National Library of Energy BETA

Sample records for metallic element atomic

  1. Metal atom oxidation laser

    DOE Patents [OSTI]

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

  2. Metal atom oxidation laser

    DOE Patents [OSTI]

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

  3. Metal atomization spray nozzle

    DOE Patents [OSTI]

    Huxford, Theodore J.

    1993-01-01

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.

  4. Metal atomization spray nozzle

    DOE Patents [OSTI]

    Huxford, T.J.

    1993-11-16

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  5. The New Element Curium (Atomic Number 96)

    DOE R&D Accomplishments [OSTI]

    Seaborg, G. T.; James, R. A.; Ghiorso, A.

    1948-00-00

    Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.

  6. The Common Elements of Atomic and Hadronic Physics (Conference...

    Office of Scientific and Technical Information (OSTI)

    The Common Elements of Atomic and Hadronic Physics Citation Details In-Document Search Title: The Common Elements of Atomic and Hadronic Physics Authors: Brodsky, Stanley J. ;...

  7. The New Element Berkelium (Atomic Number 97)

    DOE R&D Accomplishments [OSTI]

    Seaborg, G. T.; Thompson, S. G.; Ghiorso, A.

    1950-04-26

    An isotope of the element with atomic number 97 has been discovered as a product of the helium-ion bombardment of americium. The name berkelium, symbol Bk, is proposed for element 97. The chemical separation of element 97 from the target material and other reaction products was made by combinations of precipitation and ion exchange adsorption methods making use of its anticipated (III) and (IV) oxidation states and its position as a member of the actinide transition series. The distinctive chemical properties made use of in its separation and the equally distinctive decay properties of the particular isotope constitute the principal evidence for the new element.

  8. Atomic Layer Deposition of Metal Sulfide Materials | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Layer Deposition of Metal Sulfide Materials Title Atomic Layer Deposition of Metal Sulfide Materials Publication Type Journal Article Year of Publication 2015 Authors...

  9. Calculation of binary phase diagrams between the actinide elements, rare earth elements, and transition metal elements

    SciTech Connect (OSTI)

    Selle, J E

    1992-06-26

    Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussed in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented.

  10. The New Element Californium (Atomic Number 98)

    DOE R&D Accomplishments [OSTI]

    Seaborg, G. T.; Thompson, S. G.; Street, K. Jr.; Ghiroso, A.

    1950-06-19

    Definite identification has been made of an isotope of the element with atomic number 98 through the irradiation of Cm{sup 242} with about 35-Mev helium ions in the Berkeley Crocker Laboratory 60-inch cyclotron. The isotope which has been identified has an observed half-life of about 45 minutes and is thought to have the mass number 244. The observed mode of decay of 98{sup 244} is through the emission of alpha-particles, with energy of about 7.1 Mev, which agrees with predictions. Other considerations involving the systematics of radioactivity in this region indicate that it should also be unstable toward decay by electron capture. The chemical separation and identification of the new element was accomplished through the use of ion exchange adsorption methods employing the resin Dowex-50. The element 98 isotope appears in the eka-dysprosium position on elution curves containing berkelium and curium as reference points--that is, it precedes berkelium and curium off the column in like manner that dysprosium precedes terbium and gadolinium. The experiments so far have revealed only the tripositive oxidation state of eka-dysprosium character and suggest either that higher oxidation states are not stable in aqueous solutions or that the rates of oxidation are slow. The successful identification of so small an amount of an isotope of element 98 was possible only through having made accurate predictions of the chemical and radioactive properties.

  11. The New Element Americium (Atomic Number 95)

    DOE R&D Accomplishments [OSTI]

    Seaborg, G.T.; James, R.A.; Morgan, L.O.

    1948-01-00

    Several isotopes of the new element 95 have been produced and their radiations characterized. The chemical properties of this tripositive element are similar to those of the typical tripositive lanthanide rare-earth elements. Element 95 is different from the latter in the degree and rate of formation of certain compounds of the complex ion type, which makes possible the separation of element 95 from the lanthanide rare-earths. The name americium (after the Americas) and the symbol Am are suggested for the element on the basis of its position as the sixth member of the actinide rare-earth series, analogous to europium, Eu, of the lanthanide series.

  12. Radioactive Elements in the Standard Atomic Weights Table.

    SciTech Connect (OSTI)

    Holden,N.E.

    2007-08-04

    In the 1949 Report of the Atomic Weights Commission, a series of new elements were added to the Atomic Weights Table. Since these elements had been produced in the laboratory and were not discovered in nature, the atomic weight value of these artificial products would depend upon the production method. Since atomic weight is a property of an element as it occurs in nature, it would be incorrect to assign an atomic weight value to that element. As a result of that discussion, the Commission decided to provide only the mass number of the most stable (or longest-lived) known isotope as the number to be associated with these entries in the Atomic Weights Table. As a function of time, the mass number associated with various elements has changed as longer-lived isotopes of a particular element has been found in nature, or as improved half-life values of an element's isotopes might cause a shift in the longest-lived isotope from one mass to another. In the 1957 Report of the Atomic Weights Commission, it was decided to discontinue the listing of the mass number in the Atomic Weights Table on the grounds that the kind of information supplied by the mass number is inconsistent with the primary purpose of the Table, i.e., to provide accurate values of 'these constants' for use in various chemical calculations. In addition to the Table of Atomic Weights, the Commission included an auxiliary Table of Radioactive Elements for the first time, where the entry would be the isotope of that element which was the most stable, i.e., the one with the longest known half-life. In their 1973 Report, the Commission noted that the users of the main Table of Atomic Weights were dissatisfied with the omission of values for some elements in that Table and it was decided to reintroduce the mass number for the radioactive elements into the main Table. In their 1983 Report, the Commission decided that radioactive elements were considered to lack a characteristic terrestrial isotopic composition, from which an atomic weight value could be calculated to five or more figure accuracy, without prior knowledge of the sample involved. These elements were again listed in the Atomic Weights Table with no further information, i.e., with no mass number or atomic weight value.

  13. RADIOACTIVE ELEMENTS IN THE STANDARD ATOMIC WEIGHTS TABLE

    SciTech Connect (OSTI)

    Holden, N.E.; Holden, N.; Holden,N.E.

    2011-07-27

    In the 1949 Report of the Atomic Weights Commission, a series of new elements were added to the Atomic Weights Table. Since these elements had been produced in the laboratory and were not discovered in nature, the atomic weight value of these artificial products would depend upon the production method. Since atomic weight is a property of an element as it occurs in nature, it would be incorrect to assign an atomic weight value to that element. As a result of that discussion, the Commission decided to provide only the mass number of the most stable (or longest-lived) known isotope as the number to be associated with these entries in the Atomic Weights Table. As a function of time, the mass number associated with various elements has changed as longer-lived isotopes of a particular element has been found in nature, or as improved half-life values of an element's isotopes might cause a shift in the longest-lived isotope from one mass to another. In the 1957 Report of the Atomic Weights Commission, it was decided to discontinue the listing of the mass number in the Atomic Weights Table on the grounds that the kind of information supplied by the mass number is inconsistent with the primary purpose of the Table, i.e., to provide accurate values of 'these constants' for use in various chemical calculations. In addition to the Table of Atomic Weights, the Commission included an auxiliary Table of Radioactive Elements for the first time, where the entry would be the isotope of that element which was the most stable, i.e., the one with the longest known half-life. In their 1973 Report, the Commission noted that the users of the main Table of Atomic Weights were dissatisfied with the omission of values for some elements in that Table and it was decided to reintroduce the mass number for the radioactive elements into the main Table. In their 1983 Report, the Commission decided that radioactive elements were considered to lack a characteristic terrestrial isotopic composition, from which an atomic weight value could be calculated to five or more figure accuracy, without prior knowledge of the sample involved. These elements were again listed in the Atomic Weights Table with no further information, i.e., with no mass number or atomic weight value. For the elements, which have no stable characteristic terrestrial isotopic composition, the data on the half-lives and the relative atomic masses for the nuclides of interest for those elements have been evaluated. The values of the half-lives with their uncertainties are listed in the table. The uncertainties are given for the last digit quoted of the half-life and are given in parentheses. A half-life entry for the Table having a value and an uncertainty of 7 {+-} 3 is listed in the half-life column as 7 (3). The criteria to include data in this Table, is to be the same as it has been for over sixty years. It is the same criteria, which are used for all data that are evaluated for inclusion in the Standard Table of Atomic Weights. If a report of data is published in a peer-reviewed journal, that data is evaluated and considered for inclusion in the appropriate table of the biennial report of the Atomic Weights Commission. As better data becomes available in the future, the information that is contained in either of the Tables of Standard Atomic Weights or in the Table of Radioactive Elements may be modified. It should be noted that the appearance of any datum in the Table of the Radioactive Elements is merely for the purposes of calculating an atomic mass value for any sample of a radioactive material, which might have a variety of isotopic compositions and it has no implication as to the priority for claiming discovery of a given element and is not intended to. The atomic mass values have been taken primarily from the 2003 Atomic Mass Table. Mass values for those radioisotopes that do not appear in the 2003 Atomic mass Table have been taken from preliminary data of the Atomic Mass Data Center. Most of the quoted half-lives.

  14. Ni/metal hydride secondary element

    DOE Patents [OSTI]

    Bauerlein, Peter

    2005-04-19

    A Ni/metal hydride secondary element having a positive nickel hydroxide electrode, a negative electrode having a hydrogen storage alloy, and an alkaline electrolyte, the positive electrode, provided with a three-dimensional metallic conductive structure, also contains an aluminum compound which is soluble in the electrolyte, in addition to nickel hydroxide and cobalt oxide. The aluminum compound is aluminum hydroxide and/or aluminum oxide, and the mass of the aluminum compound which is present in the positive bulk material mixture is 0.1 to 2% by weight relative to the mass of the nickel hydroxide which is present. In combination with aluminum hydroxide or aluminum oxide, the positive electrode further contains lanthanoid oxidic compounds Y.sub.2 O.sub.3, La.sub.2 O.sub.3 and Ca(OH).sub.2, as well as mixtures of these compounds.

  15. Atomizing apparatus for making polymer and metal powders and whiskers

    DOE Patents [OSTI]

    Otaigbe, Joshua U.; McAvoy, Jon M.; Anderson, Iver E.; Ting, Jason; Mi, Jia; Terpstra, Robert

    2003-03-18

    Method for making polymer particulates, such as spherical powder and whiskers, by melting a polymer material under conditions to avoid thermal degradation of the polymer material, atomizing the melt using gas jet means in a manner to form atomized droplets, and cooling the droplets to form polymer particulates, which are collected for further processing. Atomization parameters can be controlled to produce polymer particulates with controlled particle shape, particle size, and particle size distribution. For example, atomization parameters can be controlled to produce spherical polymer powders, polymer whiskers, and combinations of spherical powders and whiskers. Atomizing apparatus also is provided for atoomizing polymer and metallic materials.

  16. Heaviest Nuclei: New Element with Atomic Number 117

    ScienceCinema (OSTI)

    Oganessian, Yuri [Flerov Laboratory of Nuclear Reactions, Russia and Joint Institute for Nuclear Research

    2010-09-01

    One of the fundamental outcomes of the nuclear shell model is the prediction of the 'stability islands' in the domain of the hypothetical super heavy elements. The talk is devoted to the experimental verification of these predictions - the synthesis and study of both the decay and chemical properties of the super heavy elements. The discovery of a new chemical element with atomic number Z=117 is reported. The isotopes 293117 and 294117 were produced in fusion reactions between 48Ca and 249Bk. Decay chains involving 11 new nuclei were identified by means of the Dubna gas-filled recoil separator. The measured decay properties show a strong rise of stability for heavier isotopes with Z =111, validating the concept of the long sought island of enhanced stability for heaviest nuclei.

  17. Induce magnetism into silicene by embedding transition-metal atoms

    SciTech Connect (OSTI)

    Sun, Xiaotian; Wang, Lu E-mail: yyli@suda.edu.cn; Lin, Haiping; Hou, Tingjun; Li, Youyong E-mail: yyli@suda.edu.cn

    2015-06-01

    Embedding transition-metal (TM) atoms into nonmagnetic nanomaterials is an efficient way to induce magnetism. Using first-principles calculations, we systematically investigated the structural stability and magnetic properties of TM atoms from Sc to Zn embedded into silicene with single vacancy (SV) and double vacancies (DV). The binding energies for different TM atoms correlate with the TM d-shell electrons. Sc, Ti, and Co show the largest binding energies of as high as 6 eV, while Zn has the lowest binding energy of about 2 eV. The magnetic moment of silicene can be modulated by embedding TM atoms from V to Co, which mainly comes from the 3d orbitals of TM along with partly contributions from the neighboring Si atoms. Fe atom on SV and Mn atom on DV have the largest magnetic moment of more than 3 μB. In addition, we find that doping of N or C atoms on the vacancy site could greatly enhance the magnetism of the systems. Our results provide a promising approach to design silicene-based nanoelectronics and spintronics device.

  18. Nucleation of Ultrathin, Continuous, Conformal Metal Films Using Atomic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Layer Deposition and Applications as Fuel Cell Catalysts - Energy Innovation Portal Hydrogen and Fuel Cell Hydrogen and Fuel Cell Advanced Materials Advanced Materials Find More Like This Return to Search Nucleation of Ultrathin, Continuous, Conformal Metal Films Using Atomic Layer Deposition and Applications as Fuel Cell Catalysts University of Colorado Contact CU About This Technology Technology Marketing SummaryA research team at the University of Colorado at Boulder led by Steven George

  19. Atomic picture of elastic deformation in a metallic glass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, X. D.; Aryal, S.; Zhong, C.; Ching, W. Y.; Sheng, H. W.; Zhang, H.; Zhang, D. X.; Cao, Q. P.; Jiang, J. Z.

    2015-03-17

    The tensile behavior of a Ni₆₀Nb₄₀ metallic glass (MG) has been studied by using ab initio density functional theory (DFT) calculation with a large cell containing 1024 atoms (614 Ni and 410 Nb). We provide insight into how a super elastic limit can be achieved in a MG. Spatially inhomogeneous responses of single atoms and also major polyhedra are found to change greatly with increasing external stress when the strain is over 2%, causing the intrinsically viscoelastic behavior. We uncover the origin of the observed super elastic strain limit under tension (including linear and viscoelastic strains) in small-sized MG samples,more » mainly caused by inhomogeneous distribution of excess volumes in the form of newly formed subatomic cavities.« less

  20. Atomic picture of elastic deformation in a metallic glass

    SciTech Connect (OSTI)

    Wang, X. D.; Aryal, S.; Zhong, C.; Ching, W. Y.; Sheng, H. W.; Zhang, H.; Zhang, D. X.; Cao, Q. P.; Jiang, J. Z.

    2015-03-17

    The tensile behavior of a Ni??Nb?? metallic glass (MG) has been studied by using ab initio density functional theory (DFT) calculation with a large cell containing 1024 atoms (614 Ni and 410 Nb). We provide insight into how a super elastic limit can be achieved in a MG. Spatially inhomogeneous responses of single atoms and also major polyhedra are found to change greatly with increasing external stress when the strain is over 2%, causing the intrinsically viscoelastic behavior. We uncover the origin of the observed super elastic strain limit under tension (including linear and viscoelastic strains) in small-sized MG samples, mainly caused by inhomogeneous distribution of excess volumes in the form of newly formed subatomic cavities.

  1. The Common Elements of Atomic and Hadronic Physics

    SciTech Connect (OSTI)

    Brodsky, Stanley J.

    2015-02-26

    Atomic physics and hadronic physics are both governed by the Yang Mills gauge theory Lagrangian; in fact, Abelian quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics can provide important insight into hadronic eigenstates in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of frame-independent light-front relativistic equations of motion consistent with light-front holography which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The production of antihydrogen in flight can provide important insight into the dynamics of hadron production in QCD at the amplitude level. The renormalization scale for the running coupling is unambiguously set in QED; an analogous procedure sets the renormalization scales in QCD, leading to scheme-independent scale-fixed predictions. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, the quark-interchange process and light-front quantization have important applicants for atomic physics and photon science, especially in the relativistic domain.

  2. Method for detection of antibodies for metallic elements

    DOE Patents [OSTI]

    Barrick, Charles W.; Clarke, Sara M.; Nordin, Carl W.

    1993-11-30

    An apparatus and method for detecting antibodies specific to non-protein antigens. The apparatus is an immunological plate containing a plurality of plastic projections coated with a non-protein material. Assays utilizing the plate are capable of stabilizing the non-protein antigens with detection levels for antibodies specific to the antigens on a nanogram level. A screening assay with the apparatus allows for early detection of exposure to non-protein materials. Specifically metallic elements are detected.

  3. Method for detection of antibodies for metallic elements

    DOE Patents [OSTI]

    Barrick, C.W.; Clarke, S.M.; Nordin, C.W.

    1993-11-30

    An apparatus and method for detecting antibodies specific to non-protein antigens. The apparatus is an immunological plate containing a plurality of plastic projections coated with a non-protein material. Assays utilizing the plate are capable of stabilizing the non-protein antigens with detection levels for antibodies specific to the antigens on a nanogram level. A screening assay with the apparatus allows for early detection of exposure to non-protein materials. Specifically metallic elements are detected. 10 figures.

  4. Mapping Metals Incorporation of a Single Catalyst Particle Using Element

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specific X-ray Nanotomography | Stanford Synchrotron Radiation Lightsource Mapping Metals Incorporation of a Single Catalyst Particle Using Element Specific X-ray Nanotomography Tuesday, March 31, 2015 Fluid catalytic cracking (FCC) is the refining process for converting large and/or heavy molecules of oil feedstock into smaller and lighter hydrocarbons, such as gasoline. The workhorse of the FCC process is a tiny catalyst particle of 50-150 µm diameter that consists of a complex mixture of

  5. FIA-13-0058 - In the Matter of Hanford Atomic Metals Trades Council |

    Energy Savers [EERE]

    Department of Energy 8 - In the Matter of Hanford Atomic Metals Trades Council FIA-13-0058 - In the Matter of Hanford Atomic Metals Trades Council On October 29, 2013, the Office of Hearings and Appeals (OHA) issued a decision denying an appeal (Appeal) from a Freedom of Information Act (FOIA) determination issued by the Department of Energy's (DOE) Office of Information Resources (OIR). The Hanford Atomic Metals Trades Council (Appellant), sought categories of records concerning

  6. Forecast of Standard Atomic Weights for the Mononuclidic Elements – 2011

    SciTech Connect (OSTI)

    Holden, N.E.; Holden, N.; Holden,N.E.

    2011-07-27

    In this short report, I will provide an early warning about potential changes to the standard atomic weight values for the twenty mononuclidic and the so-called pseudo-mononuclidic ({sup 232}Th and {sup 231}Pa) chemical elements due to the estimated changes in the mass values to be published in the next Atomic Mass Tables within the next two years. There have been many new measurements of atomic masses, since the last published Atomic Mass Table. The Atomic Mass Data Center has released an unpublished version of the present status of the atomic mass values as a private communication. We can not update the Standard Atomic Weight Table at this time based on these unpublished values but we can anticipate how many changes are probably going to be expected in the next few years on the basis of the forthcoming publication of the Atomic Mass Table. I will briefly discuss the procedures that the Atomic Weights Commission used in deriving the recommended Standard Atomic Weight values and their uncertainties from the atomic mass values. I will also discuss some concern raised about a proposed change in the definition of the mole. The definition of the mole is now connected directly to the mass of a {sup 12}C isotope (which is defined as 12 exactly) and to the kilogram. A change in the definition of the mole will probably impact the mass of {sup 12}C.

  7. The atomic level journey from aqueous polyoxometalate to metal oxide

    SciTech Connect (OSTI)

    Hou, Yu; Fast, Dylan B.; Ruther, Rose E.; Amador, Jenn M.; Fullmer, Lauren B.; Decker, Shawn R.; Zakharov, Lev N.; Dolgos, Michelle R. Nyman, May

    2015-01-15

    Aqueous precursors tailored for the deposition of thin film materials are desirable for sustainable, simple, low energy production of advanced materials. Yet the simple practice of using aqueous precursors is complicated by the multitude of interactions that occur between ions and water during dehydration. Here we use lithium polyoxoniobate salts to investigate the fundamental interactions in the transition from precursor cluster to oxide film. Small-angle X-ray scattering of solutions, total X-ray scattering of intermediate gels, and morphological and structural characterization of the lithium niobate thin films reveal the atomic level transitions between these states. The studies show that (1) lithium–[H{sub 2}Nb{sub 6}O{sub 19}]{sup 6−} has drastically different solution behaviour than lithium–[Nb{sub 6}O{sub 19}]{sup 8−}, linked to the precursor salt structure (2) in both compositions, the intermediate gel preserves the polyoxoniobate clusters and show similar local order and (3) the morphology and phases of deposited films reflect the ions behaviour throughout the journey from cluster solution to metal oxide. - Graphical abstract: Aqueous lithium polyoxoniobate salts were used to prepare lithium niobate (LiNbO{sub 3}) thin films. Fundamental studies were performed to investigate the interactions in the transition from precursor cluster to the oxide film. It was found that acid–base and ion-association chemistries of the aqueous and gel systems significantly affect the key processes in this atom-level journey. - Highlights: • Lithium polyoxoniobate clusters were synthesized with control over Li:Nb ratio as precursors for LiNbO{sub 3} films. • X-ray scattering studies in solution and the solid-state revealed differences controlled by Li:Nb ratio. • Film deposition studies revealed phase, composition and morphology is controlled by Li:Nb ratio. • Cluster to film transformation was revealed using total X-ray scattering and TGA.

  8. Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic Resolution Electron Microscopy and Field Evaporation Simulation

    SciTech Connect (OSTI)

    Devaraj, Arun; Colby, Robert J.; Vurpillot, F.; Thevuthasan, Suntharampillai

    2014-03-26

    Metal-dielectric composite materials, specifically metal nanoparticles supported on or embedded in metal oxides, are widely used in catalysis. The accurate optimization of such nanostructures warrants the need for detailed three-dimensional characterization. Atom probe tomography is uniquely capable of generating sub-nanometer structural and compositional data with part-per-million mass sensitivity, but there are reconstruction artifacts for composites containing materials with strongly differing fields of evaporation, as for oxide-supported metal nanoparticles. By correlating atom probe tomography with scanning transmission electron microscopy for Au nanoparticles embedded in an MgO support, deviations from an ideal topography during evaporation are demonstrated directly, and correlated with compositional errors in the reconstructed data. Finite element simulations of the field evaporation process confirm that protruding Au nanoparticles will evolve on the tip surface, and that evaporation field variations lead to an inaccurate assessment of the local composition, effectively lowering the spatial resolution of the final reconstructed dataset. Cross-correlating the experimental data with simulations results in a more detailed understanding of local evaporation aberrations during APT analysis of metal-oxide composites, paving the way towards a more accurate three-dimensional characterization of this technologically important class of materials.

  9. SEPARATION OF PLUTONIUM FROM ELEMENTS HAVING AN ATOMIC NUMBER NOT LESS THAN 92

    DOE Patents [OSTI]

    Fitch, F.T.; Russell, D.S.

    1958-09-16

    other elements having atomic numbers nnt less than 92, It has been proposed in the past to so separate plutonium by solvent extraction iato an organic solvent using triglycoldichlcride as the organic solvent. The improvement lies in the discovery that triglycoldichloride performs far more efflciently as an extractant, wher certain second organie compounds are added to it. Mentioned as satisfactory additive compounds are benzaldehyde, saturated aliphatic aldehydes containtng at least twc carbon atoms, and certain polyhydric phenols.

  10. Atomic Layer Deposition (ALD) Preparation of Noble Metal Catalysts - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Nuclear Security Administration Explores Peaceful Uses of Nuclear Explosions Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions Nevada Test Site, NV As part of the Plowshare program seeking to develop peaceful uses for nuclear explosives, the Atomic Energy Commission conducts the Sedan test at the Nevada Test Site Programs | National Nuclear Security Administration

    Takes Over Responsibility for all Atomic Energy Programs Atomic Energy Commission Takes Over

  11. Hydrogen atom donor compounds as contrast enhancers for black-and-white photothermographic and thermographic elements

    DOE Patents [OSTI]

    Harring, Lori S. (Hudson, WI); Simpson, Sharon M. (Lake Elmo, MN); Sansbury, Francis H. (Sawbridgeworth, GB2)

    1997-01-01

    Hydrogen atom donor compounds are useful as contrast enhancers when used in combination with (i) hindered phenol developers, and (ii) trityl hydrazide and/or formyl-phenyl hydrazine co-developers, to produce ultra-high contrast black-and-white photothermographic and thermographic elements. The photothermographic and thermographic elements may be used as a photomask in a process where there is a subsequent exposure of an ultraviolet or short wavelength visible radiation-sensitive imageable medium.

  12. Method and apparatus for atomization and spraying of molten metals

    DOE Patents [OSTI]

    Hobson, D.O.; Alexeff, I.; Sikka, V.K.

    1988-07-19

    A method and device for dispersing molten metal into fine particulate spray, the method comprises applying an electric current through the molten metal and simultaneously applying a magnetic field to the molten metal in a plane perpendicular to the electric current, whereby the molten metal is caused to form into droplets at an angle perpendicular to both the electric current and the magnetic field. The device comprises a structure for providing a molten metal, appropriately arranged electrodes for applying an electric current through the molten metal, and a magnet for providing a magnetic field in a plane perpendicular to the electric current. 11 figs.

  13. Engineering quantum anomalous/valley Hall states in graphene via metal-atom

    Office of Scientific and Technical Information (OSTI)

    adsorption: An ab-initio study (Journal Article) | SciTech Connect Engineering quantum anomalous/valley Hall states in graphene via metal-atom adsorption: An ab-initio study Citation Details In-Document Search Title: Engineering quantum anomalous/valley Hall states in graphene via metal-atom adsorption: An ab-initio study Authors: Ding, Jun ; Qiao, Zhenhua ; Feng, Wanxiang ; Yao, Yugui ; Niu, Qian Publication Date: 2011-11-15 OSTI Identifier: 1101181 Type: Publisher's Accepted Manuscript

  14. An electroless approach to atomic layer deposition on noble metal powders.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: An electroless approach to atomic layer deposition on noble metal powders. Citation Details In-Document Search Title: An electroless approach to atomic layer deposition on noble metal powders. Abstract not provided. Authors: Cappillino, Patrick ; Robinson, David ; Sugar, Joshua Daniel ; El Gabaly Marquez, Farid ; Cai, Trevor ; Liu, Zhi ; Stickney, John Publication Date: 2014-03-01 OSTI Identifier: 1140790 Report Number(s): SAND2014-2265C 505441 DOE

  15. Atomic-Layer Deposition on Noble Metal Powders. (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Atomic-Layer Deposition on Noble Metal Powders. Citation Details In-Document Search Title: Atomic-Layer Deposition on Noble Metal Powders. Abstract not provided. Authors: Robinson, David ; Cappillino, Patrick. ; Salloum, Maher N. ; Sugar, Joshua Daniel ; El Gabaly Marquez, Farid ; Sheridan, Leah B. ; Jagannathan, Kaushik ; Benson, David M. ; Stickney, John L. Publication Date: 2014-10-01 OSTI Identifier: 1241747 Report Number(s): SAND2014-18364PE 537921 DOE Contract Number:

  16. Electric dipole polarizabilities at imaginary frequencies for hydrogen, the alkali-metal, alkaline-earth, and noble gas atoms

    SciTech Connect (OSTI)

    Derevianko, Andrei Porsev, Sergey G. Babb, James F.

    2010-05-15

    The electric dipole polarizabilities evaluated at imaginary frequencies for hydrogen, the alkali-metal atoms, the alkaline-earth atoms, and the noble gases are tabulated along with the resulting values of the atomic static polarizabilities, the atom-surface interaction constants, and the dispersion (or van der Waals) constants for the homonuclear and the heteronuclear diatomic combinations of the atoms.

  17. Method for quantitative determination and separation of trace amounts of chemical elements in the presence of large quantities of other elements having the same atomic mass

    DOE Patents [OSTI]

    Miller, C.M.; Nogar, N.S.

    1982-09-02

    Photoionization via autoionizing atomic levels combined with conventional mass spectroscopy provides a technique for quantitative analysis of trace quantities of chemical elements in the presence of much larger amounts of other elements with substantially the same atomic mass. Ytterbium samples smaller than 10 ng have been detected using an ArF* excimer laser which provides the atomic ions for a time-of-flight mass spectrometer. Elemental selectivity of greater than 5:1 with respect to lutetium impurity has been obtained. Autoionization via a single photon process permits greater photon utilization efficiency because of its greater absorption cross section than bound-free transitions, while maintaining sufficient spectroscopic structure to allow significant photoionization selectivity between different atomic species. Separation of atomic species from others of substantially the same atomic mass is also described.

  18. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at Tx ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (Tm ~ 900K), and the crossover temperature ismore » roughly twice of the glass-transition temperature (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.« less

  19. Analytic matrix elements for the two-electron atomic basis with logarithmic terms

    SciTech Connect (OSTI)

    Liverts, Evgeny Z.; Barnea, Nir

    2014-08-01

    The two-electron problem for the helium-like atoms in S-state is considered. The basis containing the integer powers of ln r, where r is a radial variable of the Fock expansion, is studied. In this basis, the analytic expressions for the matrix elements of the corresponding Hamiltonian are presented. These expressions include only elementary and special functions, what enables very fast and accurate computation of the matrix elements. The decisive contribution of the correct logarithmic terms to the behavior of the two-electron wave function in the vicinity of the triple-coalescence point is reaffirmed.

  20. Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chi, Miaofang; Wang, Chao; Lei, Yinkai; Wang, Guofeng; Li, Dongguo; More, Karren L.; Lupini, Andrew; Allard, Lawrence F.; Markovic, Nenad M.; Stamenkovic, Vojislav R.

    2015-11-18

    The catalytic performance of nanoparticles is primarily determined by the precise nature of the surface and near-surface atomic configurations, which can be tailored by post-synthesis annealing effectively and straightforwardly. Understanding the complete dynamic response of surface structure and chemistry to thermal treatments at the atomic scale is imperative for the rational design of catalyst nanoparticles. Here, by tracking the same individual Pt3Co nanoparticles during in situ annealing in a scanning transmission electron microscope, we directly discern five distinct stages of surface elemental rearrangements in Pt3Co nanoparticles at the atomic scale: initial random (alloy) elemental distribution; surface platinum-skin-layer formation; nucleation ofmore » structurally ordered domains; ordered framework development and, finally, initiation of amorphization. Furthermore, a comprehensive interplay among phase evolution, surface faceting and elemental inter-diffusion is revealed, and supported by atomistic simulations. Furthermore, this work may pave the way towards designing catalysts through post-synthesis annealing for optimized catalytic performance.« less

  1. Note: Design principles of a linear array multi-channel effusive metal-vapor atom source

    SciTech Connect (OSTI)

    Jana, B.; Majumder, A.; Thakur, K. B.; Das, A. K.

    2013-10-15

    Atomic beams can easily be produced by allowing atoms to effuse through a channel. In an earlier investigation [A. Majumder et al., Vacuum 83, 989 (2009)], we had designed, fabricated, and characterized an effusive metal-vapor source using collinear-array of multi-channel. In this note, we describe the theoretical basis of designing the source. Atom density in atomic beam has been estimated using a set of analytical expressions for long-channel operated in transparent mode. Parametric studies on aspect ratio of channel, inter-channel separation, beam width, and vertical distance from the source are carried out. They are useful in providing physical picture and optimizing design parameters.

  2. PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS

    DOE Patents [OSTI]

    Moore, R.H.

    1962-10-01

    A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)

  3. Phase transition into the metallic state in hypothetical (without molecules) dense atomic hydrogen

    SciTech Connect (OSTI)

    Khomkin, A. L. Shumikhin, A. S.

    2013-10-15

    A simple physical model of the metal-dielectric (vapor-liquid) phase transition in hypothetical (without molecules) atomic hydrogen is proposed. The reason for such a transition is the quantum collective cohesive energy occurring due to quantum electron-electron exchange similar to the cohesive energy in the liquid-metal phase of alkali metals. It is found that the critical parameters of the transition are P{sub c} ? 41000 atm, ?{sub c} ? 0.1 g/cm{sup 3}, and T{sub c} ? 9750 K.

  4. Hanford Atomic Metal Trades Council Gives Gifts to More Than 100 Children in Need

    Broader source: Energy.gov [DOE]

    For the fifth consecutive year, members of the Hanford Atomic Metal Trades Council’s 14 affiliates and other workers at the Hanford Site donated bicycles, helmets, toys, clothes, books, diapers, and other items to 107 children in need over the holidays.

  5. From deep TLS validation to ensembles of atomic models built from elemental motions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Urzhumtsev, Alexandre; Afonine, Pavel V.; Van Benschoten, Andrew H.; Fraser, James S.; Adams, Paul D.

    2015-07-28

    The translation–libration–screw model first introduced by Cruickshank, Schomaker and Trueblood describes the concerted motions of atomic groups. Using TLS models can improve the agreement between calculated and experimental diffraction data. Because the T, L and S matrices describe a combination of atomic vibrations and librations, TLS models can also potentially shed light on molecular mechanisms involving correlated motions. However, this use of TLS models in mechanistic studies is hampered by the difficulties in translating the results of refinement into molecular movement or a structural ensemble. To convert the matrices into a constituent molecular movement, the matrix elements must satisfy severalmore » conditions. Refining the T, L and S matrix elements as independent parameters without taking these conditions into account may result in matrices that do not represent concerted molecular movements. Here, a mathematical framework and the computational tools to analyze TLS matrices, resulting in either explicit decomposition into descriptions of the underlying motions or a report of broken conditions, are described. The description of valid underlying motions can then be output as a structural ensemble. All methods are implemented as part of the PHENIX project.« less

  6. Rydberg hydrogen atom near a metallic surface: Stark regime and ionization dynamics

    SciTech Connect (OSTI)

    Inarrea, Manuel; Salas, J. Pablo; Lanchares, Victor; Pascual, Ana Isabel; Palacian, Jesus F.; Yanguas, Patricia

    2007-11-15

    We investigate the classical dynamics of a hydrogen atom near a metallic surface in the presence of a uniform electric field. To describe the atom-surface interaction we use a simple electrostatic image model. Owing to the axial symmetry of the system, the z-component of the canonical angular momentum P{sub {phi}} is an integral and the electronic dynamics is modeled by a two degrees of freedom Hamiltonian in cylindrical coordinates. The structure and evolution of the phase space as a function of the electric field strength is explored extensively by means of numerical techniques of continuation of families of periodic orbits and Poincare surfaces of section. We find that, due to the presence of the electric field, the atom is strongly polarized through two consecutive pitchfork bifurcations that strongly change the phase space structure. Finally, by means of the phase space transition state theory and the classical spectral theorem, the ionization dynamics of the atom is studied.

  7. Process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal sulfide sorbents

    DOE Patents [OSTI]

    Ayala, Raul E.; Gal, Eli

    1995-01-01

    A process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal-sulfur compound. Spent metal-sulfur compound is regenerated to re-usable metal oxide by moving a bed of spent metal-sulfur compound progressively through a single regeneration vessel having a first and second regeneration stage and a third cooling and purging stage. The regeneration is carried out and elemental sulfur is generated in the first stage by introducing a first gas of sulfur dioxide which contains oxygen at a concentration less than the stoichiometric amount required for complete oxidation of the spent metal-sulfur compound. A second gas containing sulfur dioxide and excess oxygen at a concentration sufficient for complete oxidation of the partially spent metal-sulfur compound, is introduced into the second regeneration stage. Gaseous sulfur formed in the first regeneration stage is removed prior to introducing the second gas into the second regeneration stage. An oxygen-containing gas is introduced into the third cooling and purging stage. Except for the gaseous sulfur removed from the first stage, the combined gases derived from the regeneration stages which are generally rich in sulfur dioxide and lean in oxygen, are removed from the regenerator as an off-gas and recycled as the first and second gas into the regenerator. Oxygen concentration is controlled by adding air, oxygen-enriched air or pure oxygen to the recycled off-gas.

  8. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOE Patents [OSTI]

    Farmer, Joseph C. (Tracy, CA); Wong, Frank M. G. (Livermore, CA); Haslam, Jeffery J. (Livermore, CA); Yang, Nancy (Lafayette, CA); Lavernia, Enrique J. (Davis, CA); Blue, Craig A. (Knoxville, TN); Graeve, Olivia A. (Reno, NV); Bayles, Robert (Annandale, VA); Perepezko, John H. (Madison, WI); Kaufman, Larry (Brookline, MA); Schoenung, Julie (Davis, CA); Ajdelsztajn, Leo (Walnut Creek, CA)

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  9. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOE Patents [OSTI]

    Farmer, Joseph C.; Wong, Frank M.G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2014-07-15

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  10. Understanding glass-forming ability through sluggish crystallization of atomically thin metallic glassy films

    SciTech Connect (OSTI)

    Sun, Y. T.; Cao, C. R.; Huang, K. Q.; Zhao, N. J.; Gu, L. E-mail: dzheng@iphy.ac.cn Zheng, D. N. E-mail: dzheng@iphy.ac.cn Wang, W. H. E-mail: dzheng@iphy.ac.cn

    2014-08-04

    The glass-forming ability (GFA) of an alloy, closely related to its ability to resist crystallization, is a crucial issue in condensed matter physics. So far, the studies on GFA are mostly statistical and empirical guides. Benefiting from the ultrahigh thermal stability of ultrathin metallic glassy film and high resolution spherical aberration-corrected transmission electron microscope, the crystallization of atomically thin ZrCu and its microalloyed ZrCuAl glasses with markedly different GFA was investigated at the atomic scale. We find the Zr diffusivity estimated from the density of nuclei is dramatically decreased by adding of Al, which is the major reason for the much better GFA of the ZrCuAl metallic glass.

