Powered by Deep Web Technologies
Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Interaction of an aluminum atom with a closed subshell metal atom: Spectroscopic analysis of AlZn  

E-Print Network [OSTI]

Interaction of an aluminum atom with a closed subshell metal atom: Spectroscopic analysis of Al-block main group element, aluminum, and the 3d series of transi- tion metal atoms. Although the bonding in Al

Morse, Michael D.

2

Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al  

DOE Patents [OSTI]

Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.

Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

1985-05-06T23:59:59.000Z

3

Method of winning aluminum metal from aluminous ore  

DOE Patents [OSTI]

Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (AlS) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

Loutfy, Raouf O. (Naperville, IL); Keller, Rudolf (Naperville, IL); Yao, Neng-Ping (Clarendon Hills, IL)

1981-01-01T23:59:59.000Z

4

Ultrathin aluminum oxide films: Al-sublattice structure and the effect of substrate on ad-metal adhesion  

SciTech Connect (OSTI)

First principles density-functional slab calculations are used to study 5 {angstrom} (two O-layer) Al{sub 2}O{sub 3} films on Ru(0001) and Al(111). Using larger unit cells than in a recent study, it is found that the lowest energy stable film has an even mix of tetrahedral (t) and octahedral (o) site Al ions, and thus most closely resembles the {kappa}-phase of bulk alumina. Here, alternating zig-zag rows of t and o occur within the surface plane, resulting in a greater average lateral separation of the Al-ions than with pure t or o. A second structure with an even mix of t and o has also been found, consisting of alternating stripes. These patterns mix easily, can exist in three equivalent directions on basal substrates, and can also be displaced laterally, suggesting a mechanism for a loss of long-range order in the Al-sublattice. While the latter would cause the film to appear amorphous in diffraction experiments, local coordination and film density are little affected. On a film supported by rigid Ru(0001), overlayers of Cu, Pd, and Pt bind similarly as on bulk truncated {alpha}-Al{sub 2}O{sub 3}(0001). However, when the film is supported by soft Al(111), the adhesion of Cu, Pd, and Pt metal overlayers is significantly increased: Oxide-surface Al atoms rise so only they contact the overlayer, while substrate Al metal atoms migrate into the oxide film. Thus the binding energy of metal overlayers is strongly substrate dependent, and these numbers for the above Pd-overlayer systems bracket a recent experimentally derived value for a film on NiAl(110).

JENNISON,DWIGHT R.; BOGICEVIC,ALEXANDER

2000-03-06T23:59:59.000Z

5

Quick Plastic Forming of Aluminum Sheet Metal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

General Motors' President North America, Gary Cowger, General Motors' President North America, Gary Cowger, reviews the 2004 Chevy Malibu Maxx after introducing it to the media at the New York Auto Show. (photo courtesy of General Motors) Quick Plastic Forming of Aluminum Sheet Metal Background Aluminum automotive components made using a hot blow forming process are reducing vehicle weight and increasing the fuel efficiency of today's cars. However, before General Motors (GM) and the U.S. Department of Energy (DOE) sponsored research in this technol- ogy, blow forming of aluminum was not a viable process for automakers. The prior blow forming process,

6

Metal binding in an aluminum based metal-organic framework for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metal binding in an aluminum based metal-organic framework for carbon dioxide capture Link to article...

7

Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal  

SciTech Connect (OSTI)

The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought base metal levels.

Babu, N. Kishore [Singapore Institute of Manufacturing Technology; Cross, Carl E. [Los Alamos National Laboratory

2012-06-28T23:59:59.000Z

8

PII S0016-7037(98)00136-7 The kinetics of mixed Ni-Al hydroxide formation on clay and aluminum oxide minerals  

E-Print Network [OSTI]

PII S0016-7037(98)00136-7 The kinetics of mixed Ni-Al hydroxide formation on clay and aluminum. This finding indicates that the dissolution of clay and aluminum oxide minerals can be promoted by metal ions

Sparks, Donald L.

9

Joining of parts via magnetic heating of metal aluminum powders  

DOE Patents [OSTI]

A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

Baker, Ian

2013-05-21T23:59:59.000Z

10

E-Print Network 3.0 - aluminum metal matrix Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Discontinuously reinforced aluminum composites, Nanophase aluminum alloys, Bulk metallic glasses... of Missouri 1993 Young Metallurgist Award from the Indian...

11

ccsd00001116 Nucleation of Al 3 Zr and Al 3 Sc in aluminum alloys  

E-Print Network [OSTI]

ccsd­00001116 (version 1) : 4 Feb 2004 Nucleation of Al 3 Zr and Al 3 Sc in aluminum alloys: from 4, 2004) Zr and Sc precipitate in aluminum alloys to form the compounds Al3Zr and Al3Sc which

12

Aluminum sulfate (alum; Al2 O) is used as a  

E-Print Network [OSTI]

477 Aluminum sulfate (alum; Al2 (SO4 )3 ·14H2 O) is used as a chemical treatment of poultry litter litters showed that the P is present in inorganic (P sorbed on Al oxides, calcium phosphates) and organic increases. Overall, alum-amended litters exhibited higher proportions of Al-bound P species and phytic acid

Sparks, Donald L.

13

Aluminum (Al) Etch Instructions The CEPSR cleanroom stores Aluminum Etchant Type A, a pre-made product used for  

E-Print Network [OSTI]

Aluminum (Al) Etch Instructions The CEPSR cleanroom stores Aluminum Etchant Type A, a pre-made product used for removing or etching away aluminum. This etchant is stored inside the acid or corrosive a specific thickness of aluminum that is desired. Note: Once the bottle is empty or you find that it's etch

Kim, Philip

14

3d transition metal impurities in aluminum: A first-principles study M. Mantina, S. L. Shang, Y. Wang, L. Q. Chen, and Z. K. Liu  

E-Print Network [OSTI]

3d transition metal impurities in aluminum: A first-principles study M. Mantina, S. L. Shang, Y September 2009; published 18 November 2009 In this work, appropriate description of interactions of 3d transition metals in aluminum Al-3d is attained from first-principles using LDA+U potential within density

Chen, Long-Qing

15

Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum  

DOE Patents [OSTI]

An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA)

2000-01-01T23:59:59.000Z

16

HIGH TEMPERATURE SULFIDATION BEHAVIOR OF LOW Al IRON-ALUMINUM COMPOSITIONS  

E-Print Network [OSTI]

HIGH TEMPERATURE SULFIDATION BEHAVIOR OF LOW Al IRON-ALUMINUM COMPOSITIONS S.W. Banovic, J.N. Du (Received January 5, 1998) (Accepted March 23, 1998) Introduction Iron-aluminum weld overlay coatings, the application of iron-aluminum alloys is currently limited due to hydrogen cracking susceptibility subsequent

DuPont, John N.

17

Solidification of Aluminum Alloys Edited by TMS (The Minerals, Metals & Materials Society), 2004  

E-Print Network [OSTI]

Solidification of Aluminum Alloys Edited by TMS (The Minerals, Metals & Materials Society), 2004 Modeling the Effects of Mold Topography on Aluminum Cast Surfaces Lijian Tan1 , Nicholas Zabaras1 1 14853, USA Keywords: Aluminum Solidification; Mold topography; Cast Surfaces Abstract The air

Zabaras, Nicholas J.

18

P-67: Investigation on the Hydrogen-Assisted Al Induced Metal Crystallization Poly-Si  

E-Print Network [OSTI]

P-67: Investigation on the Hydrogen-Assisted Al Induced Metal Crystallization Poly-Si Juan Li1 , Na Abstract The hydrogen plasma-assistant Al induced crystallization (HAIC) technology has been proposed] , solar cells [2] , sensor, etc. Among the crystallization technologies, AIC (Aluminum Induced

19

THE PROTOTYPE ALUMINUM - CARBON SINGLE, DOUBLE, AND TRIPLE BONDS: Al - CH3, Al = CH2, AND Al. = CH  

E-Print Network [OSTI]

three prototype Table II. aluminum-carbon bonds and theirPhysics THE PROTOTYPE ALUMINUM - CARBON SINGLE, DOUBLE, ANDLBL-l0871 The Prototype Aluminum - Carbon Single, Double.

Fox, Douglas J.

2011-01-01T23:59:59.000Z

20

Aluminum Nitride Micro-Channels Grown via Metal Organic Vapor Phase Epitaxy for MEMs Applications  

SciTech Connect (OSTI)

Aluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nanoelectromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro-channels for fuel cell applications, and micromechanical resonators. This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 m to 110 m and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.

Rodak, L.E.; Kuchibhatla, S.; Famouri, P.; Ting, L.; Korakakis, D.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Aluminum/alkaline earth metal composites and method for producing  

DOE Patents [OSTI]

A composite is provided having an electrically conducting Al matrix and elongated filaments comprising Ca and/or Sr and/or Ba disposed in the matrix and extending along a longitudinal axis of the composite. The filaments initially comprise Ca and/or Sr and/or Ba metal or allow and then may be reacted with the Al matrix to form a strengthening intermetallic compound comprising Al and Ca and/or Sr and/or Ba. The composite is useful as a long-distance, high voltage power transmission conductor.

Russell, Alan M; Anderson, Iver E; Kim, Hyong J; Freichs, Andrew E

2014-02-11T23:59:59.000Z

22

First principles predictions of intrinsic defects in aluminum arsenide, AlAs : numerical supplement.  

SciTech Connect (OSTI)

This Report presents numerical tables summarizing properties of intrinsic defects in aluminum arsenide, AlAs, as computed by density functional theory. This Report serves as a numerical supplement to the results published in: P.A. Schultz, 'First principles predictions of intrinsic defects in Aluminum Arsenide, AlAs', Materials Research Society Symposia Proceedings 1370 (2011; SAND2011-2436C), and intended for use as reference tables for a defect physics package in device models.

Schultz, Peter Andrew

2012-04-01T23:59:59.000Z

23

Patterned aluminum nanowires produced by electron beam at the surfaces of AlF3 single crystals  

E-Print Network [OSTI]

Patterned aluminum nanowires produced by electron beam at the surfaces of AlF3 single crystals C is demonstrated for fabricating patterned aluminum nanowires in AlF3 substrate in a scanning electron microscope nanowires of different sizes. The aluminum nanowires may act as nano- interconnects for nanoelectronics

Wang, Zhong L.

24

Laser cladding of quasicrystal forming AlCuFe on aluminum Krishanu Biswas a  

E-Print Network [OSTI]

Laser cladding of quasicrystal forming Al­Cu­Fe on aluminum Krishanu Biswas a , Rolf Galun b-Zellerfeld, Germany Abstract Composite quasicrystalline coatings are developed by laser cladding of an elemental of the primary phase inside the clad layers during laser processing. The formation of Al13Fe4 with a ten

Srivastava, Kumar Vaibhav

25

Development of an electronic device quality aluminum antimonide (AlSb) semiconductor for solar cell applications  

DOE Patents [OSTI]

Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.

Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W

2014-11-11T23:59:59.000Z

26

Review Article Aluminum-Induced Entropy in Biological Systems  

E-Print Network [OSTI]

Review Article Aluminum-Induced Entropy in Biological Systems: Implications for Neurological years, mining, smelting, and refining of aluminum (Al) in various forms have increasingly exposed living of the Al toxicants to which we are being exposed. 1. Introduction Aluminum (Al) is the most common metal

Seneff, Stephanie

27

Shear properties on aluminum metal foams prepared by the melt route  

SciTech Connect (OSTI)

The shear modulus and shear strength of AlSi7Mg Aluminum foam with 15% (vol) of 13 {micro}m SiC particles were determined through shear testing. A foam slab with a density of 0.31 g/cm3 was supplied by Hydro Aluminium. Four samples were tested according to ASTM C 273-61. The specimens were bonded to steel load plates. The relative displacement of the plates was measured using two extensometers. In order to evaluate the effect of the cell size distribution on shear properties, cell size and material distribution analyses were carried out for the metal foam slab in areas close to those from which the shear specimens were extracted. A fast failure was observed after the maximum shear load. The failure in the samples were located in the central section of the slab mainly because the lower density was located there.

Saenz, E. [UTRC GmbH, Aachen (Germany). Technologiezentrum; Baranda, P.S. [UTRC, S.L., Minano (Spain); Bonhomme, J. [ITMA, Coruno-Llanera (Spain). Parque Tecnologico de Asturias

1998-12-31T23:59:59.000Z

28

Sound insulation property of AlSi closed-cell aluminum foam sandwich panels  

Science Journals Connector (OSTI)

AlSi closed-cell aluminum foam sandwich panels (1240mmנ1100mm) of different thicknesses and different densities were prepared by molten body transitional foaming process in Northeastern University. The experiments were carried out to investigate the sound insulation property of AlSi closed-cell aluminum foam sandwich panels of different thicknesses and different densities under different frequencies (1004000Hz). Results show that sound reduction index (R) is small under low frequencies, large under high frequencies; thickness affects the sound insulation property of material obviously: when the thicknesses of AlSi closed-cell aluminum foam sandwich panels are 12, 22, and 32mm, the corresponding weighted sound reduction indices (RW) are 26.3, 32.2, and 34.6dB, respectively, the rising trend tempered; the increase of density of AlSi closed-cell aluminum foam can also increase the sound insulation property: when the densities of aluminum foam are 0.31, 0.51, and 0.67g/cm3, the corresponding weighted sound reduction indices (RW) are 28.9, 34.3, and 34.6dB, the increasing value mitigating.

Haijun Yu; Guangchun Yao; Xiaolin Wang; Yihan Liu; Hongbin Li

2007-01-01T23:59:59.000Z

29

Process of aluminum dross recycling and life cycle assessment for Al-Si alloys and brown fused alumina  

Science Journals Connector (OSTI)

In 2008, around 596?000 t of aluminum dross was generated from secondary aluminum industry in China; however, it was not sufficiently recycled yet. Approximately 95% of the Al dross was land filled without innocent treatment. The purpose of this work is to investigate Al dross recycling by environmentally efficient and friendly methods. Two methods of Al dross recycling which could utilize Al dross efficiently were presented. High-quality aluminum-silicon alloys and brown fused alumina (BFA) were produced successfully by recycling Al dross. Then, life cycle assessment (LCA) was performed to evaluate environmental impact of two methods of Al dross recycling process. The results show that the two methods are reasonable and the average recovery rate of Al dross is up to 98%. As the LCA results indicate, they have some advantages such as less natural resource consumption and pollutant emissions, which efficiently relieves the burden on the environment in electrolytic aluminum and secondary aluminum industry.

Jian-ping HONG; Jun WANG; Hai-yan CHEN; Bao-de SUN; Jia-jing LI; Chong CHEN

2010-01-01T23:59:59.000Z

30

Doping-induced metal-insulator transition in aluminum-doped 4H silicon P. Achatz,1,2,a  

E-Print Network [OSTI]

Doping-induced metal-insulator transition in aluminum-doped 4H silicon carbide P. Achatz,1,2,a J an experimental determination of the doping-induced metal-insulator transition in aluminum-doped 4H silicon concentration lying between 6.4 and 8.7 1020 cm-3 for the metal-insulator transition in these epilayers grown

Paris-Sud XI, Université de

31

Energy implications of the changing world of aluminum metal supply  

Science Journals Connector (OSTI)

Driven primarily by energy considerations, there has been a major change in the geographical distribution of primary aluminum production over the past few decades, even as the energy efficiency of the process ...

Subodh K. Das; W. Jerry Long III; H. Wayne Hayden; John A. S. Green

2004-08-01T23:59:59.000Z

32

Direct acid dissolution of aluminum and other metals from fly ash  

SciTech Connect (OSTI)

Fly ash could provide a significant domestic source of alumina and thus supply a large part of the US needs for aluminum and possibly also several other metals. The aluminum and other metals can be solubilized from fly ash by acid dissolution methods. The aluminum may be present in any or all of three solid phases: (1) crystalline; (2) glassy amorphous; and (3) irregular, spongy amorphous. The chemistry of these phases controls the solubilization behavior. The aluminum in high-calcium western ashes is primarily found in the amorphous phases, and much of it can be solubilized by using short-time, ambient-temperature leaching. Little of the aluminum in the low-calcium eastern ashes is solubilized under ambient-temperature conditions, and only a portion can be solubilized even at reflux temperature conditions. Some of the aluminum in these eastern ashes is present as mullite, while some is found in the amorphous material. The fraction contained in mullite is relativey acid insoluble, and only partial solubilization can be achieved even under vigorous acid leach conditions.

Kelmers, A.D.; Egan, B.Z.; Seeley, F.G.; Campbell, G.D.

1981-01-01T23:59:59.000Z

33

Phase formation induced by ion irradiation and electrical resistivity of aluminum3d-transition-metal alloys  

Science Journals Connector (OSTI)

The phase formation, in particular amorphization, caused by 500-keV Xe+ ion irradiation of thin multilayered films of Al-Ti, Al-V, Al-Cr, Al-Mn, Al-Fe, Al-Co, and Al-Ni has been investigated. At a substrate temperature of 100 K during the irradiation, all these alloy systems are found to become amorphous for aluminum-rich compositions. At room temperature, the formation of structurally simple-crystalline solid solutions over extended compositional ranges, as compared to thermodynamic equilibrium, is observed. The electrical resistivity of amorphous Al83M17 alloys, where M=Ti, V, Cr, Mn, Fe, Co, or Ni, is found to vary systematically as a function of transition-metal element. A maximum is observed around Fe, for which the d-electron states coincide with the Fermi level. This behavior suggests that scattering of the conduction electrons by the 3d-electron states plays a dominant role. A comparison with x-ray photoelectron spectroscopy data from the literature suggests that the resistivity of amorphous Al83M17 alloys can be directly correlated to the position and width of the d-electron states.

N. Karpe; K. Kyllesbech Larsen; J. Bo/ttiger

1992-08-01T23:59:59.000Z

34

Aluminum-Catalyzed Intramolecular Hydroamination of Aminoalkenes  

E-Print Network [OSTI]

Aluminum-catalyzed intramolecular hydroamination ofgroup 13 metals such as aluminum are exceedingly inexpensive

Koller, Juergen

2011-01-01T23:59:59.000Z

35

Electrospark alloying for deposition on aluminum surface of Al-Sn coatings and their wear resistance under dry friction  

Science Journals Connector (OSTI)

Some aspects of coating deposition on aluminum substrate by electrospark alloying with toolelectrode from Al-Sn alloy...2 nanofibers formation in coatings have been studied. Wear resistance of such coatings, unde...

V. I. Agafii; V. I. Petrenko; V. M. Fomichev

2013-05-01T23:59:59.000Z

36

Aluminum/alkaline earth metal composites and method for producing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

provided having an electrically conducting Al matrix and elongated filaments comprising Ca andor Sr andor Ba disposed in the matrix and extending along a longitudinal axis of...

37

Boron-carbide-aluminum and boron-carbide-reactive metal cermets  

DOE Patents [OSTI]

Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.

Halverson, Danny C. (Manteca, CA); Pyzik, Aleksander J. (Seattle, WA); Aksay, Ilhan A. (Seattle, WA)

1986-01-01T23:59:59.000Z

38

Al-Ca and Al-Fe metal-metal composite strength, conductivity, and microstructure relationships  

SciTech Connect (OSTI)

Deformation processed metal-metal composites (DMMCs) are composites formed by mechanical working (i.e., rolling, swaging, or wire drawing) of two-phase, ductile metal mixtures. Since both the matrix and reinforcing phase are ductile metals, the composites can be heavily deformed to reduce the thickness and spacing of the two phases. Recent studies have shown that heavily drawn DMMCs can achieve anomalously high strength and outstanding combinations of strength and conductivity. In this study, Al-Fe wire composite with 0.07, 0.1, and 0.2 volume fractions of Fe filaments and Al-Ca wire composite with 0.03, 0.06, and 0.09 volume fractions of Ca filaments were produced in situ, and their mechanical properties were measured as a function of deformation true strain. The Al-Fe composites displayed limited deformation of the Fe phase even at high true strains, resulting in little strengthening effect in those composites. Al-9vol%Ca wire was deformed to a deformation true strain of 13.76. The resulting Ca second-phase filaments were deformed to thicknesses on the order of one micrometer. The ultimate tensile strength increased exponentially with increasing deformation true strain, reaching a value of 197 MPa at a true strain of 13.76. This value is 2.5 times higher than the value predicted by the rule of mixtures. A quantitative relationship between UTS and deformation true strain was determined. X-ray diffraction data on transformation of Al + Ca microstructures to Al + various Al-Ca intermetallic compounds were obtained at the Advanced Photon Source at Argonne National Laboratory. Electrical conductivity was measured over a range of true strains and post-deformation heat treatment schedules.

Kim, Hyong June

2011-12-01T23:59:59.000Z

39

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2010, five companies operated nine primary aluminum smelters; six smelters  

E-Print Network [OSTI]

16 ALUMINUM1 (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2010, five companies operated nine primary aluminum smelters; six smelters were closed on published market prices, the value of primary metal production was $3.99 billion. Aluminum consumption

40

Adhesion, stability, and bonding at metal/metal-carbide interfaces: Al/WC Donald J. Siegel  

E-Print Network [OSTI]

of adhesion between metals and transition metal carbides/nitrides based on Density Functional Theory(DFT)[14Adhesion, stability, and bonding at metal/metal-carbide interfaces: Al/WC Donald J. Siegel the nature of metal/carbide bonding. Based on the surface and interfacial free energies, we find that both

Adams, James B

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

First-principles investigations of Ni3Al(111) and NiAl(110) surfaces at metal dusting conditions  

SciTech Connect (OSTI)

We investigate the structure and surface composition of the {gamma}{prime}-Ni{sub 3}Al(111) and {beta}-NiAl(110) alloy surfaces at conditions relevant for metal dusting corrosion related to catalytic steam reforming of natural gas. In regular service as protective coatings, nickel-aluminum alloys are protected by an oxide scale, but in case of oxide scale spallation, the alloy surface may be directly exposed to the reactive gas environment and vulnerable to metal dusting. By means of density functional theory and thermochemical calculations for both the Ni{sub 3}Al and NiAl surfaces, the conditions under which CO and OH adsorption is to be expected and under which it is inhibited, are mapped out. Because CO and OH are regarded as precursors for nucleating graphite or oxide on the surfaces, phase diagrams for the surfaces provide a simple description of their stability. Specifically, this study shows how the CO and OH coverages depend on the steam to carbon ratio (S/C) in the gas and thereby provide a ranking of the carbon limits on the different surface phases.

Saadi, Souheil

2011-03-01T23:59:59.000Z

42

Influence of Alloy and Solidification Parameters on Grain Refinement in Aluminum Weld Metal due to Inoculation  

SciTech Connect (OSTI)

The goals are: (1) Establish how much Ti/B grain refiner is need to completely refine aluminum weld metal for different alloys and different welding conditions; (2) Characterize how alloy composition and solidification parameters affect weld metal grain refinement; and (3) Apply relevant theory to understand observed behavior. Conclusions are: (1) additions of Ti/B grain refiner to weld metal in Alloys 1050, 5083, and 6082 resulted in significant grain refinement; (2) grain refinement was more effective in GTAW than LBW, resulting in finer grains at lower Ti content - reason is limited time available for equiaxed grain growth in LBW (inability to occlude columnar grain growth); (3) welding travel speed did not markedly affect grain size within GTAW and LBW clusters; and (4) application of Hunt CET analysis showed experimental G to be on the order of the critical G{sub CET}; G{sub CET} was consistently higher for GTAW than for LBW.

Schempp, Philipp [BAM, Germany; Tang, Z. [BIAS, Germany; Cross, Carl E. [Los Alamos National Laboratory; Seefeld, T. [BIAS, Germany; Pittner, A. [BAM, Germany; Rethmeier, M. [BAM, Germany

2012-06-28T23:59:59.000Z

43

Synthesis of nanocrystalline aluminum matrix composites reinforced with in situ devitrified Al-Ni-La amorphous particles  

E-Print Network [OSTI]

of nanocrystalline aluminum matrix composites reinforcedAbstract Nanocrystalline aluminum matrix composites wereamount of nanoscale aluminum oxide, nitride and carbide

Zhang, Zhihui H; Han, B Q; Witkin, D; Ajdelsztajn, L; Laverna, E J

2006-01-01T23:59:59.000Z

44

Effect of aluminum content on synthesis of Ti2AlC and Ti3AlC2 during treatment in a high-energy mill and hot pressing  

Science Journals Connector (OSTI)

Treatment of initial powders of titanium, carbon and aluminum in a high-energy mill and pressure sintering are used for...2AlC and Ti3AlC2 ceramics. The effect of the content of aluminum and of the sintering temp...

Jianfeng Zhu; Guoquan Qi; Fen Wang; Haibo Yang; Ying Li

2011-05-01T23:59:59.000Z

45

E-Print Network 3.0 - aluminum nickelide ni3al Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

been considered a viable material for templated growth... no investigation into how pore growth is affected by confining the pre-anodized aluminum dimensions... to the nanometer...

46

First-Principles Study of MetalCarbide/Nitride Adhesion: Al/VC vs. Al/VN Donald J. Siegel  

E-Print Network [OSTI]

-oxide ce- ramics. Within this class, the transition metal carbides and ni- trides are a particularly knowledge, there have been only three studies of adhesion between metals and transition metal carbidesFirst-Principles Study of Metal­Carbide/Nitride Adhesion: Al/VC vs. Al/VN Donald J. Siegel

Adams, James B

47

Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp.  

Science Journals Connector (OSTI)

In view of increasing commercial applications of metal oxide nanoparticles their toxicity assessment becomes important. Alumina (Al2O3) nanoparticles have wide range of applications in industrial as well as perso...

I. Mohammed Sadiq; Sunandan Pakrashi; N. Chandrasekaran

2011-08-01T23:59:59.000Z

48

Possible Reasons Why Aluminum is a Beneficial Element for Melastoma malabathricum, an Aluminum Accumulator  

E-Print Network [OSTI]

of adaptation to high aluminum condition in native plantit has been well known that aluminum (Al) toxicity restricts

Watanabe, Toshihiro; Osaki, Mitsuru

2009-01-01T23:59:59.000Z

49

Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Elevated Temperature Aluminum Metal Matrix Composite (MMC) Alloy and Its Processing Technology  

SciTech Connect (OSTI)

The objective of this project was to provide a production capable cast aluminum metal matrix composite (MMC) alloy with an operating temperature capability of 250-300C. Important industrial sectors as well as the military now seek lightweight aluminum alloy castings that can operate in temperature ranges of 250-300C. Current needs in this temperature range are being satisfied by the use of titanium alloy castings. These have the desired strength properties but the end components are heavier and significantly more costly. Also, the energy requirements for production of titanium alloy castings are significantly higher than those required for production of aluminum alloys and aluminum alloy castings.

Weiss, David C. [Eck Industreis, Inc.] [Eck Industreis, Inc.; Gegal, Gerald A.

2014-04-15T23:59:59.000Z

50

Diagnostic of the self-healing of metallized polypropylene film by modeling of the broadening emission lines of aluminum emitted by plasma discharge  

SciTech Connect (OSTI)

Metallized-film capacitors have the property, even under high continuous voltage, to self-heal i.e., to clear a defect in the dielectric. The self-healing process is a consequence of a transient arc discharge. It has been previously shown that during the discharge, due to Joule effect, the metal is vaporized until the arc extinguishes. The discharge duration has been found to be inversely proportional to the mechanical pressure applied on the layers of metallized films making up a capacitor. The aim of this study is to understand the physical processes involved in this spontaneous extinction of the arc discharge. Emission spectroscopy has been used to provide information about the physical properties (temperatures, electronic and neutral particles densities, etc.) of the plasma induces by a self-healing. An analysis, based on the broadenings and shifts of Al atomic lines, of the experimental light spectra obtained has shown that the self-healing process leads to the generation, from the vaporized metal, of a high-density and relatively weakly ionized aluminum plasma. The plasma density increases with the pressure applied on the film layers and, consequently, the density power needed to extend the plasma zone increases as well and the arc discharge goes out faster as experimentally observed.

Tortai, J.-H.; Bonifaci, N.; Denat, A.; Trassy, C. [Laboratoire d'Electrostatique et de Materiaux Dielectriques, Centre National de la Recherche Scientifique (CNRS), Joseph Fourier University, 25 Avenue des Martyrs, 38000 Grenoble (France); Elaboration par Procedes Magnetiques, Centre National de la Recherche Scientifique (CNRS), 38402 Saint Martin d'Heres (France)

2005-03-01T23:59:59.000Z

51

Aluminum monocarbonyl and aluminum isocarbonyl Steve S. Wesolowski,a)  

E-Print Network [OSTI]

Aluminum monocarbonyl and aluminum isocarbonyl Steve S. Wesolowski,a) T. Daniel Crawford,b) Justin of the aluminum monocarbonyl species AlCO and AlOC have been performed to predict the geometries, fragmentation, Ogden, and Oswald6 first isolated aluminum dicarbonyls in solid krypton and identified the species

Crawford, T. Daniel

52

Aluminum Carbothermic Technology  

SciTech Connect (OSTI)

This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stages 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry. Major accomplishments for the program include definition of the system thermo-chemistry, demonstration of reactor stage 1, development of reactor stage 2 critical components in a 500 kW module, experimental determination of the vapor recovery reactor fundamentals, detailed design and installation of an advanced stage 1/vapor recovery reactor, feasibility of efficient separation of Al-C metal alloy product, updated capital and operating cost estimates, and development of computer models for all steps of the Advanced Reactor Process.

Bruno, Marshall J.

2005-03-31T23:59:59.000Z

53

Sound insulation property of Al-Si closed-cell aluminum foam bare board material  

Science Journals Connector (OSTI)

A1-Si closed-cell aluminum foam bare boards of 1?240 mm1?100 mm with different densities and thicknesses were prepared by molten body transitional foaming process. The sound reduction index(R) of AI-Si closed-cell aluminum foam bare boards was investigated experimentally under different frequencies (100-4?000 Hz). It is found that sound reduction index(R) is small under low frequencies, large under high frequencies and is controlled by different mechanisms. The sound insulation property basically conforms with the monolayer board sound insulation theory. The sound reduction index(R) increases with the even growth of thickness and density, but its rising trend is tempered. The single number sound reduction indexes(Rw) of specimen with thickness of 20 cm and density of 0.51 g/cm3 are 30.8 dB and 33 dB respectively, which demonstrates good sound insulation property for lightmass materials.

Hai-jun YU; Guang-chun YAO; Xiao-lin WANG; Bing LI; Yao YIN; Ke LIU

2007-01-01T23:59:59.000Z

54

Development of a novel scintillation-trigger detector for the MTV experiment using aluminum-metallized film tapes  

E-Print Network [OSTI]

A new type of a trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, which uses aluminum-metallized film tape for wrapping to achieve the required assembling precision of $\\pm$0.5 mm. The MTV experiment uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The barrel-type trigger counter is placed inside the CDC to generate a trigger signal using 1 mm thick, 300 mm long thin plastic scintillation counters. Detection efficiency and light attenuation compared with conventional wrapping materials are studied.

S. Tanaka; S. Ozaki; Y. Sakamoto; R. Tanuma; T. Yoshida; J. Murata

2014-03-13T23:59:59.000Z

55

Formability of Al 5xxx Sheet Metals Using Pulsed Current for Various Heat Treatments  

SciTech Connect (OSTI)

Previous studies have shown that the presence of a pulsed electrical current, applied during the deformation process of an aluminum specimen, can significantly improve the formability of the aluminum without heating the metal above its maximum operating temperature range. The research herein extends these findings by examining the effect of electrical pulsing on 5052 and 5083 Aluminum Alloys. Two different parameter sets were used while pulsing three different heat treatments (As Is, 398C, and 510C) for each of the two aluminum alloys. For this research, the electrical pulsing is applied to the aluminum while the specimens are deformed, without halting the deformation process (a manufacturing technique known as Electrically-Assisted Manufacturing). The analysis focuses on establishing the effect the electrical pulsing has on the aluminum alloys various heat treatments by examining the displacement of the material throughout the testing region of dogbone-shaped specimens. The results from this research show that pulsing significantly increases the maximum achievable elongation of the aluminum (when compared to baseline tests conducted without electrical pulsing). Another beneficial effect produced by electrical pulsing is that the engineering flow stress within the material is considerably reduced. The electrical pulses also cause the aluminum to deform non-uniformly, such that the material exhibits a diffuse neck where the minimum deformation occurs near the ends of the specimen (near the clamps) and the maximum deformation occurs near the center of the specimen (where fracture ultimately occurs). This diffuse necking effect is similar to what can be experienced during superplastic deformation. However, when comparing the presence of a diffuse neck in this research, electrical pulsing does not create as significant of a diffuse neck as superplastic deformation. Electrical pulsing has the potential to be more efficient than traditional methods of incremental forming since the deformation process is never interrupted. Overall, with the greater elongation and lower stress, the aluminum can be deformed quicker, easier, and to a greater extent than is currently possible.

Salandro, Wesley A.; Jones, Joshua J.; McNeal, Timothy A.; Roth, John T.; Hong, Sung Tae; Smith, Mark T.

2010-10-01T23:59:59.000Z

56

Spot welding of steel and aluminum using insert sheet  

SciTech Connect (OSTI)

Automobile industries have been increasingly interested in the use of aluminum and thus joining of steel and aluminum becomes of importance. The joining of the two types of metal raises a problem of brittle welds caused by the formation of intermetallic compounds. The authors solved the problem by using an insert sheet. This paper deals with the resistance spot welding of steel and aluminum sheets using insert sheets. The insert sheet used in the present development was a steel/aluminum clad sheet of the 0.8 mm thickness with 50% steel and 50% aluminum. The clad sheet was produced by warm rolling of steel and aluminum with a direct resistance heating process. Steel to be warm rolled was of EDDQ of the 0.4 mm thickness and aluminum was of JIS A1050 of 0.6 mm thickness. The mechanical properties of the insert clad sheets were in between those of the steel sheets and the aluminum sheets, while the clad sheets showed much better formability than the aluminum sheets. Resistance spot welding was conducted for 0.8 mm thick EDDQ steel sheets and 1.0 mm thick aluminum alloy (AL-5.5%Mg) sheets under the welding force of 1.96 kN, welding current ranging between 4.2 and 20.1 kA, and welding time from 0.5 to 10 cycles. The steel was spot welded to the steel side of the insert sheet while the aluminum was welded to the aluminum side. What the authors investigated were the applicable welding current range, nugget diameter, tensile shear strength, U-tension strength, and macro- and microstructures. In conclusion, steel sheets can be spot welded to aluminum sheets without difficulty by using clad sheets as insert materials while the strength level of the dissimilar metal spot welds is close to that of aluminum joints.

Oikawa, H.; Saito, T.; Yoshimura, T. [and others

1994-12-31T23:59:59.000Z

57

Effective heat dissipation and geometric optimization in an LED module with aluminum nitride (AlN) insulation plate  

Science Journals Connector (OSTI)

Abstract The heat dissipation performance in a conventional chip on board (COB) LED module is limited by the very low thermal conductivity of the dielectric layer. In this study, an enhanced model is proposed to achieve effective heat dissipation using an aluminum nitride (AlN) insulation plate instead of the dielectric layer. Initially, the geometric configuration of the enhanced model was optimized by using response surface methodology. The effects of each design parameter were also analyzed in terms of the one-dimensional and spreading thermal resistances. In the optimized enhanced model, the junction temperature and total thermal resistance were 24.1% and 55.2% lower, respectively, than the conventional COB module with the copper-based substrate. At the heat input of 15W, the luminous efficacy of the optimized enhanced model was about 13.9% higher than that of the conventional COB module.

Min Woo Jeong; Seung Won Jeon; Sang Hun Lee; Yongchan Kim

2014-01-01T23:59:59.000Z

58

E-Print Network 3.0 - aluminum-fly ash metal Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

extent, bottom ash, contain elevated amounts of heavy metals, and fly ash... . The dioxinsfurans on ash then don't seem to create an environmental problem. Heavy metals are...

59

CuZnAl mixed metal oxides derived from hydroxycarbonate precursors for H2S removal at low temperature  

Science Journals Connector (OSTI)

One series of CuZn and two series of CuZnAl hydroxycarbonate precursors with varying metal molar ratios were prepared via co-precipitation or multi-precipitation method, and the mixed metal oxides obtained by calcination of the precursor materials were used as adsorbents for H2S removal in the range of 25100C. The results of H2S adsorption tests showed that these mixed oxides, especially two series of CuZnAl mixed metal oxides exhibited markedly high breakthrough sulfur capacities (ranging from 4.4 to 25.7gS/100g-sorbent with increase of Cu/Zn molar ratio) at 40C. Incorporation Cu and/or Al decreased the mean crystalline sizes of ZnO and CuO species in the CuZn and CuZnAl mixed metal oxide adsorbents by decreasing of mean crystalline sizes of hydroxycarbanate phases mainly including hydrozincite, aurichalcite and malachite, segregation of Al phase, etc. Higher breakthrough sulfur capacity of each adsorbent in two ternary series than that of the corresponding adsorbent in binary series should be ascribed to the enhancement of the dispersion of ZnO and/or CuO species with incorporation of aluminum, thereby increasing the overall rate of reaction between the adsorbent and H2S by reducing the thickness of potential sulfide shell on the outer layer of the oxide crystalline grains and increasing the area of the interface for the exchange of HS?/S2? and O2?. For each series of adsorbents, the breakthrough sulfur capacity increased with the increase of Cu/Zn molar ratio regardless of changes of the dispersion of CuO and/or ZnO. This phenomenon might be mainly attributed to faster rate of the lattice diffusion of HS?, S2? and O2? or exchange of HS?/S2? and O2? during the sulfidation of CuO than that during the sulfidation of ZnO due to less rearrangement of the anion lattice.

Dahao Jiang; Lianghu Su; Lei Ma; Nan Yao; Xiaoliang Xu; Haodong Tang; Xiaonian Li

2010-01-01T23:59:59.000Z

60

IMPROVED FORMABILITY OF ALUMINUM-GERMANIUM NEAR EUTECTIC COMPOSITIONS THROUGH THE APPLICATION OF SUPERPLASTICITY PRINCIPLES  

E-Print Network [OSTI]

IMPROVED FORMABILITY OF ALUMINUM-GERMANIUM NEAR EUTECTICIMPROVED FORMABILITY OF ALUMINUM-GERMANIUM NEAR EUTECTICAl-Ge) wire. Al-Ge 00F Aluminum-Germanium Atomic Percentage

Pech, G.J.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

On the mechanism of aluminum ignition in steam explosions  

Science Journals Connector (OSTI)

An available theory [Epstein, M., Fauske, H.K., 1994. A crystallization theory of underwater aluminum ignition. Nucl. Eng. Des. 146, 147164] of the ignition of aluminum melt drops under water, which is based on the assumption that the aluminum oxide (Al2O3) drop-surface skin first appears in a metastable molten state, is compared with existing experimental data on the ignition of aluminum drops behind shock waves in water [Theofanous, T.G., Chen, X., DiPiazza, P., Epstein, M., Fauske, H.K., 1994. Ignition of aluminum droplets behind shock waves in water, Phys. Fluids 6, 35133515]. The predicted and measured ignition temperature of about 1770 K coincides approximately with the spontaneous nucleation temperature of supercooled liquid Al2O3 (1760 K). This suggests that the crystallization of the oxide layer represents a strong barrier to aluminum drop ignition under water. Apparently a similar interpretation is applicable to aluminum drop ignition in gaseous oxidizing atmospheres. We conclude from the theory that the low-temperature aluminum ignitions (in the range 11001600 K) that have been observed during steam explosions are a consequence of the short aluminum drop oxidation times in this environment relative to the characteristic time for Al2O3 crystallization. Several aspects of the aluminum drop/shock interaction experiments besides ignition are discussed in the paper. In particular, the experiments provide strong evidence that during the course of a vapor explosion metal fragmentation occurs via a thermal mechanism at low pressure and precedes the development of a high-pressure shock.

M Epstein; H.K Fauske; T.G Theofanous

2000-01-01T23:59:59.000Z

62

MCrAlY/TaC metal matrix composite coatings produced by electrospark deposition  

Science Journals Connector (OSTI)

MCrAlY/TaC metal matrix composite coatings with 10, 20 and 30 wt.% TaC have been successfully produced by electrospark deposition (ESD). The effects of TaC content...? columnar dendrite and large...

Yujiang Xie; Yanhong Yang; Mingsheng Wang

2013-04-01T23:59:59.000Z

63

E-Print Network 3.0 - al metal irradiated Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Beams , H. Ludewig1 Summary: effects on CTE of super-Invar. Figure 3: "Gum Metal" material characterization in its non-irradiated state... driver. Ti-6Al-4V....

64

ALUMINUM DISTRIBUTIONSIN THE EURASIAN BASIN OF THE ARCTIC OCEAN  

E-Print Network [OSTI]

ALUMINUM DISTRIBUTIONSIN THE EURASIAN BASIN OF THE ARCTIC OCEAN A THESISSUBMITTEDTO THE GRADUATE Section(1994)cruiseswere analyzed for their aluminum (Al) content; these two data setswere then combined

Luther, Douglas S.

65

Aluminum: Reducing chloride emissions from aluminum production  

SciTech Connect (OSTI)

Reynolds Metals Company (RMC), with assistance from a NICE{sup 3} grant, is developing for commercialization a closed-loop control process that greatly reduces chlorine emissions and increases plant efficiency while maintaining metal quality. The process still utilizes chlorine to remove impurities during aluminum processing, but is more effective than current methods. With the new technology chlorine in the stack is monitored and input chlorine is adjusted continuously. This optimization of chlorine use results in substantially less waste because less chlorine has to be bought or produced by aluminum manufacturers. This innovation is a significant improvement over conventional aluminum treatments, in which chlorine is injected in a more costly and wasteful manner. By the year 2010, the new technology has the potential to reduce the energy it takes to create chlorine by 8.4 billion Btu per year and to cut greenhouse gas emissions by 1,377 tons per year.

Simon, P.

