Sample records for metals cxs applied

  1. Pd and Ag metal-silicate partitioning applied to Earth differentiation and core-mantle exchange

    E-Print Network [OSTI]

    Mcdonough, William F.

    Pd and Ag metal-silicate partitioning applied to Earth differentiation and core-mantle exchange metallic sulfide and liquid silicate under plausible magma ocean conditions constrains potential core 107 Ag content and the origin of observed Pd and Ag mantle abundances. DPd metallic sulfide / silicate

  2. Trace Metal Retention in the Incorporation Zone of Land-Applied

    E-Print Network [OSTI]

    Walter, M.Todd

    , with agricultural, forest, and range lands as well as land reclamation sites increasingly used for land applicationTrace Metal Retention in the Incorporation Zone of Land-Applied Sludge T A M M O S . S T E E N H U, Ithaca, New York 14853 Recycling nutrients in wastewater sludge (biosolids) via land application

  3. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3Appliance andApplicationBerkeleyAppliedApply

  4. Method of applying a bond coating and a thermal barrier coating on a metal substrate, and related articles

    DOE Patents [OSTI]

    Hasz, Wayne Charles (Pownal, VT); Borom, Marcus Preston (Tucson, AZ)

    2002-01-01T23:59:59.000Z

    A method for applying at least one bond coating on a surface of a metal-based substrate is described. A foil of the bond coating material is first attached to the substrate surface and then fused thereto, e.g., by brazing. The foil is often initially prepared by thermally spraying the bond coating material onto a removable support sheet, and then detaching the support sheet. Optionally, the foil may also include a thermal barrier coating applied over the bond coating. The substrate can be a turbine engine component.

  5. Method of applying a cerium diffusion coating to a metallic alloy

    DOE Patents [OSTI]

    Jablonski, Paul D. (Salem, OR); Alman, David E. (Benton, OR)

    2009-06-30T23:59:59.000Z

    A method of applying a cerium diffusion coating to a preferred nickel base alloy substrate has been discovered. A cerium oxide paste containing a halide activator is applied to the polished substrate and then dried. The workpiece is heated in a non-oxidizing atmosphere to diffuse cerium into the substrate. After cooling, any remaining cerium oxide is removed. The resulting cerium diffusion coating on the nickel base substrate demonstrates improved resistance to oxidation. Cerium coated alloys are particularly useful as components in a solid oxide fuel cell (SOFC).

  6. A comparison of several surface finish measurement methods as applied to ground ceramic and metal surfaces

    SciTech Connect (OSTI)

    Blau, P.J.; Martin, R.L.; Riester, L.

    1996-01-01T23:59:59.000Z

    Surface finish is one of the most common measures of surface quality of ground ceramics and metal parts and a wide variety of methods and parameters have been developed to measure it. The purpose of this investigation was to compare the surface roughness parameters obtained on the same two specimens from three different types of measuring instruments: a traditional mechanical stylus system, a non-contact laser scanning system, and the atomic force microscope (two different AFM systems were compared). The same surface-ground silicon nitride and Inconel 625 alloy specimens were used for all measurements in this investigation. Significant differences in arithmetic average roughness, root-mean-square roughness, and peak-to-valley roughness were obtained when comparing data from the various topography measuring instruments. Non-contact methods agreed better with the others on the metal specimen than on the ceramic specimen. Reasons for these differences include the effective dimensions and geometry of the probe with respect to the surface topography; the reflectivity of the surface, and the type of filtering scheme Results of this investigation emphasize the importance of rigorously specifying the manner of surface roughness measurement when either reporting roughness data or when requesting that roughness data be provided.

  7. Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form

    SciTech Connect (OSTI)

    Keiser, D.D.

    1996-11-01T23:59:59.000Z

    Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne`s waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne`s metal waste form in light of the Yucca Mountain activities.

  8. Decision Analysis Science Modeling for Application and Fielding Selection Applied to Metal Decontamination Technologies

    SciTech Connect (OSTI)

    Lagos, L.E.; Ebadian, M.A.

    1998-01-01T23:59:59.000Z

    During the decontamination and decommissioning (D and D) activities being conducted by the U.S. Department of Energy (DOE), approximately 550,000 metric tons of contaminated metal will be generated by the disposition of contaminated buildings. The majority of the structural steel is considered to be radiologically contaminated. The D and D activities require the treatment of the structural steel to reduce occupational and environmental radiological exposures during dismantlement. Treatment technologies may also be required for possible recycling. Many proven commercial treatment technologies are available. These treatment processes vary in aggressiveness, safety requirements, secondary waste generation, necessary capital, and operation and maintenance costs. Choosing the appropriate technology to meet the decontamination objectives for structural steel is a difficult process. A single information source comparing innovative and nuclear and non-nuclear technologies in the areas of safety, cost and effectiveness is not currently commercially available to perform a detailed analysis. This study presents comparable data related to operation and maintenance, cost, and health and safely aspects of three readily available technologies and one innovative technology for nuclear decontamination. The technologies include Advance Recyclable Media System (ARMS{trademark}), NELCO Porta Shot Blast{trademark} (JHJ-2000), Pegasus Coating Removal System 7 (PCRS-7) and the innovative laser ablation technology called the Yag Eraser{trademark}.

  9. Quantum dissipative dynamics of adsorbates near metal surfaces: A surrogate Hamiltonian theory applied to hydrogen on nickel

    E-Print Network [OSTI]

    Baer, Roi

    applied to hydrogen on nickel Roi Baer and Ronnie Kosloff Department of Physical Chemistry and the Fritz on nickel were studied. In the bulk the line shape is mostly influenced by nonadiabatic effects on nickel. A distinction between lattice modes that enhance the tunneling and ones that suppress

  10. CX-008615: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-008615: Categorical Exclusion Determination Cleaning of Depleted Uranium Metal CX(s) Applied: B3.6 Date: 06262012 Location(s): South Carolina...

  11. Evaluation of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    SciTech Connect (OSTI)

    Anderson, Michael T.; Diaz, Aaron A.; Doctor, Steven R.

    2012-06-01T23:59:59.000Z

    During a recent inservice inspection (ISI) of a dissimilar metal weld (DMW) in an inlet (hot leg) steam generator nozzle at North Anna Power Station Unit 1, several axially oriented flaws went undetected by the licensee's manual ultrasonic testing (UT) technique. The flaws were subsequently detected as a result of outside diameter (OD) surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the DMW. Further ultrasonic tests were then performed, and a total of five axially oriented flaws, classified as primary water stress corrosion cracking (PWSCC), were detected in varied locations around the weld circumference.

  12. Final Assessment of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    SciTech Connect (OSTI)

    Anderson, Michael T.; Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Prowant, Matthew S.; Doctor, Steven R.

    2014-03-24T23:59:59.000Z

    PNNL conducted a technical assessment of the NDE issues and protocols that led to missed detections of several axially oriented flaws in a steam generator primary inlet dissimilar metal weld at North Anna Power Station, Unit 1 (NAPS-1). This particular component design exhibits a significant outside-diameter (OD) taper that is not included as a blind performance demonstration mock-up within the industry’s Performance Demonstration Initiative, administered by EPRI. For this reason, the licensee engaged EPRI to assist in the development of a technical justification to support the basis for a site-specific qualification. The service-induced flaws at NAPS-1 were eventually detected as a result of OD surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the dissimilar metal weld. A total of five axially oriented flaws were detected in varied locations around the weld circumference. The field volumetric examination that was conducted at NAPS-1 was a non-encoded, real-time manual ultrasonic examination. PNNL conducted both an initial assessment, and subsequently, a more rigorous technical evaluation (reported here), which has identified an array of NDE issues that may have led to the subject missed detections. These evaluations were performed through technical reviews and discussions with NRC staff, EPRI NDE Center personnel, industry and ISI vendor personnel, and ultrasonic transducer manufacturers, and laboratory tests, to better understand the underlying issues at North Anna.

  13. Fabricating metal-oxide-semiconductor field-effect transistors on a polyethylene terephthalate substrate by applying low-temperature layer transfer of a single-crystalline silicon layer by meniscus force

    SciTech Connect (OSTI)

    Sakaike, Kohei; Akazawa, Muneki; Nakamura, Shogo [Department of Semiconductor Electronics and Integration Science, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama 1-3-1, Higashihiroshima, Hiroshima 739-8530 (Japan)] [Department of Semiconductor Electronics and Integration Science, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama 1-3-1, Higashihiroshima, Hiroshima 739-8530 (Japan); Higashi, Seiichiro [Department of Semiconductor Electronics and Integration Science, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama 1-3-1, Higashihiroshima, Hiroshima 739-8530 (Japan) [Department of Semiconductor Electronics and Integration Science, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama 1-3-1, Higashihiroshima, Hiroshima 739-8530 (Japan); Research Institute for Nanodevice and Bio Systems, Hiroshima University, Kagamiyama 1-4-2, Higashihiroshima, Hiroshima 739-8527 (Japan)

    2013-12-02T23:59:59.000Z

    A low-temperature local-layer technique for transferring a single-crystalline silicon (c-Si) film by using a meniscus force was proposed, and an n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) was fabricated on polyethylene terephthalate (PET) substrate. It was demonstrated that it is possible to transfer and form c-Si films in the required shape at the required position on PET substrates at extremely low temperatures by utilizing a meniscus force. The proposed technique for layer transfer was applied for fabricating high-performance c-Si MOSFETs on a PET substrate. The fabricated MOSFET showed a high on/off ratio of more than 10{sup 8} and a high field-effect mobility of 609 cm{sup 2} V{sup ?1} s{sup ?1}.

  14. Applied Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W. Sturhahn, T. Toellner, K. Quast, P. Hession, M. Hu, J. Sutter, and E. Alp X-ray welding of metal-matrix composites R.A. Rosenberg, Q. Ma, W. Farrel, M. Keefe, and D.C....

  15. Liquid Metal Transformers

    E-Print Network [OSTI]

    Sheng, Lei; Liu, Jing

    2014-01-01T23:59:59.000Z

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clar...

  16. CX-007916: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Notice of Proposed Rulemaking for( Energy Conservation Standards for Metal Halide lamp Fixtures CX(s) Applied: B5.1 Date: 01/04/2012 Location(s): Nationwide Offices(s): Energy Efficiency and Renewable Energy

  17. CX-011776: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-011776: Categorical Exclusion Determination Final Rule for New and Amended Energy Conservation Standards for Metal Halide Lamp Fixtures CX(s) Applied: B5.1 Date: 01292014...

  18. CX-012520: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Engineering Accessible Adsorption Sites in Metal Organic Frameworks for CO2 Capture CX(s) Applied: B3.6Date: 41848 Location(s): GeorgiaOffices(s): National Energy Technology Laboratory

  19. CX-008646: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Metal Accumulation in Model Plants - Radioactive Studies CX(s) Applied: B3.6 Date: 05/22/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  20. CX-010999: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Collision Welding of Dissimilar Metals by Rapidly Expanding Plasma CX(s) Applied: B3.6 Date: 09122013 Location(s): Ohio Offices(s): National Energy...

  1. CX-011728: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    BlazeTech Corp. - Hyperspectral Imaging for the Identification of Light Metals CX(s) Applied: B3.6 Date: 10/31/2013 Location(s): Massachusetts Offices(s): Advanced Research Projects Agency-Energy

  2. CX-011731: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    University of Utah - Electromagnetic Sorting of Light Metals and Alloys CX(s) Applied: B3.6 Date: 12/12/2013 Location(s): Utah Offices(s): Advanced Research Projects Agency-Energy

  3. CX-009032: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Monitoring and Control of the Hybrid Laser-Gas Metal Arc Welding Process – Idaho National Laboratory CX(s) Applied: B3.6 Date: 08/13/2011 Location(s): Idaho Offices(s): Nuclear Energy

  4. CX-011544: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Innovative Elution Processes for Recovering Uranium and Transition Metals from Amidoxime-based Sorbents CX(s) Applied: B3.6 Date: 12/03/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  5. CX-009928: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Innovations in Advanced Materials and Metals (IAM2) CX(s) Applied: A9, A11 Date: 01/15/2013 Location(s): Washington Offices(s): Golden Field Office

  6. CX-011047: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Brazing Dissimilar Metals with a Novel Composite Foil CX(s) Applied: B3.6 Date: 09/09/2013 Location(s): Maryland Offices(s): National Energy Technology Laboratory

  7. CX-010492: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Permeation Testing Metals, Ceramics, and Polymers CX(s) Applied: B3.6 Date: 05/14/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  8. CX-011738: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Titanium Metals Corp - A Vision of an Electrochemical Cell to Produce Clean Titanium CX(s) Applied: B3.6 Date: 11/22/2013 Location(s): Nevada, Arizona Offices(s): Advanced Research Projects Agency-Energy

  9. CX-011480: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Vegetative Response to Metal Exposure in a Growing Media CX(s) Applied: B3.6 Date: 11/07/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  10. CX-100008: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Selective Recovery of Metals from Geothermal Brines Award Number: DE-EE0006747 CX(s) Applied: A9, B3.6 Geothermal Technologies Date: 08/28/2014 Location(s): California Office(s): Golden Field Office

  11. CX-012691: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of Novel Functional Graded Transition Joints for Improving the Creep Strength of Dissimilar Metal Welds in Nuclear Applications – Lehigh University CX(s) Applied: B3.6Date: 41869 Location(s): PennsylvaniaOffices(s): Nuclear Energy

  12. CX-010837: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Disassembly, Relocation, and Reassembly of a Metal-framed Quonset Hut CX(s) Applied: B1.22 Date: 08/01/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  13. CX-008640: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Construction of a Metal Carport Structure CX(s) Applied: B1.15 Date: 05/29/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  14. CX-008630: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Surface Water and Groundwater Sampling Pen Branch Floodplain near Chemicals Metals and Pesticides Pits CX(s) Applied: B3.1 Date: 06/07/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  15. CX-011568: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mixed Metal Phosphonate: Phosphate Resins for Separation of Lanthanides from Actinides CX(s) Applied: B3.6 Date: 11/18/2013 Location(s): Texas Offices(s): Idaho Operations Office

  16. CX-010210: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pt-based Bi-metallic Monolith Catalysts for Partial Upgrading of Microalgae Oil CX(s) Applied: A9, B3.6 Date: 01/08/2013 Location(s): New Jersey Offices(s): Golden Field Office

  17. CX-012683: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Studies of Lanthanide Transport in metallic Nuclear Fuels – Ohio State University CX(s) Applied: B3.6Date: 41862 Location(s): OhioOffices(s): Nuclear Energy

  18. Metal roofing Shingle roofing

    E-Print Network [OSTI]

    Hutcheon, James M.

    Metal roofing panel Shingle roofing Water & ice barrier Thermal Barrier Plywood Student: Arpit between the roof and the attic. · Apply modifications to traditional roofing assembly and roofing roof with only a water barrier between the plywood and the roofing panels. Metal roofing panel Shingle

  19. Stabilization of Electrocatalytic Metal Nanoparticles at Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points. Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene...