  11. Barrier-free subsurface incorporation of 3d metal atoms into Bi(111) films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Klein, C.; Vollmers, N. J.; Gerstmann, U.; Zahl, P.; Lukermann, D.; Jnawali, G.; Pfnur, H.; Sutter, P.; Tegenkamp, C.; Schmidt, W. G.; et al

    2015-05-27

    By combining scanning tunneling microscopy with density functional theory it is shown that the Bi(111) surface provides a well-defined incorporation site in the first bilayer that traps highly coordinating atoms such as transition metals (TMs) or noble metals. All deposited atoms assume exactly the same specific sevenfold coordinated subsurface interstitial site while the surface topography remains nearly unchanged. Notably, 3d TMs show a barrier-free incorporation. The observed surface modification by barrier-free subsorption helps to suppress aggregation in clusters. Thus, it allows a tuning of the electronic properties not only for the pure Bi(111) surface, but may also be observed formore » topological insulators formed by substrate-stabilized Bi bilayers.« less

  12. Probing the Kondo lattice model with alkaline-earth-metal atoms

    SciTech Connect (OSTI)

    Foss-Feig, Michael; Hermele, Michael; Rey, Ana Maria

    2010-05-15

    We study transport properties of alkaline-earth-metal atoms governed by the Kondo lattice Hamiltonian plus a harmonic confining potential, and suggest simple dynamical probes of several different regimes of the phase diagram that can be implemented with current experimental techniques. In particular, we show how Kondo physics at strong coupling, at low density, and in the heavy fermion phase is manifest in the dipole oscillations of the conduction band upon displacement of the trap center.

  13. Thermal Casimir-Polder shifts in Rydberg atoms near metallic surfaces

    SciTech Connect (OSTI)

    Crosse, J. A.; Clements, Kate; Buhmann, Stefan Y.; Scheel, Stefan; Ellingsen, Simen A.

    2010-07-15

    The Casimir-Polder (CP) potential and transition rates of a Rydberg atom above a plane metal surface at finite temperature are discussed. As an example, the CP potential and transition rates of a rubidium atom above a copper surface at 300 K are computed. Close to the surface we show that the quadrupole correction to the force is significant and increases with increasing principal quantum number n. For both the CP potential and decay rates one finds that the dominant contribution comes from the longest wavelength transition and the potential is independent of temperature. We provide explicit scaling laws for potential and decay rates as functions of atom-surface distance and principal quantum number of the initial Rydberg state.

  14. Finite element analyses of tool stresses in metal cutting processes

    SciTech Connect (OSTI)

    Kistler, B.L.

    1997-01-01

    In this report, we analytically predict and examine stresses in tool tips used in high speed orthogonal machining operations. Specifically, one analysis was compared to an existing experimental measurement of stresses in a sapphire tool tip cutting 1020 steel at slow speeds. In addition, two analyses were done of a carbide tool tip in a machining process at higher cutting speeds, in order to compare to experimental results produced as part of this study. The metal being cut was simulated using a Sandia developed damage plasticity material model, which allowed the cutting to occur analytically without prespecifying the line of cutting/failure. The latter analyses incorporated temperature effects on the tool tip. Calculated tool forces and peak stresses matched experimental data to within 20%. Stress contours generally agreed between analysis and experiment. This work could be extended to investigate/predict failures in the tool tip, which would be of great interest to machining shops in understanding how to optimize cost/retooling time.

  15. Low-melting elemental metal or fusible alloy encapsulated polymerization initiator for delayed initiation

    DOE Patents [OSTI]

    Hermes, Robert E.

    2015-12-22

    An encapsulated composition for polymerization includes an initiator composition for initiating a polymerization reaction, and a capsule prepared from an elemental metal or fusible alloy having a melting temperature from about 20.degree. C. to about 200.degree. C. A fluid for polymerization includes the encapsulated composition and a monomer. When the capsule melts or breaks open, the initiator is released.

  16. Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing

    SciTech Connect (OSTI)

    Chi, Miaofang; Wang, Chao; Lei, Yinkai; Wang, Guofeng; Li, Dongguo; More, Karren L.; Lupini, Andrew; Allard, Lawrence F.; Markovic, Nenad M.; Stamenkovic, Vojislav R.

    2015-11-18

    The catalytic performance of nanoparticles is primarily determined by the precise nature of the surface and near-surface atomic configurations, which can be tailored by post-synthesis annealing effectively and straightforwardly. Understanding the complete dynamic response of surface structure and chemistry to thermal treatments at the atomic scale is imperative for the rational design of catalyst nanoparticles. Here, by tracking the same individual Pt3Co nanoparticles during in situ annealing in a scanning transmission electron microscope, we directly discern five distinct stages of surface elemental rearrangements in Pt3Co nanoparticles at the atomic scale: initial random (alloy) elemental distribution; surface platinum-skin-layer formation; nucleation of structurally ordered domains; ordered framework development and, finally, initiation of amorphization. Furthermore, a comprehensive interplay among phase evolution, surface faceting and elemental inter-diffusion is revealed, and supported by atomistic simulations. Furthermore, this work may pave the way towards designing catalysts through post-synthesis annealing for optimized catalytic performance.

  17. Diffusion anisotropy of poor metal solute atoms in hcp-Ti

    SciTech Connect (OSTI)

    Scotti, Lucia Mottura, Alessandro

    2015-05-28

    Atom migration mechanisms influence a wide range of phenomena: solidification kinetics, phase equilibria, oxidation kinetics, precipitation of phases, and high-temperature deformation. In particular, solute diffusion mechanisms in α-Ti alloys can help explain their excellent high-temperature behaviour. The purpose of this work is to study self- and solute diffusion in hexagonal close-packed (hcp)-Ti, and its anisotropy, from first-principles using the 8-frequency model. The calculated diffusion coefficients show that diffusion energy barriers depend more on bonding characteristics of the solute rather than the size misfit with the host, while the extreme diffusion anisotropy of some solute elements in hcp-Ti is a result of the bond angle distortion.

  18. Atomic orbital data for elements with atomic numbers 1 less than or equal to Z less than or equal to 103

    SciTech Connect (OSTI)

    Kerley, G.I.

    1988-10-01

    Atomic orbital energies and radial expectation values are tabulated for the ground state electronic configuration of all elements with Z less than or equal to 103 and for all orbitals having principal quantum numbers n less than or equal to 8. These tables have been developed for use in a model of electronic excitation and ionization that requires orbital data for both the occupied and unoccupied orbitals. The wavefunctions were calculated by the Dirac-Hartree-Fock-Slater method, with a local exchange potential due to Liberman. This potential has the Coulombic form at large distances from the nucleus, with the result that both the occupied and unoccupied orbitals are bound states. The complete nonlocal exchange expression was used to compute the orbital energies. The results are in good agreement with full Dirac-Hartree-Fock calculations for the occupied orbitals. 22 refs., 2 tabs.

  19. Electrochemical probe for simultaneous extraction and identification of elements in metal alloys

    SciTech Connect (OSTI)

    Alperin, D.M.; Vargas, V.I.; Carminatti, H.

    1984-04-01

    A method based on well-known electrochemical procedures is currently used for the extraction and identification of metal alloys. In this method, the elements are passed to the ionic state with a dc source by using two electrodes, one applied to the metal and the other to a wet paper which is in contact with the sample. After the extraction, the paper is submitted to detection procedures. Here a problem is described in which the electrodes are placed differently from those of the methods mentioned above. In this probe both electrodes are in contact with the paper. The paper of the probe could be used for the simultaneous extraction and identification of ions, requiring only a small area of the sample (e.g., 1mm/sup 2/)

  20. High aspect ratio iridescent three-dimensional metal–insulator–metal capacitors using atomic layer deposition

    SciTech Connect (OSTI)

    Burke, Micheal Blake, Alan; Djara, Vladimir; O'Connell, Dan; Povey, Ian M.; Cherkaoui, Karim; Monaghan, Scott; Scully, Jim; Murphy, Richard; Hurley, Paul K.; Pemble, Martyn E.; Quinn, Aidan J.

    2015-01-01

    The authors report on the structural and electrical properties of TiN/Al{sub 2}O{sub 3}/TiN metal–insulator–metal (MIM) capacitor structures in submicron three-dimensional (3D) trench geometries with an aspect ratio of ∼30. A simplified process route was employed where the three layers for the MIM stack were deposited using atomic layer deposition (ALD) in a single run at a process temperature of 250 °C. The TiN top and bottom electrodes were deposited via plasma-enhanced ALD using a tetrakis(dimethylamino)titanium precursor. 3D trench devices yielded capacitance densities of 36 fF/μm{sup 2} and quality factors >65 at low frequency (200 Hz), with low leakage current densities (<3 nA/cm{sup 2} at 1 V). These devices also show strong optical iridescence which, when combined with the covert embedded capacitance, show potential for system in package (SiP) anticounterfeiting applications.

  1. Gas atomization processing of tin and silicon modified LaNi{sub 5} for nickel-metal hydride battery applications

    SciTech Connect (OSTI)

    Ting, J.

    1999-02-12

    Numerous researchers have studied the relevant material properties of so-called AB{sub 5} alloys for battery applications. These studies involved LaNi{sub 5} substituted alloys which were prepared using conventional cast and crush alloying techniques. While valuable to the understanding of metal hydride effects, the previous work nearly ignored the potential for alternative direct powder production methods, like high pressure gas atomization (HPGA). Thus, there is a need to understand the relationship between gas atomization processes, powder particle solidification phases, and hydrogen absorption properties of ultra fine (< 25 {micro}m) atomized powders with high surface area for enhanced battery performance. Concurrently, development of a gas atomization nozzle that is more efficient than all current designs is needed to increase the yield of ultrafine AB{sub 5} alloy powder for further processing advantage. Gas atomization processing of the AB{sub 5} alloys was demonstrated to be effective in producing ultrafine spherical powders that were resilient to hydrogen cycling for the benefit of improving corrosion resistance in battery application. These ultrafine powders benefited from the rapid solidification process by having refined solute segregation in the microstructure of the gas atomized powders which enabled a rapid anneal treatment of the powders. The author has demonstrated the ability to produce high yields of ultrafine powder efficiently and cost effectively, using the new HPGA-III technology. Thus, the potential benefits of processing AB{sub 5} alloys using the new HPGA technology could reduce manufacturing cost of nickel-metal hydride powder. In the near future, the manufacture of AB{sub 5} alloy powders could become a continuous and rapid production process. The economic benefit of an improved AB{sub 5} production process may thereby encourage the use of nickel-metal hydride rechargeable batteries in electrical vehicle applications in the foreseeable future.

  2. Barrier-free subsurface incorporation of 3d metal atoms into Bi(111) films

    SciTech Connect (OSTI)

    Klein, C.; Vollmers, N. J.; Gerstmann, U.; Zahl, P.; Lukermann, D.; Jnawali, G.; Pfnur, H.; Sutter, P.; Tegenkamp, C.; Schmidt, W. G.; Horn-von Hoegen, M.

    2015-05-27

    By combining scanning tunneling microscopy with density functional theory it is shown that the Bi(111) surface provides a well-defined incorporation site in the first bilayer that traps highly coordinating atoms such as transition metals (TMs) or noble metals. All deposited atoms assume exactly the same specific sevenfold coordinated subsurface interstitial site while the surface topography remains nearly unchanged. Notably, 3d TMs show a barrier-free incorporation. The observed surface modification by barrier-free subsorption helps to suppress aggregation in clusters. Thus, it allows a tuning of the electronic properties not only for the pure Bi(111) surface, but may also be observed for topological insulators formed by substrate-stabilized Bi bilayers.

  3. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    SciTech Connect (OSTI)

    SCHWINKENDORF, K.N.

    2006-05-12

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can supply useful information to analysts evaluating spent fuel subcriticality. The original purpose of the subcritical measurements was to validate computer model predictions that spent N Reactor fuel of a particular, typical exposure (2740 MWd/t) had a critical mass equal to twice that of unexposed fuel of the same type. The motivation for performing this work was driven by the need to increase spent fuel storage limits. These subcritical measurements confirmed the computer model predictions.

  4. Element

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Departmental Element 2. System Name/ Major Application Name 3. Location 4. Name of System Owner/ Information or Data Owner 5. Contact Information 6. Does the system collect or maintain Social Security numbers? 7. Source of Legal Requirement/Authority to Collect or Maintain Social Security Numbers? 8. Does the system have a Privacy Impact Assessment (PIA)? 9. Does the system have a System of Records Notice (SORN)? If yes, provide the name of the System of Records Notice. 10. Does the system

  5. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    SciTech Connect (OSTI)

    TOFFER, H.

    2006-07-18

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Fuel that had experienced a neutron environment in a reactor is known as spent, exposed, or irradiated fuel. In contrast fuel that has not yet been placed in a reactor is known as green, unexposed, or unirradiated fuel. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled (References 1 and 2) and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements (Reference 3). The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprised of two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with unirradiated fuel and one with irradiated fuel. Both the unirradiated and irradiated fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, three (3) green fuel and four (4) spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data, such as the uncertainty in fuel exposure impact on reactivity and the pulse neutron data evaluation methodology, failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements supply useful information to analysts evaluating spent fuel subcriticality. The original purpose of the subcritical measurements was to validate computer model predictions that spent N Reactor fuel of a particular, typical exposure (2740 MWd/t) had a critical mass equal to twice that of unexposed fuel of the same type. The motivation for performing this work was driven by the need to increase spent fuel storage limits. These subcritical measurements confirmed the computer model predictions.

  6. Neutronic fuel element fabrication

    DOE Patents [OSTI]

    Korton, George

    2004-02-24

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.

  7. Impact of deformation on the atomic structures and dynamics of a Cu-Zr metallic glass: A molecular dynamics study

    SciTech Connect (OSTI)

    Zhang, Y.; Mendelev, M. I.; Wang, C. Z.; Ott, R.; Zhang, F.; Besser, M. F.; Ho, K. M.; Kramer, M. J.

    2014-11-03

    Despite numerous studies on the atomic structures of Cu-Zr metallic glasses (MGs), their inherent structural ordering, e.g., medium-range order (MRO), remains difficult to describe. Specifically lacking is an understanding of how the MRO responds to deformation and the associated changes in atomic mobility. In this paper, we focus on the impact of deformation on MRO and associated effect on diffusion in a well-relaxed Cu64.5Zr35.5 MG by molecular dynamics simulations. The Cu-Zr MG exhibits a larger elastic limit of 0.035 and a yield stress of 3.5 GPa. The cluster alignment method was employed to characterize the icosahedral short-range order (ISRO) and Bergman-type medium-range order (BMRO) in the models upon loading and unloading. From this analysis, we find the disruption of both ISRO and BMRO occurs as the strain reaches about 0.02, well below the elastic limit. Within the elastic limit, the total fractions of ISRO or BMRO can be fully recovered upon unloading. The diffusivity increases six to eight times in regions undergoing plastic deformation, which is due to the dramatic disruption of the ISRO and BMRO. As a result, by mapping the spatial distributions of the mobile atoms, we demonstrate the increase in atomic mobility is due to the extended regions of disrupted ISRO and more importantly BMRO.

  8. Impact of deformation on the atomic structures and dynamics of a Cu-Zr metallic glass: A molecular dynamics study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Mendelev, M. I.; Wang, C. Z.; Ott, R.; Zhang, F.; Besser, M. F.; Ho, K. M.; Kramer, M. J.

    2014-11-03

    Despite numerous studies on the atomic structures of Cu-Zr metallic glasses (MGs), their inherent structural ordering, e.g., medium-range order (MRO), remains difficult to describe. Specifically lacking is an understanding of how the MRO responds to deformation and the associated changes in atomic mobility. In this paper, we focus on the impact of deformation on MRO and associated effect on diffusion in a well-relaxed Cu64.5Zr35.5 MG by molecular dynamics simulations. The Cu-Zr MG exhibits a larger elastic limit of 0.035 and a yield stress of 3.5 GPa. The cluster alignment method was employed to characterize the icosahedral short-range order (ISRO) andmore » Bergman-type medium-range order (BMRO) in the models upon loading and unloading. From this analysis, we find the disruption of both ISRO and BMRO occurs as the strain reaches about 0.02, well below the elastic limit. Within the elastic limit, the total fractions of ISRO or BMRO can be fully recovered upon unloading. The diffusivity increases six to eight times in regions undergoing plastic deformation, which is due to the dramatic disruption of the ISRO and BMRO. As a result, by mapping the spatial distributions of the mobile atoms, we demonstrate the increase in atomic mobility is due to the extended regions of disrupted ISRO and more importantly BMRO.« less

  9. Kinetic and Mechanistic Studies of Carbon-to-Metal Hydrogen Atom Transfer Involving Os-Centered Radicals: Evidence for Tunneling

    SciTech Connect (OSTI)

    Lewandowska-Androlojc, Anna; Grills, David C.; Zhang, Jie; Bullock, R. Morris; Miyazawa, Akira; Kawanishi, Yuji; Fujita, Etsuko

    2014-03-05

    We have investigated the kinetics of novel carbon-to-metal hydrogen atom transfer reactions, in which homolytic cleavage of a C-H bond is accomplished by a single metal-centered radical. Studies by means of time-resolved IR spectroscopic measurements revealed efficient hydrogen atom transfer from xanthene, 9,10-dihydroanthracene and 1,4-cyclohexadiene to Cp(CO)2Os and (n5-iPr4C5H)(CO)2Os radicals, formed by photoinduced homolysis of the corresponding osmium dimers. The rate constants for hydrogen abstraction from these hydrocarbons were found to be in the range 1.54 105 M 1 s 1 -1.73 107 M 1 s-1 at 25 C. For the first time, kinetic isotope effects for carbon-to-metal hydrogen atom transfer were determined. Large primary kinetic isotope effects of 13.4 1.0 and 16.6 1.4 were observed for the hydrogen abstraction from xanthene to form Cp(CO)2OsH and (n5-iPr4C5H)(CO)2OsH, respectively, at 25 C. Temperature-dependent measurements of the kinetic isotope effects over a 60 -C temperature range were carried out to obtain the difference in activation energies and the pre-exponential factor ratio. For hydrogen atom transfer from xanthene to (n5-iPr4C5H)(CO)2Os, the (ED - EH) = 3.25 0.20 kcal/mol and AH/AD = 0.056 0.018 values are greater than the semi-classical limits and thus suggest a quantum mechanical tunneling mechanism. The work at BNL was carried out under contract DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences & Biosciences, Office of Basic Energy Sciences. RMB also thanks the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences for support. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  10. Method for removal of metal atoms from aqueous solution using suspended plant cells

    DOE Patents [OSTI]

    Jackson, Paul J.; Torres, deceased, Agapito P.; Delhaize, Emmanuel

    1992-01-01

    The use of plant suspension cultures to remove ionic metallic species and TNT-based explosives and their oxidation products from aqueous solution is described. Several plant strains were investigated including D. innoxia, Citrus citrus, and Black Mexican Sweet Corn. All showed significant ability to remove metal ions. Ions removed to sub-ppm levels include barium, iron, and plutonium. D. innoxia cells growing in media containing weapons effluent contaminated with Ba.sup.2+ also remove TNT, other explosives and oxidation products thereof from solution. The use of dead, dehydrated cells were also found to be of use in treating waste directly.

  11. Initiation of atomic layer deposition of metal oxides on polymer substrates by water plasma pretreatment

    SciTech Connect (OSTI)

    Steven Brandt, E.; Grace, Jeremy M.

    2012-01-15

    The role of surface hydroxyl content in atomic layer deposition (ALD) of aluminum oxide (AO) on polymers is demonstrated by performing an atomic layer deposition of AO onto a variety of polymer types, before and after pretreatment in a plasma struck in water vapor. The treatment and deposition reactions are performed in situ in a high vacuum chamber that is interfaced to an x-ray photoelectron spectrometer to prevent adventitious exposure to atmospheric contaminants. X-ray photoelectron spectroscopy is used to follow the surface chemistries of the polymers, including theformation of surface hydroxyls and subsequent growth of AO by ALD. Using dimethyl aluminum isopropoxide and water as reactants, ALD is obtained for water-plasma-treated poly(styrene) (PS), poly(propylene) (PP), poly(vinyl alcohol) (PVA), and poly(ethylene naphthalate) (PEN). For PS, PP, and PEN, initial growth rates of AO on the native (untreated) polymers are at least an order of magnitude lower than on the same polymer surface following the plasma treatment. By contrast, native PVA is shown to initiate ALD of AO as a result of the presence of intrinsic surface hydroxyls that are derived from the repeat unit of this polymer.

  12. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    DOE Patents [OSTI]

    Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Ji, Xiaoyan; Day, Sumner D.; Blue, Craig A.; Rivard, John D. K.; Aprigliano, Louis F.; Kohler, Leslie K.; Bayles, Robert; Lemieux, Edward J.; Yang, Nancy; Perepezko, John H.; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J.

    2013-07-09

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  13. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    DOE Patents [OSTI]

    Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J

    2013-09-03

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  14. Local Probe into the Atomic Structure of Metallic Glasses using EELS

    SciTech Connect (OSTI)

    Alamgir, F.M.; Ito, Y. Schwarz, R.B.

    1999-11-30

    Electron energy loss spectroscopy (EELS) is used to extract information on the topological arrangement of atoms around Pd in the bulk-glass-forming Pd{sub 60}Ni{sub 20}P{sub 20}. It is found that the environment around Pd in the glass is only a slight modification of the Pd crystalline structure. However, the modification is enough to allow this alloy to form a glass in bulk. In examining the differences between the structure of crystalline Pd and glassy Pd{sub 60}Ni{sub 20}P{sub 20} it is concluded that incorporation of Ni and P into the structure frustrates the structure enough that glass formation becomes easy.

  15. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Santodonato, Louis J.; Zhang, Yang; Feygenson, Mikhail; Parish, Chad M.; Gao, Michael C.; Weber, Richard J. K.; Neuefeind, Joerg C.; Tang, Zhi; Liaw, Peter K.

    2015-01-20

    The alloy-design strategy of combining multiple elements in near-equimolar ratios has shown great potential for producing exceptional engineering materials, often known as high-entropy alloys . Understanding the elemental distribution, and, thus, the evolution of the configurational entropy during solidification, is undertaken in the present study using the Al1.3CoCrCuFeNi model alloy. Here we show that, even when the material undergoes elemental segregation, precipitation, chemical ordering and spinodal decomposition, a significant amount of disorder remains, due to the distributions of multiple elements in the major phases. The results suggest that the high-entropy alloy-design strategy may be applied to a wide range ofmore » complex materials, and should not be limited to the goal of creating single-phase solid solutions.« less

  16. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Santodonato, Louis J.; Zhang, Yang; Feygenson, Mikhail; Parish, Chad M.; Gao, Michael C.; Weber, Richard J. K.; Neuefeind, Joerg C.; Tang, Zhi; Liaw, Peter K.

    2015-01-20

    The alloy-design strategy of combining multiple elements in near-equimolar ratios has shown great potential for producing exceptional engineering materials, often known as “high-entropy alloys”. Understanding the elemental distribution, and, thus, the evolution of the configurational entropy during solidification, is undertaken in the present study using the Al1.3CoCrCuFeNi model alloy. Here we show that even when the material undergoes elemental segregation, precipitation, chemical ordering, and spinodal decomposition, a significant amount of disorder remains, due to the distributions of multiple elements in the major phases. In addition, the results suggest that the high-entropy-alloy-design strategy may be applied to a wide range ofmore » complex materials, and should not be limited to the goal of creating single-phase solid solutions.« less

  17. Atomic Scale Imaging of the Electronic Structure and Chemistry of Graphene and Its Precursors on Metal Surfaces

    SciTech Connect (OSTI)

    Flynn, George W

    2015-02-16

    Executive Summary of Final Report for Award DE-FG02-88ER13937 Project Title: Atomic Scale Imaging of the Electronic Structure and Chemistry of Graphene and its Precursors on Metal Surfaces Applicant/Institution: Columbia University Principal Investigator: George W. Flynn Objectives: The objectives of this project were to reveal the mechanisms and reaction processes that solid carbon materials undergo when combining with gases such as oxygen, water vapor and hydrocarbons. This research was focused on fundamental chemical events taking place on single carbon sheets of graphene, a two-dimensional, polycyclic carbon material that possesses remarkable chemical and electronic properties. Ultimately, this work is related to the role of these materials in mediating the formation of polycyclic aromatic hydrocarbons (PAH’s), their reactions at interfaces, and the growth of soot particles. Our intent has been to contribute to a fundamental understanding of carbon chemistry and the mechanisms that control the formation of PAH’s, which eventually lead to the growth of undesirable particulates. We expect increased understanding of these basic chemical mechanisms to spur development of techniques for more efficient combustion of fossil fuels and to lead to a concomitant reduction in the production of undesirable solid carbon material. Project Description: Our work treated specifically the surface chemistry aspects of carbon reactions by using proximal probe (atomic scale imaging) techniques to study model systems of graphene that have many features in common with soot forming reactions of importance in combustion flames. Scanning tunneling microscopy (STM) is the main probe technique that we used to study the interfacial structure and chemistry of graphene, mainly because of its ability to elucidate surface structure and dynamics with molecular or even atomic resolution. Scanning tunneling spectroscopy (STS), which measures the local density of quantum states over a single atom, provides information about the electronic structure of graphene and is particularly sensitive to the sign and magnitude of the charge transfer between graphene and any surface adsorbed species. Results: (A) Graphene on SiO2 In an effort designed to unravel aspects of the mechanisms for chemistry on graphene surfaces, STM and STS were employed to show that graphene on SiO2 is oxidized at lower temperatures than either graphite or multi-layer graphene. Two independent factors control this charge transfer: (1) the degree of graphene coupling to the substrate, and (2) exposure to oxygen and moisture. (B) Graphene on Copper In the case of graphene grown on copper surfaces, we found that the graphene grows primarily in registry with the underlying copper lattice for both Cu(111) and Cu(100). On Cu(111) the graphene has a hexagonal superstructure with a significant electronic component, whereas it has a linear superstructure on Cu(100). (C) Nitrogen Doped Graphene on Copper Using STM we have also studied the electronic structure and morphology of graphene films grown on a copper foil substrate in which N atoms substitute for carbon in the 2-D graphene lattice. The salient features of the results of this study were: (1) Nitrogen doped graphene on Cu foil exhibits a triangular structure with an “apparent” slight elevation of ~ 0.8 Å at N atom substitution sites; (2) Nitrogen doping results in ~0.4 electrons per N atom donated to the graphene lattice; (3) Typical N doping of graphene on Cu foil shows mostly single site Carbon atom displacement (~ 3N/1000C); (4) Some multi-site C atom displacement is observed (<10% of single site events). (D) Boron Doped Graphene on Copper We also used scanning tunneling microscopy and x-ray spectroscopy to characterize the atomic and electronic structure of boron-doped graphene created by chemical vapor deposition on copper substrates. Microscopic measurements show that boron, like nitrogen, incorporates into the carbon lattice primarily in the graphitic form and contributes ~0.5 free carriers into the graphene sheet per dopant. Density functional theory calculations indicate that boron dopants interact strongly with the underlying substrate while nitrogen does not. The local bonding differences between boron and nitrogen dopants lead to large-scale differences in dopant distribution and in the structure of the doped graphene films. The distribution of dopants was observed to be completely random in the case of boron, while nitrogen displayed strong sublattice clustering. Structurally, nitrogen-doped graphene is relatively defect-free while boron-doped graphene films show a large number of Stone-Wales defects. It is our expectation that a better understanding of carbon chemistry, especially the reactions of graphene flakes, will provide data that can ultimately be used to reduce particulate emissions from the burning of fossil fuels.

  18. Magnetocaloric effect in heavy rare-earth elements doped Fe-based bulk metallic glasses with tunable Curie temperature

    SciTech Connect (OSTI)

    Li, Jiawei; Huo, Juntao; Chang, Chuntao E-mail: dujun@nimte.ac.cn; Du, Juan E-mail: dujun@nimte.ac.cn; Man, Qikui; Wang, Xinmin; Li, Run-Wei; Law, Jiayan

    2014-08-14

    The effects of heavy rare earth (RE) additions on the Curie temperature (T{sub C}) and magnetocaloric effect of the Fe-RE-B-Nb (RE = Gd, Dy and Ho) bulk metallic glasses were studied. The type of dopping RE element and its concentration can easily tune T{sub C} in a large temperature range of 120 K without significantly decreasing the magnetic entropy change (ΔS{sub M}) and refrigerant capacity (RC) of the alloys. The observed values of ΔS{sub M} and RC of these alloys compare favorably with those of recently reported Fe-based metallic glasses with enhanced RC compared to Gd{sub 5}Ge{sub 1.9}Si{sub 2}Fe{sub 0.1}. The tunable T{sub C} and large glass-forming ability of these RE doped Fe-based bulk metallic glasses can be used in a wide temperature range with the final required shapes.

  19. Inductively coupled plasma-atomic emission spectroscopy: a computer controlled, scanning monochromator system for the rapid determination of the elements

    SciTech Connect (OSTI)

    Floyd, M.A.

    1980-03-01

    A computer controlled, scanning monochromator system specifically designed for the rapid, sequential determination of the elements is described. The monochromator is combined with an inductively coupled plasma excitation source so that elements at major, minor, trace, and ultratrace levels may be determined, in sequence, without changing experimental parameters other than the spectral line observed. A number of distinctive features not found in previously described versions are incorporated into the system here described. Performance characteristics of the entire system and several analytical applications are discussed.

  20. Process for recovering elemental phosphorus and a metal concentrate from ferrophos

    DOE Patents [OSTI]

    Munday, Theodore F.; Mohr, Richard A.

    1989-02-21

    Ferrophos is treated in a plasma furnace by maintaining an electric arc between a cathode and at least one point on the surface of the ferrophos which serves as the anode in the presence of an inert plasma gas, maintaining the average temperature of the ferrophos at about 2,000.degree. C. to about 2,700.degree. C., evolving gaseous phosphorus from the ferrophos until it contains less than about 7% by weight phosphorus, removing a purified phosphorus gas as one product and a metal concentrate having a reduced phosphorus content as a coproduct.

  1. Thermodynamic assessment and experimental verification of reactive ion etching of magnetic metal elements

    SciTech Connect (OSTI)

    Kim, Taeseung; Chen, Jack Kun-Chieh; Chang, Jane P.

    2014-07-01

    A thermodynamic analysis of etch chemistries for Co, Fe, and Ni using a combination of hydrogen, oxygen, and halogen gases suggested that a single etchant does not work at 300?K; however, a sequential exposure to multiple etchants results in sufficiently high partial pressure of the reaction products for the process to be considered viable. This sequential dose utilized the two reactions, a surface halogenation followed by the secondary etchant exposure. (MX{sub 2}?(c)?+?3Y ?MY(g)?+?2XY(g), where M?=?Co, Fe, Ni; X?=?F, Cl, Br; Y?=?O, H) The volatilization reaction induced by sequential plasma exposure changed the equilibrium point, increasing the partial pressure of the etch product. Amongst all combinations, Cl{sub 2} or Br{sub 2} plasmas followed by H{sub 2} plasma were the most effective. From both the gas phase diagnostics and surface composition analysis, H{sub 2} plasma alone could not etch metallic Co, Fe, and Ni films but alternating doses of Cl{sub 2} and H{sub 2} plasmas resulted in more effective removal of chlorinated metals and increased the overall etch rate.

  2. Mapping Metals Incorporation of a Whole Single Catalyst Particle Using Element Specific X-ray Nanotomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meirer, Florian; Morris, Darius T.; Kalirai, Sam; Liu, Yijin; Andrews, Joy C.; Weckhuysen, Bert M.

    2015-01-02

    Full-field transmission X-ray microscopy has been used to determine the 3D structure of a whole individual fluid catalytic cracking (FCC) particle at high spatial resolution and in a fast, noninvasive manner, maintaining the full integrity of the particle. Using X-ray absorption mosaic imaging to combine multiple fields of view, computed tomography was performed to visualize the macropore structure of the catalyst and its availability for mass transport. We mapped the relative spatial distributions of Ni and Fe using multiple-energy tomography at the respective X-ray absorption K-edges and correlated these distributions with porosity and permeability of an equilibrated catalyst (E-cat) particle.more » Both metals were found to accumulate in outer layers of the particle, effectively decreasing porosity by clogging of pores and eventually restricting access into the FCC particle.« less

  3. Mapping Metals Incorporation of a Whole Single Catalyst Particle Using Element Specific X-ray Nanotomography

    SciTech Connect (OSTI)

    Meirer, Florian; Morris, Darius T.; Kalirai, Sam; Liu, Yijin; Andrews, Joy C.; Weckhuysen, Bert M.

    2015-01-02

    Full-field transmission X-ray microscopy has been used to determine the 3D structure of a whole individual fluid catalytic cracking (FCC) particle at high spatial resolution and in a fast, noninvasive manner, maintaining the full integrity of the particle. Using X-ray absorption mosaic imaging to combine multiple fields of view, computed tomography was performed to visualize the macropore structure of the catalyst and its availability for mass transport. We mapped the relative spatial distributions of Ni and Fe using multiple-energy tomography at the respective X-ray absorption K-edges and correlated these distributions with porosity and permeability of an equilibrated catalyst (E-cat) particle. Both metals were found to accumulate in outer layers of the particle, effectively decreasing porosity by clogging of pores and eventually restricting access into the FCC particle.

  4. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Holby, Edward F.; Taylor, Christopher D.

    2015-03-19

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O₂ bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H₂O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH boundmore »structures have the highest calculated activity to date.« less

  5. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    SciTech Connect (OSTI)

    Holby, Edward F.; Taylor, Christopher D.

    2015-03-19

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O? bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H?O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH bound structures have the highest calculated activity to date.

  6. Lawrenciums ionization potential, atom by atom

    SciTech Connect (OSTI)

    Miller, Johanna L.

    2015-06-15

    Researchers in Japan have begun probing the atomic physics of elements that can be produced only in minute quantities.

  7. Process for producing elements from a fused bath using a metal strap and ceramic electrode body nonconsumable electrode assembly

    DOE Patents [OSTI]

    Byrne, Stephen C.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a ceramic electrode body and a metal subassembly of a metal conductor rod and at least one metal strap affixed to an end of the rod with opposing portions extending radially outwardly from the rod axis and having the ends of the strap attached to the electrode body.

  8. Process for producing elements from a fused bath using a metal strap and ceramic electrode body nonconsumable electrode assembly

    DOE Patents [OSTI]

    Byrne, S.C.

    1984-07-03

    A nonconsumable electrode assembly is described suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a ceramic electrode body and a metal subassembly of a metal conductor rod and at least one metal strap affixed to an end of the rod with opposing portions extending radially outwardly from the rod axis and having the ends of the strap attached to the electrode body. 7 figs.

  9. Atomic-Resolution Visualization of Distinctive Chemical Mixing Behavior of Ni, Co and Mn with Li in Layered Lithium Transition-Metal Oxide Cathode Materials

    SciTech Connect (OSTI)

    Yan, Pengfei; Zheng, Jianming; Lv, Dongping; Wei, Yi; Zheng, Jiaxin; Wang, Zhiguo; Kuppan, Saravanan; Yu, Jianguo; Luo, Langli; Edwards, Danny J.; Olszta, Matthew J.; Amine, Khalil; Liu, Jun; Xiao, Jie; Pan, Feng; Chen, Guoying; Zhang, Jiguang; Wang, Chong M.

    2015-07-06

    Capacity and voltage fading of layer structured cathode based on lithium transition metal oxide is closely related to the lattice position and migration behavior of the transition metal ions. However, it is scarcely clear about the behavior of each of these transition metal ions. We report direct atomic resolution visualization of interatomic layer mixing of transition metal (Ni, Co, Mn) and lithium ions in layer structured oxide cathodes for lithium ion batteries. Using chemical imaging with aberration corrected scanning transmission electron microscope (STEM) and DFT calculations, we discovered that in the layered cathodes, Mn and Co tend to reside almost exclusively at the lattice site of transition metal (TM) layer in the structure or little interlayer mixing with Li. In contrast, Ni shows high degree of interlayer mixing with Li. The fraction of Ni ions reside in the Li layer followed a near linear dependence on total Ni concentration before reaching saturation. The observed distinctively different behavior of Ni with respect to Co and Mn provides new insights on both capacity and voltage fade in this class of cathode materials based on lithium and TM oxides, therefore providing scientific basis for selective tailoring of oxide cathode materials for enhanced performance.

  10. Two Keggin-type heteropolytungstates with transition metal as a central atom: Crystal structure and magnetic study with 2D-IR correlation spectroscopy

    SciTech Connect (OSTI)

    Chai, Feng [Department of Chemistry, Fuzhou University, Fuzhou 350108 (China); Chen, YiPing, E-mail: ypchen007@sina.com [Department of Chemistry, Fuzhou University, Fuzhou 350108 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); You, ZhuChai; Xia, ZeMin; Ge, SuZhi; Sun, YanQiong; Huang, BiHua [Department of Chemistry, Fuzhou University, Fuzhou 350108 (China)

    2013-06-01

    Two Keggin-type heteropolytungstates, [Co(phen)?]?[CoW??O??]9H?O 1 (phen=1,10-phenanthroline) and [Fe(phen)?]?[FeW??O??]H?OH?O 2, have been synthesized via the hydrothermal technique and characterized by single crystal X-ray diffraction analyses, IR, XPS, TG analysis, UVDRS, XRD, thermal-dependent and magnetic-dependent 2D-COS IR (two-dimensional infrared correlation spectroscopy). Crystal structure analysis reveals that the polyanions in compound 1 are linked into 3D supramolecule through hydrogen bonding interactions between lattice water molecules and terminal oxygen atoms of polyanion units, and [Co(phen)?]? cations distributed in the polyanion framework with many hydrogen bonding interactions. The XPS spectra indicate that all the Co atoms in 1 are +2 oxidation state, the Fe atoms in 2 existing with +2 and +3 mixed oxidation states. - Graphical abstract: The magnetic-dependent synchronous 2D correlation IR spectra of 1 (a), 2 (b) over 050 mT in the range of 6001000 cm?, the obvious response indicate two Keggin polyanions skeleton susceptible to applied magnetic field. Highlights: Two Keggin-type heteropolytungstates with transition metal as a central atom has been obtained. Compound 1 forms into 3D supramolecular architecture through hydrogen bonding between water molecules and polyanions. Magnetic-dependent 2D-IR correlation spectroscopy was introduced to discuss the magnetism of polyoxometalate.