1999-09-29T23:59:59.000Z

66

Formation of ordered films of axially bridged aluminum phthalocyanine [(tBu){sub 4}PcAl]{sub 2}O via magnetic field-induced reaction  

SciTech Connect (OSTI)

The ?-(oxo)bis[tetra-tert-butylphthalocyaninato] aluminum(III) [(tBu){sub 4}PcAl]{sub 2}O films with the crystallites oriented preferably in one direction were obtained via chemical transformation of tetra-tert-butylsubstituted chloroaluminum(III) phthalocyanine (tBu){sub 4}PcAlCl film upon its annealing in magnetic field. A comparative analysis of the influence of post-deposition annealing process without and under applied magnetic field of 1 T, on the orientation and morphology of (tBu){sub 4}PcAlCl and [(tBu){sub 4}PcAl]{sub 2}O films, has been carried out by the methods of UV-vis, Infrared and Raman spectroscopies, XRD as well as atomic force microscopy. The formation of [(tBu){sub 4}PcAl]{sub 2}O films with elongated crystallites having preferential orientation was observed upon heating of the films in magnetic field while annealing without magnetic field under the same conditions does not demonstrate any effect on the structure and morphology of these films. The reasons of the sensitivity of this reaction to the presence of such magnetic field is discussed and studied by electronic paramagnetic resonance spectroscopy.

Basova, Tamara, E-mail: basova@niic.nsc.ru; Berezin, Aleksei; Nadolinny, Vladimir [Nikolaev Institute of Inorganic Chemistry, Russian Academy of Sciences, Lavrentiev Pr., 3, 630090 Novosibirsk (Russian Federation)] [Nikolaev Institute of Inorganic Chemistry, Russian Academy of Sciences, Lavrentiev Pr., 3, 630090 Novosibirsk (Russian Federation); Peisert, Heiko; Chass, Thomas [Institute for Physical and Theoretical Chemistry, Auf der Morgenstelle 18, 72076 Tbingen (Germany)] [Institute for Physical and Theoretical Chemistry, Auf der Morgenstelle 18, 72076 Tbingen (Germany); Banimuslem, Hikmat; Hassan, Aseel [Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom)] [Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom)

2013-11-28T23:59:59.000Z

67

Metal-phosphate binders  

DOE Patents [OSTI]

A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

2009-05-12T23:59:59.000Z

68

Formulation and method for preparing gels comprising hydrous aluminum oxide  

SciTech Connect (OSTI)

Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

Collins, Jack L.

2014-06-17T23:59:59.000Z

69

Synthesis and characterization of metal hydride/carbon aerogel composites for hydrogen storage  

Science Journals Connector (OSTI)

Two materials currently of interest for onboard lightweight hydrogen storage applications are sodium aluminum hydride (NaAlH4), a complex metal hydride, and carbon aerogels (CAs), a light porous material connected by several spherical nanoparticles. ...

Kuen-Song Lin; Yao-Jen Mai; Su-Wei Chiu; Jing-How Yang; Sammy L. I. Chan

2012-01-01T23:59:59.000Z

70

Experimental Research on Ultrasonic Vibration Milling Metal Matrix Composites SiCp/Al  

SciTech Connect (OSTI)

Although particle reinforced metal matrix composites possess excellent physical properties, its machining performance is rather bad because of its specific structure. It is difficult to obtain good cutting effect by traditional machining method. So machining has become the bottleneck which strictly restricts its industry application. This paper mainly focuses on both wear characteristics of different tool materials and material removal mechanism in ultrasonic milling high volume fraction particle reinforced metal matrix composites SiCp/Al. An acoustic device for ultrasonic vibration milling was developed to introduce the ultrasonic vibration into the traditional machining process. Through the contrast experiment of traditional milling and ultrasonic vibration milling SiCp/Al, the mechanism of tool wear and characteristics of surface topography were analyzed. The experimental results showed that the surface integrity and tool life in the ultrasonic vibration milling SiCp/Al were improved.

Gao, G. F.; Zhao, B.; Xiang, D. H.; Zhao, M. L. [School of Mechanical Engineering, Henan Polytechnic University, Jiaozuo (China)

2011-01-17T23:59:59.000Z

71

More Aluminum due by 1968  

Science Journals Connector (OSTI)

Two more primary aluminum producers are promising more capacity to a hungry aluminum market. Anaconda will build a new potline at its reduction plant at Columbia Falls, Mont., and Reynolds Metals is planning four new ones in the Northwest.These ...

1966-08-22T23:59:59.000Z

72

Short-range order of low-coverage Ti/Al,,111...: Implications for hydrogen storage in complex metal hydrides  

E-Print Network [OSTI]

Short-range order of low-coverage Ti/Al,,111...: Implications for hydrogen storage in complex metal-coverage Ti atoms on Al 111 as a model surface system for transition metal doped alanate hydrogen storage the dissociative chemisorption of hydrogen in Ti-doped alanate storage materials. © 2007 American Institute

Ciobanu, Cristian

73

Magnetic properties of transition metal doped AlN nanosheet: First-principle studies  

SciTech Connect (OSTI)

We carry out our first-principles calculations within density functional theory to study the 3d transition metal (TM) doped AlN nanosheets. The calculated results indicate that a stoichiometric AlN nanosheet is graphene-like structure and nonmagnetic. The TM impurities can induce magnetic moments, localized mainly on the 3d TM atoms and neighboring N atoms. Our calculated results of TM-doped nanosheet systems indicate a strong interaction between 3d orbit of TM atom and the 2p orbit of N atoms. In addition, the Mn- and Ni-doped AlN nanosheet with half-metal characters seems to be good candidates for spintronic applications. When substituting two Al atoms, the relative energies of the states between ferromagnetic and antiferromagnetic coupling are investigated sufficiently. The exchange coupling of Co- and Ni-doped AlN nanosheets exhibits a transformation with different distances of two TM atoms and that of Cr-, Mn-, and Fe-doped AlN nanosheets is not changed.

Shi, Changmin; Qin, Hongwei, E-mail: qin-hw@vip.163.com; Zhang, Yongjia; Hu, Jifan; Ju, Lin [School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100 (China)

2014-02-07T23:59:59.000Z

74

Membrane Purification Cell for Aluminum Recycling  

SciTech Connect (OSTI)

Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be < $0.24/lb of purified aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and subs

David DeYoung; James Wiswall; Cong Wang

2011-11-29T23:59:59.000Z

75

Intramolecular electronic communication between dimetal units with multiple metal??al bonds  

E-Print Network [OSTI]

Functional Theory calculations on model compounds show that metal to ligand back bonding is critical to the electron transfer pathway. iv Tetranuclear Mo 4 clusters with two [Mo 2 (cis?DAniF) 2 ] 2+ units linked by single atoms usually show large... guidance, patience, and encouragement during my graduate study. I sincerely thank Professor Carlos A. Murillo for his advice, direction and helpful discussions on my projects. His expertise in chemistry theories and wealth of synthetic knowledge has...

Li, Zhong

2009-05-15T23:59:59.000Z

76

Aluminum in Superconducting Magnets Robert J. Weggel  

E-Print Network [OSTI]

Aluminum in Superconducting Magnets Robert J. Weggel Magnet Optimization Research Engineering is aluminum, either ultrapure, as quenchstabilization matrix metal, and/or alloyed and coldworked and heat for magnets in which the stresses and strains are modest. The strongest aluminum alloy commercially available

McDonald, Kirk

77

Porous Al alloys by local melting and diffusion of metal powders  

SciTech Connect (OSTI)

A novel method exploiting local melt and diffusion induced porosity is described for producing porous Al alloys. Aluminum powder and zinc powder were blended and cold-compacted to a near net shape. A porous Al-Zn alloy component was then formed by annealing the material above the melting point of zinc but below the solidus temperature of the alloy. Pores were generated by the diffusion of molten Zn into the solid Al grains. The pore structure is shown to be determined by the volume fraction, distribution, and size of the Zn powders in the powder mixture, and by time and temperature of the annealing heat treatment. The pores can be further expanded by incorporating small amounts of titanium hydride into the powder blend and conducting the annealing treatment above the decomposition temperature of the titanium hydride (T > 447 C). Porosity levels of 45 vol.% have been achieved to date. This processing approach appears amenable to the production of sandwich panels with a gradient porosity core and fully dense face sheets, and is applicable to other solid solution systems.

Wang, N.; Starke, E.A. Jr.; Wadley, H.N.G. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Materials Science and Engineering

1998-12-31T23:59:59.000Z

78

Oxygen as a surfactant for Al contact metallization of organic layers  

SciTech Connect (OSTI)

Valence band and spatially resolved x-ray photoemission studies of the Al growth on sexiphenyl films, in both an ultrahigh vacuum (UHV) and in a partial pressure of oxygen, are reported. We show that in an UHV, even for very high coverages, the Al balls up on the organic film and is discontinuous. In contrast, for growth in an oxygen partial pressure, similar to that in standard high-vacuum systems used in organic device production, very thin continuous conducting wetting layers are formed. We suggest that the oxygen acts like a surfactant that allows the high surface free-energy metal to wet low surface free-energy organic films.

Ivanco, J.; Winter, B.; Netzer, F.P.; Ramsey, M.G.; Gregoratti, L.; Kiskinova, M. [Institut fuer Experimentalphysik, Karl-Franzens-Universitaet, Universitaet Platz 5, A-8010 Graz (Austria); Sincrotrone Trieste, Societa Consoirtile p. Azioni, S.S. 14 km 163.5 in Area Science Park, I-34012 Trieste-Basovizza (Italy)

2004-07-26T23:59:59.000Z

79

A study on the oxidation characteristics of cast irons containing aluminum  

SciTech Connect (OSTI)

Isothermal-oxidation characteristics of cast irons containing aluminum (5-15% Al) from 700 to 1000{degrees}C in air have been studied. In addition to mass-gain measurements, the morphology and composition of the oxide scales have been examined by SEM-EDX system and XRD analysis. A normal Fe-5Al-C alloy does not develop protective, adherent scales. Even the addition of misch metal and calcium silicide to such an alloy does not improve its oxidation resistance. But aluminum cast iron develops considerable oxidation resistance only when a sufficient quantity of silicon is also present in the alloy. Treatment of the alloy with misch metal and calcium silicide together assists in protective scale formation. Among the alloys investigated Fe-15Al-Si-C treated with misch metal and calcium silicide shows minimum oxidation at 1000{degrees}C.

Ghosh, S.; Prodhan, A. [National Metallurigical Laboratory, Jamshedpur (India); Mohanty, O.N. [Tata Steel, Jamshedpur (India)] [and others

1996-02-01T23:59:59.000Z

80

Production of anhydrous aluminum chloride composition  

DOE Patents [OSTI]

A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.

1981-10-08T23:59:59.000Z

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

ALUMINUM--2001 6.1 By Patricia A. Plunkert  

E-Print Network [OSTI]

ALUMINUM--2001 6.1 ALUMINUM By Patricia A. Plunkert Domestic survey data and tables were prepared, international data coordinator. In 2001, 11 domestic companies operated 23 primary aluminum reduction plants in the Pacific Northwest, and low metal prices led several aluminum smelters to continue to reduce production

82

245H. Dreysse et al.: Calculation of Interactions Between Adsorbates on Transition Metal Surfaces Calculation of Interactions Between Adsorbates on Transition Metal Surfaces  

E-Print Network [OSTI]

245H. Dreysse et al.: Calculation of Interactions Between Adsorbates on Transition Metal Surfaces ------------- Calculation of Interactions Between Adsorbates on Transition Metal Surfaces H. Dreysse*), D. Tomanek, and K. H the interaction W n (i) between n adsorbed atoms of type A in a geometrical arrangement i (given

83

E-Print Network 3.0 - aluminum powder mixtures Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4210: Manufacturing Processes and Engineering Summary: .S. Colton GIT 2009 17 12;Compacting Pressures for Various Metal Powders P Metal Pressure (MPa) Aluminum... Metal Powder...

84

Regeneration of aluminum hydride  

DOE Patents [OSTI]

The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

Graetz, Jason Allan (Mastic, NY); Reilly, James J. (Bellport, NY)

2009-04-21T23:59:59.000Z

85

Activated aluminum hydride hydrogen storage compositions and uses thereof  

SciTech Connect (OSTI)

In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

Sandrock, Gary (Ringwood, NJ); Reilly, James (Bellport, NY); Graetz, Jason (Mastic, NY); Wegrzyn, James E. (Brookhaven, NY)

2010-11-23T23:59:59.000Z

86

E-Print Network 3.0 - aluminum strand coating Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

evaporate nickel and aluminum and then reactively deposit NiAl bond coats... coat's oxidation resistance is achieved by the use of sufficient aluminum to result in the...

87

Inertia-friction welding of particulate-reinforced aluminum matrix composites  

SciTech Connect (OSTI)

Aluminum metal-matrix composites (Al-MMC) are rapidly becoming materials of choice for many aerospace, automotive, recreational sports, and microelectronic applications. The attractive features of these materials include high specific strength and stiffness, a low coefficient of thermal expansion and enhanced wear characteristics relative to monolithic aluminum alloys. The effective engineering application of Al-MMC will commonly require their joining beth to themselves, to dissimilar Al-MMC, and to monolithic aluminum alloys. In the present work, dissimilar-alloy inertia-friction welds were produced between a 6061-T6 Al-MMC tube reinforced with l0 v/o Al{sub x}O{sub 3} particles (W6A.l0A-T6) and a modified A356 case MMC bar reinforced with 20 v/o SiC particles (F3S.20S), or a monolithic 6061-T6511 aluminum alloy bar. In Phase I, a fractional-factorial test matrix was statistically designed and performed to evaluate the effects of flywheel speed and axial pressure on the weld integrity, microstructure, hardness, tensile and torsion strengths and fracture behavior. In Phase 2, the effects of pre-weld machining of the solid bar on weld alignment and mechanical properties were evaluated. inertia-friction welding was shown to be effective for the joining of alumina particulate-reinforced composites to monolithic aluminum and to SiC-particulate reinforced aluminum. High-integrity joints exhibiting a defect-free joint interface with varying degrees of base alloy intermixing were produced at optimum parameter settings. Tensile and torsional strength joint efficiencies for the alumina-particulate MMC to monolithic aluminum alloy welds exceeded 80% and 75%, respectively, with tensile strength maximized with high axial pressure and flywheel speed, and torsional strength maximized at both medium and high levels of flywheel speed and axial pressure.

Cola, M.J.; Baeslack, W.A. III; Kou, M.

1994-12-31T23:59:59.000Z

88

Extraction of trace metals from fly ash  

DOE Patents [OSTI]

A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

Blander, M.; Wai, C.M.; Nagy, Z.

1983-08-15T23:59:59.000Z

89

Extraction of trace metals from fly ash  

DOE Patents [OSTI]

A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

Blander, Milton (Palos Park, IL); Wai, Chien M. (Moscow, ID); Nagy, Zoltan (Woodridge, IL)

1984-01-01T23:59:59.000Z

90

Aluminum as a source of background in low background experiments  

E-Print Network [OSTI]

Neutrinoless double beta decay would be a key to understanding the nature of neutrino masses. The next generation of High Purity Germanium experiments will have to be operated with a background rate of better than 10^-5 counts/(kg y keV) in the region of interest around the Q value of the decay. Therefore, so far irrelevant sources of background have to be considered. The metalization of the surface of germanium detectors is in general done with aluminum. The background from the decays of 22Na, 26Al, 226Ra and 228Th introduced by this metalization is discussed. It is shown that only a special selection of aluminum can keep these background contributions acceptable.

B. Majorovits; I. Abt; M. Laubenstein; O. Volynets

2011-05-18T23:59:59.000Z

91

Dirac cones in artificial structures of 3d transitional-metals doped Mg-Al spinels  

SciTech Connect (OSTI)

Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM?=?Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promising route for engineering Dirac physics in condensed matters.

Lu, Yuan; Zuo, Xu, E-mail: xzuo@nankai.edu.cn [College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071 (China); Feng, Min [School of Physics, Nankai University, Tianjin 300071 (China); Shao, Bin [Department of Physics, Tsinghua University, Beijing 100084 (China)

2014-05-07T23:59:59.000Z

92

Aluminum Zintl anion moieties within sodium aluminum clusters  

SciTech Connect (OSTI)

Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodiumaluminum cluster anions, Na{sub m}Al{sub n}{sup ?}, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Gantefr, Gerd; Bowen, Kit H., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Schnckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany)] [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Eichhorn, Bryan W. [Department of Chemistry, University of Maryland at College Park, College Park, Maryland 20742 (United States)] [Department of Chemistry, University of Maryland at College Park, College Park, Maryland 20742 (United States); Lee, Mal-Soon; Jena, P. [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)] [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Kandalam, Anil K., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University of Pennsylvania, West Chester, Pennsylvania 19383 (United States); Kiran, Boggavarapu, E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)] [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)

2014-02-07T23:59:59.000Z

93

Overview of Aluminum  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Aluminum Overview of Aluminum Overview of Aluminum Session Coordinator: Mark T. Smith Pacific Northwest National Laboratory VT Merit Review 2008 February 28, 2008 2 Overview of...

94

Laser Welding of Aluminum and Aluminum Alloys  

E-Print Network [OSTI]

.. ) Laser Welding of Aluminum and Aluminum Alloys Welds made with sharp bevel-groove weld aluminum and by aluminum alloy 5456 have been studied. The results indicate that initial absorption varies of the most dramatic illustrations of the differences in beam characteristics occurs when welding aluminum

Eagar, Thomas W.

95

INSTITUTE FOR SHOCK PHYSICSLaser-Shock Spall Experiments in Aluminum II: Interface Measurements  

E-Print Network [OSTI]

fracture in aluminum alloys at short time scales (10-8 s) · Role of PMMA backing material window -Changing-T6 or 1100-H14 aluminum targets approximately 110 m thick · PMMA with vapor deposited Al mirror Soda. (2006) * Advised by Yoshi Toyoda and Y. M. Gupta Aluminum Thickness (m) Aluminum Alloy Aluminum

Collins, Gary S.

97

AL  

E-Print Network [OSTI]

AL. EMERGENCY PREPAREDNESS SYLLABUS ATTACHMENT. EMERGENCY NOTIFICATION PROCEDURES are based on a simple concept - if you hear a.

98

Aluminum | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Aluminum Aluminum U.S. aluminum producers recognize that energy efficiency offers a competitive edge in world markets. The aluminum industry has worked with AMO to develop a range...

99

Erroneous Wave Functions of Ciuchi et al for Collective Modes in Neutron Production on Metallic Hydride Cathodes  

E-Print Network [OSTI]

There is a recent comment (Ciuchi et al., 2012) concerning the theory of collective many body effects on the neutron production rates in a chemical battery cathode. Ciuchi et al employ an inverse beta decay expression that contains a two body amplitude. Only one electron and one proton may exist in the Ciuchi et al model initial state wave function. A flaw in their reasoning is that one cannot in reality describe collective many body correlations with only a two particle wave function. One needs very many particles to describe collective effects. In the model wave functions of Ciuchi et al there are no metallic hydrides, there are no cathodes and there are no chemical batteries. Employing a wave function with only one electron and one proton is inadequate for describing collective metallic hydride surface quantum plasma physics in cathodes accurately.

Widom, A; Larsen, L

2012-01-01T23:59:59.000Z

100

Erroneous Wave Functions of Ciuchi et al for Collective Modes in Neutron Production on Metallic Hydride Cathodes  

E-Print Network [OSTI]

There is a recent comment (Ciuchi et al., 2012) concerning the theory of collective many body effects on the neutron production rates in a chemical battery cathode. Ciuchi et al employ an inverse beta decay expression that contains a two body amplitude. Only one electron and one proton may exist in the Ciuchi et al model initial state wave function. A flaw in their reasoning is that one cannot in reality describe collective many body correlations with only a two particle wave function. One needs very many particles to describe collective effects. In the model wave functions of Ciuchi et al there are no metallic hydrides, there are no cathodes and there are no chemical batteries. Employing a wave function with only one electron and one proton is inadequate for describing collective metallic hydride surface quantum plasma physics in cathodes accurately.

A. Widom; Y. N. Srivastava; L. Larsen

2012-10-17T23:59:59.000Z

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2012, 5 companies operated 10 primary aluminum smelters; 4 smelters were  

E-Print Network [OSTI]

­11): Canada, 62%; Russia, 7%; China, 5%; Mexico, 4%; and other, 22%. Tariff: Item Number Normal Trade@usgs.gov] #12;17 ALUMINUM with the amount exported in 2011, and imports of crude and semifabricated aluminum in 2012 were 21% higher than the amount imported in 2011. China, Canada, Mexico, and the Republic of Korea

102

Production of anhydrous aluminum chloride composition and process for electrolysis thereof  

DOE Patents [OSTI]

A process for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

Vandegrift, George F. (Bolingbrook, Naperville, IL); Krumpelt, Michael (Naperville, IL); Horwitz, E. Philip (Hinsdale, IL)

1983-01-01T23:59:59.000Z

103

Method of forming aluminum oxynitride material and bodies formed by such methods  

DOE Patents [OSTI]

Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.

Bakas, Michael P. (Ammon, ID) [Ammon, ID; Lillo, Thomas M. (Idaho Falls, ID) [Idaho Falls, ID; Chu, Henry S. (Idaho Falls, ID) [Idaho Falls, ID

2010-11-16T23:59:59.000Z

104

AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors using barium strontium titanate  

E-Print Network [OSTI]

AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors using barium strontium-effect transistors have been formed by incorporating barium strontium titanate (BST) deposited by rf magnetron in increased leakage. Due to its large dielectric constant, barium strontium ti- tanate [Ba1-xSrxTiO3, (BST

York, Robert A.

105

Morphology and properties of a hybrid organic-inorganic system: Al nanoparticles embedded into CuPc thin film  

SciTech Connect (OSTI)

The evolution of the morphology and the electronic structure of the hybrid organic-inorganic system composed of aluminum nanoparticles (NPs) distributed in an organic semiconductor matrixcopper phthalocyanine (CuPc)as a function of nominal aluminum content was studied by transmission electron microscopy and by photoemission spectroscopy methods. The aluminum atoms deposited onto the CuPc surface diffuse into the organic matrix and self-assemble to NPs in a well-defined manner with a narrow diameter distribution, which depends on the amount of aluminum that is evaporated onto the CuPc film. We find clear evidence of a charge transfer from Al to CuPc and we have been able to determine the lattice sites where Al ions sit. The finally at high coverage about 64? the formation of metallic aluminum overlayer on CuPc thin film takes place.

Molodtsova, O. V.; Babenkov, S. V. [Deutsches Elektronen-Synchrotron DESY, Notkestrae 85, 22607 Hamburg (Germany); Aristova, I. M. [Institute of Solid State Physics of Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Vilkov, O. V. [Helmholtz-Zentrum Berlin (HZB) fr Materialien und Energie, Albert-Einstein-Strae 15, 12489 Berlin (Germany); Aristov, V. Yu., E-mail: aristov@issp.ac.ru [Deutsches Elektronen-Synchrotron DESY, Notkestrae 85, 22607 Hamburg (Germany); Institute of Solid State Physics of Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Institut fr Theoretische Physik, Universitt Hamburg, Jungiusstrae 9, D-20355 Hamburg (Germany)

2014-04-28T23:59:59.000Z

106

Effects of Nanoscale Structure on the Magnetism and Transport Properties of Chromium and Chromium-Aluminum Alloys  

E-Print Network [OSTI]

J. L. Murray. The Al-Cr (aluminum-chromium) system. Joural3d transition elements and aluminum. Journal of Physics andof Chromium and Chromium-Aluminum Alloys by Zoe Austin

Boekelheide, Zoe Austin

2011-01-01T23:59:59.000Z

107

Mobilizing aluminum in crustal and mantle fluids Craig E. Manning  

E-Print Network [OSTI]

Mobilizing aluminum in crustal and mantle fluids Craig E. Manning Department of Earth and Space December 2005 Available online 9 March 2006 Abstract Aluminum is a major rock-forming element, but its low by formation of polynuclear Na­Al­Si­O clusters and/or polymers. Aluminum should not be assumed to be immobile

Manning, Craig

108

Scaleable Clean Aluminum Melting Systems  

SciTech Connect (OSTI)

The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

Han, Q.; Das, S.K. (Secat, Inc.)

2008-02-15T23:59:59.000Z

109

Corrosion protective coating for metallic materials  

DOE Patents [OSTI]

Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds.

Buchheit, Rudolph G. (Albuquerque, NM); Martinez, Michael A. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

110

Corrosion protective coating for metallic materials  

DOE Patents [OSTI]

Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

Buchheit, R.G.; Martinez, M.A.

1998-05-26T23:59:59.000Z

111

Fisetin Enhances Behavioral Performances and Attenuates Reactive Gliosis and Inflammation During Aluminum Chloride-Induced Neurotoxicity  

Science Journals Connector (OSTI)

Aluminum (Al) is an environmental neurotoxin that affects cerebral functions and causes health complications. However, the role of Al in arbitrating glia homeostasis and pathophysiology remains obscure. Astroc...

Dharmalingam Prakash; Kulasekaran Gopinath

2013-03-01T23:59:59.000Z

112

Laser Surface Modification of a Crystalline Al-Co-Ce Alloy for Enhanced Corrosion  

E-Print Network [OSTI]

#12;Laser Surface Modification of a Crystalline Al-Co-Ce Alloy for Enhanced Corrosion Resistance hardness, structure manipula- tion, and improvements in corrosion resistance of metallic materials.[1 surface modify steel and aluminum alloys for improved corrosion resistance.[3,4] The enhanced corrosion

Fitz-Gerald, James M.

113

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2006, 5 companies operated 13 primary aluminum smelters; 6 smelters were  

E-Print Network [OSTI]

,800 South Africa 851 890 860 900 United Arab Emirates, Dubai 75%. Tariff: Item Number Normal Trade Relations 12-31-06 Unwrought (in coils) 7601.10.3000 2.6% ad val aluminum production decreased slightly owing to cutbacks attributed to increased energy and alumina costs

114

The combined system for fuel supply of fuel cells on the basis of the aluminum-water hydrogen generator and the metal hybride hydrogen storage  

Science Journals Connector (OSTI)

The system for fuel supply of a hydrogen-air fuel cell on the basis of the aluminum-water hydrogen generator and hydride-forming alloy as an intermediate gas storage has been developed. For a series of...4.5 ? x ...

I. V. Yanilkin; Ye. I. Shkolnikov; S. N. Klyamkin; M. S. Vlaskin

2010-12-01T23:59:59.000Z

115

Corrosion performance of aluminum in coal railcars  

SciTech Connect (OSTI)

Aluminum has been used for construction of coal railcars and on an experimental basis as a metallized coating over steel railcars. When aluminum is used in areas which contact the lading, resistance to general corrosion has been outstanding. Galvanic corrosion of joints which connect the aluminum to a steel undercarriage has not been a problem provided appropriate measures were taken during vehicle construction. Laboratory test data are presented which illustrate the impact of variations in joint preparation on galvanic corrosion performance. Painting the steel and the use of a sealant are recommended to obtain satisfactory long term joint performance. The corrosion performance and long term durability of an aluminum metallized coating has been demonstrated when applied to new cars constructed of carbon steel. Test results of coating durability when applied to cars constructed of constructed of weathering steel or carbon steel which were in revenue coal service prior to coating have been mixed.

Hersh, J.F.

1988-01-01T23:59:59.000Z

116

Experimental and Numerical Studies of Aluminum-Alumina Composites  

E-Print Network [OSTI]

The preliminary goal of this study is to determine the effects of processing conditions, compositions and microstructural morphologies of the constituents on the physical and thermo-mechanical properties of alumina (Al_2O_3) reinforced aluminum (Al...

Gudlur, Pradeep

2013-07-22T23:59:59.000Z

117

The viability of aluminum Zintl anion moieties within magnesium-aluminum clusters  

SciTech Connect (OSTI)

Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have investigated the extent to which the aluminum moieties within selected magnesium-aluminum clusters are Zintl anions. Magnesium-aluminum cluster anions were generated in a pulsed arc discharge source. After mass selection, photoelectron spectra of Mg{sub m}Al{sub n}{sup ?} (m, n = 1,6; 2,5; 2,12; and 3,11) were measured by a magnetic bottle, electron energy analyzer. Calculations on these four stoichiometries provided geometric structures and full charge analyses for the cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra). Calculations revealed that, unlike the cases of recently reported sodium-aluminum clusters, the formation of aluminum Zintl anion moieties within magnesium-aluminum clusters was limited in most cases by weak charge transfer between the magnesium atoms and their aluminum cluster moieties. Only in cases of high magnesium content, e.g., in Mg{sub 3}Al{sub 11} and Mg{sub 2}Al{sub 12}{sup ?}, did the aluminum moieties exhibit Zintl anion-like characteristics.

Wang, Haopeng; Jae Ko, Yeon; Zhang, Xinxing; Gantefoer, Gerd; Bowen, Kit H., E-mail: kiran@mcneese.edu, E-mail: akandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Schnoeckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany)] [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Eichhorn, Bryan W. [Department of Chemistry, University of Maryland, College Park, Maryland 20742 (United States)] [Department of Chemistry, University of Maryland, College Park, Maryland 20742 (United States); Jena, Puru [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)] [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Kiran, Boggavarapu, E-mail: kiran@mcneese.edu, E-mail: akandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)] [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States); Kandalam, Anil K., E-mail: kiran@mcneese.edu, E-mail: akandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)

2014-03-28T23:59:59.000Z

118

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2005, 6 companies operated 15 primary aluminum smelters; 4 smelters  

E-Print Network [OSTI]

547 550 542 554 Norway 1,320 1,350 1,320 1,380 Russia 3,590 3,650 3,640 3,760 South Africa 863 830 850%. Tariff: Item Number Normal Trade Relations 12-31-05 Unwrought (in coils) 7601.10.3000 2.6% ad val aluminum production decreased slightly owing to cutbacks attributed to increased energy and alumina costs

119

Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries.  

SciTech Connect (OSTI)

Electrodeposited aluminum films and template-synthesized aluminum nanorods are examined as negative electrodes for lithium-ion batteries. The lithium-aluminum alloying reaction is observed electrochemically with cyclic voltammetry and galvanostatic cycling in lithium half-cells. The electrodeposition reaction is shown to have high faradaic efficiency, and electrodeposited aluminum films reach theoretical capacity for the formation of LiAl (1 Ah/g). The performance of electrodeposited aluminum films is dependent on film thickness, with thicker films exhibiting better cycling behavior. The same trend is shown for electron-beam deposited aluminum films, suggesting that aluminum film thickness is the major determinant in electrochemical performance regardless of deposition technique. Synthesis of aluminum nanorod arrays on stainless steel substrates is demonstrated using electrodeposition into anodic aluminum oxide templates followed by template dissolution. Unlike nanostructures of other lithium-alloying materials, the electrochemical performance of these aluminum nanorod arrays is worse than that of bulk aluminum.

Hudak, Nicholas S.; Huber, Dale L.

2010-12-01T23:59:59.000Z

120

Joining aluminum to titanium alloy by friction stir lap welding with cutting pin  

SciTech Connect (OSTI)

Aluminum 1060 and titanium alloy Ti-6Al-4V plates were lap joined by friction stir welding. A cutting pin of rotary burr made of tungsten carbide was employed. The microstructures of the joining interface were observed by scanning electron microscopy. Joint strength was evaluated by a tensile shear test. During the welding process, the surface layer of the titanium plate was cut off by the pin, and intensively mixed with aluminum situated on the titanium plate. The microstructures analysis showed that a visible swirl-like mixed region existed at the interface. In this region, the Al metal, Ti metal and the mixed layer of them were all presented. The ultimate tensile shear strength of joint reached 100% of 1060Al that underwent thermal cycle provided by the shoulder. - Highlights: Black-Right-Pointing-Pointer FSW with cutting pin was successfully employed to form Al/Ti lap joint. Black-Right-Pointing-Pointer Swirl-like structures formed due to mechanical mixing were found at the interface. Black-Right-Pointing-Pointer High-strength joints fractured at Al suffered thermal cycle were produced.

Wei, Yanni [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072 (China) [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072 (China); Li, Jinglong, E-mail: lijinglg@nwpu.edu.cn [Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072 (China)] [Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072 (China); Xiong, Jiangtao [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072 (China) [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072 (China); Huang, Fu; Zhang, Fusheng; Raza, Syed Hamid [Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072 (China)] [Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072 (China)

2012-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Epitaxial growth of aligned AlGalnN nanowires by metal-organic chemical vapor deposition  

DOE Patents [OSTI]

Highly ordered and aligned epitaxy of III-Nitride nanowires is demonstrated in this work. <1010> M-axis is identified as a preferential nanowire growth direction through a detailed study of GaN/AlN trunk/branch nanostructures by transmission electron microscopy. Crystallographic selectivity can be used to achieve spatial and orientational control of nanowire growth. Vertically aligned (Al)GaN nanowires are prepared on M-plane AlN substrates. Horizontally ordered nanowires, extending from the M-plane sidewalls of GaN hexagonal mesas or islands demonstrate new opportunities for self-aligned nanowire devices, interconnects, and networks.

Han, Jung (Woodbridge, CT); Su, Jie (New Haven, CT)

2008-08-05T23:59:59.000Z

122

Sr effect on the microstructure and tensile properties of A357 aluminum alloy and Al{sub 2}O{sub 3}/SiC-A357 cast composites  

SciTech Connect (OSTI)

The effect of strontium as a modifier on the microstructures and tensile properties of two castable particulate metal matrix composites has been studied. The particulate metal matrix composites had similar matrix alloy (A357) but different reinforcing fine particles (silicon carbide and alumina). Results showed that the addition of 0.03% strontium makes a modest improvement to the yield strength, ultimate tensile strength and elongation percentage values, and the scatter of these properties, but makes a significant improvement to minimum strength and elongation results. Microstructural examinations by scanning electron microscope and energy dispersive spectroscopy analysis of metal matrix composites showed segregation of strontium on both the silicon carbide and alumina particles. Further results showed that the addition of higher strontium levels contributes to the over-modification of the eutectic silicon and promotes the formation of an Al-Si-Sr intermetallic compound on the particle/matrix interface.

Razaghian, A. [Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Emamy, M., E-mail: Emamy@ut.ac.ir [Center of Excellence for High Performance Materials, School of Metallurgy and Materials, University of Tehran, Tehran (Iran, Islamic Republic of); Najimi, A.A.; Ebrahimi, S.H. Seyed [Center of Excellence for High Performance Materials, School of Metallurgy and Materials, University of Tehran, Tehran (Iran, Islamic Republic of)

2009-11-15T23:59:59.000Z

123

CO hydrogenation on Rh/Al-PILC: the effect of the metallic precursor  

Science Journals Connector (OSTI)

Publisher Summary This chapter describes the preparation of new catalysts for liquid fuel synthesis making use of the molecular sieving effect of pillared clays (PILC) of controlled porosity to limit the size of the hydrocarbons chain, and of the ability of partially oxidized Rh to produce oxygenates, acting on the Rh electronic state by changing the active phase precursor and the dispersion of the metal involved. The nature of the metallic precursor plays a role on the activity and selectivity for CO hydrogenation of Rh-PILC catalysts. Organo compounds seem to give rise to catalysts more active and selective to oxygenate than inorganic precursors, through changes in the oxidation state and the particle size of the metal involved. To select the proper treatment temperature, as to eliminate the organic residue on the support, is a necessary step to obtain the expected improvement of the catalysts.

S. Mendioroz; B. Asenjo; P. Terreros; P. Salerno; V. Muoz

2000-01-01T23:59:59.000Z

124

E-Print Network 3.0 - aluminum phosphide pc Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HCP CCP PO phosphorus monoxide molecular oxygen Aluminum oxide H2 H2 O H2 S CSi carbon... isocyanide HCl NaCl NaCN N2 O KCl AlCl aluminum monochloride NH2 amidyl radical*...

125

E-Print Network 3.0 - aluminum oxide selectively Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

between GaN and AlGaN has been observed up to an aluminum mole fraction... oxides.1-3 For gallium nitride and aluminum gallium nitride this effect has been seldom reported.4... ,...

126

Comparison of \\{WTi\\} and WTi(N) as diffusion barriers for Al and Cu metallization on Si with respect to thermal stability and diffusion behavior of Ti  

Science Journals Connector (OSTI)

Abstract The thermal stability of \\{WTi\\} and WTi(N) as diffusion barriers for Al and Cu metallization on Si (100) was investigated by time of flight secondary ion mass spectrometry (ToF-SIMS) depth profiling, X-ray diffraction (XRD), electron microscopy (SEM and TEM) and X-ray photoelectron spectroscopy (XPS). For both, Al and Cu, Ti diffusion out of \\{WTi\\} into the metal was proved to occur at elevated temperatures (400C for Al and 600C for Cu) which further results in barrier film failure. Nitrogen incorporation into \\{WTi\\} leads to an elimination of the Ti diffusion and consequently to a better thermal stability of the barrier film. It is shown that besides crystal structure, Ti diffusion into the metallization is an essential factor of the barrier failure mechanism. The failure temperature for Al is lower than for Cu.

M. Fugger; M. Plappert; C. Schffer; O. Humbel; H. Hutter; H. Danninger; M. Nowottnick

2014-01-01T23:59:59.000Z

127

Effect of the strain-induced melt activation (SIMA) process on the tensile properties of a new developed super high strength aluminum alloy modified by Al-5Ti-1B grain refiner  

SciTech Connect (OSTI)

In this study, the effect of Al-5Ti-1B grain refiners and modified strain-induced melt activation process on an Al-Zn-Mg-Cu alloy was studied. The optimum level of Ti was found to be 0.1 wt.%. The specimens subjected to deformation ratio of 40% (at 300 Degree-Sign C) and various heat treatment times (10-40 min) and temperature (550-600 Degree-Sign C) regimes were characterized in this study. Reheating condition to obtain a fine globular microstructure was optimized. Microstructural examinations were conducted by optical and scanning electron microscopy coupled with an energy dispersive spectrometry. The optimum temperature and time in strain-induced melt activation process are 575 Degree-Sign C and 20 min, respectively. T6 heat treatment including quenching to room temperature and aging at 120 Degree-Sign C for 24 h was employed to reach to the maximum strength. Significant improvements in mechanical properties were obtained with the addition of grain refiner combined with T6 heat treatment. After the T6 heat treatment, the average tensile strength increased from 283 MPa to 587 and 332 MPa to 617 for samples refined with 2 wt.% Al-5Ti-1B before and after strain-induced melt activation process and extrusion process, respectively. Ultimate strength of Ti-refined specimens without SIMA process has a lower value than globular microstructure specimens after SIMA and extrusion process. - Highlights: Black-Right-Pointing-Pointer The effect of Al-5Ti-1B on the aluminum alloy produced by SIMA process was studied. Black-Right-Pointing-Pointer Al-5Ti-1B is an effective in reducing the grain and reagent fine microstructure. Black-Right-Pointing-Pointer Reheating condition to obtain a fine globular microstructure was optimized. Black-Right-Pointing-Pointer The optimum temperature and time in SIMA process are 575 Degree-Sign C and 20 min respectively. Black-Right-Pointing-Pointer UTS of globular structure specimens have a more value than Ti-refined specimens.

Haghparast, Amin [School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)] [School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Nourimotlagh, Masoud [Young Researchers Club, Dareshahr Branch, Islamic Azad university (Iran, Islamic Republic of)] [Young Researchers Club, Dareshahr Branch, Islamic Azad university (Iran, Islamic Republic of); Alipour, Mohammad, E-mail: Alipourmo@ut.ac.ir [School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)] [School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

2012-09-15T23:59:59.000Z

128

Microstructural issues in a friction-stir-welded aluminum alloy  

SciTech Connect (OSTI)

Recent observations of microstructures associated with friction-stir welding (FSW) in a number of aluminum alloys have consistently demonstrated the actual weld zone to consist of a (dynamically) recrystallized grain structure resulting from the extreme, solid-state, plastic deformation characterizing the process. Because of solubilities associated with the various precipitates in 7075 and 6061 aluminum alloys, and the fact that the precipitates were either homogeneously distributed throughout both the original (unwelded) work-piece plates and the well zones (or formed varying densities of Widmanstaetten patterns within the original and recrystallized grains), it has been difficult to follow the stirring of stable, second-phase particles from the base metal (work-piece) into the weld zone. In the present investigation, a compositionally modified 1100 aluminum alloy (nominally 99.2% Al, 0.5% Fe, 0.15% Cu, 0.12% Si, 0.05 Mn, 0.04 Ti, balance in weight percent of Be and Mg), forming a stable microdendritic (second-phase), equiaxed, cell structure was friction-stir welded. These thermally stable, geometrically specific, precipitates in the base metal were compared with their disposition within the friction-stir-weld zone. In addition, as-cast plates of this alloy were cold-rolled 50% and friction-stir-welded in order to compare these two schedules (as-cast and 50% cold-rolled) in terms of residual hardness variations and related microstructural issues as well as the effect of prior deformation on the friction-stir welding process.

Flores, O.V.; Kennedy, C.; Murr, L.E.; Brown, D.; Pappu, S.; Nowak, B.M.; McClure, J.C. [Univ. of Texas, El Paso, TX (United States)] [Univ. of Texas, El Paso, TX (United States)

1998-02-03T23:59:59.000Z

129

REAR-SIDE POINT-CONTACTS BY INLINE THERMAL EVAPORATION OF ALUMINUM Christoph Mader  

E-Print Network [OSTI]

REAR-SIDE POINT-CONTACTS BY INLINE THERMAL EVAPORATION OF ALUMINUM Christoph Mader 1 , Jens Müller of point-contacted aluminum rear-sides for silicon solar cells that are metalized by inline thermal evaporation. We deposit aluminum layers of 2 µm thickness at dynamic deposition rates of 1.0, 2.9 and 5.0 µm

130

A perturbation analysis of the unstable plastic flow pattern evolution in an aluminum alloy  

E-Print Network [OSTI]

A perturbation analysis of the unstable plastic flow pattern evolution in an aluminum alloy Seung Abstract In the tensile loading of sheet metals made from some polycrystalline aluminum alloys, a single in the uniaxial tension of polycrystalline aluminum alloys with periodic stress relaxations depends

Tong, Wei

131

Decontamination and reuse of ORGDP aluminum scrap  

SciTech Connect (OSTI)

The Gaseous Diffusion Plants, or GDPs, have significant amounts of a number of metals, including nickel, aluminum, copper, and steel. Aluminum was used extensively throughout the GDPs because of its excellent strength to weight ratios and good resistance to corrosion by UF{sub 6}. This report is concerned with the recycle of aluminum stator and rotor blades from axial compressors. Most of the stator and rotor blades were made from 214-X aluminum casting alloy. Used compressor blades were contaminated with uranium both as a result of surface contamination and as an accumulation held in surface-connected voids inside of the blades. A variety of GDP studies were performed to evaluate the amounts of uranium retained in the blades; the volume, area, and location of voids in the blades; and connections between surface defects and voids. Based on experimental data on deposition, uranium content of the blades is 0.3%, or roughly 200 times the value expected from blade surface area. However, this value does correlate with estimated internal surface area and with lengthy deposition times. Based on a literature search, it appears that gaseous decontamination or melt refining using fluxes specific for uranium removal have the potential for removing internal contamination from aluminum blades. A melt refining process was used to recycle blades during the 1950s and 1960s. The process removed roughly one-third of the uranium from the blades. Blade cast from recycled aluminum appeared to perform as well as blades from virgin material. New melt refining and gaseous decontamination processes have been shown to provide substantially better decontamination of pure aluminum. If these techniques can be successfully adapted to treat aluminum 214-X alloy, internal and, possibly, external reuse of aluminum alloys may be possible.

Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

1996-12-01T23:59:59.000Z

132

ALUMINUM--1997 5.1 By Patricia A. Plunkert  

E-Print Network [OSTI]

. Reynolds Metals Co. announced the planned restart of limited production at its Troutdale, OR, primary aluminum smelter by February 1998 at an annual rate of 27,000 tons. The Troutdale smelter, which has

133

Electrodeposition of magnesium and magnesium/aluminum alloys  

DOE Patents [OSTI]

Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

Mayer, A.

1988-01-21T23:59:59.000Z

134

Electrodeposition of magnesium and magnesium/aluminum alloys  

DOE Patents [OSTI]

Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

Mayer, Anton (Los Alamos, NM)

1988-01-01T23:59:59.000Z

135

Transition-metal (Au, Pt, Ir, Re) bonding to Al,Si,Ge: X-ray-absorption studies  

Science Journals Connector (OSTI)

We report transition-metal (T) L2 and L3 near-edge x-ray-absorption spectroscopy measurements on more than a score of T-X compounds with T=Au, Pt, Ir, and Re and X=Al, Si, and Ge. We correlate the strength of the (2p?5d)-related white line feature at these edges to the degree of chemical-bonding-induced 5d-orbital charge transfer in these materials. Similar bonding trends are shown to be present in 1:2:2 compounds involving these T and X elements. Finally, the bonding-induced charge-transfer effects in such T-X compounds are discussed along with the Pauling electronegativity scale. [L. Pauling, The Nature of the Chemical Bond (Cornell University Press, New York, 1960), p. 93.

Y. Jeon, Boyun Qi, F. Lu, and M. Croft

1989-07-15T23:59:59.000Z

136

Climate VISION: Private Sector Initiatives: Aluminum: Resources...  

Office of Scientific and Technical Information (OSTI)

Industry Associations Aluminum Association The Aluminum Association, Inc. is the trade association for producers of primary aluminum, recyclers and semi-fabricated aluminum...

137

ITP Aluminum: Aluminum Industry Technology Roadmap  

Broader source: Energy.gov [DOE]

In 2002, the industry created this updated Aluminum Industry Technology Roadmap to define the specific research and development priorities, performance targets, and milestones required to achieve the set vision.

138

Five Ways Aluminum Foil Is Advancing Science | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Five Ways Aluminum Foil Is Advancing Science Five Ways Aluminum Foil Is Advancing Science Five Ways Aluminum Foil Is Advancing Science September 7, 2012 - 5:33pm Addthis SLAC National Accelerator Laboratory uses massive quantities of aluminum foil to perform "bake out" of their equipment. In a typical bake out, the equipment is blanketed in foil, wrapped with electrical heat tape, and then covered in foil again. Heat tape is used to heat the metal chamber just enough to loosen any residues that could cause trouble. The aluminum foil helps spread the heat evenly. | Photo of SLAC SLAC National Accelerator Laboratory uses massive quantities of aluminum foil to perform "bake out" of their equipment. In a typical bake out, the equipment is blanketed in foil, wrapped with electrical heat tape, and then

139

Five Ways Aluminum Foil Is Advancing Science | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Five Ways Aluminum Foil Is Advancing Science Five Ways Aluminum Foil Is Advancing Science Five Ways Aluminum Foil Is Advancing Science September 7, 2012 - 5:33pm Addthis SLAC National Accelerator Laboratory uses massive quantities of aluminum foil to perform "bake out" of their equipment. In a typical bake out, the equipment is blanketed in foil, wrapped with electrical heat tape, and then covered in foil again. Heat tape is used to heat the metal chamber just enough to loosen any residues that could cause trouble. The aluminum foil helps spread the heat evenly. | Photo of SLAC SLAC National Accelerator Laboratory uses massive quantities of aluminum foil to perform "bake out" of their equipment. In a typical bake out, the equipment is blanketed in foil, wrapped with electrical heat tape, and then

140

Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Light Metals Permanent Mold Casting  

SciTech Connect (OSTI)

Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloy systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.

Fasoyinu, Yemi [CanmetMATERIALS] [CanmetMATERIALS

2014-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

In situ metal-organic chemical vapor deposition atomic-layer deposition of aluminum oxide on GaAs using trimethyaluminum  

E-Print Network [OSTI]

IPA is chosen as the oxygen source for the ALD in the MOCVD. Second, IPA will not react precursor pulse time. b Dependence of ALD Al2O3 growth rate on temperature. The pulse time for TMA and IPA

142

Characterization of Ti diffusion in PVD deposited WTi/AlCu metallization on monocrystalline Si by means of secondary ion mass spectroscopy  

Science Journals Connector (OSTI)

The diffusion behavior of Titanium in Al0.5Cu/W18Ti (at.%) metallization stacks on monocrystalline Silicon has been investigated. The metallization system was prepared by in situ sputtering deposition. It is demonstrated that \\{WTi\\} is not stable as a diffusion barrier between Al0.5Cu and Si in temperature ranges between 623K and 673K due to Ti depletion. The Ti diffusion in Al0.5Cu is characterized by diffusion profiles prepared by secondary ion mass spectroscopy after annealing. The activation energy derived from this data is 2.28eV for Ti diffusion into Al0.5Cu. The causal chain of detecting this behavior is described application-oriented.

M. Plappert; O. Humbel; A. Koprowski; M. Nowottnick

2012-01-01T23:59:59.000Z

143

ATOMIC-LAYER-DEPOSITED ALUMINUM OXIDE FOR THE SURFACE PASSIVATION OF HIGH-EFFICIENCY SILICON SOLAR CELLS  

E-Print Network [OSTI]

ATOMIC-LAYER-DEPOSITED ALUMINUM OXIDE FOR THE SURFACE PASSIVATION OF HIGH-EFFICIENCY SILICON SOLAR to those measured on reference cells passivated by an aluminum-annealed thermal SiO2, while those of the Al of aluminum ox- ide (Al2O3) grown by atomic layer deposition (ALD) pro- vide an excellent level of sur

144

Oxidation kinetics of aluminum diboride  

SciTech Connect (OSTI)

The oxidation characteristics of aluminum diboride (AlB{sub 2}) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 C/min showed a marked difference between Al+2B and AlB{sub 2} in the onset of oxidation and final conversion fraction, with AlB{sub 2} beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 C. Activation energies were found to decrease, in general, with increasing conversion for AlB{sub 2} and Al+2B in both air and oxygen. AlB{sub 2} exhibited O{sub 2}-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O{sub 2} than in air. Differences in the composition and morphology between oxidized Al+2B and AlB{sub 2} suggested that Al{sub 2}O{sub 3}B{sub 2}O{sub 3} interactions slowed Al+2B oxidation by converting Al{sub 2}O{sub 3} on aluminum particles into a Al{sub 4}B{sub 2}O{sub 9} shell, while the same Al{sub 4}B{sub 2}O{sub 9} developed a needle-like morphology in AlB{sub 2} that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB{sub 2}, but both appear to be resistant to oxidation in cool, dry environments. - Graphical abstract: Isothermal kinetic data for AlB{sub 2} in air, showing a constantly decreasing activation energy with increasing conversion. Model-free analysis allowed for the calculation of global kinetic parameters despite many simultaneous mechanisms occurring concurrently. (a) Timetemperature plots, (b) conversion as a function of time, (c) Arrhenius plots used to calculate activation energies, and (d) activation energy as a function of conversion. Display Omitted - Highlights: First reported kinetic parameters for AlB{sub 2} and Al+2B oxidation in air and O{sub 2}. Possible mechanism of enhanced boron combustion presented. Moisture sensitivity shown to be problematic for AlB{sub 2}, less for Al+2B.

Whittaker, Michael L., E-mail: michaelwhittaker2016@u.northwestern.edu [Department of Materials Science and Engineering, University of Utah, 122S. Central Campus Drive, Salt Lake City, UT 84112 (United States); Sohn, H.Y. [Department of Metallurgical Engineering, University of Utah, 135S 1460 E, Rm 00412, Salt Lake City, UT 84112 (United States); Cutler, Raymond A. [Ceramatec, Inc., 2425S. 900W., Salt Lake City, UT 84119 (United States)

2013-11-15T23:59:59.000Z

145

Modeling the Effect of Finite-Rate Hydrogen Diffusion on Porosity Formation in Aluminum Alloys  

E-Print Network [OSTI]

Modeling the Effect of Finite-Rate Hydrogen Diffusion on Porosity Formation in Aluminum Alloys KENT of hydrogen in the melt is developed to predict pore formation during the solidification of aluminum alloys by Lee et al.[3] Recent examples of porosity models for aluminum alloy castings, including the effect

Beckermann, Christoph

146

Rapid communication Quantication of ve-and six-coordinated aluminum ions in  

E-Print Network [OSTI]

Rapid communication Quanti®cation of ®ve- and six-coordinated aluminum ions in aluminosilicate, Stanford, CA 94305-2115, USA Received 5 May 2000 Abstract Aluminum cation sites with ®ve (5 Al) or six (6 in a calcium-aluminosilicate glass without excess aluminum over charge-balancing cations, and quantify small

Puglisi, Joseph

147

GLOBAL BIOGEOCHEMICAL CYCLES, VOL. ???, XXXX, DOI:10.1029/, Estimating mineral aerosol iron and aluminum1  

E-Print Network [OSTI]

and aluminum1 solubility from particle size using diffusion-controlled2 and surface [Jickells et al., 2005].34 Aluminum, on the other hand, is not found to be an important nutrient chemistry compared to Fe, aluminum has been used as a39 tracer for quantifying the dust deposition

Zender, Charles

148

Corrosion of MA754 and MA956 in a Commercial Aluminum Melter  

SciTech Connect (OSTI)

The University of North Dakota Energy & Environmental Research Center is working with Oak Ridge National Laboratory to test two oxide dispersion-strengthened alloys that could be used to construct very high-temperature heat recuperators for the aluminum-melting industry. For the initial tests, uncooled rings of MA754 and MA956 piping were exposed for 5 months to gases leaving an aluminum melter furnace at 1200 1290 C. The MA956 suffered spotty areas of severe corrosion and lost 25% of its weight. Scanning electron microscopy showed that there were small spots of alkali-rich corrosion products on the alloy surfaces, indicating the impact of droplets of fluxing agents. The corrosion products in these areas were mixed Fe, Cr, and Al oxides, which were depleted in Cr near the gas surface. However, Al concentrations in the remaining metal were typically between 3.5% and 4.0%, so there was a sufficient reservoir of Al remaining in the alloy to prevent simple breakaway corrosion which could have occurred if the Al were significantly depleted. The MA754 lost approximately 15% of its weight and showed void formation within 2 mm of the gas metal surfaces. Within the porous area, the Cr had largely segregated into oxide precipitates up to 50 9m in diameter, leaving the remaining metal Ni-rich. Below the porous layer, the alloy composition was relatively unchanged. Remains of Na- and Al-rich particles that had impacted the surface sporadically were visible but had not obviously affected the surface scale as they had with the MA956.

Hurley, John P. [University of North Dakota Energy & Environmental Research Center] [University of North Dakota Energy & Environmental Research Center; Kelley, Carl [Natures Fuel, 410 East Cook Road, Fort Wayne, IN 46825, USA] [Natures Fuel, 410 East Cook Road, Fort Wayne, IN 46825, USA; Bornstein, Norman S. [Consultant] [Consultant; Wright, Ian G [ORNL] [ORNL

2008-01-01T23:59:59.000Z

149

Chemical vapor deposition of aluminum oxide  

DOE Patents [OSTI]

An aluminum oxide film is deposited on a heated substrate by CVD from one or more alkylaluminum alkoxide compounds having composition R.sub.n Al.sub.2 (OR').sub.6-n, wherein R and R' are alkyl groups and n is in the range of 1 to 5.

Gordon, Roy (Cambridge, MA); Kramer, Keith (Cleveland, OH); Liu, Xinye (Cambridge, MA)

2000-01-01T23:59:59.000Z

150

Localized electrons in the metallic phase of the two-dimensional electron system at ,,Al,Ga...As-GaAs heterojunctions  

E-Print Network [OSTI]

Localized electrons in the metallic phase of the two-dimensional electron system at ,,Al, United Kingdom Received 29 October 1996 Using the effect of electron focusing we measure the Fermi wave vector of the delocalized electrons in a two-dimensional 2D electron system. After obtaining the total

Ludwig-Maximilians-Universität, München

151

An Investigation into the evolution of damage and residual stresses in Ti6Al4V-Al?Ti metal intermetallic laminate (MIL) composites  

E-Print Network [OSTI]

good creep resistance, and relatively low material density.strengthened materials are toughened since the resistance toresistance of interfaces in NiAl/Mo model laminates, Materials

Li, Tiezheng

2006-01-01T23:59:59.000Z

152

Laser ablation analysis of novel perfluoroalkyl-coated aluminum nanocomposites  

SciTech Connect (OSTI)

The evolution and decay of aluminum and aluminum monoxide emission signatures following a laser ablation event were used to compare the relative reaction rates of three aluminum based materials. Time-resolved emission results of oxide-free, C{sub 13}F{sub 27}CO{sub 2}H-passivated materials were compared with uncoated, oxide passivated aluminum nanoparticles and those coated with the same acid used in for passivation C{sub 13}F{sub 27}CO{sub 2}H. Excited state Al and AlO emission is reduced in time for the oxide free material when compared to coated, 50 nm, oxide passivated particles mixed on an equal active Al: C{sub 13}F{sub 27}CO{sub 2}H ratio. This is interpreted as an increase in the reaction rate afforded by the elimination of the oxide coating and proximity of oxidizing species in the SAM-based nanocomposite.

Jouet, R. Jason; Carney, Joel R.; Lightstone, James M.; Warren, Andrea D. [Research, Development, Test, and Evaluation, IHDIV, Naval Surface Warfare Center 4104 Evans Way, Suite 102 Indian Head MD 20640-5102 (United States)

2007-12-12T23:59:59.000Z

153

Lithium-aluminum-carbonate-hydroxide hydrate coatings on aluminum alloys: Composition, structure, and processing bath chemistry  

SciTech Connect (OSTI)

A new corrosion resistant coating, being designed for possible replacement of chromate conversion coatings on aluminum alloys, was investigated for composition, structure, and solubility using a variety of techniques. The stoichiometry of the material, prepared by immersion of 1100 Al alloy into a lithium carbonate-lithium hydroxide solution, was approximately Li{sub 2}Al{sub 4}CO{sub 3}(OH){sub 12}{center_dot}3H{sub 2}O. Processing time was shown to be dependent upon the bath pH, and consistent coating formation required supersaturation of the coating bath with aluminum. The exact crystal structure of this hydrotalcite material, hexagonal or monoclinic, was not determined. It was shown that both the bulk material and coatings with the same nominal composition and crystal structure could be formed by precipitation from an aluminum supersatured solution of lithium carbonate. {copyright} {ital 1996 Materials Research Society.}

Drewien, C.A.; Eatough, M.O.; Tallant, D.R.; Hills, C.R.; Buchheit, R.G. [Materials and Process Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

1996-06-01T23:59:59.000Z

154

Evidence for viscous flow nature in Zr{sub 60}Al{sub 15}Ni{sub 25} metallic glass subjected to cold rolling  

SciTech Connect (OSTI)

The microstructure changes of Zr{sub 60}Al{sub 15}Ni{sub 25} metallic glass upon cold rolling and their influences on the thermally induced crystallization kinetics are investigated. The results show that atomic redistribution occurs within the localized zones in the glassy matrix, resulting from the softening of the shear modulus, which retards the crystallization behaviors during the subsequent heating. The present work provides direct evidence for the viscous flow nature in a metallic glass subjected to plastic deformation, during which the softened zones act as potential shear transformation zones.

Yan Zhijie [School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024 (China); IFW Dresden, Institut fuer Komplexe Materialien, Helmholtzstrasse 20, D-01069 Dresden (Germany); Hao Weixin; Hu Yong [School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024 (China); Song Kaikai; Eckert, Juergen [IFW Dresden, Institut fuer Komplexe Materialien, Helmholtzstrasse 20, D-01069 Dresden (Germany); TU Dresden, Institut fuer Werkstoffwissenschaft, D-01062 Dresden (Germany); Stoica, Mihai; Scudino, Sergio [IFW Dresden, Institut fuer Komplexe Materialien, Helmholtzstrasse 20, D-01069 Dresden (Germany)

2013-07-08T23:59:59.000Z

155

Study on thermal performance of high power LED employing aluminum filled epoxy composite as thermal interface material  

Science Journals Connector (OSTI)

Abstract This paper elucidates the thermal behavior of an LED employing metal filled polymer matrix as thermal interface material (TIM) for an enhanced heat dissipation characteristic. Highly thermal conductive aluminum (Al) particles were incorporated in bisphenol A diglycidylether (DGEBA) epoxy matrix to study the effect of filler to polymer ratio on the thermal performance of high power LEDs. The curing behavior of DGEBA was studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The dispersion nature of the Al fillers in polymer matrix was verified with Field Emission Scanning Electron Microscope (FESEM). The thermal performance of synthesized Al filled polymer composite as TIM was tested with an LED employing thermal transient measurement technique. Comparing the filler to polymer ratio, the rise in junction temperature for 60wt% Al filled composite was higher by 11.1C than 50wt% Al filled composite at cured state. Observed also from the structure function analysis that the total thermal resistance was 10.96K/W higher for 60wt% Al filled composite compared to 50wt% Al filled composite. On the other hand, a significant rise of 9.5C in the junction temperature between cured and uncured samples of 50wt% Al filled polymer TIM was observed and hence the importance of curing process of metal filled polymer composite for effective heat dissipation is discussed extensively in this work.

P. Anithambigai; S. Shanmugan; D. Mutharasu; T. Zahner; D. Lacey

2014-01-01T23:59:59.000Z

156

All-optical Wavelength Conversion in Aluminum Gallium Arsenide at Telecommunications Wavelengths.  

E-Print Network [OSTI]

??This thesis aims at both developing highly nonlinear Aluminum Gallium Arsenide waveguides(AlGaAs) and demonstrating all-optical wavelength conversion via cross-phase modulation in AlGaAs waveguides at telecommunications (more)

Ng, Wing-Chau

2011-01-01T23:59:59.000Z

157

ADVANCED CERAMIC COMPOSITES FOR MOLTEN ALUMINUM CONTACT APPLICATIONS  

SciTech Connect (OSTI)

A new refractory material which was developed for use in molten aluminum contact applications was shown to exhibit improved corrosion and wear resistance leading to improved thermal management through reduced heat losses caused by refractory thinning and wastage. This material was developed based on an understanding of the corrosion and wear mechanisms associated with currently used aluminum contact refractories under a U.S. Department of Energy funded project to investigate multifunctional refractory materials for energy efficient handling of molten metals. This new material has been validated through an industrial trial at a commercial aluminum rod and cable mill. Material development and results of this industrial validation trial are discussed.

Hemrick, James Gordon [ORNL] [ORNL; Peters, Klaus-Markus [ORNL] [ORNL

2009-01-01T23:59:59.000Z

158

Aluminum foam, ALPORAS: The production process, properties and applications  

SciTech Connect (OSTI)

The production of foamed aluminum has long been considered difficult to realize because of such problems as the low foamability of molten metal, the varying size of cellular structures, solidification shrinkage and so on. Recently these problems have been solved by a number of researchers and some manufacturers produce foamed aluminum by their own methods. The authors have been employing a batch casting process and manufacturing foamed aluminum under the tradename ALPORAS{reg_sign} since 1986. This paper presents the manufacturing process, physical properties and some typical applications of ALPORAS.

Miyoshi, T.; Itoh, M. [Shinko Wire Co., Ltd., Amagasaki (Japan); Akiyama, S.; Kitahara, A. [Kyushu National Industrial Research Inst., Tosu (Japan). Material Engineering Dept.

1998-12-31T23:59:59.000Z

159

U.S. Energy Requirements for Aluminum Production | Department...  

Broader source: Energy.gov (indexed) [DOE]

Ultrahigh-Efficiency Aluminum Production Cells ITP Aluminum: Aluminum Industry Technology Roadmap ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a...

160

Aluminum Solubility in Complex Electrolytes - 13011  

SciTech Connect (OSTI)

Predicting aluminum solubility for Hanford and Savannah River waste liquids is very important for their disposition. It is a key mission goal at each Site to leach as much aluminum as practical from sludges in order to minimize the amount of vitrified high level waste. And it is correspondingly important to assure that any soluble aluminum does not precipitate during subsequent decontamination of the liquid leachates with ion exchange. This report shows a very simple and yet thermodynamic model for aluminum solubility that is consistent with a wide range of Al liquors, from simple mixtures of hydroxide and aluminate to over 300 Hanford concentrates and to a set of 19 Bayer liquors for temperatures from 20-100 deg. C. This dimer-dS{sub mix} (DDS) model incorporates an ideal entropy of mixing along with previous reports for the Al dimer, water activities, gibbsite, and bayerite thermodynamics. We expect this model will have broad application for nuclear wastes as well as the Bayer gibbsite process industry. (authors)

Agnew, S.F. [Columbia Energy and Environmental Services, Inc., 1806 Terminal Dr., Richland, WA 99354 (United States)] [Columbia Energy and Environmental Services, Inc., 1806 Terminal Dr., Richland, WA 99354 (United States); Johnston, C.T. [Dept. of Crop, Soil, and Environmental Sciences, Purdue University, West Lafayette, IN 47907 (United States)] [Dept. of Crop, Soil, and Environmental Sciences, Purdue University, West Lafayette, IN 47907 (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Atomic layer deposition of Hf{sub x}Al{sub y}C{sub z} as a work function material in metal gate MOS devices  

SciTech Connect (OSTI)

As advanced silicon semiconductor devices are transitioning from planar to 3D structures, new materials and processes are needed to control the device characteristics. Atomic layer deposition (ALD) of Hf{sub x}Al{sub y}C{sub z} films using hafnium chloride and trimethylaluminum precursors was combined with postdeposition anneals and ALD liners to control the device characteristics in high-k metal-gate devices. Combinatorial process methods and technologies were employed for rapid electrical and materials characterization of various materials stacks. The effective work function in metaloxidesemiconductor capacitor devices with the Hf{sub x}Al{sub y}C{sub z} layer coupled with an ALD HfO{sub 2} dielectric was quantified to be mid-gap at ?4.6?eV. Thus, Hf{sub x}Al{sub y}C{sub z} is a promising metal gate work function material that allows for the tuning of device threshold voltages (V{sub th}) for anticipated multi-V{sub th} integrated circuit devices.

Lee, Albert, E-mail: alee@intermolecular.com; Fuchigami, Nobi; Pisharoty, Divya; Hong, Zhendong; Haywood, Ed; Joshi, Amol; Mujumdar, Salil; Bodke, Ashish; Karlsson, Olov [Intermolecular, 3011 North First Street, San Jose, California 95134 (United States); Kim, Hoon; Choi, Kisik [GLOBALFOUNDRIES Technology Research Group, 257 Fuller Road, Albany, New York 12309 (United States); Besser, Paul [GLOBALFOUNDRIES, 1050 East Arques, Sunnyvale, California 94085 (United States)

2014-01-15T23:59:59.000Z

162

Aluminum and silica intake in drinking water and the risk of Alzheimer's disease or cognitive decline: findings of the  

E-Print Network [OSTI]

Aluminum and silica intake in drinking water and the risk of Alzheimer's disease or cognitive,2 , Commenges Daniel1,2 , Helmer Catherine2,3 , Jean-François Dartigues2,3 . Abbreviations: Al, Aluminum; AD, Alzheimer's Disease; MMSE, Mini Mental State Examination; Si, Silica Running head: Aluminum, silica in water

Paris-Sud XI, Université de

163

DEFLECTION MEASUREMENTS OF 25 mm ALUMINUM COLLARS  

E-Print Network [OSTI]

MEASUREMENTS OF 25 mm ALUMINUM COLLARS C. Peters LawrenceMEASUREMENTS OF 25 mm ALUMINUM COLLARS" C. Peters Lawrenceinch thick 7075- T6 aluminum alloy plate. Inside corners

Peters, C.

2010-01-01T23:59:59.000Z

164

Photoelectron spectroscopy of boron aluminum hydride cluster anions  

SciTech Connect (OSTI)

Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, B{sub x}Al{sub y}H{sub z}{sup ?}, were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H., E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Li, Xiang [Center for Space Science and Technology, University of MarylandBaltimore County, Baltimore, Maryland 21250 (United States)] [Center for Space Science and Technology, University of MarylandBaltimore County, Baltimore, Maryland 21250 (United States); Kiran, Boggavarapu, E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry and Physics, McNeese State University, Lake Charles, Louisiana 70609 (United States)] [Department of Chemistry and Physics, McNeese State University, Lake Charles, Louisiana 70609 (United States); Kandalam, Anil K. [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)] [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)

2014-04-28T23:59:59.000Z

165

Reaction of Aluminum with Water to Produce Hydrogen: A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage. Version 2, 2010.  

Broader source: Energy.gov [DOE]

Produced in 2008 by DOE and updated in 2010, this report focuses on the key issues as well as advantages and disadvantages associated with using the reaction between aluminum metal and water for on-board vehicular hydrogen storage.

166

ITP Aluminum: Inert Anodes Roadmap  

Broader source: Energy.gov [DOE]

Aluminum is one of the most versatile materials available today that can meet the demanding requirements of tomorrow's products.

167

ALUMINUM AND CHROMIUM LEACHING WORKSHOP WHITEPAPER  

SciTech Connect (OSTI)

A workshop was held on January 23-24, 2007 to discuss the status of processes to leach constituents from High Level Waste (HLW) sludges at the Hanford and Savannah River Sites. The objective of the workshop was to examine the needs and requirements for the HLW flowsheet for each site, discuss the status of knowledge of the leaching processes, communicate the research plans, and identify opportunities for synergy to address knowledge gaps. The purpose of leaching of non-radioactive constituents from the sludge waste is to reduce the burden of material that must be vitrified in the HLW melter systems, resulting in reduced HLW glass waste volume, reduced disposal costs, shorter process schedules, and higher facility throughput rates. The leaching process is estimated to reduce the operating life cycle of SRS by seven years and decrease the number of HLW canisters to be disposed in the Repository by 1000 [Gillam et al., 2006]. Comparably at Hanford, the aluminum and chromium leaching processes are estimated to reduce the operating life cycle of the Waste Treatment Plant by 20 years and decrease the number of canisters to the Repository by 15,000-30,000 [Gilbert, 2007]. These leaching processes will save the Department of Energy (DOE) billions of dollars in clean up and disposal costs. The primary constituents targeted for removal by leaching are aluminum and chromium. It is desirable to have some aluminum in glass to improve its durability; however, too much aluminum can increase the sludge viscosity, glass viscosity, and reduce overall process throughput. Chromium leaching is necessary to prevent formation of crystalline compounds in the glass, but is only needed at Hanford because of differences in the sludge waste chemistry at the two sites. Improving glass formulations to increase tolerance of aluminum and chromium is another approach to decrease HLW glass volume. It is likely that an optimum condition can be found by both performing leaching and improving formulations. Disposal of the resulting aluminum and chromium-rich streams are different at the two sites, with vitrification into Low Activity Waste (LAW) glass at Hanford, and solidification in Saltstone at SRS. Prior to disposal, the leachate solutions must be treated to remove radionuclides, resulting in increased operating costs and extended facility processing schedules. Interim storage of leachate can also add costs and delay tank closure. Recent projections at Hanford indicate that up to 40,000 metric tons of sodium would be needed to dissolve the aluminum and maintain it in solution, which nearly doubles the amount of sodium in the entire current waste tank inventory. This underscores the dramatic impact that the aluminum leaching can have on the entire system. A comprehensive view of leaching and the downstream impacts must therefore be considered prior to implementation. Many laboratory scale tests for aluminum and chromium dissolution have been run on Hanford wastes, with samples from 46 tanks tested. Three samples from SRS tanks have been tested, out of seven tanks containing high aluminum sludge. One full-scale aluminum dissolution was successfully performed on waste at SRS in 1982, but generated a very large quantity of liquid waste ({approx}3,000,000 gallons). No large-scale tests have been done on Hanford wastes. Although the data to date give a generally positive indication that aluminum dissolution will work, many issues remain, predominantly because of variable waste compositions and changes in process conditions, downstream processing, or storage limitations. Better approaches are needed to deal with the waste volumes and limitations on disposal methods. To develop a better approach requires a more extensive understanding of the kinetics of dissolution, as well as the factors that effect rates, effectiveness, and secondary species. Models of the dissolution rate that have been developed are useful, but suffer from limitations on applicable compositional ranges, mineral phases, and particle properties that are difficult to measure. The experimental

McCabe, D; Jeff Pike, J; Bill Wilmarth, B

2007-04-25T23:59:59.000Z

168

EFFECTS OF ION IRRADIATION ON Zr52.5Cu17.9Ni14.6Al10Ti5 (BAM-11) BULK METALLIC GLASS  

SciTech Connect (OSTI)

Bulk metallic glasses are intriguing candidates for nuclear applications due to their inherent amorphous structure, but their radiation response is largely unknown due to the relatively recent nature of innovations in bulk metallic glass fabrication. Here, microstructural and mechanical property evaluations have been performed on a Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BAM-11) irradiated with 3 MeV Ni+ ions to 0.1 and 1.0 dpa at room temperature and 200 C. Nanoindentation hardness and Young s modulus both decreased by 6 to 20% in samples irradiated at room temperature, with the sample irradiated to 1.0 dpa experiencing the greatest change in mechanical properties. However, no significant changes in properties were observed in the samples irradiated at 200 C, and transmission electron microscopy showed no visible evidence of radiation damage or crystallization following ion irradiation at any of the tested conditions. These results suggest that BAM-11 bulk metallic glass may be useful for certain applications in nuclear environments.

Perez-Bergquist, Alex G [ORNL] [ORNL; Bei, Hongbin [ORNL] [ORNL; Leonard, Keith J [ORNL] [ORNL; Zhang, Yanwen [ORNL] [ORNL; Zinkle, Steven J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

169

Cost-Effective Consolidation of Fine Aluminum Scrap for Increased Remelting Effieciency  

SciTech Connect (OSTI)

The main objective of this research was to develop a new re-melting process for fine or light gauge aluminum scrap products that exhibits dramatic improvements in energy efficiency. Light gauge aluminum scrap in the form of chips, turnings, and borings has historically been underutilized in the aluminum recycling process due to its high surface area to volume ratio resulting in low melt recovery. Laboratory scale consolidation experiments were performed using loose aluminum powder as a modeling material as well as shredded aluminum wire scrap. The processing parameters necessary to create consolidated aluminum material were determined. Additionally, re-melting experiments using consolidated and unconsolidated aluminum powder confirmed the hypothesis that metal recovery using consolidated material will significantly improve by as much as 20%. Based on this research, it is estimated that approximately 495 billion Btu/year can be saved by implementation of this technology in one domestic aluminum rolling plant alone. The energy savings are realized by substituting aluminum scrap for primary aluminum, which requires large amounts of energy to produce. While there will be an initial capital investment, companies will benefit from the reduction of dependence on primary aluminum thus saving considerable costs. Additionally, the technology will allow companies to maintain in-house alloy scrap, rather than purchasing from other vendors and eliminate the need to discard the light gauge scrap to landfills.

William Van Geertruyden

2005-09-22T23:59:59.000Z

170

Combustion of Nano-Aluminum and Liquid Water G.A. Risha, S.F. Son  

E-Print Network [OSTI]

1 Combustion of Nano-Aluminum and Liquid Water G.A. Risha, S.F. Son , R.A. Yetter, V. Yang, and B: Supplemental materials submitted #12;2 Combustion of Nano-Aluminum and Liquid Water G.A. Risha, S.F. Son, R of nano-aluminum (nAl) and liquid water has been conducted. In particular, linear and mass-burning rates

Yang, Vigor

171

Aluminum battery alloys  

DOE Patents [OSTI]

Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

Thompson, D.S.; Scott, D.H.

1984-09-28T23:59:59.000Z

172

Aluminum battery alloys  

DOE Patents [OSTI]

Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

Thompson, David S. (Richmond, VA); Scott, Darwin H. (Mechanicsville, VA)

1985-01-01T23:59:59.000Z

173

Effects of noble metal-doping on Cu/ZnO/Al2O3 catalysts for watergas shift reaction: Catalyst preparation by adopting memory effect of hydrotalcite  

Science Journals Connector (OSTI)

Trace amounts of noble metal were doped on Cu/ZnO/Al2O3 catalysts by adopting memory effect of hydrotalcite. Ternary Cu/ZnO/Al2O3 (molar ratio Cu/Zn=1/1, Al content 025mol%) catalysts were prepared by co-precipitation (cp) from metal nitrates; a mixture of hydrotalcite (Cu,Zn)6Al2(OH)16CO34H2O, and aurichalcite (Cu,Zn)5(CO3)2(OH)6, was formed at pH 9 with NaOH as the pH controller. Finally the sample, cp-Cu/Zn/Al(45/45/10) containing mainly aurichalcite together with a small amount of hydrotalcite, was selected as the precursor for the noble metal-doping. Noble metal-doping was conducted by dipping the precursor calcined at 300C in aqueous solutions of the noble metal nitrates; hydrotalcite was reconstituted by the memory effect and simultaneously noble metals were incorporated. The noble metal-doped samples were calcined at 300C and tested for the watergas shift (WGS) reaction. Among the noble metals, Pt was the most effective for stabilizing the catalytic activity although some deactivation due to Cu sintering took place. An intrinsic promoting effect of Pt was clearly observed by evaluating the turnover frequency of the catalyst. Aurichalcite was indispensable for producing active Cu/ZnO sites, whereas a small amount of hydrotalcite was effective for improving the sustainability of the catalyst by the surface modification. It is likely that hydrogen-spillover from trace Pt to active Cu metal not only enhanced the activity via the reductionoxidation cycle between Cu0 and Cu+ but also stabilized the active Cu metal species against oxidative sintering during the reaction.

Kazufumi Nishida; Ikuo Atake; Dalin Li; Tetsuya Shishido; Yasunori Oumi; Tsuneji Sano; Katsuomi Takehira

2008-01-01T23:59:59.000Z

174

Pure Aluminum as the Anode in Top Emission OLED Xiao-Ming Yu, Hua-Jun Peng, Xiu-Ling Zhu, Jia-Xin Sun,  

E-Print Network [OSTI]

Pure Aluminum as the Anode in Top Emission OLED Xiao-Ming Yu, Hua-Jun Peng, Xiu-Ling Zhu, Jia (TOLED) with pure aluminum metal layer as the bottom anode has been fabricated. The brightness as high as that of the TOLED with additional high work function silver deposited on aluminum as the anode

175

ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum...  

Energy Savers [EERE]

Energy and Environmental Profile of the U.S. Aluminum Industry aluminum.pdf More Documents & Publications ITP Aluminum: Technical Working Group on Inert Anode Technologies...

176

Differences of growth response to aluminum excess of two Melaleuca trees differing in aluminum resistance  

E-Print Network [OSTI]

M, Yamanoshita T, Kojima K. , Role of aluminum-bindingligands in aluminum resistance of Eucalyptus camaldulensissoils, low pH and excess aluminum are the primary factors

Houman, Yoshifumi; Tahara, Ko; Shinmachi, Fumie; Noguchi, Akira; Satohiko, Sasaki; Hasegawa, Isao

2009-01-01T23:59:59.000Z

177

Corrosion of aluminum-uranium alloys in water vapor at 200 C  

SciTech Connect (OSTI)

Specimens of aluminum-uranium alloys at 10 and 18 wt.% uranium were exposed to a saturated water vapor condition at 200 C up to about 12 weeks and compared to previous results for aluminum 1100. The aluminum-uranium materials exhibited a range of initial corrosion rates and approached similar rates with the formation of a passive film of boehmite (Al{sub 2}O{sub 3}{center{underscore}dot}H{sub 2}O). The initial corrosion rates of the aluminum-uranium materials were one to four times higher than that for aluminum 1100. It is postulated that a micro-galvanic coupling between the large UAl{sub 4} particles and the aluminum matrix has caused this difference. Sectioning the exposed specimens shows different characteristics of the oxide layers. In the oxide on the aluminum-10% uranium alloy (Al-10%U), small uranium aluminide particles can be seen in a boehmite matrix and do not seem to be corroded. The oxide film on the aluminum-18% uranium alloy (Al-18%U) appears to have two distinct oxide layers. The outer layer has mass aggregates in a boehmite matrix, while the inner layer contains UAl{sub 4} particles as in the case of Al-10%U.

Lam, P.S.; Sindelar, R.L.; Barrett, K.Y.

1999-07-01T23:59:59.000Z

178

Corrosion of Aluminum-Uranium Alloys in Water Vapor at 200\\260C  

SciTech Connect (OSTI)

Coupons of aluminum-uranium alloys at 10 and 18 weight percent were exposed to a saturated water vapor condition at 200 degrees C up to about 1500 hours and compared to previous results for aluminum 1100. The aluminum-uranium materials exhibited a range of initial corrosion rates and approached similar rates with the formation of a passive film of boehmite (Al2O3oH2O). The cast and extruded 10 percent uranium, having a primary aluminum-eutectic microstructure, was more corrosion resistant than the 18% cast and extruded. The initial corrosion rates of the aluminum-uranium materials were one to four times higher than that for aluminum 1100. It is postulated that a micro-galvanic coupling between the large UAl4 particles and the aluminum matrix has caused the variation. Sectioning the exposed specimens shows different characteristics of the oxide layers. In the case of the cast and extruded Al-10 percent U alloy, small uranium aluminide particles can be seen in the boehmite matrix and do not seem to be corroded. The oxide film of the Al-18 percent U alloy appears to have two distinct oxide layers. The outer layer has mass aggregates formed in the aluminum oxide matrix, while the inner layer contains UAl4 particles as in the case of Al-10 percent U

Lam, P.S.

1998-11-25T23:59:59.000Z

179

Thermal coatings for titanium-aluminum alloys  

SciTech Connect (OSTI)

Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.

Cunnington, G.R.; Clark, R.K.; Robinson, J.C.

1993-04-01T23:59:59.000Z

180

DETERMINATION OF IN-VITRO LUNG SOLUBILITY AND INTAKE-TO-DOSE CONVERSION FACTOR FOR TRITIATED LANTHANUM NICKEL ALUMINUM ALLOY  

SciTech Connect (OSTI)

A sample of tritiated lanthanum nickel aluminum alloy (LaNi4.25Al0.75 or LANA.75) similar to that used at the Savannah River Site Tritium Facilities was analyzed to estimate the particle size distribution of this metal tritide powder and the rate, at which this material dissolves in the human respiratory tract after it is inhaled. This information is used to calculate the committed effective dose received by a worker after inhaling the material. These doses, which were calculated using the same methodology given in the DOE Tritium Handbook, are presented as inhalation intake-to-dose conversion factors (DCF). The DCF for this metal tritide is less than the DCF for tritiated water and radiation worker bioassay programs designed for tritiated water are adequate to monitor for intakes of this material.

Farfan, E.; Labone, T.; Staack, G.; Cheng, Y.; Zhou, Y.; Varallo, T.

2011-11-11T23:59:59.000Z

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DOE - Office of Legacy Management -- Hunter Douglas Aluminum Plant Div of  

Office of Legacy Management (LM)

Hunter Douglas Aluminum Plant Div Hunter Douglas Aluminum Plant Div of Bridgeport Brass Co - CA 11 FUSRAP Considered Sites Site: HUNTER DOUGLAS ALUMINUM PLANT, DIV. OF BRIDGEPORT BRASS CO. (CA.11 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Hunter Douglas Aluminum Corporation CA.11-1 Location: 3016 Kansas Avenue , Riverside , California CA.11-1 Evaluation Year: 1995 CA.11-2 Site Operations: Fabricated uranium metal tubing during the late 1950s. CA.11-1 Site Disposition: Eliminated - No Authority - NRC licensed CA.11-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium Metal CA.11-1 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to HUNTER DOUGLAS ALUMINUM PLANT, DIV. OF BRIDGEPORT

182

Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys  

DOE Patents [OSTI]

Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.

Stevenson, D.T.; Troup, R.L.

1985-01-01T23:59:59.000Z

183

Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys  

DOE Patents [OSTI]

Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.

Stevenson, David T. (Washington Township, Armstrong County, PA); Troup, Robert L. (Murrysville, PA)

1985-01-01T23:59:59.000Z

184

Thermoelectric properties of lattice-matched AlInN alloy grown by metal organic chemical vapor deposition  

E-Print Network [OSTI]

Seebeck coefficient and resistance measurement system for thermoelectric materials in the thin diskInN alloy on GaN as excellent material candidate for thermoelectric application. © 2010 American Institute-nitride alloys have shown promising results for thermoelectric applications,20­30 in particular for materi- als

Gilchrist, James F.

185

Ignition characteristics of laser-ablated aluminum at shock pressures up to 2?GPa  

SciTech Connect (OSTI)

The ignition of aluminum particles under high pressure and temperature conditions is considered. The laser ablation method is used to generate oxide-free aluminum particles exposed to pressures ranging between 0.35 and 2.2?GPa. A continuous wave CO{sub 2} laser radiation heats the surface of the aluminum target until ignition is observed. We confirm ignition by a spectroscopic analysis of AlO vibronic band of 484?nm wavelength, and the radiant temperature is measured with respect to various pressures for estimating the heating energy for ignition. The ignition characteristics of the oxide-free aluminum particles exposed to extremely high pressures are reported.

