Powered by Deep Web Technologies
Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Metal-air low temperature ionic liquid cell  

DOE Patents [OSTI]

The present application relates to an electrochemical metal-air cell in which a low temperature ionic liquid is used.

Friesen, Cody A; Buttry, Daniel A

2014-11-25T23:59:59.000Z

2

Metal-air cell comprising an electrolyte with a room temperature ionic liquid and hygroscopic additive  

DOE Patents [OSTI]

An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.

Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek

2014-08-19T23:59:59.000Z

3

Metal-Air Electric Vehicle Battery: Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage – Metal-Air Ionic Liquid (MAIL) Batteries  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: ASU is developing a new class of metal-air batteries. Metal-air batteries are promising for future generations of EVs because they use oxygen from the air as one of the battery’s main reactants, reducing the weight of the battery and freeing up more space to devote to energy storage than Li-Ion batteries. ASU technology uses Zinc as the active metal in the battery because it is more abundant and affordable than imported lithium. Metal-air batteries have long been considered impractical for EV applications because the water-based electrolytes inside would decompose the battery interior after just a few uses. Overcoming this traditional limitation, ASU’s new battery system could be both cheaper and safer than today’s Li-Ion batteries, store from 4-5 times more energy, and be recharged over 2,500 times.

None

2009-12-21T23:59:59.000Z

4

Synthesis of ionic liquids  

DOE Patents [OSTI]

Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

2008-09-09T23:59:59.000Z

5

Ionic Liquid Pretreatment Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan KalinResearch,IntroducingIonic Liquid Pretreatment EERE

6

Hydrophobic ionic liquids  

DOE Patents [OSTI]

Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, and R.sub.6 are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F--, Cl--, CF.sub.3 --, SF.sub.5 --, CF.sub.3 S--, (CF.sub.3).sub.2 CHS-- or (CF.sub.3).sub.3 CS--; and X.sup.- is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 .ANG..sup.3.

Koch, Victor R. (Lincoln, MA); Nanjundiah, Chenniah (Lynn, MA); Carlin, Richard T. (Nashua, NH)

1998-01-01T23:59:59.000Z

7

Hydrophobic ionic liquids  

DOE Patents [OSTI]

Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas shown in a diagram wherein R{sub 1}, R{sub 2}, R{sub 3}, R{sub 4}, R{sub 5}, and R{sub 6} are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F-, Cl-, CF{sub 3}-, SF{sub 5}-, CF{sub 3}S-, (CF{sub 3}){sub 2}CHS- or (CF{sub 3}){sub 3}CS-; and X{sup {minus}} is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 {angstrom}{sup 3}. 4 figs.

Koch, V.R.; Nanjundiah, C.; Carlin, R.T.

1998-10-27T23:59:59.000Z

8

Ionic Liquids for Utilization of Geothermal Energy  

Broader source: Energy.gov [DOE]

DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to develop ionic liquids for two geothermal energy related applications.

9

Nanoparticle enhanced ionic liquid heat transfer fluids  

DOE Patents [OSTI]

A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

2014-08-12T23:59:59.000Z

10

Early Events in Ionic Liquid Radiation Chemistry  

SciTech Connect (OSTI)

Ionic liquids are interesting and useful materials whose solvation time scales are up to thousands of times longer than in conventional solvents. The extended lifetimes of pre-solvated electrons and other energetic species in ionic liquids has profound consequences for the radiolytic product distributions and reactivity patterns. We use a newly developed, multiplexed variation of pulse-probe spectroscopy to measure the kinetics of the early dynamical and reactive events in ionic liquids.

Wishart, J.F.; Cook, A.; Rimmer, R.D.; Gohdo, M.

2010-09-14T23:59:59.000Z

11

Ionic Liquid Pretreatment Process for Biomass Is Successfully...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ionic Liquid Pretreatment Process for Biomass Is Successfully Implemented at Larger Scale Ionic Liquid Pretreatment Process for Biomass Is Successfully Implemented at Larger Scale...

12

New lithium-based ionic liquid electrolytes that resist salt...  

Energy Savers [EERE]

lithium-based ionic liquid electrolytes that resist salt concentration polarization New lithium-based ionic liquid electrolytes that resist salt concentration polarization...

13

Elucidating graphene - Ionic Liquid interfacial region: a combined...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

graphene - Ionic Liquid interfacial region: a combined experimental and computational study. Elucidating graphene - Ionic Liquid interfacial region: a combined experimental and...

14

Phosphonium-based ionic liquids and uses  

DOE Patents [OSTI]

Phosphonium-based room temperature ionic liquids ("RTILs") were prepared. They were used as matrices for Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry and also for preparing samples of dyes for analysis.

Del Sesto, Rico E; Koppisch, Andrew T; Lovejoy, Katherine S; Purdy, Geraldine M

2014-12-30T23:59:59.000Z

15

Superbase-derived protic ionic liquids  

DOE Patents [OSTI]

Protic ionic liquids having a composition of formula (A.sup.-)(BH.sup.+) wherein A.sup.- is a conjugate base of an acid HA, and BH.sup.+ is a conjugate acid of a superbase B. In particular embodiments, BH.sup.+ is selected from phosphazenium species and guanidinium species encompassed, respectively, by the general formulas: ##STR00001## The invention is also directed to films and membranes containing these protic ionic liquids, with particular application as proton exchange membranes for fuel cells.

Dai, Sheng; Luo, Huimin; Baker, Gary A.

2013-09-03T23:59:59.000Z

16

TETRAALKYLPHOSPHONIUM POLYOXOMETALATES AS NOVEL IONIC LIQUIDS.  

SciTech Connect (OSTI)

The pairing of a Lindqvist or Keggin polyoxometalate (POM) anion with an appropriate tetraalkylphosphonium cation, [R{sub 3}R{prime}P]{sup +}, has been shown to yield an original family of ionic liquids (POM-ILs), among them salts liquid at or near ambient temperature. The physicochemical properties of several such 'inorganic liquids', in particular their thermal properties, suggests the possible application of these compounds as robust, thermally-stable solvents for liquid-liquid extraction. A preliminary evaluation of the potential of POM-ILs in this application is presented.

DIETZ,M.L.; RICKERT, P.G.; ANTONIO, M.R.; FIRESTONE, M.A.; WISHART, J.F.; SZREDER, T.

2007-11-30T23:59:59.000Z

17

Acetonitrile Drastically Boosts Conductivity of Ionic Liquids  

E-Print Network [OSTI]

We apply a new methodology in the force field generation (PCCP 2011, 13, 7910) to study the binary mixtures of five imidazolium-based room-temperature ionic liquids (RTILs) with acetonitrile (ACN). The investigated RTILs are composed of tetrafluoroborate (BF4) anion and dialkylimidazolium cations, where one of the alkyl groups is methyl for all RTILs, and the other group is different for each RTILs, being ethyl (EMIM), butyl (BMIM), hexyl (HMIM), octyl (OMIM), and decyl (DMIM). Specific densities, radial distribution functions, ionic cluster distributions, heats of vaporization, diffusion constants, shear viscosities, ionic conductivities, and their correlations are discussed. Upon addition of ACN, the ionic conductivity of RTILs is found to increase by more than 50 times, that significantly exceeds an impact of most known solvents. Remarkably, the sharpest conductivity growth is found for the long-tailed imidazolium-based cations. This new fact motivates to revisit an application of these binary systems as a...

Chaban, Vitaly V; Kalugin, Oleg N; Prezhdo, Oleg V

2012-01-01T23:59:59.000Z

18

1,2,3-triazolium ionic liquids  

DOE Patents [OSTI]

The present invention relates to compositions of matter that are ionic liquids, the compositions comprising substituted 1,2,3-triazolium cations combined with any anion. Compositions of the invention should be useful in the separation of gases and, perhaps, as catalysts for many reactions.

Luebke, David; Nulwala, Hunaid; Tang, Chau

2014-12-09T23:59:59.000Z

19

Metal-Air Batteries  

SciTech Connect (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

20

Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries....

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Use of ionic liquids as coordination ligands for organometallic catalysts  

DOE Patents [OSTI]

Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

Li, Zaiwei (Moreno Valley, CA); Tang, Yongchun (Walnut, CA); Cheng; Jihong (Arcadia, CA)

2009-11-10T23:59:59.000Z

22

Compositions and methods useful for ionic liquid treatment of biomass  

SciTech Connect (OSTI)

The present invention provides for novel compositions and methods for recycling or recovering ionic liquid used in IL pretreated cellulose and/or lignocellulosic biomass (LBM).

Dibble, Dean C.; Cheng, Aurelia; George, Anthe

2014-07-29T23:59:59.000Z

23

Ionic Liquids as Novel Engine Lubricants or Lubricant Additives...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Additives Ionic Liquids as Novel Engine Lubricants or Lubricant Additives Bench test results showed that compared with fully-formulated engine oils, selected low-viscosity...

24

Lipid extraction from microalgae using a single ionic liquid  

DOE Patents [OSTI]

A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.

Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

2013-05-28T23:59:59.000Z

25

Aprotic Heterocyclic Anion Triazolide Ionic Liquids - A New Class of Ionic Liquid Anion Accessed by the Huisgen Cycloaddition Reaction  

SciTech Connect (OSTI)

The triazole core is a highly versatile heterocyclic ring which can be accessed easily with the Cu(I)-catalyzed Huisgen cycloaddition reaction. Herein we present the preparation of ionic liquids that incorporate a 1,2,3-triazolide anion. These ionic liquids were prepared by a facile procedure utilizing a base-labile pivaloylmethyl group at the 1-position, which can act as precursors to 1H- 4-substituted 1,2,3-triazole. These triazoles were then subsequently converted into ionic liquids after deprotonation using an appropriate ionic liquid cation hydroxide. The densities and thermal decompositions of these ionic liquids were measured. These novel ionic liquids have potential applications in gas separations and in metal-free catalysis.

Thompson, Robert L.; Damodaran, Krishnan; Luebke, David; Nulwala, Hunaid

2013-06-01T23:59:59.000Z

26

Durable electrooptic devices comprising ionic liquids  

DOE Patents [OSTI]

Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF3SO3-), bis(trifluoromethylsulfonyl)imide ((CF3SO2)2N-), bis(perfluoroethylsulfonyl)imide ((CF3CF2SO2)2N-) and tris(trifluoromethylsulfonyl)methide ((CF3SO2)3C-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

Agrawal, Anoop (Tucson, AZ); Cronin, John P. (Tucson, AZ); Tonazzi, Juan C. L. (Tucson, AZ); Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM); Burrell, Anthony K. (Los Alamos, NM)

2005-11-01T23:59:59.000Z

27

Ionic liquid ion source emitter arrays fabricated on bulk porous substrates for spacecraft propulsion  

E-Print Network [OSTI]

Ionic Liquid Ion Sources (ILIS) are a subset of electrospray capable of producing bipolar beams of pure ions from ionic liquids. Ionic liquids are room temperature molten salts, characterized by negligible vapor pressures, ...

Courtney, Daniel George

2011-01-01T23:59:59.000Z

28

Durable Electrooptic Devices Comprising Ionic Liquids  

DOE Patents [OSTI]

Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

Burrell, Anthony K. (Los Alamos, NM); Agrawal, Anoop (Tucson, AZ); Cronin, John P. (Tucson, AZ); Tonazzi, Juan C. L. (Tucson, AZ); Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM)

2008-11-11T23:59:59.000Z

29

Durable electrooptic devices comprising ionic liquids  

DOE Patents [OSTI]

Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM); Burrell, Anthony K. (Los Alamos, NM)

2006-10-10T23:59:59.000Z

30

Durable electrooptic devices comprising ionic liquids  

DOE Patents [OSTI]

Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

Burrell, Anthony K. (Los Alamos, NM); Agrawal, Anoop (Tucson, AZ); Cronin; John P. (Tucson, AZ); Tonazzi, Juan C. L. (Tucson, AZ); Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM)

2009-12-15T23:59:59.000Z

31

Modeling Liquid-Liquid Equilibrium of Ionic Liquid Systems with NRTL, Electrolyte-NRTL, and UNIQUAC  

E-Print Network [OSTI]

Modeling Liquid-Liquid Equilibrium of Ionic Liquid Systems with NRTL, Electrolyte-NRTL, and UNIQUAC different excess Gibbs free energy models are evaluated: the NRTL, UNIQUAC and electrolyte- NRTL (eNRTL) models. In the case of eNRTL, a new formulation of the model is used, based on a symmetric reference

Stadtherr, Mark A.

32

Soft ionization of thermally evaporated hypergolic ionic liquid aerosols  

SciTech Connect (OSTI)

Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1- Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center (NSRRC); Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; L.Vaghjiani, Ghanshyam; Leone, Stephen R.

2012-03-16T23:59:59.000Z

33

Kinetics and Solvent Effects in the Synthesis of Ionic Liquids  

E-Print Network [OSTI]

in diesel fuel 19 and extractants in the recovery of ethanol and butanol for biofuel applications. 20 1.1. IL Background ILs have shown versatility in many fields of research and applications, so the question is what are ILs, and what makes ILs so... with ionic liquids. Chem. Commun. 2001, 2494-2495. 20. Fadeev, A. G.; Meagher, M. M., Opportunities for ionic liquids in recovery of biofuels. Chem. Commun. 2001, 295-296. 21. Lancaster, L., Organic reactivity in ionic liquids: some mechanistic insights...

Schleicher, Jay C.

2007-12-12T23:59:59.000Z

34

Phase-Changing Ionic Liquids: CO2 Capture with Ionic Liquids Involving Phase Change  

SciTech Connect (OSTI)

IMPACCT Project: Notre Dame is developing a new CO2 capture process that uses special ionic liquids (ILs) to remove CO2 from the gas exhaust of coal-fired power plants. ILs are salts that are normally liquid at room temperature, but Notre Dame has discovered a new class of ILs that are solid at room temperature and change to liquid when they bind to CO2. Upon heating, the CO2 is released for storage, and the ILs re-solidify and donate some of the heat generated in the process to facilitate further CO2 release. These new ILs can reduce the energy required to capture CO2 from the exhaust stream of a coal-fired power plant when compared to state-ofthe- art technology.

None

2010-07-01T23:59:59.000Z

35

Tribological Properties of Ionic Liquids Lubricants Containing Nanoparticles  

E-Print Network [OSTI]

Recently, there has been an increase in research in the application of ionic liquids containing nanoparticles as lubricants due to their properties such as thermally stability, non-volatility and non-flammability. The purpose of this thesis...

Lu, Wei

2014-05-14T23:59:59.000Z

36

Molecular Dynamics Modeling of Ionic Liquids in Electrospray Propulsion  

E-Print Network [OSTI]

. Lozano June 2010 SSL # 6-10 #12;#12;Molecular Dynamics Modeling of Ionic Liquids in Electrospray Propulsion Nanako Takahashi, Paulo C. Lozano June 2010 SSL # 6-10 This work is based on the unaltered text

37

Shear and Extensional Rheology of Cellulose/Ionic Liquid Solutions  

E-Print Network [OSTI]

In this study, we characterize the shear and extensional rheology of dilute to semidilute solutions of cellulose in the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIAc). In steady shear flow, the semidilute solutions ...

Haward, Simon J.

38

The radiation chemistry of ionic liquids: a review  

SciTech Connect (OSTI)

Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based upon a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquid radiation chemistry literature as it affects separations, with these considerations in mind.

Bruce J. Mincher; James F. Wishart

2014-07-01T23:59:59.000Z

39

Membrane contactor assisted extraction/reaction process employing ionic liquids  

DOE Patents [OSTI]

The present invention relates to a functionalized membrane contactor extraction/reaction system and method for extracting target species from multi-phase solutions utilizing ionic liquids. One preferred embodiment of the invented method and system relates to an extraction/reaction system wherein the ionic liquid extraction solutions act as both extraction solutions and reaction mediums, and allow simultaneous separation/reactions not possible with prior art technology.

Lin, Yupo J. (Naperville, IL); Snyder, Seth W. (Lincolnwood, IL)

2012-02-07T23:59:59.000Z

40

Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction  

DOE Patents [OSTI]

The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

2012-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

FLUIDIC: Metal Air Recharged  

ScienceCinema (OSTI)

Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

Friesen, Cody

2014-04-02T23:59:59.000Z

42

FLUIDIC: Metal Air Recharged  

SciTech Connect (OSTI)

Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

Friesen, Cody

2014-03-07T23:59:59.000Z

43

Methods for separating medical isotopes using ionic liquids  

SciTech Connect (OSTI)

A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).

Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng

2014-10-21T23:59:59.000Z

44

Energy Efficient Electrochromic Windows Incorporating Ionic Liquids  

SciTech Connect (OSTI)

One approach to increasing the energy efficiency of windows is to control the amount of solar radiation transmitted through a window by using electrochromic technology. What is unique about this project is that the electrochromic is based on the reduction/oxidation reactions of cathodic and anodic organic semi-conducting polymers using room temperature ionic liquids as ion transport electrolytes. It is believed that these types of coatings would be a lower cost alternative to traditional all inorganic thin film based electrochromic technologies. Although there are patents1 based on the proposed technology, it has never been reduced to practice and thoroughly evaluated (i.e. durability and performance) in a window application. We demonstrate that by using organic semi-conductive polymers, specific bands of the solar spectrum (specifically visible and near infrared) can be targeted for electrochemical variable transmittance responsiveness. In addition, when the technology is incorporated into an insulating glass unit, the energy parameters such as the solar heat gain coefficient and the light to solar gain ratio are improved over that of a typical insulating glass unit comprised of glass with a low emissivity coating. A minimum of {approx}0.02 quads of energy savings per year with a reduction of carbon emissions for electricity of {approx}320 MKg/yr benefit is achieved over that of a typical insulating glass unit including a double silver low-E coating. Note that these values include a penalty in the heating season. If this penalty is removed (i.e. in southern climates or commercial structures where cooling is predominate year-round) a maximum energy savings of {approx}0.05 quad per year and {approx}801 MKg/yr can be achieved over that of a typical insulating glass unit including a double silver low-E coating. In its current state, the technology is not durable enough for an exterior window application. The primary downfall is that the redox chemistry fails to recover to a bleached state upon exposure to heat and solar radiation while being cycled over time from the bleached to the dark state. Most likely the polymers are undergoing degradation reactions which are accelerated by heat and solar exposure while in either the reduced or oxidized states and the performance of the polymers is greatly reduced over time. For this technology to succeed in an exterior window application, there needs to be more work done to understand the degradation of the polymers under real-life application conditions such as elevated temperatures and solar exposure so that recommendations for improvements in to the overall system can be made. This will be the key to utilizing this type of technology in any future real-life applications.

Cheri Boykin; James Finley; Donald Anthony; Julianna Knowles; Richard Markovic; Michael Buchanan; Mary Ann Fuhry; Lisa Perrine

2008-11-30T23:59:59.000Z

45

Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids  

SciTech Connect (OSTI)

The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer coefficient (0.40). Nucleation phenomena involved in aluminum deposition on copper in AlCl3-BMIMCl electrolyte was found to be instantaneous followed by diffusion controlled three-dimensional growth of nuclei. Diffusion coefficient (Do) of the electroactive species Al2Cl7¯ ion was in the range from 6.5 to 3.9×10–7 cm2?s–1 at a temperature of 30°C. Relatively little research efforts have been made toward the fundamental understanding and modeling of the species transport and transformation information involved in ionic liquid mixtures, which eventually could lead to quantification of electrochemical properties. Except that experimental work in this aspect usually is time consuming and expensive, certain characteristics of ionic liquids also made barriers for such analyses. Low vapor pressure and high viscosity make them not suitable for atomic absorption spectroscopic measurement. In addition, aluminum electrodeposition in ionic liquid electrolytes are considered to be governed by multi-component mass, heat and charge transport in laminar and turbulent flows that are often multi-phase due to the gas evolution at the electrodes. The kinetics of the electrochemical reactions is in general complex. Furthermore, the mass transfer boundary layer is about one order of magnitude smaller than the thermal and hydrodynamic boundary layer (Re=10,000). Other phenomena that frequently occur are side reactions and temperature or concentration driven natural convection. As a result of this complexity, quantitative knowledge of the local parameters (current densities, ion concentrations, electrical potential, temperature, etc.) is very difficult to obtain. This situation is a serious obstacle for improving the quality of products, efficiency of manufacturing and energy consumption. The gap between laboratory/batch scale processing with global process control and nanoscale deposit surface and materials specifications needs to be bridged. A breakthrough can only be realized if on each scale the occurring phenomena are understood and quantified. Multiscale numerical modeling nevertheless can help t

Dr. R. G. Reddy

2007-09-01T23:59:59.000Z

46

Sum frequency generation study on the orientation of room-temperature ionic liquid at the grapheneionic liquid interface  

E-Print Network [OSTI]

such as dye-sensitized solar cells and super capacitors, room-temperature ionic liquids are considered

Bao, Jiming

47

Charge Transport and Glassy Dynamics in Ionic Liquids  

SciTech Connect (OSTI)

Ionic liquids (ILs) exhibit unique features such as low melting points, low vapor pressures, wide liquidus temperature ranges, high thermal stability, high ionic conductivity, and wide electrochemical windows. As a result, they show promise for use in variety of applications: as reaction media, in batteries and supercapacitors, in solar and fuel cells, for electrochemical deposition of metals and semiconductors, for protein extraction and crystallization, and many others. Because of the ease with which they can be supercooled, ionic liquids offer new opportunities to investigate long-standing questions regarding the nature of the dynamic glass transition and its possible link to charge transport. Despite the significant steps achieved from experimental and theoretical studies, no generally accepted quantitative theory of dynamic glass transition to date has been capable of reproducing all the experimentally observed features. In this Account, we discuss recent studies of the interplay between charge transport and glassy dynamics in ionic liquids as investigated by a combination of several experimental techniques including broadband dielectric spectroscopy, pulsed field gradient nuclear magnetic resonance, dynamic mechanical spectroscopy, and differential scanning calorimetry. Based on EinsteinSmoluchowski relations, we use dielectric spectra of ionic liquids to determine diffusion coefficients in quantitative agreement with independent pulsed field gradient nuclear magnetic resonance measurements, but spanning a broader range of more than 10 orders of magnitude. This approach provides a novel opportunity to determine the electrical mobility and effective number density of charge carriers as well as their types of thermal activation from the measured dc conductivity separately. We also unravel the origin of the remarkable universality of charge transport in different classes of glass-forming ionic liquids.

Sangoro, Joshua R [ORNL; Kremer, Friedrich [University of Leipzig

2012-01-01T23:59:59.000Z

48

Characterization of an iodine-based ionic liquid ion source and studies on ion fragmentation  

E-Print Network [OSTI]

Electrosprays are a well studied source of charged droplets and ions. A specific subclass is the ionic liquid ion source (ILIS), which produce ion beams from the electrostatically stressed meniscus of ionic liquids. ILIS ...

Fedkiw, Timothy Peter

2010-01-01T23:59:59.000Z

49

Growth of flower-like CdSe dendrites from a Brnsted acidbase ionic liquid precursor{  

E-Print Network [OSTI]

solution of water, ethanol and ionic liquid based on formic acid and N,N-dimethylformamide. Experimental, ethanol, an ionic liquid based on formic acid and N,N-dimethylformamide, cadmium chloride and sel

Utrecht, Universiteit

50

Fabrication of fiber supported ionic liquids and methods of use  

DOE Patents [OSTI]

One or more embodiments relates to the production of a fabricated fiber having an asymmetric polymer network and having an immobilized liquid such as an ionic liquid within the pores of the polymer network. The process produces the fabricated fiber in a dry-wet spinning process using a homogenous dope solution, providing significant advantage over current fabrication methods for liquid-supporting polymers. The fabricated fibers may be effectively utilized for the separation of a chemical species from a mixture based on the selection of the polymer, the liquid, and the solvent utilized in the dope.

Luebke, David R; Wickramanayake, Shan

2013-02-26T23:59:59.000Z

51

High performance ultracapacitors with carbon nanomaterials and ionic liquids  

DOE Patents [OSTI]

The present invention is directed to the use of carbon nanotubes and/or electrolyte structures in various electrochemical devices, such as ultracapacitors having an ionic liquid electrolyte. The carbon nanotubes are preferably aligned carbon nanotubes. Compared to randomly entangled carbon nanotubes, aligned carbon nanotubes can have better defined pore structures and higher specific surface areas.

Lu, Wen; Henry, Kent Douglas

2012-10-09T23:59:59.000Z

52

Method for synthesis of titanium dioxide nanotubes using ionic liquids  

SciTech Connect (OSTI)

The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

Qu, Jun; Luo, Huimin; Dai, Sheng

2013-11-19T23:59:59.000Z

53

High performance batteries with carbon nanomaterials and ionic liquids  

DOE Patents [OSTI]

The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

Lu, Wen (Littleton, CO)

2012-08-07T23:59:59.000Z

54

Importance of glassy fragility for energy applications of ionic liquids  

E-Print Network [OSTI]

Ionic liquids (ILs) are salts that are liquid close to room temperature. Their possible applications are numerous, e.g., as solvents for green chemistry in various electrochemical devices, and even for such "exotic" purposes as spinning-liquid mirrors for lunar telescopes. Here we concentrate on their use for new advancements in energy-storage and -conversion devices: Batteries, supercapacitors or fuel cells using ILs as electrolytes could be important building blocks for the sustainable energy supply of tomorrow. Interestingly, ILs show glassy freezing and the universal, but until now only poorly understood dynamic properties of glassy matter, dominate many of their physical properties. We show that the conductivity of ILs, an essential figure of merit for any electrochemical application, depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility.

P. Sippel; P. Lunkenheimer; S. Krohns; E. Thoms; A. Loidl

2015-02-24T23:59:59.000Z

55

Carbon films produced from ionic liquid carbon precursors  

DOE Patents [OSTI]

The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

Dai, Sheng; Luo, Huimin; Lee, Je Seung

2013-11-05T23:59:59.000Z

56

Extraordinarily Efficient Conduction in a Redox-Active Ionic Liquid  

E-Print Network [OSTI]

Iodine added to iodide-based ionic liquids leads to extraordinarily efficient charge transport, vastly exceeding that expected for such viscous systems. Using terahertz time-domain spectroscopy, in conjunction with dc conductivity, diffusivity and viscosity measurements we unravel the conductivity pathways in 1-methyl-3-propylimidazolium iodide melts. This study presents evidence of the Grotthuss mechanism as a significant contributor to the conductivity, and provides new insights into ion pairing processes as well as the formation of polyiodides. The terahertz and transport results are reunited in a model providing a quantitative description of the conduction by physical diffusion and the Grotthuss bond-exchange process. These novel results are important for the fundamental understanding of conduction in molten salts and for applications where ionic liquids are used as charge-transporting media such as in batteries and dye-sensitized solar cells.

Verner K. Thorsmølle; Guido Rothenberger; Daniel Topgaard; Jan C. Brauer; Dai-Bin Kuang; Shaik M. Zakeeruddin; Björn Lindman; Michael Grätzel; Jacques-E. Moser

2010-11-09T23:59:59.000Z

57

Ionic liquids for separation of olefin-paraffin mixtures  

DOE Patents [OSTI]

The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

2013-09-17T23:59:59.000Z

58

Ionic liquids for separation of olefin-paraffin mixtures  

DOE Patents [OSTI]

The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

2014-07-15T23:59:59.000Z

59

Reactions of Lignin Model Compounds in Ionic Liquids  

SciTech Connect (OSTI)

Lignin, a readily available form of biomass, awaits novel chemistry for converting it to valuable aromatic chemicals. Recent work has demonstrated that ionic liquids are excellent solvents for processing woody biomass and lignin. Seeking to exploit ionic liquids as media for depolymerization of lignin, we investigated reactions of lignin model compounds in these solvents. Using Brønsted acid catalysts in 1-ethyl-3-methylimidazolium triflate at moderate temperatures, we obtained up to 11.6% yield of the dealkylation product guaiacol from the model compound eugenol and cleaved phenethyl phenyl ether, a model for lignin ethers. Despite these successes, acid catalysis failed in dealkylation of the unsaturated model compound 4-ethylguaiacol and did not produce monomeric products from organosolv lignin, demonstrating that further work is required to understand the complex chemistry of lignin depolymerization.

Holladay, John E.; Binder, Joseph B.; Gray, Michel J.; White, James F.; Zhang, Z. Conrad

2009-09-15T23:59:59.000Z

60

MINOR ACTINIDE SEPARATIONS USING ION EXCHANGERS OR IONIC LIQUIDS  

SciTech Connect (OSTI)

This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

Hobbs, D.; Visser, A.; Bridges, N.

2011-09-20T23:59:59.000Z

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The use of ionic liquid ion sources (ILIS) in FIB applications  

E-Print Network [OSTI]

A new monoenergetic, high-brightness ion source can be constructed using an arrangement similar to liquid metal ion sources (LMIS) by substituting the liquid metal with an ionic liquid, or room temperature molten salt. Ion ...

Zorzos, Anthony Nicholas

2009-01-01T23:59:59.000Z

62

E-Print Network 3.0 - ammonium ionic liquids Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atomic Data Center (CFADC) Collection: Plasma Physics and Fusion 2 "Control of protein folding and misfolding in ionic liquid media, and a conjecture on early earth biology"....

63

Methods of using ionic liquids having a fluoride anion as solvents  

DOE Patents [OSTI]

A method in one embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having a fluoride anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of about 90.degree. C. or less during the contacting. A method in another embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having an acetate or formate anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of less than about 90.degree. C. during the contacting.