  11. The structures and dynamics of atomic and molecular adsorbates on metal surfaces by scanning tunneling microscopy and low energy electron diffraction

    SciTech Connect (OSTI)

    Yoon, Hyungsuk Alexander

    1996-12-01

    Studies of surface structure and dynamics of atoms and molecules on metal surfaces are presented. My research has focused on understanding the nature of adsorbate-adsorbate and adsorbate-substrate interactions through surface studies of coverage dependency and coadsorption using both scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). The effect of adsorbate coverage on the surface structures of sulfur on Pt(111) and Rh(111) was examined. On Pt(111), sulfur forms p(2x2) at 0.25 ML of sulfur, which transforms into a more compressed ({radical}3x{radical}3)R30{degrees} at 0.33 ML. On both structures, it was found that sulfur adsorbs only in fcc sites. When the coverage of sulfur exceeds 0.33 ML, it formed more complex c({radical}3x7)rect structure with 3 sulfur atoms per unit cell. In this structure, two different adsorption sites for sulfur atoms were observed - two on fcc sites and one on hcp site within the unit cell.

  12. Atomizing nozzle and process

    DOE Patents [OSTI]

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1993-07-20

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  13. Atomizing nozzle and process

    DOE Patents [OSTI]

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1992-06-30

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  14. Thermodynamic estimation of minor element distribution between immiscible liquids in Fe-Cu-based metal phase generated in melting treatment of municipal solid wastes

    SciTech Connect (OSTI)

    Lu, X.; Nakajima, K.; Sakanakura, H.; Matsubae, K.; Bai, H.; Nagasaka, T.

    2012-06-15

    Graphical abstract: Display Omitted Highlights: Black-Right-Pointing-Pointer Two liquids separation of metal occurs in the melting of municipal solid waste. Black-Right-Pointing-Pointer The distribution of PGMs etc. between two liquid metal phases is studied. Black-Right-Pointing-Pointer Quite simple thermodynamic model is applied to predict the distribution ratio. Black-Right-Pointing-Pointer Au and Ag originated from WEEE are found to be concentrated into Cu-rich phase. - Abstract: Waste electrical and electronic equipment (WEEE) has become an important target in managing material cycles from the viewpoint of not only waste management and control of environmental pollution but also resource conservation. This study investigated the distribution tendency of trace elements in municipal solid waste (MSW) or incinerator ash, including valuable non-ferrous metals (Ni, Co, Cr, Mn, Mo, Ti, V, W, Zr), precious group metals (PGMs) originated from WEEE (Ag, Au, Pd, Pt), and others (Al, B, Pb, Si), between Fe-rich and Cu-rich metal phases by means of simple thermodynamic calculations. Most of the typical alloying elements for steel (Co, Cr, Mo, Nb, Ni, Si, Ti, V, and W) and Rh were preferentially distributed into the Fe-rich phase. PGMs, such as Au, Ag, and Pd, were enriched in the Cu-rich phase, whereas Pt was almost equally distributed into both phases. Since the primary metallurgical processing of Cu is followed by an electrolysis for refining, and since PGMs in crude copper have been industrially recovered from the resulting anode slime, our results indicated that Ag, Au, and Pd could be effectively recovered from MSW if the Cu-rich phase could be selectively collected.

  15. THE OLD, SUPER-METAL-RICH OPEN CLUSTER, NGC 6791ELEMENTAL ABUNDANCES IN TURN-OFF STARS FROM KECK/HIRES SPECTRA

    SciTech Connect (OSTI)

    Merchant Boesgaard, Ann; Lum, Michael G.; Deliyannis, Constantine P. E-mail: mikelum@ifa.hawaii.edu

    2015-02-01

    The study of star clusters has advanced our understanding of stellar evolution, Galactic chemical evolution, and nucleosynthesis. Here we investigate the composition of turn-off stars in the intriguing open cluster, NGC 6791, which is old, but super-metal-rich with high-resolution (R= 46,000) Keck/HIRES spectra. We find [Fe/H]= +0.300.02 from measurements of some 40 unblended, unsaturated lines of both Fe I and Fe II in eight turn-off stars. Our O abundances come from the O I triplet near 7774 and we perform a differential analysis relative to the Sun from our Lunar spectrum also obtained with Keck/HIRES. The O results are corrected for small nLTE effects. We find consistent ratios of [O/Fe]{sub n} with a mean of 0.060.02. This is low with respect to field stars that are also both old and metal-rich and continue the trend of decreasing [O/Fe] with increasing [Fe/H]. The small range in our oxygen abundances is consistent with a single population of stars. Our results for the alpha elements [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe] are near solar and compare well with those of the old, metal-rich field stars. The two Fe-peak elements, Cr and Ni, are consistent with Fe. These turn-off-star abundances provide benchmark abundances to investigate whether there are any observable abundance differences with the giants that might arise from nuclear-burning and dredge-up processes. Determinations of upper limits were found for Li by spectrum synthesis and are consistent with the upper limits in similar stars in the relatively old, super-metal-rich cluster NGC 6253. Our results support the prediction from standard theory that higher-metallicity stars deplete more Li. Probably no stars in NGC 6791 have retained their initial Li.

  16. Fabrication of metal shells

    SciTech Connect (OSTI)

    O'Holleran, T.P.; Henderson, T.M.; Downs, R.L.; Nolen, R.L.

    1980-01-01

    Small hollow metal spheres are needed as targets for particle-beam fusion experiments and as the inner fuel container for multi-shell targets. For the multishell application, shells fabricated of materials with high atomic numbers, e.g., gold, are of particular interest because they may effectively reduce preheating of the fuel. Because the shells must also contain the fuel mixture (deuterium and tritium) at high pressures, high strength materials, e.g., iron, are also of considerable interest. With the objective of proof of principle we have investigated several techniques of fabricating shells of metal or materials containing large fractions of high atomic number elements. These techniques, our experimental results and their evaluation are presented.

  17. Laminated metal composite formed from low flow stress layers and high flow stress layers using flow constraining elements and making same

    DOE Patents [OSTI]

    Syn, Chol K.; Lesuer, Donald R.

    1995-01-01

    A laminated metal composite of low flow stress layers and high flow stress layers is described which is formed using flow constraining elements, preferably in the shape of rings, individually placed around each of the low flow stress layers while pressure is applied to the stack to bond the layers of the composite together, to thereby restrain the flow of the low flow stress layers from the stack during the bonding. The laminated metal composite of the invention is made by the steps of forming a stack of alternate layers of low flow stress layers and high flow stress layers with each layer of low flow stress material surrounded by an individual flow constraining element, such as a ring, and then applying pressure to the top and bottom surfaces of the resulting stack to bond the dissimilar layers together, for example, by compression rolling the stack. In a preferred embodiment, the individual flow constraining elements surrounding the layers of low flow stress material are formed of a material which may either be the same material as the material comprising the high flow stress layers, or have similar flow stress characteristics to the material comprising the high flow stress layers. Additional sacrificial layers may be added to the top and bottom of the stack to avoid damage to the stack during the bonding step; and these additional layers may then be removed after the bonding step.

  18. Laminated metal composite formed from low flow stress layers and high flow stress layers using flow constraining elements and making same

    DOE Patents [OSTI]

    Syn, C.K.; Lesuer, D.R.

    1995-07-04

    A laminated metal composite of low flow stress layers and high flow stress layers is described which is formed using flow constraining elements, preferably in the shape of rings, individually placed around each of the low flow stress layers while pressure is applied to the stack to bond the layers of the composite together, to thereby restrain the flow of the low flow stress layers from the stack during the bonding. The laminated metal composite of the invention is made by the steps of forming a stack of alternate layers of low flow stress layers and high flow stress layers with each layer of low flow stress material surrounded by an individual flow constraining element, such as a ring, and then applying pressure to the top and bottom surfaces of the resulting stack to bond the dissimilar layers together, for example, by compression rolling the stack. In a preferred embodiment, the individual flow constraining elements surrounding the layers of low flow stress material are formed of a material which may either be the same material as the material comprising the high flow stress layers, or have similar flow stress characteristics to the material comprising the high flow stress layers. Additional sacrificial layers may be added to the top and bottom of the stack to avoid damage to the stack during the bonding step; and these additional layers may then be removed after the bonding step. 5 figs.

  19. Cation-poor complex metallic alloys in Ba(Eu)–Au–Al(Ga) systems: Identifying the keys that control structural arrangements and atom distributions at the atomic level

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smetana, Volodymyr; Steinberg, Simon; Mudryk, Yaroslav; Pecharsky, Vitalij; Miller, Gordon J.; Mudring, Anja -Verena

    2015-10-19

    Four complex intermetallic compounds BaAu6±xGa6±y (x = 1, y = 0.9) (I), BaAu6±xAl6±y (x = 0.9, y = 0.6) (II), EuAu6.2Ga5.8 (III), and EuAu6.1Al5.9 (IV) have been synthesized, and their structures and homogeneity ranges have been determined by single crystal and powder X-ray diffraction. Whereas I and II originate from the NaZn13-type structure (cF104–112, Fm3C), III (tP52, P4/nbm) is derived from the tetragonal Ce2Ni17Si9-type, and IV (oP104, Pbcm) crystallizes in a new orthorhombic structure type. Both I and II feature formally anionic networks with completely mixed site occupation by Au and triel (Tr = Al, Ga) atoms, while a successivemore » decrease of local symmetry from the parental structures of I and II to III and, ultimately, to IV correlates with increasing separation of Au and Tr on individual crystallographic sites. Density functional theory-based calculations were employed to determine the crystallographic site preferences of Au and the respective triel element to elucidate reasons for the atom distribution (“coloring scheme”). Chemical bonding analyses for two different “EuAu6Tr6” models reveal maximization of the number of heteroatomic Au–Tr bonds as the driving force for atom organization. The Fermi levels fall in broad pseudogaps for both models allowing some electronic flexibility. Spin-polarized band structure calculations on the “EuAu6Tr6” models hint to singlet ground states for europium and long-range magnetic coupling for both EuAu6.2Ga5.8 (III) and EuAu6.1Al5.9 (IV). This is substantiated by experimental evidence because both compounds show nearly identical magnetic behavior with ferromagnetic transitions at TC = 6 K and net magnetic moments of 7.35 μB/f.u. at 2 K. As a result, the effective moments of 8.3 μB/f.u., determined from Curie–Weiss fits, point to divalent oxidation states for europium in both III and IV.« less

  20. THE ORIGINS OF LIGHT AND HEAVY R-PROCESS ELEMENTS IDENTIFIED BY CHEMICAL TAGGING OF METAL-POOR STARS

    SciTech Connect (OSTI)

    Tsujimoto, Takuji; Shigeyama, Toshikazu

    2014-11-01

    Growing interests in neutron star (NS) mergers as the origin of r-process elements have sprouted since the discovery of evidence for the ejection of these elements from a short-duration ?-ray burst. The hypothesis of a NS merger origin is reinforced by a theoretical update of nucleosynthesis in NS mergers successful in yielding r-process nuclides with A >130. On the other hand, whether the origin of light r-process elements are associated with nucleosynthesis in NS merger events remains unclear. We find a signature of nucleosynthesis in NS mergers from peculiar chemical abundances of stars belonging to the Galactic globular cluster M15. This finding combined with the recent nucleosynthesis results implies a potential diversity of nucleosynthesis in NS mergers. Based on these considerations, we are successful in the interpretation of an observed correlation between [light r-process/Eu] and [Eu/Fe] among Galactic halo stars and accordingly narrow down the role of supernova nucleosynthesis in the r-process production site. We conclude that the tight correlation by a large fraction of halo stars is attributable to the fact that core-collapse supernovae produce light r-process elements while heavy r-process elements such as Eu and Ba are produced by NS mergers. On the other hand, stars in the outlier, composed of r-enhanced stars ([Eu/Fe] ?+1) such as CS22892-052, were exclusively enriched by matter ejected by a subclass of NS mergers that is inclined to be massive and consist of both light and heavy r-process nuclides.

  1. Dynamic response of Cu4Zr54 metallic glass to high strain rate shock loading: plasticity, spall and atomic-level structures

    SciTech Connect (OSTI)

    Luo, Shengnian; Arman, Bedri; Germann, Timothy C; Cagin, Tahir

    2009-01-01

    We investigate dynamic response of Cu{sub 46}Zr{sub 54} metallic glass under adiabatic planar shock wave loading (one-dimensional strain) wjth molecular dynamics simulations, including Hugoniot (shock) states, shock-induced plasticity and spallation. The Hugoniot states are obtained up to 60 CPa along with the von Mises shear flow strengths, and the dynamic spall strength, at different strain rates and temperatures. The spall strengths likely represent the limiting values achievable in experiments such as laser ablation. For the steady shock states, a clear elastic-plastic transition is identified (e.g., in the shock velocity-particle velocity curve), and the shear strength shows strain-softening. However, the elastic-plastic transition across the shock front displays transient stress overshoot (hardening) above the Hugoniot elastic limit followed by a relatively sluggish relaxation to the steady shock state, and the plastic shock front steepens with increasing shock strength. The local von Mises shear strain analysis is used to characterize local deformation, and the Voronoi tessellation analysis, the corresponding short-range structures at various stages of shock, release, tension and spallation. The plasticity in this glass is manifested as localized shear transformation zones and of local structure rather than thermal origin, and void nucleation occurs preferentially at the highly shear-deformed regions. The Voronoi and shear strain analyses show that the atoms with different local structures are of different shear resistances that lead to shear localization (e.g., the atoms indexed with (0,0,12,0) are most shear-resistant, and those with (0,2,8,1) are highly prone to shear flow). The dynamic changes in local structures are consistent with the observed deformation dynamics.

  2. Cation-poor complex metallic alloys in Ba(Eu)–Au–Al(Ga) systems: Identifying the keys that control structural arrangements and atom distributions at the atomic level

    SciTech Connect (OSTI)

    Smetana, Volodymyr; Steinberg, Simon; Mudryk, Yaroslav; Pecharsky, Vitalij; Miller, Gordon J.; Mudring, Anja -Verena

    2015-10-19

    Four complex intermetallic compounds BaAu6±xGa6±y (x = 1, y = 0.9) (I), BaAu6±xAl6±y (x = 0.9, y = 0.6) (II), EuAu6.2Ga5.8 (III), and EuAu6.1Al5.9 (IV) have been synthesized, and their structures and homogeneity ranges have been determined by single crystal and powder X-ray diffraction. Whereas I and II originate from the NaZn13-type structure (cF104–112, Fm3C), III (tP52, P4/nbm) is derived from the tetragonal Ce2Ni17Si9-type, and IV (oP104, Pbcm) crystallizes in a new orthorhombic structure type. Both I and II feature formally anionic networks with completely mixed site occupation by Au and triel (Tr = Al, Ga) atoms, while a successive decrease of local symmetry from the parental structures of I and II to III and, ultimately, to IV correlates with increasing separation of Au and Tr on individual crystallographic sites. Density functional theory-based calculations were employed to determine the crystallographic site preferences of Au and the respective triel element to elucidate reasons for the atom distribution (“coloring scheme”). Chemical bonding analyses for two different “EuAu6Tr6” models reveal maximization of the number of heteroatomic Au–Tr bonds as the driving force for atom organization. The Fermi levels fall in broad pseudogaps for both models allowing some electronic flexibility. Spin-polarized band structure calculations on the “EuAu6Tr6” models hint to singlet ground states for europium and long-range magnetic coupling for both EuAu6.2Ga5.8 (III) and EuAu6.1Al5.9 (IV). This is substantiated by experimental evidence because both compounds show nearly identical magnetic behavior with ferromagnetic transitions at TC = 6 K and net magnetic moments of 7.35 μB/f.u. at 2 K. As a result, the effective moments of 8.3 μB/f.u., determined from Curie–Weiss fits, point to divalent oxidation states for europium in both III and IV.

  3. Microalloying of transition metal silicides by mechanical activation and field-activated reaction

    DOE Patents [OSTI]

    Munir, Zuhair A. (Davis, CA); Woolman, Joseph N. (Davis, CA); Petrovic, John J. (Los Alamos, NM)

    2003-09-02

    Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.

  4. Atomic magnetometer

    DOE Patents [OSTI]

    Schwindt, Peter; Johnson, Cort N.

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  5. Shape-selective catalysts for Fischer-Tropsch chemistry : atomic layer deposition of active catalytic metals. Activity report : January 1, 2005 - September 30, 2005.

    SciTech Connect (OSTI)

    Cronauer, D. C.

    2011-04-15

    Argonne National Laboratory is carrying out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry - specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it is desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. The broad goal is to produce diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. Originally the goal was to prepare shape-selective catalysts that would limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' Such catalysts were prepared with silica-containing fractal cages. The activity was essentially the same as that of catalysts without the cages. We are currently awaiting follow-up experiments to determine the attrition strength of these catalysts. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product molecular weight distribution could be controlled. In order to rapidly evaluate the catalytic membranes, the ALD coating processes were performed in an 'exploratory mode' in which ALD procedures from the literature appropriate for coating flat surfaces were applied to the high surface area membranes. Consequently, the Fe and Ru loadings in the membranes were likely to be smaller than those expected for complete monolayer coverage. In addition, there was likely to be significant variation in the Fe and Ru loading among the membranes due to difficulties in nucleating these materials on the aluminum oxide surfaces. The first series of experiments using coated membranes demonstrated that the technology needed further improvement. Specifically, observed catalytic FT activity was low. This low activity appeared to be due to: (1) low available surface area, (2) atomic deposition techniques that needed improvements, and (3) insufficient preconditioning of the catalyst surface prior to FT testing. Therefore, experimentation was expanded to the use of particulate silica supports having defined channels and reasonably high surface area. This later experimentation will be discussed in the next progress report. Subsequently, we plan to evaluate membranes after the ALD techniques are improved with a careful study to control and quantify the Fe and Ru loadings. The preconditioning of these surfaces will also be further developed. (A number of improvements have been made with particulate supports; they will be discussed in the subsequent report.) In support of the above, there was an opportunity to undertake a short study of cobalt/promoter/support interaction using the Advanced Photon Source (APS) of Argonne. Five catalysts and a reference cobalt oxide were characterized during a temperature programmed EXAFS/XANES experimental study with the combined effort of Argonne and the Center for Applied Energy Research (CAER) of the University of Kentucky. This project was completed, and it resulted in an extensive understanding of the preconditioning step of reducing Co-containing FT catalysts. A copy of the resulting manuscript has been submitted and accepted for publication. A similar project was undertaken with iron-containing FT catalysts; the data is currently being studied.

  6. From the tiny atom to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From the tiny atom to the supernovae Atom-split it for nuclear energy Fermi-leader of the team that produced the first self-sustain- ing controlled nuclear chain reaction; contributed to ending WWII Calutron-invented by E. O. Lawrence; for maximum pro- ductivity, critical sensitive adjustments were provided by the 'Calutron Girls' Seaborg-Chairman of the Atomic Energy Commission 1961-1971; discovered many elements Buckyball-Buckminsterfullerene; 60 carbon atoms in the shape of a soccer ball;

  7. Calculations of atomic sputtering and displacement cross-sections in solid elements by electrons with energies from threshold to 1. 5 MV

    SciTech Connect (OSTI)

    Bradley, C.R.

    1988-12-01

    The kinetics of knock-on collisions of relativistic electrons with nuclei and details of the numerical evaluation of differential, recoil, and total Mott cross-sections are reviewed and discussed. The effects of electron beam induced displacement and sputtering, in the transmission electron microscope (TEM) environment, on microanalysis are analyzed with particular emphasis placed on the removal of material by knock-on sputtering. The mass loss predicted due to transmission knock-on sputtering is significant for many elements under conditions frequently encountered in microanalysis. Total Mott cross-sections are tabulated for all naturally occurring solid elements up to Z = 92 at displacement energies of one, two, four, and five times the sublimation energy and for accelerating voltages accessible in the transmission electron microscope. Fortran source code listings for the calculation of the differential Mott cross-section as a function of electron scattering angle (dMottCS), as a function of nuclear recoil angle (RECOIL), and the total Mott cross-section (TOTCS) are included. 48 refs., 21 figs., 12 tabs.

  8. Control Heterogeneous Catalysis at Atomic and Electronic-level...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control Heterogeneous Catalysis at Atomic and Electronic-level Using Intermetallic Compounds Precious metals and metal alloys are important heterogeneous catalysts for renewable...

  9. Atomizer with liquid spray quenching

    DOE Patents [OSTI]

    Anderson, I.E.; Osborne, M.G.; Terpstra, R.L.

    1998-04-14

    Method and apparatus are disclosed for making metallic powder particles wherein a metallic melt is atomized by a rotating disk or other atomizer at an atomizing location in a manner to form molten droplets moving in a direction away from said atomizing location. The atomized droplets pass through a series of thin liquid quenching sheets disposed in succession about the atomizing location with each successive quenching sheet being at an increasing distance from the atomizing location. The atomized droplets are incrementally cooled and optionally passivated as they pass through the series of liquid quenching sheets without distorting the atomized droplets from their generally spherical shape. The atomized, cooled droplets can be received in a chamber having a collection wall disposed outwardly of the series of liquid quenching sheets. A liquid quenchant can be flowed proximate the chamber wall to carry the cooled atomized droplets to a collection chamber where atomized powder particles and the liquid quenchant are separated such that the liquid quenchant can be recycled. 6 figs.

  10. Atomizer with liquid spray quenching

    DOE Patents [OSTI]

    Anderson, Iver E.; Osborne, Matthew G.; Terpstra, Robert L.

    1998-04-14

    Method and apparatus for making metallic powder particles wherein a metallic melt is atomized by a rotating disk or other atomizer at an atomizing location in a manner to form molten droplets moving in a direction away from said atomizing location. The atomized droplets pass through a series of thin liquid quenching sheets disposed in succession about the atomizing location with each successive quenching sheet being at an increasing distance from the atomizing location. The atomized droplets are incrementally cooled and optionally passivated as they pass through the series of liquid quenching sheets without distorting the atomized droplets from their generally spherical shape. The atomized, cooled droplets can be received in a chamber having a collection wall disposed outwardly of the series of liquid quenching sheets. A liquid quenchant can be flowed proximate the chamber wall to carry the cooled atomized droplets to a collection chamber where atomized powder particles and the liquid quenchant are separated such that the liquid quenchant can be recycled.

  11. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria; Liu, Wei

    1995-01-01

    A catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(OF.sub.2).sub.1-n (RO.sub.1)n].sub.1-k M.sub.k, [(FO.sub.2).sub.1-n (RO.sub.1.5).sub.n ].sub.1-k M.sub.k, or [Ln.sub.x Zr.sub.1-x O.sub.2-0.5x ].sub.1-k M.sub.k wherein FO.sub.2 is a fluorite-type oxide; RO represents an alkaline earth oxide; RO.sub.1.5 is a Group IIIB or rare earth oxide; Ln is a rare earth element having an atomic number from 57 to 65 or mixtures thereof; M is a transition metal or a mixture of transition metals; n is a number having a value from 0.0 to 0.35; k is a number having a value from 0.0 to about 0.5; and x is a number having a value from about 0.45 to about 0.55.

  12. Atom-split it for nuclear energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adjustments were provided by the 'Calutron Girls' Seaborg-Chairman of the Atomic Energy Commission 1961-1971; discovered many elements Buckyball-Buckminsterfullerene; 60...

  13. Guided evolution of bulk metallic glass nanostructures: A platform for designing three-dimensional electrocatalytic surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Doubek, Gustavo; Sekol, Ryan C.; Li, Jinyang; Ryu, Won -Hee; Gittleson, Forrest S.; Nejati, Siamak; Moy, Eric; Reid, Candy; Carmo, Marcelo; Linardi, Marcelo; et al

    2015-12-22

    Precise control over catalyst surface composition and structure is necessary to improve the function of electrochemical systems. To that end, bulk metallic glass (BMG) alloys with atomically dispersed elements provide a highly processable, nanoscale platform for electrocatalysis and surface modification. Here we report on nanostructures of Pt-based BMGs that are modified with various subtractive and additive processes to improve their electrochemical performance.

  14. Iowa Powder Atomization Technologies

    SciTech Connect (OSTI)

    2012-01-01

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  15. Iowa Powder Atomization Technologies

    ScienceCinema (OSTI)

    None

    2013-03-01

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  16. Low interface defect density of atomic layer deposition BeO with self-cleaning reaction for InGaAs metal oxide semiconductor field effect transistors

    SciTech Connect (OSTI)

    Shin, H. S.; SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741; The University of Texas, Austin, Texas 78758 ; Yum, J. H.; The University of Texas, Austin, Texas 78758 ; Johnson, D. W.; Texas A and M University College Station, Texas 77843 ; Harris, H. R.; Hudnall, Todd W.; Oh, J.; Kirsch, P.; Wang, W.-E.; Bielawski, C. W.; Banerjee, S. K.; Lee, J. C.; Lee, H. D.

    2013-11-25

    In this paper, we discuss atomic configuration of atomic layer deposition (ALD) beryllium oxide (BeO) using the quantum chemistry to understand the theoretical origin. BeO has shorter bond length, higher reaction enthalpy, and larger bandgap energy compared with those of ALD aluminum oxide. It is shown that the excellent material properties of ALD BeO can reduce interface defect density due to the self-cleaning reaction and this contributes to the improvement of device performance of InGaAs MOSFETs. The low interface defect density and low leakage current of InGaAs MOSFET were demonstrated using X-ray photoelectron spectroscopy and the corresponding electrical results.

  17. DOE - Office of Legacy Management -- Westinghouse Atomic Power...

    Office of Legacy Management (LM)

    Processed uranium metal for research and development and pilot-scale production of uranium oxide fuel elements. Prepared uranium metal for Enrico Fermi's Stagg Field experiment. ...

  18. Trace metal characterization and speciation in geothermal effluent by multiple scanning anodic stripping voltammetry and atomic absorpotion analysis. Annual progress report

    SciTech Connect (OSTI)

    Kowalski, B R

    1980-01-01

    Only the actual application of the ultratrace metal analysis methods to samples taken from geothermal sites in Washington and Oregon is covered. The in-field sampling equipment constructed for the studies, procedures developed or adapted, and the results obtained on representative samples taken from geothermal sites are described. (MHR)

  19. FOIL ELEMENT FOR NUCLEAR REACTOR

    DOE Patents [OSTI]

    Noland, R.A.; Walker, D.E.; Spinrad, B.I.

    1963-07-16

    A method of making a foil-type fuel element is described. A foil of fuel metal is perforated in; regular design and sheets of cladding metal are placed on both sides. The cladding metal sheets are then spot-welded to each other through the perforations, and the edges sealed. (AEC)

  20. The synthetic elements

    SciTech Connect (OSTI)

    Hoffman, D.C.

    1990-05-01

    Prior to 1940, the heaviest element known was uranium, discovered in 1789. Since that time the elements 93 through 109 have been synthesized and identified and the elements 43, 61, 85, and 87 which were missing form the periodic tables of the 1930's have been discovered. The techniques and problems involved in these discoveries and the placement of the transuranium elements in the periodic table will be discussed. The production and positive identification of elements heavier than Md (Z=101), which have very short half-lives and can only be produced an atom-at-a-time, are very difficult and there have been controversies concerning their discovery. Some of the new methods which have been developed and used in these studies will be described. The prospects for production of still heavier elements will be considered.

  1. Method for preparing metal powder, device for preparing metal powder, method for processing spent nuclear fuel

    DOE Patents [OSTI]

    Park, Jong-Hee (Clarendon Hills, IL)

    2011-11-29

    A method for producing metal powder is provided the comprising supplying a molten bath containing a reducing agent, contacting a metal oxide with the molten bath for a time and at a temperature sufficient to reduce the metal in the metal oxide to elemental metal and produce free oxygen; and isolating the elemental metal from the molten bath.

  2. Polarization-dependent atomic dipole traps behind a circular aperture for neutral-atom quantum computing

    SciTech Connect (OSTI)

    Gillen-Christandl, Katharina; Copsey, Bert D.

    2011-02-15

    The neutral-atom quantum computing community has successfully implemented almost all necessary steps for constructing a neutral-atom quantum computer. We present computational results of a study aimed at solving the remaining problem of creating a quantum memory with individually addressable sites for quantum computing. The basis of this quantum memory is the diffraction pattern formed by laser light incident on a circular aperture. Very close to the aperture, the diffraction pattern has localized bright and dark spots that can serve as red-detuned or blue-detuned atomic dipole traps. These traps are suitable for quantum computing even for moderate laser powers. In particular, for moderate laser intensities ({approx}100 W/cm{sup 2}) and comparatively small detunings ({approx}1000-10 000 linewidths), trap depths of {approx}1 mK and trap frequencies of several to tens of kilohertz are achieved. Our results indicate that these dipole traps can be moved by tilting the incident laser beams without significantly changing the trap properties. We also explored the polarization dependence of these dipole traps. We developed a code that calculates the trapping potential energy for any magnetic substate of any hyperfine ground state of any alkali-metal atom for any laser detuning much smaller than the fine-structure splitting for any given electric field distribution. We describe details of our calculations and include a summary of different notations and conventions for the reduced matrix element and how to convert it to SI units. We applied this code to these traps and found a method for bringing two traps together and apart controllably without expelling the atoms from the trap and without significant tunneling probability between the traps. This approach can be scaled up to a two-dimensional array of many pinholes, forming a quantum memory with single-site addressability, in which pairs of atoms can be brought together and apart for two-qubit gates for quantum computing.

  3. L{sub g}?=?100?nm In{sub 0.7}Ga{sub 0.3}As quantum well metal-oxide semiconductor field-effect transistors with atomic layer deposited beryllium oxide as interfacial layer

    SciTech Connect (OSTI)

    Koh, D., E-mail: dh.koh@utexas.edu, E-mail: Taewoo.Kim@sematech.org [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States); SEMATECH, Inc., Albany, New York 12203 (United States); Kwon, H. M. [Department of Electronics Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, T.-W., E-mail: dh.koh@utexas.edu, E-mail: Taewoo.Kim@sematech.org; Veksler, D.; Gilmer, D.; Kirsch, P. D. [SEMATECH, Inc., Albany, New York 12203 (United States); Kim, D.-H. [SEMATECH, Inc., Albany, New York 12203 (United States); GLOBALFOUNDRIES, Malta, New York 12020 (United States); Hudnall, Todd W. [Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, 78666 (United States); Bielawski, Christopher W. [Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712 (United States); Maszara, W. [GLOBALFOUNDRIES, Santa Clara, California 95054 (United States); Banerjee, S. K. [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States)

    2014-04-21

    In this study, we have fabricated nanometer-scale channel length quantum-well (QW) metal-oxide-semiconductor field effect transistors (MOSFETs) incorporating beryllium oxide (BeO) as an interfacial layer. BeO has high thermal stability, excellent electrical insulating characteristics, and a large band-gap, which make it an attractive candidate for use as a gate dielectric in making MOSFETs. BeO can also act as a good diffusion barrier to oxygen owing to its small atomic bonding length. In this work, we have fabricated In{sub 0.53}Ga{sub 0.47}As MOS capacitors with BeO and Al{sub 2}O{sub 3} and compared their electrical characteristics. As interface passivation layer, BeO/HfO{sub 2} bilayer gate stack presented effective oxide thickness less 1 nm. Furthermore, we have demonstrated In{sub 0.7}Ga{sub 0.3}As QW MOSFETs with a BeO/HfO{sub 2} dielectric, showing a sub-threshold slope of 100?mV/dec, and a transconductance (g{sub m,max}) of 1.1 mS/?m, while displaying low values of gate leakage current. These results highlight the potential of atomic layer deposited BeO for use as a gate dielectric or interface passivation layer for IIIV MOSFETs at the 7?nm technology node and/or beyond.

  4. Metalsemiconductor transition in atomically thin Bi{sub 2}Sr{sub 2}Co{sub 2}O{sub 8} nanosheets

    SciTech Connect (OSTI)

    Wang, Yang; Cheng, Rui; Dong, Jianjin; Liu, Yuan; Zhou, Hailong; Yu, Woo Jong; Terasaki, Ichiro; Huang, Yu; Duan, Xiangfeng

    2014-09-01

    Two-dimensional layered materials have attracted considerable attention since the discovery of graphene. Here we demonstrate that the layered Bi{sub 2}Sr{sub 2}Co{sub 2}O{sub 8} (BSCO) can be mechanically exfoliated into single- or few-layer nanosheets. The BSCO nanosheets with four or more layers display bulk metallic characteristics, while the nanosheets with three or fewer layers have a layer-number-dependent semiconducting characteristics. Charge transport in bilayer or trilayer BSCO nanosheets exhibits Mott 2D variable-range-hopping (VRH) conduction throughout 2 K300 K, while the charge transport in monolayers follows the Mott-VRH law above a crossover temperature of 75 K, and is governed by Efros and Shklovskii-VRH laws below 75 K. Disorder potentials and Coulomb charging both contribute to the transport gap of these nanodevices. Our study reveals a distinct layer number-dependent metal-to-semiconductor transition in a new class of 2D materials, and is of great significance for both fundamental investigations and practical devices.

  5. Sensitivity analysis of single-layer graphene resonators using atomic

    Office of Scientific and Technical Information (OSTI)

    finite element method (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Sensitivity analysis of single-layer graphene resonators using atomic finite element method Citation Details In-Document Search Title: Sensitivity analysis of single-layer graphene resonators using atomic finite element method Atomic finite element simulation is applied to study the natural frequency and sensitivity of a single-layer graphene-based resonator with CCCC, SSSS, CFCF, SFSF,

  6. Exploration of R2XM2 (R=Sc, Y, Ti, Zr, Hf, rare earth; X=main group element; M=transition metal, Si, Ge): Structural Motifs, the novel Compound Gd2AlGe2 and Analysis of the U3Si2 and Zr3Al2 Structure Types

    SciTech Connect (OSTI)

    Sean William McWhorter

    2006-05-01

    In the process of exploring and understanding the influence of crystal structure on the system of compounds with the composition Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} several new compounds were synthesized with different crystal structures, but similar structural features. In Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}, the main feature of interest is the magnetocaloric effect (MCE), which allows the material to be useful in magnetic refrigeration applications. The MCE is based on the magnetic interactions of the Gd atoms in the crystal structure, which varies with x (the amount of Si in the compound). The crystal structure of Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} can be thought of as being formed from two 3{sup 2}434 nets of Gd atoms, with additional Gd atoms in the cubic voids and Si/Ge atoms in the trigonal prismatic voids. Attempts were made to substitute nonmagnetic atoms for magnetic Gd using In, Mg and Al. Gd{sub 2}MgGe{sub 2} and Gd{sub 2}InGe{sub 2} both possess the same 3{sup 2}434 nets of Gd atoms as Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}, but these nets are connected differently, forming the Mo{sub 2}FeB{sub 2} crystal structure. A search of the literature revealed that compounds with the composition R{sub 2}XM{sub 2} (R=Sc, Y, Ti, Zr, Hf, rare earth; X=main group element; M=transition metal, Si, Ge) crystallize in one of four crystal structures: the Mo{sub 2}FeB{sub 2}, Zr{sub 3}Al{sub 2}, Mn{sub 2}AlB{sub 2} and W{sub 2}CoB{sub 2} crystal structures. These crystal structures are described, and the relationships between them are highlighted. Gd{sub 2}AlGe{sub 2} forms an entirely new crystal structure, and the details of its synthesis and characterization are given. Electronic structure calculations are performed to understand the nature of bonding in this compound and how electrons can be accounted for. A series of electronic structure calculations were performed on models with the U{sub 3}Si{sub 2} and Zr{sub 3}Al{sub 2} structures, using Zr and A1 as the building blocks. The starting point for these models was the U{sub 3}Si{sub 2} structure, and models were created to simulate the transition from the idealized U{sub 3}Si{sub 2} structure to the distorted Zr{sub 3}Al{sub 2} structure. Analysis of the band structures of the models has shown that the transition from the U{sub 3}Si{sub 2} structure to the Zr{sub 3}Al{sub 2} structure lifts degeneracies along the {Lambda} {yields} Z direction, indicating a Peierls-type mechanism for the displacement occurring in the positions of the Zr atoms.

  7. Nuclear fuel element

    DOE Patents [OSTI]

    Armijo, Joseph S.; Coffin, Jr., Louis F.

    1983-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a composite cladding having a substrate and a metal barrier metallurgically bonded on the inside surface of the substrate so that the metal barrier forms a shield between the substrate and the nuclear fuel material held within the cladding. The metal barrier forms about 1 to about 30 percent of the thickness of the cladding and is comprised of a low neutron absorption metal of substantially pure zirconium. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the substrate from contact and reaction with such impurities and fission products. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy. Methods of manufacturing the composite cladding are also disclosed.

  8. Resistive hydrogen sensing element

    DOE Patents [OSTI]

    Lauf, Robert J.

    2000-01-01

    Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

  9. Atom Interferometry

    ScienceCinema (OSTI)

    Mark Kasevich

    2010-01-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton?s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  10. JACKETED REACTOR FUEL ELEMENT

    DOE Patents [OSTI]

    Smith, K.F.; Van Thyne, R.J.

    1958-12-01

    A fuel element is described for fast reactors comprised of a core of uranium metal containing material and a jacket around the core, the jacket consisting of from 2.5 to 15 percent of titanium, from 1 to 5 percent of niobium, and from 80 to 96.5 percent of vanadium.

  11. Photovoltaic radiation detector element

    DOE Patents [OSTI]

    Agouridis, Dimitrios C.

    1983-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein the edge of which closely approaches but is spaced from the current collector strips.

  12. Photovoltaic radiation detector element

    DOE Patents [OSTI]

    Agouridis, D.C.

    1980-12-17

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips.

  13. Dissolution of inert gas in a metal alloy

    DOE Patents [OSTI]

    Flinn, John E.; Korth, Gary E.; Wright, Richard N.; Clark, Denis E.; Loop, Richard B.

    1988-01-01

    A metal powder is produced by inert gas atomization processes. The atomizon process is regulated to provide a preselected level of inert gas alloyed in the metal.

  14. FUEL ELEMENTS FOR NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Foote, F.G.; Jette, E.R.

    1963-05-01

    A fuel element for a nuclear reactor is described that consists of a jacket containing a unitary core of fissionable material and a filling of a metal of the group consisting of sodium and sodium-potassium alloys. (AEC)

  15. The Electronic Structure of Oxygen Atom Vacancy and Hydroxyl...

    Office of Scientific and Technical Information (OSTI)

    Title: The Electronic Structure of Oxygen Atom Vacancy and Hydroxyl Impurity Defects on Titanium Dioxide (110) Surface Introducing a charge into a solid such as a metal oxide ...

  16. Electroless Atomic Layer Deposition: A Scalable Approach to Surface...

    Office of Scientific and Technical Information (OSTI)

    Title: Electroless Atomic Layer Deposition: A Scalable Approach to Surface Modified Metal Powders. Abstract not provided. Authors: Cappillino, Patrick ; Robinson, David ; El Gabaly ...