Lee, Kyung-Cheol; Young Lee, Jae; Yoh, Jack J., E-mail: jjyoh@snu.ac.kr [Department of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanakro, Gwanakgu, Seoul 151-742 (Korea, Republic of); Taira, Tsubasa [Division of Applied Physics, Hokkaido University, Sapporo (Japan); Mo Koo, Goon [Department of Aerospace Engineering, University of Maryland, College Park, Maryland 20742 (United States)

2014-01-07T23:59:59.000Z

186

Dissolved and particulate aluminum in the Columbia River and coastal waters of Oregon and Washington: behavior in near-field and far-field plumes  

E-Print Network [OSTI]

1 Dissolved and particulate aluminum in the Columbia River and coastal waters of Oregon) and particulate (leachable and total) aluminum was examined in the Columbia River and estuary, in near Influence on Shelf Ecosystems (RISE) cruise of May/June 2006. Dissolved and particulate aluminum (Al

Hickey, Barbara

187

Growth of Epitaxial gamma-Al2O3 Films on Rigid Single-Crystal Ceramic Substrates and Flexible, Single-Crystal-Like Metallic Substrates by Pulsed Laser Deposition  

SciTech Connect (OSTI)

Epitaxial -Al2O3 thin films were grown on diverse substrates using pulsed laser deposition. The high quality of epitaxial growth and cubic structure of -Al2O3 films was confirmed by x-ray diffraction. SrTiO3 and MgO single crystal substrates were used to optimize the growth conditions for epitaxial -Al2O3 film. Under the optimized conditions, epitaxial -Al2O3 thin films were grown on flexible, single-crystal-like, metallic templates. These included untextured Hastelloy substrates with a biaxially textured MgO layer deposited using ion-beam-assisted-deposition and biaxially textured Ni-W metallic tapes with epitaxially grown and a biaxially textured, MgO buffer layer. These biaxially textured, -Al2O3 films on flexible, single-crystal-like substrates are promising for subsequent epitaxial growth of various complex oxide films used for electrical, magnetic and electronic device applications.

Shin, Junsoo [ORNL; Goyal, Amit [ORNL; Wee, Sung Hun [ORNL

2009-01-01T23:59:59.000Z

188

Wear resistance of titanium-alloyed high-aluminum bronzes under cavitation  

Science Journals Connector (OSTI)

Aluminum-nickel bronzes are known to have a high cavitation-erosion resistance; this is especially true of bronzes containing 1114% Al, which can be used to restore worn parts of hydraulic engines, marine engine...

Yu. N. Tsvetkov; L. I. Pogodaev

1994-02-01T23:59:59.000Z

189

E-Print Network 3.0 - aluminum-doped zinc oxide Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the first time at 800 Torr... reserved. Keywords: Transparent-conducting oxide (TCO); AlZnO; PECVD 1. Introduction Aluminum-doped zinc... PECVD for the deposition of ......

190

E-Print Network 3.0 - aluminum potassium sulfate Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kelvin KOH potassium hydroxide KOtBu potassium-tert-butoxide KPA potassium... Light Emitting Diode LiAlH4 lithium aluminum hydride LiF lithium ... Source: Groningen,...

191

Refinement of the Cast Microstructure of Hypereutectic Aluminum-Silicon Alloys with an Applied Electric Potential.  

E-Print Network [OSTI]

??Hypereutectic aluminum-silicon (Al-Si) alloys are widely used in the aerospace and automobile industries because of their low density, excellent wear and corrosion resistance, low coefficient (more)

Plotkowski, Alexander Joseph

2012-01-01T23:59:59.000Z

192

Method for improving the oxidation-resistance of metal substrates coated with thermal barrier coatings  

DOE Patents [OSTI]

A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

Thompson, Anthony Mark (Niskayuna, NY); Gray, Dennis Michael (Delanson, NY); Jackson, Melvin Robert (Niskayuna, NY)

2002-01-01T23:59:59.000Z

193

Synthesis of lithium and aluminum complexes supported by [OC(But)CHP(Ph2)=NBut]? ligand and catalysis of [R2Al{OC(But)-CHP(Ph2)=NBut}] (R = Me, Et) and [Me2Al{1-{OC(Ph)CH}-3-R1-5-MeC3HN2}] (R1 = Me, But) in the ring-opening polymerization of ?-caprolactone  

Science Journals Connector (OSTI)

A series of lithium and aluminum complexes bearing [OC(But)CHP(Ph2)=NBut]? ligand were synthesized and characterized. Reaction of ButC(O)CH2Br with Ph2PNHBut afforded [Ph2P(NHBut)CH2C(O)But]+Br? (1). Treatment of...

Die Yang; CuiFang Cai; ZhongXia Wang

2010-09-01T23:59:59.000Z

194

The distribution of particulate aluminum in the Gulf of Mexico  

E-Print Network [OSTI]

of runoff water in the oceans. Toyota and Okabe (1967) reported vertical distri- butions of particulate aluminum ranging from 1-50 ug Al/L in samples from the Western North Pacific, Indian and Antarctic Oceans. , Stefansson and Atkinson (1969) used...

Feely, Richard Alan

1971-01-01T23:59:59.000Z

195

Production of aluminum-26  

SciTech Connect (OSTI)

This invention is a method of producing Al-26 from potassium chloride by exposing it to a proton beam in order to break potassium and chlorine atoms into smaller pieces, which include Al-26. The Al-26 is isolated from the potassium chloride and substances produced by the beam by means of extraction and ion exchange.

Steinkruger, F.J.; Phillips, D.R.

1990-12-31T23:59:59.000Z

196

Production of aluminum-26  

DOE Patents [OSTI]

A method of producing Al-26 from potassium chloride by exposing it to a proton beam in order to break potassium and chlorine atoms into smaller pieces, which include Al-26. The Al-26 is isolated from the potassium chloride and other substances produced by the beam by means of extraction and ion exchange.

Steinkruger, Fred J. (Los Alamos, NM); Phillips, Dennis R. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

197

Modeling Texture Evolution during Recrystallization in Aluminum  

E-Print Network [OSTI]

Modeling Texture Evolution during Recrystallization in Aluminum Abhijit Brahme1,2 , Joseph Fridy3, Aluminum, Grain Boundary Mobility, Nucleation, Oriented Growth, Oriented Nucleation, Stored Energy, Monte Carlo Modeling. #12;Modeling Texture Evolution during Recrystallization in Aluminum 2 1. Introduction

Rollett, Anthony D.

198

Reactions of aluminum with uranium fluorides and oxyfluorides  

SciTech Connect (OSTI)

Every 30 to 40 million operating hours a destructive reaction is observed in one of the {approximately}4000 large compressors that move UF{sub 6} through the gaseous diffusion plants. Despite its infrequency, such a reaction can be costly in terms of equipment and time. Laboratory experiments reveal that the presence of moderate pressures of UF{sub 6} actually cools heated aluminum, although thermodynamic calculations indicate the potential for a 3000-4000{degrees}C temperature rise. Within a narrow and rather low (<100 torr; 1 torr = 133.322 Pa) pressure range, however, the aluminum is seen to react with sufficient heat release to soften an alumina boat. Three things must occur in order for aluminum to react vigorously with either UF{sub 6} or UO{sub 2}F{sub 2}. 1. An initiating source of heat must be provided. In the compressors, this source can be friction, permitted by disruption of the balance of the large rotating part or by creep of the aluminum during a high-temperature treatment. In the absence of this heat source, compressors have operated for 40 years in UF{sub 6} without significant reaction. 2. The film protecting the aluminum must be breached. Melting (of UF{sub 5} at 620 K or aluminum at 930 K) can cause such a breach in laboratory experiments. In contrast, holding Al samples in UF{sub 6} at 870 K for several hours produces only moderate reaction. Rubbing in the cascade can undoubtedly breach the protective film. 3. Reaction products must not build up and smother the reaction. While uranium products tend to dissolve or dissipate in molten aluminum, AIF{sub 3} shows a remarkable tendency to surround and hence protect even molten aluminum. Hence the initial temperature rise must be rapid and sufficient to move reactants into a temperature region in which products are removed from the reaction site.

Leitnaker, J.M.; Nichols, R.W.; Lankford, B.S. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

199

Aluminum-Alkaline Metal-Metal Composite Conductor - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

situations and limits the mechanical tension the cables can bear in icing and high wind situations. Alternative materials that increase cable strength generally have poor...

200

Microstructure control of Al-Cu films for improved electromigration resistance  

DOE Patents [OSTI]

A process for the forming of Al-Cu conductive thin films with reduced electromigration failures is useful, for example, in the metallization of integrated circuits. An improved formation process includes the heat treatment or annealing of the thin film conductor at a temperature within the range of from 200.degree. C. to 300.degree. C. for a time period between 10 minutes and 24 hours under a reducing atmosphere such as 15% H.sub.2 in N.sub.2 by volume. Al-Cu thin films annealed in the single phase region of a phase diagram, to temperatures between 200.degree. C. and 300.degree. C. have .theta.-phase Al.sub.2 Cu precipitates at the grain boundaries continuously become enriched in copper, due, it is theorized, to the formation of a thin coating of .theta.-phase precipitate at the grain boundary. Electromigration behavior of the aluminum is, thus, improved because the .theta.-phase precipitates with copper hinder aluminum diffusion along the grain boundaries. Electromigration, then, occurs mainly within the aluminum grains, a much slower process.

Frear, Darrel R. (Albuquerque, NM); Michael, Joseph R. (Albuquerque, NM); Romig, Jr., Alton D. (Albuquerque, NM)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Microstructure control of Al-Cu films for improved electromigration resistance  

DOE Patents [OSTI]

A process for the forming of Al-Cu conductive thin films with reduced electromigration failures is useful, for example, in the metallization of integrated circuits. An improved formation process includes the heat treatment or annealing of the thin film conductor at a temperature within the range of from 200 C to 300 C for a time period between 10 minutes and 24 hours under a reducing atmosphere such as 15% H[sub 2] in N[sub 2] by volume. Al-Cu thin films annealed in the single phase region of a phase diagram, to temperatures between 200 C and 300 C have [theta]-phase Al[sub 2] Cu precipitates at the grain boundaries continuously become enriched in copper, due, it is theorized, to the formation of a thin coating of [theta]-phase precipitate at the grain boundary. Electromigration behavior of the aluminum is, thus, improved because the [theta]-phase precipitates with copper hinder aluminum diffusion along the grain boundaries. Electromigration, then, occurs mainly within the aluminum grains, a much slower process. 5 figures.

Frear, D.R.; Michael, J.R.; Romig, A.D. Jr.

1994-04-05T23:59:59.000Z

202

Influence of aluminum ions implantation on corrosion behavior of zircaloy-2 alloy in 1 M H2SO4  

Science Journals Connector (OSTI)

The specimens were implanted with aluminum ions with fluence ranging from 11016 to 11017 ions/cm2 to study the effect of aluminum ion implantation on the aqueous corrosion behavior of zircaloy-2 by metal vapor ...

Dequan Peng ???; Xinde Bai; Hui Sun

2007-09-01T23:59:59.000Z

203

In situ growth of ZrO{sub 2}Al{sub 2}O{sub 3} nano-crystalline ceramic coatings via micro arc oxidation of aluminum substrates  

SciTech Connect (OSTI)

Highlights: ? ZrO{sub 2}Al{sub 2}O{sub 3} layers were fabricated by MAO process. ? A formation mechanism was also proposed. ? Effect of voltage and electrolyte composition on layers properties was studied. -- Abstract: Micro arc oxidation technique was employed to grow zirconiaalumina porous layers. Considering XPS, XRD, and EDX results, the layers mainly consisted of ?-Al{sub 2}O{sub 3}, ?-Al{sub 2}O{sub 3}, monoclinic ZrO{sub 2}, tetragonal ZrO{sub 2}. Fractions of these phases were observed to change based on the fabrication conditions. Zirconia phases formed not only on the surface, but also in the layers depth. Increasing the voltage as well as utilizing thicker electrolytes resulted in higher zirconium concentration. The average crystalline size of the ZrO{sub 2} and the Al{sub 2}O{sub 3} phases was determined as about 57 and 75 nm. AFM studies revealed that the surface roughness increased with voltage and electrolyte concentration. Morphological evaluations, performed by SEM, showed that the microstructure of the layers strongly depended on the synthesis conditions. The layers revealed a porous structure with a pores size of 40300 nm. Microcracks were observed to appear when the electrolyte concentration and the applied voltage increased. Finally, a formation mechanism was put forward with emphasis on the chemical and the electrochemical foundations.

Shoaei-Rad, V. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of)] [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of); Bayati, M.R., E-mail: mbayati@ncsu.edu [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of); Department of Materials Science and Engineering, North Carolina State University, Raleigh 27695-7907, NC (United States); Zargar, H.R. [Department of Metals and Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada)] [Department of Metals and Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Javadpour, J. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of)] [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of); Golestani-Fard, F. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of) [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, P.O. Box 16845-161, Tehran (Iran, Islamic Republic of); Center of Excellence for Advanced Materials, Iran University of Science and Technology, P.O. Box 16845-195, Tehran (Iran, Islamic Republic of)

2012-06-15T23:59:59.000Z

204

Tribological characteristics of aluminum alloys against steel lubricated by ammonium and imidazolium ionic liquids  

SciTech Connect (OSTI)

Sliding friction and wear characteristics of aluminum alloys against AISI 52100 steel lubricated by ionic liquids (ILs) were investigated at both room and elevated temperatures. The tested aluminum alloys include a commercially pure aluminum Al 1100, a wrought alloy Al 6061-T6511, and a cast alloy Al 319-T6. The lubricating performance of two ILs with the same anion, one ammonium-based [C8H17]3NH.Tf2N and one imidazolium-based C10mim.Tf2N, were compared each other and benchmarked against that of a conventional fully-formulated engine oil. Significant friction (up to 35%) and wear (up to 55%) reductions were achieved by the ammonium IL when lubricating the three aluminum alloys compared to the engine oil. The imidazolium IL performed better than the oil but not as well as the ammonium IL for Al 1100 and 319 alloys. However, accelerated wear was unexpectedly observed for Al 6061 alloy when lubricated by C10mim.Tf2N. Surface chemical analyses implied complex tribochemical reactions between the aluminum surfaces and ILs during the wear testing, which has been demonstrated either beneficial by forming a protective boundary film or detrimental by causing severe tribo-corrosion. The effects of the IL cation structure, aluminum alloy composition, and tribo-testing condition on the friction and wear results have been discussed.

Qu, Jun [ORNL; Blau, Peter Julian [ORNL; Dai, Sheng [ORNL; Luo, Huimin [ORNL; Meyer III, Harry M [ORNL; Truhan, John J. [Caterpillar Inc.

2009-01-01T23:59:59.000Z

205

Spray Rolling Aluminum Strip  

SciTech Connect (OSTI)

Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

2006-05-10T23:59:59.000Z

206

MICROSTRUCTURE EVOLUTION MODELING FOR SOLUTION TREATMENT OF ALUMINUM ALLOYS  

SciTech Connect (OSTI)

The microstructure evolution during solution treatment plays an important role in mechanical properties of heat-treated aluminum alloys. In this paper, models were reviewed that can predict the microstructure evolution during the solutionizing process of the aging heat treatment of aluminum alloys. The dissolution of Mg2Si particles has been modeled as a diffusion process of Mg in the -Al matrix. The evolution of volumetric fraction of fragmented silicon as a function of time and temperature was also considered. The growth and coarsening of silicon particles during the heat treatment was considered. It was found that constitutive equations and required property data for most of the phenomena that need to be considered are available. Several model parameters that need to be obtained from material characterization were identified. Pending the availability of these model parameters, this comprehensive model can be used to describe the microstructure evolution of aluminum alloys in order to optimize the solutionizing heat treatment for energy savings.

Yin, Hebi [ORNL; Sabau, Adrian S [ORNL; Skszek, Timothy [Vehma International of American, Inc.; Niu, X [Magna Cosma International, Promatek Research Centre

2013-01-01T23:59:59.000Z

207

EUROSPF Conference APPLICATION TECHNOLOGY OF ALUMINUM BLOW  

E-Print Network [OSTI]

6th EUROSPF Conference APPLICATION TECHNOLOGY OF ALUMINUM BLOW FORMING FOR AUTOMOTIVE CLOSURE PANEL Replacement by aluminum for the closure panels is one of the common methods for lightening car body. However. As a solution to cover the low stamping formability of aluminum, Blow forming technology of aluminum which

Paris-Sud XI, Université de

208

E-Print Network 3.0 - al-doped zinc oxide Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

magnetic semiconductors 3,4. In particular, transpar- ent conductive oxide (TCO) electrodes using Al-doped... - electronic devices, we investigated aluminum-doped...

209

Test protocol for aluminum based spent nuclear fuel  

SciTech Connect (OSTI)

Aluminum based spent nuclear fuel (Al-SNF) will be treated and then stored in a geological repository. A series of corrosion tests, including coupon, galvanic, and electrochemical, were performed to measure the effects of degradation on U-Al alloys, which simulated various Al-SNF forms. The test solutions were variants of a J-13 well water chemistry. As part of the degradation characteristics, the dissolution of uranium, which is the primary radionuclide, was measured. The degradation and dissolution were changed by the type of water chemistry and the temperature. The alloy composition and fabrication were not significant variables.

Mickalonis, J.I.; Wiersma, B.J.

1999-07-01T23:59:59.000Z

210

Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths  

SciTech Connect (OSTI)

Aluminum nitride (AlN) has recently emerged as a promising material for integrated photonics due to a large bandgap and attractive optical properties. Exploiting the wideband transparency, we demonstrate waveguiding in AlN-on-Insulator circuits from near-infrared to ultraviolet wavelengths using nanophotonic components with dimensions down to 40?nm. By measuring the propagation loss over a wide spectral range, we conclude that both scattering and absorption of AlN-intrinsic defects contribute to strong attenuation at short wavelengths, thus providing guidelines for future improvements in thin-film deposition and circuit fabrication.

Stegmaier, M.; Ebert, J.; Pernice, W. H. P., E-mail: wolfram.pernice@kit.edu [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76133 Karlsruhe (Germany); Meckbach, J. M.; Ilin, K.; Siegel, M. [Institute of Micro- und Nanoelectronic Systems, Karlsruhe Institute of Technology, 76187 Karlsruhe (Germany)

2014-03-03T23:59:59.000Z

211

Coated Metal Articles and Method of Making  

DOE Patents [OSTI]

The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.

Boller, Ernest R.; Eubank, Lowell D.

2004-07-06T23:59:59.000Z

212

Metal-ceramic joint assembly  

DOE Patents [OSTI]

A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

Li, Jian (New Milford, CT)

2002-01-01T23:59:59.000Z

213

Aluminum across the Americas: Caribbean Mobilities and Transnational American Studies  

E-Print Network [OSTI]

E. Jamaica in the World Aluminum Industry, 18381973, Vol.2007. Doordan, Dennis. Promoting Aluminum: Designers andthe American Aluminum Industry. Design Issues 9, no. 2 (

Sheller, Mimi

2013-01-01T23:59:59.000Z

214

Aluminum-detoxifying compounds in roots of Eucalyptus camaldulensis  

E-Print Network [OSTI]

M, Yamanoshita T, Kojima K, Role of aluminum-bindingligands in aluminum resistance of Eucalyptus camaldulensisH, Sasaki S, Kojima K. Aluminum distribution and reactive

Tahara, Ko; Hashida, Koh; Ohara, Seiji; Kojima, Katsumi; Shinohara, Kenji

2009-01-01T23:59:59.000Z

215

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...  

Broader source: Energy.gov (indexed) [DOE]

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations Commonwealth Aluminum: Manufacturer Conducts Plant-Wide...

216

Rigid-Band Behavior in Aluminum-Based AlloysElectronic Specific Heat  

Science Journals Connector (OSTI)

Measurements of the specific heat of aluminum and its dilute alloys below 4K show that the electronic specific-heat coefficient ? changes linearly with the valence electron concentration from below to above the pure-aluminum value, in contradiction to previous work. The difference is attributed to undetected precipitation of the solutes Ge or Si in the previous work. Good agreement is found between ? values for AlZn alloys and the previous AlMg alloys. The rate of increase of ? is three times that expected from free-electron theory. For pure Al, ?=1.362 mJ mole-1 K-2, and the Debye temperature =431K.

Donald A. Dicke and Ben A. Green; Jr.

1967-01-15T23:59:59.000Z

217

Alumina reduction by laser sustained plasma for aluminum-based renewable energy cycling  

Science Journals Connector (OSTI)

A novel alumina (Al 2O3) reduction technique for a renewable energy cycling system based on aluminum is proposed. Al 2O3 powder was fed into laser-sustained plasma and thermally dissociated. The produced Al was expanded to supersonic speeds through a nozzle. From the Al and argon line distributions in the flow direction it was found that Al remained in the dissociated state. A water-cooled copper tube was inserted in the flow to collect Al. X-ray analysis indicated that elemental Al was observed on the surface of the tube. The maximum value of the estimated reduction efficiency was 5%.

Kimiya Komurasaki

2013-01-01T23:59:59.000Z

218

Wear Behavior of Plasma-Sprayed Carbon Nanotube-Reinforced Aluminum Oxide Coating in Marine and High-Temperature Environments  

Science Journals Connector (OSTI)

Plasma-sprayed aluminum oxide (Al2O3) coatings offer excellent wear resistance, corrosion resistance, heat, and thermal...1-6...). These coatings have to operate under severe conditions, such as high load, high s...

Anup Kumar Keshri; Arvind Agarwal

2011-12-01T23:59:59.000Z

219

Aluminum oxide tunnel barriers for single electron memory devices Kameshwar K. Yadavallia,  

E-Print Network [OSTI]

oxide. These devices are characterized at 300 mK and show a definite threshold for tunneling through and storage dots in ultra thin poly-Si films [3], one-dimensional array of Al/ Al2O3 tunnel junctions [4], non aluminum oxide is deposited by atomic layer deposition. Measurements performed at 300 mK show nonvolatile

Orlov, Alexei

220

Nuclear Magnetic Resonance in FeAl and CoAl  

Science Journals Connector (OSTI)

We have investigated the Al27 nuclear magnetic resonance in Ni3Al, NiAl, FeAl, and both the Al27 and Co59 resonances in CoAl. The cobalt resonance in CoAl exhibits a weakly temperature-dependent, positive shift. This shift (?1.5%) is too large to be accounted for solely by the hyperfine field from conduction electrons polarized by the external magnetic field, and orbital paramagnetic effects appear to be the dominant factor, core polarization playing a relatively minor role. The aluminum Knight shift in CoAl is small (0.014%) and temperature-independent. This is to be contrasted with aluminum in FeAl which exhibits a large, negative, temperature-dependent shift (-0.38% at 293K). It is shown that both the large aluminum Knight shift in FeAl and the small aluminum Knight shift in CoAl are consistent with the predictions of the Ruderman-Kittel-Yosida (RKY) theory. However, it is now believed that the small shift observed in CoAl results from a lack of s character in the conduction-electron wave functions rather than from a node anticipated in the conduction-electron polarization. The temperature dependence of the resonance in FeAl can also be accounted for by the RKY mechanism if it is assumed that the temperature dependence of the magnetic susceptibility is associated with disorder in the material. This assumption is necessary because the Knight shift is not linearly related to the bulk susceptibility of the sample. The aluminum linewidth in FeAl increases as the temperature is lowered. At room temperature the linewidth is independent of magnetic field but greater than the calculated dipolar linewidth. At 77 and 4.2K the linewidth increases with increasing magnetic field. This effect is attributed mainly to inhomogeneous Knight-shift broadening, although inhomogeneous magnetization broadening also contributes. A similar situation is observed in CoAl. At room temperature the cobalt and aluminum resonances have essentially the same width. The linewidths are independent of magnetic field but greater than the dipolar values. As the temperature is lowered the linewidths increase and become magnetic-field-dependent. The cobalt resonance broadens more severely than the aluminum resonance. It is believed that inhomogeneous Knight-shift broadening and inhomogeneous magnetization broadening determine the cobalt linewidth at low temperatures. The aluminum nuclei in CoAl do not exhibit appreciable hyperfine coupling with the conduction electrons, so that only inhomogeneous magnetization broadening contributes to the linewidth.

J. A. Seitchik and R. H. Walmsley

1965-01-04T23:59:59.000Z

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Dispersion of plasmons at the surface of a metal and at the interface between two metals  

Science Journals Connector (OSTI)

The dispersion of plasmons at the surface of a metal and at the interface between two metals is derived by a proper combination of electrodynamics with the hydrodynamic approximation. With a two-step model we discuss the effect of a transition region at the surface of a metal and we so explain recent measurements by Krane and Raether for aluminum.

F. Forstmann and H. Stenschke

1978-02-15T23:59:59.000Z

222

Transition metal-free olefin polymerization catalyst  

DOE Patents [OSTI]

Ethylene and/or propylene are polymerized to form high molecular weight, linear polymers by contacting ethylene and/or propylene monomer, in the presence of an inert reaction medium, with a catalyst system which consists essentially of (1) an aluminum alkyl component, such as trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-octylaluminum and diethylaluminum hydride and (2) a Lewis acid or Lewis acid derivative component, such as B (C.sub.6 F.sub.5).sub.3, [(CH.sub.3).sub.2 N (H) (C.sub.6 H.sub.5)].sup.+ [B (C.sub.6 F.sub.5)4].sup.-, [(C.sub.2 H.sub.5).sub.3 NH].sup.+ [B C.sub.6 F.sub.5).sub.4 ],.sup.-, [C(C.sub.6 F.sub.5).sub.3 ].sup.+ [B(C.sub.6 F.sub.5).sub.4 ].sup.-, (C.sub.2 H.sub.5).sub.2 Al(OCH.sub.3), (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butyl-4-methylphenoxide), (C.sub.2 H.sub.5)Al(2,6 -di-t-butylphenoxide).sub.2, (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butylphonoxide) , 2,6 -di-t-butylphenol.multidot.methylaluminoxane or an alkylaluminoxane, and which may be completely free any transition metal component(s).

Sen, Ayusman (State College, PA); Wojcinski, II, Louis M. (State College, PA); Liu, Shengsheng (State College, PA)

2001-01-01T23:59:59.000Z

223

Joining of 6061 Aluminum Matrix-Ceramic Particle Reinforced Composites  

E-Print Network [OSTI]

) ) Joining of 6061 Aluminum Matrix-Ceramic Particle Reinforced Composites by R. Kiehn and T. W................... .. ....... ... ... 3 Literature Review ......... ...... ..... ... . . 3 Conventional Aluminum Brazing ........ 4 Aluminum Composite Joining ........... 5 Aluminum Joining by Unconventional Methods

Eagar, Thomas W.

224

Laser fusing of HVOF thermal sprayed alloy 625 on nickel-aluminum bronze  

SciTech Connect (OSTI)

A preliminary study has been conducted to determine the feasibility of laser fusing alloy 625 onto nickel-aluminum-bronze base metal. Laser fusing was performed by melting a pre-coated surface of alloy 625 that had been applied by the high velocity oxyfuel (HVOF) thermal spray process. The laser fusing was successful in producing a metallurigical bond between alloy 625 and the substrate. Minor modification to the heat-affected zone of the base metal was observed by microhardness measurements, and defect-free interfaces were produced between alloy 625 and nickel-aluminum-bronze by the process. The laser is a high energy density source that can be used for precise thermal processing of materials including surface modification. Laser fusing is the full or partial melting of a coating material that has been previously applied in some fashion to the substrate. Thermal spray coating of nickel-aluminum-bronze material with alloy 625 was conducted at the David Taylor Research Center. Nickel-aluminum-bronze specimens 2 x 3-in. by 1/2-in. thick were coated with alloy 25 utilizing the HVOF equipment. Coating thicknesses of approximately 0.014-in. (0.3 mm) were produced for subsequent laser fusing experiments. A preliminary study has been conducted to determine the feasibility of laser fusing a HVOF thermal sprayed alloy 625 coating onto nickel-aluminum-bronze base metal. Conclusions of this investigation were as follows: (1) Laser fusing was successful in producing a metallurgical bond between HVOF thermal sprayed alloy 625 and the nickel-aluminum-bronze. (2) Only minor microstructural modification to the heat-affected zone of the base metal ws observed by microhardness measurements. (3) Defect-free interfaces were produced between thermal sprayed alloy 625 and nickel-aluminum-bronze by laser fusing.

Brenna, R.T.; Pugh, J.L.; Denney, P.E. [and others

1994-12-31T23:59:59.000Z

225

Formation and Stability of Ni-Al Hydroxide Phases in Soils  

SciTech Connect (OSTI)

The formation of mixed metal-aluminum hydroxide surface precipitates is a potentially significant uptake route for trace metals (including Co, Ni, and Zn) in environmental systems. This paper investigates the effect of mixed Ni-Al hydroxide precipitate formation and aging on Ni solubility and bioavailability in laboratory contaminated soils. Two Delaware agricultural soils were reacted with a 3 mM Ni solution for 12 months at pH's above and below the threshold for mixed Ni-Al hydroxide formation. Ni speciation was determined at 1, 6, and 12 months using X-ray absorption spectroscopy (XAS). Precipitate solubility was examined through desorption experiments using HNO{sub 3} and EDTA as desorbing agents, whereas metal bioavailability was assessed using a Ni-specific bacterial biosensor. For both soils, the formation of Ni-Al hydroxide surface precipitates resulted in a reduction in the fraction of desorbed and bioavailable Ni. However, precipitate dissolution was greater, particularly with EDTA, than in published studies on isolated soil clay fractions, and less affected by aging processes. These results suggest that mixed Ni-Al hydroxide phases forming in real world environments may be both longer-lasting and more susceptible to ligand-promoted dissolution than previously expected.

Peltier, E.; Van Der Lelie, D; Sparks, D

2010-01-01T23:59:59.000Z

226

Intermetallic FeAl based coatings deposited by the electrospark technique: corrosion behavior in molten (Li+K) carbonate  

Science Journals Connector (OSTI)

In the strongly corrosive environment of the molten carbonate fuel cells (MCFC) the protection of the wet-seal areas of the bipolar plates is accomplished by aluminum diffusion coatings. The coating layer is usually produced by depositing metallic aluminum onto a stainless steel surface with the ion vapor deposition (IVD) technique followed by a diffusion annealing treatment in order to transform the as-deposited Al into a corrosion resistant FeAl-based intermetallic surface alloy. In an attempt to find cheaper alternatives, in this work we report the results obtained depositing directly a layer of FeAl intermetallic alloy onto a 316L austenitic stainless steel by using the electrospark deposition (ESD) technique. ESD can apply metallurgical bonded coatings in ambient conditions without the need of post-deposition annealing treatments. Structure, chemical composition and morphology of the FeAl coating has been analyzed and compared to a standard IVD aluminized coating. By electrochemical measurements and long-term immersion tests it is inferred that the corrosion resistance of the electrospark coating is comparable to that of the IVD coating. Some sign of coating degradation after 1000 h immersion in the (Li+K) carbonate mixture at 650 C was due to coating microcracking and Al depletion.

S. Frangini; A. Masci

2004-01-01T23:59:59.000Z

227

Nanotube Fabrication byNanotube Fabrication by Anodic Aluminum Oxide,Anodic Aluminum Oxide,  

E-Print Network [OSTI]

Nanotube Fabrication byNanotube Fabrication by Anodic Aluminum Oxide,Anodic Aluminum Oxide, Self-regulating phenomena in materials science: Self-assembly of nanopores during anodic oxidation of aluminum (AAO) Self combined anodic aluminum oxide (AAO) nanostructures with atomic layer deposition (ALD) to fabricate

Rubloff, Gary W.

228

Improved Irradiation Performance of Uranium-Molybdenum/Aluminum Dispersion Fuel by Silicon Addition in Aluminum  

SciTech Connect (OSTI)

Uranium-molybdenum fuel particle dispersion in aluminum is a form of fuel under development for conversion of high-power research and test reactors from highly enriched to low-enriched uranium in the U.S. Global Threat Reduction Initiative program (also known as the Reduced Enrichment for Research and Test Reactors program). Extensive irradiation tests have been conducted to find a solution for problems caused by interaction layer growth and pore formation between U-Mo and Al. Adding a small amount of Si (up to [approximately]5 wt%) in the Al matrix was one of the proposed remedies. The effect of silicon addition in the Al matrix was examined using irradiation test results by comparing side-by-side samples with different Si additions. Interaction layer growth was progressively reduced with increasing Si addition to the matrix Al, up to 4.8 wt%. The Si addition also appeared to delay pore formation and growth between the U-Mo and Al.

Yeon Soo Kim; G. L. Hofman; A. B. Robinson; D. M. Wachs

2013-10-01T23:59:59.000Z

229

NW Aluminum Industry Study (contracts/subscription)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Subscription Contracts Announcements Subscription Strategy Subscription Products Aluminum Study IOUPublic Settlement Slice of the System Billing Procedures Firstgov Northwest...

230

Microstructural Characterization of 6061 Aluminum to 304L Stainless Steel Inertia Welds  

SciTech Connect (OSTI)

'Microstructural characterization of 6061-T6 aluminum-to-Type 304L stainless steel inertia welds provided a technical basis to conclude that transition joints fabricated from such welds should satisfactorily contain helium/hydrogen gas mixtures. This conclusion is based on the lack of semi-continuous alignments of particles and/or inclusions at, or near, the aluminum-to-stainless steel interface. These dissimilar metal transition joints play a key role in the operation of an accelerator driven, spallation neutron source designed for the production of tritium. The Accelerator Production of Tritium system will produce tritium through neutron interactions with 3He gas contained in water-cooled, 6061-T6 aluminum pressure tubes. Current design concepts include thousands of thin-walled pressure tubes distributed throughout a number of aluminum-clad, lead-filled, blanket modules. The aluminum pressure tubes are connected to a tritium extraction and purification system through a stainless steel manifold. The transition from aluminum to stainless steel is made via transition joints machined from the aluminum-to-stainless steel inertia welds. The paper describes the baseline microstructural characterization of the welds, including optical, scanning and transmission electron microscopy and uses that characterization to evaluate potential gas leakage across the weld.'

Dunn, K.A.

1999-09-29T23:59:59.000Z

231

Plasma sprayed coatings as surface treatments of aluminum adherends  

SciTech Connect (OSTI)

Plasma sprayed coatings have been evaluated as surface treatments for aluminum substrates being prepared for adhesive bonding. Blends of an aluminum-silicon alloy and polyester give the best performance. To establish durability performance, wedge tests were done using four common epoxy adhesives without primers. In all cases, the 60%Al-Si/40%polyester coating gave results superior to those of FPL-etched specimens and, in some cases, performance equivalent to PAA specimens. This roughness provides excellent opportunity for mechanical interlocking or physical bonding and allows a complex interphase to be formed as the adhesive penetrates into the coating. Crack growth measurements and subsequent failure analysis using x-ray photoelectron spectroscopy (XPS) indicate that crack propagation occurs within this complex interphase. The results also show that the aluminum and polyester components are synergistic and blends of the two give better performance than either component by itself The aluminum gives strength to the coating while the polyester provides toughness and improves moisture resistance.

Davis, G.D.; Whisnant, P.L.; Groff, G.B.; Shaffer, D.K. [Lockheed Martin, Baltimore, MD (United States)] [and others

1996-12-31T23:59:59.000Z

232

Aluminum: Principled Scenario Exploration through Minimality  

E-Print Network [OSTI]

Aluminum: Principled Scenario Exploration through Minimality Tim Nelson1, Salman Saghafi1, Daniel J. We present Aluminum, a modification of Alloy that presents only minimal scenarios: those that contain no more than is necessary. Aluminum lets users explore the scenario space by adding to scenarios

Dougherty, Daniel J.

233

Aluminum--2004 5. Areferencethatincludesasectionmark()isfoundintheinternet  

E-Print Network [OSTI]

Aluminum--2004 5. Areferencethatincludesasectionmark(§)isfoundintheinternet ReferenceCitedsection. Aluminum ByPatriciaA.Plunkert Domestic survey data and tables were prepared by Benjamin S. Goff.S.GeologicalSurvey(uSGS)requestforproductiondata. CommercialDevelopmentCo.(CDC)ofSt.louis,mO, boughtKaiserAluminumCorp.'s200,000-metric-ton-per-year (t

234

Aluminum: Principled Scenario Exploration through Minimality  

E-Print Network [OSTI]

Aluminum: Principled Scenario Exploration through Minimality Tim Nelson1, Salman Saghafi1, Daniel J Aluminum, a modification of Alloy that presents only minimal scenarios: those that contain no more than is necessary. Aluminum lets users explore the scenario space by adding to scenarios and backtracking. It also

Krishnamurthi, Shriram

235

MODELING OF ALUMINUM NANOPARTICLE FORMATION R. Schefflan  

E-Print Network [OSTI]

MODELING OF ALUMINUM NANOPARTICLE FORMATION R. Schefflan D. Kalyon S. Kovenklioglu Stevens Picatinny Arsenal's process for making alumina coated nanoparticles of aluminum involves the conversion of gaseous aluminum, in the presence of helium carrier gas, to solid nanoparticles and their subsequent

236

REQUEST BY ALUMINUM COMPANY OF AMERICA FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS  

Broader source: Energy.gov (indexed) [DOE]

SS796C; DOE WAIVER DOCKET W(A)-96-022[ORO- SS796C; DOE WAIVER DOCKET W(A)-96-022[ORO- 637] Aluminum Company of America (Alcoa) has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Contract No. DE-AC05-840R21400; Subcontract No. 86X-SS796C. The scope of the work calls for the development of processes for forming aluminum auto parts to make the use of aluminum in the industry feasible and cost effective. Alcoa will be assisting the Department of Energy in developing advanced materials for the automobile industry, namely to develop Semi-Solid Metal (SSM) technology to produce new and existing light weight aluminum alloy castings having greater than fifteen percent ductility. The United States Automotive Materials Partnership (USAMP) will assist Alcoa on an

237

Heavy metals in wastewater: Their removal through algae adsorption and their roles in microwave assisted pyrolysis of algae.  

E-Print Network [OSTI]

??Chlorella vulgaris was found as a good biosorbent for copper, zinc and aluminum. pH value, reaction time, initial metal and algal sorbents concentrations were considered (more)

Zhao, Yuan

2012-01-01T23:59:59.000Z

238

PHYTOEXTRACTION OF HEAVY METALS  

E-Print Network [OSTI]

) Type of phytoremediation Cost effective form of environmental remediation (Glass 1999) Chelating Agents: desorb heavy metals from soil matrix and form water-soluble metal complexes (Shen et al -using hyperaccumulator plant biomass to produce a bio-ore for commercial use -Li et al. look at using Ni

Blouin-Demers, Gabriel

239

Processing and microstructural evolution of alumina/aluminum alloy and aluminum nitride/aluminum alloy composites by directed melt oxidation. Ph.D. Thesis  

SciTech Connect (OSTI)

An experimental investigation on the directed oxidation of aluminum-zinc alloys to produce alumina/aluminum alloy composites with and without alumina preforms has been conducted. It has been suggested in the literature that Al-Mg alloys grow composites by the dissolution of a magnesia surface layer and reprecipitation of alumina in the composite. The intent of this investigation is to reveal relevant distinctions in the proposed dissolution-reprecipitation process as they apply to a more commercially interesting Zn containing alloy with a reinforcing preform. The TGA behavior and microstructural observations on the oxidation of Al-10Zn-8Si alloys were coupled with a thermodynamic and kinetic analysis to develop a composite growth model. Experiments were carried out in air at 1000-1200 C. At the higher temperatures (greater than 1100 C), Al2O3/Al composites grow by dissolving a ZnAl2O4 (spinel) surface layer. The dissolution process releases oxygen that reprecipitates in the form of Al2O3 on the existing composite, and also releases Zn and Al which migrate upward through the spinel to regenerate the surface oxide. Composite growth may only occur when the surface regenerates at a rate comparable with that of the dissolution process. At the lower temperatures, 1000 C, the composite growth is limited by the spinel regeneration process, and becomes intermittent. The addition of Mg to this alloy allows normal composite growth by the dissolution of a surface (Zn,Mg)Al2O4 layer at the lower temperatures, 980-1060 C, but leads to heterogeneous microstructures with voids as the temperature increases above approximately 1060 C. The directed oxidation of an Al-Zn alloy into porous alumina preforms yields an Al2O3/Al composite matrix which fills the preform interstices. Al-10Zn-8Si-0.25Mg alloys that are oxidized from 960-1100 C, and Al-10Zn-8Si alloys that are oxidized at 800-1000 C climb up the preform particle.

Crudele, S.D.

1994-12-31T23:59:59.000Z

240

Removal of Vanadium(IV) from Aqueous Solutions by Adsorption Process with Aluminum-Pillared Bentonite  

Science Journals Connector (OSTI)

The objective of this research work is to investigate the possibility of using a natural bentonite clay as a precursor to produce aluminum-pillared clay (Al?PILC) for the removal of vanadium(IV) from aqueous solutions. ... The original bentonite and Al?PILC were characterized with the help of surface area analyzer, X-ray diffraction, scanning electron microscopy, and potentiometric titration. ... The adsorption of vanadium(IV) onto Al?PILC has been dynamically and thermodynamically investigated. ...

D. M. Manohar; B. F. Noeline; T. S. Anirudhan

2005-07-08T23:59:59.000Z

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Oxidation of ligand-protected aluminum clusters: An ab initio molecular dynamics study  

SciTech Connect (OSTI)

We report Car-Parrinello molecular dynamics simulations of the oxidation of ligand-protected aluminum clusters that form a prototypical cluster-assembled material. These clusters contain a small aluminum core surrounded by a monolayer of organic ligand. The aromatic cyclopentadienyl ligands form a strong bond with surface Al atoms, giving rise to an organometallic cluster that crystallizes into a low-symmetry solid and is briefly stable in air before oxidizing. Our calculations of isolated aluminum/cyclopentadienyl clusters reacting with oxygen show minimal reaction between the ligand and O{sub 2} molecules at simulation temperatures of 500 and 1000 K. In all cases, the reaction pathway involves O{sub 2} diffusing through the ligand barrier, splitting into atomic oxygen upon contact with the aluminum, and forming an oxide cluster with aluminum/ligand bonds still largely intact. Loss of individual aluminum-ligand units, as expected from unimolecular decomposition calculations, is not observed except following significant oxidation. These calculations highlight the role of the ligand in providing a steric barrier against oxidizers and in maintaining the large aluminum surface area of the solid-state cluster material.