Pagoria, Philip (Livermore, CA); Maiti, Amitesh (San Ramon, CA); Gash, Alexander (Brentwood, CA); Han, Thomas Yong (Pleasanton, CA); Orme, Christine (Oakland, CA); Fried, Laurence (Livermore, CA)

2011-12-06T23:59:59.000Z

64

Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis  

SciTech Connect (OSTI)

The efficient conversion of lignocellulosic materials into fuel ethanol has become a research priority in producing affordable and renewable energy. The pretreatment of lignocelluloses is known to be key to the fast enzymatic hydrolysis of cellulose. Recently, certain ionic liquids (ILs)were found capable of dissolving more than 10 wt% cellulose. Preliminary investigations [Dadi, A.P., Varanasi, S., Schall, C.A., 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904 910; Liu, L., Chen, H., 2006. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin. Sci. Bull. 51, 2432 2436; Dadi, A.P., Schall, C.A., Varanasi, S., 2007. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl. Biochem. Biotechnol. 137 140, 407 421] suggest that celluloses regenerated from IL solutions are subject to faster saccharification than untreated substrates. These encouraging results offer the possibility of using ILs as alternative and nonvolatile solvents for cellulose pretreatment. However, these studies are limited to two chloride-based ILs: (a) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), which is a corrosive, toxic and extremely hygroscopic solid (m.p. 70 C), and (b) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl), which is viscous and has a reactive side-chain. Therefore, more in-depth research involving other ILs is much needed to explore this promising pretreatment route. For this reason, we studied a number of chloride- and acetate-based ILs for cellulose regeneration, including several ILs newly developed in our laboratory. This will enable us to select inexpensive, efficient and environmentally benign solvents for processing cellulosic biomass. Our data confirm that all regenerated celluloses are less crystalline (58 75% lower) and more accessible to cellulase (>2 times) than untreated substrates. As a result, regenerated Avicel cellulose, filter paper and cottonwere hydrolyzed 2 10 times faster than the respective untreated celluloses. A complete hydrolysis of Avicel cellulose could be achieved in 6 h given the Trichoderma reesei cellulase/substrate ratio (w/w) of 3:20 at 50 C. In addition,we observed that cellulase is more thermally stable (up to 60 C) in the presence of regenerated cellulose. Furthermore, our systematic studies suggest that the presence of various ILs during the hydrolysis induced different degrees of cellulase inactivation. Therefore, a thorough removal of IL residues after cellulose regeneration is highly recommended, and a systematic investigation on this subject is much needed.

Zhao, Hua [Savannah State University; Jones, Cecil L [Savannah State University; Baker, Gary A [ORNL; Xia, Shuqian [Tianjin University, Tianjin, China; Olubajo, Olarongbe [Savannah State University; Person, Vernecia [Savannah State University

2009-01-01T23:59:59.000Z

65

Hydrogen Fluoride Capture by Imidazolium Acetate Ionic Liquid  

E-Print Network [OSTI]

Extraction of hydrofluoric acid (HF) from oils is a drastically important problem in petroleum industry, since HF causes quick corrosion of pipe lines and brings severe health problems to humanity. Some ionic liquids (ILs) constitute promising scavenger agents thanks to strong binding to polar compounds and tunability. PM7-MD simulations and hybrid density functional theory are employed here to consider HF capture ability of ILs. Discussing the effects and impacts of the cation and the anion separately and together, I will evaluate performance of imidazolium acetate and outline systematic search guidelines for efficient adsorption and extraction of HF.

Chaban, Vitaly

2015-01-01T23:59:59.000Z

66

Using Ionic Liquids in Selective Hydrocarbon Conversion Processes  

SciTech Connect (OSTI)

This is the Final Report of the five-year project Using Ionic Liquids in Selective Hydrocarbon Conversion Processes (DE-FC36-04GO14276, July 1, 2004- June 30, 2009), in which we present our major accomplishments with detailed descriptions of our experimental and theoretical efforts. Upon the successful conduction of this project, we have followed our proposed breakdown work structure completing most of the technical tasks. Finally, we have developed and demonstrated several optimized homogenously catalytic methane conversion systems involving applications of novel ionic liquids, which present much more superior performance than the Catalytica system (the best-to-date system) in terms of three times higher reaction rates and longer catalysts lifetime and much stronger resistance to water deactivation. We have developed in-depth mechanistic understandings on the complicated chemistry involved in homogenously catalytic methane oxidation as well as developed the unique yet effective experimental protocols (reactors, analytical tools and screening methodologies) for achieving a highly efficient yet economically feasible and environmentally friendly catalytic methane conversion system. The most important findings have been published, patented as well as reported to DOE in this Final Report and our 20 Quarterly Reports.

Tang, Yongchun; Periana, Roy; Chen, Weiqun; van Duin, Adri; Nielsen, Robert; Shuler, Patrick; Ma, Qisheng; Blanco, Mario; Li, Zaiwei; Oxgaard, Jonas; Cheng, Jihong; Cheung, Sam; Pudar, Sanja

2009-09-28T23:59:59.000Z

67

Interactions of Ionic Liquids with Uranium and its Bioreduction  

SciTech Connect (OSTI)

We investigated the influence of ionic liquids (ILs) 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM]{sup +}[PF{sub 6}]{sup -}, N-ethylpyridinium trifluoroacetate [EtPy]{sup +}[CF{sub 3}COO]{sup -} and N-ethylpyridinium tetrafluoroborate [Et-Py]{sup +}[BF{sub 4}]{sup -} on uranium reduction by Clostridium sp. under anaerobic conditions. Potentiometric titration, UV-vis spectrophotometry, LC-MS and EXAFS analyses showed monodentate complexation between uranyl and BF{sub 4}{sup -} PF{sub 6}{sup -}; and bidentate complexation with CF{sub 3}COO{sup -}. Ionic liquids affected the growth of Clostridium sp. as evidenced by decrease in optical density, changes in pH, gas production, and the extent of U(VI) reduction and precipitation of U(IV) from solution. Reduction of U(VI) to U(IV) was observed in the presence of [EtPy][BF{sub 4}] and [BMIM][PF{sub 6}] but not with [EtPy][CF{sub 3}COO].

Zhang, C.; Francis, A.

2012-09-18T23:59:59.000Z

68

Development of an Ionic-Liquid Absorption Heat Pump  

SciTech Connect (OSTI)

Solar Fueled Products (SFP) is developing an innovative ionic-liquid absorption heat pump (ILAHP). The development of an ILAHP is extremely significant, as it could result in annual savings of more than 190 billion kW h of electrical energy and $19 billion. This absorption cooler uses about 75 percent less electricity than conventional cooling and heating units. The ILAHP also has significant environmental sustainability benefits, due to reduced CO2 emissions. Phase I established the feasibility and showed the economic viability of an ILAHP with these key accomplishments: • Used the breakthrough capabilities provided by ionic liquids which overcome the key difficulties of the common absorption coolers. • Showed that the theoretical thermodynamic performance of an ILAHP is similar to existing absorption-cooling systems. • Established that the half-effect absorption cycle reduces the peak generator temperature, improving collector efficiency and reducing collector area. • Component testing demonstrated that the most critical components, absorber and generator, operate well with conventional heat exchangers. • Showed the economic viability of an ILAHP. The significant energy savings, sustainability benefits, and economic viability are compelling reasons to continue the ILAHP development.

Holcomb, Don

2011-03-29T23:59:59.000Z

69

Method of purifying a gas stream using 1,2,3-triazolium ionic liquids  

DOE Patents [OSTI]

A method for separating a target gas from a gaseous mixture using 1,2,3-triazolium ionic liquids is presented. Industrial effluent streams may be cleaned by removing carbon dioxide from the stream by contacting the effluent stream with a 1,2,3-triazolium ionic liquid compound.

Luebke, David; Nulwala, Hunald; Tang, Chau

2014-12-09T23:59:59.000Z

70

Short Communication Bioreduction and precipitation of uranium in ionic liquid aqueous  

E-Print Network [OSTI]

with uranium from mining and milling operations, radioactive wastes, and from nuclear accidents is a majorShort Communication Bioreduction and precipitation of uranium in ionic liquid aqueous solution t s Uranium forms various complexes with ionic liquids. Uranium bioreduction was affected by the type

Ohta, Shigemi

71

Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns  

SciTech Connect (OSTI)

Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs generally have low volatilities and are combustion-resistant, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of primary radiation chemistry, charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of reactions and product distributions. We study these issues by characterization of primary radiolysis products and measurements of their yields and reactivity, quantification of electron solvation dynamics and scavenging of electrons in different states of solvation. From this knowledge we wish to learn how to predict radiolytic mechanisms and control them or mitigate their effects on the properties of materials used in nuclear fuel processing, for example, and to apply IL radiation chemistry to answer questions about general chemical reactivity in ionic liquids that will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that the slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increase the importance of pre-solvated electron reactivity and consequently alter product distributions and subsequent chemistry. This difference from conventional solvents has profound effects on predicting and controlling radiolytic yields, which need to be quantified for the successful use under radiolytic conditions. Electron solvation dynamics in ILs are measured directly when possible and estimated using proxies (e.g. coumarin-153 dynamic emission Stokes shifts or benzophenone anion solvation) in other cases. Electron reactivity is measured using ultrafast kinetics techniques for comparison with the solvation process.

Wishart, J.F.

2011-06-12T23:59:59.000Z

72

Department of Energy and Mineral Engineering Spring 2013 Preliminary Plant Design For Bitumen Separation Using Ionic Liquid  

E-Print Network [OSTI]

For Bitumen Separation Using Ionic Liquid Overview IL Fuels LLC invented a novel way to separate bitumen from of producing 5,000 barrels of bitumen per day while maximizing the recovery of ionic liquid and water of bitumen/day Maintain a maximum of 0.2% loss of ionic liquids to the cleaned sands Improve overall

Demirel, Melik C.

73

Metal-air battery assessment  

SciTech Connect (OSTI)

The objective of this report is to evaluate the present technical status of the zinc-air, aluminum/air and iron/air batteries and assess their potential for use in an electric vehicle. In addition, this report will outline proposed research and development priorities for the successful development of metal-air batteries for electric vehicle application. 39 refs., 25 figs., 11 tabs.

Sen, R.K.; Van Voorhees, S.L.; Ferrel, T.

1988-05-01T23:59:59.000Z

74

Extraction of Biofuels and Biofeedstocks from Aqueous Solutions Using Ionic Liquids  

E-Print Network [OSTI]

Extraction of Biofuels and Biofeedstocks from Aqueous Solutions Using Ionic Liquids Luke D. Simoni-Butanol, Extraction, Liquid-Liquid Equilibrium, Excess Gibbs Energy Models, Biofuels #12;1 1. Introduction other organic compounds can be produced biologically, and thus can be considered as biofuel candidates

Stadtherr, Mark A.

75

Project Profile: Thermally-Stable Ionic Liquid Carriers forNanopartic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Awards A. Visser, N. Bridges, E.B. Fox, J. Gray, and B. Garcia-Diaz, "Thermal and Corrosion Properties of Nanoparticle Enhanced Ionic Liquids (NEILs)," Prepr. Pap.-Am. Chem....

76

High Temperature/Low Humidity Polymer Electrolytes Derived from Ionic Liquids  

Broader source: Energy.gov [DOE]

Presentation on High Temperature/Low Humidity Polymer Electrolytes Derived from Ionic Liquids to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

77

Theoretical Investigations on Nanoporpus Materials and Ionic Liquids for Energy Storage  

E-Print Network [OSTI]

by adsorption. In this regard carbon nanotube and Metal Organic Framework (MOFs) based materials are worth studying. Ionic liquids (IL) are potential electrolytes that can improve energy storage capacity and safety in Li ion batteries. Therefore it is important...

Mani Biswas, Mousumi

2012-02-14T23:59:59.000Z

78

81929 - Fission-Product Separation Based on Room - Temperature Ionic Liquids  

SciTech Connect (OSTI)

This project has demonstrated that Sr2+ and Cs+ can be selectively extracted from aqueous solutions into ionic liquids using crown ethers and that unprecedented large distribution coefficients can be achieved for these fission products. The volume of secondary wastes can be significantly minimized with this new separation technology. Through the current EMSP funding, the solvent extraction technology based on ionic liquids has been shown to be viable and can potentially provide the most efficient separation of problematic fission products from high level wastes. The key results from the current funding period are the development of highly selective extraction process for cesium ions based on crown ethers and calixarenes, optimization of selectivities of extractants via systematic change of ionic liquids, and investigation of task-specific ionic liquids incorporating both complexant and solvent characteristics.

Robin D. Rogers

2004-12-09T23:59:59.000Z

79

Complex Capacitance Scaling in Ionic Liquids-Filled Nanopores  

SciTech Connect (OSTI)

Recent experiments have shown that the capacitance of subnanometer pores increases anomalously as the pore width decreases, thereby opening a new avenue for developing supercapacitors with enhanced energy density. However, this behavior is still subject to some controversy since its physical origins are not well understood. Using atomistic simulations, we show that the capacitance of slit-shaped nanopores in contact with room-temperature ionic liquids exhibits a U-shaped scaling behavior in pores with widths from 0.75 to 1.26 nm. The left branch of the capacitance scaling curve directly corresponds to the anomalous capacitance increase and thus reproduces the experimental observations. The right branch of the curve indirectly agrees with experimental findings that so far have received little attention. The overall U-shaped scaling behavior provides insights on the origins of the difficulty in experimentally observing the pore-width-dependent capacitance. We establish a theoretical framework for understanding the capacitance of electrical double layers in nanopores and provide mechanistic details into the origins of the observed scaling behavior. The framework highlights the critical role of 'ion solvation' in controlling pore capacitance and the importance of choosing anion/cation couples carefully for optimal energy storage in a given pore system.

Sumpter, Bobby G [ORNL

2011-01-01T23:59:59.000Z

80

Complex Capacitance Scaling in Ionic Liquids-filled Nanopores  

SciTech Connect (OSTI)

Recent experiments have shown that the capacitance of sub-nanometer pores increases anomalously as the pore width decreases, thereby opening a new avenue for developing supercapacitors with enhanced energy density. However, this behavior is still subject to some controversy since its physical origins are not well understood. Using atomistic simulations, we show that the capacitance of slit-shaped nanopores in contact with room-temperature ionic liquids exhibits a U-shaped scaling behavior in pores with width from 0.75 to 1.26 nm. The left branch of the capacitance scaling curve directly corresponds to the anomalous capacitance increase and thus reproduces the experimental observations. The right branch of the curve indirectly agrees with experimental findings that so far have received little attention. The overall U-shaped scaling behavior provides insights on the origins of the difficulty in experimentally observing the pore-width dependent capacitance. We establish a theoretical framework for understanding the capacitance of electrical double layers in nanopores and provide mechanistic details into the origins of the observed scaling behavior. The framework highlights the critical role of ion solvation in controlling pore capacitance and the importance of choosing anion/cation couples carefully for optimal energy storage in a given pore system.

Qiao, Rui [Clemson University; Huang, Jingsong [ORNL; Meunier, Vincent [ORNL; Sumpter, Bobby G [ORNL; Peng, Wu [Clemson University

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EFFECTS OF GAMMA RADIATION ON ELECTROCHEMICAL PROPERTIES OF IONIC LIQUIDS  

SciTech Connect (OSTI)

The electrochemical properties of ionic liquids (ILs) make them attractive for possible replacement of inorganic salts in high temperature molten salt electrochemical processing of nuclear fuel. To be a feasible replacement solvent, ILs need to be stable in moderate and high doses of radiation without adverse chemical and physical effects. Here, we exposed seven different ILs to a 1.2 MGy dose of gamma radiation to investigate their physical and chemical properties as they related to radiological stability. The azolium-based ILs experienced the greatest change in appearance, but these ILs were chemically more stable to gamma radiation than some of the other classes of ILs tested, due to the presence of aromatic electrons in the azolium ring. All the ILs exhibited a decrease in their conductivity and electrochemical window (at least 1.1 V), both of which could affect the utility of ILs in electrochemical processing. The concentration of the irradiation decomposition products was less than 3 mole %, with no impurities detectable using NMR techniques.

Visser, A; Nicholas Bridges, N; Thad Adams, T; John Mickalonis, J; Mark02 Williamson, M

2009-04-21T23:59:59.000Z

82

Interfacial Ionic Liquids: Connecting Static and Dynamic Structures  

E-Print Network [OSTI]

It is well-known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e., with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. We used in situ, real-time X-ray reflectivity (XR) to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene-RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can be described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics (MD) simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion and cation adsorbed structures separated by an energy barrier (~0.15 eV).

Ahmet Uysal; Hua Zhou; Guang Feng; Sang Soo Lee; Song Li; Peter T. Cummings; Pasquale F. Fulvio; Sheng Dai; John K. McDonough; Yury Gogotsi; Paul Fenter

2014-12-06T23:59:59.000Z

83

Temperature dependence of some liquid lithium properties from the ionic pseudopotential  

E-Print Network [OSTI]

OF SCIEECE May 1977 Ma)or Sub)ect: Mnclear Engineering TEMPERATURE DEPENDENCE OP SOME LIQUID LITHIUM PROPERTIES PROM THE IONIC PSEUDOPOTENTIAL A Thesis by ANTHONY WELLS ENGEL Approved as to style and content by: ea o spar men em er em er May 1977... ABSTRACT Temperature Dependence of Some Liquid Lithium Properties from the Ionic Pseudopotential. (May 1977) Anthony Wells Engely A B y Rutgers University Chairman of Advisory Committee: Dr. Henri R. Ieribaux The purpose of this investigation...

Engel, Anthony Wells

1977-01-01T23:59:59.000Z

84

Elucidating graphene - Ionic Liquid interfacial region: a combined experimental and computational study  

SciTech Connect (OSTI)

The interfacial region between graphene and an imidazolium based ionic liquid is studied using spectroscopic analysis and computational modelling. This combined approach reveals that the molecular level structure of the interfacial region is significantly influenced by functional group defects on the graphene surface.The combined experimental and computational study reveals that the molecular structure at interfacial region between graphene and imidazolium based ionic liquid is defined by the hydroxyl functional groups on the graphene surface

Vijayakumar, M.; Schwenzer, Birgit; Shutthanandan, V.; Hu, Jian Z.; Liu, Jun; Aksay, Ilhan A.

2014-01-10T23:59:59.000Z

85

Ionic Liquids as Novel Lubricants and /or Lubricant Additives  

SciTech Connect (OSTI)

This ORNL-GM CRADA developed ionic liquids (ILs) as novel lubricants or oil additives for engine lubrication. A new group of oil-miscible ILs have been designed and synthesized with high thermal stability, non-corrosiveness, excellent wettability, and most importantly effective anti-scuffing/anti-wear and friction reduction characteristics. Mechanistic analysis attributes the superior lubricating performance of IL additives to their physical and chemical interactions with metallic surfaces. Working with a leading lubricant formulation company, the team has successfully developed a prototype low-viscosity engine oil using a phosphonium-phosphate IL as an anti-wear additive. Tribological bench tests of the IL-additized formulated oil showed 20-33% lower friction in mixed and elastohydrodynamic lubrication and 38-92% lower wear in boundary lubrication when compared with commercial Mobil 1 and Mobil Clean 5W-30 engine oils. High-temperature, high load (HTHL) full-size engine tests confirmed the excellent anti-wear performance for the IL-additized engine oil. Sequence VID engine dynamometer tests demonstrated an improved fuel economy by >2% for this IL-additized engine oil benchmarked against the Mobil 1 5W-30 oil. In addition, accelerated catalyst aging tests suggest that the IL additive may potentially have less adverse impact on three-way catalysts compared to the conventional ZDDP. Follow-on research is needed for further development and optimization of IL chemistry and oil formulation to fully meet ILSAC GF-5 specifications and further enhance the automotive engine efficiency and durability.

Qu, J. [ORNL; Viola, M. B. [General Motors Company

2013-10-31T23:59:59.000Z

86

Studies of ionic liquids in lithium-ion battery test systems  

SciTech Connect (OSTI)

In this work, thermal and electrochemical properties of neat and mixed ionic liquid - lithium salt systems have been studied. The presence of a lithium salt causes both thermal and phase-behavior changes. Differential scanning calorimeter DSC and thermal gravimetric analysis TGA were used for thermal analysis for several imidazolium bis(trifluoromethylsulfonyl)imide, trifluoromethansulfonate, BF{sub 4}, and PF{sub 6} systems. Conductivities and diffusion coefficient have been measured for some selected systems. Chemical reactions in electrode - ionic liquid electrolyte interfaces were studied by interfacial impedance measurements. Lithium-lithium and lithium-carbon cells were studied at open circuit and a charged system. The ionic liquids studied include various imidazolium systems that are already known to be electrochemically unstable in the presence of lithium metal. In this work the development of interfacial resistance is shown in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell as well as results from some cycling experiments. As the ionic liquid reacts with the lithium electrode the interfacial resistance increases. The results show the magnitude of reactivity due to reduction of the ionic liquid electrolyte that eventually has a detrimental effect on battery performance.

Salminen, Justin; Prausnitz, John M.; Newman, John

2006-06-01T23:59:59.000Z

87

Ionic liquid assisted hydrothermal fabrication of hierarchically organized ?-AlOOH hollow sphere  

SciTech Connect (OSTI)

Highlights: ? The ?-AlOOH hollow spheres were synthesized via an ionic liquid-assisted hydrothermal treatment. ? Ionic liquid plays an important role in the morphology of the product. ? Ionic liquid can be easily removed from the product and reused in next experiment. ? A “aggregation–solution–recrystallization” formation mechanism may occur in the system. -- Abstract: Hierarchically organized ?-AlOOH hollow spheres with nanoflake-like porous surface texture have been successfully synthesized via an ionic liquid-assisted hydrothermal synthesis method in citric acid monohydrate (CAMs). It was found that ionic liquid [bmim]{sup +}Cl{sup ?} played an important role in the morphology of the product due to its strong interactions with reaction particles. The samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM). The results show that the product has narrow particle size distribution (500–900 nm particle diameter range), high specific surface area (240.5 m{sup 2}/g) and large pore volume (0.61 cm{sup 3}/g). The corresponding ?-Al{sub 2}O{sub 3} hollow spheres can be obtained by calcining it at 550 °C for 3 h. The proposed formation mechanism and other influencing factors of the ?-AlOOH hollow sphere material, such as reaction temperature, reaction duration, CAMs and urea, have also been investigated.

Tang, Zhe, E-mail: tangzhe1983@163.com [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corporation (CNPC), China University of Petroleum (East China), Qingdao 266555 (China)] [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corporation (CNPC), China University of Petroleum (East China), Qingdao 266555 (China); Liu, Yunqi, E-mail: liuyq@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corporation (CNPC), China University of Petroleum (East China), Qingdao 266555 (China)] [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corporation (CNPC), China University of Petroleum (East China), Qingdao 266555 (China); Li, Guangci, E-mail: liguangci1984@yahoo.com.cn [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corporation (CNPC), China University of Petroleum (East China), Qingdao 266555 (China)] [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corporation (CNPC), China University of Petroleum (East China), Qingdao 266555 (China); Hu, Xiaofu, E-mail: hjj19850922@126.cn [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corporation (CNPC), China University of Petroleum (East China), Qingdao 266555 (China)] [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corporation (CNPC), China University of Petroleum (East China), Qingdao 266555 (China); Liu, Chenguang, E-mail: cgliu@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corporation (CNPC), China University of Petroleum (East China), Qingdao 266555 (China)] [State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corporation (CNPC), China University of Petroleum (East China), Qingdao 266555 (China)

2012-11-15T23:59:59.000Z

88

Structure and phase transitions into ionic adsorption layers on liquid interfaces  

E-Print Network [OSTI]

The structure of ionic adsorption layers is studied via a proper thermodynamic treatment of the electrostatic and non-electrostatic interactions between the surfactant ions as well as of the effect of thermodynamic non-locality. The analysis is also applied to phase transitions into the ionic adsorption layer, which interfere further with the oscillatory-diffusive structure of the electric double layer and hydrodynamic stability of squeezing waves in thin liquid films.

R. Tsekov

2014-10-25T23:59:59.000Z

89

Catalytic Conversion of Biomass to Fuels and Chemicals Using Ionic Liquids  

SciTech Connect (OSTI)

This project provides critical innovations and fundamental understandings that enable development of an economically-viable process for catalytic conversion of biomass (sugar) to 5-hydroxymethylfurfural (HMF). A low-cost ionic liquid (Cyphos 106) is discovered for fast conversion of fructose into HMF under moderate reaction conditions without any catalyst. HMF yield from fructose is almost 100% on the carbon molar basis. Adsorbent materials and adsorption process are invented and demonstrated for separation of 99% pure HMF product and recovery of the ionic liquid from the reaction mixtures. The adsorbent material appears very stable in repeated adsorption/regeneration cycles. Novel membrane-coated adsorbent particles are made and demonstrated to achieve excellent adsorption separation performances at low pressure drops. This is very important for a practical adsorption process because ionic liquids are known of high viscosity. Nearly 100% conversion (or dissolution) of cellulose in the catalytic ionic liquid into small molecules was observed. It is promising to produce HMF, sugars and other fermentable species directly from cellulose feedstock. However, several gaps were identified and could not be resolved in this project. Reaction and separation tests at larger scales are needed to minimize impacts of incidental errors on the mass balance and to show 99.9% ionic liquid recovery. The cellulose reaction tests were troubled with poor reproducibility. Further studies on cellulose conversion in ionic liquids under better controlled conditions are necessary to delineate reaction products, dissolution kinetics, effects of mass and heat transfer in the reactor on conversion, and separation of final reaction mixtures.

Liu, Wei; Zheng, Richard; Brown, Heather; Li, Joanne; Holladay, John; Cooper, Alan; Rao, Tony; ,

2012-04-13T23:59:59.000Z

90

High-Pressure Phase Equilibria of Ionic Liquids and Compressed Gases for Applications in Reactions and Absorption Refrigeration  

E-Print Network [OSTI]

of high-melting solids not liquids at processing conditions. Coupling ionic liquids with compressed gases systems may overcome most of these difficulties for their applications in separations, reactions, materials processing and engineering applications...

Ren, Wei

2009-12-29T23:59:59.000Z

91

Gelled Ionic Liquid-Based Membranes: Achieving a 10,000 GPU Permeance for Post-Combustion Carbon Capture with Gelled Ionic Liquid-Based Membranes  

SciTech Connect (OSTI)

IMPACCT Project: Alongside Los Alamos National Laboratory and the Electric Power Research Institute, CU-Boulder is developing a membrane made of a gelled ionic liquid to capture CO2 from the exhaust of coal-fired power plants. The membranes are created by spraying the gelled ionic liquids in thin layers onto porous support structures using a specialized coating technique. The new membrane is highly efficient at pulling CO2 out of coal-derived flue gas exhaust while restricting the flow of other materials through it. The design involves few chemicals or moving parts and is more mechanically stable than current technologies. The team is now working to further optimize the gelled materials for CO2 separation and create a membrane layer that is less than 1 micrometer thick.

None

2011-02-02T23:59:59.000Z

92

Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications, method of making and cell employing same  

DOE Patents [OSTI]

Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H.sub.2(g) electrolyte/O.sub.2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200.degree. C. are achieved. Both neutral proton transfer salts and the acid salts with HSO.sup.-.sub.4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures. The performance of all electrolytes is improved by the addition of a small amount of involatile base of pK.sub.a value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogensulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.

Angell, C. Austen (Mesa, AZ); Xu, Wu (Broadview Heights, OH); Belieres, Jean-Philippe (Chandler, AZ); Yoshizawa, Masahiro (Tokyo, JP)

2011-01-11T23:59:59.000Z

93

Towards In situ extraction of fine chemicals and biorenewable fuels from fermentation broths using Ionic liquids and the Intensification of contacting by the application of Electric Fields  

E-Print Network [OSTI]

and design new ionic liquids for task specific needs. Solvent selection for in situ fermentation is depended on high solute partitioning and their biocompatibility with the microorganisms. Such information for these new set of solvents, ionic liquids...

Gangu, Satya Aravind

2013-05-31T23:59:59.000Z

94

Electrochemical Polishing Applications and EIS of a Novel Choline Chloride-Based Ionic Liquid  

SciTech Connect (OSTI)

Minimal surface roughness is a critical feature for high-field superconducting radio frequency (SRF) cavities used to engineer particle accelerators. Current methods for polishing Niobium cavities typically utilize solutions containing a mixture of concentrated sulfuric and hydrofluoric acid. Polishing processes such as these are effective, yet there are many hazards and costs associated with the use (and safe disposal) of the concentrated acid solutions. An alternative method for electrochemical polishing of the cavities was explored using a novel ionic liquid solution containing choline chloride. Potentiostatic electrochemical impedance spectroscopy (EIS) was used to analyze the ionic polishing solution. Final surface roughness of the Nb was found to be comparable to that of the acid-polishing method, as assessed by atomic force microscopy (AFM). This indicates that ionic liquid-based electrochemical polishing of Nb is a viable replacement for acid-based methods for preparation of SRF cavities.

Wixtrom, Alex I. [Christopher Newport University, Newport News, VA (United States); Buhler, Jessica E. [Christopher Newport University, Newport News, VA (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Abdel-Fattah, Tarek M. [Christopher Newport University, Newport News, VA (United States)

2013-06-01T23:59:59.000Z

95

Reverse Atom Transfer Radical Polymerization of Methyl Methacrylate in Room-Temperature Ionic Liquids  

E-Print Network [OSTI]

, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China Received 14, the removal and recycling of the catalytic materials become important. It is expected that using ionic liquids as ATRP media. They performed the copper(I)-mediated ATRP of methyl methacrylate (MMA) in 1-butyl-3

Wan, Xin-hua

96

Ionic Liquids as templating agents in formation of uranium-containing nanomaterials  

SciTech Connect (OSTI)

A method for forming nanoparticles containing uranium oxide is described. The method includes combining a uranium-containing feedstock with an ionic liquid to form a mixture and holding the mixture at an elevated temperature for a period of time to form the product nanoparticles. The method can be carried out at low temperatures, for instance less than about 300.degree. C.