  17. Probing metal solidification nondestructively

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing metal solidification nondestructively Probing metal solidification nondestructively This is the first time that high-energy protons have been used to nondestructively image a large metal sample during melting and solidification. April 11, 2014 An x-ray image of a 200 micron thick aluminum-14 atomic percent copper alloy during directional solidification, highlighting the growth of an aluminum-rich branched structure (dendrite) and the advancing solid-liquid (planar) interface. The

  18. Tuning From Half-Metallic to Semiconducting Behavior in SiC Nanoribbons

    SciTech Connect (OSTI)

    Lopez-Benzanilla, Alejandro; Huang, Jingsong; Kent, Paul R; Sumpter, Bobby G

    2013-01-01

    Half-metallic nanoscale conductors, highly sought after for spintronic applications, are usually realized through metal elements, chemical doping, or external electric fields. By means of local and hybrid density functional theory calculations, we identify pristine zigzag silicon carbide nanoribbons (zSiC-NRs) with bare edges as a metal-free monolayered material that exhibits intrinsic half-metallic behavior without chemical doping or external electric field. Ab initio molecular dynamics simulations indicate that the half-metallicity is robust at room temperature. We also demonstrate that edge termination with O and S atoms transforms the zSiC-NRs into a full metal or a semiconducting material, respectively, due to the presence of O dimerization only on the Si edge and of S trimerization on both Si and C edges, the latter being driven by an unusual Peierls-like distortion along the functionalizing S atoms. The rich electronic properties displayed by zSiC-NRs may open new perspectives for spintronic applications using layered, metal-free, and light atom material.

  19. Nuclear fuel element

    DOE Patents [OSTI]

    Armijo, Joseph S.; Coffin, Jr., Louis F.

    1980-04-29

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has an improved composite cladding comprised of a moderate purity metal barrier of zirconium metallurgically bonded on the inside surface of a zirconium alloy tube. The metal barrier forms a shield between the alloy tube and a core of nuclear fuel material enclosed in the composite cladding. There is a gap between the cladding and the core. The metal barrier forms about 1 to about 30 percent of the thickness of the composite cladding and has low neutron absorption characteristics. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the alloy tube from contact and reaction with such impurities and fission products. Methods of manufacturing the composite cladding are also disclosed.

  20. 2.10 Heavy Element Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 6/1/2011 2.10 Heavy Element Chemistry For more than 50 years, the Office of Science and predecessor agencies have supported the discovery and study of the actinide elements, in particular the transuranium elements-atoms that are heavier than uranium. Glenn Seaborg and Ed McMillan of the Lawrence Berkeley National Laboratory, 1951 Nobel Laureates in Chemistry for the discovery of plutonium and other actinide elements, began this quest. Today, the Heavy Element Chemistry program continues the

  1. Alkali metal ion battery with bimetallic electrode

    DOE Patents [OSTI]

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  2. ATOM | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACATOM content top Network Optimization Models (RNAS and ATOM) Posted by Admin on Mar 1, 2012 in | Comments 0 comments Many critical infrastructures can be represented by a network of interconnected nodes and links. Mathematically sound nonlinear optimization techniques can then be applied to these networks to understand their behavior under normal and disrupted situations. Network optimization models are particularly useful for evaluating transportation system disruption effects on system

  3. Density functional theory calculations of stability and diffusion mechanisms of impurity atoms in Ge crystals

    SciTech Connect (OSTI)

    Maeta, Takahiro; Sueoka, Koji

    2014-08-21

    Ge-based substrates are being developed for applications in advanced nano-electronic devices because of their higher intrinsic carrier mobility than Si. The stability and diffusion mechanism of impurity atoms in Ge are not well known in contrast to those of Si. Systematic studies of the stable sites of 2nd to 6th row element impurity atoms in Ge crystal were undertaken with density functional theory (DFT) and compared with those in Si crystal. It was found that most of the impurity atoms in Ge were stable at substitutional sites, while transition metals in Si were stable at interstitial sites and the other impurity atoms in Si were stable at substitutional sites. Furthermore, DFT calculations were carried out to clarify the mechanism responsible for the diffusion of impurity atoms in Ge crystals. The diffusion mechanism for 3d transition metals in Ge was found to be an interstitial-substitutional diffusion mechanism, while in Si this was an interstitial diffusion mechanism. The diffusion barriers in the proposed diffusion mechanisms in Ge and Si were quantitatively verified by comparing them to the experimental values in the literature.

  4. The Origin of the Elements

    ScienceCinema (OSTI)

    Murphy, Edward

    2014-08-06

    The world around us is made of atoms. Did you ever wonder where these atoms came from? How was the gold in our jewelry, the carbon in our bodies, and the iron in our cars made? In this lecture, we will trace the origin of a gold atom from the Big Bang to the present day, and beyond. You will learn how the elements were forged in the nuclear furnaces inside stars, and how, when they die, these massive stars spread the elements into space. You will learn about the origin of the building blocks of matter in the Big Bang, and we will speculate on the future of the atoms around us today.

  5. The Origin of the Elements

    SciTech Connect (OSTI)

    Murphy, Edward

    2012-11-20

    The world around us is made of atoms. Did you ever wonder where these atoms came from? How was the gold in our jewelry, the carbon in our bodies, and the iron in our cars made? In this lecture, we will trace the origin of a gold atom from the Big Bang to the present day, and beyond. You will learn how the elements were forged in the nuclear furnaces inside stars, and how, when they die, these massive stars spread the elements into space. You will learn about the origin of the building blocks of matter in the Big Bang, and we will speculate on the future of the atoms around us today.

  6. sp3-hybridized framework structure of group-14 elements discovered...

    Office of Scientific and Technical Information (OSTI)

    with energy band gaps close to the optimal values for optoelectronic or photovoltaic applications. With metal-atom encapsulation, the P42mnm structure would also be a...

  7. Method of producing microporous joints in metal bodies

    DOE Patents [OSTI]

    Danko, Joseph C. (Danville, CA)

    1982-01-01

    Tungsten is placed in contact with either molybdenum, tantalum, niobium, vanadium, rhenium, or other metal of atoms having a different diffusion coefficient than tungsten. The metals are heated so that the atoms having the higher diffusion coefficient migrate to the metal having the lower diffusion rate, leaving voids in the higher diffusion coefficient metal. Heating is continued until the voids are interconnected.

  8. Atomically Thin Metallic Boron | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Andrew Mannix and Nathan Guisinger examine a boron evaporator while Brandon Fisher checks cryogen flow settings and Brian Kiraly examines a sample next to a vacuum chamber loadlock at the Center for Nanoscale Materials. Photo by Mark Lopez / Argonne National Laboratory. Andrew Mannix and Nathan Guisinger examine a boron evaporator while Brandon Fisher checks cryogen flow settings and Brian Kiraly examines a sample next to a vacuum chamber loadlock at the Center for Nanoscale Materials. Photo by

  9. Nuclear fuel element

    DOE Patents [OSTI]

    Zocher, Roy W.

    1991-01-01

    A nuclear fuel element and a method of manufacturing the element. The fuel element is comprised of a metal primary container and a fuel pellet which is located inside it and which is often fragmented. The primary container is subjected to elevated pressure and temperature to deform the container such that the container conforms to the fuel pellet, that is, such that the container is in substantial contact with the surface of the pellet. This conformance eliminates clearances which permit rubbing together of fuel pellet fragments and rubbing of fuel pellet fragments against the container, thus reducing the amount of dust inside the fuel container and the amount of dust which may escape in the event of container breach. Also, as a result of the inventive method, fuel pellet fragments tend to adhere to one another to form a coherent non-fragmented mass; this reduces the tendency of a fragment to pierce the container in the event of impact.

  10. Iowa Powder Atomization Technologies, Inc.

    Broader source: Energy.gov [DOE]

    Iowa Powder Atomization Technologies, Inc. (IPAT), based in Nevada, Iowa, is using gas atomization technology developed at Ames Laboratory to make titanium powder with processes that are ten times more efficient than traditional powder-making methods — significantly lowering the cost of the powder to manufacturers. The powder form of titanium is easier to work with than having to cast the metal — where manufacturers melt and pour liquid metal into molds — particularly given titanium’s tendency to react with the materials used to form molds. Titanium’s strength, light weight, biocompatibility and resistance to corrosion make it ideal for use in a variety of parts — from components for artificial limbs — like those used by wounded veterans returning from Iraq and Afghanistan — to military vehicle components, biomedical implants, aerospace fasteners and chemical plant valves.

  11. UNITED STATES ATOMIC ENERGY COMMISSION

    Office of Legacy Management (LM)

    A.' +4 @4.dY MDDC - 1613 UNITED STATES ATOMIC ENERGY COMMISSION 34.27 : . Production of Rarer Metals by George Meister Westinghouse Electric Corporation This document consists ofllpages. Date of ianuscrtpt: unknown Date Declassified: February 11, 1948 This document is issued for official use. Its issuance does not constitute authority to declassify coptes or versions of the same or similar content and title and by the same author(s). Technical Information Division. Oak Ridge DIrected Operations

  12. Non-stoichiometric AB5 alloys for metal hydride electrodes

    DOE Patents [OSTI]

    Reilly, James J.; Adzic, Gordana D.; Johnson, John R.; Vogt, Thomas; McBreen, James

    2001-01-01

    The present invention provides a non-stoichiometric alloy comprising a composition having the formula AB.sub.5+X an atomic ratio wherein A is selected from the group consisting of the rare earth metals, yttrium, mischmetal, or a combination thereof; B is nickel and tin, or nickel and tin and at least a third element selected from the group consisting of the elements in group IVA of the periodic table, aluminum, manganese, iron, cobalt, copper, antimony or a combination thereof; X is greater than 0 and less than or equal to about 2.0; and wherein at least one substituted A site is occupied by at least one of the B elements. An electrode incorporating said alloy and an electrochemical cell incorporating said electrode are also described.

  13. Electroless Atomic Layer Deposition: A Scalable Approach to Surface

    Office of Scientific and Technical Information (OSTI)

    Modified Metal Powders. (Journal Article) | SciTech Connect Electroless Atomic Layer Deposition: A Scalable Approach to Surface Modified Metal Powders. Citation Details In-Document Search Title: Electroless Atomic Layer Deposition: A Scalable Approach to Surface Modified Metal Powders. Abstract not provided. Authors: Cappillino, Patrick ; Robinson, David ; El Gabaly Marquez, Farid ; Sugar, Joshua Daniel ; Cai, Trevor ; Stickney, John ; Liu, Zhi Publication Date: 2014-01-01 OSTI Identifier:

  14. AGREEMENT FOR COOPERATION CONCERNING CIVIL USES OF ATOMIC ENERGY...

    National Nuclear Security Administration (NNSA)

    ... Paragraph A. D. Materials (1) Physical, chemical and nuclear properties of all elements, ... foregoing in the. form of metal, alloy, chemical compound or concentrate; or any other ...

  15. De novo design of ligands for metal separation. Annual progress report, September 15, 1996--September 14, 1997

    SciTech Connect (OSTI)

    1997-01-01

    'The specific aim of this report is to parameterize force field to reproduce geometries and relative energetics of metal-ligand complexes for cesium, strontium, plutonium, uranium, americium and other relevent alkali, transition, lanthanide and actinide metals. As an initial attempt to examine parametrization, Dr. Yasuo Takeuchi has examined parameters for iron in combination with the molecular mechanics force field. The authors realize that most of the current ad hoc methodogies used to model metal interactions in the past do not have a firm theoretical foundation for modeling the d and f orbitals. They have, therefore, started a collaboration with Prof. Anders Carlsson of the Department of Physics to provide a theoretically correct functional form for the metal force field. Prof. Carlsson has an extensive track record in the derivation of the form of angular force fields from analysis of the quantum-mechanical electronic structure. His most important related works have treated the angular forces around transition-metal (TM) atoms in an aluminum host, the angular forces in elemental bcc transition metals, and the origins of angular and torsional forces in well-bonded s-p systems. They propose to apply the basic ideas of these calculations to developing force laws for transition metal ions in biomolecules. Of particular relevance to the proposed work is his study analyzing angular forces around transition metal (TM) atoms embedded in an aluminum host. Such TM atoms have a profound effect on the host structure, often entirely reassembling the host structure in order to satisfy the angular bonding constraints around the TM atoms. For example, at a concentration of only 1 {approximately} TM to 12 {approximately} Al, the transition metals Mn, Mo, Tc, W, and Re form the Al{sup 12}W structure, in which the underlying fcc aluminum lattice is disassembled and reassembled into icosahedra which surround the transition-metal atoms. The Al{sup 12}W structure is a body-centered cubic arrangement of such icosahedra. This behavior is analogous to that of several transition metals in proteins and other potential hosts, for example the formation of square-planar or Jahn-teller distorted octahedral structure by Cu{sup 2+} ions in many proteins. In both cases, the transition metal atom or ion has strong preferences regarding its angular environment. Of course, other effects, such as steric constraints on the ligands, are also important and dominate in some cases.'

  16. METHOD OF MAKING FUEL ELEMENTS

    DOE Patents [OSTI]

    Bean, C.H.; Macherey, R.E.

    1959-12-01

    A method is described for fabricating fuel elements, particularly for enclosing a plate of metal with a second metal by inserting the plate into an aperture of a frame of a second plate, placing a sheet of the second metal on each of opposite faces of the assembled plate and frame, purging with an inert gas the air from the space within the frame and the sheets while sealing the seams between the frame and the sheets, exhausting the space, purging the space with air, re-exhausting the spaces, sealing the second aperture, and applying heat and pressure to bond the sheets, the plate, and the frame to one another.

  17. Pseudopotentials for quantum Monte Carlo studies of transition metal oxides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Krogel, Jaron T.; Santana Palacio, Juan A.; Reboredo, Fernando A.

    2016-02-22

    Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentialsmore » to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.« less

  18. FUEL ELEMENT

    DOE Patents [OSTI]

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  19. Metal working lubricant compositions

    SciTech Connect (OSTI)

    Andress, H.J.; Davis, R.H.; Schick, J.W.

    1981-08-11

    A lubricant concentrate for use in metal processing comprises a sulfur compound such as a sulfurized olefin or sulfurized mineral oil and an ester prepared from a fatty acid having 12 to 40 carbon atoms or the dimer thereof or a polyalkenylsuccinic acid or anhydride and a hydroxyl-containing amine.

  20. Atom Trajectory Viewer

    Energy Science and Technology Software Center (OSTI)

    2015-12-28

    Atom Trajectory Viewer is a visualization tool developed to enable interactive exploration of atomic trajectories and corresponding statistics in molecular dynamics.

  1. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on 1D metals has been enriched by the synthesis of quite novel materials, of which carbon nanotubes and metallic atomic wires on surfaces are recent examples. Atomic structure...

  2. Lesson 3 - Atoms and Isotopes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 - Atoms and Isotopes Lesson 3 - Atoms and Isotopes You've probably heard people refer to nuclear energy as "atomic energy." Why? Nuclear energy is the energy that is stored in the bonds of atoms, inside the nucleus. Nuclear power plants are designed to capture this energy as heat and convert it to electricity. This lesson looks closely at what atoms are and how atoms store energy. This lesson covers the following topics: Matter Molecules Elements Chemical reaction Periodic table The

  3. Sensing mode atomic force microscope

    DOE Patents [OSTI]

    Hough, Paul V. C.; Wang, Chengpu

    2003-01-01

    An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.

  4. Spray casting of metallic preforms

    DOE Patents [OSTI]

    Flinn, John E.; Burch, Joseph V.; Sears, James W.

    2000-01-01

    A metal alloy is melted in a crucible and ejected from the bottom of the crucible as a descending stream of molten metal. The descending stream is impacted with a plurality of primary inert gas jets surrounding the molten metal stream to produce a plume of atomized molten metal droplets. An inert gas is blown onto a lower portion of the plume with a plurality of auxiliary inert gas jets to deflect the plume into a more restricted pattern of high droplet density, thereby substantially eliminating unwanted overspray and resulting wasted material. The plume is projected onto a moving substrate to form a monolithic metallic product having generally parallel sides.

  5. FUEL ELEMENT CONSTRUCTION

    DOE Patents [OSTI]

    Zumwalt, L.R.

    1961-08-01

    Fuel elements having a solid core of fissionable material encased in a cladding material are described. A conversion material is provided within the cladding to react with the fission products to form stable, relatively non- volatile compounds thereby minimizing the migration of the fission products into the coolant. The conversion material is preferably a metallic fluoride, such as lead difluoride, and may be in the form of a coating on the fuel core or interior of the cladding, or dispersed within the fuel core. (AEC)

  6. Quinary metallic glass alloys

    DOE Patents [OSTI]

    Lin, Xianghong; Johnson, William L.

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  7. Quinary metallic glass alloys

    DOE Patents [OSTI]

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  8. Atomic and electronic structure of Pd{sub 40}Ni{sub 40}P{sub...

    Office of Scientific and Technical Information (OSTI)

    (M) atoms and form a polar covalently bonded random network of P-M-P favoring certain angles. The remaining M atoms act as metallic glue with a tendency of nanoscale clustering of...

  9. Polymer quenched prealloyed metal powder

    DOE Patents [OSTI]

    Hajaligol, Mohammad R.; Fleischhauer, Grier; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  10. Composite oxygen ion transport element

    DOE Patents [OSTI]

    Chen, Jack C.; Besecker, Charles J.; Chen, Hancun; Robinson, Earil T.

    2007-06-12

    A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

  11. Method for decontamination of radioactive metal surfaces

    DOE Patents [OSTI]

    Bray, L.A.

    1996-08-13

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  12. Method for decontamination of radioactive metal surfaces

    DOE Patents [OSTI]

    Bray, Lane A. (Richland, WA)

    1996-01-01

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  13. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-04-25

    In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalousmore » diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.« less

  14. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    SciTech Connect (OSTI)

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-04-25

    In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.

  15. Arc plasma generator of atomic driver for steady-state negative ion source

    SciTech Connect (OSTI)

    Ivanov, A. A.; Belchenko, Yu. I.; Davydenko, V. I.; Novosibirsk State University, Novosibirsk ; Ivanov, I. A.; Kolmogorov, V. V.; Listopad, A. A. Mishagin, V. V.; Shulzhenko, G. I.; Putvinsky, S. V.; Smirnov, A.

    2014-02-15

    The paper reviews the results of development of steady-state arc-discharge plasma generator with directly heated LaB{sub 6} cathode. This arc-discharge plasma generator produces a plasma jet which is to be converted into an atomic one after recombination on a metallic plate. The plate is electrically biased relative to the plasma in order to control the atom energies. Such an intensive jet of hydrogen atoms can be used in negative ion sources for effective production of negative ions on a cesiated surface of plasma grid. All elements of the plasma generator have an augmented water cooling to operate in long pulse mode or in steady state. The thermo-mechanical stresses and deformations of the most critical elements of the plasma generator were determined by simulations. Magnetic field inside the discharge chamber was optimized to reduce the local power loads. The first tests of the steady-state arc plasma generator prototype have performed in long-pulse mode.

  16. Ruthenium / aerogel nanocomposits via Atomic Layer Deposition

    SciTech Connect (OSTI)

    Biener, J; Baumann, T F; Wang, Y; Nelson, E J; Kucheyev, S O; Hamza, A V; Kemell, M; Ritala, M; Leskela, M

    2006-08-28

    We present a general approach to prepare metal/aerogel nanocomposites via template directed atomic layer deposition (ALD). In particular, we used a Ru ALD process consisting of alternating exposures to bis(cyclopentadienyl)ruthenium (RuCp{sub 2}) and air at 350 C to deposit metallic Ru nanoparticles on the internal surfaces of carbon and silica aerogels. The process does not affect the morphology of the aerogel template and offers excellent control over metal loading by simply adjusting the number of ALD cycles. We also discuss the limitations of our ALD approach, and suggest ways to overcome these.

  17. Memristor using a transition metal nitride insulator

    DOE Patents [OSTI]

    Stevens, James E; Marinella, Matthew; Lohn, Andrew John

    2014-10-28

    Apparatus is disclosed in which at least one resistive switching element is interposed between at least a first and a second conducting electrode element. The resistive switching element comprises a metal oxynitride. A method for making such a resistive switching element is also disclosed.

  18. Programmatic Elements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-07-11

    The Guide provides acceptable methods of meeting the requirements of DOE O 151.1C for programmatic elements that sustain the emergency management program and maintain the readiness of the program to respond to an emergency. Supersedes DOE G 151.1-1, Volume 5-1, DOE G 151.1-1, Volume 5-2, DOE G 151.1-1, Volume 5-3, DOE G 151.1-1, Volume 5-4, DOE G 151.1-1, Volume 7-1, and DOE G 151.1-1, Volume 7-3.

  19. Atomization methods for forming magnet powders

    DOE Patents [OSTI]

    Sellers, Charles H.; Branagan, Daniel J.; Hyde, Timothy A.

    2000-01-01

    The invention encompasses methods of utilizing atomization, methods for forming magnet powders, methods for forming magnets, and methods for forming bonded magnets. The invention further encompasses methods for simulating atomization conditions. In one aspect, the invention includes an atomization method for forming a magnet powder comprising: a) forming a melt comprising R.sub.2.1 Q.sub.13.9 B.sub.1, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; b) atomizing the melt to form generally spherical alloy powder granules having an internal structure comprising at least one of a substantially amorphous phase or a substantially nanocrystalline phase; and c) heat treating the alloy powder to increase an energy product of the alloy powder; after the heat treatment, the alloy powder comprising an energy product of at least 10 MGOe. In another aspect, the invention includes a magnet comprising R, Q, B, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; the magnet comprising an internal structure comprising R.sub.2.1 Q.sub.13.9 B.sub.1.

  20. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    DOE Patents [OSTI]

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  1. EXELFS of Metallic Glasses

    SciTech Connect (OSTI)

    Ito, Y.; Alamgir, F.M.; Schwarz, R.B.; Jain, H.; Williams, D.B.

    1999-11-30

    The feasibility of using extended energy-loss fine structure (EXELFS) obtained from {approximately}1 nm regions of metallic glasses to study their short-range order has been examined. Ionization edges of the metallic glasses in the electron energy-loss spectrum (EELS) have been obtained from PdNiP bulk metallic glass and Ni{sub 2}P polycrystalline powder in a transmission electron microscope. The complexity of EXELFS analysis of L- and M-ionization edges of heavy elements (Z>22, i.e. Ni and Pd) is addressed by theoretical calculations using an ab initio computer code, and its results are compared with the experimental data.

  2. Metallization of electronic insulators

    DOE Patents [OSTI]

    Gottesfeld, Shimshon (Los Alamos, NM); Uribe, Francisco A. (Los Alamos, NM)

    1994-01-01

    An electroplated element is formed to include an insulating substrate, a conducting polymer polymerized in situ on the substrate, and a metal layer deposited on the conducting polymer. In one application a circuit board is formed by polymerizing pyrrole on an epoxy-fiberglass substrate in a single step process and then electrodepositing a metal over the resulting polypyrrole polymer. No chemical deposition of the metal is required prior to electroplating and the resulting layer of substrate-polymer-metal has excellent adhesion characteristics. The metal deposition is surprisingly smooth and uniform over the relatively high resistance film of polypyrrole. A continuous manufacturing process is obtained by filtering the solution between successive substrates to remove polymer formed in the solution, by maintaining the solution oxidizing potential within selected limits, and by adding a strong oxidant, such as KMnO.sub.4 at periodic intervals to maintain a low sheet resistivity in the resulting conducting polymer film.

  3. Applying Metal-Organic Frameworks in heterogeneous Catalyisis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal-Organic Frameworks in heterogeneous Catalyisis To control heterogeneous catalysis at atomic and electronic-level represents one of the most challenge research areas....

  4. Response Elements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-07-11

    The Guide provides acceptable methods for meeting the requirement of DOE O 151.1C for response elements that respond or contribute to response as needed in an emergency. Supersedes DOE G 151.1-1, Volume 3-1, DOE G 151.1-1, Volume 3-2, DOE G 151.1-1, Volume 3-3, DOE G 151.1-1, Volume 3-4, DOE G 151.1-1, Volume 4-1, DOE G 151.1-1, Volume 4-2, DOE G 151.1-1, Volume 4-3, DOE G 151.1-1, Volume 4-4, DOE G 151.1-1, Volume 4-5, and DOE G 151.1-1, Volume 4-6.

  5. Ductile transplutonium metal alloys

    DOE Patents [OSTI]

    Conner, W.V.

    1981-10-09

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  6. Ductile transplutonium metal alloys

    DOE Patents [OSTI]

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  7. Atomic Energy Commission Takes Over Responsibility for all Atomic...

    National Nuclear Security Administration (NNSA)

    Takes Over Responsibility for all Atomic Energy Programs Atomic Energy Commission Takes Over Responsibility for all Atomic Energy Program Washington, DC In accordance with the ...

  8. Photo-induced valence change of the sulfur atom in an L-cysteine thin film grown on a silver metal substrate in a saliva-emulated aqueous solution

    SciTech Connect (OSTI)

    Tsujibayashi, Toru; Azuma, Junpei; Yamamoto, Isamu; Takahashi, Kazutoshi; Kamada, Masao

    2015-04-27

    A thin film of L-cysteine (HSCH{sub 2}CH(NH{sub 2})COOH) is grown on a silver substrate in saliva-emulated aqueous solution. X-ray photoemission spectroscopic measurements have revealed that the sulfur atom shows valence change under IR laser irradiation at 825?nm. The valence change maintains for about a minute at room temperature and more than an hour between 110 and 250?K after stopping the laser irradiation. It is not observed at all at temperatures lower than 110?K. This temperature-dependent behavior indicates that the photo-excited electronic change should be accompanied by a conformational change in the L-cysteine molecule. It is strongly suggested that the reversible valence change of the sulfur atom is applicable to a memory used around room temperature.

  9. Metal aminoboranes

    DOE Patents [OSTI]

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya Kaviraj; Shrestha, Roshan P.

    2010-05-11

    Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  10. Control of the Accumulation of Non-Process Elements in Pulp Mills with Bleach Filtrate Reuse: A Chemical Equilibrium Approach to Predicting the Partitioning of Metals in Pulp Mill and Bleach Plant Streams

    SciTech Connect (OSTI)

    Frederick, W.J. Jr.; Rudie, A.W.; Schmidl, G.W.; Sinquefield, S.A.; Rorrer, G.L.; Laver, M.L.; Yantasee, W.; Ming, D.

    2000-08-01

    The overall goal of this project was to develop fundamental, experimentally based methods for predicting the solubility or organic and inorganic matter and their interactions in recycled effluent from kraft pulp mills and bleach plants. This included: characterizing the capacity of wood pulp and dissolved organic matter to bind metal ions, developing a thermodynamic database of properties needed to describe the solubility of inorganic matter in pulp mill streams, incorporation of the database into equilibrium calculation software for predicting the solubility of the metals of interest, and evaluating its capability to predict the distribution of the metals between pulp fibers, inorganic precipitates, and solution.

  11. Metal Hydrides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Hydrides Theodore Motyka Savannah River National Laboratory Metal Hydride System Architect Jose-Miguel Pasini, & Bart van Hassel UTRC Claudio Corgnale & Bruce Hardy SRNL ...

  12. Element of an inductive coupler

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe

    2006-08-15

    An element for an inductive coupler in a downhole component comprises magnetically conductive material, which is disposed in a recess in annular housing. The magnetically conductive material forms a generally circular trough. The circular trough comprises an outer generally U-shaped surface, an inner generally U-shaped surface, and two generally planar surfaces joining the inner and outer surfaces. The element further comprises pressure relief grooves in at least one of the surfaces of the circular trough. The pressure relief grooves may be scored lines. Preferably the pressure relief grooves are parallel to the magnetic field generated by the magnetically conductive material. The magnetically conductive material is selected from the group consisting of soft iron, ferrite, a nickel iron alloy, a silicon iron alloy, a cobalt iron alloy, and a mu-metal. Preferably, the annular housing is a metal ring.

  13. RECONDITIONING FUEL ELEMENTS

    DOE Patents [OSTI]

    Brandt, H.L.

    1962-02-20

    A process is given for decanning fuel elements that consist of a uranium core, an intermediate section either of bronze, silicon, Al-Si, and uranium silicide layers or of lead, Al-Si, and uranium silicide layers around said core, and an aluminum can bonded to said intermediate section. The aluminum can is dissolved in a solution of sodium hydroxide (9 to 20 wt%) and sodium nitrate (35 to 12 wt %), and the layers of the intermediate section are dissolved in a boiling sodium hydroxide solution of a minimum concentration of 50 wt%. (AEC) A method of selectively reducing plutonium oxides and the rare earth oxides but not uranium oxides is described which comprises placing the oxides in a molten solvent of zinc or cadmium and then adding metallic uranium as a reducing agent. (AEC)

  14. Atomic Energy Commission : Atomic Power at Shippingport - 1958 Educational Film

    SciTech Connect (OSTI)

    2013-02-02

    The United States Atomic Energy Commission & Westinghouse Electric Company take us on a tour of an atomic power station.

  15. PARTICLE ACCELERATORS; 74 ATOMIC AND MOLECULAR PHYSICS; ATOMS...

    Office of Scientific and Technical Information (OSTI)

    74 ATOMIC AND MOLECULAR PHYSICS; ATOMS; ELECTRONS; HELIUM; LIGHT SOURCES; RADIATIONS; STORAGE RINGS; SYNCHROTRONS SYNCHROTRON RADIATION SYNCHROTRONLIGHT SOURCES QUANTUM CHAOS...

  16. Atomic Energy Commission : Atomic Power at Shippingport - 1958 Educational Film

    ScienceCinema (OSTI)

    None

    2014-07-31

    The United States Atomic Energy Commission & Westinghouse Electric Company take us on a tour of an atomic power station.

  17. COMPARTMENTED REACTOR FUEL ELEMENT

    DOE Patents [OSTI]

    Cain, F.M. Jr.

    1962-09-11

    A method of making a nuclear reactor fuel element of the elongated red type is given wherein the fissionable fuel material is enclosed within a tubular metal cladding. The method comprises coating the metal cladding tube on its inside wall with a brazing alloy, inserting groups of cylindrical pellets of fissionable fuel material into the tube with spacing members between adjacent groups of pellets, sealing the ends of the tubes to leave a void space therewithin, heating the tube and its contents to an elevated temperature to melt the brazing alloy and to expand the pellets to their maximum dimensions under predetermined operating conditions thereby automatically positioning the spacing members along the tube, and finally cooling the tube to room temperature whereby the spacing disks become permanently fixed at their edges in the brazing alloy and define a hermetically sealed compartment for each fl group of fuel pellets. Upon cooling, the pellets contract thus leaving a space to accommodate thermal expansion of the pellets when in use in a reactor. The spacing members also provide lateral support for the tubular cladding to prevent collapse thereof when subjected to a reactor environment. (AEC)

  18. Deviation from high-entropy configurations in the atomic distributions of a

    Office of Scientific and Technical Information (OSTI)

    multi-principal-element alloy (Journal Article) | SciTech Connect Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy Citation Details In-Document Search Title: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy The alloy-design strategy of combining multiple elements in near-equimolar ratios has shown great potential for producing exceptional engineering materials, often known as

  19. FUEL ELEMENTS FOR THERMAL-FISSION NUCLEAR REACTORS

    DOE Patents [OSTI]

    Flint, O.

    1961-01-10

    Fuel elements for thermal-fission nuclear reactors are described. The fuel element is comprised of a core of alumina, a film of a metal of the class consisting of copper, silver, and nickel on the outer face of the core, and a coating of an oxide of a metal isotope of the class consisting of Un/sup 235/, U/ sup 233/, and Pu/sup 239/ on the metal f ilm.

  20. Atomic Energy Commission Takes Over Responsibility for all Atomic Energy

    National Nuclear Security Administration (NNSA)

    Programs | National Nuclear Security Administration Takes Over Responsibility for all Atomic Energy Programs Atomic Energy Commission Takes Over Responsibility for all Atomic Energy Program Washington, DC In accordance with the Atomic Energy Act of 1946, all atomic energy activities are transferred to the newly created Atomic Energy Commission

  1. Plutonium metal exchange program : current status and statistical analysis

    SciTech Connect (OSTI)

    Tandon, L.; Eglin, J. L.; Michalak, S. E.; Picard, R. R.; Temer, D. J.

    2004-01-01

    The Rocky Flats Plutonium (Pu) Metal Sample Exchange program was conducted to insure the quality and intercomparability of measurements such as Pu assay, Pu isotopics, and impurity analyses. The Rocky Flats program was discontinued in 1989 after more than 30 years. In 2001, Los Alamos National Laboratory (LANL) reestablished the Pu Metal Exchange program. In addition to the Atomic Weapons Establishment (AWE) at Aldermaston, six Department of Energy (DOE) facilities Argonne East, Argonne West, Livermore, Los Alamos, New Brunswick Laboratory, and Savannah River are currently participating in the program. Plutonium metal samples are prepared and distributed to the sites for destructive measurements to determine elemental concentration, isotopic abundance, and both metallic and nonmetallic impurity levels. The program provides independent verification of analytical measurement capabilies for each participating facility and allows problems in analytical methods to be identified. The current status of the program will be discussed with emphasis on the unique statistical analysis and modeling of the data developed for the program. The discussion includes the definition of the consensus values for each analyte (in the presence and absence of anomalous values and/or censored values), and interesting features of the data and the results.

  2. Heavy Element Synthesis Reactions W. Loveland Oregon State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactions W. Loveland Oregon State University The role of ATLAS in helping us understand heavy element synthesis reactions and heavy element properties * Hot (E*=35-60 MeV) and Cold (E*=15 MeV) fusion reactions * Multi-nucleon transfer reactions * Fission * Atomic physics and chemistry of the heaviest elements * Structure of the heaviest nuclei The challenge of studying the heaviest elements at ATLAS * ATLAS beam time is oversubscribed * Low cross section studies - High luminosity - ATLAS has

  3. The Harnessed Atom

    Broader source: Energy.gov [DOE]

    The Harnessed Atom is a new middle school science, technology, engineering, and math (STEM) curriculum extension that focuses on nuclear science and energy. It offers teachers accurate, unbiased,...

  4. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    DOE Patents [OSTI]

    Ren, Zhifeng; Chen, Gang; Poudel, Bed; Kumar, Shankar; Wang, Wenzhong; Dresselhaus, Mildred

    2009-09-08

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  5. High-accuracy coupled cluster calculations of atomic properties

    SciTech Connect (OSTI)

    Borschevsky, A.; Yakobi, H.; Eliav, E.; Kaldor, U.

    2015-01-22

    The four-component Fock-space coupled cluster and intermediate Hamiltonian methods are implemented to evaluate atomic properties. The latter include the spectra of nobelium and lawrencium (elements 102 and 103) in the range 20000-30000 cm{sup −1}, the polarizabilities of elements 112-114 and 118, required for estimating their adsorption enthalpies on surfaces used to separate them in accelerators, and the nuclear quadrupole moments of some heavy atoms. The calculations on superheavy elements are supported by the very good agreement with experiment obtained for the lighter homologues.

  6. Metal inks

    DOE Patents [OSTI]

    Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

    2014-02-04

    Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

  7. Copper-silver-titanium filler metal for direct brazing of structural ceramics

    DOE Patents [OSTI]

    Moorhead, Arthur J.

    1987-01-01

    A method of joining ceramics and metals to themselves and to one another is described using a brazing filler metal consisting essentially of 35 to 50 atomic percent copper, 15 to 50 atomic percent silver and 10 to 45 atomic percent titanium. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  8. Modified Embedded Atom Method

    Energy Science and Technology Software Center (OSTI)

    2012-08-01

    Interatomic force and energy calculation subroutine to be used with the molecular dynamics simulation code LAMMPS (Ref a.). The code evaluated the total energy and atomic forces (energy gradient) according to a cubic spline-based variant (Ref b.) of the Modified Embedded Atom Method (MEAM) with a additional Stillinger-Weber (SW) contribution.

  9. Element partitioning in combustion- and gasification-based waste-to-energy units

    SciTech Connect (OSTI)

    Arena, Umberto; Di Gregorio, Fabrizio

    2013-05-15

    Highlights: ? Element partitioning of waste-to-energy units by means of a substance flow analysis. ? A comparison between moving grate combustors and high temperature gasifiers. ? Classification of key elements according to their behavior during WtE processes. ? Slags and metals from waste gasifiers are completely and immediately recyclable. ? Potential reduction of amounts of solid residue to be sent to landfill disposal. - Abstract: A critical comparison between combustion- and gasification-based waste-to-energy systems needs a deep knowledge of the mass flows of materials and elements inside and throughout the units. The study collected and processed data from several moving grate conventional incinerators and high-temperature shaft gasifiers with direct melting, which are in operation worldwide. A material and substance flow analysis was then developed to systematically assess the flows and stocks of materials and elements within each waste-to-energy unit, by connecting the sources, pathways, and intermediate and final sinks of each species. The patterns of key elements, such as carbon, chloride and heavy metals, in the different solid and gaseous output streams of the two compared processes have been then defined. The combination of partitioning coefficients with the mass balances on atomic species and results of mineralogical characterization from recent literatures was used to estimate a composition of bottom ashes and slags from the two types of waste-to-energy technologies. The results also allow to quantify some of the performance parameters of the units and, in particular, the potential reduction of the amount of solid residues to be sent to final disposal.

  10. Gas atomization synthesis of refractory or intermetallic compounds and supersaturated solid solutions

    DOE Patents [OSTI]

    Anderson, I.E.; Lograsso, B.K.; Ellis, T.W.

    1994-11-29

    A metallic melt is atomized using a high pressure atomizing gas wherein the temperature of the melt and the composition of the atomizing gas are selected such that the gas and melt react in the atomization spray zone to form a refractory or intermetallic compound in the as-atomized powder particles. A metallic melt is also atomized using a high pressure atomizing gas mixture gas wherein the temperature of the melt and the ratio of a reactive gas to a carrier gas are selected to form powder particles comprising a supersaturated solid solution of the atomic species of the reactive gas in the particles. The powder particles are then heat treated to precipitate dispersoids in-situ therein to form a dispersion strengthened material. 9 figures.

  11. Gas atomization synthesis of refractory or intermetallic compounds and supersaturated solid solutions

    DOE Patents [OSTI]

    Anderson, Iver E.; Lograsso, Barbara K.; Ellis, Timothy W.