Alnemrat, Sufian; Hooper, Joseph P., E-mail: jphooper@nps.edu [Department of Physics, Naval Postgraduate School, Monterey, California 93943 (United States)

2014-03-14T23:59:59.000Z

242

Determination of boron in aluminum and aluminum-magnesium alloy by charged particle activation analysis  

SciTech Connect (OSTI)

Charge particle activation analysis is applied to the determination of boron in aluminum and aluminum-magnesium alloy. The /sup 10/B(p,..cap alpha..)/sup 7/Be, the /sup 10/B(d,..cap alpha..n)/sup 7/Be, and the /sup 10/B(d,n)/sup 11/C reactions are used. Proton activation allows an instrumental determination. When the /sup 10/B(d,..cap alpha..n)/sup 7/Be reaction is used, beryllium-7 is separated from the matrix by liquid-liquid extraction; beryllium acetylacetonate is extracted with carbon tetrachloride after complexation of other metal ions with ethylenediaminetetraacetic acid. After back extraction beryllium is precipitated as beryllium hydroxide and heated to beryllium oxide. When the /sup 10/B(d,n)/sup 11/C reaction is used, carbon-11 is separated as carbon dioxide by dissolution of the sample in a mixture of sulfuric acid, phosphoric acid, water, and potassium dichromate. The chemical yield of both separation methods was determined. The results obtained have a relative standard deviation of 5-9% at the 1-33 ..mu..g/g concentration. The different nuclear reactions yield results that are in good mutual agreement and also agree satisfactorily with those of nonnuclear analytical methods.

Mortier, R.; Vandecasteele, C.; Strijckmans, K.; Hoste, J.

1984-10-01T23:59:59.000Z

243

Complex foamed aluminum parts as permanent cores in aluminum castings  

SciTech Connect (OSTI)

The feasibility of complex shaped aluminum foam parts as permanent cores in aluminum castings has been investigated. The foamed samples were prepared by injection of the foam into sand molds. It turned out that sound castings can be produced if the foam core is properly preheated and/or surface treated before casting. The effect of the foam core on the performance of the casting was evaluated by in compression testing and by measuring structural damping. The gain in the related properties turned out to be much higher than the weight increase of the casting due to the presence of the core. The weight increase may be partially offset through a reduction of the wall-thickness of the shell.

Simancik, F. [Inst. of Materials and Machine Mechanics, Bratislava (Slovakia); Schoerghuber, F. [Illichmann GmbH, Altmuenster (Austria)

1998-12-31T23:59:59.000Z

244

Elucidating the mechanism behind the stabilization of multi-charged metal cations in water: A case study of the electronic states of microhydrated Mg2+, Ca2+ and Al3+  

SciTech Connect (OSTI)

Metal atoms typically have second and higher ionization potentials (IPs) that are larger than the IP of water, resulting in the Coulombic explosion of the first few [M(H2O)n]+q (q ? 2) clusters as the M+ + (H2O)n + or MOH+ + H3O+(H2O)n energy levels are energetically more stable than the M2+ + (H2O)n ones for small n. We present a theoretical analysis of the various electronic states correlating with the above channels that are involved in the sequential hydration of the Ca2+, Mg2+ and Al3+ cations with up to six water molecules that, for the first time, quantifies their relative shift with the degree of solvation accounting for the observed stabilization of those multi-charged metal cations in an aqueous solution. *

Miliordos, Evangelos; Xantheas, Sotiris S.

2014-04-21T23:59:59.000Z

245

Inertia of the Carrier of Electricity in Copper and Aluminum  

Science Journals Connector (OSTI)

In this experiment the mass-charge ratio of the carrier of an electric current in a metallic conductor was precisely determined. This was done by measuring the change in amplitude resulting from reversing the current in a cylindrical coil supported as a torsional pendulum. Determinations of me of the carrier were made for coils of both copper and aluminum and various current values were used in each coil. The average value obtained for me of the carrier is 5.6910-9 gram per coulomb. The accepted value of this ratio for the electron is 5.6810-9 gram per coulomb.

C. F. Kettering and G. G. Scott

1944-11-01T23:59:59.000Z

246

Copper gettering by aluminum precipitates in aluminum-implanted silicon  

SciTech Connect (OSTI)

Copper in Si is shown to be strongly gettered by Al-rich precipitates formed by implanting Al to supersaturation and followed by annealing. At temperatures ranging from 600 to 800 C a layer containing Al precipitates is found to getter Cu from Cu silicide located on the opposite side of a 0.25-mm Si wafer, indicating a substantially lower chemical potential for the Cu in the molten-A1 phase. Cu gettering proceeds rapidly until an atomic ratio of approximately 2 Cu atoms to 1 Al atom is reached in the precipitated Al region, after which the gettering process slows. Redistribution of Cu from one Al-rich layer to another at low Cu concentrations demonstrates that a segregation-type gettering mechanism is operating. Cu gettering occurs primarily in the region containing the precipitated Al rather than the region where the Al is entirely substitutional.

PETERSEN,GARY A.; MYERS JR.,SAMUEL M.

2000-03-20T23:59:59.000Z

247

Heat transfer at the mold-metal interface in permanent mold casting of aluminum alloys project. Annual project status report for the period October 1, 1997 to September 30, 1998  

SciTech Connect (OSTI)

In the first year of this three-year project, substantial progress has been achieved. This project on heat transfer coefficients in metal permanent mold casting is being conducted in three areas. They are the theoretical study at the University of Michigan, the experimental investigations of squeeze casting and semi-solid casting at CMI-Tech Center, and the experimental investigation of low pressure permanent mold casting at Amcast Automotive. U-M did an initial geometry which was defined for ProCAST to solve, and then a geometry half the size was defined and solved using the same boundary conditions. A conceptual mold geometry was examined and is represented as an axisymmetric element.Furthermore, the influences of the localized heat transfer coefficients on the casting process were carefully studied. The HTC Evaluator has been proposed and initially developed by the U-M team. The Reference and the Database Modules of the HTC Evaluator have been developed, and extensively tested. A series of technical barriers have been cited and potential solutions have been surveyed. At the CMI-Tech Center, the Kistler direct cavity pressure measurement system has been purchased and tested. The calibrations has been evaluated. The probe is capable of sensing a light finger pressure. The experimental mold has been designed and modified. The experimental mold has been designed and modified. The first experiment is scheduled for October 14, 1998. The geometry of the experimental hockey-puck casting has been given to the U-M team for numerical analysis.

Pehlke, R.D.; Hao, S.W.

1998-09-30T23:59:59.000Z

248

Coated metal fiber coalescing cell  

SciTech Connect (OSTI)

A cell is described for coalescing oil droplets dispersed in a water emulsion including an elongated perforated tube core into which the emulsion is injected, layers of oleophilic plastic covered metal mat wound about the core through which the emulsion is forced to pass, the fibers of the metal mat being covered by oleophilic plastic such as vinyl, acrylic, polypropylene, polyethylene, polyvinyl chloride, the metal being in the form of layers of expanded metal or metal fibers, either aluminum or stainless steel. In manufacturing the cell a helix wound wire is formed around the cylindrical plastic coated metal to retain it in place and resist pressure drop of fluid flowing through the metal fibers. In addition, the preferred arrangement includes the use of an outer sleeve formed of a mat of fibrous material such as polyester fibers, acrylic fibers, modacrylic fibers and mixtures thereof.

Rutz, W.D.; Swain, R.J.

1980-12-23T23:59:59.000Z

249

Final Report on the Safety Assessment of Aluminum Silicate, Calcium Silicate, Magnesium Aluminum  

E-Print Network [OSTI]

Final Report on the Safety Assessment of Aluminum Silicate, Calcium Silicate, Magnesium Aluminum Silicate, Magnesium Silicate, Magnesium Trisilicate, Sodium Magnesium Silicate, Zirconium Silicate, Attapulgite, Bentonite, Fuller's Earth, Hectorite, Kaolin, Lithium Magnesium Silicate, Lithium Magnesium

Ahmad, Sajjad

250

The Effect of Impurities on the Processing of Aluminum Alloys  

SciTech Connect (OSTI)

For this Aluminum Industry of the Future (IOF) project, the effect of impurities on the processing of aluminum alloys was systematically investigated. The work was carried out as a collaborative effort between the Pennsylvania State University and Oak Ridge National Laboratory. Industrial support was provided by ALCOA and ThermoCalc, Inc. The achievements described below were made. A method that combines first-principles calculation and calculation of phase diagrams (CALPHAD) was used to develop the multicomponent database Al-Ca-K-Li-Mg-Na. This method was extensively used in this project for the development of a thermodynamic database. The first-principles approach provided some thermodynamic property data that are not available in the open literature. These calculated results were used in the thermodynamic modeling as experimental data. Some of the thermodynamic property data are difficult, if not impossible, to measure. The method developed and used in this project allows the estimation of these data for thermodynamic database development. The multicomponent database Al-Ca-K-Li-Mg-Na was developed. Elements such as Ca, Li, Na, and K are impurities that strongly affect the formability and corrosion behavior of aluminum alloys. However, these impurity elements are not included in the commercial aluminum alloy database. The process of thermodynamic modeling began from Al-Na, Ca-Li, Li-Na, K-Na, and Li-K sub-binary systems. Then ternary and higher systems were extrapolated because of the lack of experimental information. Databases for five binary alloy systems and two ternary systems were developed. Along with other existing binary and ternary databases, the full database of the multicomponent Al-Ca-K-Li-Mg-Na system was completed in this project. The methodology in integrating with commercial or other aluminum alloy databases can be developed. The mechanism of sodium-induced high-temperature embrittlement (HTE) of Al-Mg is now understood. Using the thermodynamic database developed in this project, thermodynamic simulations were carried out to investigate the effect of sodium on the HTE of Al-Mg alloys. The simulation results indicated that the liquid miscibility gap resulting from the dissolved sodium in the molten material plays an important role in HTE. A liquid phase forms from the solid face-centered cubic (fcc) phase (most likely at grain boundaries) during cooling, resulting in the occurrence of HTE. Comparison of the thermodynamic simulation results with experimental measurements on the high-temperature ductility of an Al-5Mg-Na alloy shows that HTE occurs in the temperature range at which the liquid phase exists. Based on this fundamental understanding of the HTE mechanism during processing of aluminum alloy, an HTE sensitive zone and a hot-rolling safe zone of the Al-Mg-Na alloys are defined as functions of processing temperature and alloy composition. The tendency of HTE was evaluated based on thermodynamic simulations of the fraction of the intergranular sodium-rich liquid phase. Methods of avoiding HTE during rolling/extrusion of Al-Mg-based alloys were suggested. Energy and environmental benefits from the results of this project could occur through a number of avenues: (1) energy benefits accruing from reduced rejection rates of the aluminum sheet and bar, (2) reduced dross formation during the remelting of the aluminum rejects, and (3) reduced CO2 emission related to the energy savings. The sheet and extruded bar quantities produced in the United States during 2000 were 10,822 and 4,546 million pounds, respectively. It is assumed that 50% of the sheet and 10% of the bar will be affected by implementing the results of this project. With the current process, the rejection rate of sheet and bar is estimated at 5%. Assuming that at least half of the 5% rejection of sheet and bar will be eliminated by using the results of this project and that 4% of the aluminum will be lost through dross (Al2O3) during remelting of the rejects, the full-scale industrial implementation of the project results would lead to energy

Zi-Kui Liu; Shengjun Zhang; Qingyou Han; Vinod Sikka

2007-04-23T23:59:59.000Z

251

Nd:YAG laser welding aluminum alloys  

SciTech Connect (OSTI)

Autogenous Nd:YAG laser welding wrought 4047, 1100, 3003, 2219, 5052, 5086, 5456, and 6061 and cast A356 aluminum alloys to cast A356 aluminum alloy in restrained annular weld joints was investigated. The welds were 12.7 mm (0.375 in.) and 9.5 mm (0.375 in.) diameter with approximately 0.30 mm (0.012 in.) penetration. This investigation determined 4047 aluminum alloy to be the optimum alloy for autogenous Nd:YAG laser welding to cast A356 aluminum alloy. This report describes the investigation and its results.

Jimenez, E. Jr.

1992-02-01T23:59:59.000Z

252

Aluminum-stabilized NB3SN superconductor  

DOE Patents [OSTI]

An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

Scanlan, Ronald M. (Livermore, CA)

1988-01-01T23:59:59.000Z

253

Activated Aluminum Hydride Hydrogen Storage Compositions - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen and Fuel Cell Find More Like This Return to Search Activated Aluminum Hydride Hydrogen Storage Compositions Brookhaven National Laboratory Contact BNL About This...

254

Thermal oxidation of polycrystalline and single crystalline aluminum nitride wafers (Prop 2003-054)  

SciTech Connect (OSTI)

Two types of aluminum nitride (AlN) samples were oxidized in flowing oxygen between 900 C and 1150 C for up to 6 h - highly (0001) textured polycrystalline AlN wafers and low defect density AlN single crystals. The N-face consistently oxidized at a faster rate than the Al-face. At 900 C and 1000 C after 6 h, the oxide was 15% thicker on the N-face than on the Al-face of polycrystalline AlN. At 1100 C and 1150 C, the oxide was only 5% thicker on the N-face, as the rate-limiting step changed from kinetically-controlled to diffusion-controlled with the oxide thickness. A linear parabolic model was established for the thermal oxidation of polycrystalline AlN on both the Al- and N-face. Transmission electron microscopy (TEM) confirmed the formation of a thicker crystalline oxide film on the N-face than on the Al-face, and established the crystallographic relationship between the oxide film and substrate. The oxidation of high-quality AlN single crystals resulted in a more uniform colored oxide layer compared to polycrystalline AlN. The aluminum oxide layer was crystalline with a rough AlN/oxide interface. The orientation relationship between AlN and Al{sub 2}O{sub 3} was (0001) AlN//(10{bar 1}0) Al{sub 2}O{sub 3} and (1{bar 1}00) AlN//(01{bar 1}2) Al{sub 2}O{sub 3}.

Speakman, Scott A [ORNL; Gu, Z [Kansas State University; Edgar, J H [Kansas State University; Blom, Douglas Allen [ORNL; Perrin, J [Kansas State University; Chaudhuri, J [Kansas State University

2006-10-01T23:59:59.000Z

255

Elucidating the contact mechanics of aluminum silicon surfaces with Green's function molecular dynamics  

E-Print Network [OSTI]

, University of Western Ontario, London, Ontario N6A 5B7, Canada Yue Qi and Thomas A. Perry Materials from lightweight Al-Si alloys with the required wear and scuff- ing properties continues to reduce wear damage to the aluminum matrix. [2, 3] Thus, these hard silicon particles (hardness 12 GPa

Mueser, Martin

256

Silicon Solar Cells with Front Hetero-Contact and Aluminum Alloy Back Junction: Preprint  

SciTech Connect (OSTI)

We prototype an alternative n-type monocrystalline silicon (c-Si) solar cell structure that utilizes an n/i-type hydrogenated amorphous silicon (a-Si:H) front hetero-contact and a back p-n junction formed by alloying aluminum (Al) with the n-type Si wafer.

Yuan, H.-C.; Page, M. R.; Iwaniczko, E.; Xu, Y.; Roybal, L.; Wang, Q.; Branz, H. M.; Meier, D. L.

2008-05-01T23:59:59.000Z

257

Corrosion Control Using Regenerative Biofilms on Aluminum 2024 and Brass in Different Media  

E-Print Network [OSTI]

Corrosion Control Using Regenerative Biofilms on Aluminum 2024 and Brass in Different Media F. Mansfeld,a, *,z H. Hsu,a D. O¨ rnek,b T. K. Wood,b and B. C. Syrettc a Corrosion and Environmental Effects Institute, Palo Alto, California 94303, USA The corrosion behavior of Al 2024-T3 and C26000 brass exposed

Wood, Thomas K.

258

ABSTRACT. The corrosion behavior of iron-aluminum alloys and their potential  

E-Print Network [OSTI]

ABSTRACT. The corrosion behavior of iron-aluminum alloys and their potential as protective corrosion claddings in sul- fidizing environments were investigated. As-solidified castings of Fe-Al alloys characterization of the corrosion scales consisted of sur- face and cross-sectional microscopy in combination

DuPont, John N.

259

Process for production of a metal hydride  

DOE Patents [OSTI]

A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

2014-08-12T23:59:59.000Z

260

Synthesizing aluminum particles towards controlling electrostatic discharge ignition sensitivity  

SciTech Connect (OSTI)

Aluminum particles were synthesized with shell thicknesses ranging from 2.7 to 8.3 nm and a constant diameter of 95 nm. These fuel particles were combined with molybdenum trioxide particles and the electrostatic discharge (ESD) sensitivity of the mixture was measured. Results show ignition delay increased as the alumina shell thickness increased. These results correlated with electrical resistivity measurements of the mixture which increased with alumina concentration. A model was developed using COMSOL for ignition of a single Al particle. The ignition delay in the model was consistent with the experimental results suggesting that the primary ESD ignition mechanism is joule heating.

Eric S. Collins; Jeffery P. Gesner; Michelle L. Pantoya; Michael A. Daniels

2014-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

iCons, 2011 Alzheimers and Aluminum: Lesson Plan  

E-Print Network [OSTI]

© iCons, 2011 Alzheimers and Aluminum: Lesson Plan Handouts to explore mechanistic link between Alzheimer's and aluminum 5. Brief proposal expanding Points to Aluminum's Link With Alzheimer's Disease" from 1989. Provide handout

Auerbach, Scott M.

262

Investigation of aluminum surface cleaning using cavitating fluid flow  

SciTech Connect (OSTI)

This paper investigates efficiency of specially designed atomizer used to spray water and cavitate microbubbles in water flow. Surface cleaning system was used to clean machined (grinded) aluminum surface from abrasive particles. It is established that cleaning efficiency depends on diameter of the diffuser, water pressure and distance between nozzle and metal surface. It is obtained that the best cleaning efficiency (100%) is achieved at pressure 36 bar, when diameter of diffuser is 0.4 mm and distance between nozzle and surface is 1 mm. It is also established that satisfactory cleaning efficiency (80%) is achieved not only when atomizer is placed closer to metal surface, but also at larger (120 mm) distances.

Ralys, Aurimas; Strika, Vytautas; Mokin, Vadim [Vilnius Gediminas Technical University, Faculty of Mechanics, Department of Machine Engineering, J. Basanavi?iaus str.28, 03224, Vilnius (Lithuania)

2013-12-16T23:59:59.000Z

263

Preliminary study of the electrolysis of aluminum sulfide in molten salts  

SciTech Connect (OSTI)

A preliminary laboratory-scale study of the electrolysis of aluminum sulfide in molten salts investigated the (1) solubility of Al/sub 2/S/sub 3/ in molten salts, (2) electrochemical behavior of Al/sub 2/S/sub 3/, and (3) electrolysis of Al/sub 2/S/sub 3/ with the determination of current efficiency as a function of current density. The solubility measurements show that MgCl/sub 2/-NaCl-KCl eutectic electrolyte at 1023 K can dissolve up to 3.3 mol % sulfide. The molar ratio of sulfur to aluminum in the eutectic is about one, which suggests that some sulfur remains undissolved, probably in the form of MgS. The experimental data and thermodynamic calculations suggest that Al/sub 2/S/sub 3/ dissolves in the eutectic to form AlS/sup +/ species in solution. Addition of AlCl/sub 3/ to the eutectic enhances the solubility of Al/sub 2/S/sub 3/; the solubility increases with increasing AlCl/sub 3/ concentration. The electrode reaction mechanism for the electrolysis of Al/sub 2/S/sub 3/ was elucidated by using linear sweep voltammetry. The cathodic reduction of aluminum-ion-containing species to aluminum proceeds by a reversible, diffusion-controlled, three-electron reaction. The anodic reaction involves the two-electron discharge of sulfide-ion-containing species, followed by the fast dimerization of sulfur atoms to S/sub 2/. Electrolysis experiments show that Al/sub 2/S/sub 3/ dissolved in molten MgCl/sub 2/-NaCl-KCl eutectic or in eutectic containing AlCl/sub 3/ can be electrolyzed to produce aluminum and sulfur. In the eutectic at 1023 K, the electrolysis can be conducted up to about 300 mA/cm/sup 2/ for the saturation solubility of Al/sub 2/S/sub 3/. Although these preliminary results are promising, additional studies are needed to elucidate many critical operating parameters before the technical potential of the electrolysis can be accurately assessed. 20 figures, 18 tables.

Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

1983-02-01T23:59:59.000Z

264

Heavy metals in the eastern oyster, Crassostrea virginica, of the Mississippi Sound  

SciTech Connect (OSTI)

Levels of metals in oysters in the Sound are of profound interest not only because they document those geographic areas where metal pollution levels may be problematic but because they may disclose possible problems to consumers of oysters. At the present time objective federal standards for heavy metals in oysters and other seafood are restricted to mercury. The closure of Mississippi oyster reefs has been predicated upon bacteriological standards with little if any attention paid to heavy metals. A study of fourteen metals in oysters of the Sound was began in 1988 with objectives differing from that of the Status and Trends Program (STP) in three ways. STP levels are reported on dry weight basis of composites from three sites. In the present study, oysters were analyzed and reported on wet weight basis. Additionally analyses were made of individual specimens to indicate expected specimen to specimen variations and were conducted on oysters from the three STP and two other important oyster reef sites. In the future three or more additional sites will be added to this continuing survey effort. Metals chosen for this study were lead (Pb), cadmium (Cd), iron (Fe), copper (Cu), cobalt (Co), manganese (Mn), zinc (Zn), silver (Ag), nickel (Ni), mercury (Hg), aluminum (Al), chromium (Cr), molybdenum (Mo), and vanadium (V).

Lytle, T.F.; Lytle, J.S. (Gulf Coast Research Lab., Ocean Springs, MS (USA))

1990-01-01T23:59:59.000Z

265

Compressive strength, plastic flow properties, and surface frictional effects of 1100, 3003 and 6061 aluminum alloys  

SciTech Connect (OSTI)

The purpose of this study is to find aluminum alloys that are effective for use as wire vacuum seals in the 800MeV particle accelerator located at the Louis Anderson Meson Physics Facility (LAMPF) in Los Alamos, NM. Three alloys, Al 1100, Al 3003, and Al 6061, are investigated under uniaxial compression to determine stresses for a given height reduction from 0 to 70 percent, and to find plastic flow and surface interaction effects. Right-circular cylindrical specimens are compressed on-end (cylindrically) and radially (for modeling as compressed wire). Aluminum 1100 and 3003 alloys are compared for length to diameter ratios of 1 and 2 for both compression types, and are then compared to results of radial compression of annealed small diameter Al 1100 wire currently used at LAMPE. The specimens are also compressed between three different platen surfaces, polished steel, etched steel, and aluminum 6061-T6, to determine effects of friction. The Al 3003 alloy exhibits 20 to 25% lower stresses at all height reductions than Al 1100 for both cylindrical and radial compression.

Pinkerton, G.W.

1993-12-31T23:59:59.000Z

266

DOE - Office of Legacy Management -- Hunter Douglas Aluminum...  

Office of Legacy Management (LM)

Hunter Douglas Aluminum Plant Div of Bridgeport Brass Co - CA 11 FUSRAP Considered Sites Site: HUNTER DOUGLAS ALUMINUM PLANT, DIV. OF BRIDGEPORT BRASS CO. (CA.11 ) Eliminated from...

267

Magnesium Replacement of Aluminum Cast Components in a Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Magnesium Replacement of Aluminum Cast Components in a Production V6 Engine to Effect Cost-Effective Mass Reduction Magnesium Replacement of Aluminum Cast Components in a...

268

Low-Cost Direct Bonded Aluminum (DBA) Substrates | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Aluminum (DBA) Substrates Low-Cost Direct Bonded Aluminum (DBA) Substrates 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

269

Ultrahigh-Efficiency Aluminum Production Cells | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultrahigh-Efficiency Aluminum Production Cells Ultrahigh-Efficiency Aluminum Production Cells ultrahi-effaluminum.pdf More Documents & Publications U.S. Energy Requirements for...

270

Climate VISION: Private Sector Initiatives: Aluminum  

Office of Scientific and Technical Information (OSTI)

Letters of Intent/Agreements Letters of Intent/Agreements Aluminum Association Logo The Aluminum Association and its members participating in the Voluntary Aluminum Industry Partnership (VAIP), representing 98% of primary aluminum production in the United States, have committed under the Climate VISION program to a direct carbon intensity reduction of emissions of perfluorocarbons (PFCs) and of emissions of CO2 from the consumption of the carbon anode from the primary aluminum reduction process. The Climate VISION target is a 53% total carbon equivalent reduction from these sources by 2010 from 1990 levels. The industry has been working to reduce greenhouse gas emissions for over a decade and this new commitment equates to an additional direct carbon-intensity reduction of 65% since 2000. As a

271

Gating of Permanent Molds for ALuminum Casting  

SciTech Connect (OSTI)

This report summarizes a two-year project, DE-FC07-01ID13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings.

David Schwam; John F. Wallace; Tom Engle; Qingming Chang

2004-03-30T23:59:59.000Z

272

Effects of Reduction Temperature and Metal-Support Interactions on the Catalytic Activity of Pt/g-Al2O3 and Pt/TiO2 for the Oxidation of CO in the Presence and Absence of H2.  

SciTech Connect (OSTI)

TiO2- and -Al2O3-supported Pt catalysts were characterized by HRTEM, XPS, EXAFS, and in situ FTIR spectroscopy after activation at various conditions, and their catalytic properties were examined for the oxidation of CO in the absence and presence of H2 (PROX). When {gamma}-Al{sub 2}O{sub 3} was used as the support, the catalytic, electronic, and structural properties of the Pt particles formed were not affected substantially by the pretreatment conditions. In contrast, the surface properties and catalytic activity of Pt/TiO2 were strongly influenced by the pretreatment conditions. In this case, an increase in the reduction temperature led to higher electron density on Pt, altering its chemisorptive properties, weakening the Pt-CO bonds, and increasing its activity for the oxidation of CO. The in situ FTIR data suggest that both the terminal and bridging CO species adsorbed on fully reduced Pt are active for this reaction. The high activity of Pt/TiO2 for the oxidation of CO can also be attributed to the ability of TiO2 to provide or stabilize highly reactive oxygen species at the metal-support interface. However, such species appear to be more reactive toward H{sub 2} than CO. Consequently, Pt/TiO{sub 2} shows substantially lower selectivities toward CO oxidation under PROX conditions than Pt/{gamma}-Al{sub 2}O{sub 3}.

Alexeev,O.; Chin, S.; Engelhard, M.; Ortiz-Soto, L.; Amiridis, M.

2005-01-01T23:59:59.000Z

273

PREDICTION OF LOW-CYCLE FATIGUE-LIFE BY ACOUSTIC EMISSION. PART 1: 2024-T3 ALUMINUM ALLOY PART 2: ALCLAD 7075-T6/ ALUMINUM ALLOY  

E-Print Network [OSTI]

low-cycle fatigue life of Aluminum sheet alloys by acoustictoughness of structural aluminum alloys. Fracture . Fracturetoughness of structural aluminum alloys, Eng. Fracture Mech.

Baram, J.

2013-01-01T23:59:59.000Z

274

Method of manufacturing a niobium-aluminum-germanium superconductive material  

DOE Patents [OSTI]

A method for manufacturing flexible Nb.sub.3 (Al,Ge) multifilamentary superconductive material in which a sintered porous niobium compact is infiltrated with an aluminum-germanium alloy and thereafter deformed and heat treated in a series of steps at different successively higher temperatures preferably below 1000.degree. C. to produce filaments composed of Nb.sub.3 (Al,G3) within the compact. By avoiding temperatures in excess of 1000.degree. C. during the heat treatment, cladding material such as copper can be applied to facilitate a deformation step preceding the heat treatment and can remain in place through the heat treatment to also serve as a temperature stabilizer for supeconductive material produced. Further, these lower heat treatment temperatures favor formation of filaments with reduced grain size and, hence with more grain boundaries which in turn increase the current-carrying capacity of the superconductive material.

Wang, John L. (San Francisco, CA); Pickus, Milton R. (Oakland, CA); Douglas, Kent E. (Redondo Beach, CA)

1980-01-01T23:59:59.000Z

275

Characterization of porous GASAR aluminum  

SciTech Connect (OSTI)

Experimental and numerical analyses were performed on porous aluminum samples to evaluate microstructure and mechanical properties. Experiments considered of tensile tests on dog-bone specimens containing 9 to 17% porosity, which were instrumented with axial and transverse extensometers. Properties measured included Young`s modulus, Poisson`s ratio remained constant with porosity., For the numerical simulations, 3-D, mesoscale, multilayer models were constructed to evaluate the effects of pore morphology and interactions on material properties. The models allowed systematic spatial positioning of the pore within the cell and the ability to form solid zones. Pore arrangement, the effect of constraint, and gradients on the stress state were investigated. By using different combinations of hex cells as building blocks, several complicated microstructural arrangements were simulated.

Bonenberger, R.J. [FM Technologies, Inc., Fairfax, VA (United States); Kee, A.J. [Geo-Centers, Inc., Fort Washington, MD (United States); Everett, R.K.; Matic, P. [Naval Research Lab., Washington, DC (United States)

1998-12-31T23:59:59.000Z

276

Fish scale deformation analysis using scanning electron microscope: New potential biomarker in aquatic environmental monitoring of aluminum and iron contamination  

SciTech Connect (OSTI)

Fish scale has the potential to be a rapid biomarker due to its structure and high possibility to come into contact with any pollutant in the aquatic environment. The scale structure consists of osteoblastic cells and other bone materials such as collagen where it is possible to form a molecular complex with heavy metals such as aluminum and iron. Hence, aluminum and iron in water could possibly destroy the scale material and marked as a scale deformation that quantitatively could be analyzed by comparing it to the normal scale structure. Water sampling and fish cage experiment were performed between June and July 2011 in Porong river which represented the water body that has high aluminum and iron contamination. The filtered water samples were preserved and extracted using the acid-mixture procedure prior to measurement of the aluminum and iron concentrations using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), while samples for total suspended solid (TSS) analysis were kept at 4 C in cool-boxes. The scales were cleaned with sterile water, then dehydrated in 30, 50, 70, and 90% ethanol and dried on filter papers. They were then mounted on an aluminum stub and coated with gold in a sputter coater prior to Scanning Electron Microscope (SEM) observation. According to the SEM analysis, it was found that there were several deformations on the scale samples taken from sites that have high concentrations of aluminum and iron i.e. the increasing number of pits, deformation and decreasing number of spherules and ridges while the control scale exhibited the normal features. However, the site with higher TSS and pH indicated lower aluminum effect. A moderate correlation was found between the number of pits with aluminum (r=0.43) and iron (r=0.41) concentrations. Fish scale deformation using SEM analysis can potentially be a rapid biomarker in aquatic monitoring of aluminum and iron contamination. However, the measurement must be accompanied by pH and TSS observations.

Hidayati, Dewi; Sulaiman, Norela; Othman, Shuhaimi; Ismail, B. S. [School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

2013-11-27T23:59:59.000Z

277

Aluminum hydroxide and hydrogen produced by water electrolysis  

Science Journals Connector (OSTI)

Thermodynamic and kinetic peculiarities of the water electrolysis in a reactor with aluminum electrodes are...

R. R. Salem

2009-11-01T23:59:59.000Z

278

ALUMINUM--1998 5.1 By Patricia A. Plunkert  

E-Print Network [OSTI]

ALUMINUM--1998 5.1 ALUMINUM By Patricia A. Plunkert Domestic survey data and tables were prepared, international data coordinator. In 1998, 13 domestic companies operated 23 primary aluminum reduction plants to be $5.4 billion. Aluminum recovered from purchased scrap decreased to approximately 3.4 million tons

279

ALUMINUM--1999 5.1 By Patricia A. Plunkert  

E-Print Network [OSTI]

ALUMINUM--1999 5.1 ALUMINUM By Patricia A. Plunkert Domestic survey data and tables were prepared, international data coordinator. In 1999, 12 domestic companies operated 23 primary aluminum reduction plants to be $5.5 billion. During the year, two proposed mergers that involved five major aluminum companies were

280

ALUMINUM--2000 6.1 By Patricia A. Plunkert  

E-Print Network [OSTI]

ALUMINUM--2000 6.1 ALUMINUM By Patricia A. Plunkert Domestic survey data and tables were prepared, international data coordinator. In 2000, 12 domestic companies operated 23 primary aluminum reduction plants to be $6 billion. Increased energy costs, particularly in the Pacific Northwest, led several aluminum

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

UNIVERSITY of CALIFORNIA ATOMIC LAYER DEPOSITION OF ALUMINUM OXIDE  

E-Print Network [OSTI]

UNIVERSITY of CALIFORNIA SANTA CRUZ ATOMIC LAYER DEPOSITION OF ALUMINUM OXIDE A thesis submitted deposition (ALD) of aluminum oxide on crystalline silicon and anodized aluminum substrates. A homemade ALD system is used with trimethylaluminum (TMA) and water as precursors to deposit uniform aluminum oxide

Belanger, David P.

282

Darlington AL O'Reillys AL  

E-Print Network [OSTI]

CanungraCk Darlington AL Darlington Coom era R O'Reillys AL Beechmont AL Binna Burra AL BackCk Tyungun AL Numinbah Valley AL NerangR Natural Bridge Numinbah AL Little Nerang Dam AL Albert R Bromfleet AL Benobble AL Wolffdene AL Luscombe AL Wongawallan AL Mt Tamborine Canungra Pimpama R Laheys Lookout

Greenslade, Diana

283

DC current induced metal-insulator transition in epitaxial Sm{sub 0.6}Nd{sub 0.4}NiO{sub 3}/LaAlO{sub 3} thin film  

SciTech Connect (OSTI)

The metal-insulator transition (MIT) in strong correlated electron materials can be induced by external perturbation in forms of thermal, electrical, optical, or magnetic fields. We report on the DC current induced MIT in epitaxial Sm{sub 0.6}Nd{sub 0.4}NiO{sub 3} (SNNO) thin film deposited by pulsed laser deposition on (001)-LaAlO{sub 3} substrate. It was found that the MIT in SNNO film not only can be triggered by thermal, but also can be induced by DC current. The T{sub MI} of SNNO film decreases from 282 K to 200 K with the DC current density increasing from 0.003 10{sup 9} Am{sup ?2} to 4.9 10{sup 9} Am{sup ?2}. Based on the resistivity curves measured at different temperatures, the MIT phase diagram has been successfully constructed.

Huang, Haoliang [Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China) [Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Luo, Zhenlin, E-mail: zlluo@ustc.edu.cn; Yang, Yuanjun; Yang, Mengmeng; Wang, Haibo; Hu, Sixia; Bao, Jun [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China) [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yun, Yu; Meng, Dechao; Lu, Yalin [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China)] [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Gao, Chen, E-mail: cgao@ustc.edu.cn [Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China) [Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China)

2014-05-15T23:59:59.000Z

284

Site preferences of indium impurity atoms in intermetallics having Al3Ti and Al3Zr crystal structures  

E-Print Network [OSTI]

Site preferences of indium impurity atoms in intermetallics having Al3Ti and Al3Zr crystal-04843 (Metals Program) and Praveen Sinha Fund for Physics Research. L12 DO22 DO23 Cu3Au Al3Ti Al3Zr #12;Outline · Indium was doped in samples of Al3V and Al3Ti (Al3Ti structure) and Al3Zr (Al3Zr structure) by arc

Collins, Gary S.

285

Method For Improving The Oxidation Resistance Of Metal Substrates Coated With Thermal Barrier Coatings  

DOE Patents [OSTI]

A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described. A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

Thompson, Anthony Mark (Niskayuna, NY); Gray, Dennis Michael (Delanson, NY); Jackson, Melvin Robert (Niskayuna, NY)

2003-05-13T23:59:59.000Z

286

Strengthening behavior of chopped multi-walled carbon nanotube reinforced aluminum matrix composites  

SciTech Connect (OSTI)

Strengthening behavior of the aluminum composites reinforced with chopped multi-walled carbon nanotubes (MWCNTs) or aluminum carbide formed during annealing at 500 C has been investigated. The composites were fabricated by hot-rolling the powders which were ball-milled under various conditions. During the early annealing process, aluminum atoms can cluster inside the tube due to the diffusional flow of aluminum atoms into the tube, providing an increase of the strength of the composite. Further annealing induces the formation of the aluminum carbide phase, leading to an overall drop in the strength of the composites. While the strength of the composites can be evaluated according to the rule of mixture, a particle spacing effect can be additionally imparted on the strength of the composites reinforced with the chopped MWCNTs or the corresponding carbides since the reinforcing agents are smaller than the submicron matrix grains. - Highlights: Strengthening behavior of chopped CNT reinforced Al-based composites is investigated. Chopped CNTs have influenced the strength and microstructures of the composites. Chopped CNTs are created under Ar- 3% H2 atmosphere during mechanical milling. Strength can be evaluated by the rule of the mixture and a particle spacing effect.

Shin, S.E.; Bae, D.H., E-mail: donghyun@yonsei.ac.kr

2013-09-15T23:59:59.000Z

287

ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry  

Broader source: Energy.gov [DOE]

This detailed report benchmarks the energy and environmental characteristics of the key technologies used in the major processes of the aluminum industry.

288

ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World  

Broader source: Energy.gov [DOE]

The Aluminum Vision is intended to stimulate a wide variety of R&D activities to accelerate technology development throughout industry.

289

Surface chemical reaction of laser ablated aluminum sample for detonation initiation  

SciTech Connect (OSTI)

We explore the evolution of metal plasma generated by high laser irradiances and its effect on the surrounding air by using shadowgraph images after laser pulse termination; hence the formation of laser supported detonation and combustion processes has been investigated. The essence of the paper is in observing initiation of chemical reaction between ablated aluminum plasma and oxygen from air by inducing high power laser pulse (>1000 mJ/pulse) and conduct a quantitative comparison of chemically reactive laser initiated waves with the classical detonation of exploding aluminum (dust) cloud in air. Findings in this work may lead to a new method of initiating detonation from metal sample in its bulk form without the need of mixing nano-particles with oxygen for initiation.

Kim, Chang-hwan; Yoh, Jack J. [School of Mechanical and Aerospace Engineering, Seoul National University, 599 Kwanakro, Kwanakgu, Seoul, Korea 151-742 (Korea, Republic of)

2011-05-01T23:59:59.000Z

290

UV Curable Coatings in Aluminum Can Production  

E-Print Network [OSTI]

based coatings. The Coors Brewing Company Can Manufacturing Plant has been utilizing this technology in full scale aluminum can production since 1975, and therefore has had the opportunity to evaluate practical operations of the UV technology...

Donhowe, E. T.

291

E-Print Network 3.0 - al alloy 2024-t3 Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

dehydration. EXPERIMENTAL PROCEDURES Aluminum alloy 2024-T3 sheet (Al-4.4Cu-1.5Mg- 0... resistance. In the present study, cathodic polarization curves on chromate-conversion-coat...

292

An optimal replacement problem in aluminum production  

E-Print Network [OSTI]

The aluminum production facility operated by ALCOA in Rockdale, Texas produces aluminum in a continuous manufacturing environment using steel carbon-lined smelting pots. As a result of the production process of running electricity through an electrolytic... technique known as dynamic programming, the minimum expected cost can be determined for a finite horizon Markov decision problem. This was accomplished using value iteration, a computer program written in C language, and data obtained from ALCOA...

Spanks, Lisa Marie

1992-01-01T23:59:59.000Z

293

Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method of making the same  

DOE Patents [OSTI]

The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. The invented electrochemical cell generally comprising: a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. The novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.

Gerald, II; Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL)

2011-02-15T23:59:59.000Z

294

Manual HVOF thermal spray repair of nickel aluminum bronze castings  

SciTech Connect (OSTI)

Manual high velocity oxyfuel (HVOF) thermal spray repairs were accomplished on a large nickel aluminum bronze propeller castings. The repairs were done on three different configurations of surface defects of up to 100 square inches and as deep as 90 mils. Nickel aluminum bronze alloy powder, sieve sized for the HVOF process, was sprayed. High quality, high coating density, repairs were achieved even on porous areas of the castings. Prior to performance of the repairs, a procedure was qualified in accordance with MIL-STD-1687 and a mock-up simulating the repair was produced. After HVOF spraying of the mock-up, the sprayed surface was sanded, milled, and drilled to determine how finishing of the actual castings would be done. After successful procedure qualification, the HVOF equipment was moved to the job site, metal masking was devised for the spray areas and grit blasting and manual HVOF spraying was done. Results of HVOF coating chemical analyses, bend tests, coating tensile bond strength tests, coating microscopic examinations, and mock-up evaluations are reported along with the spray procedures and techniques used in the repairs.

Brenna, R.T.; McCaw, R.L.; Pugh, J.L.

1994-12-31T23:59:59.000Z

295

Rechargeable aluminum batteries with conducting polymers as positive electrodes.  

SciTech Connect (OSTI)

This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole and polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g-1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg-1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.

Hudak, Nicholas S.

2013-12-01T23:59:59.000Z

296

E-Print Network 3.0 - aluminum copper iron Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aluminum alloy... to room temperature was also confirmed. Will investigate different additives, copper, pure aluminum... with aluminum ... Source: McDonald, Kirk - Department...

297

A NEW A15 MULTIFILAMENTARY SUPERCONDUCTOR BASED ON THE NIOBIUM-ALUMINUM-SILICON SYSTEM  

E-Print Network [OSTI]

BASED ON THE NIOBIUM-ALUMINUM-SILICON SYSTEM Gary C. Quinnpsi. Photomicrograph of an Aluminum-Silicon eutectic filledmultifilimentary niobium-aluminum-silicon wire, a) sample #

Quinn, G.C.

2011-01-01T23:59:59.000Z

298

EFFECT OF GRAIN SIZE ON THE ACOUSTIC EMISSION GENERATED DURING PLASTIC DEFORMATION OF ALUMINUM  

E-Print Network [OSTI]

PLASTIC DEFORMATION OF ALUMINUM LAWRENCE BERKELEY LABORATORYDURING PLASTIC DEFORMATION OF ALUMINUM J. Baram Materialsof polycrystalline aluminum, of different grain sizes and at

Baram, J.