Visser, Ann E; Bridges, Nicholas J

2014-06-10T23:59:59.000Z

97

Use of polymer/ionic liquid plasticizers as gel electrolytes in electrochromic devices  

E-Print Network [OSTI]

Use of polymer/ionic liquid plasticizers as gel electrolytes in electrochromic devices H. Bircana polymer configuration is commonly used when constructing electrochromic devices (ECDs) due to the expected)thienyl)-N-methylcarbazole] (PBEDOT-NMCz) as the two complementary electrochromic polymers for the device. A variety of gel

Otero, Toribio Fernández

98

Physicochemical properties of 1,2,3-triazolium ionic liquids{ Shilpi Sanghi,a  

E-Print Network [OSTI]

Versek,b Mark Tuominenb and E. Bryan Coughlin*a Received 8th June 2011, Accepted 26th October 2011 DOI liquids including ion cluster behavior, thermal properties, electrochemical stability and ionic hydroxide ion at 80 uC was studied. Key features of 1,2,3-triazolium salts are their high electrochemical

99

Protein Unfolding, and the "Tuning In" of Reversible Intermediate States, in Protic Ionic Liquid Media  

E-Print Network [OSTI]

's heat capacity as it undergoes the unfolding process. This yields a spe- cific enthalpy change, which partial heat capacities, we will simply report the total system heat capacity and attribute the partProtein Unfolding, and the "Tuning In" of Reversible Intermediate States, in Protic Ionic Liquid

Angell, C. Austen

100

The Role of Confined Water in Ionic Liquid Electrolytes for Dye-Sensitized Solar Cells  

E-Print Network [OSTI]

The Role of Confined Water in Ionic Liquid Electrolytes for Dye- Sensitized Solar Cells Jiwon Jeon %) for applications such as nonvolatile electrolytes for dye-sensitized solar cells (DSSCs). This suggests a strategy Structure, Quantum Chemistry,General Theory The dye-sensitized solar cell (DSSC) proposed by Gratzel et al.1

Goddard III, William A.

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Protic Ionic Liquids: Preparation, Characterization, and Proton Free Energy Level Representation  

E-Print Network [OSTI]

interesting properties, including the ability to serve as electrolytes in solvent-free fuel cell systems. We in a fuel cell.2,7,8 This is an application which requires the presence of a special type of ionic liquids continue to be found. They are the low-melting relatives of molten salts whose place in the history

Angell, C. Austen

102

A Comparison of Electron-Transfer Dynamics inIonic Liquids and Neutral Solvents  

SciTech Connect (OSTI)

The effect of ionic liquids on photoinduced electron-transfer reactions in a donor-bridge-acceptor system is examined for two ionic liquid solvents, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide and tributylmethylammonium bis(trifluoromethylsulfonyl)amide. The results are compared with those for the same system in methanol and acetonitrile solution. Electron-transfer rates were measured using time-resolved fluorescence quenching for the donor-bridge-acceptor system comprising a 1-N,1-N-dimethylbenzene-1,4-diamine donor, a proline bridge, and a coumarin 343 acceptor. The photoinduced electron-transfer processes are in the inverted regime (-{Delta}G > {lambda}) in all four solvents, with driving forces of -1.6 to -1.9 eV and estimated reorganization energies of about 1.0 eV. The observed electron-transfer kinetics have broadly distributed rates that are generally slower in the ionic liquids compared to the neutral solvents, which also have narrower rate distributions. To describe the broad distributions of electron-transfer kinetics, we use two different models: a distribution of exponential lifetimes and a discrete sum of exponential lifetimes. Analysis of the donor-acceptor electronic coupling shows that for ionic liquids this intramolecular electron-transfer reaction should be treated using a solvent-controlled electron-transfer model.

Wishart J. F.; Lee, H.Y.; Issa, J.B.; Isied, S.S.; Castner, Jr., E.W.; Pan, Y.; Hussey, C.L.; Lee, K.S.

2012-03-01T23:59:59.000Z

103

Ionic Liquids as Novel Lubricant Additives for Next-Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for andFuel-Efficient Engines | ornl.gov Ionic

104

J-aggregation of ionic liquid solutions of meso-tetrakis(4-sulfonatophenyl)porphyrin  

SciTech Connect (OSTI)

The title porphyrin was dissolved in the hydrophilic ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4], and triggered to assemble into J-aggregates by the addition of incremental volumes of water containing various amounts of acid (0.1, 0.2, or 1.0 M HCl). In contrast to recent studies, the current investigation is unique in that it centers on media that contain a predominant ionic liquid component (2.9 5.4 M [bmim][BF4]), as opposed to an aqueous electrolyte containing a small fraction of ionic liquid as dissociated solute. Complex aggregation and underlying photophysical behavior are revealed from absorption spectroscopy, steady-state fluorescence, and resonance light scattering studies. Upon addition of aqueous HCl, the efficient formation of H4TPPS2 J-aggregates from the diprotonated form of meso-tetrakis(4-sulfonatophenyl)porphyrin (H2TPPS4) occurs in [bmim][BF4]-rich media in a manner highly dependent upon the acidity, TPPS concentration, and solvent composition. The unique features of TPPS aggregation in this ionic liquid were elucidated, including the surprising disassembly of J-aggregates at higher aqueous contents, and our results are described qualitatively in terms of the molecular exciton theory. Finally, the potential of this system for the optical sensing of water at a sensitivity below 0.5 wt% is demonstrated. Overall, our findings accentuate how little is known about functional self-assembly within ionic liquids and suggest a number of avenues for exploring this completely untouched research landscape.

Ali, Maroof [Indian Institute of Technology, Delhi; Kumar, Vinod [ORNL; Baker, Sheila N [ORNL; Baker, Gary A [ORNL; Pandey, Siddharth [Indian Institute of Technology, Delhi

2010-01-01T23:59:59.000Z

105

Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems  

SciTech Connect (OSTI)

The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

2009-01-11T23:59:59.000Z

106

Gas-liquid critical point in ionic fluids  

E-Print Network [OSTI]

Based on the method of collective variables we develop the statistical field theory for the study of a simple charge-asymmetric $1:z$ primitive model (SPM). It is shown that the well-known approximations for the free energy, in particular DHLL and ORPA, can be obtained within the framework of this theory. In order to study the gas-liquid critical point of SPM we propose the method for the calculation of chemical potential conjugate to the total number density which allows us to take into account the higher order fluctuation effects. As a result, the gas-liquid phase diagrams are calculated for $z=2-4$. The results demonstrate the qualitative agreement with MC simulation data: critical temperature decreases when $z$ increases and critical density increases rapidly with $z$.

O. Patsahan; I. Mryglod; T. Patsahan

2006-06-27T23:59:59.000Z

107

Extraction of Uranium from Aqueous Solutions Using Ionic Liquid and Supercritical Carbon Dioxide in Conjunction  

SciTech Connect (OSTI)

Uranyl ions (UO2)2+ in aqueous nitric acid solutions can be extracted into supercritical CO2 (sc-CO2) via an imidazolium-based ionic liquid using tri-n-butylphosphate (TBP) as a complexing agent. The transfer of uranium from the ionic liquid to the supercritical fluid phase was monitored by UV/Vis spectroscopy using a high-pressure fiberoptic cell. The form of the uranyl complex extracted into the supercritical CO2 phase was found to be UO2(NO3)2(TBP)2. The extraction results were confirmed by UV/Vis spectroscopy and by neutron activation analysis. This technique could potentially be used to extract other actinides for applications in the field of nuclear waste management.

Wang, Joanna S.; Sheaff, Chrystal N.; Yoon, Byunghoon; Addleman, Raymond S.; Wai, Chien M.

2009-01-01T23:59:59.000Z

108

Capacitive Energy Storage from - 50o to 100o Using an Ionic Liquid Electrolyte  

SciTech Connect (OSTI)

Relying on redox reactions, most batteries are limited in their ability to operate at very low or very high temperatures. While performance of electrochemical capacitors is less dependent on the temperature, present-day devices still cannot cover the entire range needed for automotive and electronics applications under a variety of environmental conditions. We show that the right combination of the exohedral nanostructured carbon (nanotubes and onions) electrode and a eutectic mixture of ionic liquids can dramatically extend the temperature range of electrical energy storage, thus defying the conventional wisdom that ionic liquids can only be used as electrolytes above room temperature. We demonstrate electrical double layer capacitors able to operate from 50 to 100 C over a wide voltage window (up to 3.7 V) and at very high charge/discharge rates of up to 20 V/s.

Lin, Rongying [Universite Paul Sabatier, Toulouse Cedex, France.; Taberna, Pierre-Louis [Universite Paul Sabatier, Toulouse Cedex, France.; Santini, Sebastien [SOLVIONIC Company, Toulouse, France; Presser, Volker [ORNL; Perez, Carlos R. [Drexel University; Malbosc, Francois [SOLVIONIC Company, Toulouse, France; Rupesinghe, Nalin L. [AIXTRON, Cambridge, UK; Teo, Kenneth B. K. [AIXTRON, Cambridge, UK; Gogotsi, Yury G. [Drexel University; Simon, Patrice [Universite Paul Sabatier, Toulouse Cedex, France.

2011-01-01T23:59:59.000Z

109

Anion effects in the extraction of lanthanide 2-thenoyltrifluoroacetone complexes into an ionic liquid  

SciTech Connect (OSTI)

The extraction of trivalent lanthanides from an aqueous phase containing 1 M NaClO{sub 4} into the room temperature ionic liquid 1-butyl-3-methylimidazolium nonafluoro-1-butane sulfonate by the beta-diketone extractant 2-thenoyltrifluoroacetone (Htta) was studied. Radiotracer distribution, absorption spectroscopy, time-resolved laser-induced fluorescence spectroscopy, and X-ray absorption fine structure measurements point to the extraction of multiple lanthanide species. At low extractant concentrations, fully hydrated aqua cations of the lanthanides are present in the ionic liquid phase. As the extractant concentration is increased 1:2 and 1:3 lanthanide:tta species are observed. In contrast, 1:4 Ln:tta complexes were observed in the extraction of lanthanides by Htta into 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. (authors)

Jensen, Mark P.; Beitz, James V.; Rickert, Paul G. [Argonne Natl Lab, Chem Sci and Engn Div, Argonne, IL 60439 (United States); Borkowski, Marian [Argonne Natl Lab, Chem Sci and Engn Div, Argonne, IL 60439 (United States); Los Alamos Natl Lab, Earth and Environm Sci Div, Carlsbad, NM, (United States); Laszak, Ivan [Argonne Natl Lab, Chem Sci and Engn Div, Argonne, IL 60439 (United States); Commisariat Energie Atom, DEN DPC SERC LANIE, Gif Sur Yvette, (France); Dietz, Mark L. [Argonne Natl Lab, Chem Sci and Engn Div, Argonne, IL 60439 (United States); Wisconsin-Milwaukee Univ, Department of Chemistry and Biochemistry, Milwaukee, WI, (United States)

2012-07-01T23:59:59.000Z

110

Fabrication of hollow mesoporous NiO hexagonal microspheres via hydrothermal process in ionic liquid  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Ni(OH){sub 2} precursors were synthesized in ionic liquid and water solution by hydrothermal method. Black-Right-Pointing-Pointer NiO hollow microspheres were prepared by thermal treatment of Ni(OH){sub 2} precursors. Black-Right-Pointing-Pointer NiO hollow microspheres were self-assembled by mesoporous cubic and hexagonal nanocrystals with high specific surface area. Black-Right-Pointing-Pointer The mesoporous structure is stable at 773 K. Black-Right-Pointing-Pointer The ionic liquid absorbed on the O-terminate surface of the crystals to form hydrogen bond and played key roles in determining the final shape of the NiO novel microstructure. -- Abstract: The novel NiO hexagonal hollow microspheres have been successfully prepared by annealing Ni(OH){sub 2}, which was synthesized via an ionic liquid-assisted hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption and Fourier transform infrared spectrometer (FTIR). The results show that the hollow NiO microstructures are self-organized by mesoporous cubic and hexagonal nanocrystals. The mesoporous structure possessed good thermal stability and high specific surface area (ca. 83 m{sup 2}/g). The ionic liquid 1-butyl-3methylimidazolium tetrafluoroborate ([Bmim][BF{sub 4}]) was found to play a key role in controlling the morphology of NiO microstructures during the hydrothermal process. The special hollow mesoporous architectures will have potential applications in many fields, such as catalysts, absorbents, sensors, drug-delivery carriers, acoustic insulators and supercapacitors.

Zhao, Jinbo, E-mail: zhaojinb@gmail.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 250061, Jinan (China) [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 250061, Jinan (China); School of Materials Science and Engineering, Shandong University, 250061, Jinan (China); Wu, Lili, E-mail: wulili@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 250061, Jinan (China) [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 250061, Jinan (China); School of Materials Science and Engineering, Shandong University, 250061, Jinan (China); Zou, Ke, E-mail: zouk2005@163.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 250061, Jinan (China) [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 250061, Jinan (China); School of Materials Science and Engineering, Shandong University, 250061, Jinan (China)

2011-12-15T23:59:59.000Z

111

Physically and chemically stable ionic liquid-infused textured surfaces showing excellent dynamic omniphobicity  

SciTech Connect (OSTI)

A fluorinated and hydrophobic ionic liquid (IL), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, effectively served as an advantageous lubricating liquid for the preparation of physically and chemically stable omniphobic surfaces based on slippery liquid-infused porous surfaces. Here, we used particulate microstructures as supports, prepared by the chemical vapor deposition of 1,3,5,7-tetramethylcyclotetrasiloxane and subsequent surface modification with (3-aminopropyl)triethoxysilane. Confirmed by SEM and contact angle measurements, the resulting IL-infused microtextured surfaces are smooth and not only water but also various low surface tension liquids can easily slide off at low substrate tilt angles of <5°, even after exposure to high temperature, vacuum, and UV irradiation.

Miranda, Daniel F.; Urata, Chihiro; Masheder, Benjamin; Dunderdale, Gary J.; Hozumi, Atsushi, E-mail: a.hozumi@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya, Aichi 463-8560 (Japan); Yagihashi, Makoto [Nagoya Municipal Industrial Research Institute, Rokuban, Atsuta-ku, Nagoya 456-0058 (Japan)

2014-05-01T23:59:59.000Z

112

Liquid/Liquid Interface Polymerized Porphyrin Membranes Displaying Size-Selective Molecular and Ionic Permeability  

E-Print Network [OSTI]

Liquid/Liquid Interface Polymerized Porphyrin Membranes Displaying Size-Selective Molecular: December 5, 2005 Thin polymeric membranes have been formed by liquid/liquid interfacial copolymerization of controllable thickness to be obtained.7 The polymerization of 1 was accomplished by condensation of porphyrin

113

Checkerboard Self-Patterning of an Ionic Liquid Film on Mercury  

SciTech Connect (OSTI)

{angstrom}-resolution studies of room temperature ionic liquid (RTIL) interfaces are scarce, in spite of their long-recognized importance for the science and many applications of RTILs. We present an {angstrom}-resolution x-ray study of a Langmuir film of an RTIL on mercury. At low (high) coverage [90 (50) {angstrom}{sup 2}/molecule] a mono-(bi)layer of surface-parallel molecules is found. The molecules self-assemble in a lateral ionic checkerboard pattern, unlike the uniform-charge, alternate-ion layers of this RTIL at its bulk-solid interface. A 2D-smectic order is found, with molecules packed in parallel stripes, forming long-range order normal to, but none along, the stripes.

L Tamam; B Ocko; H Reichert; M Deutsch

2011-12-31T23:59:59.000Z

114

Checkerboard Self-Patterning of an Ionic Liquid Film on Mercury  

SciTech Connect (OSTI)

{angstrom}-resolution studies of room temperature ionic liquid (RTIL) interfaces are scarce, in spite of their long-recognized importance for the science and many applications of RTILs. We present an {angstrom}-resolution x-ray study of a Langmuir film of an RTIL on mercury. At low (high) coverage [90 (50) {angstrom}{sup 2}/molecule] a mono-(bi)layer of surface-parallel molecules is found. The molecules self-assemble in a lateral ionic checkerboard pattern, unlike the uniform-charge, alternate-ion layers of this RTIL at its bulk-solid interface. A 2D-smectic order is found, with molecules packed in parallel stripes, forming long-range order normal to, but none along, the stripes.

Ocko, B.M.; Tamam, L.; Reichert, H.; Deutsch, M.

2011-05-10T23:59:59.000Z

115

Squeezout phenomena and boundary layer formation of a model ionic liquid under confinement and charging  

E-Print Network [OSTI]

Electrical charging of parallel plates confining a model ionic liquid down to nanoscale distances yields a variety of charge-induced changes in the structural features of the confined film. That includes even-odd switching of the structural layering and charging-induced solidification and melting, with important changes of local ordering between and within layers, and of squeezout behavior. By means of molecular dynamics simulations, we explore this variety of phenomena in the simplest charged Lennard-Jones coarse-grained model including or excluding the effect a neutral tail giving an anisotropic shape to one of the model ions. Using these models and open conditions permitting the flow of ions in and out of the interplate gap, we simulate the liquid squeezout to obtain the distance dependent structure and forces between the plates during their adiabatic appraoch under load. Simulations at fixed applied force illustrate an effective electrical pumping of the ionic liquid, from a thick nearly solid film that withstands the interplate pressure for high plate charge to complete squeezout following melting near zero charge. Effective enthalpy curves obtained by integration of interplate forces versus distance show the local minima that correspond to layering, and predict the switching between one minimum and another under squeezing and charging.

R. Capozza; A. Vanossi; A. Benassi; E. Tosatti

2014-12-22T23:59:59.000Z

116

Reversible Ionic Liquids as Double-Action Solvents for Efficient CO2 Capture  

SciTech Connect (OSTI)

We have developed a novel class of CO{sub 2} capture solvents, Reversible Ionic Liquids (RevILs), that offer high absorption capacity through two modes of capture: chemical reaction (chemisorption) and physical solubility (physisorption). These solvents are silicon containing alkaline compounds such as silylamines that form a liquid salt (ionic liquid) upon reaction with CO{sub 2}. Subsequently, modest elevations in temperature reverse the reaction and yield pure CO{sub 2} for sequestration. By incorporating Si in the molecules we have reduced the viscosity, thereby improving the mass transfer rates of CO{sub 2} absorption/desorption and decreasing the processing costs for pumping the solvent. In this project, we have made systematic changes to the structure of these compounds to improve several physical and thermodynamic properties important for CO{sub 2} capture. Through these structure-property paradigms, we have obtained a RevIL which requires only a third of the energy required by conventional aqueous MEA process for 90% CO{sub 2} capture.

Eckert, Charles; Liotta, Charles

2011-09-30T23:59:59.000Z

117

Reversible Ionic Liquids as Double-Action Solvents for Efficient CO{sub 2} Capture  

SciTech Connect (OSTI)

We have developed a novel class of CO{sub 2} capture solvents, Reversible Ionic Liquids (RevILs), that offer high absorption capacity through two modes of capture: chemical reaction (chemisorption) and physical solubility (physisorption). These solvents are silicon containing alkaline compounds such as silylamines that form a liquid salt (ionic liquid) upon reaction with CO{sub 2}. Subsequently, modest elevations in temperature reverse the reaction and yield pure CO{sub 2} for sequestration. By incorporating Si in the molecules we have reduced the viscosity, thereby improving the mass transfer rates of CO{sub 2} absorption/desorption and decreasing the processing costs for pumping the solvent. In this project, we have made systematic changes to the structure of these compounds to improve several physical and thermodynamic properties important for CO{sub 2} capture. Through these structure-property paradigms, we have obtained a RevIL which requires only a third of the energy required by conventional aqueous MEA process for 90% CO{sub 2} capture.

Charles Eckert; Charles Liotta

2011-09-30T23:59:59.000Z

118

Ionic Liquids: Breakthrough Absorption Technology for Post-Combustion CO{sub 2} Capture  

SciTech Connect (OSTI)

This is the final report for DE-FC26-07NT43091 â??Ionic Liquids: Breakthrough Absorption Technology for Post-Combustion CO{sub 2} Captureâ?. A detailed summary is provided of the ionic liquid (IL) discovery process, synthesis and testing results, process / systems modeling, lab-scale operational testing, corrosion testing and commercialization possibilities. The work resulted in the discovery of a new class of ionic liquids (ILs) that efficiently react with CO{sub 2} in a 1:1 stoichiometry with no water present and no increase in viscosity. The enthalpy of reaction was tuned to optimize process economics. The IL was found to have excellent corrosion behavior with and without CO{sub 2} present. In lab-scale tests, the IL was able to effectively remove CO{sub 2} from a simulated flue gas stream, although mass transfer was slower than with aqueous monoethanolamine (MEA) due to higher viscosities. The non-volatile nature of the solvent and its high thermal stability, however, make it an intriguing option. An independent systems analysis indicates that the economics of using the best IL discovered to date (NDIL0157), are at least comparable to â?? and potentially slightly better than -â?? the Fluor Econamine FG PlusTM process (DOE Case 12). Further work should be directed at improving mass transfer / lowering viscosity and developing commercial synthesis routes to make these ILs at scale in an inexpensive manner. Demonstration of the process at larger scales is also warranted, as is the exploration of other process configurations that leverage the anhydrous nature of the solvent and its extremely low volatility.

Maginn, Edward

2012-09-30T23:59:59.000Z

119

THERMOPHYSICAL PROPERTIES OF NANOPARTICLE-ENHANCED IONIC LIQUIDS HEAT TRANSFER FLUIDS  

SciTech Connect (OSTI)

An experimental investigation was completed on nanoparticle enhanced ionic liquid heat transfer fluids as an alternative to conventional organic based heat transfer fluids (HTFs). These nanoparticle-based HTFs have the potential to deliver higher thermal conductivity than the base fluid without a significant increase in viscosity at elevated temperatures. The effect of nanoparticle morphology and chemistry on thermophysical properties was examined. Whisker shaped nanomaterials were found to have the largest thermal conductivity temperature dependence and were also less likely to agglomerate in the base fluid than spherical shaped nanomaterials.

Fox, E.

2013-04-15T23:59:59.000Z

120

Bias-dependent molecular-level structure of electrical double layer in ionic liquid on graphite  

SciTech Connect (OSTI)

Bias-dependent structure of electrochemical double layers at liquid-solid interfaces underpin a multitude of phenomena in virtually all areas of scientific enquiry ranging from energy storage and conversion systems, biology, to geophysics and geochemistry. Here we report the bias-evolution of the electric double layer structure of an ionic liquid on highly ordered pyrolytic graphite as a model system for carbon-based electrodes for electrochemical supercapacitors measured by atomic force microscopy. Matching the observed structures to molecular dynamics simulations allows us to resolve steric effects due to cation and anion layers. We observe reconfiguration under applied bias and the orientational transitions in the Stern layer. The synergy between molecular dynamics simulation and experiment provides a comprehensive picture of structural phenomena and long- and short range interactions. This insight will improve understanding of the mechanism of charge storage in electrochemical capacitors on a molecular level which can be used to enhance their electrochemical performance.

Black, Jennifer M [ORNL] [ORNL; Walters, Deron [Asylum Research, Santa Barbara, CA] [Asylum Research, Santa Barbara, CA; Labuda, Aleksander [Asylum Research, Santa Barbara, CA] [Asylum Research, Santa Barbara, CA; Feng, Guang [ORNL] [ORNL; Hillesheim, Patrick C [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL; Cummings, Peter T [ORNL] [ORNL; Kalinin, Sergei V [ORNL] [ORNL; Proksch, Roger [Asylum Research, Santa Barbara, CA] [Asylum Research, Santa Barbara, CA; Balke, Nina [ORNL] [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A Preliminary Study of Oxidation of Lignin from Rubber Wood to Vanillin in Ionic Liquid Medium  

E-Print Network [OSTI]

In this study, lignin was oxidised to vanillin by means of oxygen in ionic liquid (1,3-dimethylimidazolium methylsulphate) medium. The parameters of the oxidation reaction that have been investigated were the following: concentration of oxygen (5, 10, 15 and 20 ft3 h-1), reaction time (2, 4, 6, 8 and 10 h) and reaction temperature (25, 40, 60, 80 and 100{\\deg}C). The Fourier transform infrared spectroscopy, high performance liquid chromatography and ultraviolet-visible analyses were used to characterise the product. The results revealed vanillin as the product obtained via the oxidation reaction. The optimum parameters of vanillin production were 20 ft3 h-1 of oxygen for 10 h at 100{\\deg}C. In conclusion, 1,3-dimethylimidazolium methylsulphate could be used as an oxidation reaction medium for the production of vanillin from rubber wood lignin.

Shamsuri, A A

2013-01-01T23:59:59.000Z

122

Conductivity of ionic liquid-derived polymers with internal gold nanoparticle conduits.  

SciTech Connect (OSTI)

The transport properties of self-supporting Au nanoparticle-ionic liquid-derived polymer composites were characterized. Topographic AFM images confirm the perforated lamellar composite architecture determined by small-angle X-ray scattering (SAXS) and further show that the in situ synthesized Au nanoparticles are localized within the hydrophilic (water) domains of the structure. At low Au nanoparticle content, the images reveal incomplete packing of spherical particles (i.e., voids) within these columns. The confinement and organization of the Au nanoparticles within the hydrophilic columns give rise to a large manifold of optical resonances in the near-IR region. The bulk composite conductivity, R{sub b}, was determined by ac electrochemical impedance spectroscopy (EIS) for samples prepared with increasing Au{sup 3+} content over a frequency range of 10 Hz to 1 MHz. A 100-fold increase was observed in the bulk conductivity at room temperature for composites prepared with the highest amount of Au{sup 3+} (1.58 {+-} 0.065 {micro}mol) versus the no Au composite, with the former reaching a value of 1.3 x 10{sup -4} S cm{sup -1} at 25 C. The temperature dependence of the conductivity recorded over this range was well-modeled by the Arrhenius equation. EIS studies on samples containing the highest Au nanoparticle content over a broader range of frequencies (2 x 10{sup -2} Hz to 5 x 10{sup 5} Hz) identified a low frequency component ascribed to electronic conduction. Electronic conduction due to aggregated Au nanoparticles was further confirmed by dc conductivity measurements. This work identifies a nanostructured composite that exhibits both ionic transport through the polymeric ionic liquid and electronic conduction from the organized encapsulated columns of Au nanoparticles.

Lee, S.; Cummins, M. D.; Willing, G. A.; Firestone, M. A.; Materials Science Division; Univ. of Louisville

2009-01-01T23:59:59.000Z

123

Oil-Miscible and Non-Corrosive Phosphonium Ionic Liquids as Candidate Lubricant Additives  

SciTech Connect (OSTI)

Ionic liquids (ILs) have been receiving considerable attention from the lubricants industry as potential friction and wear-reducing additives, but their solubility in oils is an issue. Unlike most ionic liquids that are insoluble in non-polar hydrocarbon oils, this study reports phosphonium-based ILs (PP-ILs) that are fully miscible with both mineral oil-based and synthetic lubricants. Both the cation and anion in quaternary structures, long alkyl chains, and capability of pairing the cation and the anion via a H-O bond are hypothesized to improve the compatibility between ions and neutral oil molecules. The measured viscosities of the oil-IL blends agree well with the Refutas equation that is for solutions containing multiple components. High thermal stability and non-corrosiveness were observed for the PP-ILs. Effective friction reduction and anti-wear functionality have been demonstrated in tribological tests when adding 5 wt% of a PP-IL into a base oil, suggesting potential applications for using the oil-miscible PP-ILs as lubricant additives.

Yu, Bo [ORNL; Bansal, Dinesh G [ORNL; Qu, Jun [ORNL; Sun, Xiaoqi [ORNL; Luo, Huimin [ORNL; Dai, Sheng [ORNL; Blau, Peter Julian [ORNL; Bunting, Bruce G [ORNL; Mordukhovich, Gregory [GM R& D and Planning, Warren, Michigan; Smolenski, Donald [GM R& D and Planning, Warren, Michigan

2012-01-01T23:59:59.000Z

124

Unusual mechanism for the short-range electron transfer within gold-alkanethiol-ionic-liquid films of subnanometer thickness  

SciTech Connect (OSTI)

Exploiting nanoscopically tunable composite gold-alkanethiol-ionic-liquid/ferrocene self-assembled systems with tunable electron transfer distance, we discovered in the case of thinner alkanethiol films a thermally activated electron transfer pattern totally controlled by the viscosity-related slow relaxation mode(s) of the ionic liquid acting as the reactant's fluctuating environment. This pattern manifested through the activation enthalpy and volume parameters that are identical to those for viscous flow was explained in terms of the extreme adiabatic mechanism with a vanishing Marcus barrier (via the exponential Franck-Condon-like term approaching unity).

Khoshtariya, Dimitri E. [Department of Physics and Institute for Biophysics and Bionanosciences, I. Javakhishvili Tbilisi State University, I. Chavchavadze Avenue 3, 0128 Tbilisi, Georgia (United States); Department of Chemistry and Pharmacy, University of Erlangen-Nuernberg, Egerlandstrasse 1, 91058 Erlangen (Germany); Institute of Molecular Biology and Biophysics and Institute of Inorganic Chemistry and Electrochemistry, Gotua 12, 0160 Tbilisi, Georgia (United States); Dolidze, Tina D. [Department of Chemistry and Pharmacy, University of Erlangen-Nuernberg, Egerlandstrasse 1, 91058 Erlangen (Germany); Institute of Molecular Biology and Biophysics and Institute of Inorganic Chemistry and Electrochemistry, Gotua 12, 0160 Tbilisi, Georgia (United States); Eldik, Rudi van [Department of Chemistry and Pharmacy, University of Erlangen-Nuernberg, Egerlandstrasse 1, 91058 Erlangen (Germany)

2009-12-15T23:59:59.000Z

125

Uranyl coordination environment in hydrophobic ionic liquids : an in situ investigation.  