    1994-01-01

    A metallic melt is atomized using a high pressure atomizing gas wherein the temperature of the melt and the composition of the atomizing gas are selected such that the gas and melt react in the atomization spray zone to form a refractory or intermetallic compound in the as-atomized powder particles. A metallic melt is also atomized using a high pressure atomizing gas mixture gas wherein the temperature of the melt and the ratio of a reactive gas to a carrier gas are selected to form powder particles comprising a supersaturated solid solution of the atomic species of the reactive gas in the particles. The powder particles are then heat treated to precipitate dispersoids in-situ therein to form a dispersion strengthened material.

  12. Atomic Structure Calculations from the Los Alamos Atomic Physics Codes

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cowan, R. D.

    The well known Hartree-Fock method of R.D. Cowan, developed at Los Alamos National Laboratory, is used for the atomic structure calculations. Electron impact excitation cross sections are calculated using either the distorted wave approximation (DWA) or the first order many body theory (FOMBT). Electron impact ionization cross sections can be calculated using the scaled hydrogenic method developed by Sampson and co-workers, the binary encounter method or the distorted wave method. Photoionization cross sections and, where appropriate, autoionizations are also calculated. Original manuals for the atomic structure code, the collisional excitation code, and the ionization code, are available from this website. Using the specialized interface, you will be able to define the ionization stage of an element and pick the initial and final configurations. You will be led through a series of web pages ending with a display of results in the form of cross sections, collision strengths or rates coefficients. Results are available in tabular and graphic form.

  13. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  14. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  15. Amorphous metal alloy

    DOE Patents [OSTI]

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  16. First principles DFT study of ferromagnetism in SnO{sub 2} induced by doped group 1A and 2A non-magnetic elements X (X=Li, Na, K, Be, Mg, Ca)

    SciTech Connect (OSTI)

    Chakraborty, Brahmananda Ramaniah, Lavanya M.

    2014-04-24

    Transition metal - free - ferromagnetism in diluted magnetic semiconductors (DMS) is of much current interest in the search for more efficient DMS materials for spintronic applications. Here, we report the results of our first principles density functional theory (DFT) study on impurity - induced ferromagnetism in non-magnetic SnO{sub 2} by a non-magnetic impurity. The impurities considered are sp-type of group 1A and 2A elements X (X = Li, Na, K, Be, Mg, Ca). Even a single atom of the group 1A elements makes the system magnetic, whereas for the group 2A elements Ca and Mg, a higher doping is required to induce ferromagnetism. For all the elements studied, the magnetic moment appears to increase with the doping concentration, at least at certain impurity separations, which is a positive indicator for practical applications.

  17. Peaceful Uses of the Atom and Atoms for Peace

    Office of Scientific and Technical Information (OSTI)

    Eisenhower's "Atoms for Peace" speech to the UN General Assembly Atoms for Peace (video 12:00 Minutes) Atoms for Peace Address given by Dwight D. Eisenhower before the General ...

  18. Metal-silicane: Stability and properties

    SciTech Connect (OSTI)

    Yang, Huan-Cheng; Wang, Jing, E-mail: jwang@hebtu.edu.cn [Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Liu, Ying [Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); National Key Laboratory for Materials Simulation and Design, Beijing 100083 (China)

    2014-08-28

    The decoration of silicane using 16 different metal adatoms and the adsorption of small molecules are studied using first-principles calculations. Of the 16 metal adatoms, Li, Na, K, Ca, In, and Sc show a larger binding energy with silicane than their corresponding cohesive energy in the bulk, which suggests they can form 2D layers on the surface of silicane. The band analysis indicates that decoration with metal atoms can effectively tailor the electronic properties of silicane. The adsorption for hydrogen and carbon monoxide on Li-silicane system demonstrates that each Li atom can adsorb a maximum of five H{sub 2} or four CO molecules with the average adsorption energy of 0.18 and 0.23 eV/atom, respectively. The calculated results suggest that metal-silicane systems can provide more information for applications as hydrogen-storage or environment-protection materials.

  19. Protected Nuclear Fuel Element

    DOE Patents [OSTI]

    Kittel, J. H.; Schumar, J. F.

    1962-12-01

    A stainless steel-clad actinide metal fuel rod for use in fast reactors is reported. In order to prevert cladding failures due to alloy formation between the actinide metal and the stainless steel, a mesh-like sleeve of expanded metal is interposed between them, the sleeve metal being of niobium, tantalum, molybdenum, tungsten, zirconium, or vanadium. Liquid alkali metal is added as a heat transfer agent. (AEC)

  20. Layered Atom Arrangements in Complex Materials

    SciTech Connect (OSTI)

    K.E. Sikafus; R.W.Grimes; S.M.Corish; A.R. Cleave; M.Tang; C.R.Stanek; B.P. Uberuaga; J.A.Valdez

    2005-04-15

    In this report, we develop an atom layer stacking model to describe systematically the crystal structures of complex materials. To illustrate the concepts, we consider a sequence of oxide compounds in which the metal cations progress in oxidation state from monovalent (M{sup 1+}) to tetravalent (M{sup 4+}). We use concepts relating to geometric subdivisions of a triangular atom net to describe the layered atom patterns in these compounds (concepts originally proposed by Shuichi Iida). We demonstrate that as a function of increasing oxidation state (from M{sup 1+} to M{sup 4+}), the layer stacking motifs used to generate each successive structure (specifically, motifs along a 3 symmetry axis), progress through the following sequence: MMO, MO, M{sub r}O, MO{sub r/s}O{sub u/v}, MOO (where M and O represent fully dense triangular atom nets and r/s and u/v are fractions used to describe partially filled triangular atom nets). We also develop complete crystallographic descriptions for the compounds in our oxidation sequence using trigonal space group R{bar 3}.

  1. Nonaqueous method for dissolving lanthanide and actinide metals

    DOE Patents [OSTI]

    Crisler, L.R.

    1975-11-11

    Lanthanide and actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a lanthanide or actinide element in the elemental metallic state in a mixture of carbon tetrachloride and methanol.

  2. Discrete Element Modeling

    SciTech Connect (OSTI)

    Morris, J; Johnson, S

    2007-12-03

    The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.

  3. Atomizing nozzle and method

    DOE Patents [OSTI]

    Ting, Jason (Ames, IA); Anderson, Iver E. (Ames, IA); Terpstra, Robert L. (Ames, IA)

    2000-03-16

    A high pressure close-coupled gas atomizing nozzle includes multiple discrete gas jet discharge orifices having aerodynamically designed convergent-divergent geometry with an first converging section communicated to a gas supply manifold and to a diverging section by a constricted throat section to increase atomizing gas velocity. The gas jet orifices are oriented at gas jet apex angle selected relative to the melt supply tip apex angle to establish a melt aspiration condition at the melt supply tip.

  4. Optical atomic magnetometer

    DOE Patents [OSTI]

    Budker, Dmitry; Higbie, James; Corsini, Eric P

    2013-11-19

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  5. LSU EFRC - Center for Atomic Level Catalyst Design - Technical Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2011 1 space control 2011 Technical Conference: Center for Atomic-level Catalyst Design Oct. 25-27, 2011 Note: Links available only on request to CALCD members. Contact Webmaster Presentations from the EFRC Technical Conference 2011 Mike Janik Mike Janik (Penn State): "Modeling and synthesis of rare earth oxides" Ulrike Diebold Ulrike Diebold (TU Vienna): "Designing Nanocatalysts via Atomically Controlled Metal Clusters and their Supports" Petra de Jongh Petra de Jongh

  6. NANOSTRUCTURED METAL OXIDE CATALYSTS VIA BUILDING BLOCK SYNTHESES

    SciTech Connect (OSTI)

    Craig E. Barnes

    2013-03-05

    A broadly applicable methodology has been developed to prepare new single site catalysts on silica supports. This methodology requires of three critical components: a rigid building block that will be the main structural and compositional component of the support matrix; a family of linking reagents that will be used to insert active metals into the matrix as well as cross link building blocks into a three dimensional matrix; and a clean coupling reaction that will connect building blocks and linking agents together in a controlled fashion. The final piece of conceptual strategy at the center of this methodology involves dosing the building block with known amounts of linking agents so that the targeted connectivity of a linking center to surrounding building blocks is obtained. Achieving targeted connectivities around catalytically active metals in these building block matrices is a critical element of the strategy by which single site catalysts are obtained. This methodology has been demonstrated with a model system involving only silicon and then with two metal-containing systems (titanium and vanadium). The effect that connectivity has on the reactivity of atomically dispersed titanium sites in silica building block matrices has been investigated in the selective oxidation of phenols to benezoquinones. 2-connected titanium sites are found to be five times as active (i.e. initial turnover frequencies) than 4-connected titanium sites (i.e. framework titanium sites).

  7. TRACE ELEMENT ANALYSES OF URANIUM MATERIALS

    SciTech Connect (OSTI)

    Beals, D; Charles Shick, C

    2008-06-09

    The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a series of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.

  8. Solidification analysis of a centrifugal atomizer using the Al-32.7wt.% Cu alloy

    SciTech Connect (OSTI)

    Osborne, M.G.

    1998-02-23

    A centrifugal atomizer (spinning disk variety) was designed and constructed for the production of spherical metal powders, 100--1,000 microns in diameter in an inert atmosphere. Initial atomization experiments revealed the need for a better understanding of how the liquid metal was atomized and how the liquid droplets solidified. To investigate particle atomization, Ag was atomized in air and the process recorded on high-speed film. To investigate particle solidification, Al-32.7 wt.% Cu was atomized under inert atmosphere and the subsequent particles were examined microscopically to determine solidification structure and rate. This dissertation details the experimental procedures used in producing the Al-Cu eutectic alloy particles, examination of the particle microstructures, and determination of the solidification characteristics (e.g., solidification rate) of various phases. Finally, correlations are proposed between the operation of the centrifugal atomizer and the observed solidification spacings.

  9. The Harnessed Atom | Department of Energy

    Office of Environmental Management (EM)

    The Harnessed Atom The Harnessed Atom The Harnessed Atom The Harnessed Atom is a new middle school science, technology, engineering, and math (STEM) curriculum extension...

  10. General Atomics (GA) | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Atomics (GA) Subscribe to RSS - General Atomics (GA) General Atomics Image: General Atomics (GA) The Scorpion's Strategy: "Catch and Subdue" Read more about The Scorpion's...

  11. Observing Oxygen Atoms Move during Information Storage in Tantalum Oxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Memristors | Stanford Synchrotron Radiation Lightsource Observing Oxygen Atoms Move during Information Storage in Tantalum Oxide Memristors Saturday, April 30, 2016 Memristor technology, or resistive random access memory (RRAM), is a frontrunner for next generation computer memory, owing to the promise of long endurance, low power, nanoscale device size and fast operation.1 Memristor devices are typically made of a transition metal oxide sandwiched between two metallic electrodes, and

  12. Project Profile: Thermochemical Heat Storage for CSP Based on Multivalent Metal Oxides

    Broader source: Energy.gov [DOE]

    General Atomics (GA), under the Thermal Storage FOA, is developing a high-density thermochemical heat storage system based on solid metal oxides.

  13. Recoverable immobilization of transuranic elements in sulfate ash

    DOE Patents [OSTI]

    Greenhalgh, Wilbur O.

    1985-01-01

    Disclosed is a method of reversibly immobilizing sulfate ash at least about 20% of which is sulfates of transuranic elements. The ash is mixed with a metal which can be aluminum, cerium, samarium, europium, or a mixture thereof, in amounts sufficient to form an alloy with the transuranic elements, plus an additional amount to reduce the transuranic element sulfates to elemental form. Also added to the ash is a fluxing agent in an amount sufficient to lower the percentage of the transuranic element sulfates to about 1% to about 10%. The mixture of the ash, metal, and fluxing agent is heated to a temperature sufficient to melt the fluxing agent and the metal. The mixture is then cooled and the alloy is separated from the remainder of the mixture.

  14. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect (OSTI)

    Dr. Ramana Reddy

    2012-04-12

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode. Successful extraction of metal from metal oxide dissolved in Urea/ChCl (2:1) was accomplished. The current efficiencies were relatively high in both the metal deposition processes with current efficiency greater than 86% for lead and 95% for zinc. This technology will advance the metal oxide reduction process by increasing the process efficiency and also eliminate the production of CO2 which makes this an environmentally benign technology for metal extraction.

  15. Atomic Scale Characterization of Compound Semiconductors using Atom Probe

    Office of Scientific and Technical Information (OSTI)

    Tomography: Preprint (Conference) | SciTech Connect Conference: Atomic Scale Characterization of Compound Semiconductors using Atom Probe Tomography: Preprint Citation Details In-Document Search Title: Atomic Scale Characterization of Compound Semiconductors using Atom Probe Tomography: Preprint Internal interfaces are critical in determining the performance of III-V multijunction solar cells. Studying these interfaces with atomic resolution using a combination of transmission electron

  16. Highly aligned vertical GaN nanowires using submonolayer metal catalysts

    DOE Patents [OSTI]

    Wang, George T.; Li, Qiming; Creighton, J. Randall

    2010-06-29

    A method for forming vertically oriented, crystallographically aligned nanowires (nanocolumns) using monolayer or submonolayer quantities of metal atoms to form uniformly sized metal islands that serve as catalysts for MOCVD growth of Group III nitride nanowires.

  17. Enhancing conductivity of metallic carbon nanotube networks by transition metal adsorption

    SciTech Connect (OSTI)

    Ketolainen, T. Havu, V.; Puska, M. J.

    2015-02-07

    The conductivity of carbon nanotube thin films is mainly determined by carbon nanotube junctions, the resistance of which can be reduced by several different methods. We investigate electronic transport through carbon nanotube junctions in a four-terminal configuration, where two metallic single-wall carbon nanotubes are linked by a group 6 transition metal atom. The transport calculations are based on the Greens function method combined with the density-functional theory. The transition metal atom is found to enhance the transport through the junction near the Fermi level. However, the size of the nanotube affects the improvement in the conductivity. The enhancement is related to the hybridization of chromium and carbon atom orbitals, which is clearly reflected in the character of eigenstates near the Fermi level. The effects of chromium atoms and precursor molecules remaining adsorbed on the nanotubes outside the junctions are also examined.

  18. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1986-08-15

    The atomic vapor laser isotope separation (AVLIS) process for the enrichment of uranium is evaluated. (AIP)

  19. Atomic Force Microscope

    SciTech Connect (OSTI)

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  20. Catalytic conversion of alcohols having at least three carbon atoms to hydrocarbon blendstock

    DOE Patents [OSTI]

    Narula, Chaitanya K.; Davison, Brian H.

    2015-11-13

    A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100°C and up to 550°C, wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.

  1. Platinum-coated non-noble metal-noble metal core-shell electrocatalysts

    DOE Patents [OSTI]

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir

    2015-04-14

    Core-shell particles encapsulated by a thin film of a catalytically active metal are described. The particles are preferably nanoparticles comprising a non-noble core with a noble metal shell which preferably do not include Pt. The non-noble metal-noble metal core-shell nanoparticles are encapsulated by a catalytically active metal which is preferably Pt. The core-shell nanoparticles are preferably formed by prolonged elevated-temperature annealing of nanoparticle alloys in an inert environment. This causes the noble metal component to surface segregate and form an atomically thin shell. The Pt overlayer is formed by a process involving the underpotential deposition of a monolayer of a non-noble metal followed by immersion in a solution comprising a Pt salt. A thin Pt layer forms via the galvanic displacement of non-noble surface atoms by more noble Pt atoms in the salt. The overall process is a robust and cost-efficient method for forming Pt-coated non-noble metal-noble metal core-shell nanoparticles.

  2. Growth morphology and properties of metals on graphene (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Growth morphology and properties of metals on graphene Citation Details In-Document Search This content will become publicly available on December 1, 2016 Title: Growth morphology and properties of metals on graphene Graphene, a single atomic layer of graphite, has been the focus of recent intensive studies due to its novel electronic and structural properties. With this study, metals grown on graphene also have been of interest because of their potential use as metal

  3. Growth morphology and properties of metals on graphene (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    DOE PAGES Growth morphology and properties of metals on graphene This content will become publicly available on December 1, 2016 Title: Growth morphology and properties of metals on graphene Graphene, a single atomic layer of graphite, has been the focus of recent intensive studies due to its novel electronic and structural properties. With this study, metals grown on graphene also have been of interest because of their potential use as metal contacts in graphene devices, for spintronics

  4. FUEL ELEMENTS FOR NUCLEAR REACTORS AND PROCESS OF MAKING

    DOE Patents [OSTI]

    Roake, W.E.

    1958-08-19

    A process is described for producing uranium metal granules for use in reactor fuel elements. The granules are made by suspending powdered uramiunn metal or uranium hydride in a viscous, non-reactive liquid, such as paraffin oil, aad pouring the resulting suspension in droplet, on to a bed of powdered absorbent. In this manner the liquid vehicle is taken up by the sorbent and spherical pellets of uranium metal are obtained. The

  5. METHOD OF PRODUCING NIOBIUM METAL

    DOE Patents [OSTI]

    Wilhelm, H.A.; Stevens, E.R.

    1960-05-24

    A process is given for preparing ductile niobium metal by the reduction of niobium pentoxide with carbon. The invention resides in the addition, to the reaction mass, of from 0.05 to 0.4 atom of titanium (in the form of metallic titanium, titanium carbide, and/or titanium oxide) per one mole of niobium pentoxide. The mixture is heated under subatmospheric pressure to above 1300 deg C but below the melting point of niobium, and the carbon- and oxygen-free niobium sponge obtained is cooled under reduced pressure.

  6. Photobiomolecular metallic particles and films

    DOE Patents [OSTI]

    Hu, Zhong-Cheng

    2003-05-06

    The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.

  7. Method for the continuous processing of hermetic fiber optic components and the resultant fiber optic-to-metal components

    DOE Patents [OSTI]

    Kramer, Daniel P. (Centerville, OH)

    1994-08-09

    Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements.

  8. INL Laboratory Scale Atomizer

    SciTech Connect (OSTI)

    C.R. Clark; G.C. Knighton; R.S. Fielding; N.P. Hallinan

    2010-01-01

    A laboratory scale atomizer has been built at the Idaho National Laboratory. This has proven useful for laboratory scale tests and has been used to fabricate fuel used in the RERTR miniplate experiments. This instrument evolved over time with various improvements being made ‘on the fly’ in a trial and error process.

  9. Metal oxide films on metal

    DOE Patents [OSTI]

    Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  10. NEUTRONIC REACTOR CONTROL ELEMENT

    DOE Patents [OSTI]

    Beaver, R.J.; Leitten, C.F. Jr.

    1962-04-17

    A boron-10 containing reactor control element wherein the boron-10 is dispersed in a matrix material is describeri. The concentration of boron-10 in the matrix varies transversely across the element from a minimum at the surface to a maximum at the center of the element, prior to exposure to neutrons. (AEC)

  11. Relating electronic and geometric structure of atomic layer deposited BaTiO3 to its electrical properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Torgersen, Jan; Acharya, Shinjita; Dadlani, Anup Lal; Petousis, Ioannis; Kim, Yongmin; Trejo, Orlando; Nordlund, Dennis; Prinz, Fritz B.

    2016-03-24

    Atomic layer deposition allows the fabrication of BaTiO3 (BTO) ultrathin films with tunable dielectric properties, which is a promising material for electronic and optical technology. Industrial applicability necessitates a better understanding of their atomic structure and corresponding properties. Through the use of element-specific X-ray absorption near edge structure (XANES) analysis, O K-edge of BTO as a function of cation composition and underlying substrate (RuO2 and SiO2) is revealed. By employing density functional theory and multiple scattering simulations, we analyze the distortions in BTO’s bonding environment captured by the XANES spectra. The spectral weight shifts to lower energy with increasing Timore » content and provides an atomic scale (microscopic) explanation for the increase in leakage current density. Differences in film morphologies in the first few layers near substrate–film interfaces reveal BTO’s homogeneous growth on RuO2 and its distorted growth on SiO2. As a result, this work links structural changes to BTO thin-film properties and provides insight necessary for optimizing future BTO and other ternary metal oxide-based thin-film devices.« less

  12. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    DOE Patents [OSTI]

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  13. Los Alamos National Laboratory ATOMIC PHOTOGRAPHY ATOMIC PHOTOGRAPHY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATOMIC PHOTOGRAPHY ATOMIC PHOTOGRAPHY BLASTS FROM THE PAST BLASTS FROM THE PAST Twenty-five U.S. atmospheric nuclear weapons operations (each a series of tests) were conducted from ...

  14. Porphyrins and metal complexes thereof having haloalkyl side chains

    DOE Patents [OSTI]

    Wijesekera, Tilak; Lyons, James E.; Ellis, Jr., Paul E.; Bhinde, Manoj V.

    1997-01-01

    Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides.

  15. Porphyrins and metal complexes thereof having haloalkyl side chains

    DOE Patents [OSTI]

    Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.; Bhinde, M.V.

    1997-03-04

    Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides. 7 figs.

  16. Theoretical atomic physics code development I: CATS: Cowan Atomic Structure

    Office of Scientific and Technical Information (OSTI)

    Code (Technical Report) | SciTech Connect Technical Report: Theoretical atomic physics code development I: CATS: Cowan Atomic Structure Code Citation Details In-Document Search Title: Theoretical atomic physics code development I: CATS: Cowan Atomic Structure Code × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize

  17. Method of producing metallic materials

    DOE Patents [OSTI]

    Branagan, Daniel J.

    2004-02-10

    The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The strip and the powder are rolled to form a wire containing at least 55% iron and from 2-7 additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  18. Dendritic metal nanostructures

    DOE Patents [OSTI]

    Shelnutt, John A.; Song, Yujiang; Pereira, Eulalia F.; Medforth, Craig J.

    2010-08-31

    Dendritic metal nanostructures made using a surfactant structure template, a metal salt, and electron donor species.

  19. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    DOE Patents [OSTI]

    Farmer, Joseph C. (Tracy, CA)

    2011-12-13

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  20. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    DOE Patents [OSTI]

    Farmer, Joseph C.

    2014-07-15

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  1. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Liu, W.

    1995-01-24

    A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

  2. Next-Generation Lithium Metal Anode Engineering via Atomic Layer...

    Office of Scientific and Technical Information (OSTI)

    Number: SC0001160 Resource Type: Journal Article Resource Relation: Journal Name: ACS Nano; Journal Volume: In Press; Related Information: NEES partners with University of...

  3. Atomic-Layer Deposition on Noble Metal Powders

    Office of Scientific and Technical Information (OSTI)

    catalysts show enhanced properties - literature examples Sandia National Laboratories Electro-oxidation of formic acid on Pt catalyst active HCOOH + 12 O2 poisoned CO2 + H2O CO * ...

  4. Scientists create atomically thin metallic boron | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jared Sagoff at (630) 252-5549 or media@anl.gov. Connect Find an Argonne expert by subject. Follow Argonne on Twitter, Facebook, Google+ and LinkedIn. For inquiries on...

  5. An electroless approach to atomic layer deposition on noble metal...

    Office of Scientific and Technical Information (OSTI)

    Abstract not provided. Authors: Cappillino, Patrick ; Robinson, David ; Sugar, Joshua Daniel ; El Gabaly Marquez, Farid ; Cai, Trevor ; Liu, Zhi ; Stickney, John Publication Date: ...

  6. Budget Atomization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Budget Atomization Budget Atomization Howard Dickenson, Deputy Associate Administrator for Acquisition and Project Management presented on Budget Atomization from the NNSA perspective. Howard presented an overview of the NNSA budget structure and an example of LANL controls. Chris Johns, Director of the Budget Office, DOE Office of the CFO presented on Budget Atomization from the DOE perspective. Chris provided an overview of funding, provided examples, and demonstrated the effect on labs/sites.

  7. The atomization of water-oil emulsions

    SciTech Connect (OSTI)

    Broniarz-Press, L.; Ochowiak, M.; Rozanski, J.; Woziwodzki, S.

    2009-09-15

    The paper presents the results of experimental studies on atomization of the emulsions flowing through twin-fluid atomizers obtained by the use of the digital microphotography method. The main elements of the test installation were: nozzle, reservoir, pump and measurement units of liquid flow. The photographs were taken by a digital camera with automatic flash at exposure time of 1/8000 s and subsequently analyzed using Image Pro-Plus. The oils used were mineral oils 20-90, 20-70, 20-50 and 20-30. The studies were performed at flow rates of liquid phase changed from 0.0014 to 0.011 (dm{sup 3}/s) and gas phase changed from 0.28 to 1.4 (dm{sup 3}/s), respectively. The analysis of photos shows that the droplets being formed during the liquid atomization have very different sizes. The smallest droplets have diameters of the order of 10 {mu}m. The experimental results showed that the changes in physical properties of a liquid phase lead to the significant changes in the spray characteristics. The analysis of the photos of water and emulsions atomization process showed that the droplet sizes are dependent on gas and liquid flow rates, construction of nozzle and properties of liquid. The differences between characteristics of atomization for water and emulsions have been observed. Analysis of photos on forming the droplets in air-water and air-emulsions systems showed that droplets are bigger in air-emulsion system (at the same value of gas to liquid mass ratio). The values of Sauter mean diameter (SMD) increased with increase of volume fraction of oil in emulsion. The droplet size increased with emulsion viscosity. (author)

  8. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Kim, Jeom-Soo; Johnson, Christopher S.

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  9. Rate Case Elements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceeding Rate Information Residential Exchange Program Surplus Power Sales Reports Rate Case Elements BPA's rate cases are decided "on the record." That is, in making a decision...

  10. Metal hydrides

    SciTech Connect (OSTI)

    Carnes, J.R.; Kherani, N.P.

    1987-11-01

    Metal hydride information is not available for most hydrides in a consolidated quick-reference source. This report's objective is to fill the need for such a document providing basic thermodynamic data for as many metal hydrides as possible. We conduced a computerized library search to access as many sources as possible and screened each source for such thermodynamic data as pressure-temperature graphs, van't Hoff curves, and impurity effects. We included any other relevant information and commented on it. A primary concern to be investigated in the future is the behavior of metal tritides. This would be important in the area of emergency tritium cleanup systems. The hydride graphs are useful, however, as tritides may be expected in most cases to behave similarly and at least follow trends of their respective hydrides. 42 refs., 40 figs., 5 tabs.

  11. Metals at Albany: Past, Present, and Future

    Broader source: Energy.gov [DOE]

    Reactive metals, rare metals, specialty metals – all these terms refer to a set of elements that include titanium, hafnium, niobium, and zirconium. The processing of these metals has a very close link with the Office of Fossil Energy’s National Energy Technology Laboratory (NETL) in Albany, OR. And the work done at NETL’s Albany facility (formerly a Bureau of Mines lab) to help develop a process for using zirconium in naval submarines is featured in a new exhibit at the Albany Regional Museum.

  12. Oxidation of hydrogen halides to elemental halogens

    DOE Patents [OSTI]

    Rohrmann, Charles A. (Kennewick, WA); Fullam, Harold T. (Richland, WA)

    1985-01-01

    A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

  13. Atomic layer deposition of nanoporous biomaterials.

    SciTech Connect (OSTI)

    Narayan, R. J.; Adiga, S. P.; Pellin, M. J.; Curtiss, L. A.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N. A.; Brigmon, R. L.; Elam, J. W.; Univ. of North Carolina; North Carolina State Univ.; Eastman Kodak Co.; North Dakota State Univ.; SRL

    2010-03-01

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials. Nanoporous alumina, also known as anodic aluminum oxide (AAO), is a nanomaterial that exhibits several unusual properties, including high pore densities, straight pores, small pore sizes, and uniform pore sizes. In 1953, Keller et al. showed that anodizing aluminum in acid electrolytes results in a thick layer of nearly cylindrical pores, which are arranged in a close-packed hexagonal cell structure. More recently, Matsuda & Fukuda demonstrated preparation of highly ordered platinum and gold nanohole arrays using a replication process. In this study, a negative structure of nanoporous alumina was initially fabricated and a positive structure of a nanoporous metal was subsequently fabricated. Over the past fifteen years, nanoporous alumina membranes have been used as templates for growth of a variety of nanostructured materials, including nanotubes, nanowires, nanorods, and nanoporous membranes.

  14. Atomic data for fusion

    SciTech Connect (OSTI)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A.; Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  15. Free vibrations of U-shaped atomic force microscope probes

    SciTech Connect (OSTI)

    Rezaei, E.; Turner, J. A.

    2014-05-07

    Contact resonance atomic force microscope (AFM) methods have been used to quantify the elastic and viscoelastic properties of a variety of materials such as polymers, ceramics, biological materials, and metals with spatial resolution on the order of tens of nanometers. This approach involves measurement of the resonant frequencies of the AFM probe both for the free case and the case for which the tip is in contact with a sample. Vibration models of the probe and tip-sample contact models are then used to determine the sample properties from the frequency behavior and to create images of the sample properties. This work has been primarily focused on rectangular, single-beam probes for which the vibration models are relatively simple. Recently, U-shaped AFM probes have been developed to allow local heating of samples and the resonances of these probes are much more complex. In this article, a simplified analytical model of these U-shaped probes is described. This three beam model includes two beams clamped at one end and connected with a perpendicular cross beam at the other end. The beams are assumed only to bend in flexure and twist but their coupling allows a wide range of possible dynamic behavior. Results are presented for the first ten modes and the mode shapes are shown to have complex coupling between the flexure and twisting of the beams, particularly for the higher modes. All resonant frequency results are in good agreement with finite element results for the three probe designs and two values of thickness considered (all wavenumbers are within 3.0%). This work is anticipated to allow U-shaped probes to be used eventually for quantitative measurements of sample material properties during heating using a contact resonance approach.

  16. Local structures of high-entropy alloys (HEAs) on atomic scales: An overview

    SciTech Connect (OSTI)

    Diao, Haoyan; Santodonato, Louis J.; Tang, Zhi; Egami, Takeshi; Liaw, Peter K.

    2015-08-29

    The high-entropy alloys, containing several elements mixed in equimolar or near-equimolar ratios, have shown exceptional engineering properties. Local structures on the atomic level are essential to understand the mechanical behaviors and related mechanisms. This article covers the local structure and stress on the atomic level are reviewed by the pair-distribution function of neutron-diffraction data, ab-initio molecular dynamics simulations, and the atomic probe microscopy.

  17. Local structures of high-entropy alloys (HEAs) on atomic scales: An overview

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Diao, Haoyan; Santodonato, Louis J.; Tang, Zhi; Egami, Takeshi; Liaw, Peter K.

    2015-01-01

    The high-entropy alloys, containing several elements mixed in equimolar or near-equimolar ratios, have shown exceptional engineering properties. Local structures on the atomic level are essential to understand the mechanical behaviors and related mechanisms. This article covers the local structure and stress on the atomic level are reviewed by the pair-distribution function of neutron-diffraction data, ab-initio molecular dynamics simulations, and the atomic probe microscopy.

  18. Nuclear fuel elements made from nanophase materials

    DOE Patents [OSTI]

    Heubeck, N.B.

    1998-09-08

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.

  19. Nuclear fuel elements made from nanophase materials

    DOE Patents [OSTI]

    Heubeck, Norman B.

    1998-01-01

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.

  20. METHOD OF CLEANING METAL SURFACES

    DOE Patents [OSTI]

    Winkler, H.W.; Morfitt, J.W.; Little, T.H.

    1959-05-19

    Cleaning fluids for removing deposits from metal surfaces are described. The cleaning agents of the invention consist of aqueous nitric acid and an amhydrous nitrate salt of a metal which is lower in the electromotive series than the element of the deposit to be removed. In general, the salt content of thc cleaning agents ranged from 10 to 90%, preferably from 10 to 40% by weight; and the balance of the composition comprises nitric acid of any strength from extremely dilute up to concentrated strength.

  1. Atomically resolved force microscopy at room temperature

    SciTech Connect (OSTI)

    Morita, Seizo

    2014-04-24

    Atomic force microscopy (AFM) can now not only image individual atoms but also construct atom letters using atom manipulation method even at room temperature (RT). Therefore, the AFM is the second generation atomic tool following the scanning tunneling microscopy (STM). However the AFM can image even insulating atoms, and also directly measure/map the atomic force and potential at the atomic scale. Noting these advantages, we have been developing a bottom-up nanostructuring system at RT based on the AFM. It can identify chemical species of individual atoms and then manipulate selected atom species to the predesigned site one-by-one to assemble complex nanostructures consisted of multi atom species at RT. Here we introduce our results toward atom-by-atom assembly of composite nanostructures based on the AFM at RT including the latest result on atom gating of nano-space for atom-by-atom creation of atom clusters at RT for semiconductor surfaces.

  2. Method for the rapid synthesis of large quantities of metal oxide nanowires at low temperatures

    DOE Patents [OSTI]

    Sunkara, Mahendra Kumar; Vaddiraju, Sreeram; Mozetic, Miran; Cvelbar, Uros

    2009-09-22

    A process for the rapid synthesis of metal oxide nanoparticles at low temperatures and methods which facilitate the fabrication of long metal oxide nanowires. The method is based on treatment of metals with oxygen plasma. Using oxygen plasma at low temperatures allows for rapid growth unlike other synthesis methods where nanomaterials take a long time to grow. Density of neutral oxygen atoms in plasma is a controlling factor for the yield of nanowires. The oxygen atom density window differs for different materials. By selecting the optimal oxygen atom density for various materials the yield can be maximized for nanowire synthesis of the metal.

  3. Incorporation of noble metals into aerogels

    DOE Patents [OSTI]

    Hair, L.M.; Sanner, R.D.; Coronado, P.R.

    1998-12-22

    Aerogels or xerogels containing atomically dispersed noble metals for applications such as environmental remediation are disclosed. New noble metal precursors, such as Pt--Si or Pd(Si--P){sub 2}, have been created to bridge the incompatibility between noble metals and oxygen, followed by their incorporation into the aerogel or xerogel through sol-gel chemistry and processing. Applications include oxidation of hydrocarbons and reduction of nitrogen oxide species, complete oxidation of volatile organic carbon species, oxidative membranes for photocatalysis and partial oxidation for synthetic applications.

  4. Incorporation of noble metals into aerogels

    DOE Patents [OSTI]

    Hair, Lucy M.; Sanner, Robert D.; Coronado, Paul R.

    1998-01-01

    Aerogels or xerogels containing atomically dispersed noble metals for applications such environmental remediation. New noble metal precursors, such as Pt--Si or Pd(Si--P).sub.2, have been created to bridge the incompatibility between noble metals and oxygen, followed by their incorporation into the aerogel or xerogel through sol-gel chemistry and processing. Applications include oxidation of hydrocarbons and reduction of nitrogen oxide species, complete oxidation of volatile organic carbon species, oxidative membranes for photocatalysis and partial oxidation for synthetic applications.

  5. Liquid metal ion source and alloy

    DOE Patents [OSTI]

    Clark, Jr., William M.; Utlaut, Mark W.; Behrens, Robert G.; Szklarz, Eugene G.; Storms, Edmund K.; Santandrea, Robert P.; Swanson, Lynwood W.

    1988-10-04

    A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from about 24 to about 33 atomic percent arsenic. Such an alloy may be readily prepared by a combustion synthesis technique. Liquid metal ion sources thus prepared produce arsenic ions for implantation, have long lifetimes, and are highly stable in operation.

  6. MOLDED SEALING ELEMENT

    DOE Patents [OSTI]

    Bradford, B.W.; Skinner, W.J.

    1959-03-24

    Molded sealing elements suitable for use under conditions involving exposure to uranium hexafluoride vapor are described. Such sealing elements are made by subjecting graphitic carbons to a preliminary treatment with uranium hexafluoride vapor, and then incorporating polytetrafluorethylene in them. The resulting composition has good wear resistant and frictional properties and is resistant to disintegration by uranium hexafluoride over long periods of exposure.

  7. METAL COMPOSITIONS

    DOE Patents [OSTI]

    Seybolt, A.U.

    1959-02-01

    Alloys of uranium which are strong, hard, and machinable are presented, These alloys of uranium contain bctween 0.1 to 5.0% by weight of at least one noble metal such as rhodium, palladium, and gold. The alloys may be heat treated to obtain a product with iniproved tensile and compression strengths,

  8. DISPERSION ELEMENT CONSISTING OF CHROMIUM COATED UO$sup 2$ PARTICLES UNIFORMLY DISTRIBUTED IN A ZIRCALOY MATRIX

    DOE Patents [OSTI]

    Cain, F.M. Jr.; Eck, J.E.

    1963-05-01

    A nuclear fuel element consisting of metal coated UO/sub 2/ particles dispersed in a matrix of Zircalloy and having a cladding of Zircalloy is presented. (AEC)

  9. Evaluation of metallized paint coatings for composite spacecraft structures

    SciTech Connect (OSTI)

    Brzuskiewicz, J.E. )

    1990-04-01

    Thermal control coatings are needed to minimize temperature excursions of composite spacecraft structures in low earth orbit. Coatings prepared with combinations of metal flake and metal oxide pigments were prepared to obtain a range of solar absorptance and emittance properties. These coatings were subjected to screening tests to characterize their ultraviolet stability, atomic oxygen resistance and outgassing properties.

  10. Alkene epoxidation employing metal nitro complexes

    DOE Patents [OSTI]

    Andrews, M.A.; Cheng, C.W.; Kelley, K.P.

    1982-07-15

    Process for converting alkenes to form epoxides utilizes transition metal nitro complexes of the formula: M(RCN)/sub 2/XNO/sub 2/ wherein M is palladium or platinum, R is an alkyl or aryl group containing up to 12 carbon atoms, and X is a monoanionic, monodentate ligand such as chlorine, optionally in the presence of molecular oxygen.

  11. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    DOE Patents [OSTI]

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  12. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  13. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, Nathaniel M.; Dye, Robert C.; Snow, Ronny C.; Birdsell, Stephan A.

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  14. Metal resistance sequences and transgenic plants

    DOE Patents [OSTI]

    Meagher, Richard Brian; Summers, Anne O.; Rugh, Clayton L.

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  15. Separations of actinides, lanthanides and other metals

    DOE Patents [OSTI]

    Smith, Barbara F.; Jarvinen, Gordon D.; Ensor, Dale D.

    1995-01-01

    An organic extracting solution comprised of a bis(acylpyrazolone or a substituted bis(acylpyrazolone) and an extraction method useful for separating certain elements of the actinide series of the periodic table having a valence of four from one other, and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also useful for separating hexavalent actinides from one or more of the substances in a group consisting of trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals.