2013-01-01T23:59:59.000Z

299

Aluminum and copper in drinking water enhance inflammatory oroxidative events specifically in the brain  

E-Print Network [OSTI]

effects of iron and aluminum on stress-related genelopathy syndrome. Possible aluminum intoxication. N. Engl.Chronic exposure to aluminum in drinking water increases

Bondy, Stephen Bondy C

2006-01-01T23:59:59.000Z

300

Mechanical properties and microstructures of dual phase steels containing silicon, aluminum and molybdenum  

E-Print Network [OSTI]

STEELS CONTAINING SILICON, ALUMINUM AND MOLYBDENUM Thomasdeoxidizing action of aluminum results in grain refinementquench martensite, Both (a) and Aluminum particle within the

Neill, Thomas John O'

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

CHARACTERIZATION OF THE GASEOUS AND SOLID PRODUCTS OF DECOMPOSITION OF ALUMINUM SULFATE  

E-Print Network [OSTI]

OF DECOMPOSITION OF ALUMINUM SULFATE Gary F. Knutsen (M. S.OF DECOMPOSITION OF ALUMINUM SULFATE Contents Abstract . .OF DECOMPOSITION OF ALUMINUM SULFATE Gary F. Knutsen

Knutsen, G.F.

2010-01-01T23:59:59.000Z

302

A Study of Aluminum Dependent Root Growth Inhibition in Arabidopsis thaliana  

E-Print Network [OSTI]

symptom triggered by aluminum, but not the primary cause ofRI (1986) Characterization of hydroxy-aluminum solutionsby aluminum-27 nuclear magnetic resonance spectroscopy. Soil

Nezames, Cynthia

2011-01-01T23:59:59.000Z

303

Transcriptomic analysis reveals differential gene expression in common bean (Phaseoulus vulgaris) for aluminum resistance  

E-Print Network [OSTI]

transition zone is the most aluminum-sensitive apical rootsoils is mainly limited by aluminum toxicity. In addition,L. under conditions of aluminum stress. Plant Physiol 104:

Eticha, Dejene; Zahn, Marc; Rao, Idupulapati M.; Horst, Walter J.

2009-01-01T23:59:59.000Z

304

Aluminum Microfoams for Reduced Fuel Consumption and Pollutant Emissions of Transportation Systems  

E-Print Network [OSTI]

on the foamability of Aluminum alloy . Journal of MaterialFoamability of particle reinforced Aluminum Melt. Ma. -wiss.particle-stabilised Aluminum foams . Advanced Engineering

Pilon, Laurent

2008-01-01T23:59:59.000Z

305

High pressure synthesis and crystal structure of a ternary superconductor Ca{sub 2}Al{sub 3}Si{sub 4} containing layer structured calcium sub-network isomorphous with black phosphorus  

SciTech Connect (OSTI)

The Zintl compound CaAl{sub 2}Si{sub 2} is peritectically decomposed to a mixture of Ca{sub 2}Al{sub 3}Si{sub 4} and aluminum metal at temperatures above 600 Degree-Sign C under a pressure of 5 GPa. The new ternary compound Ca{sub 2}Al{sub 3}Sl{sub 4} crystalizes with the space group Cmc2{sub 1} and the lattice parameters a=5.8846(8), b=14.973(1), and c=7.7966(5) A. The structure is composed of aluminum silicide framework [Al{sub 3}Si{sub 4}] and layer structured [Ca{sub 2}] network interpenetrating with each other. The electron probe microanalysis (EPMA) shows the formation of solid solutions Ca{sub 2}Al{sub 3-x}Si{sub 4+x} (x<0.6). The layer structured [Ca{sub 2}] sub-network is isomorphous with black phosphorus. The new ternary compound shows superconductivity with a transition temperature (T{sub c}) of 6.4 K. The band structure calculation suggests that the superconductivity should occur through the conduction bands mainly composed of 3p orbitals of the aluminum silicide framework. - Graphical abstract: A new ternary superconductor Ca{sub 2}Al{sub 3}Si{sub 4} has been prepared under high pressure and high temperature conditions, which includes layer structured calcium sub-network isomorphous with black phosphorus. Highlights: Black-Right-Pointing-Pointer A typical Zintl compound CaAl{sub 2}Si{sub 2} melts congruently at ambient pressure. Black-Right-Pointing-Pointer Under high pressure CaAl{sub 2}Si{sub 2} decomposes to Ca{sub 2}Al{sub 3}Si{sub 4} and Al at {approx}600 Degree-Sign C. Black-Right-Pointing-Pointer Ca{sub 2}Al{sub 3}Si{sub 4} contains Ca sub-network isomorphous with black phosphorus. Black-Right-Pointing-Pointer Ca{sub 2}Al{sub 3}Si{sub 4} shows superconductivity with a transition temperature of 6.4 K.

Tanaka, Masashi; Zhang, Shuai; Tanaka, Yuki; Inumaru, Kei [Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527 (Japan)] [Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527 (Japan); Yamanaka, Shoji, E-mail: syamana@hiroshima-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527 (Japan)] [Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527 (Japan)

2013-02-15T23:59:59.000Z

306

Climate VISION: Private Sector Initiatives: Aluminum: GHG Information -  

Office of Scientific and Technical Information (OSTI)

Industry Analysis Briefs Industry Analysis Briefs The Energy Information Agency (EIA) is currently updating industry analysis briefs for the most energy-intensive industries in the United States, including aluminum, chemicals, forest products (such as paper and wood products), glass, metal casting, petroleum and coal products, and steel. As soon as the current briefs are available, we will provide the link. Industry Analysis Briefs will have the following content: Economic Profile and Trends Value of Shipments Annual Production Labor Productivity Energy Use Energy Use by Fuel Fuel Consumption by End Use Energy Consumption by Sector Energy Expenditures Onsite Generation (if applicable) Energy Intensity State-Level Information Technologies and Equipment Cogeneration Technologies (if applicable)

307

The Salty Science of the Aluminum-Air Battery  

Science Journals Connector (OSTI)

Fruit batteries and saltwater batteries are excellent ways to explore simple circuits in the classroom. These are examples of air batteries1 in which metal reacts with oxygen in the air in order to generate free electrons which flow through an external circuit and do work. Students are typically told that the salt or fruit water acts as an electrolyte to bring electrons from the anode to the cathode. That's true but it leaves the battery as a black box. Physics teachers often don't have the background to explain the chemistry behind these batteries. We've written this paper to explore the electrochemistry behind an air battery using coppercathode aluminum anode and saltwater.

Stephanie V. Chasteen; N. Dennis Chasteen; Paul Doherty

2008-01-01T23:59:59.000Z

308

XTH31, Encoding an in Vitro XEH/XET-Active Enzyme, Regulates Aluminum Sensitivity by Modulating in Vivo XET Action, Cell Wall Xyloglucan Content, and Aluminum Binding Capacity in Arabidopsis  

Science Journals Connector (OSTI)

...glucuronoxylan, glucomannan, xylan, and mannan (but not cellulose...wild-type background. Seeds were surface-sterilized and germinated...glucuronoxylan, cellulose, or xylan, giving sugar residues:AlCl3...aluminum and phosphorus on root surfaces and cell wall material. Plant...

Xiao Fang Zhu; Yuan Zhi Shi; Gui Jie Lei; Stephen C. Fry; Bao Cai Zhang; Yi Hua Zhou; Janet Braam; Tao Jiang; Xiao Yan Xu; Chuan Zao Mao; Yuan Jiang Pan; Jian Li Yang; Ping Wu; Shao Jian Zheng

2012-11-30T23:59:59.000Z

309

Radiation tolerance of piezoelectric bulk single-crystal aluminum nitride  

SciTech Connect (OSTI)

For practical use in harsh radiation environments, we pose selection criteria for piezoelectric materials for nondestructive evaluation (NDE) and material characterization. Using these criteria, piezoelectric aluminum nitride is shown to be an excellent candidate. The results of tests on an aluminumnitride-based transducer operating in a nuclear reactor are also presented. We demonstrate the tolerance of single-crystal piezoelectric aluminum nitride after fast and thermal neutron fluences of 1.85 1018 neutron/cm2 and 5.8 1018 neutron/cm2, respectively, and a gamma dose of 26.8 MGy. The radiation hardness of AlN is most evident from the unaltered piezoelectric coefficient d33, which measured 5.5 pC/N after a fast and thermal neutron exposure in a nuclear reactor core for over 120 MWh, in agreement with the published literature value. The results offer potential for improving reactor safety and furthering the understanding of radiation effects on materials by enabling structural health monitoring and NDE in spite of the high levels of radiation and high temperatures, which are known to destroy typical commercial ultrasonic transducers.

David A. Parks; Bernhard R. Tittmann

2014-07-01T23:59:59.000Z

310

Method for inhibiting alkali metal corrosion of nickel-containing alloys  

DOE Patents [OSTI]

Structural components of nickel-containing alloys within molten alkali metal systems are protected against corrosion during the course of service by dissolving therein sufficient aluminum, silicon, or manganese to cause the formation and maintenance of a corrosion-resistant intermetallic reaction layer created by the interaction of the molten metal, selected metal, and alloy.

DeVan, Jackson H. (Oak Ridge, TN); Selle, James E. (Westminster, CO)

1983-01-01T23:59:59.000Z

311

Effect of heat treatment on microstructure and interface of SiC particle reinforced 2124 Al matrix composite  

SciTech Connect (OSTI)

The microstructure and interface between metal matrix and ceramic reinforcement of a composite play an important role in improving its properties. In the present investigation, the interface and intermetallic compound present in the samples were characterized to understand structural stability at an elevated temperature. Aluminum based 2124 alloy with 10 wt.% silicon carbide (SiC) particle reinforced composite was prepared through vortex method and the solid ingot was deformed by hot rolling for better particle distribution. Heat treatment of the composite was carried out at 575 C with varying holding time from 1 to 48 h followed by water quenching. In this study, the microstructure and interface of the SiC particle reinforced Al based composites have been studied using optical microscopy, scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS), electron probe micro-analyzer (EPMA) associated with wavelength dispersive spectroscopy (WDS) and transmission electron microscopy (TEM) to identify the precipitate and intermetallic phases that are formed during heat treatment. The SiC particles are uniformly distributed in the aluminum matrix. The microstructure analyses of AlSiC composite after heat treatment reveal that a wide range of dispersed phases are formed at grain boundary and surrounding the SiC particles. The energy dispersive X-ray spectroscopy and wavelength dispersive spectroscopy analyses confirm that finely dispersed phases are CuAl{sub 2} and CuMgAl{sub 2} intermetallic and large spherical phases are Fe{sub 2}SiAl{sub 8} or Al{sub 15}(Fe,Mn){sub 3}Si. It is also observed that a continuous layer enriched with Cu and Mg of thickness 5080 nm is formed at the interface in between Al and SiC particles. EDS analysis also confirms that Cu and Mg are segregated at the interface of the composite while no carbide is identified at the interface. - Highlights: The composite was successfully heat treated at 575C for 1-48 hrs. A layer of 50-75 nm is formed at interface after heat treatment. No Carbide formation and SiC dissolution is observed at this temperature. MgAl{sub 2}O{sub 4}, CuMgAl{sub 2} phases are segregated at interface of Al-SiC composite. Mg and Cu are also segregated at near to the grain boundary.

Mandal, Durbadal, E-mail: durbadal73@yahoo.co.in [MEF Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Viswanathan, Srinath [Dept of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL (United States)

2013-11-15T23:59:59.000Z

312

Atomic absorption monitor for deposition process control of aluminum at 394 nm using frequency-doubled diode laser  

E-Print Network [OSTI]

Atomic absorption monitor for deposition process control of aluminum at 394 nm using frequency November 1995 A monitor for Al vapor density based on atomic absorption AA using a frequency of atomic absorption AA as a monitor for thickness and composition control in physical vapor deposi- tion

Fejer, Martin M.

313

Concentration efficiency of doping in phosphors: Investigation of the copper-and aluminum-doped zinc sulfide  

E-Print Network [OSTI]

Concentration efficiency of doping in phosphors: Investigation of the copper- and aluminum October 2003 We studied the effect of dopant concentration in ZnS:Cu, Al phosphor. Photoluminescent PL intensity of the chemically etched phosphor particles increased up to 140%, which proved the existence

Grujicic, Mica

314

CONCEPT: N-TYPE SILICON SOLAR CELLS WITH SURFACE-PASSIVATED SCREEN-PRINTED ALUMINUM-ALLOYED REAR EMITTER  

E-Print Network [OSTI]

THE ALU+ CONCEPT: N-TYPE SILICON SOLAR CELLS WITH SURFACE- PASSIVATED SCREEN-PRINTED ALUMINUM stability during firing in a conveyor belt furnace at 900°C. We implement our newly developed passivated Al-p+ emitter into an n + np + solar cell structure, the so-called ALU + cell. An independently confirmed

315

The corrosion of aluminum in boric acid solutions  

E-Print Network [OSTI]

vs. Time of at 40oC . vs. Time of 40 C . 34 ~ ~ ~ 35 3S Aluminum in Boric ~ ~ ~ 24S Aluminum in Boric Corrosion Rate Acid Solutions vs. Time of at 50oC . 2S Aluminum in Boric 36 Corrosion Rate Acid Solutions vs. Time of at 50oC 3S... Solutions vs. Time of 3S Aluminum in Boric at 70oC 40 Corrosion Rate Acid Solutions vs. Time of at 70oC 24S Aluminum in Boric ~ ~ ~ . a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ /+1 14. Corrosion Rate Acid Solutions vs. Time of at 90cC 2S Aluminum in Boric 42 15...

Bass, Henry Kinsolving

2012-06-07T23:59:59.000Z

316

Chapter 4 - Recycling Rare Metals  

Science Journals Connector (OSTI)

Abstract The industrial system now utilizes many more elements, especially rare metals, than was the case even a half century ago. Most are not mined for themselves but are obtained as by-products or hitchhikers of the more familiar industrial metals, such as iron, aluminum, copper, nickel, and zinc. This imposes a limit on the production of by-product metals. But in some cases, demand may increase much faster than new supply. This suggests a need for recycling. But the uses of these metals are often in products, such as cell phones, that are mass-produced but where the amount in each individual product is very small. Some uses are also inherently dissipative. This makes recycling very difficult in principle. It constitutes a serious challenge for the future economy. Prices will rise.

Robert U. Ayres; Gara Villalba Mndez; Laura Talens Peir

2014-01-01T23:59:59.000Z

317

Metal segregation in supported bimetallic catalysts:. gamma. -Al/sub 2/O/sub 3/-supported CO hydrogenation catalysts prepared from RhOs/sub 3/, Rh/sub 4/, and FeOs/sub 3/ clusters  

SciTech Connect (OSTI)

Al/sub 2/O/sub 3/-supported metals were prepared from (H/sub 2/RhOs/sub 3/(CO)/sub 10/(acetylacetonate)), (Rh/sub 4/(CO)/sub 12/), and (H/sub 2/FeOs/sub 3/(CO)/sub 13/). The samples were characterized by infrared spectroscopy after reaction with CO + H/sub 2/ and tested as catalysts for conversion of CO + H/sub 2/ in a flow reactor at 200 and 270/sup 0/C and 10 atm. Used catalysts were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and elemental analysis. The catalyst lost Os during operation, presumably as a result of formation of volatile carbonyls. The catalytic reaction products were a nearly Schulz-Flory-Anderson distribution of hydrocarbons with small yields of dimethyl ether (formed from methanol). The performance of the catalyst prepared from the RhOs/sub 3/ clusters was closely similar to that of the catalyst prepared from the Rh/sub 4/ cluster. Characterization of the samples after treatment in CO + H/sub 2/ and after catalysis demonstrated that the RhOs/sub 3/ clusters broke apart, first giving triosmium clusters and mononuclear Rh complexes and then, at higher temperatures, giving Rh crystallites and mononuclear Os complexes. The catalytic activity for hydrocarbon synthesis is attributed to the Rh metal; the activity for methanol synthesis is tentatively associated with ionic Rh complexes. The FeOs/sub 3/ catalyst was two orders of magnitude less active than the Rh Os/sub 3/ catalyst, apparently consisting of small iron oxide particles and mononuclear Os complexes. The selectivity of this catalyst for dimethyl ether formation increased markedly with time onstream in the flow reactor; after 55 h, 36 mol% of the organic product was ether. 25 refs., 5 figs., 3 tabs.

Budge, J.R.; Lucke, B.F.; Gates, B.C.; Toran, J.

1985-02-01T23:59:59.000Z

318

ALS@20  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

feed-image feed-image Digg: ALSBerkeleyLab Facebook Page: 208064938929 Flickr: advancedlightsource Twitter: ALSBerkeleyLab YouTube: AdvancedLightSource Home About the ALS ALS@20 ALS@20 ALS@20 Kick-Off Celebration Print On Friday, January 11, the Advanced Light Source celebrated the beginning of its 20th anniversary year with a brunch attended by more than 150 current and past staff members. After introductory remarks describing the trials and tribulations encountered during the construction of the ALS from former Director Jay Marx, current ALS Scientific Director Steve Kevan and Director Roger Falcone talked about the progress of the facility over the years. Attendees were then able to view more than 500 historical photos of the ALS and its staff displayed around the room.

319

OXYDATION ET PHNOMNE DE PESTE DE L'ALUMINIURE DE NIOBIUM NbAl3  

E-Print Network [OSTI]

, une couche interne de Nb2Al, une couche externe d'alumine NbAl3/Nb2Al/Al2O3 . Au-dessous de 1100 °C comme application. Abstract. 2014 The niobium aluminide NbAl3 is the major component of the aluminum-base protective coatings on niobium alloys. The oxidation behaviour of this compound has been studied

Paris-Sud XI, Université de

320

Electron-Irradiation Damage-Rate Measurements in Aluminum  

Science Journals Connector (OSTI)

The resistivity increase upon electron irradiation near 8K of aluminum was measured as a function of incident electron energy from 0.19 to 1.6 MeV. A value of the displacement threshold energy of 16 eV was determined by extrapolation of the damage-rate curve to zero damage production. A reasonable fit between the experimental and theoretical values of the displacement cross section was achieved with an effective threshold energy of 19 eV, a value of the Frenkel resistivity of (1.3210-4 ohm cm)/(fractional concentration), and a unit step-displacement function. The tailing off in the damage rate near threshold that has been observed in Cu, Au, and Pt is apparently absent in Al.

H. H. Neely and Walter Bauer

1966-09-16T23:59:59.000Z

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Laser assisted high entropy alloy coating on aluminum: Microstructural evolution  

SciTech Connect (OSTI)

High entropy alloy (Al-Fe-Co-Cr-Ni) coatings were synthesized using laser surface engineering on aluminum substrate. Electron diffraction analysis confirmed the formation of solid solution of body centered cubic high entropy alloy phase along with phases with long range periodic structures within the coating. Evolution of such type of microstructure was a result of kinetics associated with laser process, which generates higher temperatures and rapid cooling resulting in retention of high entropy alloy phase followed by reheating and/or annealing in subsequent passes of the laser track giving rise to partial decomposition. The partial decomposition resulted in formation of precipitates having layered morphology with a mixture of high entropy alloy rich phases, compounds, and long range ordered phases.

Katakam, Shravana; Joshi, Sameehan S.; Mridha, Sanghita; Mukherjee, Sundeep; Dahotre, Narendra B., E-mail: Narendra.Dahotre@unt.edu [Department of Materials Science and Engineering, University of North Texas, 1150 Union Circle, 305310 Denton, Texas 76203-5017 (United States)

2014-09-14T23:59:59.000Z

322

C:\Eco-SSLs\Contaminant Specific Documents\Aluminum\November 2003\Eco-SSL for Aluminum .wpd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aluminum Aluminum Interim Final OSWER Directive 9285.7-60 U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response 1200 Pennsylvania Avenue, N.W. Washington, DC 20460 November 2003 This page intentionally left blank TABLE OF CONTENTS SUMMARY ECO-SSLs FOR ALUMINUM 1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 2.0 ALUMINUM CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 3.0 EFFECTS OF ALUMINUM ON PLANTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.1 General Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.2 Essentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.3 Effect on Phosphorus and Calcium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.4 Differential Tolerance of Plants to Aluminum Toxicity

323

Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988. Fiscal year 1993 annual report  

SciTech Connect (OSTI)

The Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988 (Act), commonly referred to as the Metals Initiative, was signed into law on November 17, 1988 (Public Law 100-680). The Act, 15 U.S.C. 5101 et seq., has tile following purposes: (1) to {open_quotes}increase the energy efficiency and enhance the competitiveness of American steel, aluminum, and copper industries{close_quotes}; and (2) to continue the research and development efforts begun under the Department of Energy (DOE) program known as the Steel Initiative. Section 8 of tile Act requires the Secretary of Energy to prepare an annual report to Congress describing the activities carried out under the Act during each fiscal year. 15 U.S.C. 5107 In addition, with respect to reports on fiscal years 1993, 1995, and 1997, Section 8 requires a complete summary of activities under the management plan and research plan from inception with an analysis of extent of their success in accomplishing the purposes of the Act. Id. The Metals Initiative is currently supporting six steel industry research and development projects: (1) Superplastic Steel Processing with Lawrence Livermore National Laboratory; (2) Direct Steelmaking with the American Iron and Steel Institute; (3) Electrochemical Dezincing of Steel Scrap with Argonne National Laboratory and Metal Recovery Industries (U.S.), Inc.; (4) Rapid Analysis of Molten Metals Using Laser Produced Plasmas with Lehigh University; (5) Direct Strip Casting using a single wheel caster with Armco, Inc.; and (6) Advanced Process Control, also with the American Iron and Steel Institute. At the close of the fiscal year, a seventh project, Waste Oxide Recycling with the American Iron and Steel Institute, was selected for inclusion in the Direct Steelmaking project. There are three projects with the aluminum industry. The first, Wettable Cathodes for Alumina Reduction Cells with the Reynolds Metals Company, continues from the prior periods.

Not Available

1994-09-01T23:59:59.000Z

324

Adhesion, Atomic Structure, and Bonding at theAdhesion, Atomic Structure, and Bonding at the ----AlAl22OO33(0001)/Al(111) Interface:(0001)/Al(111) Interface  

E-Print Network [OSTI]

Adhesion, Atomic Structure, and Bonding at theAdhesion, Atomic Structure, and Bonding at the ----AlAl22OO33(0001)/Al(111) Interface:(0001)/Al(111) Interface: A First Principles StudyA First Principles--ceramic interfaces are ubiquitous in many industrial applications: ­ Microelectronics ­ Al and other metals

Adams, James B

325

Aluminum phosphate ceramics for waste storage  

SciTech Connect (OSTI)

The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

Wagh, Arun; Maloney, Martin D

2014-06-03T23:59:59.000Z

326

Stabilization of Electrocatalytic Metal Nanoparticles at Metal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points. Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene...

327

EFFECT OF MECHANICAL DISCONTINUITIES ON THE STRENGTH OF POLYCRYSTALLINE ALUMINUM OXIDE  

E-Print Network [OSTI]

THE STRENGTH OF POLYCRYSTALLINE ALUMINUM OXIDE S. Wallace ofThe variables and number of aluminum oxide (almnina). size~

Wallace, J.S.

2011-01-01T23:59:59.000Z

328

Evaluation of precipitates used in strainer head loss testing : Part II. precipitates by in-situ aluminum alloy corrosion.  

SciTech Connect (OSTI)

Vertical loop head loss tests were performed with 6061 and 1100 aluminum (Al) alloy plates immersed in borated solution at pH = 9.3 at room temperature and 60 C. The results suggest that the potential for corrosion of an Al alloy to result in increased head loss across a glass fiber bed may depend on its microstructure, i.e., the size distribution and number density of intermetallic particles that are present in Al matrix and FeSiAl ternary compounds, as well as its Al release rate. Per unit mass of Al removed from solution, the WCAP-16530 aluminum hydroxide (Al(OH){sub 3}) surrogate was more effective in increasing head loss than the Al(OH)3 precipitates formed in situ by corrosion of Al alloy. However, in choosing a representative amount of surrogate for plant specific testing, consideration should be given to the potential for additional head losses due to intermetallic particles and the apparent reduction in the effective solubility of Al(OH){sub 3} when intermetallic particles are present.

Bahn, C.; Kasza, K. E.; Shack, W. J.; Natesan, K. (Nuclear Engineering Division)

2011-05-01T23:59:59.000Z

329

Industry @ ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry @ ALS Industry @ ALS Industry @ ALS Concrete Industry Benefits from Ancient Romans and the ALS Print Thursday, 17 October 2013 14:24 New insights into the Romans' ingenious concrete harbor structures emerging from ALS beamline research could move the modern concrete industry toward its goal of a reduced carbon footprint. Summary Slide Read more... Moving Industry Forward: Finding the Environmental Opportunity in Biochar Print Thursday, 12 September 2013 08:41 Using ALS Beamlines 10.3.2 and 8.3.2, the Environmental Protection Agency (EPA) is currently investigating how biochar sorbs environmental toxins and which kinds of biochar are the most effective. The possibilities for widespread use have already launched entrepreneurial commercial ventures. Summary Slide

330

Strategies for aluminum recycling : insights from material system optimization  

E-Print Network [OSTI]

The dramatic increase in aluminum consumption over the past decades necessitates a societal effort to recycle and reuse these materials to promote true sustainability and energy savings in aluminum production. However, the ...

Li, Preston Pui-Chuen

2005-01-01T23:59:59.000Z

331

Development of a Cosmetic Corrosion Test for Aluminum Autobody...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a Cosmetic Corrosion Test for Aluminum Autobody Panels AMD 309 Development of a Cosmetic Corrosion Test for Aluminum Autobody Panels AMD 309 Presentation from the U.S. DOE Office...

332

Surface alloying of silicon into aluminum substrate.  

SciTech Connect (OSTI)

Aluminum alloys that are easily castable tend to have lower silicon content and hence lower wear resistance. The use of laser surface alloying to improve the surface wear resistance of 319 and 320 aluminum alloys was examined. A silicon layer was painted onto the surface to be treated. A high power pulsed Nd:YAG laser with fiberoptic beam delivery was used to carry out the laser surface treatment to enhance the silicon content. Process parameters were varied to minimize the surface roughness from overlap of the laser beam treatment. The surface-alloyed layer was characterized and the silicon content was determined.

Xu, Z.

1998-10-28T23:59:59.000Z

333

WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS USING POST ALUMINUM DISSOLUTION TANK 51 SLUDGE SLURRY  

SciTech Connect (OSTI)

The remaining contents of Tank 51 from Sludge Batch 4 will be blended with Purex sludge from Tank 7 to constitute Sludge Batch 5 (SB5). The Savannah River Site (SRS) Liquid Waste Organization (LWO) has completed caustic addition to Tank 51 to perform low temperature Al dissolution on the H-Modified (HM) sludge material to reduce the total mass of sludge solids and Al being fed to the Defense Waste Processing Facility (DWPF). The Savannah River National Lab (SRNL) has also completed aluminum dissolution tests using a 3-L sample of Tank 51 sludge slurry through funding by DOE EM-21. This report documents assessment of downstream impacts of the aluminum dissolved sludge, which were investigated so technical issues could be identified before the start of SB5 processing. This assessment included washing the aluminum dissolved sludge to a Tank Farm projected sodium concentration and weight percent insoluble solids content and DWPF Chemical Process Cell (CPC) processing using the washed sludge. Based on the limited testing, the impact of aluminum dissolution on sludge settling is not clear. Settling was not predictable for the 3-L sample. Compared to the post aluminum dissolution sample, settling after the first wash was slower, but settling after the second wash was faster. For example, post aluminum dissolution sludge took six days to settle to 60% of the original sludge slurry height, while Wash 1 took nearly eight days, and Wash 2 only took two days. Aluminum dissolution did impact sludge rheology. A comparison between the as-received, post aluminum dissolution and washed samples indicate that the downstream materials were more viscous and the concentration of insoluble solids less than that of the starting material. This increase in viscosity may impact Tank 51 transfers to Tank 40. The impact of aluminum dissolution on DWPF CPC processing cannot be determined because acid addition for the Sludge Receipt and Adjustment Tank (SRAT) cycle was under-calculated and thus under-added. Although the sludge was rheologically thick throughout the SRAT and Slurry Mix Evaporator (SME) cycles, this may have been due to the under addition of acid. Aluminum dissolution did, however, impact analyses of the SRAT receipt material. Two methods for determining total base yielded significantly different results. The high hydroxide content and the relatively high soluble aluminum content of the washed post aluminum dissolution sludge likely contributed to this difference and the ultimate under addition of acid. It should be noted that the simulant used to provide input for the SRAT cycle was an inadequate representation of the waste in terms of acid demand, likely due to the differences in the form of aluminum and hydroxide in the simulant and actual waste. Based on the results of this task, it is recommended that: (1) Sludge settling and rheology during washing of the forthcoming Sludge Batch 5 qualification sample be monitored closely and communicated to the Tank Farm. (2) SRNL receive a sample of Tank 51 after all chemical additions have been made and prior to the final Sludge Batch 5 decant for rheological assessment. Rheology versus wt% insoluble solids will be performed to determine the maximum amount of decant prior to the Tank 51 to Tank 40 transfer. (3) As a result of the problem with measuring total base and subsequently under-calculating acid for the DWPF CPC processing of the post aluminum dissolution sludge; (4) Studies to develop understanding of how the sludge titrates (i.e., why different titration methods yield different results) should be performed. (5) Simulants that better match the properties of post aluminum dissolution sludge should be developed. (6) Work on developing an acid calculation less dependant on the total base measurement should be continued.

Pareizs, J; Cj Bannochie, C; Damon Click, D; Erich Hansen, E; Dan Lambert, D; Michael Stone, M

2008-04-28T23:59:59.000Z

334

Exploration of R2XM2 (R=Sc, Y, Ti, Zr, Hf, rare earth; X=main group element; M=transition metal, Si, Ge): Structural Motifs, the novel Compound Gd2AlGe2 and Analysis of the U3Si2 and Zr3Al2 Structure Types  

SciTech Connect (OSTI)

In the process of exploring and understanding the influence of crystal structure on the system of compounds with the composition Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} several new compounds were synthesized with different crystal structures, but similar structural features. In Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}, the main feature of interest is the magnetocaloric effect (MCE), which allows the material to be useful in magnetic refrigeration applications. The MCE is based on the magnetic interactions of the Gd atoms in the crystal structure, which varies with x (the amount of Si in the compound). The crystal structure of Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} can be thought of as being formed from two 3{sup 2}434 nets of Gd atoms, with additional Gd atoms in the cubic voids and Si/Ge atoms in the trigonal prismatic voids. Attempts were made to substitute nonmagnetic atoms for magnetic Gd using In, Mg and Al. Gd{sub 2}MgGe{sub 2} and Gd{sub 2}InGe{sub 2} both possess the same 3{sup 2}434 nets of Gd atoms as Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}, but these nets are connected differently, forming the Mo{sub 2}FeB{sub 2} crystal structure. A search of the literature revealed that compounds with the composition R{sub 2}XM{sub 2} (R=Sc, Y, Ti, Zr, Hf, rare earth; X=main group element; M=transition metal, Si, Ge) crystallize in one of four crystal structures: the Mo{sub 2}FeB{sub 2}, Zr{sub 3}Al{sub 2}, Mn{sub 2}AlB{sub 2} and W{sub 2}CoB{sub 2} crystal structures. These crystal structures are described, and the relationships between them are highlighted. Gd{sub 2}AlGe{sub 2} forms an entirely new crystal structure, and the details of its synthesis and characterization are given. Electronic structure calculations are performed to understand the nature of bonding in this compound and how electrons can be accounted for. A series of electronic structure calculations were performed on models with the U{sub 3}Si{sub 2} and Zr{sub 3}Al{sub 2} structures, using Zr and A1 as the building blocks. The starting point for these models was the U{sub 3}Si{sub 2} structure, and models were created to simulate the transition from the idealized U{sub 3}Si{sub 2} structure to the distorted Zr{sub 3}Al{sub 2} structure. Analysis of the band structures of the models has shown that the transition from the U{sub 3}Si{sub 2} structure to the Zr{sub 3}Al{sub 2} structure lifts degeneracies along the {Lambda} {yields} Z direction, indicating a Peierls-type mechanism for the displacement occurring in the positions of the Zr atoms.

Sean William McWhorter

2006-05-01T23:59:59.000Z

335

Gas-phase rotational spectroscopy of AlCCH eX1 : A model system  

E-Print Network [OSTI]

range of roles in chemistry. For example, metal-doped carbide clusters are regarded as a new class of functional materials for semiconductors, ceram- ics, and hydrogen storage [1,2]. Aluminum carbide clusters that differentiate them from other metal analog compounds, which have cubic and layered frame- works [1­4]. In fact

Ziurys, Lucy M.

336

ALS Visitors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

including Ethan Crumlin (at right) about current research in energy storage and battery efficiency. Berkeleyside Editor Lance Knoble toured the ALS and Berkeley Lab with...

337

Cathode Connector For Aluminum Low Temperature Smelting Cell  

DOE Patents [OSTI]

Cathode connector means for low temperature aluminum smelting cell for connecting titanium diboride cathode or the like to bus bars.

Brown, Craig W. (Seattle, WA); Beck, Theodore R. (Seattle, WA); Frizzle, Patrick B. (Seattle, WA)

2003-07-16T23:59:59.000Z

338

An assessment of metal contamination in mangrove sediments and leaves from Punta Mala Bay, Pacific Panama  

E-Print Network [OSTI]

Elsevier Ltd. All rights reserved. Keywords: Coastal pollution; Sediment; Heavy metals; Mangrove; Laguncularia racemosa; Panama 1. Introduction Elevated concentrations of heavy metals have been re- corded allows metal mobilisation and bioavailability (Clark et al., 1998). Concentrations of heavy metals

Bermingham, Eldredge

339

NREL Scientists Reveal Origin of Diverse Melting Behaviors of Aluminum Nanoclusters (Fact Sheet)  

SciTech Connect (OSTI)

Research reveals active role of cluster symmetries on the size-sensitive, diverse melting behaviors of metallic nanoclusters, providing insight to understanding phase changes of nanoparticles for thermal energy storage. Unlike macroscopic bulk materials, intermediate-sized nanoclusters with around 55 atoms inherently exhibit size-sensitive melting changes: adding just a single atom to a nanocluster can cause a dramatic change in melting behavior. Microscopic understanding of thermal behaviors of metal nanoclusters is important for nanoscale catalysis and thermal energy storage applications. However, it is a challenge to obtain a structural interpretation at the atomic level from measured thermodynamic quantities such as heat capacity. Using ab initio molecular dynamics simulations, scientists at the National Renewable Energy Laboratory (NREL) revealed a clear correlation between the diverse melting behaviors of aluminum nanoclusters and cluster core symmetries. These simulations reproduced, for the first time, the size-sensitive heat capacities of aluminum nanoclusters, which exhibit several distinctive shapes associated with the diverse melting behaviors of the clusters. The size-dependent, diverse melting behaviors of the aluminum clusters are attributed to the reduced symmetry (from Td {yields} D2d {yields} Cs) with increasing the cluster sizes and can be used to help design thermal storage materials.

Not Available

2011-10-01T23:59:59.000Z

340

ALUMINUM--2003 5.1 By Patricia A. Plunkert  

E-Print Network [OSTI]

, about 1.5 million metric tons per year (Mt/yr) of domestic primary aluminum smelting capacity, including idled potlines at operating smelters, equivalent to about 35% of total capacity, was closed. Aluminum and the container and packaging industries remained the leading markets for aluminum products in Canada

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Aluminum Removal from Photographic Waste Submitted to Dr. Tony Bi  

E-Print Network [OSTI]

Aluminum Removal from Photographic Waste Submitted to Dr. Tony Bi By: Kristen Favel, Tiffany Jung, and Kenny Tam CHBE 484 University of British Columbia April 15, 2009 #12;ii "Aluminum Removal from photographic waste has shown elevated levels of aluminum in the fixer, which exceed sewer discharge standards

342

Inhibition of Aluminum Oxyhydroxide Precipitation with Citric Acid  

E-Print Network [OSTI]

Inhibition of Aluminum Oxyhydroxide Precipitation with Citric Acid Daniel M. Dabbs, Usha as an agent for increasing the solubility of aluminum oxyhydroxides in aqueous solutions of high (>2.47 mol/mol) hydroxide-to-aluminum ratios. Conversely, citric acid also colloidally stabilizes particles in aqueous

Aksay, Ilhan A.

343

Reaction of Aluminum with Water to Produce Hydrogen  

E-Print Network [OSTI]

Reaction of Aluminum with Water to Produce Hydrogen A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage U.S. Department of Energy Version 1.0 - 2008 Page 1 Promoters Oxide Promoters Salt Promoters Combined Oxide and Salt Promoters Aluminum Pretreatment Molten

344

The Effects of Fe3+ Aluminum Silicate Phase Relations in  

E-Print Network [OSTI]

The Effects of Fe3+ and Mn3+ on Aluminum Silicate Phase Relations in North-Central New Mexico, U, New Mexico 87131 (Received 28 November 1983; in revised form 2 October 1984) ABSTRACT Aluminum, then their equilibrium coexistence is invariant. However, the aluminum silicate minerals are not pure in highly oxidized

Lee, Cin-Ty Aeolus

345

POST-SHOCK TEMPERATURE MEASUREMENTS OF ALUMINUM A. Seifter1  

E-Print Network [OSTI]

POST-SHOCK TEMPERATURE MEASUREMENTS OF ALUMINUM A. Seifter1 , S. T. Stewart2 , M. R. Furlanetto1 concurrent VISAR measurements in the same optical path, validation experiments on aluminum have been-shock temperature of 495 K ± 30 K was recorded from a polished free surface of aluminum 2024-T4 subject to a peak

Stewart, Sarah T.

346

Reaction of Aluminum with Water to Produce Hydrogen  

E-Print Network [OSTI]

Reaction of Aluminum with Water to Produce Hydrogen A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage U.S. Department of Energy Version 2 - 2010 1 #12 Promoters Oxide Promoters Salt Promoters Combined Oxide and Salt Promoters Aluminum Pretreatment Molten

347

Optical frequency standards based on mercury and aluminum ions  

E-Print Network [OSTI]

Optical frequency standards based on mercury and aluminum ions W. M. Itano, J. C. Bergquist, A-16 . Keywords: aluminum, atomic clocks, frequency standards, ion traps, mercury 1. INTRODUCTION Optical frequency standards based on the mercury ion and, more recently, the aluminum ion are under devel- opment

348

ccsd00002835, Light scattering from cold rolled aluminum surfaces  

E-Print Network [OSTI]

ccsd­00002835, version 2 ­ 14 Sep 2004 Light scattering from cold rolled aluminum surfaces Damien Camille Soula , 31400 Toulouse, France We present experimental light scattering measurements from aluminum scattering measurements of an s-polarized electromagnetic wave (632.8 nanometers) from a rough aluminum alloy

349

DESCRIBING THE PLASTIC DEFORMATION OF ALUMINUM SOFTBALL BATS  

E-Print Network [OSTI]

DESCRIBING THE PLASTIC DEFORMATION OF ALUMINUM SOFTBALL BATS E. BIESEN1 AND L. V. SMITH2 Washington-mail: lvsmith@wsu.edu Hollow aluminum bats were introduced over 30 years ago to provide improved durability over durability. Accordingly, the plastic deformation from a ball impact of a single-wall aluminum bat

Smith, Lloyd V.

350

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill  

E-Print Network [OSTI]

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum, may react with liquid in a landfill and cause uncontrolled temperature increases, significant changes

351

Microstructural Development in Al-Si Powder During Rapid Solidification  

SciTech Connect (OSTI)

Powder metallurgy has become an increasingly important form of metal processing because of its ability to produce materials with superior mechanical properties. These properties are due in part to the unique and often desirable microstructures which arise as a result of the extreme levels of undercooling achieved, especially in the finest size powder, and the subsequent rapid solidification which occurs. A better understanding of the fundamental processes of nucleation and growth is required to further exploit the potential of rapid solidification processing. Aluminum-silicon, an alloy of significant industrial importance, was chosen as a model for simple eutectic systems displaying an unfaceted/faceted interface and skewed coupled eutectic growth zone, Al-Si powder produced by high pressure gas atomization was studied to determine the relationship between microstructure and alloy composition as a function of powder size and atomization gas. Critical experimental measurements of hypereutectic (Si-rich) compositions were used to determine undercooling and interface velocity, based on the theoretical models which are available. Solidification conditions were analyzed as a function of particle diameter and distance from nucleation site. A revised microstructural map is proposed which allows the prediction of particle morphology based on temperature and composition. It is hoped that this work, by providing enhanced understanding of the processes which govern the development of the solidification morphology of gas atomized powder, will eventually allow for better control of processing conditions so that particle microstructures can be optimized for specific applications.

Amber Lynn Genau

2004-12-19T23:59:59.000Z

352

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations  

Broader source: Energy.gov [DOE]

This case study describes how Commonwealth Industries (now Aleris Rolled Products) conducted plant-wide energy assessments at its aluminum sheet rolling mills in Lewisport, Kentucky, and Uhrichsville, Ohio, to improve process and energy efficiency.

353

ALS Visitors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Visitors ALS Visitors ALS Visitors Print Wednesday, 29 July 2009 00:00 ALS staff members host a variety of scientific, educational, government, and community-related tours each month. November 2013 poneman U.S. Deputy Secretary of Energy Daniel Poneman visited Berkeley Lab on Friday, Nov. 15, during a brief stay in the Bay Area. Glenn Mara of the University of California Office of the President and Aundra Richards of the DOE Berkeley Site Office joined Deputy Laboratory Director Horst Simon's welcome. They updated Poneman on the lab's future initiatives and current capital projects and heard briefings on cyber security, computing, and the Joint BioEnergy Institute. As second-in-command at DOE, Poneman is responsible for assisting the Secretary of Energy in the management and operations of the agency and acting on his behalf when necessary.During his tour of the ALS, Poneman (right) spoke with Ken Goldberg (Materials Sciences Division) at the CXRO beamline.

354

Transmissive metallic contact for amorphous silicon solar cells  

DOE Patents [OSTI]

A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.

Madan, A.