  20. Liquid Metal Transformers

    E-Print Network [OSTI]

    Lei Sheng; Jie Zhang; Jing Liu

    2014-01-30T23:59:59.000Z

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clarified. Such events are hard to achieve otherwise on rigid metal or conventional liquid spheres. This finding has both fundamental and practical significances which suggest a generalized way of making smart soft machine, collecting discrete metal fluids, as well as flexibly manipulating liquid metal objects including accompanying devices.

  1. Method of coating metal surfaces to form protective metal coating thereon

    DOE Patents [OSTI]

    Krikorian, Oscar H. (Danville, CA); Curtis, Paul G. (Tracy, CA)

    1992-01-01T23:59:59.000Z

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof.

  2. Method of coating metal surfaces to form protective metal coating thereon

    DOE Patents [OSTI]

    Krikorian, O.H.; Curtis, P.G.

    1992-03-31T23:59:59.000Z

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof. 1 figure.

  3. Method for decontamination of radioactive metal surfaces

    DOE Patents [OSTI]

    Bray, L.A.

    1996-08-13T23:59:59.000Z

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  4. Method for decontamination of radioactive metal surfaces

    DOE Patents [OSTI]

    Bray, Lane A. (Richland, WA)

    1996-01-01T23:59:59.000Z

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  5. Metal aminoboranes

    DOE Patents [OSTI]

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya; Shrestha, Roshan P.

    2010-05-11T23:59:59.000Z

    Metal aminoboranes of the formula M(NH2BH3)n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  6. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14T23:59:59.000Z

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  7. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  8. Metal inks

    DOE Patents [OSTI]

    Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

    2014-02-04T23:59:59.000Z

    Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

  9. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09T23:59:59.000Z

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  10. Metal deposition using seed layers

    DOE Patents [OSTI]

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12T23:59:59.000Z

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  11. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11T23:59:59.000Z

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  12. Displacement method and apparatus for reducing passivated metal powders and metal oxides

    DOE Patents [OSTI]

    Morrell; Jonathan S. (Knoxville, TN), Ripley; Edward B. (Knoxville, TN)

    2009-05-05T23:59:59.000Z

    A method of reducing target metal oxides and passivated metals to their metallic state. A reduction reaction is used, often combined with a flux agent to enhance separation of the reaction products. Thermal energy in the form of conventional furnace, infrared, or microwave heating may be applied in combination with the reduction reaction.

  13. Method of nitriding refractory metal articles

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Omatete, Ogbemi O. (Lagos, NG); Young, Albert C. (Flushing, NY)

    1994-01-01T23:59:59.000Z

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  14. Mixed ionic and electronic conducting electrode studies for an alkali metal thermal to electric converter

    E-Print Network [OSTI]

    Guo, Yuyan

    2009-05-15T23:59:59.000Z

    This research focuses on preparation, kinetics, and performance studies of mixed ionic and electronic conducting electrodes (MIEE) applied in an alkali metal thermal to electric converter (AMTEC). Two types of MIEE, metal/sodium titanate and metal...

  15. Metal oxide films on metal

    DOE Patents [OSTI]

    Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

    1995-01-01T23:59:59.000Z

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  16. Metals 2000

    SciTech Connect (OSTI)

    Allison, S.W.; Rogers, L.C.; Slaughter, G. [Oak Ridge National Lab., TN (United States); Boensch, F.D. [6025 Oak Hill Lane, Centerville, OH (United States); Claus, R.O.; de Vries, M. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1993-05-01T23:59:59.000Z

    This strategic planning exercise identified and characterized new and emerging advanced metallic technologies in the context of the drastic changes in global politics and decreasing fiscal resources. In consideration of a hierarchy of technology thrusts stated by various Department of Defense (DOD) spokesmen, and the need to find new and creative ways to acquire and organize programs within an evolving Wright Laboratory, five major candidate programs identified are: C-17 Flap, Transport Fuselage, Mach 5 Aircraft, 4.Fighter Structures, and 5. Missile Structures. These results were formed by extensive discussion with selected major contractors and other experts, and a survey of advanced metallic structure materials. Candidate structural applications with detailed metal structure descriptions bracket a wide variety of uses which warrant consideration for the suggested programs. An analysis on implementing smart skins and structures concepts is given from a metal structures perspective.

  17. Dendritic metal nanostructures

    DOE Patents [OSTI]

    Shelnutt, John A. (Tijeras, NM); Song, Yujiang (Albuquerque, NM); Pereira, Eulalia F. (Vila Nova de Gaia, PT); Medforth, Craig J. (Winters, CA)

    2010-08-31T23:59:59.000Z

    Dendritic metal nanostructures made using a surfactant structure template, a metal salt, and electron donor species.

  18. Metal Hydrides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19,DepartmentEnergyMetalMetal

  19. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing...

  20. Accepted Manuscript Title: Metal Current Collector-Free Freestanding

    E-Print Network [OSTI]

    Cui, Yi

    Accepted Manuscript Title: Metal Current Collector-Free Freestanding Silicon-Carbon 1D, Metal Current Collector-Free Freestanding Silicon-Carbon 1D Nanocomposites for Ultralight Anodes that apply to the journal pertain. #12;Page 1 of 20 Accepted M anuscript 1 Metal Current Collector

  1. HOUSING GUARANTEE Apply Online

    E-Print Network [OSTI]

    Mease, Kenneth D.

    THE UCI HOUSING GUARANTEE Apply Online 1 Log in to your MyAdmission account via the tab of Admission fee. 3 Complete the Online Housing Application and pay the $20 non-refundable fee. Freshmen apply for the residence halls. Transfer students apply for Arroyo Vista theme houses and on-campus apartments. Students 25

  2. Joining of parts via magnetic heating of metal aluminum powders

    DOE Patents [OSTI]

    Baker, Ian

    2013-05-21T23:59:59.000Z

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  3. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOE Patents [OSTI]

    Farmer, Joseph C. (Tracy, CA); Wong, Frank M. G. (Livermore, CA); Haslam, Jeffery J. (Livermore, CA); Yang, Nancy (Lafayette, CA); Lavernia, Enrique J. (Davis, CA); Blue, Craig A. (Knoxville, TN); Graeve, Olivia A. (Reno, NV); Bayles, Robert (Annandale, VA); Perepezko, John H. (Madison, WI); Kaufman, Larry (Brookline, MA); Schoenung, Julie (Davis, CA); Ajdelsztajn, Leo (Walnut Creek, CA)

    2009-11-17T23:59:59.000Z

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  4. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOE Patents [OSTI]

    Farmer, Joseph C.; Wong, Frank M.G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2014-07-15T23:59:59.000Z

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  5. Method for gas bubble and void control and removal from metals

    DOE Patents [OSTI]

    Siclen, C.D. Van; Wright, R.N.

    1996-02-06T23:59:59.000Z

    A method is described for enhancing the diffusion of gas bubbles or voids attached to impurity precipitates, and biasing their direction of migration out of the host metal (or metal alloy) by applying a temperature gradient across the host metal (or metal alloy). In the preferred embodiment of the present invention, the impurity metal is insoluble in the host metal and has a melting point lower than the melting point of the host material. Also, preferably the impurity metal is lead or indium and the host metal is aluminum or a metal alloy. 2 figs.

  6. Contour forming of metals by laser peening

    DOE Patents [OSTI]

    Hackel, Lloyd (Livermore, CA); Harris, Fritz (Rocklin, CA)

    2002-01-01T23:59:59.000Z

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  7. Applied Computer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Innovation Computing CCS Division CCS-7 Applied Computer Science Innovative co-design of applications, algorithms, and architectures in order to enable...

  8. Apply early! Limited enrollment.

    E-Print Network [OSTI]

    volcano. Experience the culture and history of Hawaii, and the impact of human activitiesApply early! Limited enrollment. Environmental Science in the Hawaiian Islands Observe, research

  9. Selecting and Applying Interfacings

    E-Print Network [OSTI]

    2006-05-01T23:59:59.000Z

    Selecting and using interfacing correctly is an important component of garment construction. The various types of interfacing are described and methods of applying them are discussed in detail....

  10. INTRODUCTION APPLIED GEOPHYSICS

    E-Print Network [OSTI]

    Merriam, James

    GEOL 384.3 INTRODUCTION TO APPLIED GEOPHYSICS OUTLINE INTRODUCTION TO APPLIED GEOPHYSICS GEOL 384 unknowns; the ones we don't know we don't know. And if one looks throughout the history of geophysics he didn't really say geophysics. He said, " ... our country and other free countries ...". But I am

  11. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25T23:59:59.000Z

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  12. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Phelps, Cindy (Moscow, ID)

    1997-01-01T23:59:59.000Z

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  13. Microscale Laser Shock Processing (LSP) of Metal Thin Films Wenwu Zhang*

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    surfaces is the major cause of failure for silicon-based micro-engines, while tungsten-coated polysilicon of these metal microstructures, such as micro- electromechanical actuators, metal gears, and metal switches the confining medium (such as water) onto a metallic surface, which is applied with a sacrificial coating

  14. CX-010566: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Massachusetts Institute of Technology- Scalable, Self-Powered Purification Technology for Brackish and Heavy Metal Contaminated Water CX(s) Applied: B3.6 Date: 05/23/2013 Location(s): Massachusetts Offices(s): Advanced Research Projects Agency-Energy

  15. CX-011495: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Dissolution Thorium Metal with Evaluation of Gas Generation and Evaluation for the Neutralization of Sodium Reactor Experiment (SRE) Fuel Simulant CX(s) Applied: B3.6 Date: 11/04/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  16. CX-011350: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Dissolution of Thorium Metal with Evaluation of Gas Generation and Evaluation for the Neutralization of Sodium Reactor Experiment (SRE) Fuel Simulant CX(s) Applied: B3.6 Date: 09/11/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  17. CX-100042: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Printed Nano Cu and NiSi Contacts and Metallization for Solar Cell Modules CX(s) Applied: B3.6 Date: 09/09/2014 Location(s): New York Offices(s): Golden Field Office Technology Office: Solar Energy Technologies Award Number: DE-EE0006684

  18. CX-011382: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    University of California Berkeley--Developing Metal-Organic Frameworks as Adsorbents for Industrial Carbon Capture Application CX(s) Applied: B3.6 Date: 08/23/2013 Location(s): California, Colorado, California Offices(s): Advanced Research Projects Agency-Energy

  19. CX-011735: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    UHV Technologies, Inc. - Low Cost High Throughput In-Line XRF Scrap Metal Sorter CX(s) Applied: B3.6 Date: 12/05/2013 Location(s): Texas, Kentucky Offices(s): Advanced Research Projects Agency-Energy

  20. Metal-phosphate binders

    DOE Patents [OSTI]

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12T23:59:59.000Z

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  1. Essays in applied microeconomics

    E-Print Network [OSTI]

    Aron-Dine, Aviva

    2012-01-01T23:59:59.000Z

    This dissertation consists of three chapters on topics in applied microeconomics. In the first chapter. I investigate whether voters are more likely to support additional spending on local public services when they perceive ...

  2. Engineering and Applied

    E-Print Network [OSTI]

    Stowell, Michael

    > Computer Science > Electrical, Computer, and Energy Engineering > Mechanical Engineering 11, Computational Science and Engineering, Energy Systems and Environmental Sustainability, Materials ScienceCollege of Engineering and Applied Science Contact Robert H. Davis, Engineering Dean 303

  3. Applying for Research Awards

    E-Print Network [OSTI]

    ... 53.22 KB APPLYING FOR RESEARCH AWARDS The Eastern Bird Banding Association seeks applicants for its annual $500 research awards in aid of research using banding techniques or bird banding data. ...

  4. Zone refining of plutonium metal

    SciTech Connect (OSTI)

    Blau, M.S.

    1994-08-01T23:59:59.000Z

    The zone refining process was applied to Pu metal containing known amounts of impurities. Rod specimens of plutonium metal were melted into and contained in tantalum boats, each of which was passed horizontally through a three-turn, high-frequency coil in such a manner as to cause a narrow molten zone to pass through the Pu metal rod 10 times. The impurity elements Co, Cr, Fe, Ni, Np, U were found to move in the same direction as the molten zone as predicted by binary phase diagrams. The elements Al, Am, and Ga moved in the opposite direction of the molten zone as predicted by binary phase diagrams. As the impurity alloy was zone refined, {delta}-phase plutonium metal crystals were produced. The first few zone refining passes were more effective than each later pass because an oxide layer formed on the rod surface. There was no clear evidence of better impurity movement at the slower zone refining speed. Also, constant or variable coil power appeared to have no effect on impurity movement during a single run (10 passes). This experiment was the first step to developing a zone refining process for plutonium metal.

  5. Metal Hydrides - Science Needs

    Broader source: Energy.gov (indexed) [DOE]

    with traditions in metal hydride research Metal and Ceramic Sciences Condensed Matter Physics Materials Chemistry Chemical and Biological Sciences Located on campus of Tier...

  6. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect (OSTI)

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.; Zeitoon, B.M.

    1995-12-01T23:59:59.000Z

    Molten Metal Technology was awarded a contract to demonstrate the applicability of the Catalytic Extraction Process, a proprietary process that could be applied to US DOE`s inventory of low level mixed waste. This paper is a description of that technology, and included within this document are discussions of: (1) Program objectives, (2) Overall technology review, (3) Organic feed conversion to synthetic gas, (4) Metal, halogen, and transuranic recovery, (5) Demonstrations, (6) Design of the prototype facility, and (7) Results.

  7. Magnetic metallic multilayers

    SciTech Connect (OSTI)

    Hood, R.Q.

    1994-04-01T23:59:59.000Z

    Utilizing self-consistent Hartree-Fock calculations, several aspects of multilayers and interfaces are explored: enhancement and reduction of the local magnetic moments, magnetic coupling at the interfaces, magnetic arrangements within each film and among non-neighboring films, global symmetry of the systems, frustration, orientation of the various moments with respect to an outside applied field, and magnetic-field induced transitions. Magnetoresistance of ferromagnetic-normal-metal multilayers is found by solving the Boltzmann equation. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by an external magnetic field. The calculation depends on (1) geometric parameters (thicknesses of layers), (2) intrinsic metal parameters (number of conduction electrons, magnetization, and effective masses in layers), (3) bulk sample properties (conductivity relaxation times), (4) interface scattering properties (diffuse scattering versus potential scattering at the interfaces, and (5) outer surface scattering properties (specular versus diffuse surface scattering). It is found that a large negative magnetoresistance requires considerable asymmetry in interface scattering for the two spin orientations. Features of the interfaces that may produce an asymmetrical spin-dependent scattering are studied: varying interfacial geometric random roughness with no lateral coherence, correlated (quasi-periodic) roughness, and varying chemical composition of the interfaces. The interplay between these aspects of the interfaces may enhance or suppress the magnetoresistance, depending on whether it increases or decreases the asymmetry in the spin-dependent scattering of the conduction electrons.

  8. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science, Computing, Applied Math science-innovationassetsimagesicon-science.jpg Information Science, Computing, Applied Math National security depends on science and...