  16. Elements in biological AMS

    SciTech Connect (OSTI)

    Vogel, J.S.; McAninch, J.; Freeman, S.

    1996-08-01

    AMS (Accelerator Mass Spectrometry) provides high detection sensitivity for isotopes whose half-lives are between 10 years and 100 million years. {sup 14}C is the most developed of such isotopes and is used in tracing natural and anthropogenic organic compounds in the Earth`s biosphere. Thirty-three elements in the main periodic table and 17 lanthanides or actinides have long lived isotopes, providing potential tracers for research in elemental biochemistry. Overlap of biologically interesting heavy elements and possible AMS tracers is discussed.

  17. NUCLEAR REACTOR FUEL ELEMENT

    DOE Patents [OSTI]

    Anderson, W.F.; Tellefson, D.R.; Shimazaki, T.T.

    1962-04-10

    A plate type fuel element which is particularly useful for organic cooled reactors is described. Generally, the fuel element comprises a plurality of fissionable fuel bearing plates held in spaced relationship by a frame in which the plates are slidably mounted in grooves. Clearance is provided in the grooves to allow the plates to expand laterally. The plates may be rigidly interconnected but are floatingly supported at their ends within the frame to allow for longi-tudinal expansion. Thus, this fuel element is able to withstand large temperature differentials without great structural stresses. (AEC)

  18. Etalon-induced baseline drift and correction in atom flux sensors based on atomic absorption spectroscopy

    SciTech Connect (OSTI)

    Du, Yingge; Chambers, Scott A.

    2014-10-20

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific real-time flux sensing and control. The ultimate sensitivity and performance of these sensors are strongly affected by baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability, which has not been previously considered, and cannot be corrected using existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5% which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  19. Etalon-induced Baseline Drift And Correction In Atom Flux Sensors Based On Atomic Absorption Spectroscopy

    SciTech Connect (OSTI)

    Du, Yingge; Chambers, Scott A.

    2014-10-20

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific, real-time flux sensing and control. The ultimate sensitivity and performance of the sensors are strongly affected by the long-term and short term baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability which has not been previously considered or corrected by existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5%, which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  20. The Collective Atomic Recoil Laser

    SciTech Connect (OSTI)

    Courteille, Ph.W.; Cube, C. avon; Deh, B.; Kruse, D.; Ludewig, A.; Slama, S.; Zimmermann, C.

    2005-05-05

    An ensemble of periodically ordered atoms coherently scatters the light of an incident laser beam. The scattered and the incident light may interfere and give rise to a light intensity modulation and thus to optical dipole forces which, in turn, emphasize the atomic ordering. This positive feedback is at the origin of the collective atomic recoil laser (CARL). We demonstrate this dynamics using ultracold atoms confined by dipole forces in a unidirectionally pumped far red-detuned high-finesse optical ring cavity. Under the influence of an additional dissipative force exerted by an optical molasses the atoms, starting from an unordered distribution, spontaneously form a density grating moving at constant velocity. Additionally, steady state lasing is observed in the reverse direction if the pump laser power exceeds a certain threshold. We compare the dynamics of the atomic trajectories to the behavior of globally coupled oscillators, which exhibit phase transitions from incoherent to coherent states if the coupling strength exceeds a critical value.

  1. High power x-ray welding of metal-matrix composites

    DOE Patents [OSTI]

    Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing

    1999-01-01

    A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10.sup.4 watts/cm.sup.2 and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

  2. Amorphous metal alloy and composite

    DOE Patents [OSTI]

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  3. Partition-of-unity finite-element method for large scale quantum...

    Office of Scientific and Technical Information (OSTI)

    real-space methods can in fact be overcome: by building known atomic physics into the solution process using modern partition-of-unity (PU) techniques in finite element analysis. ...

  4. General Atomics | Open Energy Information

    Open Energy Info (EERE)

    Product: General Atomics offers research, development and consulting services to the nuclear industry, including nuclear energy production, manufacturing, defense and related...

  5. COMPOSITE FUEL ELEMENT

    DOE Patents [OSTI]

    Hurford, W.J.; Gordon, R.B.; Johnson, W.A.

    1962-12-25

    A sandwich-type fuel element for a reactor is described. This fuel element has the shape of an elongated flat plate and includes a filler plate having a plurality of compartments therein in which the fuel material is located. The filler plate is clad on both sides with a thin cladding material which is secured to the filler plate only to completely enclose the fuel material in each compartment. (AEC)

  6. Atomic vapor laser isotope separation using resonance ionization

    SciTech Connect (OSTI)

    Comaskey, B.; Crane, J.; Erbert, G.; Haynam, C.; Johnson, M.; Morris, J.; Paisner, J.; Solarz, R.; Worden, E.

    1986-09-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power-reactor fuel has been under development for over 10 years. In June 1985, the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for enriched uranium. Resonance photoionization is the heart of the AVLIS process. We discuss those fundamental atomic parameters that are necessary for describing isotope-selective resonant multistep photoionization along with the measurement techniques that we use. We illustrate the methodology adopted with examples of other elements that are under study in our program.

  7. Growth morphology and properties of metals on graphene

    SciTech Connect (OSTI)

    Liu, Xiaojie; Han, Yong; Evans, James W.; Engstfeld, Albert K.; Behm, R. Juergen; Tringides, Michael C.; Hupalo, Myron; Lin, Hai -Qing; Huang, Li; Ho, Kai -Ming; Appy, David; Thiel, Patricia A.; Wang, Cai -Zhuang

    2015-12-01

    Graphene, a single atomic layer of graphite, has been the focus of recent intensive studies due to its novel electronic and structural properties. With this study, metals grown on graphene also have been of interest because of their potential use as metal contacts in graphene devices, for spintronics applications, and for catalysis. All of these applications require good understanding and control of the metal growth morphology, which in part reflects the strength of the metal–graphene bond. The interaction between graphene and metal is sufficiently strong to modify the electronic structure of graphene is also of great importance. We will discuss recent experimental and computational studies related to deposition of metals on graphene supported on various substrates (SiC, SiO2, and hexagonal close-packed metal surfaces). Of specific interest are the metal–graphene interactions (adsorption energies and diffusion barriers of metal adatoms), and the crystal structures and thermal stability of the metal nanoclusters.

  8. ATOMIC POWER PLANT

    DOE Patents [OSTI]

    Daniels, F.

    1957-11-01

    This patent relates to neutronic reactor power plants and discloses a design of a reactor utilizing a mixture of discrete units of a fissionable material, such as uranium carbide, a neutron moderator material, such as graphite, to carry out the chain reaction. A liquid metal, such as bismuth, is used as the coolant and is placed in the reactor chamber with the fissionable and moderator material so that it is boiled by the heat of the reaction, the boiling liquid and vapors passing up through the interstices between the discrete units. The vapor and flue gases coming off the top of the chamber are passed through heat exchangers, to produce steam, for example, and thence through condensers, the condensed coolant being returned to the chamber by gravity and the non- condensible gases being carried off through a stack at the top of the structure.

  9. Atomic Scale Characterization of Compound Semiconductors Using Atom Probe Tomography

    SciTech Connect (OSTI)

    Gorman, B. P.; Norman, A. G.; Lawrence, D.; Prosa, T.; Guthrey, H.; Al-Jassim, M.

    2011-01-01

    Internal interfaces are critical in determining the performance of III-V multijunction solar cells. Studying these interfaces with atomic resolution using a combination of transmission electron microscopy (TEM), atom probe tomography (APT), and density functional calculations enables a more fundamental understanding of carrier dynamics in photovoltaic (PV) device structures. To achieve full atomic scale spatial and chemical resolution, data acquisition parameters in laser pulsed APT must be carefully studied to eliminate surface diffusion. Atom probe data with minimized group V ion clustering and expected stoichiometry can be achieved by adjusting laser pulse power, pulse repetition rate, and specimen preparation parameters such that heat flow away from the evaporating surface is maximized. Applying these improved analysis conditions to III-V based PV gives an atomic scale understanding of compositional and dopant profiles across interfaces and tunnel junctions and the initial stages of alloy clustering and dopant accumulation. Details on APT experimental methods and future in-situ instrumentation developments are illustrated.

  10. The Atomic City / The Magic of the Atom - 1950's Atomic Energy Commission Documentary

    SciTech Connect (OSTI)

    2012-06-04

    The story of American cities located near atomic power plants, and steps taken monitoring radiation to ensure the safety of the public who live nearby. .

  11. The Atomic City / The Magic of the Atom - 1950's Atomic Energy Commission Documentary

    ScienceCinema (OSTI)

    None

    2014-07-31

    The story of American cities located near atomic power plants, and steps taken monitoring radiation to ensure the safety of the public who live nearby. .

  12. Method of making polymer powders and whiskers as well as particulate products of the method and atomizing apparatus

    DOE Patents [OSTI]

    Otaigbe, Joshua U.; McAvoy, Jon M.; Anderson, Iver E.; Ting, Jason; Mi, Jia; Terpstra, Robert

    2001-01-09

    Method for making polymer particulates, such as spherical powder and whiskers, by melting a polymer material under conditions to avoid thermal degradation of the polymer material, atomizing the melt using gas jet means in a manner to form atomized droplets, and cooling the droplets to form polymer particulates, which are collected for further processing. Atomization parameters can be controlled to produce polymer particulates with controlled particle shape, particle size, and particle size distribution. For example, atomization parameters can be controlled to produce spherical polymer powders, polymer whiskers, and combinations of spherical powders and whiskers. Atomizing apparatus also is provided for atoomizing polymer and metallic materials.

  13. Probing metal solidification nondestructively

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thick aluminum-14 atomic percent copper alloy during directional solidification, ... An x-ray image of a 200 micron thick aluminum-14 atomic percent copperalloy during ...

  14. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-03-30

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  15. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, James W.

    1993-01-01

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  16. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-05-08

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using, a metal hydride.

  17. Metal dusting

    SciTech Connect (OSTI)

    Edited by K. Natesan

    2004-01-01

    This workshop was held soon after the September 11th incident under a climate of sorrow and uncertainty among the people of the world, in particular the Workshop participants and their host organizations. With considerable help from the partiicpants, the Workshop was conducted as planed and we had excellent participation in spite of the circumstances. A good fraction of the attendees in the Workshop were from abroad and from several industries, indicating the importance and relevance of the subject for the chemical process industry. Degradation of structural metallic alloys by metal dusting has been an issue for over 40 years in the chemical, petrochemical, syngas, and iron ore reduction plants. However, the fundamental scientific reasons for the degradation of complex alloys in high carbon activity environments are not clear. one of the major parameters of importance is the variation in gas chemistry in both the laboratory experiments and in the plant-service environments. the industry has questioned the applicability of the laboratory test data, obtained in low steam environments, in assessment and life prediction for the materials in plant service where the environments contain 25-35% steam. Several other variables such as system pressure, gas flow velocity, incubation time, alloy chemistry, surface finish, and weldments, were also identified in the literature as to having an effect on the initiatino and propagation of metal dusting attack. It is the purpose of this Workshop to establish a forum in which the researchers from scientific and industrial laboratories, alloy manufacturers, end users, and research and development sponsors can exchange information, discuss different points of view, prioritize the issues, and to elaborate on the trends in industry for the future. We believe that we accomplished these goals successfully and sincerely thank the participants for their contributions.

  18. A laser-based technique to continuously monitor metal aerosol emissions

    SciTech Connect (OSTI)

    Flower, W.L.; Peng, L.W.; French, N.B.; Johnsen, H.A.; Ottesen, D.K.; Renzi, R.F.: Westbrook, L.V.; Bonin, M.P.

    1993-05-01

    Sandia National Laboratories is developing an instrument to continuously monitor metal aerosol emissions. Applications for this monitor range from industrial process vents (e.g., exhaust stacks from electroplating baths) to waste treatment processes (incinerators), to boilers and industrial furnaces (coal-fired power plants). The monitoring technique is based on Laser Spark Spectroscopy (LASS; also known as Laser-Induced Breakdown Spectroscopy -- LIBS), in which a pulsed laser is used to rapidly heat a particle and produce a plasma (or laser ``spark``). The light emission from the spark is spectrally resolved and analyzed to identify the elemental constituents of the particle and quantify the abundance of the measured species. One feature of LASS is that it can measure atomic species embedded in either solid particles or fine liquid droplets, which account for a large percentage of metal emissions from applications of interest. Presented here are a description of the technique and initial results from laboratory simulations to determine sensitivity and to establish calibration procedures. Our project is currently focused on measuring chromium emissions from electroplating baths. This work forms the basis for future applications to incineration and fossil power plants since chromium is one of the more toxic metals under regulation by the Clean Air Act.

  19. A laser-based technique to continuously monitor metal aerosol emissions

    SciTech Connect (OSTI)

    Flower, W.L.; Peng, L.W.; French, N.B.; Johnsen, H.A.; Ottesen, D.K.; Renzi, R.F.: Westbrook, L.V. ); Bonin, M.P. )

    1993-01-01

    Sandia National Laboratories is developing an instrument to continuously monitor metal aerosol emissions. Applications for this monitor range from industrial process vents (e.g., exhaust stacks from electroplating baths) to waste treatment processes (incinerators), to boilers and industrial furnaces (coal-fired power plants). The monitoring technique is based on Laser Spark Spectroscopy (LASS; also known as Laser-Induced Breakdown Spectroscopy -- LIBS), in which a pulsed laser is used to rapidly heat a particle and produce a plasma (or laser spark''). The light emission from the spark is spectrally resolved and analyzed to identify the elemental constituents of the particle and quantify the abundance of the measured species. One feature of LASS is that it can measure atomic species embedded in either solid particles or fine liquid droplets, which account for a large percentage of metal emissions from applications of interest. Presented here are a description of the technique and initial results from laboratory simulations to determine sensitivity and to establish calibration procedures. Our project is currently focused on measuring chromium emissions from electroplating baths. This work forms the basis for future applications to incineration and fossil power plants since chromium is one of the more toxic metals under regulation by the Clean Air Act.

  20. Nuclear fuel elements having a composite cladding

    DOE Patents [OSTI]

    Gordon, Gerald M.; Cowan, II, Robert L.; Davies, John H.

    1983-09-20

    An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.

  1. Mechanochemical processing for metals and metal alloys

    DOE Patents [OSTI]

    Froes, Francis H.; Eranezhuth, Baburaj G.; Prisbrey, Keith

    2001-01-01

    A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.

  2. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria; Hu, Zhicheng

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  3. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  4. Method for dry etching of transition metals

    DOE Patents [OSTI]

    Ashby, C.I.H.; Baca, A.G.; Esherick, P.; Parmeter, J.E.; Rieger, D.J.; Shul, R.J.

    1998-09-29

    A method for dry etching of transition metals is disclosed. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorus-containing {pi}-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/{pi}-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the {pi}-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the {pi}-acceptor ligand for forming the volatile transition metal/{pi}-acceptor ligand complex.

  5. Method for dry etching of transition metals

    DOE Patents [OSTI]

    Ashby, Carol I. H.; Baca, Albert G.; Esherick, Peter; Parmeter, John E.; Rieger, Dennis J.; Shul, Randy J.

    1998-01-01

    A method for dry etching of transition metals. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorous-containing .pi.-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/.pi.-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the .pi.-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the .pi.-acceptor ligand for forming the volatile transition metal/.pi.-acceptor ligand complex.

  6. Super-Heavy Element Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Targets for Super-Heavy Element Research Presented at International Workshop on Super-Heavy Element Research SHE-15 J. B. Roberto Oak Ridge National Laboratory Oak Ridge,...

  7. Element Partners | Open Energy Information

    Open Energy Info (EERE)

    Product: DFJ Element, a partnership between Element Venture Partners and Draper Fisher Jurvetson, manages a venture capital fund focusing on investments in high growth,...

  8. American Elements | Open Energy Information

    Open Energy Info (EERE)

    Elements Jump to: navigation, search Name: American Elements Place: Los Angeles, California Zip: 90024 Product: US-based manufacturer and supplier of PV feedstocks such as silicon,...

  9. Elemental Energy | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Logo: Elemental Energy Name: Elemental Energy Address: 14500 SW 92nd Ave Place: Portland, Oregon Country: United States Zip: 97224 Region: Pacific...

  10. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Trending: Metal Oxo Bonds Print Wednesday, 29 May 2013 00:00 Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides

  11. Metal filled porous carbon

    DOE Patents [OSTI]

    Gross, Adam F.; Vajo, John J.; Cumberland, Robert W.; Liu, Ping; Salguero, Tina T.

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  12. In-situ control system for atomization

    DOE Patents [OSTI]

    Anderson, I.E.; Figliola, R.S.; Terpstra, R.L.

    1995-06-13

    Melt atomizing apparatus comprising a melt supply orifice for supplying the melt for atomization and gas supply orifices proximate the melt supply orifice for supplying atomizing gas to atomize the melt as an atomization spray is disclosed. The apparatus includes a sensor, such as an optical and/or audio sensor, for providing atomization spray data, and a control unit responsive to the sensed atomization spray data for controlling at least one of the atomizing gas pressure and an actuator to adjust the relative position of the gas supply orifice and melt supply in a manner to achieve a desired atomization spray. 3 figs.

  13. In-situ control system for atomization

    DOE Patents [OSTI]

    Anderson, Iver E.; Figliola, Richard S.; Terpstra, Robert L.

    1995-06-13

    Melt atomizing apparatus comprising a melt supply orifice for supplying the melt for atomization and gas supply orifices proximate the melt supply orifice for supplying atomizing gas to atomize the melt as an atomization spray. The apparatus includes a sensor, such as an optical and/or audio sensor, for providing atomization spray data, and a control unit responsive to the sensed atomization spray data for controlling at least one of the atomizing gas pressure and an actuator to adjust the relative position of the gas supply orifice and melt supply in a manner to achieve a desired atomization spray.

  14. Supersonic coal water slurry fuel atomizer

    DOE Patents [OSTI]

    Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Balsavich, John (Foxborough, MA)

    1991-01-01

    A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

  15. Metallic glass composition. [That does not embrittle upon annealing

    DOE Patents [OSTI]

    Kroeger, D.M.; Koch, C.C.

    1984-09-14

    This patent pertains to a metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon, carbon and phosphorous to which is added an amount of a ductility-enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.

  16. Los Alamos National Laboratory ATOMIC PHOTOGRAPHY ATOMIC PHOTOGRAPHY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATOMIC PHOTOGRAPHY ATOMIC PHOTOGRAPHY BLASTS FROM THE PAST BLASTS FROM THE PAST Twenty-five U.S. atmospheric nuclear weapons operations (each a series of tests) were conducted from 1945 to 1963, primarily at the Pacific Proving Grounds and at the Nevada Test Site, southeastern Nevada. Below, observers witness Operation Greenhouse, Eniwetok Atoll, spring 1951. Greenhouse was a series of four tests. 17 Proof of principle for thermonuclear weapons, the 225-kiloton George test, May 8, 1951, of

  17. ATOMIC ENERGY ACT OF 1946

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ACT OF 1946 (Public Law 585, 79'h Congress) Excerpted from "LEGISLATIVE HISTORY OF THE ATOMIC ENERGY ACT OF 1946 (Public Law 585, 70th Congrcss)" Coinpilcd by Janics D. Niisc AEC Hcadqoartcrs Library Voliiinc I Principal Docriiiiciits U.S. ATOMIC ENERGY COMMISSION WASHINGTON, 1965 [PUBLIC LAW 5 8 5 - 7 9 ~ ~ CONQRESS] [CHAPTER 724-2~ SESSION] [S. 17171 AN ACT For the development and control o f atomic energy. Be it enacted 6y the Senate and House of Re resentdives of t b United States

  18. Metallic glass alloys of Zr, Ti, Cu and Ni

    DOE Patents [OSTI]

    Lin, Xianghong; Peker, Atakan; Johnson, William L.

    1997-01-01

    At least quaternary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise titanium from 19 to 41 atomic percent, an early transition metal (ETM) from 4 to 21 atomic percent and copper plus a late transition metal (LTM) from 49 to 64 atomic percent. The ETM comprises zirconium and/or hafnium. The LTM comprises cobalt and/or nickel. The composition is further constrained such that the product of the copper plus LTM times the atomic proportion of LTM relative to the copper is from 2 to 14. The atomic percentage of ETM is less than 10 when the atomic percentage of titanium is as high as 41, and may be as large as 21 when the atomic percentage of titanium is as low as 24. Furthermore, when the total of copper and LTM are low, the amount of LTM present must be further limited. Another group of glass forming alloys has the formula (ETM.sub.1-x Ti.sub.x).sub.a Cu.sub.b (Ni.sub.1-y Co.sub.y).sub.c wherein x is from 0.1 to 0.3, y.cndot.c is from 0 to 18, a is from 47 to 67, b is from 8 to 42, and c is from 4 to 37. This definition of the alloys has additional constraints on the range of copper content, b.

  19. New directions in optical atomic spectrometry

    SciTech Connect (OSTI)

    de Galan, L.

    1986-05-01

    Soon after its invention a successful method of analysis goes through a phase of rapid growth and exaggerated expectations before it recedes to a more balanced position in the analytical domain. Flame and furnace atomic absorption spectrometry (AAS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES), as we know them now, were introduced 20 to 30 years ago, developed into commercial instruments within a decade after their first description in the scientific literature, and have now reached a state of developmental equilibrium. It is undeniable that these techniques have continued to develop, but recent advances have been largely technical and cosmetic. The emphasis on automation and software has made life much easier and has significantly reduced the demand for manpower, but it has not enlarged the analytical scope of the techniques. Many initial promises have been fulfilled, but some shortcomings persist even today. At this point it would be easy to formulate the ideal method that determines all elements from the sub-parts-per-billion level to the 100% level, simultaneously, with high precision and accuracy, and at minimal cost. Clearly, no single method can possibly match such unrealistic expectations. In this article the author has, therefore, chosen the more modest approach of identifying some weak points in available technology and analyzing possible remedies. In several cases current developments are reviewed, and novel instruments proposed in the literature are evaluated. In other cases, the problems have hardly been addressed and thus may pose a challenge for future research. 10 references, 6 tables.

  20. Method for the preparation of metal colloids in inverse micelles and product preferred by the method

    DOE Patents [OSTI]

    Wilcoxon, Jess P.

    1992-01-01

    A method is provided for preparing catalytic elemental metal colloidal particles (e.g. gold, palladium, silver, rhodium, iridium, nickel, iron, platinum, molybdenum) or colloidal alloy particles (silver/iridium or platinum/gold). A homogeneous inverse micelle solution of a metal salt is first formed in a metal-salt solvent comprised of a surfactant (e.g. a nonionic or cationic surfactant) and an organic solvent. The size and number of inverse micelles is controlled by the proportions of the surfactant and the solvent. Then, the metal salt is reduced (by chemical reduction or by a pulsed or continuous wave UV laser) to colloidal particles of elemental metal. After their formation, the colloidal metal particles can be stabilized by reaction with materials that permanently add surface stabilizing groups to the surface of the colloidal metal particles. The sizes of the colloidal elemental metal particles and their size distribution is determined by the size and number of the inverse micelles. A second salt can be added with further reduction to form the colloidal alloy particles. After the colloidal elemental metal particles are formed, the homogeneous solution distributes to two phases, one phase rich in colloidal elemental metal particles and the other phase rich in surfactant. The colloidal elemental metal particles from one phase can be dried to form a powder useful as a catalyst. Surfactant can be recovered and recycled from the phase rich in surfactant.

  1. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  2. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  3. Senescence responsive transcriptional element

    DOE Patents [OSTI]

    Campisi, Judith; Testori, Alessandro

    1999-01-01

    Recombinant polynucleotides have expression control sequences that have a senescence responsive element and a minimal promoter, and which are operatively linked to a heterologous nucleotide sequence. The molecules are useful for achieving high levels of expression of genes in senescent cells. Methods of inhibiting expression of genes in senescent cells also are provided.

  4. Heating element support clip

    DOE Patents [OSTI]

    Sawyer, William C.

    1995-01-01

    An apparatus for supporting a heating element in a channel formed in a heater base is disclosed. A preferred embodiment includes a substantially U-shaped tantalum member. The U-shape is characterized by two substantially parallel portions of tantalum that each have an end connected to opposite ends of a base portion of tantalum. The parallel portions are each substantially perpendicular to the base portion and spaced apart a distance not larger than a width of the channel and not smaller than a width of a graphite heating element. The parallel portions each have a hole therein, and the centers of the holes define an axis that is substantially parallel to the base portion. An aluminum oxide ceramic retaining pin extends through the holes in the parallel portions and into a hole in a wall of the channel to retain the U-shaped member in the channel and to support the graphite heating element. The graphite heating element is confined by the parallel portions of tantalum, the base portion of tantalum, and the retaining pin. A tantalum tube surrounds the retaining pin between the parallel portions of tantalum.

  5. Heating element support clip

    DOE Patents [OSTI]

    Sawyer, W.C.

    1995-08-15

    An apparatus for supporting a heating element in a channel formed in a heater base is disclosed. A preferred embodiment includes a substantially U-shaped tantalum member. The U-shape is characterized by two substantially parallel portions of tantalum that each have an end connected to opposite ends of a base portion of tantalum. The parallel portions are each substantially perpendicular to the base portion and spaced apart a distance not larger than a width of the channel and not smaller than a width of a graphite heating element. The parallel portions each have a hole therein, and the centers of the holes define an axis that is substantially parallel to the base portion. An aluminum oxide ceramic retaining pin extends through the holes in the parallel portions and into a hole in a wall of the channel to retain the U-shaped member in the channel and to support the graphite heating element. The graphite heating element is confined by the parallel portions of tantalum, the base portion of tantalum, and the retaining pin. A tantalum tube surrounds the retaining pin between the parallel portions of tantalum. 6 figs.

  6. NEUTRONIC REACTOR FUEL ELEMENT

    DOE Patents [OSTI]

    Gurinsky, D.H.; Powell, R.W.; Fox, M.

    1959-11-24

    A nuclear fuel element comprising a plurality of nuclear fuel bearing strips is presented. The strips are folded along their longitudinal axes to an angle of about 60 deg and are secured at each end by ferrule to form an elongated assembly suitable for occupying a cylindrical coolant channel.

  7. NEUTRONIC REACTOR FUEL ELEMENT

    DOE Patents [OSTI]

    Stacy, J.T.

    1958-12-01

    A reactor fuel element having a core of molybdenum-uranium alloy jacketed in stainless steel is described. A barrier layer of tungsten, tantalum, molybdenum, columbium, or silver is interposed between the core and jacket to prevent formation of a low melting eutectic between uranium and the varlous alloy constituents of the stainless steel.

  8. Adhesion and Atomic Structures of Gold on Ceria Nanostructures:The Role of Surface Structure and Oxidation State of Ceria Supports

    SciTech Connect (OSTI)

    Lin, Yuyuan [Northwestern University, Evanston; Wu, Zili [ORNL; Wen, Jianguo [Argonne National Laboratory (ANL); Poeppelmeier, Kenneth R [Northwestern University, Evanston; Marks, Laurence D [Northwestern University, Evanston

    2015-01-01

    Recent advances in heterogeneous catalysis have demonstrated that oxides supports with the same material but different shapes can result in metal catalysts with distinct catalytic properties. The shape-dependent catalysis was not well-understood owing to the lack of direct visualization of the atomic structures at metal-oxide interface. Herein, we utilized aberration-corrected electron microscopy and revealed the atomic structures of gold particles deposited on ceria nanocubes and nanorods with {100} or {111} facets exposed. For the ceria nanocube support, gold nanoparticles have extended atom layers at the metal-support interface. In contrast, regular gold nanoparticles and rafts are present on the ceria nanorod support. After hours of water gas shift reaction, the extended gold atom layers and rafts vanish, which is associated with the decrease of the catalytic activities. By understanding the atomic structures of the support surfaces, metal-support interfaces, and morphologies of the gold particles, a direct structure-property relationship is established.

  9. Solid polymer battery electrolyte and reactive metal-water battery

    DOE Patents [OSTI]

    Harrup, Mason K.; Peterson, Eric S.; Stewart, Frederick F.

    2000-01-01

    In one implementation, a reactive metal-water battery includes an anode comprising a metal in atomic or alloy form selected from the group consisting of periodic table Group 1A metals, periodic table Group 2A metals and mixtures thereof. The battery includes a cathode comprising water. Such also includes a solid polymer electrolyte comprising a polyphosphazene comprising ligands bonded with a phosphazene polymer backbone. The ligands comprise an aromatic ring containing hydrophobic portion and a metal ion carrier portion. The metal ion carrier portion is bonded at one location with the polymer backbone and at another location with the aromatic ring containing hydrophobic portion. The invention also contemplates such solid polymer electrolytes use in reactive metal/water batteries, and in any other battery.

  10. METHOD OF PREPARING A CERAMIC FUEL ELEMENT

    DOE Patents [OSTI]

    Ross, W.T.; Bloomster, C.H.; Bardsley, R.E.

    1963-09-01

    A method is described for preparing a fuel element from -325 mesh PuO/ sub 2/ and -20 mesh UO/sub 2/, and the steps of screening --325 mesh UO/sub 2/ from the -20 mesh UO/sub 2/, mixing PuO/sub 2/ with the --325 mesh UO/sub 2/, blending this mixture with sufficient --20 mesh UO/sub 2/ to obtain the desired composition, introducing the blend into a metal tube, repeating the procedure until the tube is full, and vibrating the tube to compact the powder are included. (AEC)

  11. Continuous, real time microwave plasma element sensor

    DOE Patents [OSTI]

    Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.

    1995-12-26

    Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.

  12. Continuous, real time microwave plasma element sensor

    DOE Patents [OSTI]

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  13. Ab initio study of semiconductor atoms impurities in zigzag edge (10,0) carbon nanotubes

    SciTech Connect (OSTI)

    Muttaqien, Fahdzi Suprijadi

    2015-04-16

    The substitutional impurities in zigzag edge (10,0) carbon nanotubes have been studied by using first principles calculations. Silicon (Si), gallium (Ga), and arsenic (As) atom have been chosen as semiconductor based-atom for replacing carbon atoms in CNTs surface. The silicon atom changes the energy gap of pristine zigzag (10,0) CNT, it is 0.19 eV more narrow than that of pristine CNT. Geometrically, the silicon atom creates sp{sup 3} bond with three adjacent carbon atoms, where the tetrahedral form of its sp{sup 3} bond is consisted of free unoccupied state. The silicon atom does not induce magnetism to zigzag CNT. Due to gallium (Ga) and arsenic (As) atom substitution, the zigzag CNT becomes metallic and has magnetic moment of 1?{sub B}. The valance and conduction band are crossed each other, then the energy gap is vanished. The electronic properties of GaAs-doped CNT are dominantly affected by gallium atom and its magnetic properties are dominantly affected by arsenic atom. These results prove that the CNT with desired properties can be obtained with substitutional impurities without any giving structural defect.

  14. Molecular Dynamics and Energy Minimization Based on Embedded Atom Method

    Energy Science and Technology Software Center (OSTI)

    1995-03-01

    This program performs atomic scale computer simulations of the structure and dynamics of metallic system using energetices based on the Embedded Atom Method. The program performs two types of calculations. First, it performs local energy minimization of all atomic positions to determine ground state and saddle point energies and structures. Second, it performs molecular dynamics simulations to determine thermodynamics or miscroscopic dynamics of the system. In both cases, various constraints can be applied to themore » system. The volume of the system can be varied automatically to achieve any desired external pressure. The temperature in molecular dynamics simulations can be controlled by a variety of methods. Further, the temperature control can be applied either to the entire system or just a subset of the atoms that would act as a thermal source/sink. The motion of one or more of the atoms can be constrained to either simulate the effects of bulk boundary conditions or to facilitate the determination of saddle point configurations. The simulations are performed with periodic boundary conditions.« less

  15. Imaging Lithium Atoms at Sub-Angstrom Resolution

    SciTech Connect (OSTI)

    O'Keefe, Michael A.; Shao-Horn, Yang

    2005-01-03

    John Cowley and his group at ASU were pioneers in the use of transmission electron microscopy (TEM) for high-resolution imaging. Three decades ago they achieved images showing the crystal unit cell content at better than 4A resolution. Over the years, this achievement has inspired improvements in resolution that have enabled researchers to pinpoint the positions of heavy atom columns within the cell. More recently, this ability has been extended to light atoms as resolution has improved. Sub-Angstrom resolution has enabled researchers to image the columns of light atoms (carbon, oxygen and nitrogen) that are present in many complex structures. By using sub-Angstrom focal-series reconstruction of the specimen exit surface wave to image columns of cobalt, oxygen, and lithium atoms in a transition metal oxide structure commonly used as positive electrodes in lithium rechargeable batteries, we show that the range of detectable light atoms extends to lithium. HRTEM at sub-Angstrom resolution will provide the essential role of experimental verification for the emergent nanotech revolution. Our results foreshadow those to be expected from next-generation TEMs with CS-corrected lenses and monochromated electron beams.

  16. Supersonic Bare Metal Cluster Beams. Final Report

    DOE R&D Accomplishments [OSTI]

    Smalley, R. E.

    1997-10-14

    A major portion of the project involved elucidating the relation between reactivity and the electronic structure of transition-metal (TM) clusters of 2--200 atoms, which required the construction and continuous development of two principal apparati; the Fourier Transform-Ion Cyclotron Resonance (FT-ICR) apparatus, and Ultraviolet Photoelectron Spectroscopy (UPS). Together, these machines have enabled the most detailed probing of the structure and chemical reactivity of TM clusters. Clusters of all the transition metals were included in these studies. Fundamental aspects in chemisorption, reactivity, and heterogeneous catalysis have also become better understood as a result of these experiments for important classes of systems such as H{sub 2}, CO, and CO{sub 2} adsorbed onto clusters of many of the metals listed above. In particular, a correlation was found between reactivity of H{sub 2} with Fe, Co, and Ni clusters and differences between the cluster IP and EA. As recounted in a previous technical report, the DOE`s role in the initial discovery of fullerenes at Rice was central, and from the start investigations were made into metal atoms trapped in the fullerenes cage. More recently, the authors have discovered that 2--4 atoms of La, Y, or Sc can be produced by laser vaporization of composite graphite/metal-oxide disks. This work was largely motivated by the prospects of using such endohedral TM metals for their catalytic activity without the well-known difficulties of effective support media and lack of control over particle size. Thus, while it will certainly be important to discover ways to efficiently scale up production (e.g., the solar generation method explored with DOE support), the efforts have concentrated more on characterization, purification, and manipulation of doped fullerenes. For the past two years, much of the group`s effort has involved the production, purification, and characterization of carbon nanotubes.

  17. ATOMIC ENERGY ACT OF 1946

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D. Niisc AEC Hcadqoartcrs Library Voliiinc I Principal Docriiiiciits U.S. ATOMIC ENERGY COMMISSION WASHINGTON, 1965 PUBLIC LAW 5 8 5 - 7 9 CONQRESS CHAPTER 724-2 ...

  18. UNITED STATES ATOMIC ENERGY COMMISSION

    Office of Legacy Management (LM)

    I(S.0 -01: SPECIAL NUCLEAR MATERIAL LlCEWSE Pursuant to the Atomic Energy Act of 1954 and Title 10, Code of Federal Regulations, Chapter 1, Part 70, "Special Nuclear Material ...

  19. Imaging atoms in 3-D

    ScienceCinema (OSTI)

    Ercius, Peter

    2014-06-27

    Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

  20. Efimov physics in cold atoms

    SciTech Connect (OSTI)

    Braaten, Eric . E-mail: braaten@mps.ohio-state.edu; Hammer, H.-W. . E-mail: hammer@itkp.uni-bonn.de

    2007-01-15

    Atoms with a large scattering length have universal low-energy properties that do not depend on the details of their structure or their interactions at short distances. In the 2-atom sector, the universal properties are familiar and depend only on the scattering length. In the 3-atom sector for identical bosons, the universal properties include the existence of a sequence of shallow triatomic molecules called Efimov trimers and log-periodic dependence of scattering observables on the energy and the scattering length. In this review, we summarize the universal results that are currently known. We also summarize the experimental information that is currently available with an emphasis on 3-atom loss processes.

  1. Theoretical studies of atomic transitions

    SciTech Connect (OSTI)

    Fischer, C.F.

    1990-10-01

    This paper discusses: lifetime of excited states; core-polarization studies; large relativistic calculations; Monte Carlo Hartree-Fock (MCHF) atomic structure package; and MCHF codes for the hypercube. (LSP)

  2. Hydrocracking and hydroisomerization of long-chain alkanes and polyolefins over metal-promoted anion-modified transition metal oxides

    DOE Patents [OSTI]

    Venkatesh, Koppampatti R.; Hu, Jianli; Tierney, John W.; Wender, Irving

    2001-01-01

    A method of cracking a feedstock by contacting the feedstock with a metal-promoted anion-modified metal oxide catalyst in the presence of hydrogen gas. The metal oxide of the catalyst is one or more of ZrO.sub.2, HfO.sub.2, TiO.sub.2 and SnO.sub.2, and the feedstock is principally chains of at least 20 carbon atoms. The metal-promoted anion-modified metal oxide catalyst contains one or more of Pt, Ni, Pd, Rh, Ir, Ru, (Mn & Fe) or mixtures of them present between about 0.2% to about 15% by weight of the catalyst. The metal-promoted anion-modified metal oxide catalyst contains one or more of SO.sub.4, WO.sub.3, or mixtures of them present between about 0.5% to about 20% by weight of the catalyst.

  3. METHOD OF PREPARING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOE Patents [OSTI]

    Hauth, J.J.; Anicetti, R.J.

    1962-12-01

    A method is described for preparing a fuel element for a nuclear reactor. According to the patent uranium dioxide is compacted in a metal tabe by directlng intense sound waves at the tabe prior to tamp packing or vibration compaction of the powder. (AEC)

  4. Heavy particle atomic collisions in astrophysics: Beyond H and He targets

    SciTech Connect (OSTI)

    Stancil, P.C.; Krstic, P.S.; Schultz, D.R.

    1998-06-01

    The physical conditions relating to the emission of x-rays from Jovian and cometary atmospheres and to supernova ejecta are briefly described. Emphasis is placed on elucidating the relevance and importance of atomic collision processes, the availability of data, and the outstanding data needs for modeling these environments. Some preliminary theoretical studies of electron capture for important collisions systems, involving molecular and atomic metal targets, are presented.