SciTech Connect (OSTI)

Different inner-sphere coordination environments are observed for the uranyl nitrate complexes formed with octyl-phenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and tributyl phosphate in dodecane and in the hydrophobic ionic liquids (ILs) [C{sub 4}mim][PF{sub 6}] and [C{sub 8}mim][N(SO{sub 2}CF{sub 3}){sub 2}]. Qualitative differences in the coordination environment of the extracted uranyl species are implied by changes in peak intensity patterns and locations for uranyl UV-visible spectral bands when the solvent is changed. EXAFS data for uranyl complexes in dodecane solutions is consistent with hexagonal bipyramidal coordination and the existence of UO{sub 2}(NO{sub 3}){sub 2}(CMPO){sub 2}. In contrast, the complexes formed when uranyl is transferred from aqueous nitric acid solutions into the ILs exhibit an average equatorial coordination number of approximately 4.5. Liquid/liquid extraction results for uranyl in both ILs indicate a net stoichiometry of UO{sub 2}(NO{sub 3})(CMPO){sup +}. The concentration of the IL cation in the aqueous phase increases in proportion to the amount of UO{sub 2}(NO{sub 3})(CMPO){sup +} in the IL phase, supporting a predominantly cation exchange mechanism for partitioning in the IL systems.

Visser, A. E.; Jensen, M. P.; Laszak, I.; Nash, K. L.; Choppin, G. R.; Roers, R. D.; Chemistry; Univ. of Alabama; Flordia State Univ.

2003-01-01T23:59:59.000Z

126

Click grafting of seaweed bioactive polysaccharides onto PVC surfaces using ionic liquid as green solvent and catalyst  

E-Print Network [OSTI]

Click grafting of seaweed bioactive polysaccharides onto PVC surfaces using ionic liquid as green Houssinière, BP 32229, 44322 Nantes, France A green and click approach of grafting polysaccharides onto PVC surfaces was developed. PVC isothiocyanate surfaces (PVC-NCS) were prepared by nucleofilic substitution

Boyer, Edmond

127

[Cu(I)(bpp)]BF4: the first extended coordination network prepared solvothermally in an ionic liquid solvent  

E-Print Network [OSTI]

, the two-dimensional net- work [Cu(bpp)]BF4 [bpp = 1,3-bis(4-pyridyl)propane], pro- duced via and 1,3-bis(4-pyridyl)propane (bpp) ligand. [bmim][BF4], as a room temperature ionic liquid, is air

Li, Jing

128

Improved dye-sensitized solar cells by composite ionic liquid electrolyte incorporating layered titanium phosphate  

SciTech Connect (OSTI)

We reported a composite electrolyte prepared by incorporating layered {alpha}-titanium phosphate ({alpha}-TiP) into a binary ionic liquid of 1-propyl-3-methylimidazolium iodide (PMII) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EmimBF{sub 4}) (volume ratio, 13:7) electrolyte. The addition of {alpha}-TiP markedly improved the photovoltaic properties of dye-sensitized solar cells (DSSCs) compared to that without {alpha}-TiP. The enhancement was explained by improved diffusion of tri-iodide (I{sub 3}{sup -}) ions, suppressed electron recombination with I{sub 3}{sup -} in the electrolyte and increased lifetime of electrons in mesoscopic TiO{sub 2} film. (author)

Cheng, Ping; Lan, Tian; Wang, Wanjun; Wu, Haixia; Yang, Haijun; Guo, Shouwu [National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Deng, Changsheng; Dai, Xiaming [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

2010-05-15T23:59:59.000Z

129

Lubricants or lubricant additives composed of ionic liquids containing ammonium cations  

DOE Patents [OSTI]

A lubricant or lubricant additive is an ionic liquid alkylammonium salt. The alkylammonium salt has the structure R.sub.xNH.sub.(4-x).sup.+,[F.sub.3C(CF.sub.2).sub.yS(O).sub.2].sub.2N.sup- .- where x is 1 to 3, R is independently C.sub.1 to C.sub.12 straight chain alkyl, branched chain alkyl, cycloalkyl, alkyl substituted cycloalkyl, cycloalkyl substituted alkyl, or, optionally, when x is greater than 1, two R groups comprise a cyclic structure including the nitrogen atom and 4 to 12 carbon atoms, and y is independently 0 to 11. The lubricant is effective for the lubrication of many surfaces including aluminum and ceramics surfaces.

Qu, Jun (Knoxville, TN) [Knoxville, TN; Truhan, Jr.,; John J. (Cookeville, TN) [Cookeville, TN; Dai, Sheng (Knoxville, TN) [Knoxville, TN; Luo, Huimin (Knoxville, TN) [Knoxville, TN; Blau, Peter J. (Knoxville, TN) [Knoxville, TN

2010-07-13T23:59:59.000Z

130

Impact of Mixed Feedstocks and Feedstock Densification on Ionic Liquid Pretreatment Efficiency  

SciTech Connect (OSTI)

Background: Lignocellulosic biorefineries must be able to efficiently process the regional feedstocks that are available at cost-competitive prices year round. These feedstocks typically have low energy densities and vary significantly in composition. One potential solution to these issues is blending and/or densifying the feedstocks in order to create a uniform feedstock. Results/discussion: We have mixed four feedstocks - switchgrass, lodgepole pine, corn stover, and eucalyptus - in flour and pellet form and processed them using the ionic liquid 1-ethyl-3-methylimidazolium acetate. Sugar yields from both the mixed flour and pelletized feedstocks reach 90% within 24 hours of saccharification. Conclusions: Mixed feedstocks, in either flour or pellet form, are efficiently processed using this pretreatment process, and demonstrate that this approach has significant potential.

Jian Shi; Vicki S. Thompson; Neal A. Yancey; Vitalie Stavila; Blake A. Simmons; Seema Singh

2013-01-01T23:59:59.000Z

131

Free Radical Polymerization of Styrene and Methyl Methacrylate in Various Room Temperature Ionic Liquids  

SciTech Connect (OSTI)

Conventional free radical polymerization of styrene and methyl methacrylate was carried out in various room temperature ionic liquids (RTILs). The RTILs used in this research encompass a wide range of cations and anions. Typical cations include imidazolium, phosphonium, pyridinium, and pyrrolidinium; typical anions include amide, borate, chloride, imide, phosphate, and phosphinate. Reactions are faster and polymers obtained usually have higher molecular weights when compared to polymerizations carried out in volatile organic solvents under the same conditions. This shows that rapid rates of polymerization and high molecular weights are general features of conventional radical polymerizations in RTILs. Attempts to correlate the polarities and viscosities of the RTILs with the polymerization behavior fail to yield discernible trends.

Zhang, Hongwei [University of Tennessee, Knoxville (UTK); Hong, Kunlun [ORNL; Mays, Jimmy [ORNL

2005-01-01T23:59:59.000Z

132

Determining diffusion coefficients of ionic liquids by means of field cycling nuclear magnetic resonance relaxometry  

SciTech Connect (OSTI)

Field Cycling Nuclear Magnetic Resonance (FC NMR) relaxation studies are reported for three ionic liquids: 1-ethyl-3- methylimidazolium thiocyanate (EMIM-SCN, 220–258 K), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF{sub 4}, 243–318 K), and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF{sub 6}, 258–323 K). The dispersion of {sup 1}H spin-lattice relaxation rate R{sub 1}(?) is measured in the frequency range of 10 kHz–20 MHz, and the studies are complemented by {sup 19}F spin-lattice relaxation measurements on BMIM-PF{sub 6} in the corresponding frequency range. From the {sup 1}H relaxation results self-diffusion coefficients for the cation in EMIM-SCN, BMIM-BF{sub 4}, and BMIM-PF{sub 6} are determined. This is done by performing an analysis considering all relevant intra- and intermolecular relaxation contributions to the {sup 1}H spin-lattice relaxation as well as by benefiting from the universal low-frequency dispersion law characteristic of Fickian diffusion which yields, at low frequencies, a linear dependence of R{sub 1} on square root of frequency. From the {sup 19}F relaxation both anion and cation diffusion coefficients are determined for BMIM-PF{sub 6}. The diffusion coefficients obtained from FC NMR relaxometry are in good agreement with results reported from pulsed- field-gradient NMR. This shows that NMR relaxometry can be considered as an alternative route of determining diffusion coefficients of both cations and anions in ionic liquids.

Kruk, D. [Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, S?oneczna 54, PL-10710 Olsztyn (Poland); Universität Bayreuth, Experimentalphysik II, 95440 Bayreuth (Germany); Meier, R.; Rössler, E. A. [Universität Bayreuth, Experimentalphysik II, 95440 Bayreuth (Germany); Rachocki, A. [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Pozna? (Poland); Korpa?a, A. [Department of Biophysics, Jagiellonian University Medical College, ?azarza 16, 31-530 Kraków, Poland and Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków (Poland); Singh, R. K. [Ionic Liquid and Solid State Ionics Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221 005 (India)

2014-06-28T23:59:59.000Z

133

Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen  

DOE Patents [OSTI]

Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

Tonkovich, Anna Lee Y. (Dublin, OH); Litt, Robert D. (Westerville, OH); Dongming, Qiu (Dublin, OH); Silva, Laura J. (Plain City, OH); Lamont, Micheal Jay (Plain City, OH); Fanelli, Maddalena (Plain City, OH); Simmons, Wayne W. (Plain city, OH); Perry, Steven (Galloway, OH)

2011-10-04T23:59:59.000Z

134

Radiation induced redox reactions and fragmentation of constituent ions in ionic liquids II. Imidazolium cations.  

SciTech Connect (OSTI)

In part 1 of this study, radiolytic degradation of constituent anions in ionic liquids (ILs) was examined. The present study continues the themes addressed in part 1 and examines the radiation chemistry of 1,3-dialkyl substituted imidazolium cations, which currently comprise the most practically important and versatile class of ionic liquid cations. For comparison, we also examined 1,3-dimethoxy- and 2-methyl-substituted imidazolium and 1-butyl-4-methylpyridinium cations. In addition to identification of radicals using electron paramagnetic resonance spectroscopy (EPR) and selective deuterium substitution, we analyzed stable radiolytic products using {sup 1}H and {sup 13}C nuclear magnetic resonance (NMR) and tandem electrospray ionization mass spectrometry (ESMS). Our EPR studies reveal rich chemistry initiated through 'ionization of the ions': oxidation and the formation of radical dications in the aliphatic arms of the parent cations (leading to deprotonation and the formation of alkyl radicals in these arms) and reduction of the parent cation, yielding 2-imidazolyl radicals. The subsequent reactions of these radicals depend on the nature of the IL. If the cation is 2-substituted, the resulting 2-imidazolyl radical is relatively stable. If there is no substitution at C(2), the radical then either is protonated or reacts with the parent cation forming a C(2)-C(2) {sigma}{sigma}*-bound dimer radical cation. In addition to these reactions, when methoxy or C{sub {alpha}}-substituted alkyl groups occupy the N(1,3) positions, their elimination is observed. The elimination of methyl groups from N(1,3) was not observed. Product analyses of imidazolium liquids irradiated in the very-high-dose regime (6.7 MGy) reveal several detrimental processes, including volatilization, acidification, and oligomerization. The latter yields a polymer with m/z of 650 {+-} 300 whose radiolytic yield increases with dose (0.23 monomer units per 100 eV for 1-methyl-3-butylimidazolium trifluorosulfonate). Gradual generation of this polymer accounts for the steady increase in the viscosity of the ILs upon irradiation. Previous studies at lower dose have missed this species due to its wide mass distribution (stretching out to m/z 1600) and broad NMR lines, which make it harder to detect at lower concentrations. Among other observed changes is the formation of water immiscible fractions in hydrophilic ILs and water miscible fractions in hydrophobic ILs. The latter is due to anion fragmentation. The import of these observations for use of ILs as extraction solvents in nuclear cycle separations is discussed.

Shkrob, I. A.; Marin, T. W.; Chemerisov, S. D.; Hatcher, J.; Wishart, J. (Chemical Sciences and Engineering Division); (BNL)

2011-04-14T23:59:59.000Z

135

Bis(fluoromalonato)borate (BFMB) Anion Based Ionic Liquid As an Additive for Lithium-Ion Battery Electrolytes  

SciTech Connect (OSTI)

Propylene carbonate (PC) is a good solvent for lithium ion battery applications due to its low melting point and high dielectric constant. However, PC is easily intercalated into graphite causing it to exfoliate, killing its electrochemical performance. Here we report on the synthesis of a new ionic liquid electrolyte based on partially fluorinated borate anion, 1-butyl-1,2-dimethylimidazolium bis(fluoromalonato)borate (BDMIm.BFMB), which can be used as an additive in 1 M LiPF6/PC electrolyte to suppress graphite exfoliation and improve cycling performance. In addition, both PC and BDMIm.BFMB can be used synergistically as additive to 1.0M LiPF6/methyl isopropyl sulfone (MIPS) to dramatically improve its cycling performance. It is also found that the chemistry nature of the ionic liquids has dramatic effect on their role as additive in PC based electrolyte.

Sun, Xiao-Guang [ORNL] [ORNL; Liao, Chen [ORNL] [ORNL; Baggetto, Loic [ORNL] [ORNL; Guo, Bingkun [ORNL] [ORNL; Unocic, Raymond R [ORNL] [ORNL; Veith, Gabriel M [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL

2014-01-01T23:59:59.000Z

136

An XAFS Study of Nickel Chloride in the Ionic Liquid 1-ethyl-3-methyl Imidazolium Chloride/ Aluminum Chloride  

SciTech Connect (OSTI)

The electrodeposition of metals from aqueous solutions has a successful history for many metals. However, some metals cannot be deposited from aqueous solutions because their potentials fall outside of the window of stability for water. Using ionic liquids for the electrodeposition of metals can avoid some of these difficulties because they have a larger region of stability than water. The electrochemical window can be tailored to fit a particular application by choosing appropriate anions and cations to form the melt. There is also the possibility to deposit pure metals without the oxides and hydrides that can form in aqueous solutions. The study of the structure of metal salts in ionic liquids is an important step towards achieving these goals.

Roeper, D.; Cheek, G; Pandya, K; O'Gragy, W

2008-01-01T23:59:59.000Z

137

Vehicle Technologies Office Merit Review 2014: Ionic Liquids as Anti-Wear Additives for Next-Generation Low-Viscosity Fuel-Efficient Engine Lubricants  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ionic liquids...

138

DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS  

SciTech Connect (OSTI)

Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure H{sub 2}/O{sub 2} due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO{sub 2} from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80?C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO{sub 2}, and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.

Fox, E.

2012-05-01T23:59:59.000Z

139

Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The biological effect of ionic liquids (ILs) is one of the highly debated topics as they are being contemplated for various industrial applications. 1-ethyl-2-methylimidazolium acetate ([EMIM][Ac]) showed remarkable hormesis on anaerobic Clostridium sp. and aerobic Psueudomonas putida. Bacterial growth was stimulated at up to 2.5 g L-1 and inhibited at > 2.5 g L-1 of ([EMIM][Ac]). The growth of Clostridium sp. and P. putida were higher by 0.4 and 4-fold respectively, in the presense of 0.5 g L-1 of ([EMIM][Ac]). Assessment of the effect of [EMIM][Ac] under different growth conditions showed that the hormesis of [EMIM][Ac] was mediated via regulation of medium pH. Hormetic effect of [EMIM][Ac] was evident only in medium with poor buffering capacity and in the presence of a fermentable substrate as the carbon source. The hormetic effect of [EMIM][Ac] on bacterial growth is most likely associated with the buffering capacity of acetate anion. These observations have implications in ILs toxicity studies and ecological risk assessment.

Nancharaiah, Y. V. [Bhabha Atomic Research Center, Kalpakkam (India). Biofouling and Biofilm Processes Sect.; Francis, A. J. [Brookhaven National Laboratory (BNL), Upton, NY (United States). Environmental Sciences Dept.; POSTECH, Pohang (Korea, Rep. of). Div. of Advanced Nuclear Engineering

2015-06-01T23:59:59.000Z

140

Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries  

SciTech Connect (OSTI)

Li-S battery is a complicated system with many challenges existing before its final market penetration. While most of the reported work for Li-S batteries is focused on the cathode design, we demonstrate in this work that the anode consumption accelerated by corrosive polysulfide solution also critically determines the Li-S cell performance. To validate this hypothesis, ionic liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) has been employed to modify the properties of SEI layer formed on Li metal surface in Li-S batteries. It is found that the IL-enhanced passivation film on the lithium anode surface exhibits much different morphology and chemical compositions, effectively protecting lithium metal from continuous attack by soluble polysulfides. Therefore, both cell impedance and the irreversible consumption of polysulfides on lithium metal are reduced. As a result, the Coulombic efficiency and the cycling stability of Li-S batteries have been greatly improved. After 120 cycles, Li-S battery cycled in the electrolyte containing IL demonstrates a high capacity retention of 94.3% at 0.1 C rate. These results unveil another important failure mechanism for Li-S batteries and shin the light on the new approaches to improve Li-S battery performances.

Zheng, Jianming; Gu, Meng; Chen, Honghao; Meduri, Praveen; Engelhard, Mark H.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

2013-05-16T23:59:59.000Z

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Tribological characteristics of aluminum alloys against steel lubricated by ammonium and imidazolium ionic liquids  

SciTech Connect (OSTI)

Sliding friction and wear characteristics of aluminum alloys against AISI 52100 steel lubricated by ionic liquids (ILs) were investigated at both room and elevated temperatures. The tested aluminum alloys include a commercially pure aluminum Al 1100, a wrought alloy Al 6061-T6511, and a cast alloy Al 319-T6. The lubricating performance of two ILs with the same anion, one ammonium-based [C8H17]3NH.Tf2N and one imidazolium-based C10mim.Tf2N, were compared each other and benchmarked against that of a conventional fully-formulated engine oil. Significant friction (up to 35%) and wear (up to 55%) reductions were achieved by the ammonium IL when lubricating the three aluminum alloys compared to the engine oil. The imidazolium IL performed better than the oil but not as well as the ammonium IL for Al 1100 and 319 alloys. However, accelerated wear was unexpectedly observed for Al 6061 alloy when lubricated by C10mim.Tf2N. Surface chemical analyses implied complex tribochemical reactions between the aluminum surfaces and ILs during the wear testing, which has been demonstrated either beneficial by forming a protective boundary film or detrimental by causing severe tribo-corrosion. The effects of the IL cation structure, aluminum alloy composition, and tribo-testing condition on the friction and wear results have been discussed.

Qu, Jun [ORNL; Blau, Peter Julian [ORNL; Dai, Sheng [ORNL; Luo, Huimin [ORNL; Meyer III, Harry M [ORNL; Truhan, John J. [Caterpillar Inc.

2009-01-01T23:59:59.000Z

142

Effect of ionic liquid treatment on the structures of lignins in solutions  

SciTech Connect (OSTI)

The solution structures of three types of isolated lignin - organosolv (OS), Kraft (K), and low sulfonate (LS) - before and after treatment with 1-ethyl-3-methylimidazolium acetate were studied using small-angle neutron scattering (SANS) and dynamic light scattering (DLS) over a concentration range of 0.3-2.4 wt %. The results indicate that each of these lignins is comprised of aggregates of well-defined basal subunits, the shapes and sizes of which, in D{sub 2}O and DMSO-d{sub 6}, are revealed using these techniques. LS lignin contains a substantial amount of nanometer-scale individual subunits. In aqueous solution these subunits have a well-defined elongated shape described well by ellipsoidal and cylindrical models. At low concentration the subunits are highly expanded in alkaline solution, and the effect is screened with increasing concentration. OS lignin dissolved in DMSO was found to consist of a narrow distribution of aggregates with average radius 200 {+-} 30 nm. K lignin in DMSO consists of aggregates with a very broad size distribution. After ionic liquid (IL) treatment, LS lignin subunits in alkaline solution maintained the elongated shape but were reduced in size. IL treatment of OS and K lignins led to the release of nanometer-scale subunits with well-defined size and shape.

Cheng, Gang [Joint Bioenergy Institute; Kent, Michael S [ORNL; He, Lilin [ORNL; Varanasi, Patanjali [Joint Bioenergy Institute; Dibble, Dean [Joint Bioenergy Institute; Melnichenko, Yuri B [ORNL; Simmons, Blake [Sandia National Laboratories (SNL); Singh, Seema [Joint Bioenergy Institute

2012-01-01T23:59:59.000Z

143

Physical insight into switchgrass dissolution in the ionic liquid 1-ethyl-3-methylimidazolium acetate  

SciTech Connect (OSTI)

Small-angle neutron scattering was used to characterize solutions of switchgrass and the constituent biopolymers cellulose, hemicellulose, and lignin, as well as a physical mixture of them mimicking the composition of switchgrass, dissolved in the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate. The results demonstrate that the IL dissolves the cellulose fibrils of switchgrass, although a supramolecular biopolymer network remains that is not present in solutions of the individual biopolymers and that does not self-assemble in a solution containing the physical mixture of the individual biopolymers. The persistence of a network-like structure indicates that dissolving switchgrass in the IL does not disrupt all of the physical entanglements and covalent linkages between the biopolymers created during plant growth. Reconstitution of the IL-dissolved switchgrass yields carbohydrate-rich material containing cellulose with a low degree of crystallinity, as determined by powder X-ray diffraction, which impacts potential down-stream uses of the biopolymers produced by the process. The data suggests that the use of chemical additives which would break bonds that exist between the lignin and hemicellulose might improve the purity of the resulting product, but may not be able to disrupt the highly physically-entangled biopolymer network sufficiently to facilitate their separation.

Wang, Hui [University of Alabama, Tuscaloosa] [University of Alabama, Tuscaloosa; Gurau, Gabriela [University of Alabama, Tuscaloosa] [University of Alabama, Tuscaloosa; Pingali, Sai Venkatesh [ORNL] [ORNL; O'Neil, Hugh [ORNL] [ORNL; Evans, Barbara R [ORNL] [ORNL; Urban, Volker S [ORNL] [ORNL; Heller, William T [ORNL] [ORNL; Rogers, Robin D [University of Alabama, Tuscaloosa] [University of Alabama, Tuscaloosa

2014-01-01T23:59:59.000Z

144

Lithium-sulfur batteries based on nitrogen-doped carbon and ionic liquid electrolyte  

SciTech Connect (OSTI)

Nitrogen-doped mesoporous carbon (NC) and sulfur were used to prepare an NC/S composite cathode, which was evaluated in an ionic liquid electrolyte of 0.5 M lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) in methylpropylpyrrolidinium bis(trifluoromethane sulfonyl)imide (MPPY.TFSI) by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and cycle testing. To facilitate the comparison, a C/S composite based on activated carbon (AC) without nitrogen doping was also fabricated under the same conditions as those for the NC/S composite. Compared with the AC/S composite, the NC/S composite showed enhanced activity toward sulfur reduction, as evidenced by the early onset sulfur reduction potential, higher redox current density in the CV test, and faster charge transfer kinetics as indicated by EIS measurement. At room temperature under a current density of 84 mA g-1 (C/20), the battery based on the NC/S composite exhibited higher discharge potential and an initial capacity of 1420 mAh g-1 whereas that based on the AC/S composite showed lower discharge potential and an initial capacity of 1120 mAh g-1. Both batteries showed similar capacity fading with cycling due to the intrinsic polysulfide solubility and the polysulfide shuttle mechanism; the capacity fading can be improved by further modification of the cathode.

Sun, Xiao-Guang [ORNL; Wang, Xiqing [ORNL; Mayes, Richard T [ORNL; Dai, Sheng [ORNL

2012-01-01T23:59:59.000Z

145

Electrochemical Polishing Applications and EIS of a Vitamin B{sub 4}-Based Ionic Liquid  

SciTech Connect (OSTI)

Modern particle accelerators require minimal interior surface roughness for Niobium superconducting radio frequency (SRF) cavities. Polishing of the Nb is currently achieved via electrochemical polishing with concentrated mixtures of sulfuric and hydrofluoric acids. This acid-based approach is effective at reducing the surface roughness to acceptable levels for SRF use, but due to acid-related hazards and extra costs (including safe disposal of used polishing solutions), an acid-free method would be preferable. This study focuses on an alternative electrochemical polishing method for Nb, using a novel ionic liquid solution containing choline chloride, also known as Vitamin B{sub 4} (VB{sub 4}). Potentiostatic electrochemical impedance spectroscopy (EIS) was also performed on the VB4-based system. Nb polished using the VB4-based method was found to have a final surface roughness comparable to that achieved via the acid-based method, as assessed by atomic force microscopy (AFM). These findings indicate that acid-free VB{sub 4}-based electrochemical polishing of Nb represents a promising replacement for acid-based methods of SRF cavity preparation.

Wixtrom, Alex I. [Christopher Newport University, Newport News, VA (United States); Buhler, Jessica E. [Christopher Newport University, Newport News, VA (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Abdel-Fattah, Tarek M. [Christopher Newport University, Newport News, VA (United States)

2013-01-01T23:59:59.000Z

146

Lithium Ion Transport Mechanism in Ternary Polymer Electrolyte-Ionic Liquid Mixtures - A Molecular Dynamics Simulation Study  

E-Print Network [OSTI]

The lithium transport mechanism in ternary polymer electrolytes, consisting of PEO/LiTFSI and various fractions of the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethane)sulfonimide, are investigated by means of MD simulations. This is motivated by recent experimental findings [Passerini et al., Electrochim. Acta 2012, 86, 330-338], which demonstrated that these materials display an enhanced lithium mobility relative to their binary counterpart PEO/LiTFSI. In order to grasp the underlying microscopic scenario giving rise to these observations, we employ an analytical, Rouse-based cation transport model [Maitra at al., PRL 2007, 98, 227802], which has originally been devised for conventional polymer electrolytes. This model describes the cation transport via three different mechanisms, each characterized by an individual time scale. It turns out that also in the ternary electrolytes essentially all lithium ions are coordinated by PEO chains, thus ruling out a transport mechanism enhanced by the presence of ionic-liquid molecules. Rather, the plasticizing effect of the ionic liquid contributes to the increased lithium mobility by enhancing the dynamics of the PEO chains and consequently also the motion of the attached ions. Additional focus is laid on the prediction of lithium diffusion coefficients from the simulation data for various chain lengths and the comparison with experimental data, thus demonstrating the broad applicability of our approach.

Diddo Diddens; Andreas Heuer

2013-02-20T23:59:59.000Z

147

Ionic Liquid and Supercritical Fluid Hyphenated Techniques for Dissolution and Separation of Lanthanides, Actinides, and Fission Products  

SciTech Connect (OSTI)

This project is investigating techniques involving ionic liquids (IL) and supercritical (SC) fluids for dissolution and separation of lanthanides, actinides, and fission products. The research project consists of the following tasks: Study direct dissolution of lanthanide oxides, uranium dioxide and other actinide oxides in [bmin][Tf{sub 2}N] with TBP(HNO{sub 3}){sub 1.8}(H{sub 2}O){sub 0.6} and similar types of Lewis acid-Lewis base complexing agents; Measure distributions of dissolved metal species between the IL and the sc-CO{sub 2} phases under various temperature and pressure conditions; Investigate the chemistry of the dissolved metal species in both IL and sc-CO{sub 2} phases using spectroscopic and chemical methods; Evaluate potential applications of the new extraction techniques for nuclear waste management and for other projects. Supercritical carbon dioxide (sc-CO{sub 2}) and ionic liquids are considered green solvents for chemical reactions and separations. Above the critical point, CO{sub 2} has both gas- and liquid-like properties, making it capable of penetrating small pores of solids and dissolving organic compounds in the solid matrix. One application of sc-CO{sub 2} extraction technology is nuclear waste management. Ionic liquids are low-melting salts composed of an organic cation and an anion of various forms, with unique properties making them attractive replacements for the volatile organic solvents traditionally used in liquid-liquid extraction processes. One type of room temperature ionic liquid (RTIL) based on the 1-alkyl-3-methylimidazolium cation [bmin] with bis(trifluoromethylsulfonyl)imide anion [Tf{sub 2}N] is of particular interest for extraction of metal ions due to its water stability, relative low viscosity, high conductivity, and good electrochemical and thermal stability. Recent studies indicate that a coupled IL sc-CO{sub 2} extraction system can effectively transfer trivalent lanthanide and uranyl ions from nitric acid solutions. Advantages of this technique include operation at ambient temperature and pressure, selective extraction due to tunable sc-CO{sub 2} solvation strength, no IL loss during back-extraction, and no organic solvent introduced into the IL phase.

Wai, Chien M. [Univ. of Idaho, Moscow, ID (United States); Bruce Mincher

2012-12-01T23:59:59.000Z

148

THE POTENTIAL OF NANOPARTICLE ENHANCED IONIC LIQUIDS (NEILS) AS ADVANCED HEAT TRANSFER FLUIDS  

SciTech Connect (OSTI)

Interest in capturing the energy of the sun is rising as demands for renewable energy sources increase. One area of developing research is the use of concentrating solar power (CSP), where the solar energy is concentrated by using mirrors to direct the sunlight towards a collector filled with a heat transfer fluid (HTF). The HTF transfers the collected energy into pressurized steam, which is used to generate energy. The greater the energy collected by the HTF, the more efficent the electrical energy production is, thus the overall efficiency is controlled by the thermal fluid. Commercial HTFs such as Therminol{reg_sign} (VP-1), which is a blend of biphenyl and diphenyl oxide, have a significant vapor pressure, especially at elevated temperatures. In order for these volatile compounds to be used in CSP systems, the system either has to be engineered to prevent the phase change (i.e., volatilization and condensation) through pressurization of the system, or operate across the phase change. Over thirty years ago, a class of low-melting organic compounds were developed with negligible vapor pressure. These compounds are referred to as ionic liquids (ILs), which are organic-based compounds with discrete charges that cause a significant decrease in their vapor pressure. As a class, ILs are molten salts with a melting point below 100 C and can have a liquidus range approaching 400 C, and in several cases freezing points being below 0 C. Due to the lack of an appreciable vapor pressure, volatilization of an IL is not possible at atmospheric pressure, which would lead to a simplification of the design if used as a thermal fluid and for energy storage materials. Though the lack of a vapor pressure does not make the use of ILs a better HTF, the lack of a vapor pressure is a compliment to their higher heat capacity, higher volummetric density, and thus higher volumetric heat capacity. These favorable physical properties give ILs a pontential advantage over the current commerically used thermal fluids. Also within the past decade nanofluids have gained attention for thermal conductivity enhancment of fluids, but little analysis has been completed on the heat capacity effects of the nanoparticle addition. The idea of ILs or nanofluids as a HTF is not new, as there are several references that have proposed the idea. However, the use of ionic liquid nanofluids containing nanomaterials other than carbon nanotubes has never before been studied. Here, for the first time, nano-particle enhanced ILs (NEILs) have been shown to increase the heat capacity of the IL with no adverse side effects to the ILs thermal stability and, only at high nanoparticle loading, are the IL physical properties affected. An increase of volumetric heat capacity translates into a better heat transfer fluid as more energy is stored per volumetric unit in the solar concentrating section, thus more efficency in increased steam pressure. Results show that the properties of the NEIL are highly dependant on the suspended nanomaterial and careful materials selection is required to fully optimize the nanofluid properties.