1984-11-29T23:59:59.000Z

355

Computed Shock Response of Porous Aluminum  

Science Journals Connector (OSTI)

The shock response of powdered aluminum compacted by a driver plate was simulated with a one?dimensional Lagrangiancontinuum mechanicscomputer program. The porous aluminum was mocked up by a series of flat plates separated by gaps to obtain an initial density of 1.35 g/cm3 for the ``powder.'' The compaction process was followed in detail for two cases of driver?plate conditions corresponding to two Stanford Research Institute experiments. The calculations showed an approach to equilibrium behind the shock in each of the porous samples. The equilibrium states established were found to be consistent with the Rankine?Hugoniot jump conditions applied to aluminum of density 1.35 g/cm3. These states did not lie on the Hugoniot curve of solid?density aluminum. This was shown to be due to the significant internal?energy dependency in the equation of state. The calculated results were in good agreement with the SRI experiments. Application of this computational model to more complex cases is indicated.

Ronald Hofmann; Dudley J. Andrews; D. E. Maxwell

1968-01-01T23:59:59.000Z

356

Methods of forming aluminum oxynitride-comprising bodies, including methods of forming a sheet of transparent armor  

DOE Patents [OSTI]

The invention includes methods of forming an aluminum oxynitride-comprising body. For example, a mixture is formed which comprises A:B:C in a respective molar ratio in the range of 9:3.6-6.2:0.1-1.1, where "A" is Al.sub.2O.sub.3, "B" is AlN, and "C" is a total of one or more of B.sub.2O.sub.3, SiO.sub.2, Si--Al--O--N, and TiO.sub.2. The mixture is sintered at a temperature of at least 1,600.degree. C. at a pressure of no greater than 500 psia effective to form an aluminum oxynitride-comprising body which is at least internally transparent and has at least 99% maximum theoretical density.

Chu, Henry Shiu-Hung [Idaho Falls, ID; Lillo, Thomas Martin [Idaho Falls, ID

2008-12-02T23:59:59.000Z

357

Climate VISION: Private Sector Initiatives: Aluminum: GHG Inventory  

Office of Scientific and Technical Information (OSTI)

GHG Inventory Protocols GHG Inventory Protocols EPA/IAI PFC Measurement Protocol (PDF 243 KB) Download Acrobat Reader EPA and the International Aluminium Institute have collaborated with the global primary aluminium industry to develop a standard facility-specific PFC emissions measurement protocol. Use of the protocol will help ensure the consistency and accuracy of measurements. International Aluminum Institute's Aluminum Sector Greenhouse Gas Protocol (PDF 161 KB) Download Acrobat Reader The International Aluminum Institute (IAI) Aluminum Sector Addendum to the WBCSD/WRI Greenhouse Gas Protocol enhances and expands for the aluminum sector the World Business Council for Sustainable Development/World Resources Institute greenhouse gas corporate accounting and reporting protocol.

358

Climate VISION: Private Sector Initiatives: Aluminum: Resources and Links -  

Office of Scientific and Technical Information (OSTI)

Federal/State Programs Federal/State Programs DOE Aluminum Industry of the Future Collaborative R&D partnerships between DOE Industrial Technologies Program and industry to maximize technology investments. EPA Voluntary Aluminum Industrial Partnership The Voluntary Aluminum Industrial Partnership (VAIP) is an innovative pollution prevention program developed jointly by the U.S. Environmental Protection Agency (EPA) and the primary aluminum industry. Participating companies (Partners) work with EPA to improve aluminum production efficiency while reducing perfluorocarbon (PFC) emissions, potent greenhouse gases that may remain in the atmosphere for thousands of years. See all Federal/State Programs DOE State Activities For information on activities, financial assistance, and solicitations

359

FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6  

SciTech Connect (OSTI)

Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved aluminum will be stored in Tank 8 and 21,000 kg will be stored in saltcake via evaporation. Up to 77% of the total aluminum planned for SB6 may be removed via aluminum dissolution. Storage of the aluminum-laden supernate in Tank 8 will require routine evaluation of the free hydroxide concentration in order to maintain aluminum in solution. Periodic evaluation will be established on concurrent frequency with corrosion program samples as previously established for aluminum-laden supernate from SB5 that is stored in Tank 11.

Pike, J; Jeffrey Gillam, J

2008-12-17T23:59:59.000Z

360

Metal Aminoboranes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metal Aminoboranes Metal Aminoboranes Metal Aminoboranes Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. June 25, 2013 Metal Aminoboranes Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Available for thumbnail of Feynman Center (505) 665-9090 Email Metal Aminoboranes Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit. U.S. Patent No.: 7,713,506 (DOE S-112,798)

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Thermal conductance of metal-metal interfaces  

Science Journals Connector (OSTI)

The thermal conductance of interfaces between Al and Cu is measured in the temperature range 78Al on top of layers of Cu on sapphire substrates. The chemical abruptness of the Al-Cu interface is systematically varied by ion-beam mixing using 1MeV Kr ions. The thermal conductance of the as-deposited Al-Cu interface is 4GWm?2K?1 at room temperature, an order-of-magnitude larger than the phonon-mediated thermal conductance of typical metal-dielectric interfaces. The magnitude and the linear temperature dependence of the conductance are described well by a diffuse-mismatch model for electron transport at interfaces.

Bryan C. Gundrum; David G. Cahill; Robert S. Averback

2005-12-30T23:59:59.000Z

362

Process for production of an aluminum hydride compound  

DOE Patents [OSTI]

A compound of formula M(AlH.sub.3OR.sup.1).sub.y, wherein R.sup.1 is phenyl substituted by at least one of: (i) an alkoxy group having from one to six carbon atoms; and (ii) an alkyl group having from three to twelve carbon atoms; wherein M is an alkali metal, Be or Mg; and y is one or two.

Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Miller, Dean Michael; Molzahn, David Craig

2013-08-06T23:59:59.000Z

363

Production of sodium-22 from proton irradiated aluminum  

DOE Patents [OSTI]

A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.

Taylor, Wayne A. (Los Alamos, NM); Heaton, Richard C. (Los Alamos, NM); Jamriska, David J. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

364

Direct observation of Ga-rich microdomains in crack-free AlGaN grown on patterned GaNsapphire substrates  

E-Print Network [OSTI]

.e., a homogeneous aluminum content, is found near the sample surface. However, the strong rise of quantum efficiency for AlGaN because the Al alloys also nucleate on the mask materials. Recently, growth on patterned structured into a periodic grid of trenches and terraces along 1100 . Prior to the final AlGaN ( Al 0

Nabben, Reinhard

365

ALS Visitors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Visitors Print ALS Visitors Print ALS staff members host a variety of scientific, educational, government, and community-related tours each month. November 2013 poneman U.S. Deputy Secretary of Energy Daniel Poneman visited Berkeley Lab on Friday, Nov. 15, during a brief stay in the Bay Area. Glenn Mara of the University of California Office of the President and Aundra Richards of the DOE Berkeley Site Office joined Deputy Laboratory Director Horst Simon's welcome. They updated Poneman on the lab's future initiatives and current capital projects and heard briefings on cyber security, computing, and the Joint BioEnergy Institute. As second-in-command at DOE, Poneman is responsible for assisting the Secretary of Energy in the management and operations of the agency and acting on his behalf when necessary.During his tour of the ALS, Poneman (right) spoke with Ken Goldberg (Materials Sciences Division) at the CXRO beamline.

366

Al Weinrub  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Al Weinrub Al Weinrub Author, "COMMUNITY POWER: Decentralized Renewable Energy in California" Member, Sierra Club California Clean Energy-Climate CommitteeMember, Steering Committee, Bay Area Clean Energy Alliance al.weinrub@comcast.net This speaker was a visiting speaker who delivered a talk or talks on the date(s) shown at the links below. This speaker is not otherwise associated with Lawrence Berkeley National Laboratory, unless specifically identified as a Berkeley Lab staff member. Al Weinrub is a member of the Sierra Club California Energy-Climate Committee and serves on the Steering Committee of the Bay Area's Local Clean Energy Alliance. He is the author of COMMUNITY POWER: Decentralized Renewable Energy in California (http://www.localcleanenergy.org/Community-Power-Publication)

367

Synthesis and characterization of visible emission from rare-earth doped aluminum nitride, gallium nitride and gallium aluminum nitride powders and thin films  

E-Print Network [OSTI]

of the Nitrides of Aluminum and Gallium," J. Electrochem.1) 24 (1962). G. Long and L. M. Foster, "Aluminum Nitride, aRefractory for Aluminum to 2000C," J. Am. Ceram. Soc. ,

Tao, Jonathan Huai-Tse

2010-01-01T23:59:59.000Z

368

Microarray Analysis on Human Neuroblastoma Cells Exposed to Aluminum, Beta142-Amyloid or the Beta142-Amyloid Aluminum Complex  

E-Print Network [OSTI]

J (1992) Selective accumulation of aluminum and iron in theB, Tognon G, Zatta P (2005) Aluminum-triggered structuralrole of beta-amyloid(1-42)-aluminum complex in Alzheimers

2011-01-01T23:59:59.000Z

369

Photomagnetism of metals  

Science Journals Connector (OSTI)

A photoinduced magnetic moment has been observed in Cu and Al samples exposed to unpolarized visible light at low temperatures. It is shown that the light refected from a metal surface transfers some of its quasimomentum to conduction electrons. This mechanism creates surface currents which, for an appropriate geometry, bring about the photomagnetic effect.

V. L. Gurevich; R. Laiho; A. V. Lashkul

1992-07-06T23:59:59.000Z

370

Development of a Rapid and Sensitive Method for the Determination of Aluminum by Reverse-Phase High-Performance Liquid Chromatography Using a Fluorescence Detector  

Science Journals Connector (OSTI)

......Aluminum in metal toxicity in mammals (1979) New York: Plenum. 104-112. 3 Craper D.R. , Krishnan S.S., Dalton A.J. Brain aluminium distribution in Alzheimer's disease and experimental neurofibrillary degeneration. Science (1973) 108:511-513......

Heena; Rajesh Kumar; Susheela Rani; Ashok Kumar Malik

2014-10-01T23:59:59.000Z

371

AnnaFrebel! metal-poorstars!  

E-Print Network [OSTI]

-process element pattern!! #12;AnnaFrebel! metal-poorstars! New oscillator strengths of rare earth elements!! · Sneden, Lawler et al. 2009: New Rare Earth Element Abundance Distributions for the Sun and Five r-Process-Rich, Metal-Poor Stars, and Rare Earth Lab Data Summary · Lawler, Sneden et al. 2008: Improved Laboratory

372

THE APPARENT SOLUBILITY OF ALUMINUM(III) IN HANFORD HIGH-LEVEL WASTE TANKS  

SciTech Connect (OSTI)

The solubility of aluminum in Hanford nuclear waste impacts on the process ability of the waste by a number of proposed treatment options. For many years, Hanford staff has anecdotally noted that aluminum appears to be considerably more soluble in Hanford waste than the simpler electrolyte solutions used as analogues. There has been minimal scientific study to confirm these anecdotal observations, however. The present study determines the apparent solubility product for gibbsite in 50 tank samples. The ratio of hydroxide to aluminum in the liquid phase for the samples is calculated and plotted as a function of total sodium molarity. Total sodium molarity is used as a surrogate for ionic strength, because the relative ratios of mono, di and trivalent anions are not available for all of the samples. These results were compared to the simple NaOH-NaAl(OH{sub 4})H{sub 2}O system, and the NaOH-NaAl(OH{sub 4})NaCl-H{sub 2}O system data retrieved from the literature. The results show that gibbsite is apparently more soluble in the samples than in the simple systems whenever the sodium molarity is greater than two. This apparent enhanced solubility cannot be explained solely by differences in ionic strength. The change in solubility with ionic strength in simple systems is small compared to the difference between aluminum solubility in Hanford waste and the simple systems. The reason for the apparent enhanced solubility is unknown, but could include. kinetic or thermodynamic factors that are not present in the simple electrolyte systems. Any kinetic explanation would have to explain why the samples are always supersaturated whenever the sodium molarity is above two. Real waste characterization data should not be used to validate thermodynamic solubility models until it can be confirmed that the apparent enhanced gibbsite solubility is a thermodynamic effect and not a kinetic effect.

REYNOLDS JG

2012-06-20T23:59:59.000Z

373

E-Print Network 3.0 - alkali metal picrates Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

layers of alkali metals. 1. Introduction Optical... and Cu 6 by Chen et al. The adsorption of alkali atoms on transition metals is of great importance... . Secondharmonic...

374

Helium-filled aluminum flight tubes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Helium-filled aluminum flight tubes. Helium-filled aluminum flight tubes. Detector housing for the CCD camera lens, mirror, and scintillator. For more information, contact Instrument Scientist: Hassina Bilheux, bilheuxhn@ornl.gov, 865.384.9630 neutrons.ornl.gov/instruments/HFIR/factsheets/Instrument-cg1d.pdf The CG-1D beam is used for neutron imaging measurements using a white beam. Apertures (with different diameters D (pinhole geometry) are used at the entrance of the helium-filled flight path to allow L/D variation from 400 to 800. L is the distance between the aperture and the detector (where the image is produced). Samples sit on a translation/ rotation stage for alignment and tomography purposes. Detectors for CG-1D include

375

Climate VISION: Private Sector Initiatives: Aluminum: Results  

Office of Scientific and Technical Information (OSTI)

Results Results The Aluminum Association and the federal government have document progress in the Climate Vision program. The results are measured by metrics developed by the industry, in partnership with the government, and reported. Progress will also be tracked under the umbrella of the Voluntary Aluminum Industrial Partnership website. Please check back on this website and the Energy Information Agency website for updates. In 2005, the industry achieved the goal set for 2010. A 56 percent reduction in direct process emissions per ton of production, including combined reductions in PFC's and CO2, exceeds the 53 percent commitment for 2010. Further progress is expected in the industry, however complications from high power costs and potential curtailments make predictions for further reductions

376

Experimental superplastic characterization of advanced aluminum alloys  

E-Print Network [OSTI]

of America Chairman of Advisory Committee: Dr. R. E. Goforth An investigation into the experimental superplastic characterization of advanced aluminum alloys consisted of the design and assembly of an experimental test facility for measuring the effects.... The experimental test apparatus designed and constructed is shown in Figure 2, with four major components assembled together to form the SPF testing system. The four components are the Instron 1137 Universal testing machine, Instron 3117 furnace and Instron...

Kopp, Christopher Carl

2012-06-07T23:59:59.000Z

377

ALS Visitors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quick Facts Quick Facts ALS Visitors Print ALS staff members host a variety of scientific, educational, government, and community-related tours each month. November 2013 poneman U.S. Deputy Secretary of Energy Daniel Poneman visited Berkeley Lab on Friday, Nov. 15, during a brief stay in the Bay Area. Glenn Mara of the University of California Office of the President and Aundra Richards of the DOE Berkeley Site Office joined Deputy Laboratory Director Horst Simon's welcome. They updated Poneman on the lab's future initiatives and current capital projects and heard briefings on cyber security, computing, and the Joint BioEnergy Institute. As second-in-command at DOE, Poneman is responsible for assisting the Secretary of Energy in the management and operations of the agency and acting on his behalf when necessary.During his tour of the ALS, Poneman (right) spoke with Ken Goldberg (Materials Sciences Division) at the CXRO beamline.

378

Development of a nanostructure microstructure in the AlNi system using the electrospark deposition process  

Science Journals Connector (OSTI)

Electrospark deposition (ESD) was applied to produce aluminumnickel coatings consisting of nanostructured Al and Al3Ni phases. An ESD electrode was manufactured from a hypo-eutectic aluminumAl3Ni alloy using chill casting. Line deposition tests were performed to determine the optimal processing parameters resulting in a high quality deposit. X-ray diffraction (XRD) as well as optical and field emission scanning electron microscopy (FE-SEM), were performed to determine the composition and microstructure of the resulting depositions. It was determined that a capacitance of 20?F and a voltage of 100V resulted in the highest quality deposition. Furthermore it was determined that the ESD process was capable of producing a microstructure consisting of highly refined aluminum and Al3Ni phases. The grain size of the aluminum phase was calculated, through the application of the Scherrer equation, to be ?25nm. While, via scanning electron microscopy the grain size of the Al3Ni phase was determined to be ?44nm. Also it was determined that multiple deposition passes resulted in increasing the thickness of the deposit, however resulted in decreased deposit quality. Furthermore, it was determined that increasing the energy-density (pulse-energy divided by electrode cross-sectional area) resulted in increasing deposit thickness, until a maximum was obtained using an energy-density of ?0.8J/mm2. However, increasing the energy-density beyond this point resulted in decreased deposit quality.

D.W. Heard; M. Brochu

2010-01-01T23:59:59.000Z

379

Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method making the same  

SciTech Connect (OSTI)

The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. A preferred embodiment of the invented electrochemical cell generally comprises a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. A preferred novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.

Gerald, II, Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL)

2011-03-08T23:59:59.000Z

380

Constitutive modeling of the visco-plastic response of Hastelloy-X and aluminum alloy 8009  

SciTech Connect (OSTI)

The viscoplastic behavior of advanced, high temperature, metallic alloys is characterized using the Bodner Partom unified constitutive model. Material parameters for both Hastelloy-X and Aluminum alloy 8009 are obtained for this model. The Bodner-Partom constitutive model is summarized, and a detailed approach for determining the model parameters from experimental data is reviewed. Experimental methods for obtaining the mechanical test data are described. Bodner-Partom model parameters are determined from data obtained in uniaxial, isothermal, monotonic tension or compression tests and isothermal creep tests. Model predictions from the parameters determined are generated and compared to experimental data.

Rowley, M.A.; Thornton, E.A. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Mechanical and Aerospace Engineering

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Influence of argon and oxygen on charge-state-resolved ion energy distributions of filtered aluminum arcs  

E-Print Network [OSTI]

energy distributions of filtered aluminum arcs Johanna Rosndistributions (IEDs) in filtered aluminum vacuum arc plasmasfor vacuum arc plasmas. Aluminum plasma, for example,

Rosen, Johanna; Anders, Andre; Mraz, Stanislav; Atiser, Adil; Schneider, Jochen M.

2006-01-01T23:59:59.000Z

382

Calculation of ionization balance and electrical conductivity in nonideal aluminum plasma  

Science Journals Connector (OSTI)

A practical approach has been implemented to calculate the ionization balance and electrical conductivity of warm dense aluminum plasma with the Coulomb coupling effect taken into account. The correction term for ionization potential is formulated with a number of basic dimensionless parameters that characterize nonideal plasma and incorporated with the fitted formulas of excess free energy given by Tanaka, Mitake, and Ichimaru [Phys. Rev. A 32, 1896 (1985)] and Chabrier and Potekhin [Phys. Rev. E 58, 4941 (1998)] to determine the ionization balance in an equilibrium state. The calculated degree of ionization of aluminum plasma exhibits a sudden increase near the solid density ?1 g/cm3 at temperatures of a few eV, which effectively demonstrates the pressure-induced ionization. The electrical conductivity is evaluated in a partially ionized plasma regime based on a linear mixture rule that takes into account both the electron-ion and electron-neutral collisions and then the computed results are compared with available data from recent experiments. It is shown that the calculation well reproduces the overall trend of measured electrical conductivity of nonideal aluminum plasma accounting for the metal-insulator transition.

Deok-Kyu Kim and Inho Kim

2003-11-25T23:59:59.000Z

383

The influence of position in overlap joints of Mg and Al alloys on microstructure and hardness of laser welds.  

E-Print Network [OSTI]

assembly. Therefore, the dissimilar-metal welding process has been identified as top priority for materials and resistance of this combination, and lead to the formation of intermetallic compounds in the welded metal. Keywords: laser welding, dissimilar materials, AZ31 magnesium alloy, A5754 aluminum alloy, microstructure

Paris-Sud XI, Université de

384

Direct deposition of aluminum oxide gate dielectric on graphene channel using nitrogen plasma treatment  

SciTech Connect (OSTI)

Deposition of high-quality dielectric on a graphene channel is an essential technology to overcome structural constraints for the development of nano-electronic devices. In this study, we investigated a method for directly depositing aluminum oxide (Al{sub 2}O{sub 3}) on a graphene channel through nitrogen plasma treatment. The deposited Al{sub 2}O{sub 3} thin film on graphene demonstrated excellent dielectric properties with negligible charge trapping and de-trapping in the gate insulator. A top-gate-structural graphene transistor was fabricated using Al{sub 2}O{sub 3} as the gate dielectric with nitrogen plasma treatment on graphene channel region, and exhibited p-type transistor characteristics.

Lim, Taekyung; Kim, Dongchool; Ju, Sanghyun [Department of Physics, Kyonggi University, Suwon, Gyeonggi-Do 443-760 (Korea, Republic of)

2013-07-01T23:59:59.000Z

385

The properties of aluminum-doped zinc oxide thin films prepared by rf-magnetron sputtering from nanopowder targets  

Science Journals Connector (OSTI)

Aluminum-doped zinc oxide (ZnO:Al) films were deposited onto glass substrates by rf-magnetron sputtering at ambient temperature using, for the first time, doped nanocrystalline powder synthesized by the solgel method. The effects of aluminum on structural, electrical, morphological and optical properties were investigated. The films showed a hexagonal wurtzite structure and high preferential orientation in the (002) crystallographic direction. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to study the films morphology. The obtained samples have a typical columnar structure and a very smooth surface. The optical transmittance spectra showed transmittance higher than 90% within the visible wavelength region. A minimum resistivity of 5.43610?5? cm at room temperature was obtained for the 3.0at.% Al-doped film.

Z. Ben Ayadi; L. El Mir; K. Djessas; S. Alaya

2008-01-01T23:59:59.000Z

386

Virtual Aluminum Castings An Industrial Application of Integrated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Virtual Aluminum Castings An Industrial Application of Integrated Computational Materials Engineering Home Author: J. Allison, M. Li, C. Wolverton, X. Su Year: 2006 Abstract: The...

387

Fracture of welded aluminum thin-walled structures  

E-Print Network [OSTI]

A comprehensive methodology was developed in the thesis for damage prediction of welded aluminum thin-walled structures, which includes material modeling, calibration, numerical simulation and experimental verification. ...

Zheng, Li, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

388

Achieving Carbon Neutrality in the Global Aluminum Industry  

Science Journals Connector (OSTI)

TableVII...illustrates a suggested carbon scoreboard. The global aluminum industry can become carbon neutral, reducing its current carbon print of 500million metric tonnes per year... ...

Subodh Das

2012-02-01T23:59:59.000Z

389

Aluminum-doped Zinc Oxide Nanoink - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cells, photochromic windows, chemical sensors, and biosensors. Description The optoelectronic properties of AZO nanocrystals can be tuned by controlling their aluminum content....

390

Microsoft PowerPoint - Aluminum Concentrations in Storm Water...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

publication or guarantee its technical correctness. Title: Solid and Dissolved Phase Aluminum in Storm Water Runoff on the Pajarito Plateau, Poster, Individual Permit for Storm...

391

Low-Cost Direct Bonded Aluminum (DBA) Substrates | Department...  

Energy Savers [EERE]

(DBA) Substrates Low-Cost Direct Bonded Aluminum (DBA) Substrates 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

392

ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Direct Bonded Aluminum (DBA) Substrates (Agreement ID:23278) 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

393

ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement...  

Broader source: Energy.gov (indexed) [DOE]

Low-Cost Direct Bonded Aluminum (DBA) Substrates H. -T. Lin, A. A. Wereszczak, and S. Waters Oak Ridge National Laboratory This presentation does not contain any proprietary,...

394

High-Temperature Aluminum Alloys | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting pm044smith2012o.pdf More Documents & Publications High-Temperature Aluminum Alloys Vehicle...

395

A Bimetallic Aluminum(salen) Complex for the Synthesis of 1,3-Oxathiolane-2-thiones and 1,3-Dithiolane-2-thiones  

Science Journals Connector (OSTI)

The combined use of the bimetallic aluminum(salen) complex [Al(salen)]2O and tetrabutylammonium bromide (or tributylamine) is found to catalyze the reaction between epoxides and carbon disulfide. In most cases, at 50 C, the reaction produces 1,3-...

William Clegg; Ross W. Harrington; Michael North; Pedro Villuendas

2010-08-23T23:59:59.000Z

396

Asymmetric Yield Function Based on the Stress Invariants for Pressure Sensitive Metals  

SciTech Connect (OSTI)

A general asymmetric yield function is proposed with dependence on the stress invariants for pressure sensitive metals. The pressure sensitivity of the proposed yield function is consistent with the experimental result of Spitzig and Richmond (1984) for steel and aluminum alloys while the asymmetry of the third invariant is preserved to model strength differential (SD) effect of pressure insensitive materials. The proposed yield function is transformed in the space of the stress triaxaility, the von Mises stress and the normalized invariant to theoretically investigate the possible reason of the SD effect. The proposed plasticity model is further extended to characterize the anisotropic behavior of metals both in tension and compression. The extension of the yield function is realized by introducing two distinct fourth-order linear transformation tensors of the stress tensor for the second and third invariants, respectively. The extended yield function reasonably models the evolution of yield surfaces for a zirconium clock-rolled plate during in-plane and through-thickness compression reported by Plunkett et al. (2007). The extended yield function is also applied to describe the orthotropic behavior of a face-centered cubic metal of AA 2008-T4 and two hexagonal close-packed metals of high-purity-titanium and AZ31 magnesium alloy. The orthotropic behavior predicted by the generalized model is compared with experimental results of these metals. The comparison validates that the proposed yield function provides sufficient predictability on SD effect and anisotropic behavior both in tension and compression. When it is necessary to consider r-value anisotropy, the proposed function is efficient to be used with nonassociated flow plasticity by introducing a separate plastic potential for the consideration of r-values as shown in Stoughton & Yoon (2004, 2009).

Jeong Wahn Yoon; Yanshan Lou; Jong Hun Yoon; Michael V. Glazoff

2014-05-01T23:59:59.000Z

397

AL. I  

Office of Legacy Management (LM)

AL. I AL. I Department of Energy Washington, DC 20545 OCT 13 Vii87 Mr. John T. Shields A214 National Fertilizer Development Center Tennessee Valley Authority Muscle Shoals, Alabama 35660 Dear Mr. Shields: As you may know, the Department of Energy (DOE) is evaluating the radiological condition of sites that were utilized under the Manhattan Engineer District and the Atomic Energy Commission (AEC) during the early years of nuclear development to determine whether they need remedial action and whether the Department has authority to perform such action. AEC work at the TVA during the period 1951 through 1955 involved the development of a process to recover uranium from the production of phosphate fertilizer. A laboratory and pilot plant were operated at the site, but very little

398

Ab Initio Study of the Interaction of Water with Cluster Models of the Aluminum Terminated (0001) r-Aluminum Oxide Surface  

E-Print Network [OSTI]

Ab Initio Study of the Interaction of Water with Cluster Models of the Aluminum Terminated (0001) r-Aluminum to hydroxylation of the aluminum terminated surface, the two water process was found to be the most exothermic, occurring within 10-2 s. I. Introduction As one of the most important ceramic materials, R-aluminum oxide

Schlegel, H. Bernhard

399

Neutron reflectometry studies of aluminumsaline water interface under hydrostatic pressure  

Science Journals Connector (OSTI)

Abstract The structural stability of Al layers in contact with 3.5wt.% NaCl water solution was investigated at a temperature of 25C and hydrostatic pressures from 1 to 600atm using neutron reflectometry. A pressuretemperature (PT) Neutron Reflectometry (NR) cell developed at Los Alamos National Laboratory (LANL) was used to understand the behavior of thin (?900) aluminum layers in contact with saline liquid. Experimental results suggest that in the preliminary stages of corrosion the influence of pressure accelerates the mechanism of interactions of the oxide film with Cl? and H2O with lower speed compared to results found in the literature.

A. Junghans; R. Chellappa; P. Wang; J. Majewski; G. Luciano; R. Marcelli; E. Proietti

2015-01-01T23:59:59.000Z

400

Development of Cost-Effective Low-Permeability Ceramic and Refractory Components for Aluminum Melting and Casting  

SciTech Connect (OSTI)

A recent review by the U.S. Advanced Ceramics Association, the Aluminum Association, and the U.S. Department of Energy's Office of Industrial Technologies (DOE/OIT) described the status of advanced ceramics for aluminum processing, including monolithics, composites, and coatings. The report observed that monolithic ceramics (particularly oxides) have attractive properties such as resistance to heat, corrosion, thermal shock, abrasion, and erosion [1]. However, even after the developments of the past 25 years, there are two key barriers to commercialization: reliability and cost-effectiveness. Industry research is therefore focused on eliminating these barriers. Ceramic coatings have likewise undergone significant development and a variety of processes have been demonstrated for applying coatings to substrates. Some processes, such as thermal barrier coatings for gas turbine engines, exhibit sufficient reliability and service life for routine commercial use. Worldwide, aluminum melting and molten metal handling consumes about 506,000 tons of refractory materials annually. Refractory compositions for handling molten aluminum are generally based on dense fused cast silica or mullite. The microstructural texture is extremely important because an interlocking mass of coarser grains must be bonded together by smaller grains in order to achieve adequate strength. At the same time, well-distributed microscopic pores and cracks are needed to deflect cracks and prevent spalling and thermal shock damage [2]. The focus of this project was to develop and validate new classes of cost-effective, low-permeability ceramic and refractory components for handling molten aluminum in both smelting and casting environments. The primary goal was to develop improved coatings and functionally graded materials that will possess superior combinations of properties, including resistance to thermal shock, erosion, corrosion, and wetting. When these materials are successfully deployed in aluminum smelting and casting operations, their superior performance and durability will give end users marked improvements in uptime, defect reduction, scrap/rework costs, and overall energy savings resulting from higher productivity and yield. The implementation of results of this program will result in energy savings of 30 trillion Btu/year by 2020. For this Industrial Materials for the Future (IMF) project, riser tube used in the low-pressure die (LPD) casting of aluminum was selected as the refractory component for improvement. In this LPD process, a pressurized system is used to transport aluminum metal through refractory tubes (riser tubes) into wheel molds. It is important for the tubes to remain airtight because otherwise, the pressurized system will fail. Generally, defects such as porosity in the tube or cracks generated by reaction of the tube material with molten aluminum lead to tube failure, making the tube incapable of maintaining the pressure difference required for normal casting operation. Therefore, the primary objective of the project was to develop a riser tube that is not only resistant to thermal shock, erosion, corrosion, and wetting, but is also less permeable, so as to achieve longer service life. Currently, the dense-fused silica (DFS) riser tube supplied by Pyrotek lasts for only 7 days before undergoing failure. The following approach was employed to achieve the goal: (1) Develop materials and methods for sealing surface porosity in thermal-shock-resistant ceramic refractories; (2) Develop new ceramic coatings for extreme service in molten aluminum operations, with particular emphasis on coatings based on highly stable oxide phases; (3) Develop new monolithic refractories designed for lower-permeability applications using controlled porosity gradients and particle size distributions; (4) Optimize refractory formulations to minimize wetting by molten aluminum, and characterize erosion, corrosion, and spallation rates under realistic service conditions; and (5) Scale up the processing methods to full-sized components and perform field testi

Kadolkar, Puja [ORNL; Ott, Ronald D [ORNL

2006-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Economic and environmental evaluation of end-of-life aerospace aluminum options using optimization methods  

E-Print Network [OSTI]

The benefits of recycling have long been understood and the conspicuous energy savings of secondary aluminum production have caused aluminum recycling to increase. Obsolete aircraft are a valuable source of aluminum scrap ...

Chen, Emily, S.B. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

402

Long-term and Highly Aluminum-resistant Root Elongation in a Camphor Tree Cinnamomum camphora  

E-Print Network [OSTI]

for the detoxification of aluminum in roots of tea plant (Oda A, Yamamoto F, Effects of aluminum on growth and biomassT, Beneficial effect of aluminum on growth of plants adapted

Osawa, Hiroki

2009-01-01T23:59:59.000Z

403

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AISI 4340 STEEL MODIFIED WITH ALUMINUM AND SILICON  

E-Print Network [OSTI]

Met. Trans. 1,2163 (1972). Aluminum_~n Iron~, S. L. Case andSTEEL MODIFIED WITH ALUMINUM AND SILIC ON ManjeshwarThe influence of additions of aluminum and combinations of

Bhat, M.S.

2010-01-01T23:59:59.000Z

404

Fabrication and applications of nanocomposite structures using anodized aluminum oxide membranes  

E-Print Network [OSTI]

Hall, Process of Reducing Aluminum from its Fluoride SaltsFrary and Z. Jeffries, Aluminum and its Production, McGraw-1 (1948). J. E. Hatch, Aluminum Properties and Physical

Gapin, Andrew Isaac

2007-01-01T23:59:59.000Z

405

Aluminum-tungsten fiber composites with cylindrical geometry and controlled architecture of tungsten reinforcement  

E-Print Network [OSTI]

Chung, D. Silicon-Aluminum Network Composites Fabricated byFigure 95 - Fine model with initial aluminum matrix failure.slight necking of the aluminum matrix. Note failed elements

Lucchese, Carl Joesph

2010-01-01T23:59:59.000Z

406

Low-Cycle Fatigue of Ultra-Fine-Grained Cryomilled 5083 Aluminum Alloy  

E-Print Network [OSTI]

of an Ultra-Fine Grained Aluminum Alloy, Poster Session,Grained Cryomilled 5083 Aluminum Alloy J.L. WALLEY, E.J.consistent with other MA aluminum alloys and is attributed

Walley, J. L.; Lavernia, E. J.; Gibeling, J. C.

2009-01-01T23:59:59.000Z

407

Control of residual aluminum from conventional treatment to improve reverse osmosis performance  

E-Print Network [OSTI]

2005. The Role of Dissolved Aluminum in Silica Chemistry forDraft Public Health Goal for Aluminum in Drinking Water .1994. Control of Residual Aluminum in Filtered Water . AWWA,

Gabelich, C J; Ishida, K P; Gerringer, F W; Evangelista, R; Kalyan, M; Suffet, I H

2006-01-01T23:59:59.000Z

408

A nanohole in a thin metal film as an efficient nonlinear optical element  

SciTech Connect (OSTI)

The nonlinear optical properties of single nanoholes and nanoslits fabricated in gold and aluminum nanofilms are studied by third harmonic generation (THG). It is shown that the extremely high third-order optical susceptibility of aluminum and the presence of strong plasmon resonance of a single nanohole in an aluminum film make possible an efficient nanolocalized radiation source at the third harmonic frequency. The THG efficiency for a single nanohole in a thin metal film can be close to unity for an exciting laser radiation intensity on the order of 10{sup 13} W/cm{sup 2}.

Konstantinova, T. V.; Melent'ev, P. N.; Afanas'ev, A. E. [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation)] [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation); Kuzin, A. A.; Starikov, P. A.; Baturin, A. S. [Moscow Institute of Physics and Technology (Russian Federation)] [Moscow Institute of Physics and Technology (Russian Federation); Tausenev, A. V.; Konyashchenko, A. V. [OOO Avesta-proekt (Russian Federation)] [OOO Avesta-proekt (Russian Federation); Balykin, V. I., E-mail: balykin@isan.tyroitsk.ru [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation)

2013-07-15T23:59:59.000Z

409

Metal inks  

DOE Patents [OSTI]

Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

2014-02-04T23:59:59.000Z

410

Evaluation of aluminum critical point using an ab initio variational approach  

Science Journals Connector (OSTI)

We present a method to evaluate the critical point of aluminum using a variational approach based on the ab initio molecular-dynamics code CPMD. We found that the critical density, temperature, and pressure are equal to 0.44?g/cm3, 7963 K, and 0.35 GPa, respectively. At the critical point, the system is rarefied, coupled, and degenerate. The shear-viscosity and the self-diffusion were estimated at the critical point. Using the Kubo-Greenwood formula, we obtained the electrical conductivity, the absorption coefficient, the index of refraction, and the reflectivity at the critical point. We followed Motts ideas to study the metal-nonmetal transition related to the critical point. Our method can be useful to investigate phase transition and the critical point of metals.

Grald Faussurier, Christophe Blancard, and Pier Luigi Silvestrelli

2009-04-03T23:59:59.000Z

411

EROSION MECHANISM IN DUCTILE METALS  

E-Print Network [OSTI]

multi-phase FCC aluminum alloy. The 1100-0 aluminum isaluminum alloy at its high room temperature strength can be compared to the low strength 1100-

Bellman Jr., Robert

2013-01-01T23:59:59.000Z

412

Design of an Aluminum Proton Beam Window for the Spallation Neutron Source  

SciTech Connect (OSTI)

An aluminum proton beam window design is being considered at the Spallation Neutron Source primarily to increase the lifetime of the window, with secondary advantages of higher beam transport efficiency and lower activation. The window separates the core vessel, the location of the mercury target, from the vacuum of the accelerator, while withstanding the pass through of a proton beam of up to 2 MW with 1.0 GeV proton energy. The current aluminum alloy being investigated for the window material is 6061-T651 due to its combination of high strength, high thermal conductivity, and good resistance to aqueous corrosion, as well as demonstrated dependability in previous high-radiation environments. The window design will feature a thin plate with closely spaced cross drilled cooling holes. An analytical approach was used to optimize the dimensions of the window before finite element analysis was used to simulate temperature profiles and stress fields resulting from thermal and static pressure loading. The resulting maximum temperature of 60 C and Von Mises stress of 71 MPa are very low compared to allowables for Al 6061-T651. A significant challenge in designing an aluminum proton beam window for SNS is integrating the window with the current 316L SS shield blocks. Explosion bonding was chosen as a joining technique because of the large bonding area required. A test program has commenced to prove explosion bonding can produce a robust vacuum joint. Pending successful explosion bond testing, the aluminum proton beam window design will be proven acceptable for service in the Spallation Neutron Source.

Janney, Jim G [ORNL; McClintock, David A [ORNL

2012-01-01T23:59:59.000Z

413

Improved property in organic light-emitting diode utilizing two Al/Alq3 layers  

Science Journals Connector (OSTI)

We reported on the fabrication of organic light-emitting devices (OLEDs) utilizing the two Al/Alq"3 layers and two electrodes. This novel green device with structure of Al(110nm)/tris(8-hydroxyquinoline) aluminum (Alq"3)(65nm)/Al(110nm)/Alq"3(50nm)/N,N'-dipheny1-N, ... Keywords: Emitting layer, OLEDS, Transporting layer

Chunlin Zhang; Su Liu; Fangcong Wang; Yong Zhang

2008-12-01T23:59:59.000Z

414

Stoichiometry and Adhesion of Al/WC Donald J. Siegel  

E-Print Network [OSTI]

involving non-oxide ceramics[4]. Within this class, the transition metal carbides are a particularly notable on Al/WC. This system serves as as a convenient model of simple-metal/transition metal carbide adhesion both W- and C-terminations of the carbide. Based on the surface and interfacial free energies, we find

Adams, James B

415

Metal Oxides  

Science Journals Connector (OSTI)

Metal oxides are the class of materials having the widest application in gas sensors. This chapter presents information related to the application of various metal oxides in gas sensors designed on different p...

Ghenadii Korotcenkov

2013-01-01T23:59:59.000Z

416

E-Print Network 3.0 - aluminum based composites Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UT-BATTELLE FOR THE DEPARTMENT OF ENERGY Summary: power electronics. Testing of aluminum conductor, composite-reinforced (ACCR), a new 3M composite... embedded in an aluminum...

417

E-Print Network 3.0 - aluminum joined employing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion and Utilization 3 ENS'05 Paris, France, 14-16 December 2005 CONTROL POROUS PATTERN OF ANODIC ALUMINUM OXIDE Summary: tightly clamped aluminum foils, rather than the...

418

E-Print Network 3.0 - aluminum alloy eroded Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

form January 21, 1999) Introduction The use of aluminum alloys for automotive body... behavior in aluminum alloy 6022. Experimental Procedure ... Source: Laughlin, David E. -...

419

E-Print Network 3.0 - aluminum automotive components Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department, University of New Hampshire Collection: Engineering 24 1 Introduction 1.1 Aluminum alloys Summary: 1 1 Introduction 1.1 Aluminum alloys Automotive industry demands...

420

E-Print Network 3.0 - aluminum alloy matrix Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

studied at different length scales. At an atomic scale the aluminum... of plasticity, fracture, is studied. Microstructure and properties of aluminum-scandium alloys Recently......

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

E-Print Network 3.0 - aluminum nitride ceramics Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emily Parker, Vanni Lughi, Noel C. MacDonald Summary: , biocompatibility, and high fracture toughness. As a piezoelectric ceramic, aluminum nitride is compatible... Aluminum...

422

E-Print Network 3.0 - aluminum alloys grain Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aluminum... -lithium and aluminum-gallium has been studied. In ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure...

423

E-Print Network 3.0 - aluminum casting technology Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

summarizes attempts of incorporating fly ash into aluminum castings to decrease the energy content, material... . It is shown that fly ash can be incorporated in aluminum...

424

E-Print Network 3.0 - aluminum energy conservation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

summarizes attempts of incorporating fly ash into aluminum castings to decrease the energy content, material... of aluminum melts containing up to 10 vol.% fly ash particles....

425

E-Print Network 3.0 - aluminum shape casting Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

summarizes attempts of incorporating fly ash into aluminum castings to decrease the energy content, material... . It is shown that fly ash can be incorporated in aluminum...

426

E-Print Network 3.0 - aluminum cars Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sample search results for: aluminum cars Page: << < 1 2 3 4 5 > >> 1 ORNLTM-1999157 ENERGY DIVISION Summary: aluminum content in passenger cars. General Motors is increasing...

427

E-Print Network 3.0 - aluminum hydroxide complexes Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Organic Acids as Competing Sorbates on Amorphous Aluminum Oxide. (3791) Authors: K... sorption of P to amorphous aluminum oxides. Alum initially decreases litter pH, so the...