  5. Nickel-chromium-silicon brazing filler metal

    DOE Patents [OSTI]

    Martini, Angelo J.; Gourley, Bruce R.

    1976-01-01

    A brazing filler metal containing, by weight percent, 23-35% chromium, 9-12% silicon, a maximum of 0.15% carbon, and the remainder nickel. The maximum amount of elements other than those noted above is 1.00%.

  6. Rare Earth Elements Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare Earth Elements Rare Earth Elements from Coal and Coal By-Products logo. Download the 2016 Rare Earth Elements from Coal and Coal By-Products Project Portfolio Rare Earth Elements from Coal and Coal By-Products program overview slide. The REE Program is focused on developing technologies for the recovery of REEs from Coal and Coal By-Products. Rare Earth Elements from Coal and Coal By-Products background slide The 17-element group known as rare earth elements (REEs) provides significant

  7. Photobiomolecular deposition of metallic particles and films

    DOE Patents [OSTI]

    Hu, Zhong-Cheng

    2005-02-08

    The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.

  8. All metal valve structure for gas systems

    DOE Patents [OSTI]

    Baker, Ray W.; Pawlak, Donald A.; Ramey, Alford J.

    1984-11-13

    A valve assembly with a resilient metal seat member is disclosed for providing a gas-tight seal in a gas handling system. The valve assembly also includes a valve element for sealing against the valve seat member; and an actuating means for operating the valve element. The valve seat member is a one-piece stainless steel ring having a central valve port and peripheral mounting flange, and an annular corrugation in between. A groove between the first and second ridges serves as a flexure zone during operation of the valve member and thus provides the seating pressure between the inner ridge or valve seat and the valve element. The outer annular ridge has a diameter less than said valve element to limit the seating motion of the valve element, preventing non-elastic deformation of the seat member.

  9. Column Sorption Uptake and Regeneration Study; Rare Earth Element Sorbent Uptake and Sorbent Stripping

    SciTech Connect (OSTI)

    Tim Lanyk

    2015-12-18

    Study of rare earth element (REE) uptake from geothermal brine simulant by column loading, metal recovery through stripping, and regeneration of column for re-loading. Simulated brine testing.

  10. Foreword [Special Issue on Superheavy Elements] (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Foreword [Special Issue on Superheavy Elements] Citation Details In-Document Search This content will become publicly available on December 7, 2016 Title: Foreword [Special Issue on Superheavy Elements] Reflecting the breadth of research opportunities in the field of superheavy element research, this special issue covers the range of topics in a comprehensive way, including synthesis of superheavy isotopes, nuclear structure, atomic shell structure, and chemical properties. The

  11. Finite Element Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2006-03-08

    MAPVAR-KD is designed to transfer solution results from one finite element mesh to another. MAPVAR-KD draws heavily from the structure and coding of MERLIN II, but it employs a new finite element data base, EXODUS II, and offers enhanced speed and new capabilities not available in MERLIN II. In keeping with the MERLIN II documentation, the computational algorithms used in MAPVAR-KD are described. User instructions are presented. Example problems are included to demonstrate the operationmore » of the code and the effects of various input options. MAPVAR-KD is a modification of MAPVAR in which the search algorithm was replaced by a kd-tree-based search for better performance on large problems.« less

  12. Metal-phosphate binders

    DOE Patents [OSTI]

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  13. Atomic Photography: Blasts from the Past

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Photography National Security Science Latest Issue:July 2015 past issues All Issues submit Atomic Photography: Blasts from the Past A gallery of images reveals the weird...

  14. OXIDATION OF TRANSURANIC ELEMENTS

    DOE Patents [OSTI]

    Moore, R.L.

    1959-02-17

    A method is reported for oxidizing neptunium or plutonium in the presence of cerous values without also oxidizing the cerous values. The method consists in treating an aqueous 1N nitric acid solution, containing such cerous values together with the trivalent transuranic elements, with a quantity of hydrogen peroxide stoichiometrically sufficient to oxidize the transuranic values to the hexavalent state, and digesting the solution at room temperature.

  15. Nuclear fuel element

    DOE Patents [OSTI]

    Meadowcroft, Ronald Ross; Bain, Alastair Stewart

    1977-01-01

    A nuclear fuel element wherein a tubular cladding of zirconium or a zirconium alloy has a fission gas plenum chamber which is held against collapse by the loops of a spacer in the form of a tube which has been deformed inwardly at three equally spaced, circumferential positions to provide three loops. A heat resistant disc of, say, graphite separates nuclear fuel pellets within the cladding from the plenum chamber. The spacer is of zirconium or a zirconium alloy.

  16. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide

  17. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide

  18. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide

  19. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide

  20. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide

  1. The transuranium elements: From neptunium and plutonium to element 112

    SciTech Connect (OSTI)

    Hoffman, D.C. |

    1996-07-26

    Beginning in the 1930`s, both chemists and physicists became interested in synthesizing new artificial elements. The first transuranium element, Np, was synthesized in 1940. Over the past six decades, 20 transuranium elements have been produced. A review of the synthesis is given. The procedure of naming the heavy elements is also discussed. It appears feasible to produce elements 113 and 114. With the Berkeley Gas-filled Separator, it should be possible to reach the superheavy elements in the region of the spherical Z=114 shell, but with fewer neutrons than the N=184 spherical shell. 57 refs, 6 figs.

  2. REFRACTORY METAL TUBE DRAWING

    DOE Patents [OSTI]

    Bean, C.H.; Karasek, F.J.

    1963-01-29

    A lubricant for drawing Zr and other refractory metals is described. Metallic Cu powder is added to a solution of acrylic resin in chlorinated hydrocarbon solvent. (AEC)

  3. Fuel elements of research reactor CM

    SciTech Connect (OSTI)

    Kozlov, A.V.; Morozov, A.V.; Vatulin, A.V.; Ershov, S.A.

    2013-07-01

    In 1961 the CM research reactor was commissioned at the Research Institute of Atomic Reactors (Dimitrovgrad, Russia), it was intended to carry on investigations and the production of transuranium nuclides. The reactor is of a tank type. Original fuel assembly contained plate fuels that were spaced with vanes and corrugated bands. Nickel was used as a cladding material, fuel meat was produced from UO{sub 2} + electrolytic nickel composition. Fuel plates have been replaced by self-spacing cross-shaped dispersion fuels clad in stainless steel. In 2005 the reactor was updated. The purpose of this updating was to increase the quantity of irradiation channels in the reactor core and to improve the neutron balance. The updating was implemented at the expense of 20 % reduction in the quantity of fuel elements in the core which released a space for extra channels and decreased the mass of structural materials in the core. The updated reactor is loaded with modified standard fuel elements with 20 % higher uranium masses. At the same time stainless steel in fuel assembly shrouds was substituted by zirconium alloy. Today in progress are investigations and work to promote the second stage of reactor updating that involve developments of cross-shaped fuel elements having low neutron absorption matrix materials. This article gives an historical account of the design and main technical changes that occurred for the CM reactor since its commissioning.

  4. Foreword [Special Issue on Superheavy Elements

    SciTech Connect (OSTI)

    Düllmann, Christoph E.; Herzberg, Rolf -Dietmar; Nazarewicz, Witold; Oganessian, Yuri

    2015-12-07

    Reflecting the breadth of research opportunities in the field of superheavy element research, this special issue covers the range of topics in a comprehensive way, including synthesis of superheavy isotopes, nuclear structure, atomic shell structure, and chemical properties. The contributions detail the status of the field and lay out perspectives for the future. The prospects are bright: new isotopes are awaiting discovery, completing the landscape of superheavy nuclei and bridging the currently existing gap between nuclei synthesized in cold fusion reactions and those from 48Ca induced fusion reactions. The possibility that the limits of nuclear structure studies can be pushed even further in mass and charge has greatly motivated a number of new facilities. Advances in experimental techniques will allow studies on isotopes produced significantly below the 1 pb level. Chemical studies progressing to elements never studied to date are already being prepared. Ultra-fast chemistry setups are under development and it will be fascinating to see them at work, elucidating the influence of relativistic effects on superheavy elements. The richness of chemical systems available for transactinides will expand further, giving access to new chemical systems, giving more information on the architecture of the periodic table.

  5. Foreword [Special Issue on Superheavy Elements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Düllmann, Christoph E.; Herzberg, Rolf -Dietmar; Nazarewicz, Witold; Oganessian, Yuri

    2015-12-07

    Reflecting the breadth of research opportunities in the field of superheavy element research, this special issue covers the range of topics in a comprehensive way, including synthesis of superheavy isotopes, nuclear structure, atomic shell structure, and chemical properties. The contributions detail the status of the field and lay out perspectives for the future. The prospects are bright: new isotopes are awaiting discovery, completing the landscape of superheavy nuclei and bridging the currently existing gap between nuclei synthesized in cold fusion reactions and those from 48Ca induced fusion reactions. The possibility that the limits of nuclear structure studies can be pushedmore » even further in mass and charge has greatly motivated a number of new facilities. Advances in experimental techniques will allow studies on isotopes produced significantly below the 1 pb level. Chemical studies progressing to elements never studied to date are already being prepared. Ultra-fast chemistry setups are under development and it will be fascinating to see them at work, elucidating the influence of relativistic effects on superheavy elements. The richness of chemical systems available for transactinides will expand further, giving access to new chemical systems, giving more information on the architecture of the periodic table.« less

  6. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  7. Metal hydrides as electrode/catalyst materials for oxygen evolution/reduction in electrochemical devices

    DOE Patents [OSTI]

    Bugga, Ratnakumar V.; Halpert, Gerald; Fultz, Brent; Witham, Charles K.; Bowman, Robert C.; Hightower, Adrian

    1997-01-01

    An at least ternary metal alloy of the formula, AB.sub.(5-Y)X(.sub.y), is claimed. In this formula, A is selected from the rare earth elements, B is selected from the elements of groups 8, 9, and 10 of the periodic table of the elements, and X includes at least one of the following: antimony, arsenic, and bismuth. Ternary or higher-order substitutions, to the base AB.sub.5 alloys, that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

  8. Atomic memory access hardware implementations

    DOE Patents [OSTI]

    Ahn, Jung Ho; Erez, Mattan; Dally, William J

    2015-02-17

    Atomic memory access requests are handled using a variety of systems and methods. According to one example method, a data-processing circuit having an address-request generator that issues requests to a common memory implements a method of processing the requests using a memory-access intervention circuit coupled between the generator and the common memory. The method identifies a current atomic-memory access request from a plurality of memory access requests. A data set is stored that corresponds to the current atomic-memory access request in a data storage circuit within the intervention circuit. It is determined whether the current atomic-memory access request corresponds to at least one previously-stored atomic-memory access request. In response to determining correspondence, the current request is implemented by retrieving data from the common memory. The data is modified in response to the current request and at least one other access request in the memory-access intervention circuit.

  9. Origin of the smaller conductances of Rh, Pb, and Co atomic junctions in hydrogen environment

    SciTech Connect (OSTI)

    Li, Xue; Chen, Mingyan; Ye, Xiang; Xie, Yi-qun; Ke, San-huang

    2015-02-14

    We study theoretically the structural and electronic origins of the smaller conductances (one conductance quantum, G{sub 0}, and smaller) of Rh, Pb, and Co metal atomic junctions (MAJs) in a hydrogen environment, as were measured in recent experiments. For the Rh MAJs, the 1G{sub 0} conductance is attributed to a stable contact bridged by a single hydrogen molecule whose antibonding state provides a single transport channel. For the Pb and Co MAJs the 1G{sub 0} conductance is, however, ascribed to a linear atomic chain adsorbing two dissociated H atoms, which largely reduces the density of states at the Fermi energy with respect to the pure ones. On the other hand, the small conductances of 0.3G{sub 0} (Rh) and 0.2G{sub 0} (Co) are due to H-decorated atomic chains connected to electrodes by a H atom.

  10. Spinel-structured metal oxide on a substrate and method of making same by molecular beam epitaxy

    DOE Patents [OSTI]

    Chambers, Scott A.

    2006-02-21

    A method of making a spinel-structured metal oxide on a substrate by molecular beam epitaxy, comprising the step of supplying activated oxygen, a first metal atom flux, and at least one other metal atom flux to the surface of the substrate, wherein the metal atom fluxes are individually controlled at the substrate so as to grow the spinel-structured metal oxide on the substrate and the metal oxide is substantially in a thermodynamically stable state during the growth of the metal oxide. A particular embodiment of the present invention encompasses a method of making a spinel-structured binary ferrite, including Co ferrite, without the need of a post-growth anneal to obtain the desired equilibrium state.

  11. Enumeration of Secondary Structure Element Bundles

    Energy Science and Technology Software Center (OSTI)

    2004-10-26

    A deterministic algorithm for enumeration of transmembrane protein folds is implemented. Using a set of sparse pairwise atomic distance constraints (such as those obtained from chemical cross-linking, FRET, or dipolar EPR experiments), the algorithm performs an exhaustive search of secondary structure element packing conformations distributed throughout the entire conformational space. The end result is a set of distinct protein conformations which can be scored and refined as part of a process designed for computational elucidationmore » of transmembrane protein structures. Algorithm Overview: The ESSEB algorithm works by dividing the conforrnational space of each secondary structure element (SSE) into a set of cells. For each cell there is a representative conformation and for each atom in the SSE for which a distance restraint is available, there is an associated internal error, The internal error for a distance restraint is the maximum distance that the atom, when positioned in any conformation within a cell, can be from the atom in the representative conformation. The algorithm works recursively by positioning one representative conformation of an SSE. AdI distance restraints are checked with a tolerance that includes both the experimental and internal error. If all restraints are satisfied, every representative conformation of the next SSE is checked, otherwise, the program moves on to the next representative conformation of the current SSE. In addition to the distance restraints, other constraints on protein conformation can be enforced. These include the distance of closest approach between SSE axes, a restraint which prevents the crossover of loops connecting adjacent SSEs, and a restriction on the minimum and maximum distances between axis end-points. Any protein conformation satisfying all of the restraints is enumerated for later scoring and possible refinement. Additionally, in order to make run-times feasible, a divide-and-conquer approach is used in which the cells of each SSE in an accepted protein conformation can be further divided such that the internal errors are reduced and the new representative conformations can be evaluated.« less

  12. Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains

    DOE Patents [OSTI]

    Wijesekera, Tilak; Lyons, James E.; Ellis, Jr., Paul E.; Bhinde, Manoj V.

    1998-01-01

    Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides.

  13. Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains

    DOE Patents [OSTI]

    Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.; Bhinde, M.V.

    1998-06-23

    Transition metal complexes of meso-haloalkylporphyrins are disclosed, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides. 7 figs.

  14. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic structure models of indium wires four rows wide running from left to right on silicon. Top: The metallic 41 phase. Bottom: The period-doubled 42 insulating phase....

  15. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Gap-Opening Mechanism in a Triple-Band Metal Print A "wire" of indium only one or a few atoms wide grown on a silicon surface comprises an ideal test laboratory for studying...

  16. Characterization of Cr-rich Cr-Sb multilayer films: Syntheses of a new metastable phase using modulated elemental reactants

    SciTech Connect (OSTI)

    Regus, Matthias; Mankovsky, Sergiy; Polesya, Svitlana; Kuhn, Gerhard; Ditto, Jeffrey; Schürmann, Ulrich; Jacquot, Alexandre; Bartholomé, Kilian; Näther, Christian; Winkler, Markus; König, Jan D.; Böttner, Harald; Kienle, Lorenz; Johnson, David C.; Ebert, Hubert; Bensch, Wolfgang

    2015-10-15

    The new metastable compound Cr{sub 1+x}Sb with x up to 0.6 has been prepared via a thin film approach using modulated elemental reactants and investigated by in-situ X-ray reflectivity, X-ray diffraction, differential scanning calorimetry, energy dispersive X-ray analysis as well as transmission electron microscopy and atomic force microscopy. The new Cr-rich antimonide crystallizes in a structure related to the Ni{sub 2}In-type structure, where the crystallographic position (1/3, 2/3, 3/4) is partially occupied by excess Cr. The elemental layers of the pristine material interdiffused significantly before Cr{sub 1+x}Sb crystallized. A change in the activation energy was observed for the diffusion process when crystal growth starts. First-principles electronic structure calculations provide insight into the structural stability, magnetic properties and resistivity of Cr{sub 1+x}Sb. - Graphical abstract: 1 amorphous multilayered film 2 interdiffused amorphous film 3 metastable crystalline phase 4 thermodynamic stable phase (and by-product). - Highlights: • Interdiffusion of amorphous Cr and Sb occurs before crystallization. • Crystallization of a new metastable phase Cr{sub 1.6}Sb in Ni{sub 2}In-type structure. • The new Cr-rich phase shows half-metallic behavior.

  17. Metal tritides helium emission

    SciTech Connect (OSTI)

    Beavis, L.C.

    1980-02-01

    Over the past several years, we have been measuring the release of helium from metal tritides (primarily erbium tritide). We find that qualitatively all tritides of interest to us behave the same. When they are first formed, the helium is released at a low rate that appears to be related to the amount of surface area which has access to the outside of the material (either film or bulk). For example, erbium tritide films initially release about 0.3% of the helium generated. Most tritide films emit helium at about this rate initially. At some later time, which depends upon the amount of helium generated, the parent occluding element and the degree of tritium saturation of the dihydride phase the helium emission changes to a new mode in which it is released at approximately the rate at which it is generated (for example, we measure this value to be approx. = .31 He/Er for ErT/sub 1/./sub 9/ films). If erbium ditritide is saturated beyond 1.9 T/Er, the critical helium/metal ratio decreases. For example, in bulk powders ErT/sub 2/./sub 15/ reaches critical release concentration at approx. = 0.03. Moderate elevation of temperature above room temperature has little impact on the helium release rate. It appears that the process may have approx. = 2 kcal/mol activation energy. The first helium formed is well bound. As the tritide ages, the helium is found in higher energy sites. Similar but less extensive measurements on scandium, titanium, and zirconium tritides are also described. Finally, the thermal desorption of erbium tritides of various ages from 50 days to 3154 days is discussed. Significant helium is desorbed along with the tritium in all but the youngest samples during thermodesorption.

  18. Nuclear reactor fuel element

    DOE Patents [OSTI]

    Johnson, Carl E. (Elk Grove, IL); Crouthamel, Carl E. (Richland, WA)

    1980-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of oxygen gettering material on the inner surface of the cladding. The gettering material reacts with oxygen released by the fissionable material during irradiation of the core thereby preventing the oxygen from reacting with and corroding the cladding. Also described is an improved method for coating the inner surface of the cladding with a layer of gettering material.

  19. TWISTED RIBBON FUEL ELEMENT

    DOE Patents [OSTI]

    Breden, C.R.; Schultz, A.B.

    1961-06-01

    A reactor core formed of bundles of parallel fuel elements in the form of ribbons is patented. The fuel ribbons are twisted about their axes so as to have contact with one another at regions spaced lengthwise of the ribbons and to be out of contact with one another at locations between these spaced regions. The contact between the ribbons is sufficient to allow them to be held together in a stable bundle in a containing tube without intermediate support, while permitting enough space between the ribbon for coolant flowing.

  20. Finite Element Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2005-06-26

    Exotxt is an analysis code that reads finite element results data stored in an exodusII file and generates a file in a structured text format. The text file can be edited or modified via a number of text formatting tools. Exotxt is used by analysis to translate data from the binary exodusII format into a structured text format which can then be edited or modified and then either translated back to exodusII format or tomore » another format.« less

  1. Finite Element Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2005-05-07

    CONEX is a code for joining sequentially in time multiple exodusll database files which all represent the same base mesh topology and geometry. It is used to create a single results or restart file from multiple results or restart files which typically arise as the result of multiple restarted analyses. CONEX is used to postprocess the results from a series of finite element analyses. It can join sequentially the data from multiple results databases intomore » a single database which makes it easier to postprocess the results data.« less

  2. Method for the continuous processing of hermetic fiber optic components and the resultant fiber optic-to-metal components

    DOE Patents [OSTI]

    Kramer, D.P.

    1994-08-09

    Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process is disclosed. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements. 3 figs.

  3. Hot atom chemistry and radiopharmaceuticals

    SciTech Connect (OSTI)

    Krohn, Kenneth A.; Moerlein, Stephen M.; Link, Jeanne M.; Welch, Michael J.

    2012-12-19

    The chemical products made in a cyclotron target are a combined result of the chemical effects of the nuclear transformation that made the radioactive atom and the bulk radiolysis in the target. This review uses some well-known examples to understand how hot atom chemistry explains the primary products from a nuclear reaction and then how radiation chemistry is exploited to set up the optimal product for radiosynthesis. It also addresses the chemical effects of nuclear decay. There are important principles that are common to hot atom chemistry and radiopharmaceutical chemistry. Both emphasize short-lived radionuclides and manipulation of high specific activity nuclides. Furthermore, they both rely on radiochromatographic separation for identification of no-carrieradded products.

  4. Atomizing, continuous, water monitoring module

    DOE Patents [OSTI]

    Thompson, Cyril V. (Knoxville, TN); Wise, Marcus B. (Kingston, TN)

    1997-01-01

    A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid.

  5. Atomizing, continuous, water monitoring module

    DOE Patents [OSTI]

    Thompson, C.V.; Wise, M.B.

    1997-07-08

    A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid. 3 figs.

  6. HOW MANY NUCLEOSYNTHESIS PROCESSES EXIST AT LOW METALLICITY?

    SciTech Connect (OSTI)

    Hansen, C. J. [Landessternwarte, ZAH, Heidelberg University, Knigstuhl 12, D-69117 Heidelberg (Germany); Montes, F. [Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Arcones, A., E-mail: cjhansen@lsw.uni-heidelberg.de, E-mail: cjhansen@dark-cosmology.dk, E-mail: montes@nscl.msu.edu, E-mail: almudena.arcones@physik.tu-darmstadt.de [Institut fr Kernphysik, Technische Universitt Darmstadt, Schlossgartenstr. 2, Darmstadt D-64289 (Germany)

    2014-12-20

    Abundances of low-metallicity stars offer a unique opportunity to understand the contribution and conditions of the different processes that synthesize heavy elements. Many old, metal-poor stars show a robust abundance pattern for elements heavier than Ba, and a less robust pattern between Sr and Ag. Here we probe if two nucleosynthesis processes are sufficient to explain the stellar abundances at low metallicity, and we carry out a site independent approach to separate the contribution from these two processes or components to the total observationally derived abundances. Our approach provides a method to determine the contribution of each process to the production of elements such as Sr, Zr, Ba, and Eu. We explore the observed star-to-star abundance scatter as a function of metallicity that each process leads to. Moreover, we use the deduced abundance pattern of one of the nucleosynthesis components to constrain the astrophysical conditions of neutrino-driven winds from core-collapse supernovae.

  7. Computer Simulation of Bubble Growth in Metals Due to He

    SciTech Connect (OSTI)

    FOILES, STEPHEN M.; HOYT, JEFFREY J.

    2001-03-01

    Atomistic simulations of the growth of helium bubbles in metals are performed. The metal is represented by embedded atom method potentials for palladium. The helium bubbles are treated via an expanding repulsive spherical potential within the metal lattice. The simulations predict bubble pressures that decrease monotonically with increasing helium to metal ratios. The swelling of the material associated with the bubble growth is also computed. It is found that the rate of swelling increases with increasing helium to metal ratio consistent with experimental observations on the swelling of metal tritides. Finally, the detailed defect structure due to the bubble growth was investigated. Dislocation networks are observed to form that connect the bubbles. Unlike early model assumptions, prismatic loops between the bubbles are not retained. These predictions are compared to available experimental evidence.

  8. Method and apparatus for the production of metal oxide powder

    DOE Patents [OSTI]

    Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Byers, Charles H. (Oak Ridge, TN)

    1992-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  9. Method and apparatus for the production of metal oxide powder

    DOE Patents [OSTI]

    Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Byers, Charles H. (Oak Ridge, TN)

    1993-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  10. Method and apparatus for the production of metal oxide powder

    DOE Patents [OSTI]

    Harris, M.T.; Scott, T.C.; Byers, C.H.

    1992-06-16

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed. 2 figs.

  11. Relativistic atomic beam spectroscopy II

    SciTech Connect (OSTI)

    1989-12-31

    The negative ion of H is one of the simplest 3-body atomic systems. The techniques we have developed for experimental study of atoms moving near speed of light have been productive. This proposal request continuing support for experimental studies of the H{sup -} system, principally at the 800 MeV linear accelerator (LAMPF) at Los Alamos. Four experiments are currently planned: photodetachment of H{sup -} near threshold in electric field, interaction of relativistic H{sup -} ions with matter, high excitations and double charge escape in H{sup -}, and multiphoton detachment of electrons from H{sup -}.

  12. Heavy metal biosensor

    DOE Patents [OSTI]

    Hillson, Nathan J; Shapiro, Lucille; Hu, Ping; Andersen, Gary L

    2014-04-15

    Compositions and methods are provided for detection of certain heavy metals using bacterial whole cell biosensors.

  13. METAL PRODUCTION AND CASTING

    DOE Patents [OSTI]

    Magel, T.T.

    1958-03-01

    This patent covers a method and apparatus for collecting the molten metal produced by high temperature metal salt reduction. It consists essentially of subjecting the reaction vessel to centrifugal force in order to force the liberatcd molten metal into a coherent molten mass, and allowing it to solidify there. The apparatus is particularly suitable for use with small quantities of rare metals.

  14. Ceramic to metal seal

    DOE Patents [OSTI]

    Snow, Gary S.; Wilcox, Paul D.

    1976-01-01

    Providing a high strength, hermetic ceramic to metal seal by essentially heating a wire-like metal gasket and a ceramic member, which have been chemically cleaned, while simultaneously deforming from about 50 to 95 percent the metal gasket against the ceramic member at a temperature of about 30 to 75 percent of the melting temperature of the metal gasket.

  15. Carbide and carbonitride surface treatment method for refractory metals

    DOE Patents [OSTI]

    Meyer, G.A.; Schildbach, M.A.

    1996-12-03

    A carbide and carbonitride surface treatment method for refractory metals is provided, in steps including, heating a part formed of boron, chromium, hafnium, molybdenum, niobium, tantalum, titanium, tungsten or zirconium, or alloys thereof, in an evacuated chamber and then introducing reaction gases including nitrogen and hydrogen, either in elemental or water vapor form, which react with a source of elemental carbon to form carbon-containing gaseous reactants which then react with the metal part to form the desired surface layer. Apparatus for practicing the method is also provided, in the form of a carbide and carbonitride surface treatment system including a reaction chamber, a source of elemental carbon, a heating subassembly and a source of reaction gases. Alternative methods of providing the elemental carbon and the reaction gases are provided, as well as methods of supporting the metal part, evacuating the chamber with a vacuum subassembly and heating all of the components to the desired temperature. 5 figs.

  16. International team discovers element 117

    Broader source: Energy.gov [DOE]

    An international team of scientists from Russia and the United States, including two Department of Energy national laboratories and two universities, has discovered the newest superheavy element, element 117.

  17. Trace metal levels and partitioning in Wisconsin rivers: Results of background trace metals study

    SciTech Connect (OSTI)

    Shafer, M.M.; Overdier, J.T.; Armstrong, D.E.; Hurley, J.P.; Webb, D.A.

    1994-12-31

    Levels of total and filtrable Ag, Al, Cd, Cu, Pb, and Zn in 41 Wisconsin rivers draining watersheds of distinct homogeneous characteristics (land use/cover, soil type, surficial geology) were quantified. Levels, fluxes, and yields of trace metals are interpreted in terms of principal geochemical controls. The study samples were also used to evaluate the capability of modern ICP-MS techniques for ``background`` level quantification of metals. Order-of-magnitude variations in levels of a given metal between sites was measured. This large natural variance reflects influences of soil type, dissolved organic matter (DOC), ionic strength, and suspended particulate matter (SPM) on metal levels. Significant positive correlations between DOC levels and filtrable metal concentrations were observed, demonstrating the important role that DOC plays in metal speciation and behavior. Systematic, chemically consistent, differences in behavior between the metals is evident with partition coefficients (K,) and fraction in particulate forms ranking in the order: Al > Pb > Zn > Cr >Cd > Cu. Total metal yields correlate well with SPM yields, especially for highly partitioned elements, whereas filtrable metal yields reflect the interplay of partitioning and water yield. The State of Wisconsin will use these data in a re-evaluation of regulatory limits and in the development of water effects ratio criteria.

  18. Fabrication of superconducting metal-oxide textiles by heating impregnated polymeric material in a weakly oxidizing atmosphere

    SciTech Connect (OSTI)

    Van den Sype, J.S.

    1993-07-13

    A process is described for producing crystalline fibers, textiles or shapes comprised of YBa[sub 2]Cu[sub 3]O[sub 7[minus]x] where x varies from about 0 to about 0.4, said process comprising: (a) impregnating a preformed organic polymeric material with three metal compounds to provide metal elements in said material in substantially the atomic ratio occurring in said YBa[sub 2]Cu[sub 3]O[sub 7[minus]x]; (b) heating said impregnated material in a weakly oxidizing atmosphere containing from about 0.05% to about 2% oxygen by volume to a temperature sufficiently high to at least partially pyrolize and oxidize said organic material and at least partially oxidize said metal compounds substantially without ignition of said organic material and without formation of a molten phase or reaching a decomposition temperature of said YBa[sub 2]Cu[sub 3]O[sub 7[minus]x]; and (c) cooling the resulting material in at least a moderately oxidizing atmosphere to room temperature so as to obtain said fibers, textiles or shapes.

  19. Cohesive Zone Model User Element

    Energy Science and Technology Software Center (OSTI)

    2007-04-17

    Cohesive Zone Model User Element (CZM UEL) is an implementation of a Cohesive Zone Model as an element for use in finite element simulations. CZM UEL computes a nodal force vector and stiffness matrix from a vector of nodal displacements. It is designed for structural analysts using finite element software to predict crack initiation, crack propagation, and the effect of a crack on the rest of a structure.

  20. A Zr-based bulk metallic glass for future stent applications: Materials

    Office of Scientific and Technical Information (OSTI)

    properties, finite element modeling, and in vitro human vascular cell response (Journal Article) | SciTech Connect A Zr-based bulk metallic glass for future stent applications: Materials properties, finite element modeling, and in vitro human vascular cell response Citation Details In-Document Search This content will become publicly available on September 10, 2017 Title: A Zr-based bulk metallic glass for future stent applications: Materials properties, finite element modeling, and in vitro

  1. Synchrotron X-ray Investigations of Mineral-Microbe-Metal Interactions

    SciTech Connect (OSTI)

    Kemner, Kenneth M.; O'Loughlin, Edward J.; Kelly, Shelly D.; Boyanov, Maxim I.

    2008-06-06

    Interactions between microbes and minerals can play an important role in metal transformations (i.e. changes to an element's valence state, coordination chemistry, or both), which can ultimately affect that element's mobility. Mineralogy affects microbial metabolism and ecology in a system; microbes, in turn, can affect the system's mineralogy. Increasingly, synchrotron-based X-ray experiments are in routine use for determining an element's valence state and coordination chemistry, as well as for examining the role of microbes in metal transformations.

  2. REACTOR FUEL ELEMENTS TESTING CONTAINER

    DOE Patents [OSTI]

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  3. Multi-element microelectropolishing method

    DOE Patents [OSTI]

    Lee, Peter J.

    1994-01-01

    A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle.

  4. Multi-element microelectropolishing method

    DOE Patents [OSTI]

    Lee, P.J.

    1994-10-11

    A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle. 10 figs.

  5. Amorphous metal composites

    DOE Patents [OSTI]

    Byrne, Martin A. (Troy, NY); Lupinski, John H. (Scotia, NY)

    1984-01-01

    An improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  6. Studies of Flerovium and Element 115 Homologs with Macrocyclic Extractants

    SciTech Connect (OSTI)

    Despotopulos, John D.

    2015-03-12

    Study of the chemistry of the heaviest elements, Z ≥ 104, poses a unique challenge due to their low production cross-sections and short half-lives. Chemistry also must be studied on the one-atom-at-a-time scale, requiring automated, fast, and very efficient chemical schemes. Recent studies of the chemical behavior of copernicium (Cn, element 112) and flerovium (Fl, element 114) together with the discovery of isotopes of these elements with half-lives suitable for chemical studies have spurred a renewed interest in the development of rapid systems designed to study the chemical properties of elements with Z ≥ 114. This dissertation explores both extraction chromatography and solvent extraction as methods for development of a rapid chemical separation scheme for the homologs of flerovium (Pb, Sn, Hg) and element 115 (Bi, Sb), with the goal of developing a chemical scheme that, in the future, can be applied to on-line chemistry of both Fl and element 115. Macrocyclic extractants, specifically crown ethers and their derivatives, were chosen for these studies.

  7. Carbon nanotube forests growth using catalysts from atomic layer deposition

    SciTech Connect (OSTI)

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John; Bhardwaj, Sunil; Cepek, Cinzia

    2014-04-14

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  8. Chemical vapor deposition of group IIIB metals

    DOE Patents [OSTI]

    Erbil, Ahmet

    1989-01-01

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula (I) ##STR1## where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula I is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula I and a heat decomposable tellurium compound under nonoxidizing conditions.

  9. Chemical vapor deposition of group IIIB metals

    DOE Patents [OSTI]

    Erbil, A.

    1989-11-21

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

  10. Photoconductive circuit element reflectometer

    DOE Patents [OSTI]

    Rauscher, Christen (Alexandria, VA)

    1990-01-01

    A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a variable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line.

  11. Photoconductive circuit element reflectometer

    DOE Patents [OSTI]

    Rauscher, C.

    1987-12-07

    A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a determinable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line. 4 figs.

  12. Composite Metal-hydrogen Electrodes for Metal-Hydrogen Batteries

    SciTech Connect (OSTI)

    Ruckman, M W; Wiesmann, H; Strongin, M; Young, K; Fetcenko, M

    1997-04-01

    The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries. The anodes could be incorporated in thin film solid state Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped metal-hydrogen ratios exceeding and fast hydrogen charging and Nb films, these studies suggested that materials with those of commercially available metal hydride materials discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films-and multiiayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 µm thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for modern electronic devices.

  13. Atomic and molecular physics and data activities for astrophysics at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Jeffery, D.J.; Kristic, P.S.; Liu, W.; Schultz, D.R.; Stancil, P.C.

    1998-04-01

    The atomic astrophysics group at ORNL produces, collects, evaluates, and disseminates atomic and molecular data relevant to astrophysics and actively models various astrophysical environments utilizing this information. With the advent of the World Wide Web, these data are also being placed on-line to facilitate their use by end-users. In this brief report, the group`s recent activities in data production and in modeling are highlighted. For example, the authors describe recent calculations of elastic and transport cross sections relevant to ionospheric and heliospheric studies, charge transfer between metal ions and metal atoms and novel supernova nebular spectra modeling, ion-molecule collision data relevant to planetary atmospheres and comets, and data for early universe modeling.

  14. Solid electrolytes strengthened by metal dispersions

    DOE Patents [OSTI]

    Lauf, Robert J.; Morgan, Chester S.

    1983-01-01

    An improvement in solid electrolytes of advanced secondary batteries of the sodium-sulfur, sodium-halogen, and like combinations is achieved by providing said battery with a cermet electrolyte containing a metal dispersion ranging from 0.1 to 10.0 vol. % of a substantially nonreactive metal selected from the group consisting essentially of Pt, Cr, Fe, Co, Ni, Nb, their alloys, and their physical mixtures in the elemental or uncombined state, the remainder of said cermet being an ion-conductive ceramic material.

  15. Solid electrolytes strengthened by metal dispersions

    DOE Patents [OSTI]

    Lauf, R.J.; Morgan, C.S.

    1981-10-05

    An improvement in solid electrolytes of advanced secondary batteries of the sodium-sulfur, sodium-halogen, and like combinations is achieved by providing said battery with a cermet electrolyte containing a metal dispersion ranging from 0.1 to 10.0 vol. % of a substantially nonreactive metal selected from the group consisting essentially of Pt, Cr, Fe, Co, Ni, Nb, their alloys, and their physical mixtures in the elemental or uncombined state, the remainder of said cermet being an ion-conductive ceramic material.

  16. High pressure injection and atomization characteristics of methanol

    SciTech Connect (OSTI)

    Aigal, A.K.; Pundir, B.P.; Khatchian, A.S.

    1986-01-01

    Research on conversion of diesel engines for operation on methanol is, currently, of worldwide interest. Due to requirements of higher cyclic delivery of methanol and changes in fuel properties e.g. compressibility, wave propagation velocity, viscosity, surface tension, density etc., injection and atomization characteristics of methanol are expected to be different from diesel. From the equation of continuity and forces acting on the injection system elements and applying the principles of similarity, modifications required in the injection system were identified. Methanol injection and atomization characteristics were studied with a modified injection system and compared with those observed with diesel fuel. Methanol gave more favourable cyclic delivery characteristics than diesel. Laser diffraction technique was used to study time and space resolved drop size distribution in methanol and diesel sprays. With methanol, drop size distribution were, generally, much narrower and droplets were smaller than diesel. Spatial distribution of drop size in methanol spray showed somewhat different trends than for diesel.

  17. The role of composition and microstructure gradients on weld metal properties and behavior: Progress report for the period of June 1, 1987 to December 31, 1987. [Fe-Al-Cr-Mn-Ni weld metals

    SciTech Connect (OSTI)

    Matlock, D.K.; Olson, D.L.

    1988-01-01

    The effects of weld metal compositional and microstructural gradients on phase transformations, microstructural stability, and mechanical properties are considered from a fundamental basis in weld metal alloys which are primarily austenitic (e.g., stainless steels). Models which incorporate compositional gradients are developed to predict the resulting weld metal properties. The mechanical properties of weld metals are modeled based on composite theory in which individual weld metal zones are considered as discrete elements within a composite structure. 23 figs.

  18. Alkali metal nitrate purification

    DOE Patents [OSTI]

    Fiorucci, Louis C. (Hamden, CT); Morgan, Michael J. (Guilford, CT)

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  19. Metal halogen electrochemical cell

    SciTech Connect (OSTI)

    Walsh, F.M.

    1986-06-03

    An electrochemical cell is described having a metal anode selected from the group consisting of zinc and cadmium; a bromine cathode; and, an aqueous electrolyte containing a metal bromide, the metal having the same metal as the metal of the anode, the improvement comprising: a bromine complexing agent in the aqueous metal bromide electrolyte consisting solely of a tetraorgano substituted ammonium salt, which salt is soluble of water and forms and substantially water immiscible liquid bromine complex at temperatures in the range of about 10/sup 0/C. to about 60/sup 0/C. and wherein the tetraorgano substituted ammonium salt is selected from asymmetric quaternary ammonium compounds.