  9. Heavy metal biosensor

    SciTech Connect (OSTI)

    Hillson, Nathan J; Shapiro, Lucille; Hu, Ping; Andersen, Gary L

    2014-04-15T23:59:59.000Z

    Compositions and methods are provided for detection of certain heavy metals using bacterial whole cell biosensors.

  10. SUSTAINABILITY WHO CAN APPLY

    E-Print Network [OSTI]

    FUNDED BY CALL FOR SUSTAINABILITY RESEARCH STUDENT WHO CAN APPLY Undergraduate and graduate Participate in the Global Change & Sustainability Center's Research Symposium; attend workshops with faculty or publish in the U's student-run sustainability publication to be released in May 2014. Are you conducting

  11. Applied Microbiology and Biotechnology

    E-Print Network [OSTI]

    Alvarez-Cohen, Lisa

    1 23 Applied Microbiology and Biotechnology ISSN 0175-7598 Appl Microbiol Biotechnol DOI 10.1007/s-Cohen #12;1 23 Your article is protected by copyright and all rights are held exclusively by Springer in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version

  12. METAL HYDRIDE HYDROGEN COMPRESSORS: A REVIEW

    SciTech Connect (OSTI)

    Bowman Jr, Robert C [ORNL] [ORNL; Yartys, Dr. Volodymyr A. [Institute for Energy Technology (IFE)] [Institute for Energy Technology (IFE); Lototskyy, Dr. Michael V [University of the Western Cape, South Africa] [University of the Western Cape, South Africa; Pollet, Dr. B.G. [University of the Western Cape, South Africa

    2014-01-01T23:59:59.000Z

    Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine the metal hydride material itself should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal-hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimized to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation. The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal-hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.

  13. Exhaust system having a gold-platinum group metal catalyst

    DOE Patents [OSTI]

    Ragle, Christie Susan (Havana, IL); Silver, Ronald G. (Peoria, IL); Zemskova, Svetlana Mikhailovna (Edelstein, IL); Eckstein, Colleen J. (Metamora, IL)

    2011-12-06T23:59:59.000Z

    A method of providing an exhaust treatment device is disclosed. The method includes applying a catalyst including gold and a platinum group metal to a particulate filter. The concentration of the gold and the platinum group metal is sufficient to enable oxidation of carbon monoxide and nitric oxide.

  14. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01T23:59:59.000Z

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  15. Metallic Bipolar Plates with Composite Coatings

    E-Print Network [OSTI]

    that is available in sheet form For corrosion resistance, apply a coating that is a composite of two materials: ­ Filler to provide electrical conductivity · Candidate Materials: graphite, carbon black, TiB2 and CaB6Metallic Bipolar Plates with Composite Coatings Jennifer Mawdsley Argonne National Laboratory Fuel

  16. Applied ALARA techniques

    SciTech Connect (OSTI)

    Waggoner, L.O.

    1998-02-05T23:59:59.000Z

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  17. Metal phthalocyanine catalysts

    DOE Patents [OSTI]

    Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

    1994-01-01T23:59:59.000Z

    As a new composition of matter, alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  18. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, Edward F. (P.O. Box 900, Isle of Palms, SC 29451)

    1992-01-01T23:59:59.000Z

    A method for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF.sub.4 and HNO.sub.3 and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200.degree. C. The porous material can be pulverized before immersion to further increase the leach rate.

  19. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, Paul O. (Golden, CO); Kennedy, Cheryl E. (Lafayette, CO); Jorgensen, Gary J. (Pine, CO); Shinton, Yvonne D. (Northglenn, CO); Goggin, Rita M. (Englewood, CO)

    1994-01-01T23:59:59.000Z

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  20. PHYTOEXTRACTION OF HEAVY METALS

    E-Print Network [OSTI]

    Blouin-Demers, Gabriel

    Plants Chelating agents Pb hyperaccumulation Effects of pH on metal extraction Disposal options contaminants from soils Contaminants must be in harvestable portions of the plant (Wongkongkatep et al. 2003) Chelating Agents: desorb heavy metals from soil matrix and form water-soluble metal complexes (Shen et al

  1. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01T23:59:59.000Z

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  2. Studies on the optimization of deformation processed metal metal matrix composites

    SciTech Connect (OSTI)

    Ellis, T.W.

    1994-01-04T23:59:59.000Z

    A methodology for the production of deformation processed metal metal matrix composites from hyper-eutectic copper-chromium alloys was developed. This methodology was derived from a basic study of the precipitation phenomena in these alloys encompassing evaluation of microstructural, electrical, and mechanical properties. The methodology developed produces material with a superior combination of electrical and mechanical properties compared to those presently available in commercial alloys. New and novel alloying procedures were investigated to extend the range of production methods available for these material. These studies focused on the use of High Pressure Gas Atomization and the development of new containment technologies for the liquid alloy. This allowed the production of alloys with a much more refined starting microstructure and lower contamination than available by other methods. The knowledge gained in the previous studies was used to develop two completely new families of deformation processed metal metal matrix composites. These composites are based on immissible alloys with yttrium and magnesium matrices and refractory metal reinforcement. This work extends the physical property range available in deformation processed metal metal matrix composites. Additionally, it also represents new ways to apply these metals in engineering applications.

  3. Extraction process for removing metallic impurities from alkalide metals

    DOE Patents [OSTI]

    Royer, Lamar T. (Knoxville, TN)

    1988-01-01T23:59:59.000Z

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  4. School of Applied Technology School of Applied Technology

    E-Print Network [OSTI]

    Heller, Barbara

    School of Applied Technology School of Applied Technology Daniel F. and Ada L. Rice Campus Illinois Institute of Technology 201 E. Loop Road Wheaton, IL 60187 630.682.6000 www.iit.edu/applied tech/ Dean and Academic Director, Information Technology and Management Programs: C. Robert Carlson Director of Operations

  5. School of Applied Technology School of Applied Technology

    E-Print Network [OSTI]

    Heller, Barbara

    School of Applied Technology School of Applied Technology Daniel F. and Ada L. Rice Campus Illinois Institute of Technology 201 E. Loop Road Wheaton, IL 60187 630.682.6000 www.iit.edu/applied tech/ Dean Technology and Management Programs: Mazin Safar Director, Marketing & Development: Scott Pfeiffer Director

  6. Numerical Analysis of Metal Transfer in Gas Metal Arc Welding under Modified Pulsed Current Conditions

    E-Print Network [OSTI]

    Zhang, YuMing

    causes a thermal load too high to apply to thin sectioned or heat-sensitive materials. In an effort was assumed as the boundary condition for the calculation of the electromagnetic force. The calculations were agreement between calculation and experimental results. I. INTRODUCTION IN gas metal arc welding (GMAW

  7. Applied inductive learning Louis Wehenkel

    E-Print Network [OSTI]

    Wehenkel, Louis

    problems 20 2.3.1 Classes 20 2.3.2 Types of classi cation problems 20 2.3.3 Learning and test sets 21 2Applied inductive learning Louis Wehenkel University of Li`ege Faculty of Applied Sciences Course;#12;APPLIED INDUCTIVE LEARNING COURSE NOTES : OCTOBER 2000 LOUIS A. WEHENKEL University of Li#12;ege

  8. Applied inductive learning Louis Wehenkel

    E-Print Network [OSTI]

    Wehenkel, Louis

    .3.2 Types of classification problems 20 2.3.3 Learning and test sets 21 2.3.4 Decision or classificationApplied inductive learning Louis Wehenkel University of Liâ??ege Faculty of Applied Sciences Courseâ??e'' #12; #12; APPLIED INDUCTIVE LEARNING COURSE NOTES : OCTOBER 2000 LOUIS A. WEHENKEL University of Li

  9. Journal of Applied Ecology 2004

    E-Print Network [OSTI]

    Holl, Karen

    Journal of Applied Ecology 2004 41, 922­933 © 2004 British Ecological Society Blackwell Publishing-scale, Sacramento River, succession, vegetation Journal of Applied Ecology (2004) 41, 922­933 Introduction More than@ucsc.edu). #12;923 Riparian forest restoration © 2004 British Ecological Society, Journal of Applied Ecology, 41

  10. Journal of Applied Ecology 2002

    E-Print Network [OSTI]

    Holl, Karen

    Journal of Applied Ecology 2002 39, 960­970 © 2002 British Ecological Society Blackwell Science- tion, succession. Journal of Applied Ecology (2002) 39, 960­970 Introduction Efforts to reclaim@ucsc.edu). #12;961 Vegetation on reclaimed mines © 2002 British Ecological Society, Journal of Applied Ecology

  11. Applying Mathematics.... ... to catch criminals

    E-Print Network [OSTI]

    O'Leary, Michael

    Applying Mathematics.... ... to catch criminals Mike O'Leary Department of Mathematics Towson University Stevenson University Kappa Mu Epsion 2008 Mike O'Leary (Towson University) Applying mathematics Department Mike O'Leary (Towson University) Applying mathematics to catch criminals September 10, 2008 2 / 42

  12. Metal atomization spray nozzle

    DOE Patents [OSTI]

    Huxford, T.J.

    1993-11-16T23:59:59.000Z

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  13. Applied Catalysis A: General 192 (2000) 227234 Hydrogen production via the direct cracking of methane over Ni/SiO2

    E-Print Network [OSTI]

    zur Loye, Hans-Conrad

    2000-01-01T23:59:59.000Z

    Applied Catalysis A: General 192 (2000) 227­234 Hydrogen production via the direct cracking al. / Applied Catalysis A: General 192 (2000) 227­234 to be the diffusion of carbon through the metal

  14. Reactor process using metal oxide ceramic membranes

    DOE Patents [OSTI]

    Anderson, M.A.

    1994-05-03T23:59:59.000Z

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques. 2 figures.

  15. Heavy Metal Humor: Reconsidering Carnival in Heavy Metal Culture

    E-Print Network [OSTI]

    Powell, Gary Botts

    2013-06-05T23:59:59.000Z

    This thesis considers Bakhtin?s carnivalesque theory by analyzing comedic rhetoric performed by two comedic metal bands. Through the theories of Johan Huizinga and Mikhail Bakhtin, Chapter I: I Play Metal argues that heavy metal culture is a modern...

  16. Transition Metal Dopants Essential for Producing Ferromagnetism...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Dopants Essential for Producing Ferromagnetism in Metal Oxide Nanoparticles. Transition Metal Dopants Essential for Producing Ferromagnetism in Metal Oxide Nanoparticles....

  17. Porous metallic bodies

    DOE Patents [OSTI]

    Landingham, R.L.

    1984-03-13T23:59:59.000Z

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides a

  18. Method for controlling gas metal arc welding

    DOE Patents [OSTI]

    Smartt, Herschel B. (Idaho Falls, ID); Einerson, Carolyn J. (Idaho Falls, ID); Watkins, Arthur D. (Idaho Falls, ID)

    1989-01-01T23:59:59.000Z

    The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections.

  19. Method for controlling gas metal arc welding

    DOE Patents [OSTI]

    Smartt, H.B.; Einerson, C.J.; Watkins, A.D.

    1987-08-10T23:59:59.000Z

    The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections. 3 figs., 1 tab.

  20. Production of magnesium metal

    DOE Patents [OSTI]

    Blencoe, James G. (Harriman, TN) [Harriman, TN; Anovitz, Lawrence M. (Knoxville, TN) [Knoxville, TN; Palmer, Donald A. (Oliver Springs, TN) [Oliver Springs, TN; Beard, James S. (Martinsville, VA) [Martinsville, VA

    2010-02-23T23:59:59.000Z

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  1. Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Tiegs, Terry N. (Lenoir City, TN)

    1992-01-01T23:59:59.000Z

    A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  2. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1992-10-13T23:59:59.000Z

    A method is described for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF[sub 4] and HNO[sub 3] and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200 C. The porous material can be pulverized before immersion to further increase the leach rate.

  3. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOE Patents [OSTI]

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03T23:59:59.000Z

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  4. APPLIED TECHNOLOGY Strategic Plan Summary

    E-Print Network [OSTI]

    Heller, Barbara

    and collaborative technology-based support for the proposed Innovation Center and the Entrepreneurship Academy. We research centers­CNR, CPI, and CSP. Establish a food safety and processing technology hub/incubator/innovationSCHOOL OF APPLIED TECHNOLOGY Strategic Plan Summary #12;School of Applied Technology Strategic Plan

  5. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, N.N.; Watkin, J.G.

    1992-03-24T23:59:59.000Z

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  6. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, Nancy N. (Los Alamos, NM); Watkin, John G. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  7. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  8. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  9. Transition Metal Switchable Mirror

    SciTech Connect (OSTI)

    None

    2009-01-01T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  10. Transition Metal Switchable Mirror

    SciTech Connect (OSTI)

    2009-08-21T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  11. Department of Applied Mathematics Department of Applied Mathematics

    E-Print Network [OSTI]

    Heller, Barbara

    , computational mathematics, discrete applied mathematics, and stochas- tics. More detailed descriptions of Philosophy in Collegiate Mathematics Education (joint program with the Department of Mathematics and Science Education) Research Facilities The department provides students with office space equipped with computers

  12. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOE Patents [OSTI]

    Coops, Melvin S. (Livermore, CA)

    1992-01-01T23:59:59.000Z

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  13. Divalent metal nanoparticles

    E-Print Network [OSTI]

    DeVries, Gretchen Anne

    2008-01-01T23:59:59.000Z

    Metal nanoparticles hold promise for many scientific and technological applications, such as chemical and biological sensors, vehicles for drug delivery, and subdiffraction limit waveguides. To fabricate such devices, a ...

  14. Production of magnesium metal

    DOE Patents [OSTI]

    Blencoe, James G. (Harriman, TN); Anovitz, Lawrence M. (Knoxville, TN); Palmer, Donald A. (Oliver Springs, TN); Beard, James S. (Martinsville, VA)

    2012-04-10T23:59:59.000Z

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

  15. Functionalized Silicone Nanospheres: Synthesis, Transition Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functionalized Silicone Nanospheres: Synthesis, Transition Metal Immobilization, and Catalytic Applications. Functionalized Silicone Nanospheres: Synthesis, Transition Metal...

  16. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    DOE Patents [OSTI]

    Farmer, Joseph C. (Tracy, CA)

    2011-12-13T23:59:59.000Z

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  17. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    DOE Patents [OSTI]

    Farmer, Joseph C.

    2014-07-15T23:59:59.000Z

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  18. Molten metal reactors

    DOE Patents [OSTI]

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

    2013-11-05T23:59:59.000Z

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  19. Criteria for safe storage of plutonium metals and oxides

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    This standard establishes safety criteria for safe storage of plutonium metals and plutonium oxides at DOE facilities; materials packaged to meet these criteria should not need subsequent repackaging to ensure safe storage for at least 50 years or until final disposition. The standard applied to Pu metals, selected alloys (eg., Ga and Al alloys), and stabilized oxides containing at least 50 wt % Pu; it does not apply to Pu-bearing liquids, process residues, waste, sealed weapon components, or material containing more than 3 wt % {sup 238}Pu. Requirements for a Pu storage facility and safeguards and security considerations are not stressed as they are addressed in detail by other DOE orders.