428

Characteristics of Aluminum Biosorption by Sargassum fluitans Biomass  

E-Print Network [OSTI]

Characteristics of Aluminum Biosorption by Sargassum fluitans Biomass Hak Sung Lee1, * and Bohumil3A 2B2, Canada Abstract: Biomass of nonliving brown seaweed Sargassum fluitans pretreated.5. There are indications that the biomass hydroxyl groups were involved in sequestering the aluminum in the form

Volesky, Bohumil

429

Aluminum Reactions and Problems in Municipal Solid Waste Landfills  

E-Print Network [OSTI]

Aluminum Reactions and Problems in Municipal Solid Waste Landfills G. Vincent Calder, Ph.D.1 ; and Timothy D. Stark, Ph.D., P.E., F.ASCE2 Abstract: Aluminum enters municipal solid waste MSW landfills from problematic for landfill operations by generating undesirable heat, liquid leachate, and gases

430

Silicone metalization  

DOE Patents [OSTI]

A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

2006-12-05T23:59:59.000Z

431

Superconducting structure with layers of niobium nitride and aluminum nitride  

DOE Patents [OSTI]

A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

Murduck, James M. (Lisle, IL); Lepetre, Yves J. (Lauris, FR); Schuller, Ivan K. (Woodridge, IL); Ketterson, John B. (Evanston, IL)

1989-01-01T23:59:59.000Z

432

Superconducting structure with layers of niobium nitride and aluminum nitride  

DOE Patents [OSTI]

A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

1989-07-04T23:59:59.000Z

433

ALUMINUM REMOVAL FROM HANFORD WASTE BY LITHIUM HYDROTALCITE PRECIPITATION - LABORATORY SCALE VALIDATION ON WASTE SIMULANTS TEST REPORT  

SciTech Connect (OSTI)

To reduce the additional sodium hydroxide and ease processing of aluminum bearing sludge, the lithium hydrotalcite (LiHT) process has been invented by AREV A and demonstrated on a laboratory scale to remove alumina and regenerate/recycle sodium hydroxide prior to processing in the WTP. The method uses lithium hydroxide (LiOH) to precipitate sodium aluminate (NaAI(OH){sub 4}) as lithium hydrotalcite (Li{sub 2}CO{sub 3}.4Al(OH){sub 3}.3H{sub 2}O) while generating sodium hydroxide (NaOH). In addition, phosphate substitutes in the reaction to a high degree, also as a filterable solid. The sodium hydroxide enriched leachate is depleted in aluminum and phosphate, and is recycled to double-shell tanks (DSTs) to leach aluminum bearing sludges. This method eliminates importing sodium hydroxide to leach alumina sludge and eliminates a large fraction of the total sludge mass to be treated by the WTP. Plugging of process equipment is reduced by removal of both aluminum and phosphate in the tank wastes. Laboratory tests were conducted to verify the efficacy of the process and confirm the results of previous tests. These tests used both single-shell tank (SST) and DST simulants.

SAMS T; HAGERTY K

2011-01-27T23:59:59.000Z

434

Trace metal concentration and fish size: Variation among fish species in a Mediterranean river  

E-Print Network [OSTI]

29 April 2014 Accepted 12 May 2014 Keywords: Bioaccumulation Heavy metals Llobregat River species in an Iberian river with moderate metal pollution. Al, Fe and Zn were the most abundant metals trace elements (Bervoets and Blust, 2003; Noël et al., 2013). Heavy metals in fish represent a potential

García-Berthou, Emili

435

Reduced conductivity in the terahertz skin-depth layer of metals N. Laman and D. Grischkowskya  

E-Print Network [OSTI]

. This was true for a variety of commercial alloys including Al alloy 1100, Cu alloy 101, and both Al and Cu foils time domain spectroscopy THz-TDS . This result was true for a variety of commercial alloys and surface of parallel plate waveguides constructed of bulk copper and aluminum. Surprisingly, these waveguides did

436

Role of support in adsorption and catalysis on supported metals. I. IR spectroscopic study of adsorption of CO and H/sub 2/ on Rh/SiO/sub 2/, Rh/Al/sub 2/O/sub 3/, and Rh/La/sub 2/O/sub 3/  

SciTech Connect (OSTI)

With the aim of studying the influence of the nature of the support on the properties of supported rhodium-containing catalysts, the adsorption of CO and H/sub 2/ on Rh/SiO/sub 2/, Rh/Al/sub 2/O/sub 3/, and Rh/La/sub 2/O/sub 3/ has been investigated. It has been found that in the case of Rh/La/sub 2/O/sub 3/, along with the surface complexes that are characteristic for Rh/SiO/sub 2/ and Rh/Al/sub 2/O/sub 3/, new surface compounds of adsorbed CO and H/sub 2/ are formed. On the basis of an analysis of the spectrochemical properties of these boundary with the participation of the metal atoms and also the atoms of the support.

Bredikhin, M.N.; Lokhov, Yu.A.; Kuznetsov, V.L.

1987-12-01T23:59:59.000Z

437

A second law analysis of thermoelastic damping in elementary metal-matrix composites  

E-Print Network [OSTI]

homogeneous aluminum and homogeneous graphite beam. . . . . . . , . . 50 Figure 13. Phase of the fluctuating temperature, 4, of BVP II as a function of position, for the composite AI-Gr-Al, for four different nondimensional frequencies, and for a thickness... ratio of r = 1. 52 Figure 14. Comparison of the phase of the tluctuating temperature, 4, of BVP II as a function of position for both a homogeneous aluminum and homogeneous graphite beam. . 53 Figure 15. The nyquist plot of the normalized fluctuating...

Bishop, Joseph Edward

2012-06-07T23:59:59.000Z

438

Metal melting for volume reduction and recycle  

SciTech Connect (OSTI)

This paper summarizes the experiences with melting contaminated steel materials for volume reduction and melting uranium-contaminated copper and aluminum for possible recycle. In the past there has not been an economic incentive to reduce the volume of low-level beta-gamma contaminated metallic scrap materials in the United States. With the rising cost of transportation and burial facility fees new interest in volume reduction is being generated. This new interest has been primarily focused at the Idaho National Engineering Laboratory (INEL) where the Waste Experimental Reduction Facility (WERF) was established to demonstrate both metal melting and incineration of combustible material for volume reduction. Other demonstration programs involving melting for volume reduction and recycle of aluminum and copper, as well as ferrous scrap, were related to the Cascade Improvement and Cascade Upgrade Programs (CIP/CUP) at the Paducah, Kentucky facility. While the melting demonstrations for the CIP/CUP material were not primarily based on economic incentives, several observations recorded during the programs are of interest with regard to melting of copper and aluminum. (4 refs., 8 tabs.)

Miller, R.L.

1987-03-27T23:59:59.000Z

439

Microstructural characterization and microstructural effects on the thermal conductivity of AlN(Y2O3) ceramics  

E-Print Network [OSTI]

Microstructural characterization and microstructural effects on the thermal conductivity of AlN(Y2O3) ceramics Ying-Da Yu a , Aase Marie Hundere b , Ragnvald Høier a , Rafal E. Dunin-Borkowski c aluminum nitride (AlN) ceramic materials with Y2O3 as a sintering additive have been sintered at 1880 C

Dunin-Borkowski, Rafal E.

440

Size Effect of SiC Particle on Microstructures and Mechanical Properties of SiCp/Al Composites  

E-Print Network [OSTI]

matrix composites reinforced with ceramic particles have some attractive properties such as high strengthCp/Al composites were fabricated using aluminum alloy ZL101 as the matrix material, and SiC particles a composite is stretched, most of external load transfers from soft Al matrix to hard SiCp reinforcement

Qin, Qinghua

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

High Temperature Oxidation Behavior of gamma-Ni+gamma'-Ni3Al Alloys and Coatings Modified with Pt and Reactive Elements  

SciTech Connect (OSTI)

Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000 C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455 C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain {beta}-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al{sub 2}O{sub 3} scale at elevated temperatures. The drawbacks to the currently-used {beta}-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt + Hf-modified {gamma}-Ni + {gamma}-Ni{sub 3}Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase {gamma}-Ni and {gamma}{prime}-Ni{sub 3}Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al{sub 2}O{sub 3} formation by suppressing the NiO growth on both {gamma}-Ni and {gamma}{prime}Ni{sub 3}Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at lower temperatures ({approx}970 C) in the very early stage of oxidation. It was also inferred that Pt enhances the diffusive flux of aluminum from the substrate to the scale/alloy interface. Relatively low levels of hafnium addition to Pt-free {gamma}{prime}-Ni{sub 3}Al increased the extent of external NiO formation due to non-protective HfO{sub 2} formation. Accordingly, this effect intensified with increasing Hf content from 0.2 to 0.5 at.%.

Nan Mu

2007-12-01T23:59:59.000Z

442

Synthesis of nanostructured AlN by solid state reaction of Al and diaminomaleonitrile  

SciTech Connect (OSTI)

The solid state reaction of diaminomaleonitrile (DAMN) with aluminum via both mechanochemical and thermal treatment routes was studied by X-ray diffraction and Fourier transform infrared spectroscopy. During the milling process, the reaction starts with the deammoniation of the DAMN molecules, followed by the formation of nanostructured AlN powder as the main solid product after milling for 7 h. The reactivity of the mixed powder was also investigated during the conventional thermal treatment process using differential scanning calorimetry, derivative thermogravimetry and thermogravimetric analysis. The results reveal that DAMN starts to polymerize at 192 Degree-Sign C by the elimination of the amine groups. Furthermore, increasing the annealing temperature leads to the formation of a nitrogen-containing carbonaceous material with the structure similar to non-crystalline carbon. However, no evidence for the formation of AlN was observed in the annealed samples even at temperatures as high as the Al melting point. - Graphical abstract: AlN nanoparticles obtained after milling of Al and diaminomaleonitrile (DAMN) for 12 h. Highlights: Black-Right-Pointing-Pointer Solid state reaction of diaminomaleonitrile (DAMN) with Al was studied via mechanochemical and thermal treatment routs. Black-Right-Pointing-Pointer Nanocrystalline AlN was successfully synthesized by the mechanochemical process. Black-Right-Pointing-Pointer The C/N material was formed by polymerization of DAMN during the thermal treatment process. Black-Right-Pointing-Pointer No reaction between DAMN and Al was detected during the thermal treatment method.

Rounaghi, S.A., E-mail: s.a.rounaghi@gmail.com [Department of Materials Engineering, Ferdowsi University of Mashhad. P.O. Box no. 91775-1111, Mashhad (Iran, Islamic Republic of); IFW Dresden, Institut fuer Komplexe Materialien, Postfach 27 01 16, Dresden D-01171 (Germany); Eshghi, H., E-mail: heshghi@ferdowsi.um.ac.ir [Department of Chemistry, Ferdowsi University of Mashhad. P.O. Box no. 91775-1436, Mashhad (Iran, Islamic Republic of); Kiani Rashid, A.R.; Vahdati Khaki, J. [Department of Materials Engineering, Ferdowsi University of Mashhad. P.O. Box no. 91775-1111, Mashhad (Iran, Islamic Republic of)] [Department of Materials Engineering, Ferdowsi University of Mashhad. P.O. Box no. 91775-1111, Mashhad (Iran, Islamic Republic of); Samadi Khoshkhoo, M.; Scudino, S. [IFW Dresden, Institut fuer Komplexe Materialien, Postfach 27 01 16, Dresden D-01171 (Germany)] [IFW Dresden, Institut fuer Komplexe Materialien, Postfach 27 01 16, Dresden D-01171 (Germany); Eckert, J. [IFW Dresden, Institut fuer Komplexe Materialien, Postfach 27 01 16, Dresden D-01171 (Germany) [IFW Dresden, Institut fuer Komplexe Materialien, Postfach 27 01 16, Dresden D-01171 (Germany); TU Dresden, Institut fuer Werkstoffwissenschaft, Dresden D-01062 (Germany)

2013-02-15T23:59:59.000Z

443

DOE - Office of Legacy Management -- Southern Research Institute - AL 03  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Southern Research Institute - AL 03 Southern Research Institute - AL 03 FUSRAP Considered Sites Site: SOUTHERN RESEARCH INSTITUTE (AL.03) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 917 South 20th Street , Birmingham , Alabama AL.03-1 AL.03-2 Evaluation Year: 1993 AL.03-3 Site Operations: Licensed for the period 11/10/55 - 6/1/58. Basic license and three amendments for possession and title to up to 140# of refined source material for research on properties of Uranium-liquid metal fuel elements; conducted research on Uranium in the early 1960's. AL.03-4 AL.03-1 AL.03-5 Site Disposition: Eliminated - No Authority - AEC license to handle nuclear materials AL.03-3 AL.03-6 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium AL.03-1

444

An inverted cylindrical sputter magnetron as metal vapor supply for electron cyclotron resonance ion sources  

SciTech Connect (OSTI)

An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 10{sup 10} cm{sup ?3} to 1 10{sup 11} cm{sup ?3}, when the magnetron plasma is exposed to the magnetic mirror field of the ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone-area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 10{sup 18} atoms/s for aluminum, which meets the demand for the production of a milliampere Al{sup +} ion beam.

Weichsel, T., E-mail: tim.weichsel@fep.fraunhofer.de; Hartung, U.; Kopte, T. [Fraunhofer Institute for Electron Beam and Plasma Technology, 01277 Dresden (Germany)] [Fraunhofer Institute for Electron Beam and Plasma Technology, 01277 Dresden (Germany); Zschornack, G. [Institute of Solid State Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Dresden (Germany)] [Institute of Solid State Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Dresden (Germany); Kreller, M.; Silze, A. [DREEBIT GmbH, 01900 Grossroehrsdorf (Germany)] [DREEBIT GmbH, 01900 Grossroehrsdorf (Germany)

2014-05-15T23:59:59.000Z

445

Temperature dependence of optical transitions in AlGaAs  

Science Journals Connector (OSTI)

AlGaAs structures with different aluminum concentration (x=0.0 0.17 0.30 and 0.40) were characterized by photoluminescence and photoreflectance techniques. The temperature dependence of optical transitions in the temperature ranging from 2 to 300 K were investigated. Y. P. Varshni [Physica (Utrecht) 34 194 (1967)] L. Via et al. [Phys. Rev. B 30 1979 (1984)] and R. Pssler [Phys. Status Solidi B 200 155 (1997)] models were used to fit the experimental points. The Pssler model gave the best adjustment to the experimental points. The tree models showed that the empirical parameters obtained through the adjustment of the experimental data in the three different models are aluminum composition dependent in the ternary alloy.

S. A. Loureno; I. F. L. Dias; J. L. Duarte; E. Laureto; E. A. Meneses; J. R. Leite; I. Mazzaro

2001-01-01T23:59:59.000Z

446

GLYCEROL-INTERCALATED Mg-Al HYDROTALCITE AS A POTENTIAL SOLID BASE CATALYST FOR TRANSESTERIFICATION  

Science Journals Connector (OSTI)

...management is critical for evaluation of hydrotalcite base...during the intercalation process. The glycerol-intercalated...Glycerol is a byproduct of biodiesel synthesis by transesterification...during the intercalation process at the highest temperature...earth metals aluminum biodiesel carbonates catalysis...

Yuanzhou Xi; Robert J. Davis

447

(Data in thousand metric tons of silicon content unless otherwise noted) Domestic Production and Use: Estimated value of silicon alloys and metal produced in the United States in 2013  

E-Print Network [OSTI]

producers of aluminum and aluminum alloys and the chemical industry. The semiconductor and solar industries, 47%; China, 22%; Canada, 12%; Venezuela, 11%; and other, 8%. Silicon metal: Brazil, 39%; South Africa, 20%; Canada, 14%; Australia, 9%; and other, 18%. Total: Russia, 21%; Brazil, 18%; Canada, 13%; South

448

Micro Joining of Aluminum Graphite Composites  

E-Print Network [OSTI]

metal surfaces are joined by the Joule effect. Here the workpieces are held together under the pressure exerted by the electrodes. Resistance microwelding for thin wires is studied. In this the weldability and mechanism of crossed fine nickel wires...

Velamati, Manasa

2012-07-16T23:59:59.000Z

449

Nickel coated aluminum battery cell tabs  

DOE Patents [OSTI]

A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

2014-07-29T23:59:59.000Z

450

Mr. Mark Jackson Aluminum Company of America  

Office of Legacy Management (LM)

_ _ of Energy Washington, DC 20565 Mr. Mark Jackson Aluminum Company of America 100 Technical Drive Alcoa Center, Pennsylvania 15069-0001 Dear Mr. Jackson: At,the request of the U.S. Department of Energy and with the consent of your company, Oak Ridge National Laboratory performed a radiological survey of the former ALCOA Research Labo,ratory at 600 Freeport Road in New Kensington, Pennsylvania. Three copies of the radiological survey report are enclosed for your information and use. An additional radiological survey was also performed at the former ALCOA New Kensington Works at Pine and Ninth Streets in New Kensington. This property was formerly owned and operated by ALCOA and was utilized at one time for uranium processing activities by DOE's predecessor, the Manhattan Engineer

451

Please cite this article in press as: J.A. Bares, et al., In situ graphite lubrication of metallic sliding electrical contacts, Wear (2009), doi:10.1016/j.wear.2009.03.024  

E-Print Network [OSTI]

sliding electrical contacts, Wear (2009), doi:10.1016/j.wear.2009.03.024 ARTICLE IN PRESSG Model WEA-99161; No.of Pages8 Wear xxx (2009) xxx­xxx Contents lists available at ScienceDirect Wear journal homepage: www.elsevier.com/locate/wear In situ graphite lubrication of metallic sliding electrical contacts J

Sawyer, Wallace

452

UNCORRECTEDPROOF Please cite this article in press as: M. Grujicic et al., An overview of the polymer-to-metal direct-adhesion hybrid technologies for load-bearing  

E-Print Network [OSTI]

, Norbert Seyrb, Marc Erdmannc, Jochen Holzleitnerc 5 6 a Department of Mechanical Engineering, Clemson; (b) in-coil or stamped-part pre-coating for enhanced adhesion; and (c) chemical modifications; Automotive structural components23 24 1. Introduction1 Traditionally, metals and plastics have been fierce

Grujicic, Mica

453

Interaction of soft x-ray laser pulse radiation with aluminum surface: Nano-meter size surface modification  

SciTech Connect (OSTI)

Interaction of soft x-ray laser radiation with material and caused modification of the exposed surface has both physical and practical interests. We irradiated the focusing soft x-ray laser (SXRL) pulses having a wavelength of 13.9 nm and the duration of 7 ps to aluminum (Al) surface. After the SXRL irradiation process, the irradiated Al surface was observed with a scanning electron microscope. The surface modifications caused by SXRL single pulse exposure were clearly seen. In addition, it was found that the conical structures having around 100 nm in diameters were formed in the shallow features. The nano-meter size modified structures at Al surface induced by SXRL pulse is interesting as the newly surface structure. Hence, the SXRL beam would be a candidate for a tool of micromachining. We also provide a thermomechanical modeling of SXRL interaction with Al briefly to explain the surface modification.

Ishino, Masahiko; Faenov, Anatoly; Tanaka, Momoko; Hasegawa, Noboru; Nishikino, Masaharu; Tamotsu, Satoshi; Pikuz, Tatiana; Inogamov, Nail; Zhakhovsky, Vasily; Skobelev, Igor; Fortov, Vladimir; Khohlov, Viktor; Shepelev, Vadim; Ohba, Toshiyuki; Kaihori, Takeshi; Ochi, Yoshihiro; Imazono, Takashi; Kawachi, Tetsuya [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); Joint Institute for High Temperatures, Russian Academy of Science, Moscow 125412 (Russian Federation); Graduate School of Humanities and Science, Nara Women's University, Nara 630-8506 (Japan); Landau Institute for Theoretical Physics, Russian Academy of Science, Chernogolovka 142432 (Russian Federation); Institute for Computer Aided Design, Russian Academy of Science, Moscow 123056 (Russian Federation)

2012-07-11T23:59:59.000Z

454

Microstructure characterization of the stir zone of submerged friction stir processed aluminum alloy 2219  

SciTech Connect (OSTI)

Aluminum alloy 2219-T6 was friction stir processed using a novel submerged processing technique to facilitate cooling. Processing was conducted at a constant tool traverse speed of 200 mm/min and spindle rotation speeds in the range from 600 to 800 rpm. The microstructural characteristics of the base metal and processed zone, including grain structure and precipitation behavior, were studied using optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Microhardness maps were constructed on polished cross sections of as-processed samples. The effect of tool rotation speed on the microstructure and hardness of the stir zone was investigated. The average grain size of the stir zone was much smaller than that of the base metal, but the hardness was also lower due to the formation of equilibrium ? precipitates from the base metal ?? precipitates. Stir zone hardness was found to decrease with increasing rotation speed (heat input). The effect of processing conditions on strength (hardness) was rationalized based on the competition between grain refinement strengthening and softening due to precipitate overaging. - Highlights: SZ grain size (? 1 ?m) is reduced by over one order of magnitude relative to the BM. Hardness in the SZ is lower than that of the precipitation strengthened BM. Metastable ?? in the base metal transforms to equilibrium ? in the stir zone. Softening in the SZ results from a decrease of precipitation strengthening.

Feng, Xiuli, E-mail: feng.97@osu.edu [Welding Engineering Program, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43221 (United States); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Liu, Huijie, E-mail: liuhj@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Lippold, John C., E-mail: lippold.1@osu.edu [Welding Engineering Program, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43221 (United States)

2013-08-15T23:59:59.000Z

455

New Process for Grain Refinement of Aluminum. Final Report  

SciTech Connect (OSTI)

A new method of grain refining aluminum involving in-situ formation of boride nuclei in molten aluminum just prior to casting has been developed in the subject DOE program over the last thirty months by a team consisting of JDC, Inc., Alcoa Technical Center, GRAS, Inc., Touchstone Labs, and GKS Engineering Services. The Manufacturing process to make boron trichloride for grain refining is much simpler than preparing conventional grain refiners, with attendant environmental, capital, and energy savings. The manufacture of boride grain refining nuclei using the fy-Gem process avoids clusters, salt and oxide inclusions that cause quality problems in aluminum today.

Dr. Joseph A. Megy

2000-09-22T23:59:59.000Z

456

GENETIC TRANSFORMATION AND HYBRIDIZATION Bacterial citrate synthase expression and soil aluminum tolerance  

E-Print Network [OSTI]

GENETIC TRANSFORMATION AND HYBRIDIZATION Bacterial citrate synthase expression and soil aluminum that were more aluminum-tolerant than the non-transgenic control, confirming that citrate synthase overexpression can be a useful tool to help achieve aluminum tolerance. Keywords Acid soils Á Aluminum toxicity Á

Parrott, Wayne

457

ALUMINUM-BRIDGED BISGLYOXIMATO COBALT COMPLEXES: SYNTHESIS AND ELECTROCHEMICAL PROTON REDUCTION PROPERTIES  

E-Print Network [OSTI]

194 CHAPTER 6 ALUMINUM-BRIDGED BISGLYOXIMATO COBALT COMPLEXES: SYNTHESIS AND ELECTROCHEMICAL PROTON diglyoximato complexes connected by one or two aluminum bridges are described. The aluminum centers that the number of aluminum bridges and the nature of the substituents on the phenoxide ligands significantly

Winfree, Erik

458

Ultrafast laser induced periodic sub-wavelength aluminum surface structures and nanoparticles in air and liquids  

SciTech Connect (OSTI)

In this communication, we demonstrate the generation of laser-induced periodic sub-wavelength surface structures (LIPSS) or ripples on a bulk aluminum (Al) and Al nanoparticles (NPs) by femtosecond (fs) laser direct writing technique. Laser irradiation was performed on Al surface at normal incidence in air and by immersing in ethanol (C{sub 2}H{sub 5}OH) and water (H{sub 2}O) using linearly polarized Ti:sapphire fs laser pulses of ?110 fs pulse duration and ?800?nm wavelength. Field emission scanning electron microscope is utilized for imaging surface morphology of laser written structures and it reveals that the spatial periodicity as well as the surface morphology of the LIPSS depends on the surrounding dielectric medium and also on the various laser irradiation parameters. The observed LIPSS have been classified as low spatial frequency LIPSS which are perpendicularly oriented to the laser polarization with a periodicity from 460 to 620?nm and high spatial frequency LIPSS which spectacles a periodicity less than 100?nm with the orientation parallel to the polarization of the incident laser beam. Fabricated colloidal solutions, which contain the Al NPs, were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). TEM results reveal the formation of internal cavities in Al NPs both in ethanol and water. Formation mechanism of LIPSS and cavities inside the nanoparticles are discussed in detail.

Kuladeep, Rajamudili; Dar, Mudasir H.; Rao, D. Narayana, E-mail: dnrsp@uohyd.ac.in, E-mail: dnr-laserlab@yahoo.com [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Deepak, K. L. N. [Department of Physics and Center for Research in Photonics, University of Ottawa, 150 Louis Pasteur, Ottawa K1N6N5, Ontario (Canada)

2014-09-21T23:59:59.000Z

459

The development of a preliminary correlation of data on oxide growth on 6061 aluminum under ANS thermal-hydraulic conditions  

SciTech Connect (OSTI)

The corrosion of aluminum alloy 6061 is being studied in a special test loop facility under the range of thermal-hydraulic conditions appropriate for fuel plate operation in the Advanced Neutron Source (ANS) reactor core. Experimental measurements describing the growth of the boehmite (Al{sub 2}O{sub 3}H{sub 2}O) films on the exposed aluminum surfaces are now available for a range of coolant conditions and heat fluxes, and these results have been analyzed to demonstrate the influence of several important experimental variables. A subset of our data base particularly appropriate to the ANS conditions presently anticipated was used to develop a preliminary correlation based on an empirical oxidation model.

Pawel, R.E.; Yoder, G.L.; West, C.D.; Montgomery, B.H.

1990-06-01T23:59:59.000Z

460

Rem&al Action Performed  

Office of Legacy Management (LM)

Rem&al Action Performed Rem&al Action Performed at the B&T Metals Site in * Columbus, Ohio Department of Energy Office of Assistant Manager for Environmenta/ Management Oak Ridge Operations June 2007 Printed on recycled/recyclable paper. 1.41 2503.2 CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PER-FORMED AT THE B&T METALS SITE IN COLUMBUS, OHIO JUNE 200 1 Prepared for United States Department of Energy Under Contract No. DACW45-98-D-0028 BY Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 B&TFinal 6/2001 CONTENTS FIGURES ..................................................................................................................................................... iv ACRON-YhiS ...............................................................................................................................................

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The wetting behavior of NiAl and NiPtAl on polycrystalline alumina  

SciTech Connect (OSTI)

In order to understand the beneficial effect of Pt on the adherence of thermally grown alumina scales, sessile drop experiments were performed to study the wetting of poly-crystalline alumina by nickel-aluminum alloys with or without platinum addition where the amount of Pt ranged from 2.4 to 10 at.%. Subsequent interfacial structure was evaluated using atomic force microscopy. Platinum addition enhances the wettability of NiAl alloys on alumina, reduces the oxide/alloy interface energy and increases the interfacial mass transport rates.

Saiz, Eduardo; Gauffier, Antoine; Saiz, Eduardo; Tomsia, Antoni P.; Hou, Peggy Y.

2007-07-01T23:59:59.000Z

462

Climate VISION: Private Sector Initiatives: Aluminum: Resources and Links -  

Office of Scientific and Technical Information (OSTI)

Resources & Links Resources & Links Technical Information Publications Case Studies Publications Some of the following publications are available for download as Adobe PDF documents. Download Acrobat Reader Factors Affecting Emissions from Commercial Aluminum Reduction Cells (PDF 316 KB) The U.S. EPA and the Aluminum Association sponsored measurements of two perfluorocarbon (PFC) gases: tetrafluoromethane and hexafluoroethane. The measurements at six primary aluminum production facilities provided data on emissions of these compounds during normal aluminum smelting operations. Technology and Economics of Reducing PFC Emissions from Aluminium Production (PDF 139 KB) The paper, presented in 2002 at the Third International Symposium on Non-CO2 Greenhouse Gases (NCGG-3), provides an overview of global efforts

463

Ames Lab 101: BAM (Boron-Aluminum-Magnesium)  

ScienceCinema (OSTI)

Materials scientist, Bruce Cook, discusses the super hard, low friction, and lubricious alloy know as BAM (Boron-Aluminum-Magnesium). BAM was discovered by Bruce Cook and his team a

Bruce Cook

2013-06-05T23:59:59.000Z

464

ITP Aluminum: Technical Working Group on Inert Anode Technologies  

Office of Environmental Management (EM)

of aluminum and its use. De Vries. Hans. (Aluminal Obeflaechentechnik G.m.b.H., Germany), Ger.. 4 pp. CODEN: GW. DE 19716495" C 1 980520. Patent written in German....

465

A technology roadmap for the U.S. aluminum industry  

Science Journals Connector (OSTI)

By partnering with the OIT, the aluminum industry has taken an important step in planning the technology needs of their industry for the next ... in defining its long-term goals and the technology requirements to...

H. S. Kenchington; J. L. Eisenhauer; J. A. S. Green

1997-08-01T23:59:59.000Z

466

Primary aluminum production : climate policy, emissions and costs  

E-Print Network [OSTI]

Climate policy regarding perfluorocarbons (PFCs) may have a significant influence on investment decisions in the production of primary aluminum. This work demonstrates an integrated analysis of the effectiveness and likely ...

Harnisch, Jochen.; Sue Wing, Ian.; Jacoby, Henry D.; Prinn, Ronald G.

467

CLASSIFICATION AND REACTIVITY OF SECONDARY ALUMINUM PRODUCTION WASTE  

E-Print Network [OSTI]

aluminum30 production process emits seventeen (17) times less pollution to the atmosphere (see Table 1 in the ASCE Journal of Hazardous, Toxic, and Radioactive Waste November 8, 2012 #12;2 Classification

468

Indirect-Fired Kiln Conserves Scrap Aluminum and Cuts Costs ...  

Broader source: Energy.gov (indexed) [DOE]

project conducted at this plant by Energy Research Company (ERCo), of Staten Island, New York, involves a new energy-efficient kiln that heats scrap aluminum for reuse. This...

469

New, More Efficient Technology for Remelting Aluminum Chips  

E-Print Network [OSTI]

This project will introduce a new, more efficient technology for remelting the considerable volume of aluminum by 6.5% . Automated conveyors will transport chips from the machining operation to the new remelting operation for recycling. A reduction...

Hosek, D.

470

Acoustical effect of progressive undercutting of percussive aluminum bars  

Science Journals Connector (OSTI)

Standard vibraphone bars consist of aluminum beams which are traditionally tuned with an arched undercut for the purpose of aligning the musical overtones harmonically. The acoustical effect of various progressions of undercuts on aluminum bars was studied using both an aluminum bar and a finite element computer model. The spectral signature of the aluminum bar was examined with a spectrum analyzer and the corresponding eigenmodes were imaged with an electronic speckle pattern interferometer. These methods were used to analyze the changes in natural frequencies of the bar as matter was removed from various locations. Additionally the aural character of each cut was captured with an audio recording and the fundamental tone was normalized over all recordings to make possible a subjective comparison of the timbral differences of differently cut bars.

Eric M. Laukkanen; Randy Worland

2011-01-01T23:59:59.000Z

471

Ames Lab 101: BAM (Boron-Aluminum-Magnesium)  

SciTech Connect (OSTI)

Materials scientist, Bruce Cook, discusses the super hard, low friction, and lubricious alloy know as BAM (Boron-Aluminum-Magnesium). BAM was discovered by Bruce Cook and his team a

Bruce Cook

2012-08-18T23:59:59.000Z

472

Climate VISION: Private Sector Initiatives: Aluminum: Work Plans  

Office of Scientific and Technical Information (OSTI)

Work Plans The Aluminum Association has finalized its work plan with the collaboration of EPA. The plan describes actions the industry intends to take to achieve its Climate VISION...

473

Laser ignition of a heterogeneous nickel-aluminum system  

Science Journals Connector (OSTI)

The ignition of a heterogeneous nickelaluminum system by laser radiation is investigated experimentally. The ignition characteristics are investigated as a function of ... the samples. It is established that the...

Yu. S. Naiborodenko; V. M. Filatov

474

Low-Cost Direct Bonded Aluminum (DBA) Substrates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Managed by UT-Battelle for the Department of Energy Low-Cost Direct Bonded Aluminum (DBA) Substrates H. -T. Lin, A. A. Wereszczak, and S. Waters Oak Ridge National Laboratory This...

475

Low-Cost Direct Bonded Aluminum (DBA) Substrates  

Broader source: Energy.gov (indexed) [DOE]

Low-Cost Direct Bonded Aluminum (DBA) Substrates H. -T. Lin, A. A. Wereszczak, M. L. Santella, and G. Muralidharan Oak Ridge National Laboratory (ORNL) This presentation does not...

476

ALS Ceramics Materials Research Advances Engine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 LBNL senior materials scientist and UC Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals and composites, Ritchie has illuminated groundbreaking cracking patterns and the underlying mechanistic processes using the x-ray synchrotron micro-tomography at ALS Beamline 8.3.2. Summary Slide ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter.

477

Structure, Thermodynamics, and Energy Content of AluminumCyclopentadienyl Clusters  

Science Journals Connector (OSTI)

(11, 14) Currently very little is known about the stability or decomposition of the larger aluminumcyclopentadienyl compounds that contain a significant mass fraction of aluminum. ... To analyze the relative bonding strength and possible unimolecular decomposition pathways in the systems, we next consider the bond dissociation energies (BDEs), defined as the reaction energy De for homolytic cleavage of the listed bond. ... We next consider the thermochemistry of these compounds, with particular focus on their energy content for propellant and energetic material applications. ...

Kristen S. Williams; Joseph P. Hooper

2011-10-18T23:59:59.000Z

478

Wavelength- and thickness-independent optical coatings for integrated circuit metallization layers  

SciTech Connect (OSTI)

Detailed measurements have been made of the optical properties of sputtered tantalum silicide films on aluminum layers used in integrated circuit fabrication. This new multicomponent conductor (TaSi/sub x/ on aluminum), which is currently in use because of its exceptional electrical, physical, and chemical properties, was also found to have superior optical properties compared to aluminum alone. The addition of the thin silicide layers reduces both the total hemispherical and diffuse reflectance properties by up to 45% over the 265--800-nm wavelength range with almost no dependence on film thickness. Unlike other optical coatings used on metal layers in integrated circuit manufacturing, the silicide films do not need to be removed after photolithography and pattern transfer processes are completed: aluminum wire bonding from the completed circuit (with silicide coating) to the package is highly reliable and reproducible.

Draper, B.L.; Mahoney, A.R.; Bailey, G.A.

1987-12-01T23:59:59.000Z

479

Radiation Induced Nanocrystal Formation in Metallic Glasses  

E-Print Network [OSTI]

The irradiation of metallic glasses to induce nanocrystallization was studied in two metallic glass compositions, Cu50Zr45Ti5 and Zr55Cu30Al10Ni5. Atomic mobility was described using a model based on localized excess free volume due to displace...

Carter, Jesse

2010-01-14T23:59:59.000Z

480

Effective hole extraction using MoO{sub x}-Al contact in perovskite CH{sub 3}NH{sub 3}PbI{sub 3} solar cells  

SciTech Connect (OSTI)

We report an 11.4%-efficient perovskite CH{sub 3}NH{sub 3}PbI{sub 3} solar cell using low-cost molybdenum oxide/aluminum (i.e., MoO{sub x}/Al) as an alternative top contact to replace noble/precious metals (e.g., Au or Ag) for extracting photogenerated holes. The device performance of perovskite solar cells using a MoO{sub x}/Al top contact is comparable to that of cells using the standard Ag top contact. Analysis of impedance spectroscopy measurements suggests that using 10-nm-thick MoO{sub x} and Al does not affect charge-recombination properties of perovskite solar cells. Using a thicker (20-nm) MoO{sub x} layer leads to a lower cell performance caused mainly by a reduced fill factor. Our results suggest that MoO{sub x}/Al is promising as a low-cost and effective hole-extraction contact for perovskite solar cells.

Zhao, Yixin; Nardes, Alexandre M.; Zhu, Kai, E-mail: Kai.Zhu@nrel.gov [Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

2014-05-26T23:59:59.000Z

Note: This page contains sample records for the topic "metals aluminum al" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Heat Resistance of Electric Arc Coatings Made of FeCrBAl Powder Wire  

Science Journals Connector (OSTI)

Electric metallized coatings made of FeCrBAl powder wire possess a high heat resistance at 700800C at the level ... the base material. To obtain heat-resistant electric metallized coatings of powder wire, it...

V. Pokhmurs'kyi; M. Student; B. Formanek; V. Serivka; Yu. Dz'oba

2003-11-01T23:59:59.000Z

482

Synthesis, morphology and optical properties of GaN and AlGaN semiconductor nanostructures  

SciTech Connect (OSTI)

Hexagonal Gallium Nitride (GaN) and Aluminum Gallium Nitride (AlGaN) nanoparticles were synthesized by sol-gel method using Ethylene Diamine Tetra Acetic acid (EDTA) complex route. Powder X-ray diffraction (PXRD) analysis confirms the hexagonal wurtzite structure of GaN and Al{sub 0.25}Ga{sub 0.75}N nanoparticles. Surface morphology and elemental analysis were carried out by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX). The room temperature Photoluminescence (PL) study shows the near band edge emission for GaN at 3.35 eV and at 3.59 eV for AlGaN nanoparticles. The Aluminum (Al) composition of 20% has been obtained from PL emission around 345 nm.

Kuppulingam, B., E-mail: drbaskar2009@gmail.com; Singh, Shubra, E-mail: drbaskar2009@gmail.com; Baskar, K., E-mail: drbaskar2009@gmail.com [Crystal Growth Centre, Anna University, Chennai-600025 (India)

2014-04-24T23:59:59.000Z

483

Metal oxide films on metal  

DOE Patents [OSTI]

A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

1995-01-01T23:59:59.000Z

484

DOE - Office of Legacy Management -- Aluminum Co of America - NJ 24  

Office of Legacy Management (LM)

NJ 24 NJ 24 FUSRAP Considered Sites Site: Aluminum Co of America (NJ.24 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: ALCOA (Garwood Plant) NJ.24-1 Location: Garwood , New Jersey NJ.24-1 Evaluation Year: Circa 1987 NJ.24-5 Site Operations: Constructed and altered die-casting dies and conducted die casting operation on uranium slugs. NJ.24-1 NJ.24-3 NJ.24-4 Site Disposition: Eliminated - Potential for residual contamination considered remote due to limited scope of activities performed at the site NJ.24-2 NJ.24-5 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium metal NJ.24-1 NJ.24-3 NJ.24-4 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP

485

Overview of DOE'S programs on aluminum and magnesium for automotive application  

SciTech Connect (OSTI)

The U.S. Department of Energy will present an update and review of its programs in aluminum and magnesium for automotive and heavy-duty vehicle applications. While the main programs focused on vehicle materials are in the Office of Transportation Technologies, contributing efforts will be described in the DOE Office of Industrial Technologies and the DOE Office of Energy Research. The presentation will discuss materials for body/chassis and power train, and will highlight the considerable synergy among the efforts. The bulk of the effort is on castings, sheet, and alloys with a smaller focus on metal matrix composites. Cost reduction and energy savings are the overriding themes of the programs.

Carpenter, J.; Diamond, S.; Dillich, S.; Fitzsimmons, T.; Milliken, J.; Sklad, P.

1999-02-28T23:59:59.000Z

486

The effect of GASAR processing parameters on porosity and properties in aluminum alloy  

SciTech Connect (OSTI)

The GASAR process involves the dissolution of hydrogen in a molten metal or alloy by controlling the hydrogen pressure and the temperature in a high pressure chamber. The difference between the hydrogen solubility in the melt and the solid is used to control the growth of hydrogen pores within the solidifying structure. Designed experiments have been performed to determine the relative effects of the saturation pressure, temperature, casting pressure, mold temperature and cooling rate on the total porosity, pore size, distribution and shape in pure nickel and aluminum alloys. The shape and distribution of pores was found to depend upon the structure of the primary solid pore nucleation and growth. Reducing the casting pressure had the strongest effect on increasing the total porosity and pore size.

Paradies, C.J.; Tobin, A. [Northrop Grumman Corp., Bethpage, NY (United States); Wolla, J. [Naval Research Lab., Washington, DC (United States)

1998-12-31T23:59:59.000Z

487

Metal Toxicity  

Science Journals Connector (OSTI)

Problems posed to plants by metal toxicity in the soils of the world are basically of two kinds. The first kind are of natural origin. These arise either as a consequence of the nature of the parent material f...

T. McNeilly

1994-01-01T23:59:59.000Z

488

The formation of iron aluminides on aluminum surface by using a Q-switched Nd:YAG laser  

SciTech Connect (OSTI)

The formation and growth of Fe based aluminum diffusion layers at the Fe-Al interface have been investigated to improve the surface hardness. The diffusion of Fe into Al has been accomplished by focusing a Q-switched Nd:YAG laser on the modified surface. The variety of the layer depth is achieved based on the type of heating and quenching media. Microstructural characterization and mechanical properties of the modified surface were carried out via gas discharge spectrometer GDS, X-Ray diffraction (XRD), Scanning electron microscope (SEM), and Vickers Hardness tester. The results indicate that hardness at the interface of Fe-Al layer is increased. The optimum hardness achieved as 93 HV at corresponding critical energy density of 438 Jcm{sup ?2}.

Bidin, Noriah; Al-Wafi, Yusef A. [Advanced Photonic Science Institute, Faculty of Science, Universiti Teknologi Malaysia, Skudai, 81310, Johor (Malaysia)

2014-03-05T23:59:59.000Z

489

Corrosion of aluminum alloys in a reactor disassembly basin  

SciTech Connect (OSTI)

This document discusses storage of aluminum clad fuel and target tubes of the Mark 22 assembly takes place in the concrete-lined, light-water-filled, disassembly basins located within each reactor area at the Savannah River Site (SRS). A corrosion test program has been conducted in the K-Reactor disassembly basin to assess the storage performance of the assemblies and other aluminum clad components in the current basin environment. Aluminum clad alloys cut from the ends of actual fuel and target tubes were originally placed in the disassembly water basin in December 1991. After time intervals varying from 45--182 days, the components were removed from the basin, photographed, and evaluated metallographically for corrosion performance. Results indicated that pitting of the 8001 aluminum fuel clad alloy exceeded the 30-mil (0.076 cm) cladding thickness within the 45-day exposure period. Pitting of the 1100 aluminum target clad alloy exceeded the 30-mil (0.076 cm) clad thickness in 107--182 days exposure. The existing basin water chemistry is within limits established during early site operations. Impurities such as Cl{sup {minus}}, NO{sub 3}{sup {minus}} and SO{sub 4}{sup {minus}} are controlled to the parts per million level and basin water conductivity is currently 170--190 {mu}mho/cm. The test program has demonstrated that the basin water is aggressive to the aluminum components at these levels. Other storage basins at SRS and around the US have successfully stored aluminum components for greater than ten years without pitting corrosion. These basins have impurity levels controlled to the parts per billion level (1000X lower) and conductivity less than 1.0 {mu}mho/cm.

Howell, J.P.; Zapp, P.E.; Nelson, D.Z.