Fox, E.; Bridges, N.; Visser, A.

2011-09-14T23:59:59.000Z

149

The importance of ion size and electrode curvature on electrical double layers in ionic liquids  

SciTech Connect (OSTI)

Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF{sub 6}], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF{sub 6}] (near the positive electrode) ? [BMIM][Cl] (near the negative electrode) ? [BMIM][PF{sub 6}] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a “Multiple Ion Layers with Overscreening” (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

Feng, G.; Qiao, R.; Huang, J; Dai, S.; Sumpter, B. G.; Meunier, V.

2011-01-01T23:59:59.000Z

150

The Importance of Ion Size and Electrode Curvature on Electrical Double Layers in Ionic Liquids  

SciTech Connect (OSTI)

Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF(6)], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF(6)] (near the positive electrode) {approx} [BMIM][Cl] (near the negative electrode) {approx} [BMIM][PF(6)] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a 'Multiple Ion Layers with Overscreening' (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

Feng, Guang [Clemson University; Qiao, Rui [ORNL; Huang, Jingsong [ORNL; Dai, Sheng [ORNL; Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL

2010-01-01T23:59:59.000Z

151

Identification of a haloalkaliphilic and thermostable cellulase with improved ionic liquid tolerance  

SciTech Connect (OSTI)

Some ionic liquids (ILs) have been shown to be very effective solvents for biomass pretreatment. It is known that some ILs can have a strong inhibitory effect on fungal cellulases, making the digestion of cellulose inefficient in the presence of ILs. The identification of IL-tolerant enzymes that could be produced as a cellulase cocktail would reduce the costs and water use requirements of the IL pretreatment process. Due to their adaptation to high salinity environments, halophilic enzymes are hypothesized to be good candidates for screening and identifying IL-resistant cellulases. Using a genome-based approach, we have identified and characterized a halophilic cellulase (Hu-CBH1) from the halophilic archaeon, Halorhabdus utahensis. Hu-CBH1 is present in a gene cluster containing multiple putative cellulolytic enzymes. Sequence and theoretical structure analysis indicate that Hu-CBH1 is highly enriched with negatively charged acidic amino acids on the surface, which may form a solvation shell that may stabilize the enzyme, through interaction with salt ions and/or water molecules. Hu-CBH1 is a heat tolerant haloalkaliphilic cellulase and is active in salt concentrations up to 5 M NaCl. In high salt buffer, Hu-CBH1 can tolerate alkali (pH 11.5) conditions and, more importantly, is tolerant to high levels (20percent w/w) of ILs, including 1-allyl-3-methylimidazolium chloride ([Amim]Cl). Interestingly, the tolerances to heat, alkali and ILs are found to be salt-dependent, suggesting that the enzyme is stabilized by the presence of salt. Our results indicate that halophilic enzymes are good candidates for the screening of IL-tolerant cellulolytic enzymes.

Zhang, Tao; Datta, Supratim; Eichler, Jerry; Ivanova, Natalia; Axen, Seth D.; Kerfeld, Cheryl A.; Chen, Feng; Kyrpides, Nikos; Hugenholtz, Philip; Cheng, Jan-Fang; Sale, Kenneth L.; Simmons, Blake; Rubin, Eddy

2011-02-17T23:59:59.000Z

152

Generation of gas-phase zirconium fluoroanions by electrospray of an ionic liquid  

SciTech Connect (OSTI)

RATIONALE: When measuring extremely wide isotope ratios (= 1 x 109) accelerator mass spectrometry (AMS) is the instrument of choice, however it requires an anion for injection into the tandem accelerator. Since many elements do not have positive electronegativities they do not form stable negative atomic ions, and hence are not compatible for isotope ratio measurement using AMS. Thus new approaches for forming anions are sought; fluoroanions are particularly attractive because fluorine is monoisotopic, and thus will not have overlapping isobars with the isotope of interest. METHODS: An approach is described for making zirconium fluoroanions using the fluorinating ionic liquid (IL) 1-ethyl-3-methylimidazolium fluorohydrogenate, which was used to generate abundant [ZrF5-] using electrospray ionization. The IL was dissolved in acetonitrile, combined with a dilute solution of either Zr4+ or ZrO2+, and then electrosprayed. Mass analysis and collision induced dissociation were conducted using a time-of-flight mass spectrometer. Cluster structures were predicted using density functional theory calculations. RESULTS: The fluorohydrogenate IL solutions generated abundant [ZrF5-] starting from solutions of both Zr4+ and ZrO2+. The mass spectra also contained IL-bearing cluster ions, whose compositions indicated the presence of [ZrF6]2- in solution, a conclusion supported by the structural calculations. Rinsing out the zirconium-IL solution with acetonitrile decreased the IL clusters, but enhanced [ZrF5]-, which was sorbed by the polymeric electrospray supply capillary, and then released upon rinsing. This reduced the ion background in the mass spectrum. CONCLUSIONS: The fluorohydrogenate-IL solutions are a facile way to form zirconium fluoroanions in the gas phase using electrospray. The approach has potential as a source of fluoroanions for injection into an AMS, which would enable high-sensitivity measurement of minor zirconium isotopes, and benefits from the absence of overlapping isobars caused by the charge carrier (i.e., the monoisotopic fluorine atoms).

Gary S. Groenewold; James E. Delmore; Michael T. Benson; Tetsuya Tsuda; Rika Hagiwara

2014-06-01T23:59:59.000Z

153

E-Print Network 3.0 - aqueous ionic liquids Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

jcis Summary: experiments: ethanol, ultra- pure water, and four aqueous solutions of CaCl2 of different ionic strength... the correlations given by Weissenborn et al. 16, who...

154

EXPERIMENTAL INVESTIGATION OF NATURAL CONVECTION HEAT TRANSFER OF IONIC LIQUID IN A RECTANGULAR ENCLOSURE HEATED FROM BELOW  

SciTech Connect (OSTI)

This paper presents an experimental study of natural convection heat transfer for an Ionic Liquid. The experiments were performed for 1-butyl-2, 3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, ([C{sub 4}mmim][NTf{sub 2}]) at a Raleigh number range of 1.26 x 10{sup 7} to 8.3 x 10{sup 7}. In addition to determining the convective heat transfer coefficients, this study also included experimental determination of thermophysical properties of [C{sub 4}mmim][NTf{sub 2}] such as, density, viscosity, heat capacity, and thermal conductivity. The results show that the density of [C{sub 4}mmim][NTf{sub 2}] varies from 1.437-1.396 g/cm{sup 3} within the temperature range of 10-50 C, the thermal conductivity varies from 0.105-0.116 W/m.K between a temperature of 10 to 60 C, the heat capacity varies from 1.015 J/g.K - 1.760 J/g.K within temperature range of 25-340 C and the viscosity varies from 18cp-243cp within temperature range 10-75 C. The results for density, thermal conductivity, heat capacity, and viscosity were in close agreement with the values in the literature. Measured dimensionless Nusselt number was observed to be higher for the ionic liquid than that of DI water. This is expected as Nusselt number is the ratio of heat transfer by convection to conduction and the ionic liquid has lower thermal conductivity (approximately 18%) than DI water.

Fox, E.; Visser, A.; Bridges, N.

2011-07-18T23:59:59.000Z

155

E-Print Network 3.0 - ammonium-based ionic liquids Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy 65 Use of polymerionic liquid plasticizers as gel electrolytes in electrochromic devices Summary: Use of polymerionic liquid plasticizers as gel electrolytes in...

156

E-Print Network 3.0 - alkylammonium ionic liquids Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy 99 Use of polymerionic liquid plasticizers as gel electrolytes in electrochromic devices Summary: Use of polymerionic liquid plasticizers as gel electrolytes in...

157

E-Print Network 3.0 - alkylimidazolium ionic liquids Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy 73 Use of polymerionic liquid plasticizers as gel electrolytes in electrochromic devices Summary: Use of polymerionic liquid plasticizers as gel electrolytes in...

158

Conductance modulation in topological insulator Bi{sub 2}Se{sub 3} thin films with ionic liquid gating  

SciTech Connect (OSTI)

A Bi{sub 2}Se{sub 3} topological insulator field effect transistor is investigated by using ionic liquid as an electric double layer gating material, leading to a conductance modulation of 365% at room temperature. We discuss the role of charged impurities on the transport properties. The conductance modulation with gate bias is due to a change in the carrier concentration, whereas the temperature dependent conductance change is originated from a change in mobility. Large conductance modulation at room temperature along with the transparent optical properties makes topological insulators as an interesting (opto)electronic material.

Son, Jaesung; Banerjee, Karan; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)] [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Brahlek, Matthew; Koirala, Nikesh; Oh, Seongshik [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, New Jersey 08854 (United States)] [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, New Jersey 08854 (United States); Lee, Seoung-Ki [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of) [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Ahn, Jong-Hyun [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)] [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

2013-11-18T23:59:59.000Z

159

Energy applications of ionic liquids Douglas R. MacFarlane,*a  

E-Print Network [OSTI]

volatility coupled with high electrochemical and thermal stability, as well as ionic conductivity, create of phase-change thermal energy storage materials having melting points tuned to the application important candidates for a number of energy related applications. Cation­anion combinations that exhibit low

Angell, C. Austen

160

Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes...

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Preparation of silica aerogel using ionic liquids as solvents Sheng Dai,*a Y. H. Ju,ac H. J. Gao,b J. S. Lin,b S. J. Pennycookb and C. E. Barnesc  

E-Print Network [OSTI]

Preparation of silica aerogel using ionic liquids as solvents Sheng Dai,*a Y. H. Ju,ac H. J. Gaord December 1999 Ionic liquids have been used as effective solvents to synthesize aerogels; a long aging time can be used to produce stable aerogel structures without the need for supercritical drying

Gao, Hongjun

162

The Partitioning of Americium and the Lanthanides Using Tetrabutyldiglycolamide (TBDGA) in Octanol and in Ionic Liquid Solution  

SciTech Connect (OSTI)

Separations among the lanthanides and the separation of Am from the lanthanides remain challenging, and research in this area continues to expand. The separation of adjacent lanthanides is of interest to high-tech industries because individual lanthanides have specialized uses and are in short supply. In nuclear fuel cycle applications Am would be incorporated into fast reactor fuels, yet the lanthanides are not desired. In this work the diamide N,N,N',N'-tetrabutyldiglycolamide (TBDGA) was investigated as a ligand for lanthanide and Am solvent extraction in both molecular and room temperature ionic liquid (RTIL) diluents. The RTIL [C4MIM][Tf2N-] showed very high extraction efficiency for these trivalent metals from low nitric acid concentrations, while the molecular diluent 1-octanol showed high extraction efficiency at high acid concentrations. This was attributed to the extraction of ionic nitrate complexes by the RTIL, whereas 1-octanol extracted neutral nitrate complexes. TBDGA in RTIL did not provide adequate separation factors for Am/lanthanide partitioning, but 1-octanol did show reasonable separation possibilities. Lanthanide intergroup separations appeared to be feasible in both diluents, but with higher separation factors from 1-octanol.

M.E. Mincher; D.L. Quach; Y.J. Liao; B.J. Mincher; C.M. Wai

2012-11-01T23:59:59.000Z

163

Curvature Effect on the Capacitance of Electric Double Layers at Ionic Liquid/Onion-Like Carbon Interfaces  

SciTech Connect (OSTI)

Recent experiments have revealed that onion-like carbons (OLCs) offer high energy density and charging/discharging rates when used as the electrodes in supercapacitors. To understand the physical origin of this phenomenon, molecular dynamics simulations were performed for a room-temperature ionic liquid near idealized spherical OLCs with radii ranging from 0.356 to 1.223 nm. We find that the surface charge density increases almost linearly with the potential applied on electric double layers (EDLs) near OLCs. This leads to a nearly flat shape of the differential capacitance versus the potential, unlike the bell or camel shape observed on planar electrodes. Moreover, our simulations reveal that the capacitance of EDLs on OLCs increases with the curvature or as the OLC size decreases, in agreement with experimental observations. The curvature effect is explained by dominance of charge overscreening over a wide potential range and increased ion density per unit area of electrode surface as the OLC becomes smaller.

Feng, Guang [ORNL; Jiang, Deen [ORNL; Cummings, Peter T [ORNL

2012-01-01T23:59:59.000Z

164

FRAGMENTATION OF COAL AND IMPROVED DISPERSION OF LIQUEFACTION CATALYSTS USING IONIC LIQUIDS.  

E-Print Network [OSTI]

??Coal has been utilized for coal-to-liquid fuels and coal-to-chemical industries both historically in South Africa and recently in China. Abundant bituminous and low-rank coal reserves… (more)

Cetiner, Ruveyda

2011-01-01T23:59:59.000Z

165

High-Surface-Area CO2 Sponge: High Performance CO2 Scrubbing Based on Hollow Fiber-Supported Designer Ionic Liquid Sponges  

SciTech Connect (OSTI)

IMPACCT Project: The team from ORNL and Georgia Tech is developing a new technology that will act like a sponge, integrating a new, alcohol-based ionic liquid into hollow fibers (magnified image, right) to capture CO2 from the exhaust produced by coal-fired power plants. Ionic liquids, or salts that exist in liquid form, are promising materials for carbon capture and storage, but their tendency to thicken when combined with CO2 limits their efficiency and poses a challenge for their development as a cost-effective alternative to current-generation solutions. Adding alcohol to the mix limits this tendency to thicken in the presence of CO2 but can also make the liquid more likely to evaporate, which would add significantly to the cost of CO2 capture. To solve this problem, ORNL is developing new classes of ionic liquids with high capacity for absorbing CO2. ORNL’s sponge would reduce the cost associated with the energy that would need to be diverted from power plants to capture CO2 and release it for storage.

None

2010-09-01T23:59:59.000Z

166

An innovative experimental approach aiming to understand and quantify the actual fire hazards of ionic liquids  

E-Print Network [OSTI]

access to fundamental flammability properties of these chemicals through the use of Pyrolysis Combustion to flash point values, various threshold values being considered in different regulatory frameworks to rate, in the Classification Labelling and Packaging regulation,14 flammable liquids are those having a flash point below

Paris-Sud XI, Université de

167

One electron oxygen reduction in room temperature ionic liquids: A comparative study of Butler-Volmer and Symmetric Marcus-Hush theories using microdisc electrodes  

E-Print Network [OSTI]

The voltammetry for the reduction of oxygen at a microdisc electrode is reported in two room temperature ionic liquids: 1-butyl-1-methylpyyrolidinium bis(trifluoromethylsulfonyl) imide ([Bmpyrr][NTf2]) and trihexyltetradecylphosphonium bis9trifluoromethylsulfonyl) imide ([P14,6,6,6][NTf2]) at 298 K. Simulated voltammograms using Butler-Volmer theory and Symmetric Marcus-Hush (SMH) theory were compared with experimental data. Butler-Volmer theory consistently provided experimental parameters with a higher level of certainty than SMH theory. A value of solvent reorganisation energy for oxygen reduction in ionic liquids was inferred for the first time as 0.4-0.5 eV, which is attributable to inner-sphere reorganisation with a negligible contribution from solvent reorganisation. The developed Butler-Volmer and Symmetric Marcus-Hush programs are also used to theoretically study the possibility of kinetically limited steady state currents, and to establish an approximate equivalence relationship between microdisc el...

Tanner, Eden E L; Barnes, Edward O; Compton, Richard G

2015-01-01T23:59:59.000Z

168

AGING EFFECTS ON THE PROPERTIES OF IMIDAZOLIUM, QUATERNARY AMMONIUM, PYRIDINIUM AND PYRROLIDINIUM-BASED IONIC LIQUIDS USED IN FUEL AND ENERGY PRODUCTION  

SciTech Connect (OSTI)

Ionic liquids are often cited for their excellent thermal stability, a key property for their use as solvents and in the chemical processing of biofuels. However, there has been little supporting data on the long term aging effect of temperature on these materials. Imizadolium, quaternary ammonium, pyridinium, and pyrrolidnium-based ionic liquids with the bis(trifluoromethylsulfonyl)imide and bis(perfluoroethylsulfonyl)imide anions were aged for 2520 hours (15 weeks) at 200?C in air to determine the effects of an oxidizing environment on their chemical structure and thermal stability over time. It was found that the minor changes in the cation chemistry could greatly affect the properties of the ILs over time.

Fox, E.

2013-08-13T23:59:59.000Z

169

Fluorohydrogenate Cluster Ions in the Gas Phase: Electrospray Ionization Mass Spectrometry of the [1-Ethyl-3-methylimidazolium+][F(HF)2.3–] Ionic Liquid  

SciTech Connect (OSTI)

Electrospray ionization of the fluorohydrogenate ionic liquid [1-ethyl-3-methylimidazolium][F(HF)2.3] ionic liquid was conducted to understand the nature of the anionic species as they exist in the gas phase. Abundant fluorohydrogenate clusters were produced; however, the dominant anion in the clusters was [FHF-], and not the fluoride-bound HF dimers or trimers that are seen in solution. Density functional theory (DFT) calculations suggest that HF molecules are bound to the clusters by about 30 kcal/mol. The DFT-calculated structures of the [FHF-]-bearing clusters show that the favored interactions of the anions are with the methynic and acetylenic hydrogen atoms on the imidazolium cation, forming planar structures similar to those observed in the solid state. A second series of abundant negative ions was also formed that contained [SiF5-] together with the imidazolium cation and the fluorohydrogenate anions that originate from reaction of the spray solution with silicate surfaces.

Gary S. Groenewold; James E. Delmore; Michael T. Benson; Tetsuya Tsuda; Rika Hagiwara

2013-12-01T23:59:59.000Z

170

Acidic Ionic Liquid/Water Solution as Both Medium and Proton Source for Electrocatalytic H2 Evolution by [Ni(P2N2)2]2+ Complexes  

SciTech Connect (OSTI)

The electrocatalytic reduction of protons to H2 by [Ni(PPh2NC6H4-hex2)2](BF4)2 (where PPh2NC6H4-hex2 = 1,5-di(4-n-hexylphenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) in the highly acidic ionic liquid dibutylformamidium bis(trifluoromethanesulfonyl)amide shows a strong dependence on added water. A turnover frequency of 43,000-53,000 s-1 has been measured for hydrogen production at 25 °C when the mole fraction of water (?H2O) is 0.72. The same catalyst in acetonitrile with added dimethylformamidium trifluoromethanesulfonate and water has a turnover frequency of 720 s?1. Thus the use of an ionic liquid/aqueous solution enhances the observed catalytic rates by more than a factor of 50 compared to acids in traditional organic solvents such as acetonitrile. Complexes [Ni(PPh2NC6H4X2)2](BF4)2 (X = H, OMe, CH2P(O)(OEt)2, Br) are also catalysts in the ionic liquid/water mixture, and the observed catalytic rates correlate with the hydrophobicity of X. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

Pool, Douglas H.; Stewart, Michael P.; O'Hagan, Molly J.; Shaw, Wendy J.; Roberts, John A.; Bullock, R. Morris; DuBois, Daniel L.

2012-09-25T23:59:59.000Z

171

A counter-charge layer in generalized solvents framework for electrical double layers in neat and hybrid ionic liquid electrolytes  

SciTech Connect (OSTI)

Room-temperature ionic liquids (RTILs) have received significant attention as electrolytes due to a number of attractive properties such as their wide electrochemical windows. Since electrical double layers (EDLs) are the cornerstone for the applications of RTILs in electrochemical systems such as supercapacitors, it is important to develop an understanding of the structure capacitance relationships for these systems. Here we present a theoretical framework termed counter-charge layer in generalized solvents (CGS) for describing the structure and capacitance of the EDLs in neat RTILs and in RTILs mixed with different mass fractions of organic solvents. Within this framework, an EDL is made up of a counter-charge layer exactly balancing the electrode charge, and of polarized generalized solvents (in the form of layers of ion pairs, each of which has a zero net charge but has a dipole moment the ion pairs thus can be considered as a generalized solvent) consisting of all RTILs inside the system except the counter-ions in the counter-charge layer, together with solvent molecules if present. Several key features of the EDLs that originate from the strong ion ion correlation in RTILs, e.g., overscreening of electrode charge and alternating layering of counter-ions and co-ions, are explicitly incorporated into this framework. We show that the dielectric screening in EDLs is governed predominately by the polarization of generalized solvents (or ion pairs) in the EDL, and the capacitance of an EDL can be related to its microstructure with few a priori assumptions or simplifications. We use this framework to understand two interesting phenomena observed in molecular dynamics simulations of EDLs in a neat IL of 1-butyl-3- methylimidazolium tetrafluoroborate ([BMIM][BF4]) and in a mixture of [BMIM][BF4] and acetonitrile (ACN): (1) the capacitance of the EDLs in the [BMIM][BF4]/ACN mixture increases only slightly when the mass fraction of ACN in the mixture increases from zero to 50% although the dielectric constant of bulk ACN is more than two times higher than that of neat [BMIM][BF4]; (2) the capacitance of EDLs near negative electrodes (with BMIM+ ion as the counter-ion) is smaller than that near positive electrodes (with BF4as counter-ion) although the closest approaches of both ions to the electrode surface are nearly identical.

Huang, Jingsong [ORNL; Feng, Guang [Clemson University; Sumpter, Bobby G [ORNL; Qiao, Rui [ORNL; Meunier, Vincent [ORNL

2011-01-01T23:59:59.000Z

172

Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO{sub 2} from molecular simulation  

SciTech Connect (OSTI)

The capture of CO{sub 2} from fossil fuel combustion, particularly in coal-fired power plants, represents a critical component of efforts aimed at stabilizing greenhouse gas levels in the atmosphere. Recently, a series of second-generation task-specific ionic liquids (TSILs) containing amine functional groups have been synthesized and demonstrated to have much higher capacities for CO{sub 2} due to their reactivity with CO{sub 2}, as well unusually high viscosities in both the neat and complexed states. The current work extends the seminal studies of CO{sub 2} capture with ionic liquids (ILs) by providing insight from simulations into the mechanism responsible for the dramatic increase in viscosity upon complexation. Simulations conclusively demonstrate that the slow translational and rotational dynamics, which are manifest in the high viscosity, may be attributable to the formation of a strong, pervasive hydrogen-bonded network. Semiquantitative estimates of the cation and anion self-diffusion coefficients and rotational time constants, as well as detailed hydrogen bond analysis, are consistent with the experimentally observed formation of glassy or gel-like materials upon contact with CO{sub 2}. This has significant implications for the design of new approaches or materials involving ILs that take advantage of these preconceived limitations, in the synthesis or manipulation of new TSIL frameworks for CO{sub 2} capture, and in novel experimental studies of chemistries and dynamics in persistent heterogeneous environments.

Gutowski, K.E.; Maginn, E.J. [University of Notre Dame, Notre Dame, IN (United States)

2008-11-15T23:59:59.000Z

173

IMIDAZOLE-BASED IONIC LIQUIDS FOR USE IN POLYMER ELECTROLYTE MEMBRANE FUEL CELLS: EFFECT OF ELECTRON-WITHDRAWING AND ELECTRON-DONATING SUBSTITUENTS  

SciTech Connect (OSTI)

Current polymer electrolyte membrane fuel cells (PEMFCs) require humidifi cation for acceptable proton conductivity. Development of a novel polymer that is conductive without a water-based proton carrier is desirable for use in automobiles. Imidazole (Im) is a possible replacement for water as a proton solvent; Im can be tethered to the polymer structure by means of covalent bonds, thereby providing a solid state proton conducting membrane where the solvating groups do not leach out of the fuel cell. These covalent bonds can alter the electron availability of the Im molecule. This study investigates the effects of electron-withdrawing and electron-donating substituents on the conductivity of Im complexed with methanesulfonic acid (MSA) in the form of ionic liquids. Due to the changes in the electronegativity of nitrogen, it is expected that 2-phenylimidazole (2-PhIm, electron-withdrawing) will exhibit increased conductivity compared to Im, while 2-methylimidazole (2-MeIm, electron-donating) will exhibit decreased conductivity. Three sets of ionic liquids were prepared at defi ned molar ratios: Im-MSA, 2-PhIm-MSA, and 2-MeIm- MSA. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and 1H-NMR were used to characterize each complex. Impedance analysis was used to determine the conductivity of each complex. Both the 2-PhIm-MSA and 2-MeIm-MSA ionic liquids were found to be less conductive than the Im-MSA complex at base-rich compositions, but more conductive at acid-rich compositions. 1H-NMR data shows a downfi eld shift of the proton on nitrogen in 2-PhIm compared to Im, suggesting that other factors may diminish the electronic effects of the electron withdrawing group at base-rich compositions. Further studies examining these effects may well result in increased conductivity for Im-based complexes. Understanding the conductive properties of Im-derivatives due to electronic effects will help facilitate the development of a new electrolyte appropriate for automotive fuel cell use.

Chang, E.; Fu, Y.; Kerr, J.

2009-01-01T23:59:59.000Z

174

Pd-porphyrin functionalized ionic liquid-modified mesoporous SBA-15: An efficient and recyclable catalyst for solvent-free Heck reaction  

SciTech Connect (OSTI)

The Pd-porphyrin functionalized ionic liquid could be covalently anchored in the channels of mesoporous SBA-15 through ion-pair electrostatic interaction between imidazolium-cationic and Pd-porphyrin-anionic moieties. Such modified SBA-15 materials were prepared successfully via a post-synthesis (surface sol-gel polymerization) or a one-pot sol-gel procedure, which were characterized by powder X-ray diffraction, UV-visible spectroscopy, Fourier transform infrared spectroscopy, N{sub 2} sorption, elemental analysis, and transmission electron microscopy. The modified SBA-15 materials are efficient and recyclable catalysts for cross-coupling of aryl iodides or activated aryl bromides with ethyl acrylate without activity loss and Pd leaching even after 9 runs.

Zhang, Jing; Zhao, Guo-Feng [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chemistry Department, East China Normal University, Shanghai 200062 (China)] [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chemistry Department, East China Normal University, Shanghai 200062 (China); Popovic, Zora [General and Inorganic Laboratory, Chemistry Department, University of Zagreb, HR-10000 Zagreb (Croatia)] [General and Inorganic Laboratory, Chemistry Department, University of Zagreb, HR-10000 Zagreb (Croatia); Lu, Yong [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chemistry Department, East China Normal University, Shanghai 200062 (China)] [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chemistry Department, East China Normal University, Shanghai 200062 (China); Liu, Ye, E-mail: yliu@chem.ecnu.edu.cn [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chemistry Department, East China Normal University, Shanghai 200062 (China)] [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Chemistry Department, East China Normal University, Shanghai 200062 (China)

2010-11-15T23:59:59.000Z

175

One-pot synthesis of SnO{sub 2}/reduced graphene oxide nanocomposite in ionic liquid-based solution and its application for lithium ion batteries  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • A facile and low-temperature method is developed for SnO{sub 2}/graphene composite. • Synthesis performed in a choline chloride-based ionic liquid. • The composite shows an enhanced cycling stability as anode for Li-ion batteries. • 4 nm SnO{sub 2} nanoparticles mono-dispersed on the surface of reduced graphene oxide. - Abstract: A facile and low-temperature method is developed for SnO{sub 2}/graphene composite which involves an ultrasonic-assistant oxidation–reduction reaction between Sn{sup 2+} and graphene oxide in a choline chloride–ethylene glycol based ionic liquid under ambient conditions. The reaction solution is non-corrosive and environmental-friendly. Moreover, the proposed technique does not require complicated infrastructures and heat treatment. The SnO{sub 2}/graphene composite consists of about 4 nm sized SnO{sub 2} nanoparticles with cassiterite structure mono-dispersed on the surface of reduced graphene oxide. As anode for lithium-ion batteries, the SnO{sub 2}/graphene composite shows a satisfying cycling stability (535 mAh g{sup ?1} after 50 cycles @100 mA g{sup ?1}), which is significantly prior to the bare 4 nm sized SnO{sub 2} nanocrsytals. The graphene sheets in the hybrid nanostructure could provide a segmentation effect to alleviate the volume expansion of the SnO{sub 2} and restrain the small and active Sn-based particles aggregating into larger and inactive clusters during cycling.

Gu, Changdong, E-mail: cdgu@zju.edu.cn; Zhang, Heng; Wang, Xiuli; Tu, Jiangping

2013-10-15T23:59:59.000Z

176

Lithium ion conducting ionic electrolytes  

DOE Patents [OSTI]

A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

Angell, C. Austen (Mesa, AZ); Xu, Kang (Tempe, AZ); Liu, Changle (Tulsa, OK)

1996-01-01T23:59:59.000Z

177

Strong Electronic Polarization of the C60 Fullerene by the Imidazolium-Based Ionic Liquids: Accurate Insights from Born-Oppenheimer Molecular Dynamics Simulations  

E-Print Network [OSTI]

Fullerenes are known to be polarizable due to the strained carbon-carbon bonds and high surface curvature. Electronic polarization of fullerenes is of steady practical importance, since it leads to non-additive interactions and, therefore, to unexpected phenomena. For the first time, hybrid density functional theory (HDFT) powered Born-Oppenheimer molecular dynamics (BOMD) simulations have been conducted to observe electronic polarization and charge transfer phenomena in the C60 fullerene at finite temperature (350 K). The non-additive phenomena are fostered by the three selected imidazolium-based room-temperature ionic liquids (RTILs). We conclude that although charge transfer appears nearly negligible in these systems, an electronic polarization is indeed significant leading to a systematically positive effective electrostatic charge on the C60 fullerene: +0.14e in [EMIM][Cl], +0.21e in [EMIM][NO3], +0.17e in [EMIM][PF6]. These results are, to certain extent, unexpected providing an inspiration to consider ...

Chaban, Vitaly V

2015-01-01T23:59:59.000Z

178

Final Technical Report: SISGR: The Influence of Electrolyte Structure and Electrode Morphology on the Performance of Ionic-Liquid Based Supercapacitors: A Combined Experimental and Simulation Study  

SciTech Connect (OSTI)

Obtaining fundamental understanding and developing predictive modeling capabilities of electrochemical interfaces can significantly shorten the development cycles of electrical double layer capacitors (EDLCs). A notable improvement in EDLC performance has been achieved due to recent advances in understanding charge storage mechanisms, development of advanced nanostructured electrodes and electrochemically stable electrolytes. The development of new generation of EDLCs is intimately linked to that of nanostructured carbon materials which have large surface area, good adsorption/desorption properties, good electrical conductivity and are relatively inexpensive. To address these scientific challenges the efforts of an interdisciplinary team of modelers and experimentalists were combined to enhance our understanding of molecular level mechanisms controlling the performance of EDLCs comprised of room temperature ionic liquid (RTIL) electrolytes and nanostructured carbon-based electrodes and to utilize these knowledge in the design of a new generation of materials and devices for this energy storage application. Specifically our team efforts included: atomistic molecular dynamics simulations, materials science and electrode/device assembly, and synthesis and characterization of RTIL electrolytes.

Bedrov, Dmitry [University of Utah] [University of Utah

2013-08-15T23:59:59.000Z

179

Metal-air batteries. (Latest citations from the Aerospace database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning applications of metal-air batteries. Topics include systems that possess different practical energy densities at specific powers. Coverage includes the operation of air electrodes at different densities and performance results. The systems are used in electric vehicles as a cost-effective method to achieve reliability and efficiency. Zinc-air batteries are covered more thoroughly in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1997-02-01T23:59:59.000Z

180

Development of a Conceptual Process for Selective CO{sub 2} Capture from Fuel Gas Streams Using [hmim][Tf2N] Ionic Liquid as a Physical Solvent  

SciTech Connect (OSTI)

The Ionic Liquid (IL) [hmim][Tf2N] was used as a physical solvent in an Aspen Plus simulation, employing the Peng-Robinson Equation of State (P-R EOS) with Boston-Mathias (BM) alpha function and standard mixing rules, to develop a conceptual process for CO{sub 2} capture from a shifted warm fuel gas stream produced from Pittsburgh # 8 coal for a 400 MWe power plant. The physical properties of the IL, including density, viscosity, surface tension, vapor pressure and heat capacity were obtained from literature and modeled as a function of temperature. Also, available experimental solubility values for CO{sub 2}, H{sub 2}, H{sub 2}S, CO, and CH{sub 4} in this IL were compiled and their binary interaction parameters ({delta}{sub ij} and l{sub ij}) were optimized and correlated as functions of temperature. The Span-Wager Equation-of-State EOS was also employed to generate CO{sub 2} solubilities in [hmim][Tf2N] at high pressures (up to 10 MPa) and temperatures (up to 510 K). The conceptual process developed consisted of 4 adiabatic absorbers (2.4 m ID, 30 m high) arranged in parallel and packed with Plastic Pall Rings of 0.025 m for CO{sub 2} capture; 3 flash drums arranged in series for solvent (IL) regeneration with the pressure-swing option; and a pressure-intercooling system for separating and pumping CO{sub 2} up to 153 bar to the sequestration sites. The compositions of all process streams, CO{sub 2} capture efficiency, and net power were calculated using Aspen Plus simulator. The results showed that, based on the composition of the inlet gas stream to the absorbers, 95.67 mol% of CO{sub 2} was captured and sent to sequestration sites; 99.5 mol% of H{sub 2} was separated and sent to turbines; the solvent exhibited a minimum loss of 0.31 mol%; and the net power balance of the entire system was 30.81 MW. These results indicated that [hmim][Tf2N] IL could be used as a physical solvent for CO{sub 2} capture from warm shifted fuel gas streams with high efficiency.

Basha, Omar M.; Keller, Murphy J.; Luebke, David R.; Resnik, Kevin; P Morsi, Badie I.

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Sandia National Laboratories: ionic liquid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine blade manufacturing therenewableswind blade

182

ESM of Ionic and Electrochemical Phenomena on the Nanoscale  

SciTech Connect (OSTI)

Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes [1-4]. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. All these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales as illustrated in Fig. 1. Similar spectrum of length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.

Kalinin, Sergei V [ORNL; Kumar, Amit [Pennsylvania State University; Balke, Nina [ORNL; McCorkle, Morgan L [ORNL; Guo, Senli [ORNL; Arruda, Thomas M [ORNL; Jesse, Stephen [ORNL

2011-01-01T23:59:59.000Z

183

CO2/oxalate Cathodes as Safe and Efficient Alternatives in High Energy Density Metal-Air Type Rechargeable Batteries  

E-Print Network [OSTI]

We present theoretical analysis on why and how rechargeable metal-air type batteries can be made significantly safer and more practical by utilizing CO2/oxalate conversions instead of O2/peroxide or O2/hydroxide ones, in the positive electrode. Metal-air batteries, such as the Li-air one, may have very large energy densities, comparable to that of gasoline, theoretically allowing for long range all-electric vehicles. There are, however, still significant challenges, especially related to the safety of their underlying chemistries, the robustness of their recharging and the need of supplying high purity O2 from air to the battery. We point out that the CO2/oxalate reversible electrochemical conversion is a viable alternative of the O2-based ones, allowing for similarly high energy density and almost identical voltage, while being much safer through the elimination of aggressive oxidant peroxides and the use of thermally stable, non-oxidative and environmentally benign oxalates instead.

Nemeth, Karoly

2013-01-01T23:59:59.000Z

184

E-Print Network 3.0 - anomalous ionic conductivity Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science 25 ORNL 2010-G00986jcn UT-B ID 200902213 Summary: . Advantages Superior thermal stability over other protic ionic liquids Proton conducting mechanism does......

185

Partially fluorinated ionic compounds  

DOE Patents [OSTI]

Partially fluorinated ionic compounds are prepared. They are useful in the preparation of partially fluorinated dienes, in which the repeat units are cycloaliphatic.

Han, legal representative, Amy Qi (Hockessin, DE); Yang, Zhen-Yu (Hockessin, DE)

2008-11-25T23:59:59.000Z

186

Static dielectric properties of dense ionic fluids  

E-Print Network [OSTI]

The static dielectric properties of dense ionic fluids, e.g., room temperature ionic liquids (RTILs) and inorganic fused salts, are investigated on different length scales by means of grandcanonical Monte Carlo simulations. A generally applicable scheme is developed which allows one to approximately decompose the electric susceptibility of dense ionic fluids into the orientation and the distortion polarization contribution. It is shown that at long range the well-known plasma-like perfect screening behavior occurs, which corresponds to a diverging distortion susceptibility, whereas at short range orientation polarization dominates, which coincides with that of a dipolar fluid of attached cation-anion pairs. This observation suggests that the recently debated interpretation of RTILs as dilute electrolyte solutions might not be simply a yes-no-question but it might depend on the considered length scale.

Zarubin, Grigory

2015-01-01T23:59:59.000Z

187

Charge Compensation in RE3+ (RE = Eu, Gd) and M+ (M = Li, Na, K) Co-Doped Alkaline Earth Nanofluorides Obtained by Microwave Reaction with Reactive Ionic Liquids Leading to Improved Optical Properties  

SciTech Connect (OSTI)

Alkaline earth fluorides are extraordinarily promising host matrices for phosphor materials with regard to rare earth doping. In particular, quantum cutting materials, which might considerably enhance the efficiency of mercury-free fluorescent lamps or SC solar cells, are often based on rare earth containing crystalline fluorides such as NaGdF4, GdF3 or LaF3. Substituting most of the precious rare earth ions and simultaneously retaining the efficiency of the phosphor is a major goal. Alkaline earth fluoride nanoparticles doped with trivalent lanthanide ions (which are required for the quantum cutting phenomenon) were prepared via a microwave assisted method in ionic liquids. As doping trivalent ions into a host with divalent cations requires charge compensation, this effect was thoroughly studied by powder X-ray and electron diffraction, luminescence spectroscopy and 23Na, 139La and 19F solid state NMR spectroscopy. Monovalent alkali ions were codoped with the trivalent lanthanide ions to relieve stress and achieve a better crystallinity and higher quantum cutting abilities of the prepared material. 19F-magic angle spinning (MAS)-NMR-spectra, assisted by 19F{23Na} rotational echo double resonance (REDOR) studies, reveal distinct local fluoride environments, the populations of which are discussed in relation to spatial distribution and clustering models. In the co-doped samples, fluoride species having both Na+ and La3+ ions within their coordination sphere can be identified and quantified. This interplay of mono- and trivalent ions in the CaF2 lattice appears to be an efficient charge compensation mechanism that allows for improved performance characteristics of such co-doped phosphor materials.

Lorbeer, C [Ruhr-Universitat Bochum; Behrends, F [Westfalische Wilhelsm-Universitat Munster; Cybinska, J [Ruhr Universitat Bochum; Eckert, H [Westfalische Wilhelsm-Universitat Munster; Mudring, Anja -V [Ames Laboratory

2014-01-01T23:59:59.000Z

188

Preparation of High Purity, High Molecular-Weight Chitin from Ionic Liquids for Use as an Adsorbate for the Extraction of Uranium from Seawater (Workscope MS-FC: Fuel Cycle R&D)  

SciTech Connect (OSTI)

Ensuring a domestic supply of uranium is a key issue facing the wider implementation of nuclear power. Uranium is mostly mined in Kazakhstan, Australia, and Canada, and there are few high-grade uranium reserves left worldwide. Therefore, one of the most appealing potential sources of uranium is the vast quantity dissolved in the oceans (estimated to be 4.4 billion tons worldwide). There have been research efforts centered on finding a means to extract uranium from seawater for decades, but so far none have resulted in an economically viable product, due in part to the fact that the materials that have been successfully demonstrated to date are too costly (in terms of money and energy) to produce on the necessary scale. Ionic Liquids (salts which melt below 100{degrees}C) can completely dissolve raw crustacean shells, leading to recovery of a high purity, high molecular weight chitin powder and to fibers and films which can be spun directly from the extract solution suggesting that continuous processing might be feasible. The work proposed here will utilize the unprecedented control this makes possible over the chitin fiber a) to prepare electrospun nanofibers of very high surface area and in specific architectures, b) to modify the fiber surfaces chemically with selective extractant capacity, and c) to demonstrate their utility in the direct extraction and recovery of uranium from seawater. This approach will 1) provide direct extraction of chitin from shellfish waste thus saving energy over the current industrial process for obtaining chitin; 2) allow continuous processing of nanofibers for very high surface area fibers in an economical operation; 3) provide a unique high molecular weight chitin not available from the current industrial process leading to stronger, more durable fibers; and 4) allow easy chemical modification of the large surface areas of the fibers for appending uranyl selective functionality providing selectivity and ease of stripping. The resulting sorbent should prove economically feasible, as well as providing an overall net energy gain.

Rogers, Robin

2013-12-21T23:59:59.000Z

189

Enhanced Gas Absorption in the Ionic Liquid 1-n-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide ([hmim][Tf{sub 2}N]) Confined in Silica Slit Pores: A Molecular Simulation Study  

SciTech Connect (OSTI)

Two-dimensional NP{sub xy}T and isostress-osmotic (N{sub 2}P{sub xy}Tf{sub 1}) Monte Carlo simulations were used to compute the density and gas absorption properties of the ionic liquid (IL) 1-n-hexyl-3- methylimidazolium bis(Trifluoromethylsulfonyl)amide ([hmim][Tf{sub 2}N]) confined in silica slit pores (25-45 Å). Self-diffusivity values for both gas and IL were calculated from NVE molecular dynamics simulations using both smooth and atomistic potential models for the silica. Simulations show that the molar volume for [hmim][Tf{sub 2}N] confined in 25-45 Å silica slit pores are 12-31% larger than for the bulk IL at 313-573 K and 1 bar. The amounts of CO{sub 2}, H{sub 2}, and N{sub 2} absorbed in the confined IL are typically 1.1-3 times larger than in the bulk IL due to larger molar volumes for the confined IL compared to the bulk IL. The CO{sub 2}, N{sub 2}, and H{sub 2} molecules are generally absorbed close to the silica wall where the IL density is very low. This arrangement causes the self-diffusivities for these gases in the confined IL to be 2 to 8 times larger than in the bulk IL at 298-573 K. The solubility for water in the confined and bulk ILs are similar, which is likely due to strong water interactions with [hmim][Tf{sub 2}N] through hydrogen-bonding resulting in the confined IL molar volume playing a less important role in determining H{sub 2}O solubility. Water molecules were largely absorbed in the IL-rich region rather than close to the silica wall. The self-diffusivities for water correlate with the confined IL. The confined IL exhibits self-diffusivities larger than the bulk IL at lower temperatures, but smaller than the bulk IL at higher temperatures. The findings from simulations are consistent with available experimental data for similar confined IL systems.

Shi, Wei; Luebke, David R.

2013-05-07T23:59:59.000Z

190

Ionic liquids for rechargeable lithium batteries  

E-Print Network [OSTI]

conducting polymer electrochromic devices using ionicelectrochemical cells and electrochromic devices, including

Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

2008-01-01T23:59:59.000Z

191

Interfacial ionic liquids: connecting static and dynamic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

L, Lee S S and Fenter P 2012 Real-time observations of interfacial lithiation in a metal silicide thin film J. Phys. Chem. C 116 22341-5 43 Lindahl E, Hess B and van der...

192

Ionic liquids for rechargeable lithium batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries (Preliminary report,applications using lithium batteries, we must be sure thattemperature range. For lithium batteries in hybrid vehicles,

Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

2008-01-01T23:59:59.000Z

193

Ionic liquids for rechargeable lithium batteries  

E-Print Network [OSTI]

efficiency of dye-sensitized solar cells,’’ J. Phys. Chem.in dye-sensitized nanocrystalline solar cells,’’ J. Phys.

Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

2008-01-01T23:59:59.000Z

194

Ionic Liquid Pretreatment Technologies | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 | Department7 U.S.Department of05The830,Energyat

195

Synthesis of Ionic Liquids - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign Object Damage 3 B. L.Luminescence|tunable

196

Sandia National Laboratories: ion-ic liquids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine blade manufacturing therenewableswind blade inspectionion

197

Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-air Batteries  

SciTech Connect (OSTI)

The prohibitive cost and scarcity of the noble-metal catalysts needed for catalysing the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries limit the commercialization of these clean-energy technologies. Identifying a catalyst design principle that links material properties to the catalytic activity can accelerate the search for highly active and abundant transition-metal-oxide catalysts to replace platinum. Here, we demonstrate that the ORR activity for oxide catalysts primarily correlates to {sigma}*-orbital (e{sub g}) occupation and the extent of B-site transition-metal-oxygen covalency, which serves as a secondary activity descriptor. Our findings reflect the critical influences of the {sigma}* orbital and metal-oxygen covalency on the competition between O{sub 2}{sup 2-}/OH{sup -} displacement and OH{sup -} regeneration on surface transition-metal ions as the rate-limiting steps of the ORR, and thus highlight the importance of electronic structure in controlling oxide catalytic activity.

J Suntivich; H Gasteiger; N Yabuuchi; H Nakanishi; J Goodenough; Y Shao-Horn

2011-12-31T23:59:59.000Z

198

Ionic (Proton) Transport Hydrogen  

E-Print Network [OSTI]

environments - #12;Technology Options -- Ionic Transport Separation Systems Central, Semi-Central (coal/Semi-Central Systems Coal is the cheapest fuel, but requires the greatest pre-conditioning Clean-up of syngas requires Energy Systems ChevronTexaco SRI Consulting SAIC ChevronTexaco Technology Ventures #12;Performance

199

Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes  

SciTech Connect (OSTI)

Replacing traditional liquid electrolytes by polymers will significantly improve electrical energy storage technologies. Despite significant advantages for applications in electrochemical devices, the use of solid polymer electrolytes is strongly limited by their poor ionic conductivity. The classical theory predicts that the ionic transport is dictated by the segmental motion of the polymer matrix. As a result, the low mobility of polymer segments is often regarded as the limiting factor for development of polymers with sufficiently high ionic conductivity. Here, we show that the ionic conductivity in many polymers can be strongly decoupled from their segmental dynamics, in terms of both temperature dependence and relative transport rate. Based on this principle, we developed several polymers with superionic conductivity. The observed fast ion transport suggests a fundamental difference between the ionic transport mechanisms in polymers and small molecules and provides a new paradigm for design of highly conductive polymer electrolytes.

Wang, Yangyang [ORNL; Fan, Fei [ORNL; Agapov, Alexander L [ORNL; Saito, Tomonori [ORNL; Yang, Jun [ORNL; Yu, Xiang [ORNL; Hong, Kunlun [ORNL; Mays, Jimmy [University of Tennessee, Knoxville (UTK); Sokolov, Alexei P [ORNL

2014-01-01T23:59:59.000Z

200

Asymmetric Framework for Predicting Liquid-Liquid Equilibrium of Ionic Liquid-Mixed Solvent Systems  

E-Print Network [OSTI]

of multicomponent (ternary) LLE data with conventional excess Gibbs free energy models such as NRTL.6-14 Previously, we have studied15 the capability of such models, specifically NRTL, UNIQUAC and electrolyte-NRTL (eNRTL is the NRTL-SAC (NRTL Segm

Stadtherr, Mark A.

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Liquid-Liquid Extraction Processes  

E-Print Network [OSTI]

Liquid-liquid extraction is the separation of one or more components of a liquid solution by contact with a second immiscible liquid called the solvent. If the components in the original liquid solution distribute themselves differently between...

Fair, J. R.; Humphrey, J. L.

1983-01-01T23:59:59.000Z

202

Partially fluorinated cyclic ionic polymers and membranes  

DOE Patents [OSTI]

Ionic polymers are made from selected partially fluorinated dienes, in which the repeat units are cycloaliphatic. The polymers are formed into membranes.

Yang, Zhen-Yu

2013-04-09T23:59:59.000Z

203

Dispenser Printed Zinc Microbattery with an Ionic Liquid Gel Electrolyte  

E-Print Network [OSTI]

using dispenser printing including (a) 3D polymer molds, (b)using dispenser printing including (a) 3D polymer molds, (b)

Ho, Christine Chihfan

2010-01-01T23:59:59.000Z

204

Dispenser Printed Zinc Microbattery with an Ionic Liquid Gel Electrolyte  

E-Print Network [OSTI]

17 1.13. A monolithic solid-state battery formed by (a) coldcells of “monolithic” solid-state battery materials tailored1.13. A monolithic solid-state battery formed by (a) cold

Ho, Christine Chihfan

2010-01-01T23:59:59.000Z

205

Dispenser Printed Zinc Microbattery with an Ionic Liquid Gel Electrolyte  

E-Print Network [OSTI]

Fuel Cells, and Supercapacitors? ” Chem. Rev. 104, no. 10 (c-d) of origami folded supercapacitors [In, et al. ,electrodes for thin-film supercapacitors." Journal of Power

Ho, Christine Chihfan

2010-01-01T23:59:59.000Z

206

Ionic Liquids as Solvents for Catalytic Conversion of Lignocellulosic Feedstocks  

E-Print Network [OSTI]

Yoshida, Industrial & Engineering Chemistry Research [21] G.Industrial and Engineering Chemistry 1945, 37, 43-52; B.Yoshida, Industrial & Engineering Chemistry Research 2007,

Dee, Sean Joseph

2012-01-01T23:59:59.000Z

207

Tunable wavelength soft photoionization of ionic liquid vapors  

E-Print Network [OSTI]

LiTFSI and acetamide for lithium batteries. Electrochemistrysuch as fuel cells, 3-5 batteries 6,7 and solar cells. 8,9

Strasser, Daniel

2010-01-01T23:59:59.000Z

208

Dispenser Printed Zinc Microbattery with an Ionic Liquid Gel Electrolyte  

E-Print Network [OSTI]

thin-film rechargeable batteries. Materials Science andMicroscopic Nickel-Zinc Batteries for Use in AutonomousM, and RJ Brodd. “What Are Batteries, Fuel Cells, and

Ho, Christine Chihfan

2010-01-01T23:59:59.000Z

209

Tunable wavelength soft photoionization of ionic liquid vapors  

E-Print Network [OSTI]

Nevertheless, small binding enrgy shifts are evident in thea similar trend of binding enrgy shifts observed for peak

Strasser, Daniel

2010-01-01T23:59:59.000Z

210

Dispenser Printed Zinc Microbattery with an Ionic Liquid Gel Electrolyte  

E-Print Network [OSTI]

Glassy materials for lithium batteries: electrochemicalal. "Solid-state microscale lithium batteries prepared withSolid-State Rechargeable Lithium Batteries." Journal of The

Ho, Christine Chihfan

2010-01-01T23:59:59.000Z

211

Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes  

E-Print Network [OSTI]

14-18 fuel cells, 19-26 dye-sensitized solar cells, 27, 28batteries or dye-sensitized solar cells. 57, 58 PVdF-co-PHFP

Hoarfrost, Megan Lane

2012-01-01T23:59:59.000Z

212

Fast diffusion in a room temperature ionic liquid confined in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1(a) , E. Mamontov 1 , S. Dai 2 , X. Wang 2(b) , P. F. Fulvio 2 and D. J. Wesolowski 2 1 Neutron Scattering Science Division, Oak Ridge National Laboratory - Oak Ridge, TN 37831,...

213

Examination of Coal Solubility and Fragmentation with Various Ionic Liquids.  

E-Print Network [OSTI]

??The organic component of coal is heterogeneous and often has a complicated networkstructure. When exposed to certain solvents, swelling and partial dissolution often occurs.However, due… (more)

Pulati, Nuerxida

2011-01-01T23:59:59.000Z

214

Molecular dynamics modeling of ionic liquids in electrospray propulsion  

E-Print Network [OSTI]

Micro-propulsion has been studied for many years due to its applications in small-to-medium sized spacecraft for precise satellite attitude control. Electrospray thrusters are promising thrusters built upon the state of ...

Takahashi, Nanako

2010-01-01T23:59:59.000Z

215

Dispenser Printed Zinc Microbattery with an Ionic Liquid Gel Electrolyte  

E-Print Network [OSTI]

Ink-jet printed carbon supercapacitor electrodes on gold,Ink-jet printed carbon supercapacitor electrodes on gold,Microcapacitors Thin film supercapacitor (TFSC) research has

Ho, Christine Chihfan

2010-01-01T23:59:59.000Z

216

Dispenser Printed Zinc Microbattery with an Ionic Liquid Gel Electrolyte  

E-Print Network [OSTI]

Journal of Microelectromechanical Systems 16, no. 4 (JanMEMS." Journal of Microelectromechanical Systems 14, no. 5 (Journal of Microelectromechanical Systems 14, no. 2 (Jan

Ho, Christine Chihfan

2010-01-01T23:59:59.000Z

217

Ultrastable Superbase-Derived Protic Ionic Liquids - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014 EIAUltrafast

218

Using Ionic Liquids to Make Titanium Dioxide Nanotubes - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsedUser

219

Ionic Liquid Pretreatment Process for Biomass Is Successfully Implemented  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusinessDepartmentat Larger Scale | Department of

220

New Ionic Liquids with Diverse Properties - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of1,Department ofNewof NO2:Storage Energy

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Carbon Films Produced from Ionic Liquid Precursors - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRICGEGR-N-CapturePortal Carbon Films

222

Ionic Liquids as Solvents for Catalytic Conversion of Lignocellulosic Feedstocks  

E-Print Network [OSTI]

cellulose, hemicellulose, and lignin. Since cellulose is theto the interaction of lignin with the biopolymers in rawthat the presence of lignin did not have a detrimental

Dee, Sean Joseph

2012-01-01T23:59:59.000Z

223

We have created a new family of ionic-liquid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition3 WaterFebruary 18, 20141Wayne J.tails

224

Thermophilic Cellulases Compatible with Ionic Liquid Pretreatment - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1 MembersStability ofXPS.SolidInnovation

225

Fractionation and Removal of Solutes from Ionic Liquids - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" Give Forms (AllKurt'sKinneeffects

226

Ionic Liquid Sorbents for Carbon Capture - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/Surface Reactions and Ion Soft-Landing.Oxford

227

Ionic Liquids as Lubricants or Additives - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/Surface Reactions and Ion

228

Project Profile: Thermally-Stable Ionic Liquid Carriers for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309DepartmentDepartmentPower

229

New Structure found at Ionic Liquid Surface | Center for Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries &NSTCurrent

230

Sandia National Laboratories: imidazolium-based ionic liquid pretreatment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfullhigher-performancestoragei-GATE

231

Sandia National Laboratories: ionic liquids biological-ly derived from  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine blade manufacturing therenewableswind bladelignin and

232

Sandia National Laboratories: ionic-liquid mixed feedstock processing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine blade manufacturing therenewableswind bladelignin

233

Elucidating graphene - Ionic Liquid interfacial region: a combined  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles asSecond stage of the longwave ICRCCM3:Else

234

Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic Liquids for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indiana College ProvidesSteamLightingSalts and

235

Ionic Liquids as Multifunctional Ashless Additives for Engine Lubrication |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOE VehicleStationaryLaboratory, TreeInvesting in

236

Ionic Liquids as Novel Engine Lubricants or Lubricant Additives |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOE VehicleStationaryLaboratory, TreeInvesting inDepartment

237

Ionic Liquids as Novel Lubricants and Additives | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOE VehicleStationaryLaboratory, TreeInvesting

238

Computational Study of Ionic Liquids | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2 Computational Physics and MethodsIf you

239

Nanoparticle-Enhanced Ionic Liquids (NEILs) - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet TestAccountsNanoparticle ResearchPhosphorylatedSolar

240

Spheroid-Encapsulated Ionic Liquids for Gas Separation - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4 By I. Tudosa, H. C. Siegmann and

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Dispenser Printed Zinc Microbattery with an Ionic Liquid Gel Electrolyte  

E-Print Network [OSTI]

and zinc foil electrode. The EIS scans were recorded at theand zinc foil electrode. The EIS scans were recorded at the159 9.3.1 EIS Equivalent Electrical Circuit

Ho, Christine Chihfan

2010-01-01T23:59:59.000Z

242

Infrared spectroscopy of ionic clusters  

SciTech Connect (OSTI)

This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

Price, J.M. (California Univ., Berkeley, CA (USA). Dept. of Chemistry Lawrence Berkeley Lab., CA (USA))

1990-11-01T23:59:59.000Z

243

Ionic conductors for solid oxide fuel cells  

DOE Patents [OSTI]

An electrolyte that operates at temperatures ranging from 600.degree. C. to 800.degree. C. is provided. The electrolyte conducts charge ionically as well as electronically. The ionic conductors include molecular framework structures having planes or channels large enough to transport oxides or hydrated protons and having net-positive or net-negative charges. Representative molecular framework structures include substituted aluminum phosphates, orthosilicates, silicoaluminates, cordierites, apatites, sodalites, and hollandites.

Krumpelt, Michael (Naperville, IL); Bloom, Ira D. (Bolingbrook, IL); Pullockaran, Jose D. (Hanover Park, IL); Myles, Kevin M. (Downers Grove, IL)

1993-01-01T23:59:59.000Z

244

Modification of Deeply Buried Hydrophobic Interfaces by Ionic Surfactants  

SciTech Connect (OSTI)

Hydrophobicity, the spontaneous segregation of oil and water, can be modified by surfactants. The way this modification occurs is studied at the oil-water interface for a range of alkanes and two ionic surfactants. A liquid interfacial monolayer, consisting of a mixture of alkane molecules and surfactant tails, is found. Upon cooling, it freezes at T{sub s}, well above the alkane's bulk freezing temperature, T{sub b}. The monolayer's phase diagram, derived by surface tensiometry, is accounted for by a mixtures-based theory. The monolayer's structure is measured by high-energy X-ray reflectivity above and below T{sub s}. A solid-solid transition in the frozen monolayer, occurring approximately 3 C below T{sub s}, is discovered and tentatively suggested to be a rotator-to-crystal transition.

Ocko, B.M.; Tamam, L.; Pontoni, D.; Sapir, Z.; Yefet, S.; Sloutskin, E.; Reichert, H.; Deutsch, M.

2011-04-05T23:59:59.000Z

245

Modification of Deeply Buried Hydrophobic Interfaces by Ionic Surfactants  

SciTech Connect (OSTI)

Hydrophobicity, the spontaneous segregation of oil and water, can be modified by surfactants. The way this modification occurs is studied at the oil-water interface for a range of alkanes and two ionic surfactants. A liquid interfacial monolayer, consisting of a mixture of alkane molecules and surfactant tails, is found. Upon cooling, it freezes at T{sub s}, well above the alkane's bulk freezing temperature, T{sub b}. The monolayer's phase diagram, derived by surface tensiometry, is accounted for by a mixtures-based theory. The monolayer's structure is measured by high-energy X-ray reflectivity above and below T{sub s}. A solid-solid transition in the frozen monolayer, occurring approximately 3 C below T{sub s}, is discovered and tentatively suggested to be a rotator-to-crystal transition.

L Tamam; D Pontoni Z Sapir; S Yefet; S Sloutskin; B Ocko; H Reichert; M Deutsch

2011-12-31T23:59:59.000Z

246

Alteration of gas phase ion polarizabilities upon hydration in high dielectric liquids  

E-Print Network [OSTI]

We investigate the modification of gas phase ion polarizabilities upon solvation in polar solvents and ionic liquids. To this aim, we develop a classical electrostatic theory of charged liquids composed of solvent molecules modeled as finite size dipoles, and embedding polarizable ions that consist of Drude oscillators. In qualitative agreement with ab-initio calculations of polar solvents and ionic liquids, the hydration energy of a polarizable ion in both type of dielectric liquid is shown to favor the expansion of its electronic cloud. Namely, the ion carrying no dipole moment in the gas phase acquires a dipole moment in the liquid environment, but its electron cloud also reaches an enhanced rigidity. We find that the overall effect is an increase of the gas phase polarizability upon hydration. In the specific case of ionic liquids, it is shown that this hydration process is driven by a collective solvation mechanism where the dipole moment of a polarizable ion induced by its interaction with surrounding ions self-consistently adds to the polarization of the liquid, thereby amplifying the dielectric permittivity of the medium in a substantial way. We propose this self-consistent hydration as the underlying mechanism behind the high dielectric permittivities of ionic liquids composed of small charges with negligible gas phase dipole moment. Hydration being a correlation effect, the emerging picture indicates that electrostatic correlations cannot be neglected in polarizable liquids.

Sahin Buyukdagli; Tapio Ala-Nissila

2013-04-23T23:59:59.000Z

247

Integrated experimental and modeling study of the ionic conductivity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

modeling study of the ionic conductivity of samaria-doped ceria thin films. Abstract: Oxygen diffusion and ionic conductivity of samaria-doped ceria (SDC) thin films have been...

248

Hyperfine Effects in Ionic Orbital Electron Capture  

E-Print Network [OSTI]

The K-orbital electron capture in ions with one or two electrons is analized for a general allowed nuclear transition. For ionic hyperfine states the angular neutrino distribution and the electron capture rate are given in terms of nuclear matrix elements. A possible application towards the determination of neutrino parameters is outlined.

M. A. Goñi

2010-03-02T23:59:59.000Z

249

Asymmetric Framework for Predicting Liquid-Liquid Equilibrium of Ionic Liquid-Mixed Solvent Systems: II. Prediction of Ternary Systems  

E-Print Network [OSTI]

as to predictions obtained from standard symmetric models. Results indicate that an asymmetric NRTL/eNRTL model parameters are needed are the conventional (symmetric) NRTL, electrolyte-NRTL (eNRTL) and UNIQUAC models and the new asymmetric NRTL/eNRTL model. 2.1 Fully Adjustable Parameters For each of the models considered, we

Stadtherr, Mark A.

250

Neutral-ionic transitions in organic mixed-stack compounds  

SciTech Connect (OSTI)

Torrance et al. have made the interesting observation that several mixed-stack organic compounds undergo transitions from neutral states to ionic states as the temperature or pressure is varied. We examine a simple model of such transitions including Coulomb interaction and hybridization of neutral and ionic states. In the limit of weak hybridization and long-range repulsive interaction between ionic planes, it is proven that there is a complete devil's staircase where the degree of ionicity assumes an infinity of rational values. For attractive interactions between ionic planes, the neutral-ionic transition is shown to be first order for weak hybridization. Comparison with experiment indicates that this situation applies to tetrathiafulvalene (TTF) chloranil. For strong hybridization the transition is continuous but goes through a metallic phase. It is shown, for the first time, that the spectrum of the charge-transfer Hamiltonian contains both a bound spectrum, the observed charge-transfer excitations, and a continuum.

Bruinsma, R.; Bak, P.; Torrance, J.B.

1983-01-01T23:59:59.000Z

251

Final Report for DE-FG02-93ER14376,Ionic Transport in Electrochemical Media  

SciTech Connect (OSTI)

This project was a molecular dynamics study of the relevant issues associated with the structure and transport of lithium in polymer electrolytes such as polyethylene oxide(PEO). In close collaboration with quantum chemist Larry Curtiss and neutron scatterers David Lee Price and Marie-Louise Saboungi at Argonne, we used molecular dynamics to study the local structure and dynamics and ion transport in the polymer. The studies elucidated the mechanism of Li transport in PEO, revealing that the rate limiting step is extremely sensitive to the magnitude of the torsion forces in the backbone of the polymer. Because the torsion forces are difficult to manipulate chemically, this makes it easier to understand why improving the conductivity of PEO based electrolytes has proven to be very difficult. We studied the transport properties of cations in ionic liquids as possible additives to polymer membranes for batteries and fuel cells and found preliminary indications that the transport is enhanced near phase separation in acid-ionic liquid mixtures.

J. W. Halley

2009-05-20T23:59:59.000Z

252

Identification of polar, ionic, and highly water soluble organic pollutants in untreated industrial wastewaters  

SciTech Connect (OSTI)

This paper presents a generic protocol for the determination of polar, ionic, and highly water soluble organic pollutants on untreated industrial wastewaters involving the use of two different solid-phase extraction (SPE) methodologies followed by liquid chromatography-mass spectrometry (LC-MS). Untreated industrial wastewaters might contain natural and synthetic dissolved organic compounds with total organic carbon (TOC) values varying between 100 and 3000 mg/L. All polar, ionic and highly water soluble compounds comprising more than 95% of the organic content and with major contribution to the total toxicity of the sample cannot be analyzed by conventional gas chromatography-mass spectrometry (GC-MS), and LC-MS is a good alternative. In this work two extraction procedures were used to obtain fractionated extracts of the nonionic polar compounds: a polymeric Isolute ENV + SPE cartridge for the preconcentration of anionic analytes and a sequential solid-phase extraction (SSPE) method percolating the samples first in octadecylsilica cartridge in series with the polymeric Lichrolut EN cartridge. Average recoveries ranging from 72% to 103% were obtained for a variety of 23 different analytes. Determination of nonionic pollutants was accomplished by reverse-phase liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS), while anionic compounds were analyzed by ion pair chromatography-electrospray-mass spectrometry (IP-ESI-MS) and LC-ESI-MS. This protocol was applied to a pilot survey of textile and tannery wastewaters leading to the identification and quantification of 33 organic pollutants.

Castillo, M.; Alonso, M.C.; Riu, J.; Barcelo, D. [IIQAB-CSIC, Barcelona (Spain). Dept. of Environmental Chemistry] [IIQAB-CSIC, Barcelona (Spain). Dept. of Environmental Chemistry

1999-04-15T23:59:59.000Z

253

Sandia National Laboratories: solid-state ionics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational Solar Thermal Testthermalstate ionics Joint

254

Ionic Power Systems Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load)InternationalRenewable Energy6.3091865°,Power IncIonic

255

Synthesis and characterization of hybrid materials based on 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and Dawson-type tungstophosphate K{sub 7}[H{sub 4}PW{sub 18}O{sub 62}].18H{sub 2}O and K{sub 6}[P{sub 2}W{sub 18}O{sub 62}].13H{sub 2}O  

SciTech Connect (OSTI)

In this study, we synthesized hybrid materials using well-Dawson polyoxometalates (POMs), K{sub 7}[H{sub 4}PW{sub 18}O{sub 62}].18H{sub 2}O or K{sub 6}[P{sub 2}W{sub 18}O{sub 62}].13H{sub 2}O and a room temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF{sub 4}]). K, W, P and CHN elemental analysis showed that one mole of [H{sub 4}PW{sub 18}O{sub 62}]{sup 7-} reacts with 6 moles of BMIM{sup +} and one mole of [P{sub 2}W{sub 18}O{sub 62}]{sup 6-} reacts with 4 moles of BMIM{sup +} to form, respectively, K[BMIM]{sub 6}H{sub 4}PW{sub 18}O{sub 62} and K{sub 2}[BMIM]{sub 4}P{sub 2}W{sub 18}O{sub 62}. X-ray diffraction illustrated amorphous structure of the hybrid materials. FT-IR spectra showed the presence of both 1-butyl-3-methylimidazolium cation and the Dawson anion. TG analysis displayed a relative thermal stability of the hybrid materials compared to the parents Dawson POMs. Cyclic voltammetry showed that the reduction peak potentials of the Dawson anion in the hybrid materials shift towards negative values and the shift is more pronounced for K[BMIM]{sub 6}H{sub 4}PW{sub 18}O{sub 62} compared to K{sub 2}[BMIM]{sub 4}P{sub 2}W{sub 18}O{sub 62}. This was attributed to a decrease in the acidity of the Dawson POM anion in the hybrid material. -- Graphical abstract: Powder XRD patterns of (a) PW{sub 18}, (b) K[BMIM]{sub 6}H{sub 4}PW{sub 18}O{sub 62}, (c) P{sub 2}W{sub 18}, and (d) K{sub 2}[BMIM]{sub 4}P{sub 2}W{sub 18}O{sub 62}. Display Omitted Research highlights: {yields} 1-butyl-3-methylimidazolium tetrafluoroborate([BMIM][BF{sub 4}]) reacts with K{sub 7}[H{sub 4}PW{sub 18}O{sub 62}].18H{sub 2}O to form K[BMIM]{sub 6}H{sub 4}PW{sub 18}O{sub 62}. {yields} [BMIM][BF{sub 4}] reacts with K{sub 6}[P{sub 2}W{sub 18}O{sub 62}].13H{sub 2}O to form K{sub 2}[BMIM]{sub 4}P{sub 2}W{sub 18}O{sub 62}. {yields} K[BMIM]{sub 6}H{sub 4}PW{sub 18}O{sub 62} and K{sub 2}[BMIM]{sub 4}P{sub 2}W{sub 18}O{sub 62} displayed amorphous structures. {yields} K[BMIM]{sub 6}H{sub 4}PW{sub 18}O{sub 62} and K{sub 2}[BMIM]{sub 4}P{sub 2}W{sub 18}O{sub 62} illustrated low water content. {yields} K[BMIM]{sub 6}H{sub 4}PW{sub 18}O{sub 62} and K{sub 2}[BMIM]{sub 4}P{sub 2}W{sub 18}O{sub 62} showed improved thermal stability.

Ammam, Malika, E-mail: m78ammam@yahoo.f [Department of Metallurgy and Materials Engineering (MTM), K.U Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium); Fransaer, Jan [Department of Metallurgy and Materials Engineering (MTM), K.U Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium)

2011-04-15T23:59:59.000Z

256

Phytoremediation of Ionic and Methyl Mercury P  

SciTech Connect (OSTI)

Our long-term goal is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic heavy metal pollutants as an environmentally friendly alternative to physical remediation methods. We have focused this phytoremediation research on soil and water-borne ionic and methylmercury. Mercury pollution is a serious world-wide problem affecting the health of human and wild-life populations. Methylmercury, produced by native bacteria at mercury-contaminated wetland sites, is a particularly serious problem due to its extreme toxicity and efficient biomagnification in the food chain. We engineered several plant species (e.g., Arabidopsis, tobacco, canola, yellow poplar, rice) to express the bacterial genes, merB and/or merA, under the control of plant regulatory sequences. These transgenic plants acquired remarkable properties for mercury remediation. (1) Transgenic plants expressing merB (organomercury lyase) extract methylmercury from their growth substrate and degrade it to less toxic ionic mercury. They grow on concentrations of methylmercury that kill normal plants and accumulate low levels of ionic mercury. (2) Transgenic plants expressing merA (mercuric ion reductase) extract and electrochemically reduce toxic, reactive ionic mercury to much less toxic and volatile metallic mercury. This metal transformation is driven by the powerful photosynthetic reducing capacity of higher plants that generates excess NADPH using solar energy. MerA plants grow vigorously on levels of ionic mercury that kill control plants. Plants expressing both merB and merA degrade high levels of methylmercury and volatilize metallic mercury. These properties were shown to be genetically stable for several generations in the two plant species examined. Our work demonstrates that native trees, shrubs, and grasses can be engineered to remediate the most abundant toxic mercury pollutants. Building on these data our working hypothesis for the next grant period is that transgenic plants expressing the bacterial merB and merA genes will (a) remove mercury from polluted soil and water and (b) prevent methylmercury from entering the food chain. Our specific aims center on understanding the mechanisms by which plants process the various forms of mercury and volatilize or transpire mercury vapor. This information will allow us to improve the design of our current phytoremediation strategies. As an alternative to volatilizing mercury, we are using several new genes to construct plants that will hyperaccumulate mercury in above-ground tissues for later harvest. The Department of Energy's Oak Ridge National Laboratory and Brookhaven National Laboratory have sites with significant levels of mercury contamination that could be cleaned by applying the scientific discoveries and new phytoremediation technologies described in this proposal. The knowledge and expertise gained by engineering plants to hyperaccumulate mercury can be applied to the remediation of other heavy metals pollutants (e.g., arsenic, cesium, cadmium, chromium, lead, strontium, technetium, uranium) found at several DOE facilities.

Meagher, Richard B.

1999-06-01T23:59:59.000Z

257

High-energy metal air batteries  

DOE Patents [OSTI]

Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

2014-07-01T23:59:59.000Z

258

High-energy metal air batteries  

DOE Patents [OSTI]

Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

2013-07-09T23:59:59.000Z

259

Metal-Air Battery - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergy StorageAdvanced Materials AdvancedInnovationsEnergy

260

Structural simulations of nanomaterials self-assembled from ionic macrocycles.  

SciTech Connect (OSTI)

Recent research at Sandia has discovered a new class of organic binary ionic solids with tunable optical, electronic, and photochemical properties. These nanomaterials, consisting of a novel class of organic binary ionic solids, are currently being developed at Sandia for applications in batteries, supercapacitors, and solar energy technologies. They are composed of self-assembled oligomeric arrays of very large anions and large cations, but their crucial internal arrangement is thus far unknown. This report describes (a) the development of a relevant model of nonconvex particles decorated with ions interacting through short-ranged Yukawa potentials, and (b) the results of initial Monte Carlo simulations of the self-assembly binary ionic solids.

van Swol, Frank B.; Medforth, Craig John (University of New Mexico, Albuquerque, NM)

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Decoupling of Ionic Trasport from Segmental Relaxation in Polymer Electrolytes  

SciTech Connect (OSTI)

We present detailed studies of the relationship between ionic conductivity and segmental relaxation in polymer electrolytes. The analysis shows that the ionic conductivity can be decoupled from segmental dynamics and the strength of the decoupling correlates with the fragility but not with the glass transition temperature. These results call for a revision of the current picture of ionic transport in polymer electrolytes. We relate the observed decoupling phenomenon to frustration in packing of rigid polymers, where the loose local structure is also responsible for the increase in their fragility.

Wang, Yangyang [ORNL; Agapov, Alexander L [ORNL; Fan, Fei [ORNL; Hong, Kunlun [ORNL; Yu, Xiang [ORNL; Mays, Jimmy [ORNL; Sokolov, Alexei P [ORNL

2012-01-01T23:59:59.000Z

262

Screening model for nanowire surface-charge sensors in liquid  

E-Print Network [OSTI]

The conductance change of nanowire field-effect transistors is considered a highly sensitive probe for surface charge. However, Debye screening of relevant physiological liquid environments challenge device performance due to competing screening from the ionic liquid and nanowire charge carriers. We discuss this effect within Thomas-Fermi and Debye-Huckel theory and derive analytical results for cylindrical wires which can be used to estimate the sensitivity of nanowire surface-charge sensors. We study the interplay between the nanowire radius, the Thomas-Fermi and Debye screening lengths, and the length of the functionalization molecules. The analytical results are compared to finite-element calculations on a realistic geometry.

Martin H. Sorensen; Niels Asger Mortensen; Mads Brandbyge

2007-08-17T23:59:59.000Z

263

Electric Double-Layer Capacitor Based on an Ionic Clathrate Hydrate  

SciTech Connect (OSTI)

Herein, we suggest a new approach to an electric double-layer capacitor (EDLC) that is based on a proton-conducting ionic clathrate hydrate (ICH). The ice-like structures of clathrate hydrates, which are comprised of host water molecules and guest ions, make them suitable for applications in EDLC electrolytes, owing to their high proton conductivities and thermal stabilities. The carbon materials in the ICH Me{sub 4}NOH[DOT OPERATOR]5?H{sub 2}O show a high specific capacitance, reversible charge–discharge behavior, and a long cycle life. The ionic-hydrate complex provides the following advantages in comparison with conventional aqueous and polymer electrolytes: 1)?The ICH does not cause leakage problems under normal EDLC operating conditions. 2)?The hydrate material can be utilized itself, without requiring any pre-treatments or activation for proton conduction, thus shortening the preparation procedure of the EDLC. 3)?The crystallization of the ICH makes it possible to tailor practical EDLC dimensions because of its fluidity as a liquid hydrate. 4)?The hydrate solid electrolyte exhibits more-favorable electrochemical stability than aqueous and polymer electrolytes. Therefore, ICH materials are expected to find practical applications in versatile energy devices that incorporate electrochemical systems.

Lee, Wonhee; Kwon, Minchul; Park, Seongmin; Lim, Dongwook Cha, Dr Jong-Ho; Lee, Dr. Huen

2013-07-01T23:59:59.000Z

264

Liquid electrode  

DOE Patents [OSTI]

A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

Ekechukwu, A.A.

1994-07-05T23:59:59.000Z

265

Liquid foams of graphene  

E-Print Network [OSTI]

Liquid foams are dispersions of bubbles in a liquid. Bubbles are stabilized by foaming agents that position at the interface between the gas and the liquid. Most foaming agents, such as the commonly used sodium dodecylsulfate, ...

Alcazar Jorba, Daniel

2012-01-01T23:59:59.000Z

266

Degradation of Ionic Pathway in PEM Fuel Cell Cathode  

SciTech Connect (OSTI)

The degradation of the ionic pathway throughout the catalyst layer in proton exchange membrane fuel cells was studied under an accelerated stress test of catalyst support (potential hold at 1.2 V). Electrochemical behaviors of the cathode based on graphitic mesoporous carbon supported Pt catalyst were examined using electrochemical impedance spectroscopy and cyclic voltammetry. Impedance data were plotted and expressed in the complex capacitance form to determine useful parameters in the transmission line model: the double-layer capacitance, peak frequency, and ionic resistance. Electrochemical surface area and hydrogen crossover current through the membrane were estimated from cyclic voltammogram, while cathode Faradaic resistance was compared with ionic resistance as a function of test time. It was observed that during an accelerated stress test of catalyst support, graphitic mesoporous carbon becomes hydrophilic which increases interfacial area between the ionomer and the catalyst up to 100 h. However, the ionic resistance in the catalyst layer drastically increases after 100 h with further carbon support oxidation. The underlying mechanism has been studied and it was found that significant degradation of ionic pathway throughout the catalyst layer due to catalyst support corrosion induces uneven hydration and mechanical stress in the ionomer.

Park, Seh Kyu; Shao, Yuyan; Wan, Haiying; Viswanathan, Vilayanur V.; Towne, Silas A.; Rieke, Peter C.; Liu, Jun; Wang, Yong

2011-11-12T23:59:59.000Z

267

Conductive Filler Morphology Effect on Performance of Ionic Polymer Conductive Network Composite Actuators  

E-Print Network [OSTI]

Several generations of ionic polymer metal composite (IPMC) actuators have been developed since 1992. It has been discovered that the composite electrodes which are composed of electronic and ionic conductors, have great ...

Liu, Sheng

268

Characterization of ionic liquid ion sources for focused ion beam applications  

E-Print Network [OSTI]

In the Focused Ion Beam (FIB) technique, a beam of ions is reduced to nanometer dimensions using dedicated optics and directed to a substrate for patterning. This technique is widely used in micro- and nanofabrication for ...

Perez Martinez, Carla S. (Carla Sofia)

2013-01-01T23:59:59.000Z

269

Force microscopy of layering and friction in an ionic liquid Judith Hotha,b  

E-Print Network [OSTI]

shape of the force vs. distance curve is explained by a model for the interaction between tip, gold of the compliant force sensor between branches of the oscillatory force curve. Frictional force between-viscosity, yet load- bearing lubricant [1-4]. The load-bearing ability stems from the formation of solvation

Mueser, Martin

270

Studies of Block Copolymer Thin Films and Mixtures with an Ionic Liquid  

E-Print Network [OSTI]

identification of structure and domain size in block copolymer thin films using RSoXS enables a quantitative comparison of the bulk

Virgili, Justin

2009-01-01T23:59:59.000Z

271

High-Performance Supercapacitors Based on Poly(ionic liquid)-Modified  

E-Print Network [OSTI]

- pected for an ideal graphene-based super- capacitor.6 Moreover, current supercapaci- tors have energy for super- capacitors assembled with graphene-based electrodes. One of the challenges is achiev- ing-layer capacitors or ultracapac- itors) are electrochemical capacitors that store energy through reversible ion ad

272

Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli  

E-Print Network [OSTI]

One approach to reducing the costs of advanced biofuel production from cellulosic biomass is to engineer a single microorganism to both digest plant biomass and produce hydrocarbons that have the properties of petrochemical ...

Bokinsky, Gregory

273

Environmentally Benign Production of Ionic Liquids in CO2-Expanded Systems  

E-Print Network [OSTI]

of [HMIm][Br]). Although DMSO is a relatively environmentally benign solvent, it is beset with a high boiling point (189oC), rendering it both economically and environmentally non-feasible as a solvent option. The synthesis and processing of ILs in gas...

Nwosu, Sylvia Ogechi

2012-08-31T23:59:59.000Z

274

Recovery of Sugars from Ionic Liquid Biomass Liquor by Solvent Extraction  

E-Print Network [OSTI]

Bioenerg. Res. (2010) 3:123–133 DOI 10.1007/s12155-010-9091-has been shown to be an Bioenerg. Res. (2010) 3:123–133 12.Division, Joint BioEnergy Institute, Emeryville, CA, USA e-

Brennan, Timothy C.; Datta, Supratim; Blanch, Harvey W.; Simmons, Blake A.; Holmes, Bradley M.

2010-01-01T23:59:59.000Z

275

Investigations into the Synthesis, Identification and Developability of Active Ionic Liquids  

E-Print Network [OSTI]

to be advantageous in traditional oral and alternative non-oral routes of administration. The library of successful AILs was increased with a series of generic and propriatary compounds. They were characterized via infrared spectrometry, glass transition temperature...

Miller, Elise

2012-12-31T23:59:59.000Z

276

Homogeneous Hydrogenation of CO2 to Methyl Formate Utilizing Switchable Ionic Liquids  

SciTech Connect (OSTI)

Capture of CO2 and subsequent hydrogenation allows for base/alcohol-catalyzed conversion of CO2 to methylformate in one pot. The conversion of CO2 proceeds via alkylcarbonates, to formate salts and then formate esters, which can be catalyzed by base and alcohol with the only byproduct being water. The system operates at mild conditions (300 psi H2, 140 ?C). Reactivity is strongly influenced by temperature and choice of solvent. In the presence of excess of base (DBU) formate is predominant product while in excess of methanol methyl formate is major product. 110 ?C yields formate salts, 140 ?C promotes methylformate. The authors acknowledge internal Laboratory Directed Re-search and Development (LDRD) funding from Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.

Yadav, Mahendra (ORCID:0000000202660382); Linehan, John C.; Karkamkar, Abhijeet J.; Van Der Eide, Edwin F.; Heldebrant, David J.

2014-09-15T23:59:59.000Z

277

Identification of a haloalkaliphilic and thermostable cellulase with improved ionic liquid tolerance  

E-Print Network [OSTI]

acetate ([Emim]Ac), 1-ethyl-3-methylimidazolium chloride ([Emim]Cl), 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) and 1-allyl-

Zhang, Tao

2012-01-01T23:59:59.000Z

278

Studies of ionic liquids in lithium-ion battery test systems  

E-Print Network [OSTI]

are not useful for lithium batteries. We are therefore nowapplications using lithium batteries, we must be sure thattemperature range. For lithium batteries in hybrid vehicles,

Salminen, Justin; Prausnitz, John M.; Newman, John

2006-01-01T23:59:59.000Z

279

Gas Hydrate Equilibrium Measurements for Multi-Component Gas Mixtures and Effect of Ionic Liquid Inhibitors  

E-Print Network [OSTI]

hydrate inhibition data from a newly commissioned micro bench top reactor, a high-pressure autoclave and a rocking cell. The conditions for hydrate formation for pure methane and carbon dioxide were also measured, for validation purposes. The measured data...

Othman, Enas Azhar

2014-04-07T23:59:59.000Z

280

Technical Highlights for July 2012 New Collaboration Underway to Investigate Ionic Liquids for Enhancing Engine Efficiency  

E-Print Network [OSTI]

for Enhancing Engine Efficiency A new Cooperative Research and Development Agreement (CRADA), No. NFE-12

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Ionic Liquids as Multi-Functional Lubricant Additives to Enhance Engine Efficiency  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

282

Studies of Block Copolymer Thin Films and Mixtures with an Ionic Liquid  

E-Print Network [OSTI]

based natural materials, 4 dye-sensitized solar cells, 5 andcells, 4-8 and dye-sensitized solar cells. 9-12 While the

Virgili, Justin

2009-01-01T23:59:59.000Z

283

Ionic liquid assisted electrospinning of quantum dots/elastomer composite Jiahua Zhu a  

E-Print Network [OSTI]

,* a Integrated Composites Laboratory (ICL), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA b Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA c Department of Biology, Lamar University, Beaumont, TX 77710, USA d Ocean NanoTech, LLC, 2143

Guo, John Zhanhu

284

Separable fluorous ionic liquids for the dissolution and saccharification of cellulose  

E-Print Network [OSTI]

Cellulose (medium cotton linters, C6288) was from Sigma Chemical (St. Louis, MO). Other commercial chemicals silica gel was from Aldrich Chemical (Milwaukee, WI). The term "concentrated under reduced pressure unless indicated otherwise. Mass spectrometry was performed with a Micromass LCT (electrospray ionization

Raines, Ronald T.

285

Ionic Liquids as an Attractive Alternative Solvent for Thermal Lens Measurements  

E-Print Network [OSTI]

in volatile organic solvents such as benzene, carbon tetrachloride, and hexane. However, the ILs are more,2 Nonpolar, volative organic solvents such as benzene, carbon tetrachloride, and hexane should provide good

Reid, Scott A.

286

Ionic Liquids Used as Wear Reduction, Wins R&D 100 Award | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusinessDepartmentat Larger Scale | Department

287

Surface layering and melting in an ionic liquid studied by resonant soft  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Burst Buffer ArchiveSuppliers Suppliers

288

Toward a Materials Genome Approach for Ionic Liquids: Synthesis Guided by  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System BurstLongTitan Titan is aSurface Area

289

Development of a Universal Method Based on Ionic Liquids for Determination of  

E-Print Network [OSTI]

at room temperature. They have unique chemical and physical properties, including being air and moisture of Enantiomeric Compositions of Pharmaceutical Products Chieu D. Tran* Department of Chemistry, Marquette with either new anions and/or cations and determining © 2010 American Chemical Society Downloadedby

Reid, Scott A.

290

Computer simulations of ionic liquids at electrochemical interfaces C. Merlet1,2  

E-Print Network [OSTI]

emphasizing the case of elec- trical double layer capacitors (EDLC), which has at- tracted much attention

Paris-Sud XI, Université de

291

Imaging an ionic liquid adlayer by scanning tunneling microscopy at the solid|vacuum interface  

E-Print Network [OSTI]

of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm, Germany 2 Institute of Particle Technology, Clausthal University of Technology, D-38678 Clausthal- Zellerfeld, Gemany Abstract The first imaging(pentafluoroethyl)trifluorophosphate ([Py1,4]FAP) was evaporated onto a clean Au(111) surface by a Knudsen-type evaporator and the surface

Pfeifer, Holger

292

New lithium-based ionic liquid electrolytes that resist salt concentration  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32DepartmentWells |of Energypolarization | Department of

293

Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/Surface Reactions and Ion Soft-Landing.OxfordSulfur

294

Ionic Liquids as New Solvents for Improved Separation of Medical Isotopes -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/Surface Reactions and IonEnergy Innovation

295

Understanding the effect of side groups in ionic liquids on carbon-capture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProduction Undergraduateproperties: a combined

296

Inexpensive, Nonfluorinated (or Partially Fluorinated) Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

297

Safetygram #9- Liquid Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

298

E-Print Network 3.0 - alginate microparticle ionic Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Naturally Summary: , crosslinked'' indicates alginate was crosslinked with CaCl2, and uncrosslinked'' indicates ionic crosslinks... ), and alginate, a...

299

Liquid level detector  

DOE Patents [OSTI]

A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

Grasso, Albert P. (Vernon, CT)

1986-01-01T23:59:59.000Z

300

Liquid level detector  

DOE Patents [OSTI]

A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

Grasso, A.P.

1984-02-21T23:59:59.000Z

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Liquid Hydrogen Absorber for MICE  

E-Print Network [OSTI]

REFERENCES Figure 5: Liquid hydrogen absorber and test6: Cooling time of liquid hydrogen absorber. Eight CernoxLIQUID HYDROGEN ABSORBER FOR MICE S. Ishimoto, S. Suzuki, M.

Ishimoto, S.