  20. Modeling applied to problem solving

    E-Print Network [OSTI]

    Pawl, Andrew

    We describe a modeling approach to help students learn expert problem solving. Models are used to present and hierarchically organize the syllabus content and apply it to problem solving, but students do not develop and ...

  1. IIT SCHOOL OF APPLIED TECHNOLOGY

    E-Print Network [OSTI]

    Heller, Barbara

    INDUSTRIAL TECHNOLOGY AND MANAGEMENT IIT SCHOOL OF APPLIED TECHNOLOGY PREPARING SKILLED INDIVIDUALS, INDUSTRIAL FACILITIES, SUPPLY CHAIN MANAGEMENT, SUSTAINABILITY AND MANUFACTURING TECHNOLOGY. #12;BE ONE to assess, implement, and utilize current technologies, and to learn how to manage industrial operations

  2. Sustainable FACULTY OF APPLIED SCIENCE

    E-Print Network [OSTI]

    Michelson, David G.

    Working Together Towards a Sustainable Energy Future FACULTY OF APPLIED SCIENCE Clean Energy aspects of sustainable energy solutions, and is committed to using its extensive expertise to serve, Electrical & Computer, Materials, Mechanical, Mining), the School of Architecture & Landscape Architecture

  3. Method for forming metal contacts

    DOE Patents [OSTI]

    Reddington, Erik; Sutter, Thomas C; Bu, Lujia; Cannon, Alexandra; Habas, Susan E; Curtis, Calvin J; Miedaner, Alexander; Ginley, David S; Van Hest, Marinus Franciscus Antonius Maria

    2013-09-17T23:59:59.000Z

    Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.

  4. CX-009420: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Additive Manufacturing Using EOSINT M280 CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  5. CX-009418: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Electron Beam Melting CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  6. CX-010574: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Applied Materials - Kerf-less Crystaline-Silicon Photovoltaic: Gas to Modules CX(s) Applied: B3.6 Date: 05162013 Location(s): California,...

  7. CX-009419: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Magnetic Pulser CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  8. High-Temperature Zirconia Oxygen Sensor with Sealed Metal/Metal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference...

  9. A study of certain trace metals in sea water using anodic stripping voltammetry

    E-Print Network [OSTI]

    Fitzgerald, William Francis, 1926-

    1970-01-01T23:59:59.000Z

    Anodic stripping voltammetry utilizing a thin film mercury composite graphite electrode has been evaluated and applied for the direct analysis of the metals, Zn,J Cu, Pb, and Cd in sea water. The electrode was observed to ...

  10. Cycle-to-cycle control of reconfigurable die sheet metal forming

    E-Print Network [OSTI]

    Vaughan, Chester Dewey

    2004-01-01T23:59:59.000Z

    This research addresses cycle to cycle control as applied to a sheet metal stretch forming process. More specifically, it attempts to validate the use of cycle to cycle (CtC) control for a multiple input-multiple output ...

  11. Nitrided Metallic Bipolar Plates

    SciTech Connect (OSTI)

    Brady, Michael P [ORNL; Tortorelli, Peter F [ORNL; Pihl, Josh A [ORNL; Toops, Todd J [ORNL; More, Karren Leslie [ORNL; Meyer III, Harry M [ORNL; Vitek, John Michael [ORNL; Wang, Heli [National Renewable Energy Laboratory (NREL); Turner, John [National Renewable Energy Laboratory (NREL); Wilson, Mahlon [Los Alamos National Laboratory (LANL); Garzon, Fernando [Los Alamos National Laboratory (LANL); Rockward, Tommy [Los Alamos National Laboratory (LANL); Connors, Dan [GenCell Corp; Rakowski, Jim [Allegheny Ludlum; Gervasio, Don [Arizona State University

    2008-01-01T23:59:59.000Z

    The objectives are: (1) Develop and optimize stainless steel alloys amenable to formation of a protective Cr-nitride surface by gas nitridation, at a sufficiently low cost to meet DOE targets and with sufficient ductility to permit manufacture by stamping. (2) Demonstrate capability of nitridation to yield high-quality stainless steel bipolar plates from thin stamped alloy foils (no significant stamped foil warping or embrittlement). (3) Demonstrate single-cell fuel cell performance of stamped and nitrided alloy foils equivalent to that of machined graphite plates of the same flow-field design ({approx}750-1,000 h, cyclic conditions, to include quantification of metal ion contamination of the membrane electrode assembly [MEA] and contact resistance increase attributable to the bipolar plates). (4) Demonstrate potential for adoption in automotive fuel cell stacks. Thin stamped metallic bipolar plates offer the potential for (1) significantly lower cost than currently-used machined graphite bipolar plates, (2) reduced weight/volume, and (3) better performance and amenability to high volume manufacture than developmental polymer/carbon fiber and graphite composite bipolar plates. However, most metals exhibit inadequate corrosion resistance in proton exchange membrane fuel cell (PEMFC) environments. This behavior leads to high electrical resistance due to the formation of surface oxides and/or contamination of the MEA by metallic ions, both of which can significantly degrade fuel cell performance. Metal nitrides offer electrical conductivities up to an order of magnitude greater than that of graphite and are highly corrosion resistant. Unfortunately, most conventional coating methods (for metal nitrides) are too expensive for PEMFC stack commercialization or tend to leave pinhole defects, which result in accelerated local corrosion and unacceptable performance.

  12. Effect of contact metals on the piezoelectric properties of aluminum nitride thin films

    SciTech Connect (OSTI)

    Harman, J.P.; Kabulski, A. (West Virginia U., Morgantown, WV); Pagan, V.R. (West Virginia U., Morgantown, WV); Famouri, K. (West Virginia U., Morgantown, WV); Kasarla, K.R.; Rodak, L.E. (West Virginia U., Morgantown, WV); Hensel, J.P.; Korakakis, D.

    2008-07-01T23:59:59.000Z

    The converse piezoelectric response of aluminum nitride evaluated using standard metal insulator semiconductor structures has been found to exhibit a linear dependence on the work function of the metal used as the top electrode. The apparent d33 of the 150–1100 nm films also depends on the dc bias applied to the samples.

  13. A plane stress anisotropic plastic flow theory for orthotropic sheet metals

    E-Print Network [OSTI]

    Tong, Wei

    such as automotive aluminum sheets. As textured sheet metals produced by hot and cold rolling exhibit significant for describing the anisotropic plastic flow of ortho- tropic polycrystalline aluminum sheet metals under plane are applied successfully to describe the anisotropic plastic flow behavior of 10 commercial aluminum alloy

  14. Metallic coating of microspheres

    SciTech Connect (OSTI)

    Meyer, S.F.

    1980-08-15T23:59:59.000Z

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates.

  15. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, Haskell (Los Alamos, NM)

    1986-01-01T23:59:59.000Z

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  16. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, H.

    1983-07-26T23:59:59.000Z

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  17. Metal alloy identifier

    DOE Patents [OSTI]

    Riley, William D. (Avondale, MD); Brown, Jr., Robert D. (Avondale, MD)

    1987-01-01T23:59:59.000Z

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  18. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliancesTrending: Metal Oxo Bonds Print Metal

  19. Wick for metal vapor laser

    DOE Patents [OSTI]

    Duncan, David B. (Livermore, CA)

    1992-01-01T23:59:59.000Z

    An improved wick for a metal vapor laser is made of a refractory metal cylinder, preferably molybdenum or tungsten for a copper laser, which provides the wicking surface. Alternately, the inside surface of the ceramic laser tube can be metalized to form the wicking surface. Capillary action is enhanced by using wire screen, porous foam metal, or grooved surfaces. Graphite or carbon, in the form of chunks, strips, fibers or particles, is placed on the inside surface of the wick to reduce water, reduce metal oxides and form metal carbides.

  20. Journal of Applied Ecology 2006

    E-Print Network [OSTI]

    Thomas, Len

    Journal of Applied Ecology 2006 43, 377­384 © 2006 The Authors. Journal compilation © 2006 British Ecological Society Blackwell Publishing Ltd METHODOLOGICAL INSIGHTS Point transect sampling with traps, Etive House, Beechwood Park, Inverness IV2 3BW, UK Summary 1. The ability to monitor abundance of animal

  1. APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING

    E-Print Network [OSTI]

    Rogina, Mladen

    APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING Brijuni, Croatia June 23{27, 2003. y x Runge's example; Organized by: Department of Mathematics, Unversity of Zagreb, Croatia. Miljenko Maru#20;si#19;c, chairman;simir Veseli#19;c Andro Mikeli#19;c Sponsors: Ministry of Science and Technology, Croatia, CV Sistemi d

  2. Applied Sustainability Political Science 319

    E-Print Network [OSTI]

    Young, Paul Thomas

    1 Applied Sustainability Political Science 319 College of Charleston Spring 2013 Day/Time: TH 1 Address: fisherb@cofc.edu Office: 284 King Street, #206 (Office of Sustainability) Office Hours: by appt sustainability. It will focus on the development of semester-long sustainability projects, from conception

  3. California Energy Commission Apply Today!

    E-Print Network [OSTI]

    including HVAC and thermal energy storage system upgrades, stadium light conversion and a microturbineCalifornia Energy Commission Apply Today! "The College implemented all of the recommended projects Programs Office (916) 654-4147 pubprog@energy.state.ca.us "CEC financing allowed us to install many

  4. implementing bioenergy applied research & development

    E-Print Network [OSTI]

    Northern British Columbia, University of

    1 A Northern Centre for Renewable Energy implementing bioenergy applied research & development to develop local solutions to these challenges by integrating campus operations, education, and research will help the University meet its current and future energy needs, reduce or eliminate our greenhouse gas

  5. Conductive inks for metalization in integrated polymer microsystems

    DOE Patents [OSTI]

    Davidson, James Courtney (Livermore, CA); Krulevitch, Peter A. (Pleasanton, CA); Maghribi, Mariam N. (Livermore, CA); Benett, William J. (Livermore, CA); Hamilton, Julie K. (Tracy, CA); Tovar, Armando R. (San Antonio, TX)

    2006-02-28T23:59:59.000Z

    A system of metalization in an integrated polymer microsystem. A flexible polymer substrate is provided and conductive ink is applied to the substrate. In one embodiment the flexible polymer substrate is silicone. In another embodiment the flexible polymer substrate comprises poly(dimethylsiloxane).

  6. Lithium Metal Anodes for Rechargeable Batteries. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

  7. Metallicity and Quasar Outflows

    E-Print Network [OSTI]

    Wang, Huiyuan; Yuan, Weimin; Wang, Tinggui

    2012-01-01T23:59:59.000Z

    Correlations are investigated of the outflow strength of quasars, as measured by the blueshift and asymmetry index (BAI) of the CIV line (Wang et al. 2011), with intensities and ratios of broad emission lines, based on composite quasar spectra built from the Sloan Digital Sky Survey. We find that most of the line ratios of other ions to CIV prominently increases with BAI. These behaviors can be well understood in the context of increasing metallicity with BAI. The strength of dominant coolant, CIV line, decreases and weak collisionally excited lines increase with gas metallicity as a result of the competition between different line coolants. Using SiIV+OIV]/CIV as an indicator of gas metallicity, we present, for the first time, a strong correlation between the metallicitiy and the outflow strength of quasars over a wide range of 1.7 to 6.9 times solar abundance. Our result implies that the metallicity plays an important role in the formation of quasar outflows, likely via affecting outflow acceleration. This ...

  8. Ductile transplutonium metal alloys

    DOE Patents [OSTI]

    Conner, W.V.

    1981-10-09T23:59:59.000Z

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  9. Speed of Sound in metal Speed of Sound in metal

    E-Print Network [OSTI]

    Yu, Jaehoon

    the metal rod and metal bar. 2. Acquire a metal bar or rod and measure its mass. Use the meter stick and measure and record the length in meters. Use the vernier calipers and measure the other dimensionBar Select the Smart Tool. Position the Smart tool so that the vertical line bisects the pulse. The (x

  10. Method of producing adherent metal oxide coatings on metallic surfaces

    DOE Patents [OSTI]

    Lane, Michael H. (Clifton Park, NY); Varrin, Jr., Robert D. (McLean, VA)

    2001-01-01T23:59:59.000Z

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  11. Applied physical chemistry progress report, October 1991--September 1992

    SciTech Connect (OSTI)

    Johnson, C.E.; Attaya, H.M.; Billone, M.C.; Blomquist, R.A.; Kopasz, J.P.; Leibowitz, L.; Roche, M.F.; Seils, C.A.

    1993-12-01T23:59:59.000Z

    This document reports on the work done in applied physical chemistry at the Chemical Technology Division (CMT), Argonne National Laboratory (ANL), in the period October 1991 through September 1992. this work includes research into the process that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor under development at ANL, and the properties of candidate tritium breeding materials in environments simulating those of fusion energy systems. Viscosity and liquidus-solidus temperatures of core-concrete mixtures were studied.

  12. Calixarene supported transition metal clusters 

    E-Print Network [OSTI]

    Taylor, Stephanie Merac

    2013-06-29T23:59:59.000Z

    This thesis describes a series of calix[n]arene polynuclear transition metal and lanthanide complexes. Calix[4]arenes possess lower-rim polyphenolic pockets that are ideal for the complexation of various transition metal ...

  13. Electroless metal plating of plastics

    DOE Patents [OSTI]

    Krause, Lawrence J. (Chicago, IL)

    1984-01-01T23:59:59.000Z

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  14. Electroless metal plating of plastics

    DOE Patents [OSTI]

    Krause, L.J.

    1982-09-20T23:59:59.000Z

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  15. Electroless metal plating of plastics

    DOE Patents [OSTI]

    Krause, Lawrence J. (Chicago, IL)

    1986-01-01T23:59:59.000Z

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  16. Upgrading platform using alkali metals

    DOE Patents [OSTI]

    Gordon, John Howard

    2014-09-09T23:59:59.000Z

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  17. Methods of recovering alkali metals

    DOE Patents [OSTI]

    Krumhansl, James L; Rigali, Mark J

    2014-03-04T23:59:59.000Z

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  18. Fabrication of metallic glass structures

    DOE Patents [OSTI]

    Cline, C.F.

    1983-10-20T23:59:59.000Z

    Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature regime.

  19. Integrated decontamination process for metals

    DOE Patents [OSTI]

    Snyder, Thomas S. (Oakmont, PA); Whitlow, Graham A. (Murrysville, PA)

    1991-01-01T23:59:59.000Z

    An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.

  20. Automated Immobilized Metal Affinity Chromatography System for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Immobilized Metal Affinity Chromatography System for Enrichment of Escherichia coli Phosphoproteome. Automated Immobilized Metal Affinity Chromatography System for Enrichment of...

  1. Spray casting of metallic preforms

    DOE Patents [OSTI]

    Flinn, John E. (Idaho Falls, ID); Burch, Joseph V. (Shelley, ID); Sears, James W. (Niskayuna, NY)

    2000-01-01T23:59:59.000Z

    A metal alloy is melted in a crucible and ejected from the bottom of the crucible as a descending stream of molten metal. The descending stream is impacted with a plurality of primary inert gas jets surrounding the molten metal stream to produce a plume of atomized molten metal droplets. An inert gas is blown onto a lower portion of the plume with a plurality of auxiliary inert gas jets to deflect the plume into a more restricted pattern of high droplet density, thereby substantially eliminating unwanted overspray and resulting wasted material. The plume is projected onto a moving substrate to form a monolithic metallic product having generally parallel sides.