  20. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  1. Melting of Uranium Metal Powders with Residual Salts

    SciTech Connect (OSTI)

    Jin-Mok Hur; Dae-Seung Kang; Chung-Seok Seo

    2007-07-01

    The Advanced Spent Fuel Conditioning Process (ACP) of the Korea Atomic Energy Research Institute focuses on the conditioning of Pressurized Water Reactor spent oxide nuclear fuel. After the oxide reduction step of the ACP, the resultant metal powders containing {approx} 30 wt% residual LiCl-Li{sub 2}O should be melted for a consolidation of the fine metal powders. In this study, we investigated the melting behaviors of uranium metal powders considering the effects of a LiCl-Li{sub 2}O residual salt. (authors)

  2. Epsilon Metal Waste Form for Immobilization of Noble Metals from Used Nuclear Fuel

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Strachan, Denis M.; Rohatgi, Aashish; Zumhoff, Mac R.

    2013-10-01

    Epsilon metal (?-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass and thus the processing problems related there insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high reaction temperatures to form the alloy, expected to be 1500 - 2000C making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).

  3. SEPARATION OF URANIUM FROM OTHER METALS

    DOE Patents [OSTI]

    Hyman, H.H.

    1959-07-01

    The separation of uranium from other elements, such as ruthenium, zirconium, niobium, cerium, and other rare earth metals is described. According to the invention, this is accomplished by adding hydrazine to an acid aqueous solution containing salts of uranium, preferably hexavalent uranium, and then treating the mixture with a substantially water immiscible ketone, such as hexone. A reaction takes place between the ketone and the hydrazine whereby a complex, a ketazine, is formed; this complex has a greater power of extraction for uranium than the ketone by itself. When contaminating elements are present, they substantially remain in ihe aqueous solution.

  4. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1985-11-08

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

  5. Actinide targets for the synthesis of super-heavy elements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; Ezold, Julie G.; Felker, Leslie Kevin; Rykaczewski, Krzysztof Piotr; Hogle, Susan L.

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing themore » production of rare actinides including 249Bk, 251Cf, and 254Es are described.« less

  6. The Future of Atomic Energy

    DOE R&D Accomplishments [OSTI]

    Fermi, E.

    1946-05-27

    There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

  7. Multigroup Free-atom Doppler-broadening Approximation. Theory

    SciTech Connect (OSTI)

    Gray, Mark Girard

    2015-11-06

    Multigroup cross sections at a one target temperature can be Doppler-broadened to multigroup cross sections at a higher target temperature by matrix multiplication if the group structure suf- ficiently resolves the original temperature continuous energy cross section. Matrix elements are the higher temperature group weighted averages of the integral over the lower temperature group boundaries of the free-atom Doppler-broadening kernel. The results match theory for constant and 1/v multigroup cross sections at 618 lanl group structure resolution.

  8. NUCLEAR REACTOR FUEL ELEMENT ASSEMBLY

    DOE Patents [OSTI]

    Stengel, F.G.

    1963-12-24

    A method of fabricating nuclear reactor fuel element assemblies having a plurality of longitudinally extending flat fuel elements in spaced parallel relation to each other to form channels is presented. One side of a flat side plate is held contiguous to the ends of the elements and a welding means is passed along the other side of the platertransverse to the direction of the longitudinal extension of the elements. The setting and speed of travel of the welding means is set to cause penetration of the side plate with welds at bridge the gap in each channel between adjacent fuel elements with a weld-through bubble of predetermined size. The fabrication of a high strength, dependable fuel element is provided, and the reduction of distortion and high production costs are facilitated by this method. (AEC)

  9. FUEL ELEMENT FOR NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Evans, T.C.; Beasley, E.G.

    1961-01-17

    A fuel element for neutronic reactors, particularly the gas-cooled type of reactor, is described. The element comprises a fuel-bearing plate rolled to form a cylinder having a spiral passageway passing from its periphery to its center. In operation a coolant is admitted to the passageway at the periphery of the element, is passed through the spiral passageway, and emerges into a central channel defined by the inner turn of the rolled plate. The advantage of the element is that the fully heated coolant (i.e., coolant emerging into the central channel) is separated and thus insulated from the periphery of the element, which may be in contact with a low-temperature moderator, by the intermediate turns of the spiral fuel element.

  10. Metal to semiconductor transition in metallic transition metal dichalcogenides

    SciTech Connect (OSTI)

    Li, Yan; Kang, Jun; Li, Jingbo; Tongay, Sefaattin; Wu, Junqiao; Yue, Qu

    2013-11-07

    We report on tuning the electronic and magnetic properties of metallic transition metal dichalcogenides (mTMDCs) by 2D to 1D size confinement. The stability of the mTMDC monolayers and nanoribbons is demonstrated by the larger binding energy compared to the experimentally available semiconducting TMDCs. The 2D MX{sub 2} (M?=?Nb, Ta; X?=?S, Se) monolayers are non-ferromagnetic metals and mechanically softer compared to their semiconducting TMDCs counterparts. Interestingly, mTMDCs undergo metal-to-semiconductor transition when the ribbon width approaches to ?13? and ?7? for zigzag and armchair edge terminations, respectively; then these ribbons convert back to metal when the ribbon widths further decrease. Zigzag terminated nanoribbons are ferromagnetic semiconductors, and their magnetic properties can also be tuned by hydrogen edge passivation, whereas the armchair nanoribbons are non-ferromagnetic semiconductors. Our results display that the mTMDCs offer a broad range of physical properties spanning from metallic to semiconducting and non-ferromagnetic to ferromagnetic that is ideal for applications where stable narrow bandgap semiconductors with different magnetic properties are desired.

  11. Metal phthalocyanine catalysts

    DOE Patents [OSTI]

    Ellis, Jr., Paul E.; Lyons, James E.

    1994-01-01

    As a new composition of matter, alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  12. Nitrided Metallic Bipolar Plates

    SciTech Connect (OSTI)

    Brady, Michael P; Toops, Todd J; Tortorelli, Peter F; More, Karren Leslie; Meyer III, Harry M; Pihl, Josh A; Wang, Heli; Turner, John; Garzon, Fernando; Rockward, Tommy; Gervasio, Don; Rakowski, Jim; EstevezGenCell, Francisco

    2010-01-01

    Effort devoted to scale up and demonstration of thin stamped metallic bipolar plates. Overall goal is to demonstrate potential for metallic bipolar plates to meet 5000 h automotive durability goal at a cost of less than $5/kW.

  13. Metal phthalocyanine catalysts

    DOE Patents [OSTI]

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-10-11

    A new composition of matter is described which is an alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  14. On-line gas chromatographic studies of rutherfordium (Element 104), hahnium (Element 105), and homologs

    SciTech Connect (OSTI)

    Kadkhodayan, B.

    1993-05-01

    Gas-phase isothermal chromatogaphy is a method by which volatile compounds of different chemical elements can be separated according to their volatilities. The technique, coupled with theoretical modeling of the processes occurring in the chromatogaphy column, provides accurate determination of thermodynamic properties (e.g., adsorption enthalpies) for compounds of elements, such as the transactinides, which can only be produced on an atom-at-a-time basis. In addition, the chemical selectivity of the isothermal chromatogaphy technique provides the decontamination from interfering activities necessary for the determination of the nuclear decay properties of isotopes of the transactinide elements. Volatility measurements were performed on chloride species of Rf and its group 4 homologs, Zr and Hf, as well as Ha and its group 5 homologs, Nb and Ta. Adsorption enthalpies were calculated for all species using a Monte Carlo code simulation based on a microscopic model for gas thermochromatography in open columns with laminar flow of the carrier gas. Preliminary results are presented for Zr- and Nb-bromides.

  15. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOE Patents [OSTI]

    Bassett, C.H.

    1961-05-16

    A fuel element particularly adapted for use in nuclear reactors of high power density is offered. It has fissionable fuel pellet segments mounted in a tubular housing and defining a central passage in the fuel element. A burnable poison element extends through the central passage, which is designed to contain more poison material at the median portion than at the end portions thereby providing a more uniform hurnup and longer reactivity life.

  16. Finite element modeling of lightning

    SciTech Connect (OSTI)

    Hwang, C.C.; Huang, S.R.; Bor, S.S.

    1995-12-31

    In this paper the transmission line equation which describes the transient voltage and current distributions of a lightning stroke is employed. Finite element method is used to derive the element equations and one-dimensional linear elements are used to discretize the field region. The implicit Newmark time integration technique is used to convert the resulting second-order ordinary differential equations into a set of recurrence equations which are then solved at each time step. Numerical example is included and discussed.

  17. Atomic vapor laser isotope separation process

    DOE Patents [OSTI]

    Wyeth, R.W.; Paisner, J.A.; Story, T.

    1990-08-21

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

  18. Princeton Plasma Physics Lab - General Atomics (GA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    general-atomics-ga General Atomics en The Scorpion's Strategy: "Catch and Subdue" http:www.pppl.govnode1132

  19. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOE Patents [OSTI]

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  20. Bonded Radii and the Contraction of the Electron Density of the Oxygen Atom by Bonded Interactions

    SciTech Connect (OSTI)

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.; Iversen, Bo B.; Spackman, M. A.

    2013-02-21

    The bonded radii for more than 550 bonded pairs of atoms, comprising more than 50 crystals, determined from experimental and theoretical electron density distributions, are compared with the effective ionic, ri(M), and crystal radii, rc(M), for metal atoms, M, bonded to O atoms. At odds with the fixed ionic radius of 1.40 , assumed for the O atom in the compilation of the ionic radii, the bonded radius for the atom, rb(O), is not fixed but displays a relatively wide range of values as the O atom is progressively polarized by the M-O bonded interactions: as such, rb(O) decreases systematically from 1.40 (the Pauling radius of the oxide anion) as bond lengths decrease when bonded to an electropositive atom like sodium, to 0.64 (Braggs atomic radius of the O atom) when bonded to an electronegative atom like nitrogen. Both rb(M) and rb(O) increase in tandum with the increasing coordination number of the M atom. The bonded radii of the M atoms are highly correlated with both ri(M) and rc(M), but they both depart systematically from rb(M) and become smaller as the electronegativity of the M atom increases and the M-O bond length decreases. The well-developed correlations between both sets of radii and rb(M) testifies to the relative precision of both sets of radii and the fact that both sets are highly correlated the M-O bond 1 lengths. On the other hand, the progressive departure of rb(O) from the fixed ionic radius of the O atom with the increasing electronegativity of the bonded M atom indicates that any compilation of sets of ionic radii, assuming that the radius for the oxygen atom is fixed in value, is problematical and impacts on the accuracy of the resulting sets of ionic and crystal radii thus compiled. The assumption of a fixed O atom radius not only results in a negative ionic radii for several atoms, but it also results in values of rb(M) that are much as ~ 0.6 larger than the ri(M) and rc(M) values, respectively, particularly for the more electronegative M atoms. On the other hand, the ionic radii are in closer agreement with rb(M) for the more electropositive atoms. Notwithstanding that ionic radii are typically smaller than bonded radii, particularly for the more electronegative atoms, they have been used with considerable success in understanding and rationalizing problems and properties in crystal chemistry primarily because both ionic and crystal radii are highly correlated on a one-to-one basis with both the bonded radii and the associated M-O bond lengths. The lack of agreement between the effective ionic and crystal radii and the bonded radii for the more shared bonded interactions is ascribed to the progressive increase in the polarization of the O atom by the bonded atoms with a concomitant decrease in its radius, a factor that was neglected in the compilation of ionic and crystal radii for fluorides, oxides, sulfides and nitrides. This accounts for ionic radii for these materials being smaller than the bonded radii for the more electronegative atoms.

  1. Generation of beams of refractory-metal clusters

    SciTech Connect (OSTI)

    Wexler, S.; Riley, R.J.; Parks, E.K.; Mao, C.R.; Pobo, L.G.

    1982-01-01

    Interest in the physical and chemical properties of small metal clusters has recently stimulated the development of sources for the generation of molecular beams of metal clusters, since the collision-free environment of a beam has the advantage of permitting in-flight study of isolated species free of interference from surroundings. For example, spectroscopic studies utilizing tunable lasers may be performed in the molecular beam environment. The objectives of our research program are the elucidation of the physical and chemical properties of clusters of refractory metal atoms, in particular those of the catalytically active transition metals. For these purposes we have built and tested two sources suitable for generation of cluster beams of refractory metals, one for continuous beams and the other for pulsed beams.

  2. Element Labs | Open Energy Information

    Open Energy Info (EERE)

    Labs Jump to: navigation, search Name: Element Labs Address: 3350 Scott Blvd Place: Santa Clara, California Zip: 95054 Region: Bay Area Sector: Efficiency Product: LED Producer...

  3. Manhattan Project: Atomic Bombardment, 1932-1938

    Office of Scientific and Technical Information (OSTI)

    Solvay Physics Conference, Brussels, October 1933 ATOMIC BOMBARDMENT (1932-1938) Events > Atomic Discoveries, 1890s-1939 A Miniature Solar System, 1890s-1919 Exploring the Atom, 1919-1932 Atomic Bombardment, 1932-1938 The Discovery of Fission, 1938-1939 Fission Comes to America, 1939 M. Stanley Livingston and Ernest O. Lawrence in front of a 27-inch cyclotron, Rad Lab, University of California, Berkeley, 1934. In the 1930s, scientists learned a tremendous amount about the structure of the

  4. The Atomic Energy Commission By Alice Buck

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atomic Energy Commission By Alice Buck July 1983 U.S. Department of Energy Office of Management Office of the Executive Secretariat Office of History and Heritage Resources 1 Introduction Almost a year after World War II ended, Congress established the United States Atomic Energy Commission to foster and control the peacetime development of atomic science and technology. Reflecting America's postwar optimism, Congress declared that atomic energy should be employed not only in the Nation's

  5. The Harnessed Atom | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » The Harnessed Atom The Harnessed Atom The Harnessed Atom The Harnessed Atom is a new middle school science, technology, engineering, and math (STEM) curriculum extension that focuses on nuclear science and energy. It offers teachers accurate, unbiased, and up-to-date information on the roles that energy and nuclear science play in our lives. The curriculum includes essential principles and fundamental concepts of energy science. This teacher's kit is an updated and expanded edition

  6. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  7. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, Paul O.; Kennedy, Cheryl E.; Jorgensen, Gary J.; Shinton, Yvonne D.; Goggin, Rita M.

    1994-01-01

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  8. Synthesis, structural characterization and magnetic properties of RE{sub 2}MgGe{sub 2} (RE=rare-earth metal)

    SciTech Connect (OSTI)

    Suen, Nian-Tzu; Tobash, Paul H.; Bobev, Svilen

    2011-11-15

    A series of rare-earth metal-magnesium-germanides RE{sub 2}MgGe{sub 2} (RE=Y, Nd, Sm, Gd-Tm, Lu) has been synthesized by reactions of the corresponding elements at high temperature. Their structures have been established by single-crystal and powder X-ray diffraction and belong to the Mo{sub 2}FeB{sub 2} structure type (space group P4/mbm (No. 127), Z=2; Pearson symbol tP10). Temperature dependent DC magnetization measurements indicate Curie-Weiss paramagnetism in the high-temperature regime for all members of the family, excluding Y{sub 2}MgGe{sub 2}, Sm{sub 2}MgGe{sub 2}, and Lu{sub 2}MgGe{sub 2}. At cryogenic temperatures (ca. 60 K and below), most RE{sub 2}MgGe{sub 2} phases enter into an antiferromagnetic ground-state, except for Er{sub 2}MgGe{sub 2} and Tm{sub 2}MgGe{sub 2}, which do not undergo magnetic ordering down to 5 K. The structural variations as a function of the decreasing size of the rare-earth metals, following the lanthanide contraction, and the changes in the magnetic properties across the series are discussed as well. - Graphical Abstract: The structure of RE{sub 2}MgGe{sub 2} (RE=Y, Nd, Sm, Gd-Tm, Lu) can be best viewed as 2-dimensional slabs of Mg and Ge atoms (anionic sub-lattice), and layers of rare-earth metal atoms (cationic sub-lattice) between them. Within this description, one should consider the Ge-Ge dumbbells (formally Ge{sup 6-}{sub 2}), interconnected with square-planar Mg atom as forming flat [MgGe{sub 2}] layers (z=0), stacked along the c-axis with the layers at z=1/2, made of rare-earth metal cations (formally RE{sup 3+}). Highlights: > RE{sub 2}MgGe{sub 2} (RE=Y, Nd, Sm, Gd-Tm, Lu) are new ternary germanides. > Their structures can be recognized as a 1:1 intergrowth of CsCl- and AlB{sub 2}-like slabs. > Ge atoms are covalently bound into Ge{sub 2} dumbbells. > Most RE{sub 2}MgGe{sub 2} phases are antiferromagnetically ordered at cryogenic temperatures.

  9. Experimental observation of magic-wavelength behavior of {sup 87}Rb atoms in an optical lattice

    SciTech Connect (OSTI)

    Lundblad, N.; Schlosser, M.; Porto, J. V.

    2010-03-15

    We demonstrate the cancellation of the differential ac Stark shift of the microwave hyperfine clock transition in trapped {sup 87}Rb atoms. Recent progress in metrology exploits so-called magic wavelengths, whereby an atomic ensemble can be trapped with laser light whose wavelength is chosen so that both levels of an optical atomic transition experience identical ac Stark shifts. Similar magic-wavelength techniques are not possible for the microwave hyperfine transitions in the alkali metals due to their simple electronic structure. We show, however, that ac Stark shift cancellation is indeed achievable for certain values of wavelength, polarization, and magnetic field. The cancellation comes at the expense of a small magnetic-field sensitivity. The technique demonstrated here has implications for experiments involving the precise control of optically trapped neutral atoms.

  10. PHASE-FIELD SIMULATION OF IRRADIATED METALS: PART II: GAS BUBBLE KINETICS

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect METALS: PART II: GAS BUBBLE KINETICS Citation Details In-Document Search Title: PHASE-FIELD SIMULATION OF IRRADIATED METALS: PART II: GAS BUBBLE KINETICS We present a phase-field model for inert gas bubble formation and evolution in irradiated metals. The model evolves vacancy, self-interstitial, and fission gas atoms through a coupled set of Cahn-Hilliard and Allen-Cahn equations, capturing the processes of defect generation, recombination, annihilation

  11. Metal alloy coatings and methods for applying

    DOE Patents [OSTI]

    Merz, Martin D. (Richland, WA); Knoll, Robert W. (Kennewick, WA)

    1991-01-01

    A method of coating a substrate comprises plasma spraying a prealloyed feed powder onto a substrate, where the prealloyed feed powder comprises a significant amount of an alloy of stainless steel and at least one refractory element selected from the group consisting of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The plasma spraying of such a feed powder is conducted in an oxygen containing atmosphere and forms an adherent, corrosion resistant, and substantially homogenous metallic refractory alloy coating on the substrate.

  12. Gauss Sum Factorization with Cold Atoms

    SciTech Connect (OSTI)

    Gilowski, M.; Wendrich, T.; Mueller, T.; Ertmer, W.; Rasel, E. M. [Institut fuer Quantenoptik, Leibniz Universitaet Hannover, Welfengarten 1, D-30167 Hannover (Germany); Jentsch, Ch. [Astrium GmbH-Satellites, 88039 Friedrichshafen (Germany); Schleich, W. P. [Institut fuer Quantenphysik, Universitaet Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany)

    2008-01-25

    We report the first implementation of a Gauss sum factorization algorithm by an internal state Ramsey interferometer using cold atoms. A sequence of appropriately designed light pulses interacts with an ensemble of cold rubidium atoms. The final population in the involved atomic levels determines a Gauss sum. With this technique we factor the number N=263193.

  13. ITP Metal Casting: Implementation of Metal Casting Best Practices |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Implementation of Metal Casting Best Practices ITP Metal Casting: Implementation of Metal Casting Best Practices PDF icon implementation_final.pdf More Documents & Publications ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Energy Use in Selected Metalcasting Facilities - 2003 ITP Metal Casting: Energy and Environmental Profile of the U.S. Metal casting

  14. Effect of realistic metal electronic structure on the lower limit of contact resistivity of epitaxial metal-semiconductor contacts

    SciTech Connect (OSTI)

    Hegde, Ganesh Chris Bowen, R.

    2014-08-04

    The effect of realistic metal electronic structure on the lower limit of resistivity in [100] oriented n-Si is investigated using full band Density Functional Theory and Semi-Empirical Tight Binding calculations. It is shown that the ideal metal assumption may fail in some situations and, consequently, underestimate the lower limit of contact resistivity in n-Si by at least an order of magnitude at high doping concentrations. The mismatch in transverse momentum space in the metal and the semiconductor, the so-called valley filtering effect, is shown to be sensitive to the details of the transverse boundary conditions for the unit cells used. The results emphasize the need for explicit inclusion of the metal atomic and electronic structure in the atomistic modeling of transport across metal-semiconductor contacts.

  15. Analytical electron microscopy investigation of elemental composition and bonding structure at the Sb-doped Ni-fully-silicide/SiO{sub 2} interface

    SciTech Connect (OSTI)

    Kawasaki, Naohiko; Sugiyama, Naoyuki; Otsuka, Yuji; Hashimoto, Hideki; Kurata, Hiroki; Isoda, Seiji

    2011-03-15

    It is very important to control the elemental composition and bonding structure at the gate electrode/gate dielectrics interface in metal-oxide-semiconductor transistor devices because this determines the threshold voltage of the gate electrode. In this study, we investigated the structure at the interface between the antimony (Sb)-doped nickel-fully-silicide gate electrode and SiO{sub 2} dielectrics by employing high-spatial resolution techniques such as energy dispersive x-ray spectroscopy and electron energy-loss spectroscopy using a scanning transmission electron microscope. In one region, we found a thin nickel layer at the NiSi/SiO{sub 2} interface originating from the migration of native oxide at the face of the poly-silicon. In another region, a Sb pileup was detected at the NiSi/SiO{sub 2} interface where the Ni L{sub 3}-edge spectrum showed Ni-Sb bonding, then it was suggested that Sb atoms exist at the bottom of NiSi, substituting for Si atoms in NiSi.

  16. Metallic glass alloys of Zr, Ti, Cu and Ni

    DOE Patents [OSTI]

    Lin, X.; Peker, A.; Johnson, W.L.

    1997-04-08

    At least quaternary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3} K/s. Such alloys comprise titanium from 19 to 41 atomic percent, an early transition metal (ETM) from 4 to 21 atomic percent and copper plus a late transition metal (LTM) from 49 to 64 atomic percent. The ETM comprises zirconium and/or hafnium. The LTM comprises cobalt and/or nickel. The composition is further constrained such that the product of the copper plus LTM times the atomic proportion of LTM relative to the copper is from 2 to 14. The atomic percentage of ETM is less than 10 when the atomic percentage of titanium is as high as 41, and may be as large as 21 when the atomic percentage of titanium is as low as 24. Furthermore, when the total of copper and LTM are low, the amount of LTM present must be further limited. Another group of glass forming alloys has the formula (ETM{sub 1{minus}x}Ti{sub x}){sub a} Cu{sub b} (Ni{sub 1{minus}y}Co{sub y}){sub c} wherein x is from 0.1 to 0.3, y{center_dot}c is from 0 to 18, a is from 47 to 67, b is from 8 to 42, and c is from 4 to 37. This definition of the alloys has additional constraints on the range of copper content, b. 2 figs.

  17. The Search for Heavy Elements

    SciTech Connect (OSTI)

    2008-04-17

    The 1994 documentary "The Search for Heavy Elements" chronicles the expansion of the periodic table through the creation at Berkeley Lab of elements heavier than uranium. The documentary features a mix of rarely-seen archival footage, historical photos, and interviews with scientists who made history, such as Glenn Seaborg and Albert Ghiorso.

  18. The Search for Heavy Elements

    ScienceCinema (OSTI)

    None

    2010-01-08

    The 1994 documentary "The Search for Heavy Elements" chronicles the expansion of the periodic table through the creation at Berkeley Lab of elements heavier than uranium. The documentary features a mix of rarely-seen archival footage, historical photos, and interviews with scientists who made history, such as Glenn Seaborg and Albert Ghiorso.

  19. u. S. Atomic Energy Commission

    Office of Legacy Management (LM)

    October 31, 1949 Manager of Operations u. S. Atomic Energy Commission R. 0. Box 30, Ansonia Station New York ES, N. Y. MATERIALS 5+k& hJf Reference: SK:BL Attention: Mr. R. J. Smith Jr. Director Special Materials Division Subject: BERYLLIUM OXIDE AND COMPOUNDS Dear Sir: Thank you for your letter of-r-S&in which you suggest that a -_-...--__. member of your staff visit ouimnt to review our production facilities. Ge do not at the present time have facilities for making beryllium compounds

  20. General Atomics (GA) Fusion News: A New Spin on Understanding...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Atomics (GA) Fusion News: A New Spin on Understanding Plasma Confinement American Fusion News Category: General Atomics (GA) Link: General Atomics (GA) Fusion News: A New ...

  1. Bettis and Knolls Atomic Power Laboratories | National Nuclear...

    National Nuclear Security Administration (NNSA)

    and Knolls Atomic Power Laboratories | National Nuclear Security Administration Facebook ... Department Bettis and Knolls Atomic Power Laboratories Bettis and Knolls Atomic ...

  2. QUANTUM MECHANICS, GENERAL PHYSICS; 74 ATOMIC AND MOLECULAR PHYSICS...

    Office of Scientific and Technical Information (OSTI)

    of model atoms in fields Milonni, P.W. 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 74 ATOMIC AND MOLECULAR PHYSICS; ATOMS; OPTICAL MODELS; QUANTUM MECHANICS;...

  3. Light Element Production in Type Ic Supernovae (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Light Element Production in Type Ic Supernovae Citation Details In-Document Search Title: Light Element Production in Type Ic Supernovae We discuss production of light elements (Li, Be) in energetic type Ic supernovae (SNe Ic) and how newly synthesized light elements are transferred to stars of the next generation. We have pointed out that spallation reactions involving N and He become important in an explosion of a rotating metal-poor star if the progenitor still keeps a fraction of

  4. Upgraded HFIR Fuel Element Welding System

    SciTech Connect (OSTI)

    Sease, John D [ORNL

    2010-02-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  5. Process for oxidation of hydrogen halides to elemental halogens

    DOE Patents [OSTI]

    Lyke, Stephen E.

    1992-01-01

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  6. Phosphors containing boron and metals of Group IIIA and IIIB

    DOE Patents [OSTI]

    Setlur, Anant Achyut; Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan

    2006-10-31

    A phosphor comprises: (a) at least a first metal selected from the group consisting of yttrium and elements of lanthanide series other than europium; (b) at least a second metal selected from the group consisting of aluminum, gallium, indium, and scandium; (c) boron; and (d) europium. The phosphor is used in light source that comprises a UV radiation source to convert UV radiation to visible light.

  7. Final Report: Role of microbial synergies in immobilization of metals

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Final Report: Role of microbial synergies in immobilization of metals Citation Details In-Document Search Title: Final Report: Role of microbial synergies in immobilization of metals This Subsurface Microbial Ecology and Community Dynamics project tested the following hypothesis: synergistic groups of microorganisms immobilize heavy elements more efficiently than do individual species. We focused on groundwater at several DOE FRC and their microbial

  8. Extraction process for removing metallic impurities from alkalide metals

    DOE Patents [OSTI]

    Royer, L.T.

    1987-03-20

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  9. Sensing mode atomic force microscope

    DOE Patents [OSTI]

    Hough, Paul V. C.; Wang, Chengpu

    2006-08-22

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  10. Mexico: swapping crude for atoms

    SciTech Connect (OSTI)

    Navarro, B.

    1982-06-24

    Mexico, considered the Saudi Arabia of the Western Hemisphere because of its proven and potential petroleum reserves, has surprised the world: it has embarked on the biggest nuclear-electric program in the Third World, only to postpone it days before scheduled approval of an international bidding (on which the atomic energy industry had pinned its hopes). A graph shows Mexican supplies of electricity by source with official projections to 1990. The point of entrance of the first nuclear reactor, originally scheduled for 1982, won't come onstream until 1983; and how nuclear-generated electricity grows close to 5% of the total in 1990. The big question is, will the future President of Mexico give the green light to the atomic megaproject. And if he does, how will Mexico deal with the serious logistics problems and grave ecological implications confronting the industry worldwide. In this issue, the author and Energy Detente touch on these questions and review the nuclear power status of Mexico, as well as addressing some of its global problems. Also presented in this issue is an update of the fuel price/tax series for the Western Hemisphere countries.

  11. Sensing mode atomic force microscope

    DOE Patents [OSTI]

    Hough, Paul V.; Wang, Chengpu

    2004-11-16

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  12. Atom-at-a-time radiochemical separations of the heaviest elements: Lawrencium chemistry

    SciTech Connect (OSTI)

    Hoffman, D.C.; Henderson, R.A.; Gregorich, K.E.; Bennett, D.A.; Chasteler, R.M.; Gannett, C.M.; Hall, H.L.; Lee, D.M.; Nurmia, M.J.; Silva, R.J.

    1987-04-01

    The isotope /sup 260/Lr produced in reactions of /sup 18/O with /sup 249/Bk was used to perform chemical experiments on lawrencium to learn more about its chemical properties. These experiments involved extractions with thenoyl trifluoroacetate (TTA), ammonium alpha-hydroxyisobutyrate (HIB) elution from a cation exchange resin column, and reverse-phase chromatography using hydrogen di(2-ethylhexyl)orthophosphoric acid (HDEHP) to investigate the chemical properties of Lr. The results from the HIB elutions also give information about the ionic radius of Lr(III) which was found to elute very close to Er. An attempt to reduce Lr(III) was also made.

  13. METHOD OF RECOVERING TRANSURANIC ELEMENTS OF AN ATOMIC NUMBER BELOW 95

    DOE Patents [OSTI]

    Seaborg, G.T.; James, R.A.

    1959-12-15

    The concentration of neptanium or plutonium by two carrier precipitation steps with identical carriers but using (after dissolution of the first carrier in nitric acid) a reduced quantity of carrier for the second precipitation is discussed. Carriers suitable are uranium(IV) hypophosphate, uranium(IV) pyrophosphate, uranium(IV) oxalate, thorium oxalate, thorium citrate, thorium tartrate, thorium sulfide, and uranium(IV) sulfide.

  14. Molecular dynamics simulation for arrangement of nickel atoms filled in carbon nanotubes

    SciTech Connect (OSTI)

    Bai, Liu Zhenyu, Zhao; Lirui, Liu

    2014-08-28

    Carbon Nanotubes (CNTs) filled with metals can be used in capacitors, sensors, rechargeable batteries, and so on. Atomic arrangement of the metals has an important role in the function of the composites. The tips of CNTs were opened, and then nickel was filled by means of hydrothermal oxidation/ultrasonic vibration method. The tests of TEM, HREM, and EDX (energy-dispersive X-ray spectroscopy) analysis showed that Ni was filled in CNTs successfully. The atomic arrangement of nickel filled into single wall carbon nanotubes was investigated by molecular dynamics simulation. The radial distribution function and bond orientation order were established to analyze the atomic arrangement of nickel filled in carbon nanotubes during the cooling process. The results show that nickel atoms became in order gradually and preferably crystallized on the inner wall of carbon nanotubes when the temperature decreased from 1600?K. After it cooled to 100?K, the arrangement of nickel atoms in outermost circle was regular and dense, but there were many defects far from the wall of CNTs. According to the calculation of bond orientation order parameters Q{sub 6} and its visualization, the structure of nickel is Face-centered cube (f.c.c). (1,1,1){sub Ni} was close on the inner surface of carbon nanotubes. Radial direction of CNTs was [1,1,1] crystal orientation. Axial direction of CNTs, namely, filling direction, was [1{sup }, 1{sup },2] crystal orientation.

  15. Hydrogen-induced atomic rearrangement in MgPd{sub 3}

    SciTech Connect (OSTI)

    Kohlmann, H. . E-mail: h.kohlmann@mx.uni-saarland.de; Renaudin, G.; Yvon, K.; Wannek, C.; Harbrecht, B.

    2005-04-15

    The hydrogenation behavior of MgPd{sub 3} has been studied by in situ X-ray powder diffraction and by neutron powder diffraction. At room temperature and p {approx}500kPa hydrogen pressure its structure is capable of incorporating up to one hydrogen atom per formula unit ({alpha}-MgPd{sub 3}H{sub {approx}}{sub 1}), thereby retaining a tetragonal ZrAl{sub 3}-type metal atom arrangement. Upon heating to 750K in a hydrogen atmosphere of 610kPa it transforms into a cubic modification with AuCu{sub 3}-type metal atom arrangement ({beta}-MgPd{sub 3}H{sub {approx}}{sub 0.7}). Neutron diffraction on the deuteride reveals an anion deficient anti-perovskite-type structure ({beta}-MgPd{sub 3}D{sub 0.67}, a=398.200(7)pm) in which octahedral sites surrounded exclusively by palladium atoms are occupied by deuterium. Complete removal of hydrogen (480K, 1Pa) stabilizes a new binary modification ({beta}-MgPd{sub 3}, a=391.78(2)pm) crystallizing with a primitive cubic AuCu{sub 3}-type structure. Mechanical treatment (grinding) transforms both {alpha} and {beta} modifications of MgPd{sub 3} into a cubic face-centered solid solution Mg{sub 0.25}Pd{sub 0.75} showing a random distribution of magnesium and palladium atoms.

  16. First principles study of metal contacts to monolayer black phosphorous

    SciTech Connect (OSTI)

    Chanana, Anuja; Mahapatra, Santanu

    2014-11-28

    Atomically thin layered black phosphorous (BP) has recently appeared as an alternative to the transitional metal dichalcogenides for future channel material in a metal-oxide-semiconductor transistor due to its lower carrier effective mass. Investigation of the electronic property of source/drain contact involving metal and two-dimensional material is essential as it impacts the transistor performance. In this paper, we perform a systematic and rigorous study to evaluate the Ohmic nature of the side-contact formed by the monolayer BP (mBP) and metals (gold, titanium, and palladium), which are commonly used in experiments. Employing the Density Functional Theory, we analyse the potential barrier, charge transfer and atomic orbital overlap at the metal-mBP interface in an optimized structure to understand how efficiently carriers could be injected from metal contact to the mBP channel. Our analysis shows that gold forms a Schottky contact with a higher tunnel barrier at the interface in comparison to the titanium and palladium. mBP contact with palladium is found to be purely Ohmic, where as titanium contact demonstrates an intermediate behaviour.

  17. Plasma Sprayed Pour Tubes and Other Melt Handling Components for Use in Gas Atomization

    SciTech Connect (OSTI)

    Byrd, David; Rieken, Joel; Heidloff, Andy; Besser, Matthew; Anderson, Iver

    2011-04-01

    Ames Laboratory has successfully used plasma sprayed ceramic components made from yttria stabilized zirconia as melt pouring tubes for gas atomization for many years. These tubes have proven to be strong, thermal shock resistant and versatile. Various configurations are possible both internally and externally. Accurate dimensions are achieved internally with a machined fugitive graphite mandrel and externally by diamond grinding. The previous study of the effect of spray parameters on density was extended to determine the effect of the resulting density on the thermal shock characteristics on down-quenching and up-quenching. Encouraging results also prompted investigation of the use of plasma spraying as a method to construct a melt pour exit stopper that is mechanically robust, thermal shock resistant, and not susceptible to attack by reactive melt additions. The Ames Laboratory operates two close-coupled high pressure gas atomizers. These two atomizers are designed to produce fine and coarse spherical metal powders (5{mu} to 500{mu} diameter) of many different metals and alloys. The systems vary in size, but generally the smaller atomizer can produce up to 5 kg of powder whereas the larger can produce up to 25 kg depending on the charge form and density. In order to make powders of such varying compositions, it is necessary to have melt systems capable of heating and containing the liquid charge to the desired superheat temperature prior to pouring through the atomization nozzle. For some metals and alloys this is not a problem; however for some more reactive and/or high melting materials this can pose unique challenges. Figure 1 is a schematic that illustrates the atomization system and its components.

  18. Forming metal-intermetallic or metal-ceramic composites by self-propagating high-temperature reactions

    DOE Patents [OSTI]

    Rawers, James C. (Albany Research Center, Bureau of Mines, Department of the Interior, 1450, Albany, OR 97321); Alman, David E. (Albany Research Center, Bureau of Mines, Department of the Interior, 1450, Albany, OR 97321); Petty, Jr., Arthur V. (Albany Research Center, Bureau of Mines, Department of the Interior, 1450, Albany, OR 97321)

    1996-01-01

    Industrial applications of composites often require that the final product have a complex shape. In this invention intermetallic or ceramic phases are formed from sheets of unreacted elemental metals. The process described in this invention allows the final product shape be formed prior to the formation of the composite. This saves energy and allows formation of shaped articles of metal-intermetallic composites composed of brittle materials that cannot be deformed without breaking.

  19. Method for detecting an element

    DOE Patents [OSTI]

    Blackwood, Larry G.; Reber, Edward L.; Rohde, Kenneth W.

    2007-02-06

    A method for detecting an element is disclosed and which includes the steps of providing a gamma-ray spectrum which depicts, at least in part, a test region having boundaries, and which has a small amount of the element to be detected; providing a calculation which detects the small amount of the element to be detected; and providing a moving window and performing the calculation within the moving window, and over a range of possible window boundaries within the test region to determine the location of the optimal test region within the gamma-ray spectrum.

  20. Atomic and molecular layer deposition for surface modification

    SciTech Connect (OSTI)

    Vh-Nissi, Mika; Sievnen, Jenni; Salo, Erkki; Heikkil, Pirjo; Kentt, Eija; Johansson, Leena-Sisko; Koskinen, Jorma T.; Harlin, Ali

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gassolid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin even non-uniform atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: ALD/MLD can be used to adjust surface characteristics of films and fiber materials. Hydrophobicity after few deposition cycles of Al{sub 2}O{sub 3} due to e.g. complex formation. Same effect on cellulosic fabrics observed with low temperature deposited TiO{sub 2}. Different film growth and oxidation potential with different precursors. Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt.