (2008) 30763086 Scavenging of soluble gases by evaporating and growing cloud  

E-Print Network [OSTI]

and condensation of a cloud droplet in the presence of soluble gases. It is assumed that gas absorption we performed numerical analysis of simultaneous heat and mass transfer during evaporation into account thermal effect of gas absorption. It was shown that nonlinear behavior of different parameters

Elperin, Tov

288

Photoconductivity and luminescence in GaSe crystals at high levels of optical excitation  

SciTech Connect (OSTI)

The photoconductivity and luminescence of GaSe layered crystals at high levels of optical excitation are studied experimentally. The specific features observed in the photoconductivity and photoluminescence spectra are controlled by the nonlinear optical absorption in the region of excitonic resonance.

Kyazym-zade, A. G.; Salmanov, V. M., E-mail: vagif_salmanov@yahoo.com; Salmanova, A. A. [Baku State University (Azerbaijan); Alieva, A. M.; Ibaeva, R. Z. [National Academy of Sciences, Institute of Physics (Azerbaijan)

2010-03-15T23:59:59.000Z

289

Effects of Biochar and Basalt Additions on Carbon Sequestration and Fluxes of Greenhouse Gases in Soils  

E-Print Network [OSTI]

Effects of Biochar and Basalt Additions on Carbon Sequestration and Fluxes of Greenhouse Gases Emissions--Carbon Dioxide Emissions--Sequestration and Storage--Biochar--Basalt--Organic Fertilizers, this investigation focuses on the range of potential of different soil additives to enhance sequestration and storage

Vallino, Joseph J.

290

Operational aspects of the desulfurization process of energy gases mimics in biotrickling filters5  

E-Print Network [OSTI]

. Introduction Energy rich off-gases such as biogas are sometimes not used for electric power generation due impurities. H2S concentrations in biogas can range from 0.1 to 5 We dedicate this article to the memory/v (1000e20,000 ppmv), whereas the specifications for the maximum content of H2S in typical biogas

291

Anode supported single chamber solid oxide fuel cells operating in exhaust gases of thermal engine  

E-Print Network [OSTI]

Anode supported single chamber solid oxide fuel cells operating in exhaust gases of thermal engine fuel cells are usually described as devices able to convert chemical energy into electrical energy. Conventional solid oxide fuel cells are separated into two compartments containing each electrode split

Boyer, Edmond

292

Silicon metal-semiconductor-metal photodetector  

DOE Patents [OSTI]

Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

Brueck, Steven R. J. (Albuquerque, NM); Myers, David R. (Albuquerque, NM); Sharma, Ashwani K. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

293

Silicon metal-semiconductor-metal photodetector  

DOE Patents [OSTI]

Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

Brueck, Steven R. J. (Albuquerque, NM); Myers, David R. (Albuquerque, NM); Sharma, Ashwani K. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

294

High-temperature corrosion of metallic alloys in an oxidizing atmosphere containing NaCl  

SciTech Connect (OSTI)

A particular heat-exchanger application involved metallic alloys exposed to flue gases of an aluminum remelt furnace. Because the flue gases might contain NaCl and other halides, the corrosion behavior of the alloys was to be investigated. Planned direct exposure of candidate alloys to the flue gases, however, was not conducted because of premature termination of the project. Complementary laboratory testing was conducted on seven commercially available alloys and two nickel aluminides. These materials were exposed to an oxidizing atmosphere containing 0.06 wt % NaCl for 1100 h at 1000/degree/C. Most of the alloy exhibited grain-boundary attack, which resulted in complete oxidation of enveloped grains. The alloys Incoloy MA-956, Incoloy 800, Inconel 625, Inconel 601, Hastelloy X, Haynes 188, and nickel aluminide IC-50 were substantially more corroded than Alloy 214 and nickel aluminide IC-221. The latter two alloys, therefore, would probably be superior to the others in application involving flue gases containing NaCl. Strength fabricability, and weldability, which are briefly discussed, would also affect selection of materials. 8 refs., 12 figs., 5 tabs.

Federer, J.I.

1989-02-01T23:59:59.000Z

295

Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts  

SciTech Connect (OSTI)

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2} in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives using a monolithic catalyst reactor, experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 40-560 seconds at 120-150 C to evaluate effects of reaction temperatures, total pressure, space time, and catalyst regeneration on conversion of hydrogen sulfide into elemental sulfur and formation of COS. Simulated coal gas mixtures consist of 3,600-4,000-ppmv hydrogen sulfide, 1,800-2,000 ppmv sulfur dioxide, 23-27 v% hydrogen, 36-41 v% CO, 10-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 30-180 SCCM. The temperature of the reactor is controlled in an oven at 120-150 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is mai

K. C. Kwon

2006-09-30T23:59:59.000Z

296

PHYTOEXTRACTION OF HEAVY METALS  

E-Print Network [OSTI]

) Type of phytoremediation Cost effective form of environmental remediation (Glass 1999) Chelating Agents: desorb heavy metals from soil matrix and form water-soluble metal complexes (Shen et al -using hyperaccumulator plant biomass to produce a bio-ore for commercial use -Li et al. look at using Ni

Blouin-Demers, Gabriel

297

Production of magnesium metal  

DOE Patents [OSTI]

A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

Blencoe, James G. (Harriman, TN) [Harriman, TN; Anovitz, Lawrence M. (Knoxville, TN) [Knoxville, TN; Palmer, Donald A. (Oliver Springs, TN) [Oliver Springs, TN; Beard, James S. (Martinsville, VA) [Martinsville, VA

2010-02-23T23:59:59.000Z

298

Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings  

E-Print Network [OSTI]

packages, and limit nuclear criticality in canisters for theuses in a nuclear repository, including criticality controlnuclear fuel waste packages, emplacement pallets, and drip shields, and for basket assemblies with enhanced criticality

Blink, J.; Farmer, J.; Choi, J.; Saw, C.

2009-01-01T23:59:59.000Z

299

SOx/NOx sorbent and process of use  

DOE Patents [OSTI]

An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilizing spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.

1993-01-19T23:59:59.000Z

300

Liquid metal electric pump  

DOE Patents [OSTI]

An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Actinide metal processing  

DOE Patents [OSTI]

A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

Sauer, Nancy N. (Los Alamos, NM); Watkin, John G. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

302

Actinide metal processing  

DOE Patents [OSTI]

A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

Sauer, N.N.; Watkin, J.G.

1992-03-24T23:59:59.000Z

303

Transition Metal Switchable Mirror  

ScienceCinema (OSTI)

The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

None

2013-05-29T23:59:59.000Z

304

Transition Metal Switchable Mirror  

ScienceCinema (OSTI)

The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

None

2010-01-08T23:59:59.000Z

305

Liquid metal electric pump  

DOE Patents [OSTI]

An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

1992-01-14T23:59:59.000Z

306

Functional Metal Phosphonates  

E-Print Network [OSTI]

functional groups. In some cases, these ligands undergo reactions during the solvothermal syntheses which can impart new chemical reactivity. Another method used to introduce functionality was to partially or completely substitute metal atoms within...

Perry, Houston Phillipp

2012-02-14T23:59:59.000Z

307

Production of magnesium metal  

DOE Patents [OSTI]

A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

Blencoe, James G. (Harriman, TN); Anovitz, Lawrence M. (Knoxville, TN); Palmer, Donald A. (Oliver Springs, TN); Beard, James S. (Martinsville, VA)

2012-04-10T23:59:59.000Z

308

Removal of oxides of nitrogen from gases in multi-stage coal combustion  

DOE Patents [OSTI]

Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.

Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.

1998-01-13T23:59:59.000Z

309

Process for removal of ammonia and acid gases from contaminated waters  

DOE Patents [OSTI]

Contaminating basic gases, i.e., ammonia and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with stream, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

King, C.J.; Mackenzie, P.D.

1982-09-03T23:59:59.000Z

310

Process for removal of ammonia and acid gases from contaminated waters  

DOE Patents [OSTI]

Contaminating basic gases, i.e., ammonia, and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with steam, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

King, C. Judson (Kensington, CA); MacKenzie, Patricia D. (Berkeley, CA)

1985-01-01T23:59:59.000Z

311

Removal of oxides of nitrogen from gases in multi-stage coal combustion  

DOE Patents [OSTI]

Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

Mollot, Darren J. (Morgantown, WV); Bonk, Donald L. (Louisville, OH); Dowdy, Thomas E. (Orlando, FL)

1998-01-01T23:59:59.000Z

312

Bose and Fermi gases in the early Universe with self-gravitational effect  

SciTech Connect (OSTI)

We study the self-gravitational effect on the equation of state (EoS) of Bose and Fermi gases in thermal equilibrium at the end of reheating, the period after quark-hadron transition and before big bang nucleosynthesis (BBN). After introducing new grand canonical partition functions based on the work of Uhlenbeck and Gropper, we notice some interesting features of the newly developed EoSs with distinct behaviors of relativistic and nonrelativistic gases under self-gravity. The usual negligence of the self-gravitational effect when solving the background expansion of the early Universe is justified with numerical results, showing the magnitude of the self-gravitational modification of the state constant to be less than O(10{sup -78}). This helps us to clarify the background thermal evolution of the primordial patch. Such clarification is crucial in testing gravity theories, evaluating inflation models and determining element abundances in BBN.

Niu Yuezhen; Huang Junwu; Ma Boqiang [School of Physics and State Keye Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China) and Center for High Energy Physics, Peking University, Beijing 100871 (China) and Center for History and Philosophy of Science, Peking University, Beijing 100871 (China)

2011-03-15T23:59:59.000Z

313

Membranes, methods of making membranes, and methods of separating gases using membranes  

DOE Patents [OSTI]

Membranes, methods of making membranes, and methods of separating gases using membranes are provided. The membranes can include at least one hydrophilic polymer, at least one cross-linking agent, at least one base, and at least one amino compound. The methods of separating gases using membranes can include contacting a gas stream containing at least one of CO.sub.2, H.sub.2S, and HCl with one side of a nonporous and at least one of CO.sub.2, H.sub.2S, and HCl selectively permeable membrane such that at least one of CO.sub.2, H.sub.2S, and HCl is selectively transported through the membrane.

Ho, W. S. Winston

2012-10-02T23:59:59.000Z

314

Adsorption of molecular gases on porous materials in the SAFT-VR approximation  

E-Print Network [OSTI]

A simple molecular thermodynamic approach is applied to the study of the adsorption of gases of chain molecules on solid surfaces. We use a model based on the Statistical Associating Fluid Theory for Variable Range (SAFT-VR) potentials [A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, A. N. Burgess, J. Chem. Phys. 106 (1997) 4168] that we extend by including a quasi-two-dimensional approximation to describe the adsorption properties of this type of real gases [A. Martinez, M. Castro, C. McCabe, A. Gil-Villegas, J. Chem. Phys. 126 (2007) 074707]. The model is applied to ethane, ethylene, propane, and carbon dioxide adsorbed on activated carbon and silica gel, which are porous media of significant industrial interest. We show that the adsorption isotherms obtained by means of the present SAFT-VR modeling are in fair agreement with the experimental results provided in the literature

Castro, M; Martinez, A; Rosu, H C; 10.1016/j.physa.2010.04.028

2010-01-01T23:59:59.000Z

315

Biological production of acetic acid from waste gases with Clostridium ljungdahlii  

DOE Patents [OSTI]

A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 5 figs.

Gaddy, J.L.

1998-09-15T23:59:59.000Z

316

Radiolytic and radiolytically induced generation of gases in simulated waste solutions  

SciTech Connect (OSTI)

The radiolytic generation of gases in simulated mixed waste solutions was studied. Computer modeling of the non-homogeneous kinetic processes in these highly concentrated homogeneous solutions was attempted. The predictions of the modeling simulations were verified experimentally. Two sources for the radiolytic generation of H{sub 2} are identified: direct dissociation of highly energetic water molecules and hydrogen abstraction from the organic molecules by hydrogen atoms. Computer simulation of the homogeneous kinetics of the NO{sub X} system indicate that no N{sub 2}O will be produced in the absence of organic solutes and none was experimentally detected. It was also found that long term pre-irradiation of the simulated waste solutions leads to enhanced thermal production of these two gases. 22 refs., 5 figs., 3 tabs.

Meisel, D.; Sauer, M.C. Jr.; Jonah, C.D.; Diamond, H.; Matheson, M.S.; Barnabas, F.; Cerny, E.; Cheng, Y.

1990-12-31T23:59:59.000Z

317

Radiolytic and radiolytically induced generation of gases in simulated waste solutions  

SciTech Connect (OSTI)

The radiolytic generation of gases in simulated mixed waste solutions was studied. Computer modeling of the non-homogeneous kinetic processes in these highly concentrated homogeneous solutions was attempted. The predictions of the modeling simulations were verified experimentally. Two sources for the radiolytic generation of H{sub 2} are identified: direct dissociation of highly energetic water molecules and hydrogen abstraction from the organic molecules by hydrogen atoms. Computer simulation of the homogeneous kinetics of the NO{sub X} system indicate that no N{sub 2}O will be produced in the absence of organic solutes and none was experimentally detected. It was also found that long term pre-irradiation of the simulated waste solutions leads to enhanced thermal production of these two gases. 22 refs., 5 figs., 3 tabs.

Meisel, D.; Sauer, M.C. Jr.; Jonah, C.D.; Diamond, H.; Matheson, M.S.; Barnabas, F.; Cerny, E.; Cheng, Y.

1990-01-01T23:59:59.000Z

318

Biological production of acetic acid from waste gases with Clostridium ljungdahlii  

DOE Patents [OSTI]

A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

Gaddy, James L. (Fayetteville, AR)

1998-01-01T23:59:59.000Z

319

Lithium metal reduction of plutonium oxide to produce plutonium metal  

DOE Patents [OSTI]

A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

Coops, Melvin S. (Livermore, CA)

1992-01-01T23:59:59.000Z

320

Metallic glass composition  

DOE Patents [OSTI]

A metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon carbon and phosphorous to which is added an amount of a ductility enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.

Kroeger, Donald M. (Knoxville, TN); Koch, Carl C. (Raleigh, NC)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Molten metal reactors  

DOE Patents [OSTI]

A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

2013-11-05T23:59:59.000Z

322

Plasmon mass and Drude weight in strongly spin-orbit-coupled two-dimensional electron gases  

E-Print Network [OSTI]

) spin- orbit-coupled 2D electron and hole gases, which are promising candidates for semiconductor spintronics,1 (ii) graphene2 (a monolayer of carbon atoms arranged in a 2D honeycomb lattice), which has attracted a great deal of interest because..., in the case of graphene) degree of freedom. This coupling, being of relativistic origin,12 naturally breaks Galilean invariance and is thus the basic reason for a quite sensitive dependence of several observables on electron-electron interactions, even...

Agarwal, Amit; Chesi, Stefano; Jungwirth, T.; Sinova, Jairo; Vignale, G.; Polini, Marco.

2011-01-01T23:59:59.000Z

323

Changes in atmospheric gases during isobaric storage of beef packaged pre- and post-rigor  

E-Print Network [OSTI]

displacement measurements of the head- space volume were conducted during two weeks of storage. Males of the headspace gases were calculated using the general gas law (PU = nRT). Carbon dioxide absorption by the meat was greatest in steaks stored in 100% C... OF FIGURES INTRODUCTION LITERATURE REV IELV Microbiol ogical Aspects of Packaging Meat Shelf-Life of Packaged Meat Respiration . Carbon Dioxide Absorption OBJECTIVES EXPERIMENTAL PROCEDURES RESULTS AND DISCUSSION Description of Meat Samples . Molar...

Hoermann, Karen Lee

1980-01-01T23:59:59.000Z

324

Evolution and stability of shock waves in dissipative gases characterized by activated inelastic collisions  

E-Print Network [OSTI]

Previous experiments have revealed that shock waves driven through dissipative gases may become unstable, for example, in granular gases, and in molecular gases undergoing strong relaxation effects. The mechanisms controlling these instabilities are not well understood. We successfully isolated and investigated this instability in the canonical problem of piston driven shock waves propagating into a medium characterized by inelastic collision processes. We treat the standard model of granular gases, where particle collisions are taken as inelastic with constant coefficient of restitution. The inelasticity is activated for sufficiently strong collisions. Molecular dynamic simulations were performed for 30,000 particles. We find that all shock waves investigated become unstable, with density non-uniformities forming in the relaxation region. The wavelength of these fingers is found comparable to the characteristic relaxation thickness. Shock Hugoniot curves for both elastic and inelastic collisions were obtained analytically and numerically. Analysis of these curves indicate that the instability is not of the Bethe-Zeldovich-Thompson or Dyakov-Kontorovich types. Analysis of the shock relaxation rates and rates for clustering in a convected fluid element with the same thermodynamic history outruled the clustering instability of a homogeneous granular gas. Instead, wave reconstruction of the early transient evolution indicates that the onset of instability occurs during the re-pressurization of the gas following the initial relaxation of the medium behind the lead shock. This re-pressurization gives rise to internal pressure waves in the presence of strong density gradients. This indicates that the mechanism of instability is more likely of the vorticity-generating Richtmyer-Meshkov type, relying on the action of the inner pressure waves development during the transient relaxation.

Nick Sirmas; Matei I. Radulescu

2015-01-14T23:59:59.000Z

325

The origin of hydrothermal and other gases in the Kenya Rift Valley  

SciTech Connect (OSTI)

The Kenya Rift Valley (KRV) is part of a major continental rift system from which much outgassing is presently occurring. Previous research on gases in the KRV has tended to concentrate on their geothermal implications; the present paper is an attempt to broaden the interpretation by consideration of new data including helium and carbon isotope analyses from a wide cross-section of sites. In order to do this, gases have been divided into categories dependent on origin. N{sub 2} and noble gases are for the most part atmospherically derived, although their relative concentrations may be altered from ASW ratios by various physical processes. Reduced carbon (CH{sub 4} and homologues) appears to be exclusively derived from the shallow crust, with thermogenic {delta}{sup 13}C values averaging -25{per_thousand} PDB for CH{sub 4}. H{sub 2} is likely also to be crustally formed. CO{sub 2}, generally a dominant constituent, has a narrow {delta}{sup 13}C range averaging -3.7{per_thousand} PDB, and is likely to be derived with little modification from the upper mantle. Consideration of the ratio C/{sup 3}He supports this view in most cases. Sulphur probably also originates there. Ratios of {sup 3}He/{sup 4}He reach a MORB-like maximum of 8.0 R/R{sub A} and provide the best indication of an upper mantle source of gases beneath the KRV. A correlation between {sup 3}He/{sup 4}He and the hydrocarbon parameter log (C{sub 1}/{Sigma}C{sub 2-4}) appears to be primarily temperature related. The highest {sup 3}He/{sup 4}He ratios in spring waters are associated with basalts, perhaps because of the leaching of basalt glasses. There may be a structural control on {sup 3}He/{sup 4}He ratios in the KRV as a whole.

Darling, W.G. [British Geological Survey, Wallingford (United Kingdom)] [British Geological Survey, Wallingford (United Kingdom); Griesshaber, E. [Max-Planck Institut fuer Chemie, Mainz (Germany)] [Max-Planck Institut fuer Chemie, Mainz (Germany); Andrews, J.N. [Univ. of Reading (United Kingdom)] [and others] [Univ. of Reading (United Kingdom); and others

1995-06-01T23:59:59.000Z

326

Trace water vapor determination in nitrogen and corrosive gases using infrared spectroscopy  

SciTech Connect (OSTI)

The generation of particles in gas handling systems as a result of corrosion is a major concern in the microelectronics industry. The corrosion can be caused by the presence of trace quantities of water in corrosive gases such as HCl or HBr. FTIR spectroscopy has been shown to be a method that can be made compatible with corrosive gases and is capable of detecting low ppb levels of water vapor. In this report, the application of FTIR spectroscopy combined with classical least squares multivariate calibration to detect trace H{sub 2}O in N{sub 2}, HCl and HBr is discussed. Chapter 2 discusses the gas handling system and instrumentation required to handle corrosive gases. A method of generating a background spectrum useful to the measurements discussed in this report, as well as in other application areas such as gas phase environmental monitoring, is discussed in Chapter 3. Experimental results obtained with the first system are presented in Chapter 4. Those results made it possible to optimize the design options for the construction of a dedicate system for low ppb water vapor determination. These designs options are discussed in Chapter 5. An FTIR prototype accessory was built. In addition, a commercially available evacuable FTIR system was obtained for evaluation. Test results obtained with both systems are discussed in Chapter 6. Experiments dealing with the interaction between H{sub 2}O-HCl and potential improvements to the detection system are discussed in Chapter 7.

Espinoza, L.H.; Niemczyk, T.M. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemistry; Stallard, B.R.; Garcia, M.J. [Sandia National Labs., Albuquerque, NM (United States)

1997-06-01T23:59:59.000Z

327

Strongly Correlated Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic Plasmas, and Holographic Duality  

E-Print Network [OSTI]

Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical, and that do not have a simple description in terms of weakly interacting quasi-particles. Two systems that have recently attracted a great deal of interest are the quark-gluon plasma, a plasma of strongly interacting quarks and gluons produced in relativistic heavy ion collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic gases confined in optical or magnetic traps. These systems differ by more than 20 orders of magnitude in temperature, but they were shown to exhibit very similar hydrodynamic flow. In particular, both fluids exhibit a robustly low shear viscosity to entropy density ratio which is characteristic of quantum fluids described by holographic duality, a mapping from strongly correlated quantum field theories to weakly curved higher dimensional classical gravity. This review explores the connection between these fields, and it also serves as an introduction to the Focus Issue of New Journal of Physics on Strongly Correlated Quantum Fluids: from Ultracold Quantum Gases to QCD Plasmas. The presentation is made accessible to the general physics reader and includes discussions of the latest research developments in all three areas.

Allan Adams; Lincoln D. Carr; Thomas Schaefer; Peter Steinberg; John E. Thomas

2012-05-23T23:59:59.000Z

328

Emissions of greenhouse gases in the United States, 1987--1994  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1992, with annual updates thereafter. This is the third annual update report,covering national emissions over the period 1987--1993, with preliminary estimates of US carbon dioxide and halocarbon emissions for 1994. Calculating national aggregate emissions(or ``national inventories``) of greenhouse gases is a recently developed form of intellectual endeavor. Greenhouse gas emissions are rarely measured directly or reported to statistical agencies. Thus, to prepare emissions inventories usually requires inferring emissions indirectly from information collected for other purposes. Both the available information and the inferences drawn may be of varying reliability. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapters 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes.

NONE

1995-09-25T23:59:59.000Z

329

Thermally tolerant multilayer metal membrane  

DOE Patents [OSTI]

A composite metal membrane including a first metal layer of a Group IVB or Group VB metal sandwiched between two layers of a Group VIIIB metal selected from the group consisting of palladium, platinum, nickel, rhodium, iridium, cobalt, and alloys thereof, and a non-continuous layer of a metal chalcogenide upon one layer of the Group VIIIB metal is disclosed together with a process for the recovery of hydrogen from a gaseous mixture using such a composite membrane and a process for forming such a composite metal membrane.

Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM)

2001-01-01T23:59:59.000Z

330

ENVIRON SCIENCE AND TECHNOLOGY IN ROMANIA--ESTROM PROJECT Sources and emission of greenhouse gases in Danube  

E-Print Network [OSTI]

gases in Danube Delta lakes Alina Pavel & Edith Durisch-Kaiser & Sorin Balan & Silviu Radan & Sebastian. Radan GeoEcoMar, National Institute for Marine Geology and Geoecology, 024053 Bucharest, Romania E

Wehrli, Bernhard

331

PII S0016-7037(01)00802-X Volatilization kinetics of silicon carbide in reducing gases: An experimental study with  

E-Print Network [OSTI]

PII S0016-7037(01)00802-X Volatilization kinetics of silicon carbide in reducing gases occurring hexagonal sili- con carbide ( -SiC), and -SiC, the cubic form, are occasion- ally reported

Grossman, Lawrence

332

High-Pressure Phase Equilibria of Ionic Liquids and Compressed Gases for Applications in Reactions and Absorption Refrigeration  

E-Print Network [OSTI]

of high-melting solids not liquids at processing conditions. Coupling ionic liquids with compressed gases systems may overcome most of these difficulties for their applications in separations, reactions, materials processing and engineering applications...

Ren, Wei

2009-12-29T23:59:59.000Z

333

An analytical inversion method for determining regional and global emissions of greenhouse gases: Sensitivity studies and application to halocarbons  

E-Print Network [OSTI]

A new analytical inversion method has been developed to determine the regional and global emissions of long-lived atmospheric trace gases. It exploits in situ measurement data from three global networks and builds on ...

Stohl, A.

334

Liquid metal thermal electric converter  

DOE Patents [OSTI]

A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

335

Method for forming metal contacts  

DOE Patents [OSTI]

Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.

Reddington, Erik; Sutter, Thomas C; Bu, Lujia; Cannon, Alexandra; Habas, Susan E; Curtis, Calvin J; Miedaner, Alexander; Ginley, David S; Van Hest, Marinus Franciscus Antonius Maria

2013-09-17T23:59:59.000Z

336

High-Temperature Zirconia Oxygen Sensor with Sealed Metal/Metal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference...

337

Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area  

SciTech Connect (OSTI)

This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on-road vehicles: the MCMA motor vehicles produce abundant amounts of primary PM, elemental carbon, particle-bound polycyclic aromatic hydrocarbons, carbon monoxide and a wide range of air toxics; the feasibility of using eddy covariance techniques to measure fluxes of volatile organic compounds in an urban core and a valuable tool for validating local emissions inventory; a much better understanding of the sources and atmospheric loadings of volatile organic compounds; the first spectroscopic detection of glyoxal in the atmosphere; a unique analysis of the high fraction of ambient formaldehyde from primary emission sources; characterization of ozone formation and its sensitivity to VOCs and NOx; a much more extensive knowledge of the composition, size distribution and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models; evaluations of significant errors that can arise from standard air quality monitors for O3 and NO2; and the implementation of an innovative Markov Chain Monte Carlo method for inorganic aerosol modeling as a powerful tool to analyze aerosol data and predict gas phase concentrations where these are unavailable. During the MILAGRO Campaign the collaborative team utilized a combination of central fixed sites and a mobile laboratory deployed throughout the MCMA to representative urban and boundary sites to measure trace gases and fine particles. Analysis of the extensive 2006 data sets has confirmed the key findings from MCMA-2002/2003; additionally MCMA-2006 provided more detailed gas and aerosol chemistry and wider regional scale coverage. Key results include an updated 2006 emissions inventory; extension of the flux system to measure fluxes of fine particles; better understanding of the sources and apportionment of aerosols, including contribution from biomass burning and industrial sources; a comprehensive evaluation of metal containing particles in a complex urban environment; identification of a close correlation between

Luisa T. Molina, Rainer Volkamer, Benjamin de Foy, Wenfang Lei, Miguel Zavala, Erik Velasco; Mario J. Molina

2008-10-31T23:59:59.000Z

338

Method for locating metallic nitride inclusions in metallic alloy ingots  

DOE Patents [OSTI]

A method of determining the location and history of metallic nitride and/or oxynitride inclusions in metallic melts. The method includes the steps of labeling metallic nitride and/or oxynitride inclusions by making a coreduced metallic-hafnium sponge from a mixture of hafnium chloride and the chloride of a metal, reducing the mixed chlorides with magnesium, nitriding the hafnium-labeled metallic-hafnium sponge, and seeding the sponge to be melted with hafnium-labeled nitride inclusions. The ingots are neutron activated and the hafnium is located by radiometric means. Hafnium possesses exactly the proper metallurgical and radiochemical properties for this use.

White, Jack C. (Albany, OR); Traut, Davis E. (Corvallis, OR); Oden, Laurance L. (Albany, OR); Schmitt, Roman A. (Corvallis, OR)

1992-01-01T23:59:59.000Z

339

Nitrided Metallic Bipolar Plates  

SciTech Connect (OSTI)

The objectives are: (1) Develop and optimize stainless steel alloys amenable to formation of a protective Cr-nitride surface by gas nitridation, at a sufficiently low cost to meet DOE targets and with sufficient ductility to permit manufacture by stamping. (2) Demonstrate capability of nitridation to yield high-quality stainless steel bipolar plates from thin stamped alloy foils (no significant stamped foil warping or embrittlement). (3) Demonstrate single-cell fuel cell performance of stamped and nitrided alloy foils equivalent to that of machined graphite plates of the same flow-field design ({approx}750-1,000 h, cyclic conditions, to include quantification of metal ion contamination of the membrane electrode assembly [MEA] and contact resistance increase attributable to the bipolar plates). (4) Demonstrate potential for adoption in automotive fuel cell stacks. Thin stamped metallic bipolar plates offer the potential for (1) significantly lower cost than currently-used machined graphite bipolar plates, (2) reduced weight/volume, and (3) better performance and amenability to high volume manufacture than developmental polymer/carbon fiber and graphite composite bipolar plates. However, most metals exhibit inadequate corrosion resistance in proton exchange membrane fuel cell (PEMFC) environments. This behavior leads to high electrical resistance due to the formation of surface oxides and/or contamination of the MEA by metallic ions, both of which can significantly degrade fuel cell performance. Metal nitrides offer electrical conductivities up to an order of magnitude greater than that of graphite and are highly corrosion resistant. Unfortunately, most conventional coating methods (for metal nitrides) are too expensive for PEMFC stack commercialization or tend to leave pinhole defects, which result in accelerated local corrosion and unacceptable performance.

Brady, Michael P [ORNL; Tortorelli, Peter F [ORNL; Pihl, Josh A [ORNL; Toops, Todd J [ORNL; More, Karren Leslie [ORNL; Meyer III, Harry M [ORNL; Vitek, John Michael [ORNL; Wang, Heli [National Renewable Energy Laboratory (NREL); Turner, John [National Renewable Energy Laboratory (NREL); Wilson, Mahlon [Los Alamos National Laboratory (LANL); Garzon, Fernando [Los Alamos National Laboratory (LANL); Rockward, Tommy [Los Alamos National Laboratory (LANL); Connors, Dan [GenCell Corp; Rakowski, Jim [Allegheny Ludlum; Gervasio, Don [Arizona State University

2008-01-01T23:59:59.000Z

340

Hard metal composition  

DOE Patents [OSTI]

A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

Sheinberg, H.

1983-07-26T23:59:59.000Z

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hard metal composition  

DOE Patents [OSTI]

A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

Sheinberg, Haskell (Los Alamos, NM)

1986-01-01T23:59:59.000Z

342

Metal alloy identifier  

DOE Patents [OSTI]

To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

Riley, William D. (Avondale, MD); Brown, Jr., Robert D. (Avondale, MD)

1987-01-01T23:59:59.000Z

343

Metallic coating of microspheres  

SciTech Connect (OSTI)

Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates.

Meyer, S.F.

1980-08-15T23:59:59.000Z

344

Metal Mechanisms | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & Fuel Cells In ThisMetal Mechanisms Metal

345

Wick for metal vapor laser  

DOE Patents [OSTI]

An improved wick for a metal vapor laser is made of a refractory metal cylinder, preferably molybdenum or tungsten for a copper laser, which provides the wicking surface. Alternately, the inside surface of the ceramic laser tube can be metalized to form the wicking surface. Capillary action is enhanced by using wire screen, porous foam metal, or grooved surfaces. Graphite or carbon, in the form of chunks, strips, fibers or particles, is placed on the inside surface of the wick to reduce water, reduce metal oxides and form metal carbides.

Duncan, David B. (Livermore, CA)

1992-01-01T23:59:59.000Z

346

Method of removing hydrogen sulfide from gases utilizing a zinc oxide sorbent and regenerating the sorbent  

DOE Patents [OSTI]

A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500.degree. C. to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent.

Jalan, Vinod M. (Concord, MA); Frost, David G. (Maynard, MA)

1984-01-01T23:59:59.000Z

347

The Marginal Damage Costs of Different Greenhouse Gases: An Application of FUND  

SciTech Connect (OSTI)

We use FUND 3.8 to estimate the social cost of four greenhouse gases: carbon dioxide, methane, nitrous oxide, and sulphur hexafluoride emissions. The damage potential for each gas—the ratio of the social cost of the non-carbon dioxide greenhouse gas to the social cost of carbon dioxide—is also estimated. The damage potentials are compared to several metrics, focusing in particular on the global warming potentials, which are frequently used to measure the trade-off between gases in the form of carbon dioxide equivalents. We find that damage potentials could be significantly higher than global warming potentials. This finding implies that previous papers have underestimated the relative importance of reducing non-carbon dioxide greenhouse gas emissions from an economic damage perspective. We show results for a range of sensitivity analyses: carbon dioxide fertilization on agriculture productivity, terrestrial feedbacks, climate sensitivity, discounting, equity weighting, and socioeconomic and emissions scenarios. The sensitivity of the results to carbon dioxide fertilization is a primary focus as it is an important element of climate change that has not been considered in much of the previous literature. We estimate that carbon dioxide fertilization has a large positive impact that reduces the social cost of carbon dioxide with a much smaller effect on the other greenhouse gases. As a result, our estimates of the damage potentials of methane and nitrous oxide are much higher compared to estimates that ignore carbon dioxide fertilization. As a result, our base estimates of the damage potential for methane and nitrous oxide that include carbon dioxide fertilization are twice their respective global warming potentials. Our base estimate of the damage potential of sulphur hexafluoride is similar to the one previous estimate, both almost three times the global warming potential.

Waldhoff, Stephanie T.; Anthoff, David; Rose, Steven K.; Tol, Richard

2014-10-01T23:59:59.000Z

348

Modelling of noble anaesthetic gases and high hydrostatic pressure effects in lipid bilayers  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome. The classical molecular dynamics trajectories (200 ns-long) of dioleoylphosphatidylcholine (DOPC) bilayers simulated by the Berger force field were evaluated for water and the atomic distribution of noble gases around DOPC molecules at a pressure range of 1 - 1000 bar and temperature of 310 Kelvin. Xenon and argon have been tested as model gases for general anesthetics, and neon has been investigated for distortions that are potentially responsible for neurological tremor at hyperbaric conditions. The analysis of stacked radial pair distribution functions of DOPC headgroup atoms revealed the explicit solvation potential of gas molecules, which correlates with their dimensions. The orientational dynamics of water molecules at the biomolecular interface should be considered as an influential factor; while excessive solvation effects appearing in the lumen of membrane-embedded ion channels could be a possible cause of inert gas narcosis. All the noble gases tested exhibit similar patterns of the order parameter for both DOPC acyl chains, which is opposite to the patterns found for the order parameter curve at high hydrostatic pressures in intact bilayers. This finding supports the ‘critical volume’ hypothesis of anesthesia pressure reversal. The irregular lipid headgroup-water boundary observed in DOPC bilayers saturated with neon in the pressure range of 1 - 100 bar could be associated with the possible manifestation of neurological tremor at the atomic scale. The non-immobilizer neon also demonstrated the highest momentum impact on the normal component of the DOPC diffusion coefficient representing monolayers undulations rate, which indicates enhanced diffusivity, rather than atom size, as the key factor.

Moskovitz, Yevgeny [Middle Tennessee State University; Yang, Hui [Middle Tennessee State University

2015-01-01T23:59:59.000Z

349

Sequestration of noble gases by H3+ in protoplanetary disks and outer solar system composition  

E-Print Network [OSTI]

We study the efficiency of the noble gases sequestration by the ion H3+ in the form of XH3+ complexes (with X = argon, krypton or xenon) in gas phase conditions similar to those encountered during the cooling of protoplanetary disks, at the epoch of icy planetesimals formation. We show that XH3+ complexes form very stable structures in the gas phase and that their binding energies are much higher than those involved in the structures of X-H2O hydrates or pure X-X condensates. This implies that, in presence of H3+ ions, argon, krypton or xenon are likely to remain sequestrated in the form of XH3+ complexes embedded in the gas phase rather than forming ices during the cooling of protoplanetary disks. The amount of the deficiency depends on how much H3+ is available and efficient in capturing noble gases. In the dense gas of the mid-plane of solar nebula, H3+ is formed by the ionization of H2 from energetic particles, as those in cosmic rays or those ejected by the young Sun. Even using the largest estimate of the cosmic rays ionization rate, we compute that the H3+ abundance is two and three orders of magnitude lower than the xenon and krypton abundance, respectively. Estimating the ionization induced by the young Sun, on the other hand, is very uncertain but leaves the possibility to have enough H3+ to make krypton and xenon trapping efficent. Finally, additional source of H3+ formation may be provided by the presence of a nearby supernova, as discussed in the literature. Recent solar system observations show a deficiency of Ar, and, even more, of Kr and Xe in Titan and in comets. In this article, we consider the possibility that this deficiency is caused by the afore-mentioned process, namely trapping of those noble gases by H3+ ions in the solar nebula.

Olivier Mousis; Francoise Pauzat; Yves Ellinger; Cecilia Ceccarelli

2007-09-23T23:59:59.000Z

350

Separation of rare gases and chiral molecules by selective binding in porous organic cages  

SciTech Connect (OSTI)

Abstract: The rare gases krypton, xenon, and radon pose both an economic opportunity and a potential environmental hazard. Xenon is used in commercial lighting, medical imaging, and anesthesia, and can sell for $5,000 per kilogram. Radon, by contrast, Is naturally radioactive and the second largest cause of lung cancer, and radioactive xenon, 133Xe, was a major pollutant released In the Fukushima Daiichi Nuclear Power Plant disaster. We describe an organic cage molecule that can capture xenon and radon with unprecedented selectivity, suggesting new technologies for environmental monitoring, removal of pollutants, or the recovery of rare, valuable elements from air.

Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.; Holden, Daniel; Jelfs, Kim E.; Hasell, Tom; Little, Marc A.; Kewley, Adam; Briggs, Michael E.; Stephenson, Andrew; Thomas, K. M.; Armstrong, Jayne A.; Bell, Jon; Busto, Jose; Noel, Raymond; Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.; Cooper, Andrew I.

2014-10-31T23:59:59.000Z

351

Steam Production from Waste Stack Gases in a Carbon Black Plant  

E-Print Network [OSTI]

superheated steam - G25 PSIG and 750 0 F. This steam is out into a steam header that serves Conoco plants in' t~e Lake Charles, Louisiana area. Combustion of the \\?taste gases to produce steam has t\\~O very important rewards -ener~y conservation.... This steam project has provided substantial ener~y conservation for the carbon black plant because the energy can be subtracted from the total ener~y used by the plant in determining the energy to produce carbon black. Oescription of the equipment used...

Istre, R. I.

1981-01-01T23:59:59.000Z

352

Direct conversion of light hydrocarbon gases to liquid fuel. Final report No. 33  

SciTech Connect (OSTI)

Amoco oil Company, has investigated the direct, non-catalytic conversion of light hydrocarbon gases to liquid fuels (particularly methanol) via partial oxidation. The primary hydrocarbon feed used in these studies was natural gas. This report describes work completed in the course of our two-year project. In general we determined that the methanol yields delivered by this system were not high enough to make it economically attractive. Process variables studied included hydrocarbon feed composition, oxygen concentration, temperature and pressure effects, residence time, reactor design, and reactor recycle.

Kaplan, R.D.; Foral, M.J.

1992-05-16T23:59:59.000Z

353

Use of sulfide-containing liquors for removing mercury from flue gases  

DOE Patents [OSTI]

A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

Nolan, Paul S. (North Canton, OH); Downs, William (Alliance, OH); Bailey, Ralph T. (Uniontown, OH); Vecci, Stanley J. (Alliance, OH)

2003-01-01T23:59:59.000Z

354

Overview of the Flammability of Gases Generated in Hanford Waste Tanks  

SciTech Connect (OSTI)

This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, the flammability and detonability limits of the gas constituents, and the availability of ignition sources. The intrinsic flammability (or nonflammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, volume of the release, and the tank ventilation rate, which are not covered in this report.

LA Mahoney; JL Huckaby; SA Bryan; GD Johnson

2000-07-21T23:59:59.000Z

355

Overview of the Flammability of Gases Generated in Hanford Waste Tanks  

SciTech Connect (OSTI)

This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, flammability and detonability limits of the gas constituents, and availability of ignition sources. The intrinsic flammability (or non-flammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, and volume of the release and the tank ventilation rate, which are not covered in this report.

Mahoney, Lenna A.; Huckaby, James L.; Bryan, Samuel A.; Johnson, Gerald D.

2000-07-19T23:59:59.000Z

356

Pressurized release of liquefied fuel gases (LNG and LPG). Topical report, May 1993-February 1996  

SciTech Connect (OSTI)

This report is an important contribution to the behavior of pressurized liquefied gases when accidentally released into the atmosphere. LNG vehicle fueling stations and LPG storage facilities operate at elevated pressures. Accidental releases could result in rainout and the formation of an aerosol in the vapor cloud. These factors must be considered when estimating the extent of the hazard zone of the vapor cloud using a heavier-than-air gas dispersion model such as DEGADIS (or its Windows equivalent DEGATEC). The DOS program PREL has been incorporated in the Windows program LFGRISK.

Atallah, S.; Janardhan, A.

1996-02-01T23:59:59.000Z

357

Critical behavior of two freely evolving granular gases separated by an adiabatic piston  

E-Print Network [OSTI]

Two granular gases separated by an adiabatic piston and initially in the same macroscopic state are considered. It is found that a phase transition with an spontaneous symmetry breaking occurs. When the mass of the piston is increased beyond a critical value, the piston moves to a stationary position different from the middle of the system. The transition is accurately described by a simple kinetic model that takes into account the velocity fluctuations of the piston. Interestingly, the final state is not characterized by the equality of the temperatures of the subsystems but by the cooling rates being the same. Some relevant consequences of this feature are discussed.

J. Javier Brey; Nagi Khalil

2010-09-23T23:59:59.000Z

358

Coherent spin mixing dynamics in thermal $^{87}$Rb spin-1 and spin-2 gases  

E-Print Network [OSTI]

We study the non-equilibrium coherent spin mixing dynamics in ferromagnetic spin-1 and antiferromagnetic spin-2 thermal gases of ultracold $^{87}$Rb atoms. Long lasting spin population oscillations with magnetic field dependent resonances are observed in both cases. Our observations are well reproduced by Boltzmann equations of the Wigner distribution function. Compared to the equation of motion of spinor Bose-Einstein condensates, the only difference here is a factor of two increase in the spin-dependent interaction, which is confirmed directly in the spin-2 case by measuring the relation between the oscillation amplitude and the sample's density.

He, Xiaodong; Li, Xiaoke; Wang, Fudong; Xu, Zhifang; Wang, Dajun

2015-01-01T23:59:59.000Z

359

Effective super Tonks-Girardeau gases as ground states of strongly attractive multicomponent fermions  

SciTech Connect (OSTI)

In the strong interaction limit, attractive fermions with N-component hyperfine states in a one-dimensional waveguide form unbreakable bound cluster states. We demonstrate that the ground state of strongly attractive SU(N) Fermi gases can be effectively described by a super Tonks-Girardeau gaslike state composed of bosonic cluster states with strongly attractive cluster-cluster interaction for even N and a Fermi duality of a super Tonks-Girardeau gaslike state composed of fermionic cluster states with weakly interacting cluster-cluster p-wave interaction for odd N.

Yin Xiangguo; Chen Shu [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Guan Xiwen [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Batchelor, M. T. [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Mathematical Sciences Institute, Australian National University, Canberra ACT 0200 (Australia)

2011-01-15T23:59:59.000Z

360

The second virial coefficient of the major atmospheric gases at low temperatures  

E-Print Network [OSTI]

scale oxygen plants. The design of these plants, if they are to be efficient and economical, requires accurate thermodynamic data on the atmospher1c gases. None of the thermodynamic diagrams from the literature (8, 20, 28, 41, 44 )+ for any... that encounters between molecules are rare, the only forces acting on the molecules are those of the retaining vessel. The behavior of a gas under such conditions 's expressed oy the ideal gas law, PV = RT where P is pressure, V is volume, R is the universal...

Claitor, Lilburn Carroll

1948-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Use of sulfide-containing liquors for removing mercury from flue gases  

DOE Patents [OSTI]

A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

2006-05-02T23:59:59.000Z

362

Serpentine metal gasket  

DOE Patents [OSTI]

A metallic seal or gasket for use in the joining of cryogenic fluid conduits, the seal or gasket having a generally planar and serpentine periphery defining a central aperture. According to a preferred embodiment, the periphery has at least two opposing elongated serpentine sides and two opposing arcuate ends joining the opposing elongated serpentine sides and is of a hexagonal cross-section.

Rothgeb, Timothy Moore (Norfolk, VA); Reece, Charles Edwin (Yorktown, VA)

2009-06-02T23:59:59.000Z

363

Ductile transplutonium metal alloys  

DOE Patents [OSTI]

Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

Conner, W.V.

1981-10-09T23:59:59.000Z

364

Method of producing adherent metal oxide coatings on metallic surfaces  

DOE Patents [OSTI]

Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

Lane, Michael H. (Clifton Park, NY); Varrin, Jr., Robert D. (McLean, VA)

2001-01-01T23:59:59.000Z

365

Speed of Sound in metal Speed of Sound in metal  

E-Print Network [OSTI]

the metal rod and metal bar. 2. Acquire a metal bar or rod and measure its mass. Use the meter stick and measure and record the length in meters. Use the vernier calipers and measure the other dimensionBar Select the Smart Tool. Position the Smart tool so that the vertical line bisects the pulse. The (x

Yu, Jaehoon

366

Purification of alkali metal nitrates  

DOE Patents [OSTI]

A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

Fiorucci, Louis C. (Hamden, CT); Gregory, Kevin M. (Woodridge, IL)

1985-05-14T23:59:59.000Z

367

Upgrading platform using alkali metals  

DOE Patents [OSTI]

A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

Gordon, John Howard

2014-09-09T23:59:59.000Z

368

Electroless metal plating of plastics  

DOE Patents [OSTI]

Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

Krause, Lawrence J. (Chicago, IL)

1986-01-01T23:59:59.000Z

369

Electroless metal plating of plastics  

DOE Patents [OSTI]

Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

Krause, L.J.

1982-09-20T23:59:59.000Z

370

Electroless metal plating of plastics  

DOE Patents [OSTI]

Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

Krause, Lawrence J. (Chicago, IL)

1984-01-01T23:59:59.000Z

371

Methods of recovering alkali metals  

DOE Patents [OSTI]

Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

Krumhansl, James L; Rigali, Mark J

2014-03-04T23:59:59.000Z

372

Metals processing control by counting molten metal droplets  

DOE Patents [OSTI]

Apparatus and method for controlling metals processing (e.g., ESR) by melting a metal ingot and counting molten metal droplets during melting. An approximate amount of metal in each droplet is determined, and a melt rate is computed therefrom. Impedance of the melting circuit is monitored, such as by calculating by root mean square a voltage and current of the circuit and dividing the calculated current into the calculated voltage. Analysis of the impedance signal is performed to look for a trace characteristic of formation of a molten metal droplet, such as by examining skew rate, curvature, or a higher moment.

Schlienger, Eric (Albuquerque, NM); Robertson, Joanna M. (Safford, AZ); Melgaard, David (Albuquerque, NM); Shelmidine, Gregory J. (Tijeras, NM); Van Den Avyle, James A. (Corrales, NM)

2000-01-01T23:59:59.000Z

373

Inert electrode containing metal oxides, copper and noble metal  

DOE Patents [OSTI]

A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

2001-01-01T23:59:59.000Z

374

Inert electrode containing metal oxides, copper and noble metal  

DOE Patents [OSTI]

A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

2000-01-01T23:59:59.000Z

375

Fabrication of metallic glass structures  

DOE Patents [OSTI]

Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature regime.

Cline, C.F.

1983-10-20T23:59:59.000Z

376

Integrated decontamination process for metals  

DOE Patents [OSTI]

An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.

Snyder, Thomas S. (Oakmont, PA); Whitlow, Graham A. (Murrysville, PA)

1991-01-01T23:59:59.000Z

377

B. B. G. K. Y. Hierarchy Methods for Sums of Lyapunov Exponents for Dilute Gases  

E-Print Network [OSTI]

We consider a general method for computing the sum of positive Lyapunov exponents for moderately dense gases. This method is based upon hierarchy techniques used previously to derive the generalized Boltzmann equation for the time dependent spatial and velocity distribution functions for such systems. We extend the variables in the generalized Boltzmann equation to include a new set of quantities that describe the separation of trajectories in phase space needed for a calculation of the Lyapunov exponents. The method described here is especially suitable for calculating the sum of all of the positive Lyapunov exponents for the system, and may be applied to equilibrium as well as non-equilibrium situations. For low densities we obtain an extended Boltzmann equation, from which, under a simplifying approximation, we recover the sum of positive Lyapunov exponents for hard disk and hard sphere systems, obtained before by a simpler method. In addition we indicate how to improve these results by avoiding the simplifying approximation. The restriction to hard sphere systems in $d$-dimensions is made to keep the somewhat complicated formalism as clear as possible, but the method can be easily generalized to apply to gases of particles that interact with strong short range forces.

J. R. Dorfman; Arnulf Latz; Henk van Beijeren

1998-01-12T23:59:59.000Z

378

JV Task 125-Mercury Measurement in Combustion Flue Gases Short Course  

SciTech Connect (OSTI)

The short course, designed to train personnel who have an interest in measuring mercury in combustion flue gases, was held twice at the Drury Inn in Marion, Illinois. The short course helped to provide attendees with the knowledge necessary to avoid the many pitfalls that can and do occur when measuring mercury in combustion flue gases. The first short course, May 5-8, 2008, included both a classroom-type session and hands-on demonstration of mercury-sampling equipment. The hands-on demonstration of equipment was staged at Southern Illinois Power Cooperative. Not including the Illinois Clean Coal Institute and the U.S. Department of Energy project managers, there were 12 attendees. The second short course was conducted September 16-17, 2008, but only included the classroom portion of the course; 14 people attended. In both cases, lectures were provided on the various mercury measurement methods, and interaction between attendees and EERC research personnel to discuss specific mercury measurement problems was promoted. Overall, the response to the course was excellent.

Dennis Laudal

2008-09-30T23:59:59.000Z

379

Sequestration of noble gases by H3+ in protoplanetary disks and outer solar system composition  

E-Print Network [OSTI]

We study the efficiency of the noble gases sequestration by the ion H3+ in the form of XH3+ complexes (with X = argon, krypton or xenon) in gas phase conditions similar to those encountered during the cooling of protoplanetary disks, at the epoch of icy planetesimals formation. We show that XH3+ complexes form very stable structures in the gas phase and that their binding energies are much higher than those involved in the structures of X-H2O hydrates or pure X-X condensates. This implies that, in presence of H3+ ions, argon, krypton or xenon are likely to remain sequestrated in the form of XH3+ complexes embedded in the gas phase rather than forming ices during the cooling of protoplanetary disks. The amount of the deficiency depends on how much H3+ is available and efficient in capturing noble gases. In the dense gas of the mid-plane of solar nebula, H3+ is formed by the ionization of H2 from energetic particles, as those in cosmic rays or those ejected by the young Sun. Even using the largest estimate of t...

Mousis, Olivier; Ellinger, Yves; Ceccarelli, Cecilia

2007-01-01T23:59:59.000Z

380

FLUIDIC: Metal Air Recharged  

ScienceCinema (OSTI)

Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

Friesen, Cody

2014-04-02T23:59:59.000Z

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

FLUIDIC: Metal Air Recharged  

SciTech Connect (OSTI)

Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

Friesen, Cody

2014-03-07T23:59:59.000Z

382

Spray casting of metallic preforms  

DOE Patents [OSTI]

A metal alloy is melted in a crucible and ejected from the bottom of the crucible as a descending stream of molten metal. The descending stream is impacted with a plurality of primary inert gas jets surrounding the molten metal stream to produce a plume of atomized molten metal droplets. An inert gas is blown onto a lower portion of the plume with a plurality of auxiliary inert gas jets to deflect the plume into a more restricted pattern of high droplet density, thereby substantially eliminating unwanted overspray and resulting wasted material. The plume is projected onto a moving substrate to form a monolithic metallic product having generally parallel sides.

Flinn, John E. (Idaho Falls, ID); Burch, Joseph V. (Shelley, ID); Sears, James W. (Niskayuna, NY)

2000-01-01T23:59:59.000Z

383

THE COORDINATION CHEMISTRY OF METAL SURFACES  

E-Print Network [OSTI]

result 7 ' 30 u 31 in metal carbide cluster chemistry willin metal chemistry. Oxidation of the iron carbide cluster

Muetterties, Earl L.

2013-01-01T23:59:59.000Z

384

Design, fabrication and testing of a 15-kW gas-fired liquid-metal evaporator  

SciTech Connect (OSTI)

This paper describes the development and testing of a compact heat- pipe heat exchanger that is designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW{sub e} Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases and the liquid metal then condenses on the heater tubes of a Stirling engine where energy is transferred to the engine's helium working fluid. Recent tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15-kW{sub t} of energy at an operating vapor temperature of 760{degrees}C. Four of these prototype units will eventually be used to power a 25-kW{sub e} Stirling engine system. Design details and test results from the prototype unit are presented in this paper.

Adkins, D.R.; Rawlinson, K.S.

1992-01-01T23:59:59.000Z

385

Design, fabrication and testing of a 15-kW gas-fired liquid-metal evaporator  

SciTech Connect (OSTI)

This paper describes the development and testing of a compact heat- pipe heat exchanger that is designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW{sub e} Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases and the liquid metal then condenses on the heater tubes of a Stirling engine where energy is transferred to the engine`s helium working fluid. Recent tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15-kW{sub t} of energy at an operating vapor temperature of 760{degrees}C. Four of these prototype units will eventually be used to power a 25-kW{sub e} Stirling engine system. Design details and test results from the prototype unit are presented in this paper.

Adkins, D.R.; Rawlinson, K.S.

1992-07-01T23:59:59.000Z

386

Hydrothermal alkali metal recovery process  

DOE Patents [OSTI]

In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

Wolfs, Denise Y. (Houston, TX); Clavenna, Le Roy R. (Baytown, TX); Eakman, James M. (Houston, TX); Kalina, Theodore (Morris Plains, NJ)

1980-01-01T23:59:59.000Z

387

Water supply and sludge metals  

SciTech Connect (OSTI)

Ultimate sludge disposal is one of the major tasks facing wastewater treatment facilities today. Where adequate farmland exists in proximity to the treatment facility and where sludge characteristics are suitable, land application is often the most economical method. In some cases, however, metal concentrations in the sludge either limit the site life or the application rate to the point where land application is not economical. When metals are above regulatory limits, land application may become impossible. The origin of the metals has largely been credited to industrial users and stormwater runoff and have, in fact, often represented significant sources of metals. Another potentially significant source of metals that has been frequently overlooked is the water supply system (including the distribution and home piping systems). Data from some treatment facilities suggest that the water supply system is the major source of metals and is the reason that sewage sludge metal levels are above allowable land application limits.

Brown, W.E. (Wright-Pierce Engineers, Topsham, ME (USA))

1988-04-01T23:59:59.000Z

388

Coated metal fiber coalescing cell  

SciTech Connect (OSTI)

A cell is described for coalescing oil droplets dispersed in a water emulsion including an elongated perforated tube core into which the emulsion is injected, layers of oleophilic plastic covered metal mat wound about the core through which the emulsion is forced to pass, the fibers of the metal mat being covered by oleophilic plastic such as vinyl, acrylic, polypropylene, polyethylene, polyvinyl chloride, the metal being in the form of layers of expanded metal or metal fibers, either aluminum or stainless steel. In manufacturing the cell a helix wound wire is formed around the cylindrical plastic coated metal to retain it in place and resist pressure drop of fluid flowing through the metal fibers. In addition, the preferred arrangement includes the use of an outer sleeve formed of a mat of fibrous material such as polyester fibers, acrylic fibers, modacrylic fibers and mixtures thereof.

Rutz, W.D.; Swain, R.J.

1980-12-23T23:59:59.000Z

389

Corrosion protective coating for metallic materials  

DOE Patents [OSTI]

Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds.

Buchheit, Rudolph G. (Albuquerque, NM); Martinez, Michael A. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

390

Corrosion protective coating for metallic materials  

DOE Patents [OSTI]

Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

Buchheit, R.G.; Martinez, M.A.

1998-05-26T23:59:59.000Z

391

System and method for making metallic iron with reduced CO.sub.2 emissions  

DOE Patents [OSTI]

A method and system for making metallic iron nodules with reduced CO.sub.2 emissions is disclosed. The method includes: assembling a linear hearth furnace having entry and exit portions, at least a conversion zone and a fusion zone, and a moving hearth adapted to move reducible iron bearing material through the furnace on contiguous hearth sections; assembling a shrouded return substantially free of air ingress extending adjacent at least the conversion and fusion zones of the furnace through which hearth sections can move from adjacent the exit portion to adjacent the entry portion of the furnace; transferring the hearth sections from the furnace to the shrouded return adjacent the exit portion; reducing reducible material in the linear hearth furnace to metallic iron nodules; and transporting gases from at least the fusion zone to the shrouded return to heat the hearth sections while in the shrouded return.

Kiesel, Richard F; Englund, David J; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan

2014-10-14T23:59:59.000Z

392

Maintaining Subsurface Drip Irrigation Systems (Spanish)  

E-Print Network [OSTI]

bacterial en el manganeso se observa de negro. Estas bacterias oxi- dan el hierro y el manganeso del agua de riego. En la parte occidental de Texas, estas bacterias se encuentran frecuentemente en el agua de pozo. Tenga mucho cuidado cuando inyecte cloro en...?n deseada de cloro, ppm P = Porcentaje de cloro en la soluci?n * 0.006xFxC P IR = = = 0.571 GPH Hipoclorito de Sodio (cloro casero) 0.006x100x5 5.25 el pozo una o dos veces durante la temporada. Tambi?n puede ser necesario inyectar cloro y ?cido antes...

Enciso, Juan; Porter, Dana; Bordovsky, Jim; Fipps, Guy

2004-09-07T23:59:59.000Z

393

Precious Metal Recovery from Fuel Cell MEA's  

SciTech Connect (OSTI)

One of the next-generation power sources is the proton exchange membrane (PEM) fuel cell, which runs on pure hydrogen or hydrogen-rich reformate. At the heart of the PEM fuel cell is a membrane electrode assembly (MEA). The MEA is a laminate composed of electrode layers sandwiched between outer layers, fabricated from either carbon fiber or fabric and which control the diffusion of reactant gases, and the inner polymer mebrane. Hydrogen is oxidized at the anode to form protons, which migrate through the membrane and react with oxygen at the cathode to form water. In this type of fuel cell, platinum catalyzes the reactions at both electrodes. Realization of a future that includes ubiquitous use of hydrogen fuel cell-powered vehicles will be partially contingent on a process for recycling components of the fuel cell membrane electrode assemblies. In aggregate, the platinum used for the fuel cell will represent a large pool of this precious metal, and the efficient recycling of Pt from MEA's will be a cost-enabling factor for success of this technology. Care must be taken in the reclamation process because of the presence of fluoropolymers in the MEA. While Pt is normally recovered with high yield, the combustion process commonly applied to remove an organic matrix will also liberate a large volume of HF, a gas which is both toxic and corrosive. Carbonyl fluoride, which has a recommended exposure limit of 2ppmv, is another undesirable product of fluoroploymer combustion. In 2003, the Department of Energy awarded Engelhard Corporation an 80% cost share grant for a five-year project budgeted at $5.9MM. The principal objective is reclaiming platinum from fuel cell MEA's without producing fluorine-containing emissions. Over the last three years, Engelhard has approached the problem from several directions in balancing the two goals: a commercially-viable recycling process and an environmentally favorable one. Working with both fresh and aged fuel cells, it has been shown that precious metals can be liberated at high yield using microwave assisted acid digestion, but exposure of the gas diffusion electrode surfaces is required. A low-cost solvent-stripping process has been identified for two geometries of fuel cell MEA's: GDL and GDE. This paper will detail progress made in realizing a practical, "green" process for recovery of Pt from PEM fuel cell MEA's

Lawrence Shore

2006-11-16T23:59:59.000Z

394

Radiolytic and radiolytically induced generation of gases from synthetic wastes. Final report  

SciTech Connect (OSTI)

To better understand the processes leading to the generation and release of gases from waste tanks, the authors studied the radiolytic and thermal generation of H{sub 2}, N{sub 2}O, N{sub 2}, O{sub 2}, and NH{sub 3} in nonradioactive waste simulant solutions and slurries. The radiolytic sources for H{sub 2} are e{sub aq}{sup {minus}} and its predecessors and H atoms. Radiolysis of the water generates some H{sub 2} and an additional amount comes from the hydrogen abstraction reaction H + RH{yields}H{sub 2}+R{center_dot}. Nitrate scavenges e{sub aq}{sup {minus}} and its predecessors whereas nitrite is the major H-atom scavenger. Computer modeling shows that if [NO{sub 3}{sup {minus}}] is above 0.5 M, and [NO{sub 2}{sup {minus}}] is above 2M, the addition of other scavengers will have little effect on the yield of H{sub 2}. In the presence of organic molecules O{sub 2} is efficiently destroyed. Small yields of ammonia were measured and the yields increase linearly with dose. The nitrogen in NH{sub 3} comes from organic chelators. The yields of gases in solution depend only weakly on temperature. The rate of thermal generation of gases increases upon preirradiation, reaches a maximum, and then declines. The known radiolytic degradation products of chelators, NTA, IDA, glycolate, glyoxylate, formaldehyde, formate, oxalate, and hydroxylainine were examined for their roles in the thermal generation of H{sub 2} and N{sub 2}O at 60{degrees}C. In solution or slurry only radiolytically produced Pd intermediate strongly retains H{sub 2}. Radiolytic yields of N{sub 2}O are strongly reduced by Cr(III). In irradiated slurry, loose and tight gas were found. The loose gas could be removed by bubbling from the slurry, but the tight gas could be released only by dissolution of the slurry.

Meisel, D.; Jonah, C.D.; Kapoor, S.; Matheson, M.S.; Sauer, M.C. Jr.

1993-10-01T23:59:59.000Z

395

Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S  

SciTech Connect (OSTI)

This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

DeLuchi, M.A. [Argonne National Lab., IL (United States); [Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

1993-11-01T23:59:59.000Z

396

Quantum criticality and universal scaling of strongly attractive spin-imbalanced Fermi gases in a one-dimensional harmonic trap  

SciTech Connect (OSTI)

We investigate quantum criticality and universal scaling of strongly attractive Fermi gases confined in a one-dimensional harmonic trap. We demonstrate from the power-law scaling of the thermodynamic properties that current experiments on this system are capable of measuring universal features at quantum criticality, such as universal scaling and Tomonaga-Luttinger liquid physics. The results also provide insights on recent measurements of key features of the phase diagram of a spin-imbalanced atomic Fermi gas [Y. Liao et al., Nature (London) 467, 567 (2010)] and point to further study of quantum critical phenomena in ultracold atomic Fermi gases.

Yin Xiangguo; Chen Shu [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Guan Xiwen [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Batchelor, Murray T. [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Mathematical Sciences Institute, Australian National University, Canberra ACT 0200 (Australia)

2011-07-15T23:59:59.000Z

397

Recent Progress in the Research on Ion and Electron Transport in Gases at Swarm Energies  

SciTech Connect (OSTI)

This paper deals with the presentation and discussion of recent research on the transport of electrons and ions in gases at low energies. Particular emphasis is placed on electron swarm experiments related with the negative differential conductivity of electrons in some gas mixtures, and with secondary ionisation processes due to the impact of metastables with neutrals (Penning ionisation). Ion transport is firstly addressed through some recent measurements on atomic and molecular systems for which both theory and experiment have reached a high degree of agreement, and also on those in which the ranges of the density-normalized electric field intensity E/N have been increased substantiality. Also, the recent advances on the application of transport theories dealing with inelastic collisions are presented, as well as some recent measurements of negative ions and charged clusters in gaseous mixtures, leading to the successful test of Blanc's law at low fields, to the experimental mobilities.

Urquijo, Jaime de [Centro de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, P.O. Box 48-3, 62251, Cuernavaca, Mor. (Mexico)

2004-12-01T23:59:59.000Z

398

Emission factors for particles, elemental carbon, and trace gases from the Kuwait oil fires  

SciTech Connect (OSTI)

Emission factors are presented for particles, elemental carbon (i.e., soot), total organic carbon in particles and vapor, and for various trace gases from the 1991 Kuwait oil fires. Particle emissions accounted for {approximately} 2% of the fuel burned. In general, soot emission factors were substantially lower than those used in recent {open_quotes}nuclear winter{close_quotes} calculations. Differences in the emissions and appearances of some of the individual fires are discussed. Carbon budget data for the composite plumes from the Kuwait fires are summarized; most of the burned carbon in the plumes was in the form of CO{sub 2}. Fluxes are presented for several combustion products. 26 refs., 1 fig., 5 tabs.

Laursen, K.K.; Ferek, R.J.; Hobbs, P.V. [Univ. of Washington, Seattle, WA (United States); Rasmussen, R.A. [Oregon Graduate Institute of Science and Technology, Beaverton, OR (United States)

1992-09-20T23:59:59.000Z

399

Statistical mechanics of Coulomb gases as quantum theory on Riemann surfaces  

SciTech Connect (OSTI)

Statistical mechanics of a 1D multivalent Coulomb gas can be mapped onto non-Hermitian quantum mechanics. We use this example to develop the instanton calculus on Riemann surfaces. Borrowing from the formalism developed in the context of the Seiberg-Witten duality, we treat momentum and coordinate as complex variables. Constant-energy manifolds are given by Riemann surfaces of genus g {>=} 1. The actions along principal cycles on these surfaces obey the ordinary differential equation in the moduli space of the Riemann surface known as the Picard-Fuchs equation. We derive and solve the Picard-Fuchs equations for Coulomb gases of various charge content. Analysis of monodromies of these solutions around their singular points yields semiclassical spectra as well as instanton effects such as the Bloch bandwidth. Both are shown to be in perfect agreement with numerical simulations.

Gulden, T.; Janas, M.; Koroteev, P.; Kamenev, A., E-mail: kamenev@physics.umn.edu [University of Minnesota, Department of Physics (United States)

2013-09-15T23:59:59.000Z

400

Atom chip apparatus for experiments with ultracold rubidium and potassium gases  

SciTech Connect (OSTI)

We present a dual chamber atom chip apparatus for generating ultracold {sup 87}Rb and {sup 39}K atomic gases. The apparatus produces quasi-pure Bose-Einstein condensates of 10{sup 4} {sup 87}Rb atoms in an atom chip trap that features a dimple and good optical access. We have also demonstrated production of ultracold {sup 39}K and subsequent loading into the chip trap. We describe the details of the dual chamber vacuum system, the cooling lasers, the magnetic trap, the multicoil magnetic transport system, the atom chip, and two optical dipole traps. Due in part to the use of light-induced atom desorption, the laser cooling chamber features a sufficiently good vacuum to also support optical dipole trap-based experiments. The apparatus is well suited for studies of atom-surface forces, quantum pumping and transport experiments, atom interferometry, novel chip-based traps, and studies of one-dimensional many-body systems.

Ivory, M. K.; Ziltz, A. R.; Fancher, C. T.; Pyle, A. J.; Sensharma, A.; Chase, B.; Field, J. P.; Garcia, A.; Aubin, S., E-mail: saaubi@wm.edu [Department of Physics, College of William and Mary, Williamsburg, Virginia 23187 (United States); Jervis, D. [Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7 (Canada)] [Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7 (Canada)

2014-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Method for determining the concentration of atomic species in gases and solids  

DOE Patents [OSTI]

Method for determining the concentration of atomic species in gases and solids. Measurement of at least two emission intensities from a species in a sample that is excited by incident laser radiation. Which generates a plasma therein after a sufficient time period has elapsed and during a second time period, permits an instantaneous temperature to be established within the sample. The concentration of the atomic species to be determined is then derived from the known emission intensity of a predetermined concentration of that species in the sample at the measured temperature, a quantity which is measured prior to the determination of the unknown concentration, and the actual measured emission from the unknown species, or by this latter emission and the emission intensity of a species having known concentration within the sample such as nitrogen for gaseous air samples.

Loge, Gary W. (304 Cheryl Ave., Los Alamos, NM 87544)

1998-01-01T23:59:59.000Z

402

Method for determining the concentration of atomic species in gases and solids  

DOE Patents [OSTI]

Method for determining the concentration of atomic species in gases and solids. Measurement of at least two emission intensities from a species in a plasma containing the species after a sufficient time period has elapsed after the generation of the plasma and during a second time period, permits an instantaneous temperature to be established within the sample. The concentration of the atomic species to be determined is then derived from the known emission intensity of a predetermined concentration of that species in the sample at the measured temperature, a quantity which is measured prior to the determination of the unknown concentration, and the actual measured emission from the unknown species, or by this latter emission and the emission intensity of a species having known concentration within the sample.

Loge, Gary W. (2998 Plaza Blanca, Santa Fe, NM 87505)

1999-01-01T23:59:59.000Z

403

Method for determining the concentration of atomic species in gases and solids  

DOE Patents [OSTI]

Method is described for determining the concentration of atomic species in gases and solids. The method involves measurement of at least two emission intensities from a species in a sample that is excited by incident laser radiation. This generates a plasma therein after a sufficient time period has elapsed and during a second time period, permits an instantaneous temperature to be established within the sample. The concentration of the atomic species to be determined is then derived from the known emission intensity of a predetermined concentration of that species in the sample at the measured temperature, a quantity which is measured prior to the determination of the unknown concentration, and the actual measured emission from the unknown species, or by this latter emission and the emission intensity of a species having known concentration within the sample such as nitrogen for gaseous air samples. 4 figs.

Loge, G.W.

1998-02-03T23:59:59.000Z

404

On a non approximated approach to Extended Thermodynamics for dense gases and macromolecular fluids  

E-Print Network [OSTI]

Recently the 14 moments model of Extended Thermodynamics for dense gases and macromolecular fluids has been considered and an exact solution, of the restrictions imposed by the entropy principle and that of Galilean relativity, has been obtained through a non relativistic limit. Here we prove uniqueness of the above solution and exploit other pertinent conditions such us the convexity of the function $h'$ related to the entropy density, the problem of subsystems and the fact that the flux in the conservation law of mass must be the moment of order 1 in the conservation law of momentum. Also the solution of this last condition is here obtained without using expansions around equilibrium. The results present interesting aspects which were not suspected when only approximated solutions of this problem were known.

M. C. Carrisi; M. A. Mele; S. Pennisi

2007-12-21T23:59:59.000Z

405

Electrochemical separation and concentration of sulfur containing gases from gas mixtures  

DOE Patents [OSTI]

A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4.sup.= or, in the case of H.sub.2 S, to S.sup.=. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

Winnick, Jack (3805 Woodrail-on-the-Green, Columbia, MO 65201)

1981-01-01T23:59:59.000Z

406

New equation calculates thermal conductivities of C[sub 1]-C[sub 4] gases  

SciTech Connect (OSTI)

In the design of heat exchangers, heat-transfer coefficients are commonly calculated for individual items. These calculations require knowledge of the thermal conductivities of the species involved. The calculation require knowledge of the thermal conductivities of the species involved. The calculation of the overall heat-transfer coefficient for a heat exchanger also requires thermal conductivity data for the individual species. In fact, thermal conductivity is the fundamental property involved in heat transfer. Ordinarily, thermal conductivities are either measured experimentally or estimated using complex correlations and models. Engineers must search existing literature for the values needed. Here, a compilation of thermal conductivity data for gases is presented for a wide temperature range. Using these data with the accompanying equation will enable engineers to quickly determine values at the desired temperatures. The results are provided in an easy-to-use tabular format, which is especially helpful for rapid calculations using a personal computer or hand-held calculator.

Yaws, C.L.; Lin, X.; Bu, L.; Nijhawan, S. (Lamar Univ., Beaumont, TX (United States))

1994-04-18T23:59:59.000Z

407

An Accelerated Multiboson Algorithm for Coulomb Gases with Dynamical Dielectric Effects  

E-Print Network [OSTI]

A recent reformulation [1] of the problem of Coulomb gases in the presence of a dynamical dielectric medium showed that finite temperature simulations of such systems can be accomplished on the basis of completely local Hamiltonians on a spatial lattice by including additional bosonic fields. For large systems, the Monte Carlo algorithm proposed in Ref. [1] becomes inefficient due to a low acceptance rate for particle moves in a fixed background multiboson field. We show here how this problem can be circumvented by use of a coupled particle-multiboson update procedure that improves acceptance rates on large lattices by orders of magnitude. The method is tested on a one-component plasma with neutral dielectric particles for a variety of system sizes.

A. Duncan; R. D. Sedgewick

2006-02-15T23:59:59.000Z

408

Bose-Einstein Condensation of Gases in the Frame of Quantum Electrodynamics: Interconnection of Constituents  

E-Print Network [OSTI]

Bose-Einstein condensate of rarified atomic gases is considered as the state formed by exchange of virtual photons, resonant to the lowest levels of atoms; such representation corresponds to the Einstein opinion about an inter-influence of condensable particles. Considered interactions directly lead to the QED structure of nonlinear potential in the Gross-Pitaevskii equation. Linear momenta that correspond to the thermal energy of condensable atoms are connected to near field of particles and therefore leave atoms immovable. The estimations of these effects do not contradict the observed data; the general quantum principles predict possibility of stimulating of BEC formation by resonant irradiation. All this requires the spectroscopic investigation of BEC on different steps of formation.

Mark E. Perel'man

2008-04-11T23:59:59.000Z

409

Uniform electron gases. II. The generalized local density approximation in one dimension  

SciTech Connect (OSTI)

We introduce a generalization (gLDA) of the traditional Local Density Approximation (LDA) within density functional theory. The gLDA uses both the one-electron Seitz radius r{sub s} and a two-electron hole curvature parameter ? at each point in space. The gLDA reduces to the LDA when applied to the infinite homogeneous electron gas but, unlike the LDA, it is also exact for finite uniform electron gases on spheres. We present an explicit gLDA functional for the correlation energy of electrons that are confined to a one-dimensional space and compare its accuracy with LDA, second- and third-order Møller-Plesset perturbation energies, and exact calculations for a variety of inhomogeneous systems.

Loos, Pierre-François, E-mail: pf.loos@anu.edu.au; Ball, Caleb J.; Gill, Peter M. W., E-mail: peter.gill@anu.edu.au [Research School of Chemistry, Australian National University, Canberra ACT 0200 (Australia)] [Research School of Chemistry, Australian National University, Canberra ACT 0200 (Australia)

2014-05-14T23:59:59.000Z

410

Optical Kerr and Cotton-Mouton effects in atomic gases: a quantum-statistical study  

E-Print Network [OSTI]

Theory of the birefringence of the refractive index in atomic diamagnetic dilute gases in the presence of static electric (optical Kerr effect) and magnetic (Cotton-Mouton effect) fields is formulated. Quantum-statistical expressions for the second Kerr and Cotton-Mouton virial coefficients, valid both in the low and high temperature regimes, are derived. It is shown that both virial coefficients can rigorously be related to the difference of the fourth derivatives of the thermodynamic (pressure) virial coefficient with respect to the strength of the non-resonant optical fields with parallel and perpendicular polarizations and with respect to the external static (electric or magnetic) field. Semiclassical expansions of the Kerr and Cotton-Mouton coefficients are also considered, and quantum corrections up to and including the second order are derived. Calculations of the second Kerr and Cotton-Mouton virial coefficients of the helium-4 gas at various temperatures are reported. The role of the quantum-mechanic...

Skomorowski, Wojciech

2013-01-01T23:59:59.000Z

411

Clathrate hydrates as a sink of noble gases in Titan's atmosphere  

E-Print Network [OSTI]

We use a statistical thermodynamic approach to determine the composition of clathrate hydrates which may form from a multiple compound gas whose composition is similar to that of Titan's atmosphere. Assuming that noble gases are initially present in this gas phase, we calculate the ratios of xenon, krypton and argon to species trapped in clathrate hydrates. We find that these ratios calculated for xenon and krypton are several orders of magnitude higher than in the coexisting gas at temperature and pressure conditions close to those of Titan's present atmosphere at ground level. Furthermore we show that, by contrast, argon is poorly trapped in these ices. This trapping mechanism implies that the gas-phase is progressively depleted in xenon and krypton when the coexisting clathrate hydrates form whereas the initial abundance of argon remains almost constant. Our results are thus compatible with the deficiency of Titan's atmosphere in xenon and krypton measured by the {\\it Huygens} probe during its descent on J...

Thomas, C; Ballenegger, V; Picaud, Sylvain

2007-01-01T23:59:59.000Z

412

Trending: Metal Oxo Bonds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation From modelingTrending: Metal Oxo Bonds

413

Trending: Metal Oxo Bonds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation From modelingTrending: Metal Oxo

414

Trending: Metal Oxo Bonds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2TopoPortal Hydrogen and Fuel CellTrending: Metal

415

Supported molten-metal catalysts  

DOE Patents [OSTI]

An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

Datta, Ravindra (Iowa City, IA); Singh, Ajeet (Iowa City, IA); Halasz, Istvan (Iowa City, IA); Serban, Manuela (Iowa City, IA)

2001-01-01T23:59:59.000Z

416

Metal to ceramic sealed joint  

DOE Patents [OSTI]

A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system.

Lasecki, John V. (Livonia, MI); Novak, Robert F. (Farmington Hills, MI); McBride, James R. (Ypsilanti, MI)

1991-01-01T23:59:59.000Z

417

Metal to ceramic sealed joint  

DOE Patents [OSTI]

A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system. 11 figures.

Lasecki, J.V.; Novak, R.F.; McBride, J.R.

1991-08-27T23:59:59.000Z

418

Method for preparing porous metal hydride compacts  

DOE Patents [OSTI]

A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

1980-01-21T23:59:59.000Z

419

Method for preparing porous metal hydride compacts  

DOE Patents [OSTI]

A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

Ron, Moshe (Haifa, IL); Gruen, Dieter M. (Downers Grove, IL); Mendelsohn, Marshall H. (Woodridge, IL); Sheft, Irving (Oak Park, IL)

1981-01-01T23:59:59.000Z

420

Metal-ceramic joint assembly  

DOE Patents [OSTI]

A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

Li, Jian (New Milford, CT)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Corrosion-resistant metal surfaces  

DOE Patents [OSTI]

The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

Sugama, Toshifumi (Wading River, NY)

2009-03-24T23:59:59.000Z

422

``Towards Strange Metallic Holography'  

SciTech Connect (OSTI)

We initiate a holographic model building approach to 'strange metallic' phenomenology. Our model couples a neutral Lifshitz-invariant quantum critical theory, dual to a bulk gravitational background, to a finite density of gapped probe charge carriers, dually described by D-branes. In the physical regime of temperature much lower than the charge density and gap, we exhibit anomalous scalings of the temperature and frequency dependent conductivity. Choosing the dynamical critical exponent z appropriately we can match the non-Fermi liquid scalings, such as linear resistivity, observed in strange metal regimes. As part of our investigation we outline three distinct string theory realizations of Lifshitz geometries: from F theory, from polarized branes, and from a gravitating charged Fermi gas. We also identify general features of renormalization group flow in Lifshitz theories, such as the appearance of relevant charge-charge interactions when z {ge} 2. We outline a program to extend this model building approach to other anomalous observables of interest such as the Hall conductivity.

Hartnoll, Sean A.; /Harvard U., Phys. Dept. /Santa Barbara, KITP /UC, Santa Barbara; Polchinski, Joseph; Silverstein, Eva; /Santa Barbara, KITP /UC, Santa Barbara; Tong, David; /Cambridge U., DAMTP /Santa Barbara, KITP /UC, Santa Barbara

2010-08-26T23:59:59.000Z

423

Magnetic metallic multilayers  

SciTech Connect (OSTI)

Utilizing self-consistent Hartree-Fock calculations, several aspects of multilayers and interfaces are explored: enhancement and reduction of the local magnetic moments, magnetic coupling at the interfaces, magnetic arrangements within each film and among non-neighboring films, global symmetry of the systems, frustration, orientation of the various moments with respect to an outside applied field, and magnetic-field induced transitions. Magnetoresistance of ferromagnetic-normal-metal multilayers is found by solving the Boltzmann equation. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by an external magnetic field. The calculation depends on (1) geometric parameters (thicknesses of layers), (2) intrinsic metal parameters (number of conduction electrons, magnetization, and effective masses in layers), (3) bulk sample properties (conductivity relaxation times), (4) interface scattering properties (diffuse scattering versus potential scattering at the interfaces, and (5) outer surface scattering properties (specular versus diffuse surface scattering). It is found that a large negative magnetoresistance requires considerable asymmetry in interface scattering for the two spin orientations. Features of the interfaces that may produce an asymmetrical spin-dependent scattering are studied: varying interfacial geometric random roughness with no lateral coherence, correlated (quasi-periodic) roughness, and varying chemical composition of the interfaces. The interplay between these aspects of the interfaces may enhance or suppress the magnetoresistance, depending on whether it increases or decreases the asymmetry in the spin-dependent scattering of the conduction electrons.

Hood, R.Q.

1994-04-01T23:59:59.000Z

424

Clean Metal Casting  

SciTech Connect (OSTI)

The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

Makhlouf M. Makhlouf; Diran Apelian

2002-02-05T23:59:59.000Z

425

CONDENSATION/ADSORPTION AND EVACUATION OF RESIDUAL GASES IN THE SRF SYSTEM FOR THE CESR LUMINOSITY UPGRADE  

E-Print Network [OSTI]

cavity RBT transition HOM absorber FBT transition Nb waveguide Heat exchanger 270 l/s ion pump RF windowCONDENSATION/ADSORPTION AND EVACUATION OF RESIDUAL GASES IN THE SRF SYSTEM FOR THE CESR LUMINOSITY coupler performance in a superconducting RF system. It is there- fore important to understand condensation/adsorption

Geng, Rong-Li

426

Bose condensation of interacting gases in traps with and without optical lattice S. Chatterjee, A. E. Meyerovich  

E-Print Network [OSTI]

Bose condensation of interacting gases in traps with and without optical lattice S. Chatterjee, A compare effects of particle interaction on Bose condensation in inhomogeneous traps with and without optical lattice inside. Interaction pushes normal particles away from the condensate droplet, which

Meyerovich, Alex

427

Evidence for a mantle component shown by rare gases, C and N isotopes in polycrystalline diamonds from Orapa (Botswana)  

E-Print Network [OSTI]

Evidence for a mantle component shown by rare gases, C and N isotopes in polycrystalline diamonds. Farley Abstract In an attempt to constrain the origin of polycrystalline diamond, combined analyses in the source of the polycrystalline diamonds from Orapa. The y13 C and y15 N isotopic values of À1.04 to À9.79x

Cartigny, Pierre

428

EVOLUTION OF TRACE GASES AND AEROSOLS IN THE MEXICO CITY POLLUTION OUTFLOW DURING A LONG RANGE TRANSPORT EVENT  

E-Print Network [OSTI]

EVOLUTION OF TRACE GASES AND AEROSOLS IN THE MEXICO CITY POLLUTION OUTFLOW DURING A LONG RANGE, NY www.bnl.gov ABSTRACT Significant chemical and physical processing of the Mexico City (MC) pollutants is expected to occur as they are advected downwind over a period of several hours to days

429

A New Technique for Studying the Fano Factor And the Mean Energy Per Ion Pair in Counting Gases  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

A new method is presented for deriving the Fano factor and the mean energy per ion pair in the ultrasoft x-ray energy range. It is based on counting electrons deposited by a photon in a low-pressure gas, and is applicable for all counting gases. The energy dependence of these parameters for several hydrocarbons and gas mixtures is presented.

Pansky, A.; Breskin, A.; Chechik, R.

1996-04-01T23:59:59.000Z

430

Atmospheric Chemistry, Carbon Cycle, and Climate (AC4): Observational Constraints on Sources and Sinks of Aerosols and Greenhouse Gases  

E-Print Network [OSTI]

and gas extraction can also inform future energy choices. In FY 2014, Atmospheric Chemistry, Carbon Cycle anthropogenic-biogenic emission intense regions 3. Deposition processes controlling atmospheric concentrations of aerosols and greenhouse gases Projects that quantify sources and sinks via new measurements and/or modeling

431

Carbon dioxide Information Analysis Center and World Data Center: A for Atmospheric trace gases. Annual progress report, FY 1994  

SciTech Connect (OSTI)

This report summarizes the activities and accomplishments made by the Carbon Dioxide Information Analysis Center and World Data Center-A for Atmospheric Trace Gases during the fiscal year 1994. Topics discussed in this report include; organization and staff, user services, systems, communications, Collaborative efforts with China, networking, ocean data and activities of the World Data Center-A.

Burtis, M.D. [comp.] [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center; Cushman, R.M.; Boden, T.A.; Jones, S.B.; Nelson, T.R.; Stoss, F.W. [Oak Ridge National Lab., TN (United States)

1995-03-01T23:59:59.000Z

432

Oil and gas exploration system and method for detecting trace amounts of hydrocarbon gases in the atmosphere  

DOE Patents [OSTI]

An oil and gas exploration system and method for land and airborne operations, the system and method used for locating subsurface hydrocarbon deposits based upon a remote detection of trace amounts of gases in the atmosphere. The detection of one or more target gases in the atmosphere is used to indicate a possible subsurface oil and gas deposit. By mapping a plurality of gas targets over a selected survey area, the survey area can be analyzed for measurable concentration anomalies. The anomalies are interpreted along with other exploration data to evaluate the value of an underground deposit. The system includes a differential absorption lidar (DIAL) system with a spectroscopic grade laser light and a light detector. The laser light is continuously tunable in a mid-infrared range, 2 to 5 micrometers, for choosing appropriate wavelengths to measure different gases and avoid absorption bands of interference gases. The laser light has sufficient optical energy to measure atmospheric concentrations of a gas over a path as long as a mile and greater. The detection of the gas is based on optical absorption measurements at specific wavelengths in the open atmosphere. Light that is detected using the light detector contains an absorption signature acquired as the light travels through the atmosphere from the laser source and back to the light detector. The absorption signature of each gas is processed and then analyzed to determine if a potential anomaly exists.

Wamsley, Paula R. (Littleton, CO); Weimer, Carl S. (Littleton, CO); Nelson, Loren D. (Evergreen, CO); O'Brien, Martin J. (Pine, CO)

2003-01-01T23:59:59.000Z

433

Metal deposition using seed layers  

DOE Patents [OSTI]

Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

2013-11-12T23:59:59.000Z

434

Metal sulfide initiators for metal oxide sorbent regeneration  

DOE Patents [OSTI]

A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

Turk, B.S.; Gupta, R.P.

1999-06-22T23:59:59.000Z

435

Controlled Vapor Phase Growth of Single Crystalline, Two-Dimensional GaSe  

E-Print Network [OSTI]

, and have the potential to enable next-generation electronic and optoelectronic devices. However, controlled-generation electronic and optoelectronic devices such as photodetectors and field-effect transistors. T wo-generation electronic and optoelectronic devices. Although most research has focused on 2D transition metal

Geohegan, David B.

436

Enhancement of the Deuteron-Fusion Reactions in Metals and its Experimental Implications  

E-Print Network [OSTI]

Recent measurements of the reaction d(d,p)t in metallic environments at very low energies performed by different experimental groups point to an enhanced electron screening effect. However, the resulting screening energies differ strongly for divers host metals and different experiments. Here, we present new experimental results and investigations of interfering processes in the irradiated targets. These measurements inside metals set special challenges and pitfalls which make them and the data analysis particularly error-prone. There are multi-parameter collateral effects which are crucial for the correct interpretation of the observed experimental yields. They mainly originate from target surface contaminations due to residual gases in the vacuum as well as from inhomogeneities and instabilities in the deuteron density distribution in the targets. In order to address these problems an improved differential analysis method beyond the standard procedures has been implemented. Profound scrutiny of the other experiments demonstrates that the observed unusual changes in the reaction yields are mainly due to deuteron density dynamics simulating the alleged screening energy values. The experimental results are compared with different theoretical models of the electron screening in metals. The Debye-H\\"{u}ckel model that has been previously proposed to explain the influence of the electron screening on both nuclear reactions and radioactive decays could be clearly excluded.

A. Huke; K. Czerski; P. Heide; G. Ruprecht; N. Targosz; W. ?ebrowski

2008-05-29T23:59:59.000Z

437

Expanding hollow metal rings  

DOE Patents [OSTI]

A sealing device that may expand more planar dimensions due to internal thermal expansion of a filler material. The sealing material is of a composition such that when desired environment temperatures and internal actuating pressures are reached, the sealing materials undergoes a permanent deformation. For metallic compounds, this permanent deformation occurs when the material enters the plastic deformation phase. Polymers, and other materials, may be using a sealing mechanism depending on the temperatures and corrosivity of the use. Internal pressures are generated by either rapid thermal expansion or material phase change and may include either liquid or solid to gas phase change, or in the gaseous state with significant pressure generation in accordance with the gas laws. Sealing material thickness and material composition may be used to selectively control geometric expansion of the seal such that expansion is limited to a specific facing and or geometric plane.

Peacock, Harold B. (Evans, GA); Imrich, Kenneth J. (Grovetown, GA)

2009-03-17T23:59:59.000Z

438

Creating bulk nanocrystalline metal.  

SciTech Connect (OSTI)

Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

2008-10-01T23:59:59.000Z

439

Metal recovery from porous materials  

DOE Patents [OSTI]

The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

Sturcken, E.F.

1991-01-01T23:59:59.000Z

440

Nanostructured metal-polyaniline composites  

SciTech Connect (OSTI)

Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

Wang, Hsing-Lin (Los Alamos, NM); Li, Wenguang (Elgin, IL); Bailey, James A. (Los Alamos, NM); Gao, Yuan (Brewer, ME)

2010-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Metal Hydride Hydrogen Storage R and D | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Metal Hydride Hydrogen Storage R and D Metal Hydride Hydrogen Storage R and D DOE's research on complex metal hydrides targets the development of advanced metal hydride materials...

442

Durability of metals from archaeological objects, metal meteorites, and native metals  

SciTech Connect (OSTI)

Metal durability is an important consideration in the multi-barrier nuclear waste storage concept. This study summarizes the ancient metals, the environments, and factors which appear to have contributed to metal longevity. Archaeological and radiochemical dating suggest that human use of metals began in the period 6000 to 7000 BC. Gold is clearly the most durable, but many objects fashioned from silver, copper, bronze, iron, lead, and tin have survived for several thousand years. Dry environments, such as tombs, appear to be optimum for metal preservation, but some metals have survived in shipwrecks for over a thousand years. The metal meteorites are Fe-base alloys with 5 to 60 wt% Ni and minor amounts of Co, I, and S. Some meteoritic masses with ages estimated to be 5,000 to 20,000 years have weathered very little, while other masses from the same meteorites are in advanced stages of weathering. Native metals are natural metallic ores. Approximately five million tonnes were mined from native copper deposits in Michigan. Copper masses from the Michigan deposits were transported by the Pleistocene glaciers. Areas on the copper surfaces which appear to represent glacial abrasion show minimal corrosion. Dry cooling tower technology has demonstrated that in pollution-free moist environments, metals fare better at temperatures above than below the dewpoint. Thus, in moderate temperature regimes, elevated temperatures may be useful rather than detrimental for exposures of metal to air. In liquid environments, relatively complex radiolysis reactions can occur, particularly where multiple species are present. A dry environment largely obviates radiolysis effects.

Johnson, A.B. Jr.; Francis, B.

1980-01-01T23:59:59.000Z

443

Method for preparing metal powder, device for preparing metal powder, method for processing spent nuclear fuel  

DOE Patents [OSTI]

A method for producing metal powder is provided the comprising supplying a molten bath containing a reducing agent, contacting a metal oxide with the molten bath for a time and at a temperature sufficient to reduce the metal in the metal oxide to elemental metal and produce free oxygen; and isolating the elemental metal from the molten bath.

Park, Jong-Hee (Clarendon Hills, IL)

2011-11-29T23:59:59.000Z

444

Cosmic metal production and the mean metallicity of the Universe  

E-Print Network [OSTI]

By means of detailed chemo-photometric models for elliptical, spiral and irregular galaxies, we evaluate the cosmic history of the production of chemical elements as well as the metal mass density of the present-day universe. We then calculate the mean metal abundances for galaxies of different morphological types, along with the average metallicity of galactic matter in the universe (stars, gas and intergalactic medium). For the average metallicity of galaxies in the local universe, we find Z_gal= 0.0175, i.e. close to the solar value. We find the main metal production in spheroids (ellipticals and bulges) to occur at very early times, implying an early peak in the metal production and a subsequent decrease. On the other hand, the metal production in spirals and irregulars is always increasing with time. We perform a self-consistent census of the baryons and metals in the local universe finding that, while the vast majority of the baryons lies outside galaxies in the inter-galactic medium (IGM), 52 % of the metals (with the exception of the Fe-peak elements) is locked up in stars and in the interstellar medium. We estimate indirectly the amount of baryons which resides in the IGM and we derive its mean Fe abundance, finding a value of X_Fe,IGM=0.05 X_Fe,sun. We believe that this estimate is uncertain by a factor of 2, owing to the normalization of the local luminosity function. This means that the Fe abundance of 0.3 solar inferred from X-ray observations of the hot intra-cluster medium (ICM) is higher than the average Fe abundance of the inter-galactic gas in the field.

F. Calura; F. Matteucci

2004-03-08T23:59:59.000Z

445

Metal-directed protein self-assembly  

E-Print Network [OSTI]

Metal-Directed Protein Self- Assembly. Acc. Chem. Res. 43,Metal-directed protein self-assembly. Acc. Chem. Res. 43,Metal- mediated self-assembly of protein superstructures:

Salgado. Eric N.

2010-01-01T23:59:59.000Z

446

Superconducting ``metals'' and ``insulators'' Smitha Vishveshwara  

E-Print Network [OSTI]

Superconducting ``metals'' and ``insulators'' Smitha Vishveshwara Department of Physics, University to the distinction between normal metals and insulators: the superconducting ``metal'' with delocalized qua- siparticle excitations and the superconducting ``insulator'' with localized quasiparticles. We describe

447

Chalcogels : porous metal-chalcogenide networks from main-group metal ions. Effect of surface polarizability on selectivity in gas separation.  

SciTech Connect (OSTI)

We report the synthesis of metal-chalcogenide gels and aerogels from anionic chalcogenide clusters and linking metal ions. Metal ions such as Sb{sup 3+} and Sn{sup 2+}, respectively chelated with tartrate and acetate ligands, react in solution with the chalcogenide clusters to form extended polymeric networks that exhibit gelation phenomena. Chalcogenide cluster anions with different charge densities, such as [Sn{sub 2}S{sub 6}]{sup 4-} and [SnS{sub 4}]{sup 4-}, were employed. In situ rheological measurements during gelation showed that a higher charge density on the chalcogenide cluster favors formation of a rigid gel network. Aerogels obtained from the gels after supercritical drying have BET surface areas from 114 to 368 m{sup 2}/g. Electron microscopy images coupled with nitrogen adsorption measurements showed the pores are micro (below 2 nm), meso (2-50 nm), and macro (above 50 nm) regions. These chalcogels possess band gaps in the range of 1.00-2.00 eV and selectively adsorb polarizable gases. A 2-fold increase in selectivity toward CO{sub 2}/C{sub 2}H{sub 6} over H{sub 2} was observed for the Pt/Sb/Ge{sub 4}Se{sub 10}-containing aerogel compared to aerogel containing Pt{sub 2}Ge{sub 4}S{sub 10}. The experimental results suggest that high selectivity in gas adsorption is achievable with high-surface-area chalcogenide materials containing heavy polarizable elements.

Bag, S.; Kanatzidis, M. G.; Materials Science Division; Northwestern Univ.

2010-10-06T23:59:59.000Z

448

Method of coating metal surfaces to form protective metal coating thereon  

DOE Patents [OSTI]

A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof. 1 figure.

Krikorian, O.H.; Curtis, P.G.

1992-03-31T23:59:59.000Z

449

Mobility of singly-charged lanthanide cations in rare gases: Theoretical assessment of the state specificity  

SciTech Connect (OSTI)

High quality, ab initio calculations are reported for the potential energy curves governing the interactions of four singly-charged lanthanide ions (Yb{sup +}, Eu{sup +}, Lu{sup +}, and Gd{sup +}) with the rare gases (RG = He–Xe). Scalar-relativistic coupled cluster calculations are used for the first three S-state ions, but for Gd{sup +}({sup 10}D°) it is necessary to take the interaction anisotropy into account with the help of the multi-reference technique. The potential energy curves are used to determine the ion mobility and other transport properties describing the motion of the ions through the dilute RG, both as functions of the temperature, T, in the low-field limit, and at fixed T as functions of the ratio of the electrostatic field strength to the gas number density, E/N. The calculated mobilities are in good agreement with the very limited experimental data that have become available recently. The calculations show a pronounced dependence of the transport properties on the electronic configuration of the ion, as well as a significant effect of the spin-orbit coupling on the transport properties of the Gd{sup +} ion, and predict that state-specific mobilities could be detectable in Gd{sup +}–RG experiments.

Buchachenko, Alexei A., E-mail: alexei@classic.chem.msu.su [Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow District 142432, Russia and Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Viehland, Larry A., E-mail: viehland@chatham.edu [Science Department, Chatham University, Pittsburgh, Pennsylvania 15232 (United States)

2014-03-21T23:59:59.000Z

450

Lecture notes on thermodynamics of ideal string gases and its application in cosmology  

E-Print Network [OSTI]

In these lecture notes I give a pedagogical introduction to the thermodynamics of ideal string gases. The computation of thermodynamic quantities in the canonical ensemble formalism will be shown in detail with explicit examples. Attention will be given mainly to the thermodynamical consequences of string degrees of freedom, where I will especially address i) the Hagedorn temperature, a critical temperature above which the canonical ensemble description breaks down, which can be the onset point of some instability of the string gas; ii) the phase structure arising from compactification, embodied in the moduli-dependence of the Helmholtz free energy, which corrects the tree-level vacuum and can provide mechanism for moduli stabilization. Then I will briefly explain the implementation of string gas thermodynamics in cosmology, showing a simple example which gives rise to a radiation-dominated early universe. Further phenomenological issues and open questions will be discussed qualitatively with references indicated, including the Hagedorn instability in the resolution of the initial singularity, moduli stabilization, generation of hierarchy, radiative symmetry breaking and primordial cosmological fluctuations.

Lihui Liu

2014-12-05T23:59:59.000Z

451

Are Greenhouse Gases Changing ENSO Precursors in the Western North Pacific?  

SciTech Connect (OSTI)

Using multiple observational and modeling datasets, we document a strengthening relationship between boreal winter sea surface temperature anomalies (SSTA) in the western North Pacific (WNP) and the development of the El Nino-Southern Oscillation (ENSO) one year later. The increased WNP-ENSO association emerged in the mid 20th century and has grown through the present, reaching correlation coefficients as high as ~0.70 in recent decades. Fully coupled climate experiments with the Community Earth System Model (CESM) replicate the WNP-ENSO association and indicate that greenhouse gases (GHG) are largely responsible for the observed increase. We speculate that shifts in the location and amplitudes of positive SST trends in the subtropical-tropical western Pacific impacts the low-level circulation so that WNP variability is increasingly influencing the development of ENSO one year later. A strengthened GHG-driven relationship between the WNP and ENSO provides an example of how anthropogenic climate change can potentially improve the skill of intraseasonal-to-interannual climate prediction.

Wang, S-Y (Simon); Heureux, Michelle L.; Yoon, Jin-Ho

2013-09-01T23:59:59.000Z

452

Production of ethanol from refinery waste gases. Phase 2, technology development, annual report  

SciTech Connect (OSTI)

Oil refineries discharge large volumes of H{sub 2}, CO, and CO{sub 2} from cracking, coking, and hydrotreating operations. This program seeks to develop a biological process for converting these waste gases into ethanol, which can be blended with gasoline to reduce emissions. Production of ethanol from all 194 US refineries would save 450 billion BTU annually, would reduce crude oil imports by 110 million barrels/year and emissions by 19 million tons/year. Phase II efforts has yielded at least 3 cultures (Clostridium ljungdahlii, Isolate O-52, Isolate C-01) which are able to produce commercially viable concentrations of ethanol from CO, CO{sub 2}, and H{sub 2} in petroleum waste gas. Single continuous stirred tank reactor studies have shown that 15-20 g/L of ethanol can be produced, with less than 5 g/L acetic acid byproduct. Culture and reactor optimization in Phase III should yield even higher ethanol concentrations and minimal acetic acid. Product recovery studies showed that ethanol is best recovered in a multi-step process involving solvent extraction/distillation to azeotrope/azeotropic distillation or pervaporation, or direct distillation to the azeotrope/azeotropic distillation or pervaporation. Projections show that the ethanol facility for a typical refinery would require an investment of about $30 million, which would be returned in less than 2 years.

Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C.; Gaddy, J.L.

1995-07-01T23:59:59.000Z

453

Production of ethanol from refinery waste gases. Final report, April 1994--July 1997  

SciTech Connect (OSTI)

The objective of this program was to develop a commercial process for producing ethanol from refinery waste gases. this report presents results from the development phases. The major focus of this work was the preparation of the prototype design which will demonstrate this technology in a 2.5 lb/hr ethanol production facility. Additional areas of focus included efforts in obtaining an industrial partner to help finance the prototype, and advanced engineering experiments concentrating on process optimization in various areas needing future development and optimization. The advanced engineering experiments were performed in the laboratory in these areas: treatment and use of recycle water from distillation back to fermentation; alternative methods of removing cells from the fermentation broth; the fermentation of streams containing CO{sub 2}/H{sub 2} alone, with little to no CO present; dealing with methanogen contaminants that are capable of fermenting CO{sub 2} and H{sub 2} to methane; and acetate tolerance by the culture. Results from the design, industrial partner search and the laboratory R&D efforts are discussed in this report.

Arora, D.; Basu, R.; Breshears, F.S.; Gaines, L.D.; Hays, K.S.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C.; Gaddy, J.L.

1997-08-01T23:59:59.000Z

454

Pi-Josephson Junction and Spontaneous Superflow in Rings from Ultracold Fermionic Atomic Gases  

E-Print Network [OSTI]

The BCS-like pairing in ultracold fermionic atomic ($UCFAG$) gases is studied in the model of "isotopic-spin" pairing proposed in 1991 \\cite% {Ku-Hof-SSC}. This model assumes a mismatch ($\\delta $) in chemical potentials of pairing fermionic atoms. It is shown that a $\\pi $-Josephson junction can be realized in $UCFAG$ systems, where the left and right banks $% S$ are the $UCFAG$ superfluids. The weak link $M$ consists from the normal $% UCFAG$ with the finite mismatch $\\delta $. If the $\\pi $-junction is a part of a closed ring the superfluid mass-current flows spontaneously in the ring, i.e., the time-reversal symmetry is broken spontaneously. This is realized if the radius of the ring $R$ is larger than the critical one $% R_{c} $. All these effects exist also in the case when $\\delta \\gg \\Delta $, where $\\Delta $ is the superfluid gap, but with the reduced thickness of the weak link. It is also discussed, that if junctions $SM_{1}M_{2}S$ and trilayers $% M_{1}SM_{2}$ from $UCFAG$ are realizable this renders a possibility for a novel electronics - \\textit{hypertronics}.

Miodrag L. Kulic

2006-06-07T23:59:59.000Z

455

Method of and apparatus for removing sulfur oxides from exhaust gases formed by combustion  

SciTech Connect (OSTI)

A process is described for removing sulfur oxides from exhaust gas formed by combustion particularly exhaust gas from an electricity generating power plant. The exhaust gas flows through a reaction zone which operates like a spray dryer. A purifying liquor consisting of an aqueous solution of sodium carbonate and/or sodium bicarbonate is sprayed into the reaction zone, in which the heat content of the exhaust gases causes virtually all of the water content of the purifying liquor to be evaporated. The exhaust gas is subsequently passed through a filter. Anhydrous solids are withdrawn from the reaction zone and the filter and contain at least 75% of sodium sulfite, sodium sulfate and sodium chloride and are processed to form sodium carbonate. To that end the solids are dissolved and sulfite is oxidized to form sulfate so that a solution that contains sodium sulfate and sodium chloride is formed. The sulfate is separated from that solution and the remaining solution is used in the recovery of sodium carbonate by the solvay process.

Voeste, T.

1981-01-27T23:59:59.000Z

456

Gas-liquid-liquid equilibria in mixtures of water, light gases, and hydrocarbons  

SciTech Connect (OSTI)

Phase equilibrium in mixtures of water + light gases and water + heavy hydrocarbons has been investigated with the development of new local composition theory, new equations of state, and new experimental data. The preferential segregation and orientation of molecules due to different energies of molecular interaction has been simulated with square well molecules. Extensive simulation has been made for pure square well fluids and mixtures to find the local composition at wide ranges of states. A theory of local composition has been developed and an equation of state has been obtained for square well fluids. The new local composition theory has been embedded in several equations of state. The pressure of water is decoupled into a polar pressure and non-polar pressure according to the molecular model of water of Jorgensen et al. The polar pressure of water is combined with the BACK equation for the general description of polar fluids and their mixtures. Being derived from the steam table, the Augmented BACK equation is particularly suited for mixtures of water + non-polar substances such as the hydrocarbons. The hydrophobic character of the hydrocarbons had made their mixtures with water a special challenge. A new group contribution equation of state is developed to describe phase equilibrium and volumetric behavior of fluids while requiring only to know the molecular structure of the components. 15 refs., 1 fig.

Chao, K.C.

1990-01-01T23:59:59.000Z

457

Apparatus and process for the refrigeration, liquefaction and separation of gases with varying levels of purity  

DOE Patents [OSTI]

A process for the separation and liquefaction of component gasses from a pressurized mix gas stream is disclosed. The process involves cooling the pressurized mixed gas stream in a heat exchanger so as to condensing one or more of the gas components having the highest condensation point; separating the condensed components from the remaining mixed gas stream in a gas-liquid separator; cooling the separated condensed component stream by passing it through an expander; and passing the cooled component stream back through the heat exchanger such that the cooled component stream functions as the refrigerant for the heat exchanger. The cycle is then repeated for the remaining mixed gas stream so as to draw off the next component gas and further cool the remaining mixed gas stream. The process continues until all of the component gases are separated from the desired gas stream. The final gas stream is then passed through a final heat exchanger and expander. The expander decreases the pressure on the gas stream, thereby cooling the stream and causing a portion of the gas stream to liquify within a tank. The portion of the gas which is hot liquefied is passed back through each of the heat exchanges where it functions as a refrigerant.

Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

458

Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 1, Main text  

SciTech Connect (OSTI)

This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO{sub 2}), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO{sub 2}-equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO{sub 2}-equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles.

DeLuchi, M.A. [California Univ., Davis, CA (United States)

1991-11-01T23:59:59.000Z

459

Phase structure of mass- and spin-imbalanced unitary Fermi gases  

E-Print Network [OSTI]

We study the phase diagram of mass- and spin-imbalanced unitary Fermi gases, in search for the emergence of spatially inhomogeneous phases. To account for fluctuation effects beyond the mean-field approximation, we employ renormalization group techniques. We thus obtain estimates for critical values of the temperature, mass and spin imbalance, above which the system is in the normal phase. In the unpolarized, equal-mass limit, our result for the critical temperature is in accordance with state-of-the-art Monte Carlo calculations. In addition, we estimate the location of regions in the phase diagram where inhomogeneous phases are likely to exist. We show that an intriguing relation exists between the general structure of the many-body phase diagram and the binding energies of the underlying two-body bound-state problem, which further supports our findings. Our results suggest that inhomogeneous condensates form for mass ratios of the spin-down and spin-up fermions greater than three. The extent of the inhomoge...

Roscher, Dietrich; Drut, Joaquín E

2015-01-01T23:59:59.000Z

460

CO.sub.2 separation from low-temperature flue gases  

DOE Patents [OSTI]

Two methods are provide for the separation of carbon dioxide from the flue gases. The first method utilizes a phase-separating moiety dissolved in an aqueous solution of a basic moiety to capture carbon dioxide. The second method utilizes a phase-separating moiety as a suspended solid in an aqueous solution of a basic moiety to capture carbon dioxide. The first method takes advantage of the surface-independent nature of the CO.sub.2 absorption reactions in a homogeneous aqueous system. The second method also provides permanent sequestration of the carbon dioxide. Both methods incorporate the kinetic rate enhancements of amine-based scrubbing while eliminating the need to heat the entire amine solution (80% water) in order to regenerate and release CO.sub.2. Both methods also take advantage of the low-regeneration temperatures of CO.sub.2-bearing mineral systems such as Na.sub.2CO.sub.3/NaHCO.sub.3 and K.sub.2CO.sub.3/KHCO.sub.3.

Dilmore, Robert (Irwin, PA); Allen, Douglas (Salem, MA); Soong, Yee (Monroeville, PA); Hedges, Sheila (Bethel Park, PA)

2010-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "metals drip gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Clathrate hydrates as a sink of noble gases in Titan's atmosphere  

E-Print Network [OSTI]

We use a statistical thermodynamic approach to determine the composition of clathrate hydrates which may form from a multiple compound gas whose composition is similar to that of Titan's atmosphere. Assuming that noble gases are initially present in this gas phase, we calculate the ratios of xenon, krypton and argon to species trapped in clathrate hydrates. We find that these ratios calculated for xenon and krypton are several orders of magnitude higher than in the coexisting gas at temperature and pressure conditions close to those of Titan's present atmosphere at ground level. Furthermore we show that, by contrast, argon is poorly trapped in these ices. This trapping mechanism implies that the gas-phase is progressively depleted in xenon and krypton when the coexisting clathrate hydrates form whereas the initial abundance of argon remains almost constant. Our results are thus compatible with the deficiency of Titan's atmosphere in xenon and krypton measured by the {\\it Huygens} probe during its descent on January 14, 2005. However, in order to interpret the subsolar abundance of primordial Ar also revealed by {\\it Huygens}, other processes that occurred either during the formation of Titan or during its evolution must be also invoked.

C. Thomas; O. Mousis; V. Ballenegger; S. Picaud

2007-08-16T23:59:59.000Z

462

Subtask 4.24 - Field Evaluation of Novel Approach for Obtaining Metal Emission Data  

SciTech Connect (OSTI)

Over the past two decades, emissions of mercury, nonmercury metals, and acid gases from energy generation and chemical production have increasingly become an environmental concern. On February 16, 2012, the U.S. Environmental Protection Agency (EPA) promulgated the Mercury and Air Toxics Standards (MATS) to reduce mercury, nonmercury metals, and HCl emissions from coal-fired power plants. The current reference methods for trace metals and halogens are wet-chemistry methods, EPA Method (M) 29 and M26A, respectively. As a possible alternative to EPA M29 and M26A, the Energy & Environmental Research Center (EERC) has developed a novel multielement sorbent trap (ME-ST) method to be used to sample for trace elements and/or halogens. Testing was conducted at three different power plants, and the results show that for halogens, the ME-ST halogen (ME-ST-H) method did not show any significant bias compared to EPA M26A and appears to be a potential candidate to serve as an alternative to the reference method. For metals, the ME-ST metals (ME-ST-M) method offers a lower detection limit compared to EPA M29 and generally produced comparable data for Sb, As, Be, Cd, Co, Hg, and Se. Both the ME-ST-M and M29 had problems associated with high blanks for Ni, Pb, Cr, and Mn. Although this problem has been greatly reduced through improved trap design and material selection, additional research is still needed to explore possible longer sampling durations and/or selection of lower background materials before the ME-ST-M can be considered as a potential alternative method for all the trace metals listed in MATS.

Pavlish, John; Laudal, Dennis; Thompson, Jeffrey

2013-12-31T23:59:59.000Z

463

Recycle of contaminated scrap metal, Volume 2. Semi-annual report, September 1993--January 1996  

SciTech Connect (OSTI)

Catalytic Extraction Processing (CEP) has been demonstrated to be a robust, one-step process that is relatively insensitive to wide variations in waste composition and is applicable to a broad spectrum of DOE wastes. Catalytic Processing Unit (CPU) design models have been validated through experimentation to provide a high degree of confidence in our ability to design a bulk solids CPU for processing DOE wastes. Two commercial CEP facilities have been placed in commission and are currently processing mixed low level wastes. These facilities provide a compelling indication of the maturity, regulatory acceptance, and commercial viability of CEP. In concert with the DOE, Nolten Metal Technology designed a program which would challenge preconceptions of the limitations of waste processing technologies: demonstrate the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal could be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP would concentrate the radionuclides in a durable vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP would convert hazardous organics to valuable industrial gases, which could be used as an energy source; recover volatile heavy metals--that CEP`s off-gas treatment system would capture volatile heavy metals, such as mercury and lead; and establish that CEP is economical for processing contaminated scrap metal in the DOE inventory. The execution of this program resulted in all objectives being met. Volume II contains: Task 1.4, optimization of the vitreous phase for stabilization of radioactive species; Task 1.5, experimental testing of Resource Conservation and Recovery Act (RCRA) wastes; and Task 1.6, conceptual design of a CEP facility.

NONE

1996-07-01T23:59:59.000Z

464

Regenerative process for removal of mercury and other heavy metals from gases containing H.sub.2 and/or CO  

DOE Patents [OSTI]

A method for removal of mercury from a gaseous stream containing the mercury, hydrogen and/or CO, and hydrogen sulfide and/or carbonyl sulfide in which a dispersed Cu-containing sorbent is contacted with the gaseous stream at a temperature in the range of about 25.degree. C. to about 300.degree. C. until the sorbent is spent. The spent sorbent is contacted with a desorbing gaseous stream at a temperature equal to or higher than the temperature at which the mercury adsorption is carried out, producing a regenerated sorbent and an exhaust gas comprising released mercury. The released mercury in the exhaust gas is captured using a high-capacity sorbent, such as sulfur-impregnated activated carbon, at a temperature less than about 100.degree. C. The regenerated sorbent may then be used to capture additional mercury from the mercury-containing gaseous stream.

Jadhav, Raja A. (Naperville, IL)

2009-07-07T23:59:59.000Z

465

Recommendation 221: Recommendation Regarding Recycling of Metals...  

Office of Environmental Management (EM)

221: Recommendation Regarding Recycling of Metals and Materials Recommendation 221: Recommendation Regarding Recycling of Metals and Materials In addition to the DOE making a final...

466

Metal-doped organic foam  

DOE Patents [OSTI]

Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

Rinde, James A. (Livermore, CA)

1982-01-01T23:59:59.000Z

467

Metal Matrix Microencapsulated (M3) fuel neutronics performance in PWRs  

SciTech Connect (OSTI)

Metal Matrix Microencapsulated (M3) fuel consists of TRISO or BISO coated fuel particles directly dispersed in a matrix of zirconium metal to form a solid rod (Fig. 1). In this integral fuel concept the cladding tube and the failure mechanisms associated with it have been eliminated. In this manner pellet-clad-interactions (PCI), thin tube failure due to oxidation and hydriding, and tube pressurization and burst will be absent. M3 fuel, given the high stiffness of the integral rod design, could as well improve grid-to-rod wear behavior. Overall M3 fuel, compared to existing fuel designs, is expected to provide greatly improved operational performance. Multiple barriers to fission product release (ceramic coating layers in the coated fuel particle and te metal matrix) and the high thermal conductivity zirconium alloy metal matrix contribute to the enhancement in fuel behavior. The discontinuous nature of fissile material encapsulated in coated particles provides additional assistance; for instance if the M3 fuel rod is snapped into multiple pieces, only the limited number of fuel particles at the failure cross section are susceptible to release fission products. This is in contrast to the conventional oxide fuel where the presence of a small opening in the cladding provides the pathway for release of the entire inventory of fission products from the fuel rod. While conventional metal fuels (e.g. U-Zr and U-Mo) are typically expected to experience large swelling under irradiation due to the high degree of damage from fission fragments and introduction of fission gas into the lattice, this is not the case for M3 fuels. The fissile portion of the fuel is contained within the coated particle where enough room is available to accommodate fission gases and kernel swelling. The zirconium metal matrix will not be exposed to fission products and its swelling is known to be very limited when exposed solely to neutrons. Under design basis RIA and LOCA, fuel performance will be superior to the conventional oxide fuel since PCMI and rod burst, respectively, have been mitigated. Under beyond design basis accident scenarios where the fuel is exposed to high temperature steam for prolonged periods, larger inventory of zirconium metal in the core could negatively affect the accident progression. A thin steam resistant layer (e.g. alumina forming alloy steel), integrated into the solid rod during fabrication by co-extrusion or hot-isostatic-pressing, offers the potential to provide additional fuel protection from steam interaction: blanketing under a range of boiling regimes and under severe accident conditions up to high temperatures well beyond what is currently possible in the conventional fuel. A crucial aspect to the viability of M3 fuel in light water reactors is the reduced heavy metal load compared to standard pellet fuel. This study evaluated the design requirements to operate a Pressurized Water Reactor (PWR) with M3 fuel in order to obtain fuel cycle length, reactivity coefficients, and power peaking factors comparable to that of standard fuel.

Fratoni, Massimiliano [Pennsylvania State University] [Pennsylvania State University; Terrani, Kurt A [ORNL] [ORNL

2012-01-01T23:59:59.000Z

468

Method for compressing and heating a heating medium to be externally supplied to an engine while using the energy available in the hot exhaust gases of the engine  

SciTech Connect (OSTI)

In a method for compressing and heating a heating medium to be externally supplied to an engine, while using the energy available in the hot exhaust gases of the engine, the exhaust gases are caused to expand in at least two expansion stages to emit energy for compressing the heating medium in at least two compression stages, heat is transmitted from the exhaust gases after the first expansion stage to the heating medium after the last compression stage, and the heating medium is thereafter supplied with additional heat in a heat-producing unit before it is led to the engine.

Carlquist, S. G.

1985-06-04T23:59:59.000Z

469

A positivity-preserving scheme for the simulation of streamer discharges in non-attaching and attaching gases  

E-Print Network [OSTI]

Assumed having axial symmetry, the streamer discharge is often described by a fluid model in cylindrical coordinate system, which consists of convection dominated (diffusion) equations with source terms, coupled with a Poisson's equation. Without additional care for a stricter CFL condition or special treatment to the negative source term, popular methods used in streamer discharge simulations, e.g., FEM-FCT, FVM, cannot ensure the positivity of the particle densities for the cases in attaching gases. By introducing the positivity-preserving limiter proposed by Zhang and Shu \\cite{ppl} and Strang operator splitting, this paper proposed a finite difference scheme with a provable positivity-preserving property in cylindrical coordinate system, for the numerical simulation of streamer discharges in non-attaching and attaching gases. Numerical examples in non-attaching gas (N$_2$) and attaching gas (SF$_6$) are given to illustrate the effectiveness of the scheme.

Zhuang, Chijie

2013-01-01T23:59:59.000Z

470

A bridge-functional-based classical mapping method for predicting the correlation functions of uniform electron gases at finite temperature  

SciTech Connect (OSTI)

Efficient and accurate prediction of the correlation functions of uniform electron gases is of great importance for both practical and theoretical applications. This paper presents a bridge-functional-based classical mapping method for calculating the correlation functions of uniform spin-unpolarized electron gases at finite temperature. The bridge functional is formulated by following Rosenfeld's universality ansatz in combination with the modified fundamental measure theory. The theoretical predictions are in good agreement with recent quantum Monte Carlo results but with negligible computational cost, and the accuracy is better than a previous attempt based on the hypernetted-chain approximation. We find that the classical mapping method is most accurate if the effective mass of electrons increases as the density falls.

Liu, Yu; Wu, Jianzhong, E-mail: jwu@engr.ucr.edu [Department of Chemical and Environmental Engineering and Department of Mathematics, University of California, Riverside, California 92521 (United States)] [Department of Chemical and Environmental Engineering and Department of Mathematics, University of California, Riverside, California 92521 (United States)

2014-02-28T23:59:59.000Z

471

Comparative investigation of third- and fifth-harmonic generation in atomic and molecular gases driven by midinfrared ultrafast laser pulses  

SciTech Connect (OSTI)

We report on the comparative experimental investigation on third- and fifth-harmonic generation (THG and FHG) in atomic and molecular gases driven by midinfrared ultrafast laser pulses at a wavelength of {approx}1500 nm. We observe that the conversion efficiencies of both the THG and FHG processes saturate at similar peak intensities close to {approx}1.5 x 10{sup 14} W/cm{sup 2} for argon, nitrogen, and air, whose ionization potentials are close to each other. Near the saturation intensity, the ratio of yields of the FHG and THG reaches {approx}10{sup -1} for all the gases. Our results show that high-order Kerr effect seems to exist; however, contribution from the fourth-order Kerr refractive index coefficient alone is insufficient to balance the Kerr self-focusing without the assistance of plasma generation.

Ni Jielei; Yao Jinping; Zeng Bin; Chu Wei; Li Guihua; Zhang Haisu; Jing Chenrui [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Chin, S. L. [Department of Physics, Engineering Physics and Optics, and Center for Optics, Photonics and Laser (COPL), Laval University, Laval, Quebec, G1K 7P4 (Canada); Cheng, Y.; Xu, Z. [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)

2011-12-15T23:59:59.000Z

472

Efficient all-optical production of large $^6$Li quantum gases using D$_1$ gray-molasses cooling  

E-Print Network [OSTI]

We use a gray molasses operating on the D$_1$ atomic transition to produce degenerate quantum gases of $^{6}$Li with a large number of atoms. This sub-Doppler cooling phase allows us to lower the initial temperature of 10$^9$ atoms from 500 to 40 $\\mu$K in 2 ms. We observe that D$_1$ cooling remains effective into a high-intensity infrared dipole trap where two-state mixtures are evaporated to reach the degenerate regime. We produce molecular Bose-Einstein condensates of up to 5$\\times$10$^{5}$ molecules and weakly-interacting degenerate Fermi gases of $7\\times$10$^{5}$ atoms at $T/T_{F}<0.1$ with a typical experimental duty cycle of 11 seconds.

A. Burchianti; G. Valtolina; J. A. Seman; E. Pace; M. De Pas; M. Inguscio; M. Zaccanti; G. Roati

2014-06-18T23:59:59.000Z

473

Safety and core design of large liquid-metal cooled fast breeder reactors  

E-Print Network [OSTI]

Absorption Metal (Zr) Metal (Mo) Carbide Nitride Oxidef /? a k ? Metal (Zr) Metal (Mo) Carbide Nitride Oxide Table? a k ? Metal (Zr) Metal (Mo) Carbide Nitride Oxide CHAPTER

Qvist, Staffan Alexander

2013-01-01T23:59:59.000Z

474

Thermal conductivity of the electrode gap of a thermionic converter, filled with inert gases, at low pressures  

SciTech Connect (OSTI)

Experimental data is presented on the thermal conductivity of the electrode gap of a thermionic converter filled with He, Ar, and Xe in the pressure range 40--550 Pa. The need to account for the coefficients of thermal accommodation of the emitter-inert-gas-collector system in this range is shown. The accommodation coefficients for different temperature regimes are measured and expressions are obtained to calculate the heat flux transported by the inert gases in the electrode gap.

Modin, V.A.; Nikolaev, Y.V.

1985-11-01T23:59:59.000Z

475

Voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992: General Guidelines  

SciTech Connect (OSTI)

Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, Congress authorized a voluntary program for the public to report achievements in reducing those gases. This document offers guidance on recording historic and current greenhouse gas emissions, emissions reductions, and carbon sequestration. Under the Energy Policy Act (EPAct) reporters will have the opportunity to highlight specific achievements. If you have taken actions to lessen the greenhouse gas effect, either by decreasing greenhouse gas emissions or by sequestering carbon, the Department of Energy (DOE) encourages you to report your achievements under this program. The program has two related, but distinct parts. First, the program offers you an opportunity to report your annual emissions of greenhouse gases. Second, the program records your specific projects to reduce greenhouse gas emissions and increase carbon sequestration. Although participants in the program are strongly encouraged to submit reports on both, reports on either annual emissions or emissions reductions and carbon sequestration projects will be accepted. These guidelines and the supporting technical documents outline the rationale for the program and approaches to analyzing emissions and emissions reduction projects. Your annual emissions and emissions reductions achievements will be reported.

Not Available

1994-10-01T23:59:59.000Z

476

Nanostructured Metal Oxide Anodes (Presentation)  

SciTech Connect (OSTI)

This summarizes NREL's FY09 battery materials research activity in developing metal oxide nanostructured anodes to enable high-energy, durable and affordable li-ion batteries for HEVs and PHEVs.

Dillon, A. C.; Riley, L. A.; Lee, S.-H.; Kim, Y.-H.; Ban, C.; Gillaspie, D. T.; Pesaran, A.

2009-05-01T23:59:59.000Z

477

Porous, sintered metal filter recovers 100% of catalyst in H/sub 2/O/sub 2/ process  

SciTech Connect (OSTI)

Recovery of catalyst and prevention of catalyst from entering the oxidizer were plant problems for the Interox America process for production of H/sub 2/O/sub 2/ by the catalyzed alternative hydrogenation and oxidation of anthraquinone. A porous metal filter element was inserted in the filter unit following the hydrogenation stage to collect the catalyst which forms a permeable cake that is recovered by backwashing on a timer cycle. The porous metal filters consisting of a rigid matrix containing small pores applicable for the collection of very small particles (> 0.5 ..mu.. in liquids and 0.05 ..mu.. in gases) have been in use in plants in UK for 25 years with 75% of the original filter elements still in use. (BLM)

Hall, G.L.; Isaacs, M.

1982-01-01T23:59:59.000Z

478

GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 2: User's Manual  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III contains some of the assessments performed by LANL and FzK.

B. D. Nichols; C. Müller; G. A. Necker; J. R. Travis; J. W. Spore; K. L. Lam; P. Royl; T. L. Wilson

1998-10-01T23:59:59.000Z

479

GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 3: Assessment Manual  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best- estimate tool to characterize local phenomena within a flow field. Exa