  2. Functional Metal Phosphonates

    E-Print Network [OSTI]

    Perry, Houston Phillipp

    2012-02-14T23:59:59.000Z

    ......................................................... 39 12 Zr6 prepared at 205 ?C with HF as a solubilizing agent ................................ 43 13 Layered structure of Zn(O3PC6H4CN)(H2O) and Mn(O3PC6H4CN)(H2O) viewed along the c-axis. The coordinating water molecules are between... acid groups form hydrogen-bonded pairs in in Zn(O3PC6H4CO2H)(H2O) and Mn(O3PC6H4CO2H)(H2O). ..................... 55 15 Inorganic layered structure common to divalent metal phosphonates. Octahedral metal ions are coordinated by five phosphonate...

  3. FLUIDIC: Metal Air Recharged

    ScienceCinema (OSTI)

    Friesen, Cody

    2014-04-02T23:59:59.000Z

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  4. FLUIDIC: Metal Air Recharged

    SciTech Connect (OSTI)

    Friesen, Cody

    2014-03-07T23:59:59.000Z

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  5. Metal enrichment processes

    E-Print Network [OSTI]

    S. Schindler; A. Diaferio

    2008-01-07T23:59:59.000Z

    There are many processes that can transport gas from the galaxies to their environment and enrich the environment in this way with metals. These metal enrichment processes have a large influence on the evolution of both the galaxies and their environment. Various processes can contribute to the gas transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy interactions and others. We review their observational evidence, corresponding simulations, their efficiencies, and their time scales as far as they are known to date. It seems that all processes can contribute to the enrichment. There is not a single process that always dominates the enrichment, because the efficiencies of the processes vary strongly with galaxy and environmental properties.

  6. The time reversed elastic nonlinearity diagnostic applied to evaluation of diffusion bonds

    E-Print Network [OSTI]

    The time reversed elastic nonlinearity diagnostic applied to evaluation of diffusion bonds T. J based nondestructive evaluation techniques has begun. Here, diffusion bonded metal disks containing and impulse responses to perform TR experiments in thin h 5 mm, d 5 cm diffusion bonded disks, in order

  7. Corrosion protective coating for metallic materials

    DOE Patents [OSTI]

    Buchheit, Rudolph G. (Albuquerque, NM); Martinez, Michael A. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds.

  8. Corrosion protective coating for metallic materials

    DOE Patents [OSTI]

    Buchheit, R.G.; Martinez, M.A.

    1998-05-26T23:59:59.000Z

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

  9. Hydrothermal alkali metal recovery process

    DOE Patents [OSTI]

    Wolfs, Denise Y. (Houston, TX); Clavenna, Le Roy R. (Baytown, TX); Eakman, James M. (Houston, TX); Kalina, Theodore (Morris Plains, NJ)

    1980-01-01T23:59:59.000Z

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  10. Applying to Teacher Education Program at Purdue

    E-Print Network [OSTI]

    David Drasin

    2012-12-02T23:59:59.000Z

    Apply to the Teacher Education Program (TEP). Please remember to apply to the TEP(Gate A) if you wish to officially enroll in the. Professional Education ...

  11. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect (OSTI)

    Dr. Ramana Reddy

    2012-04-12T23:59:59.000Z

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode. Successful extraction of metal from metal oxide dissolved in Urea/ChCl (2:1) was accomplished. The current efficiencies were relatively high in both the metal deposition processes with current efficiency greater than 86% for lead and 95% for zinc. This technology will advance the metal oxide reduction process by increasing the process efficiency and also eliminate the production of CO2 which makes this an environmentally benign technology for metal extraction.

  12. Fluorescence from a quantum dot and metallic nanosphere hybrid system

    SciTech Connect (OSTI)

    Schindel, Daniel G. [Department of Mathematics and Statistics, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB, R3B 2E9 (Canada); Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7 (Canada)

    2014-03-31T23:59:59.000Z

    We present energy absorption and interference in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. A control field is applied to induce dipole moments in the nanosphere and the quantum dot, and a probe field is applied to monitor absorption. Dipole moments in the quantum dot or the metal nanosphere are induced, both by the external fields and by each other's dipole fields. Thus, in addition to direct polarization, the metal nanosphere and the quantum dot will sense one another via the dipole-dipole interaction. The density matrix method was used to show that the absorption spectrum can be split from one peak to two peaks by the control field, and this can also be done by placing the metal sphere close to the quantum dot. When the two are extremely close together, a self-interaction in the quantum dot produces an asymmetry in the absorption peaks. In addition, the fluorescence efficiency can be quenched by the addition of a metal nanosphere. This hybrid system could be used to create ultra-fast switching and sensing nanodevices.

  13. Applied Materials | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,Anza ElectricInc Jump to:Applied

  14. Durability of Metallic Interconnects and Protective Coatings

    SciTech Connect (OSTI)

    Yang, Zhenguo; Stevenson, Jeffry W.

    2009-12-15T23:59:59.000Z

    To build up a useful voltage, a number of solid oxide fuel cells (SOFCs) are electrically connected into series in a stack via interconnects, which are placed between adjacent cells. In addition to functioning as a bi-polar electrical connector, the interconnect also acts as a separator plate that separates the fuel at the anode side of one cell from the air at the cathode side on an adjacent cell. During SOFC operation at the high temperatures, the interconnects are thus simultaneously exposed to the oxidizing air at one side and a reducing fuel that can be either hydrogen or hydrocarbon at the other. Besides, they are in contact with adjacent components, such as electrodes or electrical contacts, seals, etc. With steady reduction in SOFC operating temperatures into the low or intermediate range 600-850oC, oxidation resistant alloys are often used to construct interconnects. However, the metallic interconnects may degrade via interactions at their interfaces with surrounding environments or adjacent components, potentially affecting the stability and performance of interconnects and the SOFC stacks. Thus protection layers are applied to metallic interconnects that also intend to mitigate or prevent chromium migration into cells and the cell poisoning. This chapter provides a comprehensive review of materials for metallic interconnects, their degradation and coating protection.

  15. Method of assembling and sealing an alkali metal battery

    DOE Patents [OSTI]

    Elkins, P.E.; Bell, J.E.; Harlow, R.A.; Chase, G.G.

    1983-03-01T23:59:59.000Z

    A method of initially assembling and then subsequently hermetically sealing a container portion of an alkali metal battery to a ceramic portion of such a battery is disclosed. Sealing surfaces are formed respectively on a container portion and a ceramic portion of an alkali metal battery. These sealing surfaces are brought into juxtaposition and a material is interposed there between. This interposed material is one which will diffuse into sealing relationship with both the container portion and the ceramic portion of the alkali metal battery at operational temperatures of such a battery. A pressure is applied between these sealing surfaces to cause the interposed material to be brought into intimate physical contact with such juxtaposed surfaces. A temporary sealing material which will provide a seal against a flow of alkali metal battery reactants there through at room temperatures and is applied over the juxtaposed sealing surfaces and material interposed there between. The entire assembly is heated to an operational temperature so that the interposed material diffuses into the container portion and the ceramic portion to form a hermetic seal there between. The pressure applied to the juxtaposed sealing surfaces is maintained in order to ensure the continuation of the hermetic seal. 4 figs.

  16. Microfabrication of freestanding metal structures released from graphite substrates.

    SciTech Connect (OSTI)

    Makarova, O. V.; Tang, C.-M.; Mancini, D. C.; Moldovan, N.; Divan, R.; Ryding, D. G.; Lee, R. H.

    2002-02-22T23:59:59.000Z

    A sacrificial layer is usually used to release electroformed microstructures. Because of the chemistry applied to the sacrificial layer, only a limited number of metals can be used for electroforming. A novel method to fabricate freestanding electroformed copper structures is presented. A graphite substrate allows the release of the metal part, by abrasive removal of the graphite after electroforming. Results on fabrication of high-aspect-ratio freestanding copper grids are presented; these can be used as x-ray collimator in medical imaging to reduce scattered radiation. This process has potential application to the fabrication of injection molds and microparts on pick-and-place carriers for microelectromechanical systems (MEMS).

  17. Memory matrix theory of magnetotransport in strange metals

    E-Print Network [OSTI]

    Andrew Lucas; Subir Sachdev

    2015-04-30T23:59:59.000Z

    We model strange metals as quantum liquids without quasiparticle excitations, but with slow momentum relaxation, and with slow diffusive dynamics of a conserved charge and energy. General expressions are obtained for electrical, thermal and thermoelectric transport in the presence of an applied magnetic field using the memory matrix formalism. In the appropriate limits, our expressions agree with previous hydrodynamic and holographic results. We discuss the relationship of such results to thermoelectric and Hall transport measurements in the strange metal phase of the hole-doped cuprates.

  18. Heavy metal characterization of municipal solid waste compost

    E-Print Network [OSTI]

    Worsham, Michael Craig

    1992-01-01T23:59:59.000Z

    -Chair of Committee) Emile A. Schweikert (Member) James T. P Y o (Head of Depar ment) May 1992 ABSTRA. CT Heavy Metal Characterization Of Municipal Solid Waste Compost (May 1992) Michael Craig Worsham, B. S. , S. U. N. Y. at Stony Brook Co-Chairs of Advisory... Committee: Dr. Bill Batchelor Dr. Kirk W. Brown Waste incineration and composting create solid residues which are later applied to or buried under soils. Although incinerator ash has been studied extensively for heavy metal content, much less is known...

  19. Ceramic-glass-metal seal by microwave heating

    DOE Patents [OSTI]

    Meek, T.T.; Blake, R.D.

    1983-10-04T23:59:59.000Z

    A method for producing a ceramic-glass-metal seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid-phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  20. Electromagnetic confinement for vertical casting or containing molten metal

    DOE Patents [OSTI]

    Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1991-01-01T23:59:59.000Z

    An apparatus and method adapted to confine a molten metal to a region by means of an alternating electromagnetic field. As adapted for use in the present invention, the alternating electromagnetic field given by B.sub.y =(2.mu..sub.o .rho.gy).sup.1/2 (where B.sub.y is the vertical component of the magnetic field generated by the magnet at the boundary of the region; y is the distance measured downward form the top of the region, .rho. is the metal density, g is the acceleration of gravity and .mu..sub.o is the permeability of free space) induces eddy currents in the molten metal which interact with the magnetic field to retain the molten metal with a vertical boudnary. As applied to an apparatus for the continuous casting of metal sheets or rods, metal in liquid form can be continuously introduced into the region defined by the magnetic field, solidified and conveyed away from the magnetic field in solid form in a continuous process.

  1. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z Site Map OrganizationFAQTrending: Metal Oxo

  2. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z Site Map OrganizationFAQTrending: Metal

  3. METALS DESIGN HANDBOOK DISCLAIMER

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamics in807 DE899 06 Revision 0 METALS

  4. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliancesTrending: Metal Oxo Bonds Print

  5. Metal coupled emission process

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMayEnergy Metal Organic Heat Carrierscom,

  6. Metal to ceramic sealed joint

    DOE Patents [OSTI]

    Lasecki, John V. (Livonia, MI); Novak, Robert F. (Farmington Hills, MI); McBride, James R. (Ypsilanti, MI)

    1991-01-01T23:59:59.000Z

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system.

  7. Metal to ceramic sealed joint

    DOE Patents [OSTI]

    Lasecki, J.V.; Novak, R.F.; McBride, J.R.

    1991-08-27T23:59:59.000Z

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system. 11 figures.

  8. Supported molten-metal catalysts

    DOE Patents [OSTI]

    Datta, Ravindra (Iowa City, IA); Singh, Ajeet (Iowa City, IA); Halasz, Istvan (Iowa City, IA); Serban, Manuela (Iowa City, IA)

    2001-01-01T23:59:59.000Z

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  9. Metals removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C. (Pleasanton, CA); Von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Brummond, William A. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

    2002-01-01T23:59:59.000Z

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  10. Method for preparing porous metal hydride compacts

    DOE Patents [OSTI]

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21T23:59:59.000Z

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  11. Method for preparing porous metal hydride compacts

    DOE Patents [OSTI]

    Ron, Moshe (Haifa, IL); Gruen, Dieter M. (Downers Grove, IL); Mendelsohn, Marshall H. (Woodridge, IL); Sheft, Irving (Oak Park, IL)

    1981-01-01T23:59:59.000Z

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  12. CX-012313: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chicago Office Technical Support Services Contract CX(s) Applied: A8 Date: 06/13/2014 Location(s): CX: none Offices(s): Chicago Office

  13. CX-007858: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Southwest Solar Transformation Initiative CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): California Offices(s): Golden Field Office

  14. CX-010367: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Asbestos Abatement Actions CX(s) Applied: B1.16 Date: 11/19/2012 Location(s): Tennessee, California, Virginia Offices(s): Berkeley Site Office

  15. CX-010258: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bangladesh Meteorological Instrumentation Installation CX(s) Applied: A9 Date: 04/26/2013 Location(s): Colorado Offices(s): Golden Field Office

  16. CX-012632: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    LURR 20140456 - Salmon Creek Avenue Pathway Project CX(s) Applied: B4.9Date: 41885 Location(s): WashingtonOffices(s): Bonneville Power Administration

  17. CX-001373: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Analytical Development Tritium Support Laboratory for Mass Spectroscopy, Infrared Spectroscopy, and Raman CX(s) Applied: B3.6 Date: 03102010 Location(s): Aiken,...

  18. CX-004196: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    6: Categorical Exclusion Determination CX-004196: Categorical Exclusion Determination Infrared and Raman Spectroscopy of Biological Safety Level-1 Biological Samples CX(s) Applied:...

  19. CX-000331: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-000331: Categorical Exclusion Determination Kentucky Revision 2 - Commercial Office Building Retrofit Showcase CX(s) Applied: B1.4, B1.5,...

  20. CX-003518: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003518: Categorical Exclusion Determination Energy from Biomass Research and Technology Transfer Program CX(s) Applied: B3.6 Date: 08232010...

  1. CX-012089: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-012089: Categorical Exclusion Determination Wood Pole Testing for 20 Transmission Lines in Southern Arizona and Southern California CX(s) Applied: B3.1 Date: 04172014...

  2. CX-000815: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    0815: Categorical Exclusion Determination CX-000815: Categorical Exclusion Determination Hydrogen Technology Laboratory 140 - Chromatography, Wet Laboratory CX(s) Applied: B3.6...

  3. CX-009005: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Henderson Solar Energy Project CX(s) Applied: B5.16 Date: 08/22/2012 Location(s): Nevada Offices(s): Golden Field Office

  4. CX-011116: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sunpath SANFAB CX(s) Applied: B5.16 Date: 08/09/2013 Location(s): Nevada Offices(s): Golden Field Office

  5. CX-012474: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Refractories/Ceramics Project CX(s) Applied: B3.6Date: 41870 Location(s): OregonOffices(s): National Energy Technology Laboratory

  6. CX-005151: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005151: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Wyoming CX(s) Applied: A9, A11...

  7. CX-005154: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005154: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Kentucky CX(s) Applied: A9, A11,...

  8. CX-005159: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005159: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - Indiana Geological Survey CX(s) Applied: A9,...

  9. CX-008691: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mason Substation Metering Replacement Project CX(s) Applied: B1.7 Date: 06/25/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  10. CX-011237: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lightspeed Networks Inc. Fiber Installation CX(s) Applied: B4.9 Date: 10/24/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  11. CX-006471: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-006471: Categorical Exclusion Determination Air Awareness Campaign Electric Car Charging Station CX(s) Applied: B5.1 Date: 08042011 Location(s): Greenville, South...

  12. CX-000903: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    903: Categorical Exclusion Determination CX-000903: Categorical Exclusion Determination Smart Grid Photovoltaic Pilot CX(s) Applied: B5.1 Date: 02242010 Location(s): Illinois...

  13. CX-012015: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-012015: Categorical Exclusion Determination Enhanced Wind Resource Assessment with Sonic Ranging and Detection at Tooele Army Depot CX(s) Applied:...

  14. CX-012110: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination Defense Logistics Agency, Tracy, California, Wind Resource Assessment CX(s) Applied: A9, B3.1 Date: 05072014 Location(s): California...

  15. CX-002753: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-002753: Categorical Exclusion Determination Gilt Edge Mine Wind Resource Assessment CX(s) Applied: B3.1 Date: 06212010 Location(s): Deadwood, South...

  16. CX-002823: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-002823: Categorical Exclusion Determination Nebraska College of Technical Agriculture Biomass Facility CX(s) Applied: B5.1 Date: 06242010 Location(s): Curtis, Nebraska...

  17. CX-006074: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-006074: Categorical Exclusion Determination Bay Area Photovoltaics Consortium, Photovoltaic Manufacturing Initiative CX(s) Applied: A9 Date: 0628...

  18. CX-007549: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Harrisonville - Waste Water Treatment Plant CX(s) Applied: B5.1 Date: 01/10/2012 Location(s): Missouri Offices(s): Golden Field Office

  19. CX-007571: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pulaski County - Wastewater CX(s) Applied: B5.1 Date: 12/29/2011 Location(s): Missouri Offices(s): Golden Field Office

  20. CX-008797: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Coal Pile Basin Project CX(s) Applied: B1.29 Date: 06/04/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  1. CX-010590: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kalispell Shunt Cap Addition Project CX(s) Applied: B4.11 Date: 07/01/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  2. CX-008234: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Whole Energy Glycerin Refinery CX(s) Applied: B5.15 Date: 04/20/2012 Location(s): Washington Offices(s): Golden Field Office

  3. CX-011564: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Excess Facilities Deactivation and Demolition CX(s) Applied: B1.23 Date: 11/05/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  4. CX-012724: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Test Reactor (ATR) Electronic Message Board Installation CX(s) Applied: B1.7Date: 41830 Location(s): IdahoOffices(s): Nuclear Energy

  5. CX-002964: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-002964: Categorical Exclusion Determination Wind Energy and Sustainable Energy Solutions CX(s) Applied: B3.11, A9 Date: 07092010...

  6. CX-005201: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005201: Categorical Exclusion Determination Tall Tower Wind Energy Monitoring and Numerical Model Validation in Southern Nevada CX(s) Applied: A9,...

  7. CX-003507: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination State Energy Program American Recovery and Reinvestment Act: Solar Power Incorporated Photovoltaic Panel Manufacturing Facility CX(s) Applied: B1.31,...

  8. CX-012810: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    St. Johns-Keeler Minor Access Road Improvement CX(s) Applied: B1.3Date: 41901 Location(s): OregonOffices(s): Bonneville Power Administration

  9. CX-011368: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Temperature Thermal Properties CX(s) Applied: B1.31 Date: 10/23/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  10. CX-011798: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Analytical Physics - Thermal Analysis CX(s) Applied: B3.6 Date: 01/30/2014 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  11. CX-001724: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-001724: Categorical Exclusion Determination Recovery Act City of Boise Energy Efficiency and Conservation Block Grant (EECBG) CX(s) Applied: B5.1 Date: 04122010...

  12. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center October 26, 2009 CX-005544: Categorical Exclusion Determination Power Rate Formula for the Provo River Project of the Western Area Power Administration CX(s) Applied:...

  13. CX-012706: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Radiochemistry Laboratory (RCL) Supply Intake Filter Housing CX(s) Applied: B2.5Date: 41858 Location(s): IdahoOffices(s): Nuclear Energy

  14. CX-008684: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Metaline Radio Station Upgrade Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  15. CX-009465: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: B3.6 Date: 10182012...

  16. CX-009462: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: A9, A11 Date: 1018...

  17. CX-011295: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-011295: Categorical Exclusion Determination Material Dynamics and Kinetics Lab CX(s) Applied: B3.6 Date: 10172013 Location(s): Pennsylvania...

  18. CX-009463: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: B3.6 Date: 10182012...

  19. CX-009464: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: A9, A11 Date: 1018...

  20. CX-012776: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Catalyst Processing, KCP14-05 CX(s) Applied: NOT NOTEDDate: 41857 Location(s): MissouriOffices(s): Kansas City Site Office

  1. CX-008215: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Small Hydropower Research and Development Technology Project CX(s) Applied: A9 Date: 04/03/2012 Location(s): Colorado Offices(s): Golden Field Office

  2. CX-011535: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    East Grangeville Substation Sale CX(s) Applied: B1.24 Date: 11/14/2013 Location(s): Idaho Offices(s): Bonneville Power Administration

  3. CX-012233: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shed Acquisition at Kalispell Substation CX(s) Applied: B1.24 Date: 06/09/2014 Location(s): Montana Offices(s): Bonneville Power Administration

  4. CX-012622: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace roofing system at 702-F CX(s) Applied: B1.3Date: 41799 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  5. CX-012621: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace 730-2B Roof CX(s) Applied: B1.3Date: 41799 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  6. CX-012433: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Computer Simulation and Prototype Construction and Testing CX(s) Applied: A9Date: 41878 Location(s): GeorgiaOffices(s): National Energy Technology Laboratory

  7. CX-010689: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Generic CX Determination for Financial Assistance Awards CX(s) Applied: Unknown Date: 07/17/2013 Location(s): Illinois Offices(s): Chicago Office

  8. Categorical Exclusion (CX) Determinations By Date | Department...

    Office of Environmental Management (EM)

    (CX) Determinations By Date Categorical Exclusion (CX) Determinations By Date August 25, 2015 CX-012469: Categorical Exclusion Determination Gas Analysis Services CX(s) Applied:...

  9. CX-010869: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Nauticas Research Program CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): Illinois Offices(s): Argonne Site Office

  10. CX-012664: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SBIR/STTR Phase 0 Outreach and Assistance Program CX(s) Applied: A8Date: 41844 Location(s): IllinoisOffices(s): Chicago Office

  11. CX-010581: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Little Shell Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  12. CX-011252: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-011252: Categorical Exclusion Determination Concentrating Solar Power Heat Integration for Baseload Renewable Energy Deployment CX(s) Applied: A9...

  13. CX-004374: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    74: Categorical Exclusion Determination CX-004374: Categorical Exclusion Determination Solar Electric Power for Nonsectarian Educational and Social CX(s) Applied: A9, B5.1 Date:...

  14. CX-011391: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-011391: Categorical Exclusion Determination Municipal Complex Solar Power Project CX(s) Applied: B3.14 Date: 12102013 Location(s): New Jersey...

  15. CX-008507: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-008507: Categorical Exclusion Determination Midwest Regional Carbon Sequestration Partnership - Phase Three CX(s) Applied: B3.1, B5.3 Date: 07162012...

  16. CX-007111: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007111: Categorical Exclusion Determination Shallow Carbon Sequestration Demonstration Project (Iatan Generating Station) CX(s) Applied: B3.1...

  17. CX-008476: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-008476: Categorical Exclusion Determination Small Scale Field Test Demonstrating Carbon Dioxide Sequestration in the Arbuckle Saline Aquifer CX(s) Applied: A9, B1.15,...

  18. CX-007118: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007118: Categorical Exclusion Determination Shallow Carbon Sequestration Demonstration Project CX(s) Applied: B3.1 Date: 10042011...

  19. CX-009326: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-009326: Categorical Exclusion Determination Midwest Regional Carbon Sequestration Partnership - Subtask 1.7 CX(s) Applied: B3.1 Date: 09282012...

  20. CX-000591: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination 25A2936 - Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration CX(s) Applied: B3.6 Date: 12152009 Location(s): California...

  1. CX-003037: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-003037: Categorical Exclusion Determination Mercury Removal from Clean Coal Processing Air Stream CX(s) Applied: B3.6 Date: 07132010 Location(s): Butte,...

  2. CX-011165: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Heavy Mineral Separation CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  3. CX-012716: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    General Scientific Infrastructure Support for University of Wisconsin CX(s) Applied: B1.31Date: 41844 Location(s): WisconsinOffices(s): Nuclear Energy

  4. CX-011115: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Realization of Algae Potential CX(s) Applied: A9 Date: 08/29/2013 Location(s): New Mexico Offices(s): Golden Field Office

  5. CX-007844: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Retrofits CX(s) Applied: B5.1 Date: 12/01/2011 Location(s): Rhode Island Offices(s): Energy Efficiency and Renewable Energy

  6. CX-007689: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Tech Research Corporation- Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-Reliable Green Electricity Internetworks CX(s) Applied: A9 Date: 1118...

  7. CX-000734: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-000734: Categorical Exclusion Determination Detection and Production of Methane Hydrates CX(s) Applied: A9 Date: 01222010 Location(s): Stillwater, Oklahoma Office(s):...

  8. CX-000733: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-000733: Categorical Exclusion Determination Detection and Production of Methane Hydrates CX(s) Applied: A9 Date: 01222010 Location(s): Austin, Texas Office(s): Fossil...

  9. CX-010941: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-010941: Categorical Exclusion Determination Assessing the Response of Methane Hydrates to Environmental Change at the Svalbard Continental Margin CX(s) Applied: B3.6,...

  10. CX-007388: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-007388: Categorical Exclusion Determination Regional Test Center Project: Solar Technology Acceleration Center (SolarTAC) CX(s) Applied: B1.15,...

  11. CX-012245: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Categorical Exclusion Determination CX-012245: Categorical Exclusion Determination Hydro Research Foundation University Research Awards - Carnegie Mellon CX(s) Applied: A9 Date:...

  12. CX-012253: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Categorical Exclusion Determination CX-012253: Categorical Exclusion Determination Hydro Research Foundation University Research Awards - OSU CX(s) Applied: A9 Date: 05272014...

  13. CX-012252: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Categorical Exclusion Determination CX-012252: Categorical Exclusion Determination Hydro Research Foundation University Research Awards- Cornell CX(s) Applied: A9, B3.16 Date:...

  14. CX-012254: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Categorical Exclusion Determination CX-012254: Categorical Exclusion Determination Hydro Research Foundation University Research Awards - Vanderbilt CX(s) Applied: A9 Date: 05...

  15. CX-003904: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    904: Categorical Exclusion Determination CX-003904: Categorical Exclusion Determination Hydro Electric Project - Snohomish Public Utility District CX(s) Applied: A9, A11, B5.1...

  16. CX-012246: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Categorical Exclusion Determination CX-012246: Categorical Exclusion Determination Hydro Research Foundation University Research Awards - University of Tennessee CX(s) Applied:...

  17. CX-012241: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Categorical Exclusion Determination CX-012241: Categorical Exclusion Determination Hydro Research Foundation University Research Awards - MIT CX(s) Applied: A9, B3.6 Date: 06...

  18. CX-011534: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grays River Confluence Property Funding CX(s) Applied: B1.25 Date: 11/08/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  19. CX-012434: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low Cost Titanium Casting Technology CX(s) Applied: B3.6Date: 41878 Location(s): OhioOffices(s): National Energy Technology Laboratory

  20. CX-009542: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Parks Project CX(s) Applied: B5.16 Date: 11/09/2012 Location(s): Florida Offices(s): Golden Field Office

  1. CX-003403: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-003403: Categorical Exclusion Determination The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration CX(s) Applied: A9, B3.7...

  2. CX-002745: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-002745: Categorical Exclusion Determination The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration CX(s) Applied: B3.1, A9...

  3. CX-006681: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-006681: Categorical Exclusion Determination New Drilling Location in Section 29 CX(s) Applied: B3.1 Date: 12232009 Location(s): Casper,...

  4. CX-006682: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-006682: Categorical Exclusion Determination New Drilling Location in Section 29 (Revision 1) CX(s) Applied: B3.7 Date: 06022010 Location(s):...

  5. CX-008486: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-008486: Categorical Exclusion Determination Demonstration of Gas Powered Drilling Operations for Economically-Challenged Wellhead Gas and Evaluation CX(s) Applied:...

  6. CX-007941: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Zonal Isolation Improvement for Horizontal Wells Drilling in the Marcellus Shale CX(s) Applied: A9 Date: 02152012 Location(s): Texas...

  7. CX-003888: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003888: Categorical Exclusion Determination Improved Drilling and Fracturing Fluids for Shale Gas Reservoirs CX(s) Applied: B3.6 Date: 09102010...

  8. CX-007940: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Zonal Isolation Improvement for Horizontal Wells Drilling in the Marcellus Shale CX(s) Applied: B3.6 Date: 02152012 Location(s): Texas...

  9. CX-005582: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Foro Energy, Incorporated - Low-Contact Drilling Technology to Enable Economical Enhance Geothermal System Wells CX(s) Applied: B3.6,...

  10. CX-000855: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-000855: Categorical Exclusion Determination 25A5208 - Low-contact Drilling Technology to Enable Economical Engineered Geothermal System Wells CX(s) Applied:...

  11. CX-008876: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Railroad Island Property Funding CX(s) Applied: B1.25 Date: 08/23/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  12. CX-011239: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Security Upgrades at Multiple Substations CX(s) Applied: ? Date: 10/02/2013 Location(s): Oregon, Washington Offices(s): Bonneville Power Administration

  13. CX-010739: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Golden State Solar Impact CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): California Offices(s): Golden Field Office

  14. CX-011044: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-011044: Categorical Exclusion Determination High Hydrogen, Low Methane Syngas from Low Ranked Coals for Coal-to-Liquids Production CX(s) Applied: A9 Date: 0910...

  15. CX-010751: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Ready 2 CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): Missouri Offices(s): Golden Field Office

  16. CX-004015: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-004015: Categorical Exclusion Determination Arizona Balance of State- Energy Efficiency and Conservation Block Grant Wickenburg CX(s) Applied:...

  17. CX-009555: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-009555: Categorical Exclusion Determination Assisting the Tooling and Machining Industry to Become Energy Efficient CX(s) Applied: A9 Date: 12102012...

  18. CX-000835: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-000835: Categorical Exclusion Determination Wachs Cutter Tooling Station (4495) CX(s) Applied: B1.31 Date: 02112010 Location(s): Oak Ridge,...

  19. CX-012310: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sawmill Creek Stream Bank Erosion CX(s) Applied: B1.3 Date: 06/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

  20. CX-010338: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Eugene Substation Fiber Interconnection CX(s) Applied: B4.7 Date: 05/21/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  1. CX-011531: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Targhee Substation Land Acquisition CX(s) Applied: B1.24 Date: 11/05/2013 Location(s): Idaho Offices(s): Bonneville Power Administration

  2. CX-010435: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    De Moss Substation Expansion CX(s) Applied: B4.6 Date: 06/03/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  3. CX-011384: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination Advanced Controls for the Multi-pod Centipod Wave Energy Converter Device CX(s) Applied: A9 Date: 12022013 Location(s): California...

  4. CX-011537: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wanacut Creek Upper Property Funding CX(s) Applied: B1.25 Date: 11/26/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  5. CX-011538: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ninemile Creek Lower Property Funding CX(s) Applied: B1.25 Date: 11/26/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  6. CX-011536: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Aeneans Creek Spring Property Funding CX(s) Applied: B1.25 Date: 11/25/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  7. CX-011416: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology Integration Program CX(s) Applied: A9, A11 Date: 12/19/2013 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  8. CX-010778: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology Integration Program CX(s) Applied: A9, A11 Date: 08/23/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

  9. CX-012472: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology Integration Program CX(s) Applied: A9, A11, B3.11Date: 41873 Location(s): OhioOffices(s): National Energy Technology Laboratory

  10. CX-012038: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Deepwater Reverse-Circulation Primary Cementing CX(s) Applied: A9 Date: 04/17/2014 Location(s): Texas Offices(s): National Energy Technology Laboratory

  11. CX-010582: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Spring Creek Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  12. CX-003706: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Solar Power Generation CX(s) Applied: A9, B3.6...

  13. CX-004217: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Replacement Facets for Central Receiver Test Facility Heliostats at the National Solar Thermal Test Facility (American Recovery and Reinvestment Act Funded) CX(s) Applied:...

  14. CX-003222: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    and Reinvestment Act State Energy Program - Eastern Oregon Correctional Institution Solar Thermal CX(s) Applied: B5.1 Date: 08032010 Location(s): Pendleton, Oregon...

  15. CX-004251: Categorical Exclusion Determination | Department of...

    Energy Savers [EERE]

    CX-004251: Categorical Exclusion Determination High Yield Hybrid Cellulosic Ethanol Process Using High-Impact Feedstock for Commercialization by 2013 CX(s) Applied: A9,...

  16. CX-003208: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003208: Categorical Exclusion Determination Michigan 85% Ethanol Fuel (E85) Infrastructure Project CX(s) Applied: B5.1 Date: 08032010 Location(s):...

  17. CX-003471: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003471: Categorical Exclusion Determination Pennsylvania Ethanol Fuel (E85) Corridor Project - Lew's Service Center CX(s) Applied: B5.1 Date: 0823...

  18. CX-011215: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Nepese Marsh Upgrades CX(s) Applied: B2.5 Date: 10/17/2013 Location(s): Illinois Offices(s): Fermi Site Office

  19. CX-008534: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Peter Wentz Geothermal CX(s) Applied: B5.19 Date: 05/23/2012 Location(s): Pennsylvania Offices(s): Golden Field Office

  20. CX-008204: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Finch CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  1. CX-008203: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Demoret CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  2. CX-009442: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cutters Grove, Anoka CX(s) Applied: A9, B5.19 Date: 07/31/2012 Location(s): Minnesota Offices(s): Golden Field Office

  3. CX-007836: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building Retrofits CX(s) Applied: B5.19 Date: 01/30/2012 Location(s): Illinois Offices(s): Energy Efficiency and Renewable Energy

  4. CX-008241: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Teter CX(s) Applied: B5.19 Date: 05/15/2012 Location(s): Missouri Offices(s): Golden Field Office

  5. CX-008205: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Weaver CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  6. CX-010583: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Upper Jocko River Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  7. CX-007925: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-007925: Categorical Exclusion Determination Severe Environment Corrosion and Erosion Research Facility CX(s) Applied: B3.6 Date: 02222012 Location(s):...

  8. CX-006048: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-006048: Categorical Exclusion Determination Severe Environmental Corrosion & Erosion Research Facility (SECERF) CX(s) Applied: B3.6 Date: 06082011...

  9. CX-006395: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-006395: Categorical Exclusion Determination Corrosion Tests on Carbon Steel Exposed to Oxalic Acid and a Sludge Simulant CX(s) Applied:...

  10. CX-005801: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-005801: Categorical Exclusion Determination Polymer Synthesis, Corrosion, and Electrochemical Tests in Lab D-0115 CX(s) Applied: B3.6 Date: 03312011...

  11. CX-006043: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-006043: Categorical Exclusion Determination CorrosionElectrochemistry Laboratory CX(s) Applied: B3.6 Date: 06082011 Location(s):...

  12. CX-005861: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005861: Categorical Exclusion Determination Pretreatment Engineering Platform (PEP) Sludge Simulant Preparation CX(s) Applied: B3.6 Date: 03172011...

  13. CX-011131: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Puget Sound Pilot Tidal Energy Project CX(s) Applied: A9 Date: 08/13/2013 Location(s): Washington Offices(s): Golden Field Office

  14. CX-012195: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alfalfa Substation Control House Replacement CX(s) Applied: B4.11 Date: 05/02/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  15. CX-008683: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shaniko Radio Station Replacement Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  16. CX-012790: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Haystack Butte Radio Site Land Acquisition CX(s) Applied: B1.24Date: 41939 Location(s): WashingtonOffices(s): Bonneville Power Administration

  17. CX-009698: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sale of Lakeside Radio Station CX(s) Applied: B1.24 Date: 12/27/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  18. CX-012231: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mica Peak Radio Station upgrade CX(s) Applied: B1.19 Date: 06/09/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  19. CX-011190: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alberton Communication Site Construction CX(s) Applied: B1.19 Date: 08/26/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  20. CX-002138: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-002138: Categorical Exclusion Determination Waste Digester Biogas Recovery System CX(s) Applied: B5.1 Date: 04292010 Location(s): Plover, Wisconsin...

  1. CX-005444: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Energy Efficiency and Conservation Block Grant: Electric and Hybrid Vehicle Incremental Cost Recovery CX(s) Applied: B5.1 Date: 03222011 Location(s):...

  2. CX-012189: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Microbial Laboratory Analysis CX(s) Applied: B3.12 Date: 05/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

  3. CX-009423: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Relay and Switchboard Panel Replacements CX(s) Applied: B4.6 Date: 10/29/2012 Location(s): Arkansas Offices(s): Southwestern Power Administration

  4. CX-010057: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Eugene Substation Protective Relay Installation CX(s) Applied: B1.7 Date: 01/29/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  5. CX-008803: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Milling Machine Replacement Projects CX(s) Applied: B1.31 Date: 05/14/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  6. CX-011194: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Particle Physics Division Outback Garage CX(s) Applied: B1.15 Date: 09/19/2013 Location(s): Illinois Offices(s): Fermi Site Office

  7. CX-010772: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Water Security Test Bed (WSTB) CX(s) Applied: B3.6 Date: 07/17/2013 Location(s): Idaho Offices(s): Nuclear Energy

  8. CX-011679: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Antifoam Degradation Testing CX(s) Applied: B3.6 Date: 12/05/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  9. CX-012118: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hydro Research Foundation University Research Awards - Tufts CX(s) Applied: A9 Date: 05/21/2014 Location(s): Georgia Offices(s): Golden Field Office

  10. CX-012255: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination Hydro Research Foundation University Research Awards - University of Washington CX(s) Applied: A9 Date: 05272014 Location(s): Washington...

  11. CX-010951: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Automotive Technology Analysis CX(s) Applied: A8 Date: 09/17/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory

  12. CX-001416: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-001416: Categorical Exclusion Determination Integration of Solar Energy in the City of Boston's Emergency Preparedness Infrastructure CX(s) Applied:...

  13. CX-003569: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination Ohio Advanced Transportation Partnership - Pike Delta York Schools Propane Vehicle Fueling Station CX(s) Applied: B5.1 Date: 08242010 Location(s): Delta, Ohio...

  14. CX-006894: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination Ohio Advanced Transportation PartnershipFrito Lay Cincinnati Propane Fueling Infrastructure CX(s) Applied: B5.1 Date: 09282011 Location(s): West...

  15. CX-009634: Categorical Exclusion Determination | Department of...

    Office of Environmental Management (EM)

    Exclusion Determination CX-009634: Categorical Exclusion Determination Advanced Test Reactor (ATR) Transition to Commercial Power CX(s) Applied: B2.5 Date: 12052012...

  16. CX-007358: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Integration of the University of Oregon's Cogeneration Project CX(s) Applied: B1.7 Date: 12012011 Location(s): Oregon Offices(s):...

  17. CX-012200: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Determination of Excess Real Property CX(s) Applied: B1.36 Date: 05/01/2014 Location(s): Colorado Offices(s): Legacy Management

  18. CX-010588: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chehalis Substation Tree Clearing CX(s) Applied: B1.3 Date: 07/02/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  19. CX-008700: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Natapoc Property Funding CX(s) Applied: B1.25 Date: 06/12/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  20. CX-010155: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Augspurger Radio Tower Replacement Project CX(s) Applied: B1.19 Date: 04/03/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  1. CX-007866: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SunShot Massachusetts CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): Massachusetts Offices(s): Golden Field Office

  2. CX-007856: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sacramento Regional Energy Alliance CX(s) Applied: B5.23 Date: 01/27/2012 Location(s): California Offices(s): Golden Field Office

  3. CX-004629: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination CX-004629: Categorical Exclusion Determination Seneca Nation of New York Energy Efficiency and Conservation Strategies CX(s) Applied: A1, A9, A11 Date: 1026...

  4. CX-005672: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination Energy Systems Integration Facility Excavation Soil Stockpile CX(s) Applied: B1.15 Date: 04122011 Location(s): Golden, Colorado...

  5. CX-008264: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compressed Natural Gas Fueling Facility CX(s) Applied: A1 Date: 05/24/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  6. CX-005249: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wisconsin Clean Transportation Program - City of Milwaukee Ruby Avenue Compressed Natural Gas Infrastructure CX(s) Applied: B5.1 Date: 02152011 Location(s): Milwaukee,...

  7. CX-008468: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compressed Natural Gas Fueling Facility CX(s) Applied: A1 Date: 06/12/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  8. CX-007382: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compressed Natural Gas Manufacturing CX(s) Applied: B5.1 Date: 10/26/2011 Location(s): Wisconsin Offices(s): Golden Field Office

  9. CX-006678: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Restoration of 54-TPX-10CX(s) Applied: B6.1Date: 01/19/2010Location(s): Casper, WyomingOffice(s): RMOTC

  10. CX-012463: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Reliable SOFC Systems CX(s) Applied: A9, B3.6Date: 41877 Location(s): ConnecticutOffices(s): National Energy Technology Laboratory

  11. CX-002168: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-002168: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

  12. CX-001403: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-001403: Categorical Exclusion Determination West New York Energy Efficiency Projects CX(s) Applied: B5.1 Date: 04092010 Location(s): West New...

  13. CX-009133: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-009133: Categorical Exclusion Determination New York Program Year 2012 Formula Grants - State Energy Program CX(s) Applied: A9, A11 Date:...

  14. CX-001636: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-001636: Categorical Exclusion Determination Alexandria Bay, New York, Met Tower: General Services Administration Border Station CX(s) Applied: B3.1, A9...

  15. CX-002167: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-002167: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

  16. CX-006748: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-006748: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

  17. CX-007020: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-007020: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

  18. CX-003465: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-003465: Categorical Exclusion Determination Vehicle Technologies Program Advanced Automotive Fuels Research, Development and Commercialization Cluster CX(s) Applied: A9, B2.2,...

  19. CX-005747: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-005747: Categorical Exclusion Determination Biobased Materials Automotive Value Chain Market Development Analysis CX(s) Applied: A9 Date: 05042011...

  20. CX-006211: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Missouri Independent Energy Efficiency Program: Henniges Automotive - Process Air Compressor Upgrades CX(s) Applied: B5.1 Date: 07182011 Location(s):...

  1. CX-009210: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Silver Butte Fiber Burial Project CX(s) Applied: B.47 Date: 08/28/2012 Location(s): Montana, Montana Offices(s): Bonneville Power Administration

  2. CX-012054: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Catalyst Synthesis CX(s) Applied: B3.6 Date: 03/18/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  3. CX-012117: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-012117: Categorical Exclusion Determination Fuel Cell Hybrid Walk-In Van Deployment Project CX(s) Applied: A9 Date: 05212014 Location(s):...

  4. CX-007517: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    UPF Mock Wall Project CX(s) Applied: B3.6 Date: 11/29/2011 Location(s): Tennessee Offices(s): Y-12 Site Office

  5. CX-004745: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Acquisition of a Conservation Easement for Fish Habitat Mitigation in Okanogan County, Washington CX(s) Applied: A7 Date: 12082010...

  6. CX-003908: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-003908: Categorical Exclusion Determination Fiscal Year 2010 Columbia Basin Fish Accords with Colville Confederated Tribes CX(s) Applied: B1.25 Date: 09082010...

  7. CX-012718: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Idaho State University Reactor Laboratory Modernization CX(s) Applied: B1.31Date: 41844 Location(s): IdahoOffices(s): Nuclear Energy

  8. CX-011642: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pantex Lake Land Utilization CX(s) Applied: B1.11 Date: 11/05/2013 Location(s): Texas Offices(s): Pantex Site Office

  9. CX-011634: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Closure Turf Installation CX(s) Applied: B6.1 Date: 08/27/2013 Location(s): Texas Offices(s): Pantex Site Office

  10. CX-008545: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Energy Evolution and Diffusion Studies CX(s) Applied: A9 Date: 06/19/2012 Location(s): CX: none Offices(s): Golden Field Office

  11. CX-004085: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination Project T-221, Hazardous Material Management and Emergency Response (HAMMER) Operations Building CX(s) Applied: B1.15 Date: 10082010 Location(s): Richmond,...

  12. CX-008535: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    King County Biogas and Nutrient Reduction CX(s) Applied: A9 Date: 05/22/2012 Location(s): Washington Offices(s): Golden Field Office

  13. CX-012247: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination CX-012247: Categorical Exclusion Determination Installation of Solar Photovoltaic Systems CX(s) Applied: A9, B5.16 Date: 06182014 Location(s): Wisconsin, Wisconsin...

  14. CX-008989: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program CX(s) Applied: A9, A11 Date: 08/27/2012 Location(s): Kansas Offices(s): Golden Field Office

  15. CX-006539: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-006539: Categorical Exclusion Determination Boulder Wind Power Advanced Gearless Drivetrain CX(s) Applied: A9, B3.6 Date: 08252011 Location(s):...

  16. CX-009898: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-009898: Categorical Exclusion Determination 25A1455 - CO2 Capture with Enzyme Synthetic Analogue CX(s) Applied: B3.6 Date: 12152009...

  17. CX-100018: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination Wind Generator Project CX(s) Applied: A9 Date: 08152014 Location(s): Michigan Offices(s): Golden Field Office Technology Office: Wind Program Award Number:...

  18. CX-009710: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-009710: Categorical Exclusion Determination Spring Creek - Wine County No. 1 Transmission Tower Relocation CX(s) Applied: B4.6 Date: 11292012...

  19. CX-012317: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Performance Computing Upgrades CX(s) Applied: B1.31 Date: 06/16/2014 Location(s): Idaho Offices(s): Nuclear Energy

  20. CX-003506: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    State Energy Program American Recovery and Reinvestment Act: Quantum Solar Photovoltaic Module Manufacturing Plant CX(s) Applied: B5.1 Date: 08302010 Location(s):...

  1. CX-000571: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-000571: Categorical Exclusion Determination Photovoltaic Panel Installation (Building 833, TA-I) CX(s) Applied: B5.1 Date: 12102009...

  2. CX-004002: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination Knoxville Solar America Cites - Knox Heritage, Incorporated Solar Photovoltaic and Solar Thermal Demonstration Installation CX(s) Applied: B5.1 Date: 09202010...

  3. CX-008563: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-008563: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 06132012...

  4. CX-000924: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    National Accreditation Certification Program for Installation and Acceptance of Photovoltaic Systems CX(s) Applied: A9 Date: 02232010 Location(s): New York Office(s): Energy...

  5. CX-004021: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination State Energy Program American Recovery and Reinvestment Act: Solaria Photovoltaic Manufacturing Facility CX(s) Applied: B5.1 Date: 10082010 Location(s): Fremont,...

  6. CX-007872: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007872: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 01272012...

  7. CX-007873: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007873: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 01272012...

  8. CX-009914: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-009914: Categorical Exclusion Determination Plug & Play Solar Photovoltaic for American Homes CX(s) Applied: A9, B3.6 Date: 01282013 Location(s):...

  9. CX-000653: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-000653: Categorical Exclusion Determination Helios - Project: Photovoltaic Crystalline Module Assembly Plant CX(s) Applied: B5.1 Date: 01272010 Location(s):...

  10. CX-007867: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007867: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B5.16 Date: 01272012...

  11. CX-005993: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005993: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B5.1 Date: 05262011...

  12. CX-010740: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-010740: Categorical Exclusion Determination Integration of Behind-the-Meter Photovoltaic Fleet Forecasts into Utility Grid System Operations CX(s) Applied: A9, A11 Date:...

  13. CX-001417: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Field Verification of High-Penetration Levels of Photovoltaic into the Distribution Grid with Advanced Power Conditioning Systems CX(s) Applied:...

  14. CX-001654: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-001654: Categorical Exclusion Determination Burlington County Photovoltaic (PV) System CX(s) Applied: B5.1 Date: 04092010 Location(s): County of Burlington,...

  15. CX-003378: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-003378: Categorical Exclusion Determination Photovoltaic Solar Cell Fabrication Alkaline Texturing Process Improvement CX(s) Applied: B3.6...

  16. CX-005385: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-005385: Categorical Exclusion Determination Low Cost High Concentration Photovoltaic Power Systems for Utility Power Generation -Sandia Site CX(s) Applied: B5.1 Date:...

  17. CX-009272: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building 94 Facade Restoration CX(s) Applied: B1.3 Date: 09/10/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  18. CX-010578: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Celilo Converter Station Upgrades CX(s) Applied: B4.11 Date: 07/25/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  19. CX-004957: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-004957: Categorical Exclusion Determination General Compression, Inc. -Fuel-Free, Ubiquitous, Compressed Air Energy Storage CX(s) Applied: B3.6 Date: 08142010...

  20. CX-011751: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination GreenLight Biosciences - Highly Productive Cell-free Bioconversion of Methane CX(s) Applied: B3.6 Date: 12122013 Location(s):...

  1. CX-006558: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination Geothennal Resource Development with Zero Mass Withdrawal, Engineered Free Convection, and Wellbore Energy Conversion CX(s) Applied: A9, B3.6 Date: 08242011...

  2. CX-002572: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Manufacturing and Commercialization of Energy Efficient Generators for Small Wind Turbines CX(s) Applied: A1, B5.1 Date: 05192010...

  3. CX-010237: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pittsburgh Green Innovators Synergy Center CX(s) Applied: A9 Date: 02/28/2013 Location(s): Pennsylvania Offices(s): Golden Field Office

  4. CX-012110: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cowlitz Falls Fish Facility Access Agreement Extension CX(s) Applied: A2 Date: 04/02/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  5. CX-004249: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-004249: Categorical Exclusion Determination Low Cost High Concentration Photovoltaic Power Systems for Utility Power Generation CX(s) Applied: B5.1 Date: 10142010...

  6. CX-009513: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Aquatic Invasive Mussels Monitoring CX(s) Applied: B3.1 Date: 10/15/2012 Location(s): CX: none Offices(s): Bonneville Power Administration

  7. CX-002511: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-002511: Categorical Exclusion Determination Rhode Island Green Public Buildings Initiative CX(s) Applied: A9, B5.1 Date: 05282010 Location(s):...

  8. CX-000988: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    988: Categorical Exclusion Determination CX-000988: Categorical Exclusion Determination Green Energy Works - Combined Heat and Power - Geisinger Medical Center CX(s) Applied: A9,...

  9. CX-002945: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-002945: Categorical Exclusion Determination Pennsylvania Green Energy Works Targeted Grant - Native Energy Biogas Project CX(s) Applied: B1.15,...

  10. CX-007365: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007365: Categorical Exclusion Determination Integration of the Green Lane Energy Biogas Generator CX(s) Applied: B1.7 Date: 11172011 Location(s):...

  11. CX-008228: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-008228: Categorical Exclusion Determination Hydropower Energy Resource (HyPER) Harvester CX(s) Applied: A9 Date: 04112012 Location(s):...

  12. CX-003856: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-003856: Categorical Exclusion Determination Road Prison Geothermal Earth Coupled Heating, Ventilation and Air Conditioning (HVAC) Upgrade CX(s) Applied: B5.1...

  13. CX-002034: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-002034: Categorical Exclusion Determination Road Prison Geothermal Earth Coupled Heating, Ventilation, and Air Conditioning Upgrade CX(s) Applied: B3.1, A9...

  14. CX-010770: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wildland Fire Chainsaw Training CX(s) Applied: B1.2 Date: 08/01/2013 Location(s): Idaho Offices(s): Nuclear Energy

  15. CX-008341: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A-6 Office Building CX(s) Applied: B1.15 Date: 04/19/2012 Location(s): Pennsylvania Offices(s): Naval Nuclear Propulsion Program

  16. CX-003853: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Efficiency and Conservation Block Grant (EECBG) - Sherman - Geothermal Heat Pump Installation CX(s) Applied: B5.1 Date: 09072010 Location(s): Sherman, Connecticut...

  17. CX-004925: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-004925: Categorical Exclusion Determination Material Methods - Phononic Heat Pump CX(s) Applied: B3.6 Date: 08132010 Location(s): Irvine, California Office(s):...

  18. CX-005651: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    State Energy Program - Renewable Energy Incentives - Ennis Residence Open Loop Heat Pump System CX(s) Applied: B5.1 Date: 04282011 Location(s): Greenwood, Delaware...

  19. CX-003717: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-003717: Categorical Exclusion Determination Residential Ground Source Heat Pump Installation - Walter CX(s) Applied: B5.1 Date: 09152010 Location(s): Minnesota...

  20. CX-003715: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-003715: Categorical Exclusion Determination Residential Ground Source Heat Pump Installation - Staus CX(s) Applied: B5.1 Date: 09152010 Location(s): Minnesota...

  1. CX-001512: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Birmingham Recreation Center Ground Source Heat Pump Installation CX(s) Applied: A9, B5.1 Date: 04012010 Location(s): Birmingham,...

  2. CX-006083: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-006083: Categorical Exclusion Determination Ground Source Heat Pump Installation - Lac Qui Parle County Courthouse, Minnesota CX(s) Applied: B5.1 Date:...

  3. CX-000907: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems CX(s) Applied: A9 Date: 02242010 Location(s): Stillwater, Oklahoma...

  4. CX-004348: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination State Energy Program Residential Ground Source Heat Pump Installations (6) CX(s) Applied: B5.1 Date: 10272010 Location(s): Prior Lake,...

  5. CX-003986: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination State Energy Program Residential Ground Source Heat Pump Installation - Korf CX(s) Applied: B5.1 Date: 09212010 Location(s): Minnesota...

  6. CX-004545: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination State Energy Program - Residential Ground Source Heat Pump Installation - Dalager CX(s) Applied: B5.1 Date: 11242010 Location(s): Minnesota...

  7. CX-004539: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination State Energy Program - Residential Ground Source Heat Pump Installation - Binford, Eric CX(s) Applied: B5.1 Date: 11242010 Location(s):...

  8. CX-006201: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Tennessee Energy Efficient Schools Initiative Schools Initiative Ground Source Heat Pump Program (Phase 2 and 3 for Lawrence Public and South Lawrence) CX(s) Applied: A9,...

  9. CX-000906: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination Development of Design and Simulation Tool for Hybrid Geothermal Heat Pump System CX(s) Applied: A9 Date: 02242010 Location(s): Oklahoma City, Oklahoma...

  10. CX-004376: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination City of Woodward, Oklahoma Ground Source Heat Pump Project Beyond State Template CX(s) Applied: B5.1 Date: 11012010 Location(s):...

  11. CX-011214: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sensitive Instrument Facility CX(s) Applied: B3.6 Date: 07/10/2013 Location(s): Iowa Offices(s): Ames Site Office

  12. CX-009543: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sopogy Subcontract CX(s) Applied: A9, B5.15 Date: 11/28/2012 Location(s): Hawaii Offices(s): Golden Field Office

  13. CX-008571: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Project Blue Energy CX(s) Applied: A9 Date: 06/20/2012 Location(s): Utah Offices(s): Golden Field Office

  14. CX-009579: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-009579: Categorical Exclusion Determination Wind Turbine Installation for Town of Drummond CX(s) Applied: B5.18 Date: 12192012 Location(s):...

  15. CX-002856: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-002856: Categorical Exclusion Determination Wind Turbine Development CX(s) Applied: B3.6, A9 Date: 07022010 Location(s): Bozeman, Montana...

  16. CX-001642: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-001642: Categorical Exclusion Determination Wind Turbine Castings Manufacturer CX(s) Applied: B5.1 Date: 04072010 Location(s): Wisconsin...

  17. CX-003230: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003230: Categorical Exclusion Determination Wind Turbine Gearbox Remanufacturing CX(s) Applied: B2.2, B5.1 Date: 08042010 Location(s):...

  18. CX-003979: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-003979: Categorical Exclusion Determination Tuscola North Plant 100 Kilowatt Wind Turbine Installation CX(s) Applied: B5.1 Date: 09222010 Location(s): Tuscola, Illinois...

  19. CX-003198: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-003198: Categorical Exclusion Determination High Efficiency Low Cost Solar Cells (HELSOLAR) CX(s) Applied: B3.6 Date: 08042010 Location(s): California...

  20. CX-004024: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-004024: Categorical Exclusion Determination Backside Contact Multijunction Solar Cells for High Concentration Applications CX(s) Applied: B3.6, B5.1 Date: 09142010...

  1. CX-003754: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-003754: Categorical Exclusion Determination Demonstration of High-Efficiency Solar Cells on Low-Cost Silicon Substrates CX(s) Applied: B3.6 Date: 09172010...

  2. CX-000525: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Isolation of Fire Water System, 261-H Consolidated Incineration Facility CX(s) Applied: B1.27 Date: 09092009 Location(s): Aiken, South Carolina...

  3. CX-012172: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Repackage Lead Shot CX(s) Applied: B6.1 Date: 04/14/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  4. CX-002141: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    and Conservation Block Grant - City of Jacksonville: Community Energy Efficiency Incentives CX(s) Applied: A11, B5.1 Date: 04292010 Location(s): Jacksonville, Florida...

  5. CX-006974: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Fully-Integrated Automotive Traction Inverter with Real-Time Switching Optimization CX(s) Applied: B3.6 Date: 09262011 Location(s): Colorado, Massachusetts,...

  6. CX-009299: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-009299: Categorical Exclusion Determination Optimization of Pressurized Oxy-Combustion with Flameless Reactor - Phase I CX(s) Applied: B3.6...

  7. CX-009298: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-009298: Categorical Exclusion Determination Optimization of Pressurized Oxy-Combustion with Flameless Reactor - Phase I CX(s) Applied: B3.6...

  8. CX-010563: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Methods for Transmission Congestion Management Through Predictive Simulation and Optimization CX(s) Applied: B3.6 Date: 01032013 Location(s): Washington, North Carolina,...

  9. CX-007695: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    National Laboratories - Improved Power System Operations Using Advanced Stochastic Optimization CX(s) Applied: A9 Date: 11182011 Location(s): New Mexico, Iowa, Massachusetts,...

  10. CX-009426: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Auxiliary Services Hydrogen Refueling Facility Performance Evaluation and Optimization CX(s) Applied: A9, B5.22 Date: 10242012 Location(s): California Offices(s):...

  11. CX-003164: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-003164: Categorical Exclusion Determination Optimization of Biomass Production Across a Landscape CX(s) Applied: A9 Date: 07262010...

  12. CX-003632: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-003632: Categorical Exclusion Determination Analysis of Evaporator Scale Sample CX(s) Applied: B3.6 Date: 08102010 Location(s): Aiken,...

  13. CX-003163: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003163: Categorical Exclusion Determination Technical Analysis for Geothermal System CX(s) Applied: A9, B3.1 Date: 07082010 Location(s): South...

  14. CX-002549: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-002549: Categorical Exclusion Determination Technical Analysis for Geothermal System CX(s) Applied: B3.1, A9 Date: 05192010 Location(s): South...

  15. CX-010124: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chromatography / Mass Spectrometry CX(s) Applied: B3.6 Date: 03/20/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  16. CX-009617: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gas Mass Spectrometry CX(s) Applied: B3.6 Date: 11/07/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  17. CX-010113: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compression Stress Relaxometer CX(s) Applied: B3.6 Date: 03/28/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  18. CX-004223: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Center for Integrated Nanotechnologies Gateway - Installation and Operation of Computer Workstation Cluster, Los Alamos National Laboratory CX(s) Applied: B1.3 Date: 0519...

  19. CX-008011: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-008011: Categorical Exclusion Determination Install EMSL Super-Computer Power Infrastructure CX(s) Applied: B1.7 Date: 06302011 Location(s): Washington...

  20. CX-010343: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bald Hill Farms Property Funding CX(s) Applied: B1.25 Date: 05/10/2013 Location(s): Oregon Offices(s): Bonneville Power Administration