2010-01-01T23:59:59.000Z

302

Guidance Document Cryogenic Liquids  

E-Print Network [OSTI]

with air. Liquid carbon monoxide is extremely toxic and extremely flammable. #12;Cryogenic liquids connecting cylinder to lower pressure piping or systems. 6. Use a check valve or trap in the discharge line

303

Equation for liquid density  

SciTech Connect (OSTI)

Saturated liquid densities for organic chemicals are given as functions of temperature using a modified Rackett equation.

Yaws, C.L.; Yang, H.C.; Hopper, J.R.; Cawley, W.A. (Lamar Univ., Beaumont, TX (US))

1991-01-01T23:59:59.000Z

304

Liquid detection circuit  

DOE Patents [OSTI]

Herein is a circuit which is capable of detecting the presence of liquids, especially cryogenic liquids, and whose sensor will not overheat in a vacuum. The circuit parameters, however, can be adjusted to work with any liquid over a wide range of temperatures.

Regan, Thomas O. (North Aurora, IL)

1987-01-01T23:59:59.000Z

305

Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing  

DOE Patents [OSTI]

The invention relates to mixed phase materials for the preparation of catalytic membranes which exhibit ionic and electronic conduction and which exhibit improved mechanical strength compared to single phase ionic and electronic conducting materials. The mixed phase materials are useful for forming gas impermeable membranes either as dense ceramic membranes or as dense thin films coated onto porous substrates. The membranes and materials of this invention are useful in catalytic membrane reactors in a variety of applications including synthesis gas production. One or more crystalline second phases are present in the mixed phase material at a level sufficient to enhance the mechanical strength of the mixture to provide membranes for practical application in CMRs.

Van Calcar, Pamela (Superior, CO); Mackay, Richard (Lafayette, CO); Sammells, Anthony F. (Boulder, CO)

2002-01-01T23:59:59.000Z

306

Non-Fickian ionic diffusion across high-concentration gradients  

SciTech Connect (OSTI)

A non-Fickian physico-chemical model for electrolyte transport in high-ionic strength systems is developed and tested with laboratory experiments with copper sulfate as an example electrolyte. The new model is based on irreversible thermodynamics and uses measured mutual diffusion coefficients, varying with concentration. Compared to a traditional Fickian model, the new model predicts less diffusion and asymmetric diffusion profiles. Laboratory experiments show diffusion rates even smaller than those predicted by our non-Fickian model, suggesting that there are additional, unaccounted for processes retarding diffusion. Ionic diffusion rates maybe a limiting factor in transporting salts whose effect on fluid density will in turn significantly affect the flow regime. These findings have important implications for understanding and predicting solute transport in geologic settings where dense, saline solutions occur. 30 refs., 5 figs.

Carey, A.E.; Wheatcraft, S.W. [Univ. of Nevada, Reno, NV (United States)] [Univ. of Nevada, Reno, NV (United States); Glass, R.J. [Sandia National Laboratory, Albuquerque, NM (United States)] [and others] [Sandia National Laboratory, Albuquerque, NM (United States); and others

1995-09-01T23:59:59.000Z

307

Liquid Wall Chambers  

SciTech Connect (OSTI)

The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

Meier, W R

2011-02-24T23:59:59.000Z

308

Thermodynamics and Ionic Conductivity of Block Copolymer Electrolytes  

E-Print Network [OSTI]

B. and J. Garche, Lithium batteries: Status, prospects andionic liquids for lithium batteries. Journal of Powersolid-state rechargeable lithium batteries. Journal of the

Wanakule, Nisita Sidra

2010-01-01T23:59:59.000Z

309

Liquid Metal Transformers  

E-Print Network [OSTI]

The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clar...

Sheng, Lei; Liu, Jing

2014-01-01T23:59:59.000Z

310

Capture and release of mixed acid gasses with binding organic liquids  

DOE Patents [OSTI]

Reversible acid-gas binding organic liquid systems that permit separation and capture of one or more of several acid gases from a mixed gas stream, transport of the liquid, release of the acid gases from the ionic liquid and reuse of the liquid to bind more acid gas with significant energy savings compared to current aqueous systems. These systems utilize acid gas capture compounds made up of strong bases and weak acids that form salts when reacted with a selected acid gas, and which release these gases when a preselected triggering event occurs. The various new materials that make up this system can also be included in various other applications such as chemical sensors, chemical reactants, scrubbers, and separators that allow for the specific and separate removal of desired materials from a gas stream such as flue gas.

Heldebrant, David J. (Richland, WA); Yonker, Clement R. (Kennewick, WA)

2010-09-21T23:59:59.000Z

311

E-Print Network 3.0 - antimony oxide ionic Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

results for: antimony oxide ionic Page: << < 1 2 3 4 5 > >> 1 IOP PUBLISHING NANOTECHNOLOGY Nanotechnology 20 (2009) 264003 (7pp) doi:10.10880957-44842026264003 Summary:...

312

Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide  

SciTech Connect (OSTI)

Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed to mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.

Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.; Taylor, Harry Z.; Liao, Yu-Jung

2012-07-31T23:59:59.000Z

313

Ultrasonic liquid level detector  

DOE Patents [OSTI]

An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

Kotz, Dennis M. (North Augusta, SC); Hinz, William R. (Augusta, GA)

2010-09-28T23:59:59.000Z

314

Liquid Metal Transformers  

E-Print Network [OSTI]

The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clarified. Such events are hard to achieve otherwise on rigid metal or conventional liquid spheres. This finding has both fundamental and practical significances which suggest a generalized way of making smart soft machine, collecting discrete metal fluids, as well as flexibly manipulating liquid metal objects including accompanying devices.

Lei Sheng; Jie Zhang; Jing Liu

2014-01-30T23:59:59.000Z

315

Liquid Crystal Optofluidics  

SciTech Connect (OSTI)

By employing anisotropic fluids and namely liquid crystals, fluid flow becomes an additional degree of freedom in designing optofluidic devices. In this paper, we demonstrate optofluidic liquid crystal devices based on the direct flow of nematic liquid crystals in microfluidic channels. Contrary to previous reports, in the present embodiment we employ the effective phase delay acquired by light travelling through flowing liquid crystal, without analysing the polarisation state of the transmitted light. With this method, we demonstrate the variation in the diffraction pattern of an array of microfluidic channels acting as a grating. We also discuss our recent activities in integrating mechanical oscillators for on-chip peristaltic pumping.

Vasdekis, Andreas E.; Cuennet, J. G.; Psaltis, D.

2012-10-11T23:59:59.000Z

316

(Ionization in liquids)  

SciTech Connect (OSTI)

This document describes charge transport following ionization of model liquids and how this process may be important in carcinogenesis. 15 refs., 2 figs., 4 tabs. (MHB)

Not Available

1991-01-01T23:59:59.000Z

317

Absorption of sound in liquids and liquid mixtures  

E-Print Network [OSTI]

ABSORPTION OF SOUND IN LIQUIDS AND LIQUID MIXTURES A Thesis Raiq S. causa Approved as to style and content by: (Chairman of Committee) January 1955 L1BRARY A 4 M COLLEOE OF IEXAS ADSORPTION OF SOfP@ LIQUIDS AND LIQUID NIXTURES A Thesis... Introduction to the Problem Experimental Methods and Procedures Results Discussion of Results Acknowledgements Bib 1 io graphy 22 4I 42 Introduction to the Problem The study of sound absorption in liquids and liquid mixtures is of considerable...

Musa, Raiq S

2012-06-07T23:59:59.000Z

318

Carbon monoxide absorbing liquid  

SciTech Connect (OSTI)

The present disclosure is directed to a carbon monoxide absorbing liquid containing a cuprous ion, hydrochloric acid and titanum trichloride. Titanium trichloride is effective in increasing the carbon monoxide absorption quantity. Furthermore, titanium trichloride remarkably increases the oxygen resistance. Therefore, this absorbing liquid can be used continuously and for a long time.

Arikawa, Y.; Horigome, S.; Kanehori, K.; Katsumoto, M.

1981-07-07T23:59:59.000Z

319

INEEL Liquid Effluent Inventory  

SciTech Connect (OSTI)

The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

Major, C.A.

1997-06-01T23:59:59.000Z

320

Liquid heat capacity lasers  

DOE Patents [OSTI]

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Surface Tension of Electrolyte Interfaces: Ionic Specificity within a Field-Theory Approach  

E-Print Network [OSTI]

Surface Tension of Electrolyte Interfaces: Ionic Specificity within a Field-Theory Approach Tomer, 1000 Ljubljana, Slovenia (Dated: November 19, 2014) We study the surface tension of ionic solutions expansion beyond the mean-field result. We calculate the excess surface tension and obtain analytical

Andelman, David

322

Millisecond switching in solid state electrochromic polymer devices fabricated from ionic self-assembled multilayers  

E-Print Network [OSTI]

Millisecond switching in solid state electrochromic polymer devices fabricated from ionic self The electrochromic switching times of solid state conducting polymer devices fabricated by the ionic self shown to decrease with the active area of the electrochromic device suggesting that even faster

Heflin, Randy

323

Air Liquide - Biogas & Fuel Cells  

Broader source: Energy.gov (indexed) [DOE]

Liquide - Biogas & Fuel Cells Hydrogen Energy Biogas Upgrading Technology 12 June 2012 Charlie.Anderson@airliquide.com 2 Air Liquide, world leader in gases for industry,...

324

Liquid sampling system  

DOE Patents [OSTI]

A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

Larson, L.L.

1984-09-17T23:59:59.000Z

325

Liquid metal electric pump  

DOE Patents [OSTI]

An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1992-01-01T23:59:59.000Z

326

Liquid metal electric pump  

DOE Patents [OSTI]

An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

1992-01-14T23:59:59.000Z

327

Low velocity ion stopping in binary ionic mixtures  

SciTech Connect (OSTI)

Attention is focused on the low ion velocity stopping mechanisms in multicomponent and dense target plasmas built of quasiclassical electron fluids neutralizing binary ionic mixtures, such as, deuterium-tritium of current fusion interest, proton-heliumlike iron in the solar interior or proton-helium ions considered in planetology, as well as other mixtures of fiducial concern in the heavy ion beam production of warm dense matter at Bragg peak conditions. The target plasma is taken in a multicomponent dielectric formulation a la Fried-Conte. The occurrence of projectile ion velocities (so-called critical) for which target electron slowing down equals that of given target ion components is also considered. The corresponding multiquadrature computations, albeit rather heavy, can be monitored analytical through a very compact code operating a PC cluster. Slowing down results are systematically scanned with respect to target temperature and electron density, as well as ion composition.

Tashev, Bekbolat; Baimbetov, Fazylkhan [Department of Physics, Kazakh National University, Tole Bi 96, Almaty 480012 (Kazakhstan); Deutsch, Claude [LPGP (UMR-CNRS 8578), Universite Paris XI, 91405 Orsay (France); Fromy, Patrice [Direction de l'Informatique, Universite Paris XI, 91405 Orsay (France)

2008-10-15T23:59:59.000Z

328

Liquidity facilities and signaling  

E-Print Network [OSTI]

This dissertation studies the role of signaling concerns in discouraging access to liquidity facilities like the IMF contingent credit lines (CCL) and the Discount Window (DW). In Chapter 1, I analyze the introduction of ...

Arregui, Nicolás

2010-01-01T23:59:59.000Z

329

Liquid crystalline composites containing phyllosilicates  

DOE Patents [OSTI]

The present invention provides phyllosilicate-polymer compositions which are useful as liquid crystalline composites. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while at the same time be transparent. Because of the ordering of the particles liquid crystalline composite, liquid crystalline composites are particularly useful as barriers to gas transport.

Chaiko, David J.

2004-07-13T23:59:59.000Z

330

Liquid crystal-enabled electroosmosis through spatial charge separation in distorted regions as a novel mechanism of electrokinetics  

E-Print Network [OSTI]

Electrically-controlled dynamics of fluids and particles at microscales is a fascinating area of research with applications ranging from microfluidics and sensing to sorting of biomolecules. The driving mechanisms are electric forces acting on spatially separated charges in an isotropic medium such as water. Here we demonstrate that anisotropic conductivity of liquid crystals enables new mechanism of highly efficient electro-osmosis rooted in space charging of regions with distorted orientation. The electric field acts on these distortion-separated charges to induce liquid crystal-enabled electro-osmosis (LCEO). LCEO velocities grow with the square of the field, which allows one to use an AC field to drive steady flows and to avoid electrode damage. Ionic currents in liquid crystals that have been traditionally considered as an undesirable feature in displays, offer a broad platform for versatile applications such as liquid crystal enabled electrokinetics, micropumping and mixing.

Israel Lazo; Chenhui Peng; Jie Xiang; Sergij V. Shiyanovskii; Oleg D. Lavrentovich

2014-08-11T23:59:59.000Z

331

Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes  

SciTech Connect (OSTI)

The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.

He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.; Clark, Kyle; Weber, Adam Z.; Kostecki, Robert

2011-08-01T23:59:59.000Z

332

Mixed ionic and electronic conducting electrode studies for an alkali metal thermal to electric converter  

E-Print Network [OSTI]

This research focuses on preparation, kinetics, and performance studies of mixed ionic and electronic conducting electrodes (MIEE) applied in an alkali metal thermal to electric converter (AMTEC). Two types of MIEE, metal/sodium titanate and metal...

Guo, Yuyan

2009-05-15T23:59:59.000Z

333

Nanopatterned Protein Films Directed by Ionic Complexation with Water-Soluble Diblock Copolymers  

E-Print Network [OSTI]

The use of ionic interactions to direct both protein templating and block copolymer self-assembly into nanopatterned films with only aqueous processing conditions is demonstrated using block copolymers containing both ...

Kim, Bokyung

334

Free-standing graphene membranes on glass nanopores for ionic current measurements  

E-Print Network [OSTI]

A method is established to reliably suspend graphene monolayers across glass nanopores as a simple, low cost platform to study ionic transport through graphene membranes. We systematically show that the graphene seals glass nanopore openings...

Walker, Michael I.; Weatherup, Robert S.; Bell, Nicholas A. W.; Hofmann, Stephan; Keyser, Ulrich F.

2015-01-16T23:59:59.000Z

335

Ionic strength independence of charge distributions in solvation of biomolecules  

SciTech Connect (OSTI)

Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations). Although water provides the dominant contribution to the charge density distribution and to the electrostatic potential even in 1M NaCl solutions, the contributions of water molecules and of ions to the total electrostatic interaction free energy with the solvated biomolecule are comparable. The electrostatic biomolecule/solvent interaction energies and the total charge distribution exhibit a remarkable insensitivity to salt concentrations over a huge range of salt concentrations (20 mM to 1M NaCl). The electrostatic potentials near the biomolecule's surface obtained from the MD simulations differ markedly, as expected, from the potentials predicted by continuum dielectric models, even though the total electrostatic interaction free energies are within 11% of each other.

Virtanen, J. J. [Department of Chemistry, University of Chicago, Chicago, Illinois 60637 (United States); James Franck Institute, University of Chicago, Chicago, Illinois 60637 (United States); Sosnick, T. R. [Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637 (United States); Computation Institute, University of Chicago, Chicago, Illinois 60637 (United States); Freed, K. F. [Department of Chemistry, University of Chicago, Chicago, Illinois 60637 (United States); James Franck Institute, University of Chicago, Chicago, Illinois 60637 (United States); Computation Institute, University of Chicago, Chicago, Illinois 60637 (United States)

2014-12-14T23:59:59.000Z

336

Properties of Liquid Plutonium  

SciTech Connect (OSTI)

Unalloyed polycrystalline Pu displays extreme thermal expansion behavior, i.e., {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} increases by 25% in volume and {delta} {yields} {var_epsilon} {yields} liquid decreases by 4.5% in volume. Thus, making it difficult to measure density into the liquid state. Dilatometer outfitted with CaF molten metal cell offers a proven capability to measure thermal expansion in molten metals, but has yet to be proven for Pu. Historic data from the liquid nuclear fuels program will prove extremely useful as a guide to future measurements. 3.3at% Ga changes Pu molten metal properties: 50% increase in viscosity and {approx}3% decrease in density. Fe may decrease the density by a small amount assuming an averaging of densities for Pu-Ga and Pu-Fe liquids. More recent Boivineau (2009) work needs some interpretation, but technique is being employed in (U,Pu)O{sub 2} nuclear fuels program (Pu Futures, 2012).

Freibert, Franz J. [Los Alamos National Laboratory; Mitchell, Jeremy N. [Los Alamos National Laboratory; Schwartz, Daniel S. [Los Alamos National Laboratory; Saleh, Tarik A. [Los Alamos National Laboratory; Migliori, Albert [Los Alamos National Laboratory

2012-08-02T23:59:59.000Z

337

Imaging Liquids Using Microfluidic Cells  

SciTech Connect (OSTI)

Chemistry occurring in the liquid and liquid surface is important in many applications. Chemical imaging of liquids using vacuum based analytical techniques is challenging due to the difficulty in working with liquids with high volatility. Recent development in microfluidics enabled and increased our capabilities to study liquid in situ using surface sensitive techniques such as electron microscopy and spectroscopy. Due to its small size, low cost, and flexibility in design, liquid cells based on microfluidics have been increasingly used in studying and imaging complex phenomena involving liquids. This paper presents a review of microfluidic cells that were developed to adapt to electron microscopes and various spectrometers for in situ chemical analysis and imaging of liquids. The following topics will be covered including cell designs, fabrication techniques, unique technical features for vacuum compatible cells, and imaging with electron microscopy and spectroscopy. Challenges are summarized and recommendations for future development priority are proposed.

Yu, Xiao-Ying; Liu, Bingwen; Yang, Li

2013-05-10T23:59:59.000Z

338

Determination of Thermal Diffusivities, Thermal Conductivities, and Sound Speeds of Room-Temperature Ionic Liquids by the Transient Grating Technique  

E-Print Network [OSTI]

Determination of Thermal Diffusivities, Thermal Conductivities, and Sound Speeds of Room. The experiments give thermal diffusivities from which thermal conductivities can be determined, sound speeds not only on the sound speed but also on the thermal diffusivity and acoustic damping of the RTILs

Reid, Scott A.

339

Auto Template Assembly of CaCO3-Chitosan Hybrid Nanoboxes and Nanoframes in Ionic Liquid Medium  

E-Print Network [OSTI]

growth species concentration at the surface driving rapid incorporation of growth species. The change in radius for each type of growth is shown in Fig. 4. Growth controlled by diffusion is the best method to produce monodisperse crystals.9 Fig. 4.... Influence of growth control on nanoparticle size dispersity. Growth controlled by diffusion is the best way to produce monodisperse nanoparticles since the difference in radius decreases with increase in time. Growth controlled by surface process...

Chen, Hsingming Anna

2012-07-16T23:59:59.000Z

340

Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage  

E-Print Network [OSTI]

for energy storage L. Chancelier,a,b A.O. Diallo,c,d C.C. Santini,*a G. Marlair,*c T. Gutel,b S. Mailley,b C Abstract The energy storage market relating to lithium based systems regularly grows in size and expands for the promotion of a new generation of energy storage systems. These systems must be capable of addressing

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

HOMOGENEOUS CATALYSIS AND MASS TRANSFER IN BIPHASIC IONIC LIQUID SYSTEMS WITH COMPRESSED CO2 AND ORGANIC COMPOUNDS  

E-Print Network [OSTI]

is separating and reusing precious metal catalyst; therefore, it needs to be performed in a convenient platform. To figure out this problem, a biphasic system can be suggested in which one phase sequesters the solid catalyst and the other phase delivers...

Ahosseini, Azita

342

Chemical Communications c2cc30957b Q1Hypergolic ionic liquids to mill, suspend, and ignite  

E-Print Network [OSTI]

of nanoscale additives to improve EIL properties, such as energetic density and heat of combustion, while to their practical use such as low density5 and relatively low heats of combustion6 when compared to the current

Anderson, Scott L.

343

Airborne measurement of inorganic ionic components of fine aerosol particles using the particle-into-liquid sampler coupled to ion  

E-Print Network [OSTI]

. In addition to a sea-salt origin, ClÃ? showed a source in urban emissions possibly related to biofuel and that NH3 and other alkaline materials were in sufficient supply to neutralize H2SO4. The [NH4 + ] to ([NO3 and health effects, knowledge of the various types of aerosol sources from different regions of the world

344

Synthesis and physico-chemical properties of ionic liquids containing tetrakis(perfluorophenyl)borate, tetraphenylborate and trifluorophenylborate anions.  

E-Print Network [OSTI]

Scientific, used as received, in 150 mL of acetonitrile.and removal of the acetonitrile by rotary evaporation, theas received, in 150 mL of acetonitrile. After filtering and

Papaiconomou, Nicolas; Salminen, Justin; Yakelis, Neal; Prausnitz, John M.

2006-01-01T23:59:59.000Z

345

Long Term Thermal Stability In Air Of Ionic Liquid Based Alternative Heat Transfer Fluids For Clean Energy Production  

SciTech Connect (OSTI)

The purpose of this study was to investigate the effect of long-term aging on the thermal stability and chemical structure of seven different ILs so as to explore their suitability for use as a heat transfer fluid. This was accomplished by heating the ILs for 15 weeks at 200?C in an oxidizing environment and performing subsequent analyses on the aged chemicals.

Fox, Elise B; Kendrick, Sarah E.; Visser, Ann E.; Bridges, Nicholas J.

2012-10-15T23:59:59.000Z

346

Liquid metal thermal electric converter  

DOE Patents [OSTI]

A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

347

Liquid crystalline composites containing phyllosilicates  

DOE Patents [OSTI]

The present invention provides barrier films having reduced gas permeability for use in packaging and coating applications. The barrier films comprise an anisotropic liquid crystalline composite layer formed from phyllosilicate-polymer compositions. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while remaining transparent. Because of the ordering of the particles in the liquid crystalline composite, barrier films comprising liquid crystalline composites are particularly useful as barriers to gas transport.

Chaiko; David J. (Naperville, IL)

2007-05-08T23:59:59.000Z

348

Increasing Sugar Yields with IL-final-sm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ionic Liquid Processing Increasing sugar yields from diverse biomass feedstock with ionic liquid processing and cultivation of renewable ionic liquids Liberating Sugars from...

349

Neptunium (V) Adsorption to a Halophilic Bacterium Under High Ionic Strength Conditions: A Surface Complexation Modeling Approach  

SciTech Connect (OSTI)

Rationale for experimental design: Np(V) -- important as analog for Pu(V) and for HLW scenarios; High ionic strength -- relevant to salt-based repositories such as the WIPP; Halophilic microorganisms -- representative of high ionic strength environments. For the first time showed: Significant adsorbant to halophilic microorganisms over entire pH range under high ionic strength conditions; Strong influence of ionic strength with increasing adsorption with increasing ionic strength (in contrast to trends of previous low ionic strength studies); Effect of aqueous Np(V) and bacterial surface site speciation on adsorption; and Developed thermodynamic models that can be incorporated into geochemical speciation models to aid in the prediction of the fate and transport of Np(V) in more complex systems.

Ams, David A [Los Alamos National Laboratory

2012-06-11T23:59:59.000Z

350

High temperature liquid level sensor  

DOE Patents [OSTI]

A length of metal sheathed metal oxide cable is perforated to permit liquid access to the insulation about a pair of conductors spaced close to one another. Changes in resistance across the conductors will be a function of liquid level, since the wetted insulation will have greater electrical conductivity than that of the dry insulation above the liquid elevation.

Tokarz, Richard D. (West Richland, WA)

1983-01-01T23:59:59.000Z

351

Analysis & Simulation of Dynamics in Supercooled Liquids  

E-Print Network [OSTI]

Moreover, the heat capacity of that liquid is also higherthe intensive heat capacities of the liquid and the crystal,

Elmatad, Yael Sarah

2011-01-01T23:59:59.000Z

352

Liquid filtration simulation  

SciTech Connect (OSTI)

We have a developed a computer code that simulates 3-D filtration of suspended particles in fluids in realistic filter structures. This code, being the most advanced filtration simulation package developed to date, provides LLNL and DOE with new capabilities to address problems in cleaning liquid wastes, medical fluid cleaning, and recycling liquids. The code is an integrated system of commercially available and LLNL-developed software; the most critical are the computational fluid dynamics (CFD) solver and the particle transport program. For the CFD solver, we used a commercial package based on Navier-Stokes equations and a LLNL-developed package based on Boltzman-lattice gas equations. For the particle transport program, we developed a cod based on the 3-D Langevin equation of motion and the DLVO theory of electrical interactions. A number of additional supporting packages were purchased or developed to integrate the simulation tasks and to provide visualization output.

Corey, I.; Bergman, W.

1996-06-01T23:59:59.000Z

353

Soret motion in non-ionic binary molecular mixtures Yves Leroyer and Alois Wrger  

E-Print Network [OSTI]

on standard transport theory for liquids, we derive explicit expressions for the thermophoretic mobility

Boyer, Edmond

354

Surface Tension of Electrolyte Interfaces: Ionic Specificity within a Field-Theory Approach  

E-Print Network [OSTI]

We study the surface tension of ionic solutions at air/water and oil/water interfaces. By using field-theoretical methods and including a finite proximal surface-region with ionic-specific interactions. The free energy is expanded to first-order in a loop expansion beyond the mean-field result. We calculate the excess surface tension and obtain analytical predictions that reunite the Onsager-Samaras pioneering result (which does not agree with experimental data), with the ionic specificity of the Hofmeister series. We derive analytically the surface-tension dependence on the ionic strength, ionic size and ion-surface interaction, and show consequently that the Onsager-Samaras result is consistent with the one-loop correction beyond the mean-field result. Our theory fits well a wide range of salt concentrations for different monovalent ions using one fit parameter, and reproduces the reverse Hofmeister series for anions at the air/water and oil/water interfaces.

Markovich, Tomer; Podgornik, Rudolf

2014-01-01T23:59:59.000Z

355

Surface Tension of Electrolyte Interfaces: Ionic Specificity within a Field-Theory Approach  

E-Print Network [OSTI]

We study the surface tension of ionic solutions at air/water and oil/water interfaces. By using field-theoretical methods and including a finite proximal surface-region with ionic-specific interactions. The free energy is expanded to first-order in a loop expansion beyond the mean-field result. We calculate the excess surface tension and obtain analytical predictions that reunite the Onsager-Samaras pioneering result (which does not agree with experimental data), with the ionic specificity of the Hofmeister series. We derive analytically the surface-tension dependence on the ionic strength, ionic size and ion-surface interaction, and show consequently that the Onsager-Samaras result is consistent with the one-loop correction beyond the mean-field result. Our theory fits well a wide range of salt concentrations for different monovalent ions using one fit parameter per electrolyte, and reproduces the reverse Hofmeister series for anions at the air/water and oil/water interfaces.

Tomer Markovich; David Andelman; Rudolf Podgornik

2015-01-10T23:59:59.000Z

356

Water dynamics at neutral and ionic interfaces Emily E. Fenn, Daryl B. Wong, and M. D. Fayer1  

E-Print Network [OSTI]

Water dynamics at neutral and ionic interfaces Emily E. Fenn, Daryl B. Wong, and M. D. Fayer1 (sent for review June 12, 2009) The orientational dynamics of water at a neutral surfactant reverse, and the results are compared to orienta- tional relaxation of water interacting with an ionic interface

Fayer, Michael D.

357

Supported liquid membrane electrochemical separators  

DOE Patents [OSTI]

Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.

Pemsler, J. Paul (Lexington, MA); Dempsey, Michael D. (Revere, MA)

1986-01-01T23:59:59.000Z

358

Liquid monobenzoxazine based resin system  

DOE Patents [OSTI]

The present invention provides a liquid resin system including a liquid monobenzoxazine monomer and a non-glycidyl epoxy compound, wherein the weight ratio of the monobenzoxazine monomer to the non-glycidyl epoxy compound is in a range of about 25:75 to about 60:40. The liquid resin system exhibits a low viscosity and exceptional stability over an extended period of time making its use in a variety of composite manufacturing methods highly advantageous.

Tietze, Roger; Nguyen, Yen-Loan; Bryant, Mark

2014-10-07T23:59:59.000Z

359

Process for preparing liquid wastes  

DOE Patents [OSTI]

A process for preparing radioactive and other hazardous liquid wastes for treatment by the method of vitrification or melting is provided for.

Oden, Laurance L. (Albany, OR); Turner, Paul C. (Albany, OR); O'Connor, William K. (Lebanon, OR); Hansen, Jeffrey S. (Corvallis, OR)

1997-01-01T23:59:59.000Z

360

FLARE, Fermilab Liquid Argon Experiments  

E-Print Network [OSTI]

Mature technology of Liquid Argon Time Projection Chambers in conjunction with intense neutrino beams constructed at Fermilab offer a broad program of neutrino physics for the next decade.

L. Bartoszek

2004-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Discotic Liquid Crystals and Polymersomes: Molecule Goniometers  

E-Print Network [OSTI]

platelet-platelet interaction was influenced synergistically by ionic strength and ion exchange. At low pH, directional inter-platelet attractions lead to the formation of low volume fraction colloidal gels. Alternative surface modification approaches...

Chang, Ya-Wen

2012-10-19T23:59:59.000Z

362

Polarization model for water and its ionic dissociation Frank H. Stillinger and Carl W. Davida)  

E-Print Network [OSTI]

engage in hydrogen bonding to one another. Minimum-energy structures have been detennined for the waterCient to treat the individual water molecules as rigid bodies. An early example of a rigid molecule pairPolarization model for water and its ionic dissociation products Frank H. Stillinger and Carl W

Stillinger, Frank

363

Ionic transport in nanocapillary membrane systems Vikhram V. Swaminathan Larry R. Gibson II  

E-Print Network [OSTI]

. Keywords Membranes Á Nanostructures Á Nanofluidics Á Microfluidics Á Ion transport Á Electrokinetics Á lREVIEW Ionic transport in nanocapillary membrane systems Vikhram V. Swaminathan · Larry R. Gibson / Accepted: 23 May 2012 � Springer Science+Business Media B.V. 2012 Abstract Species transport

364

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation at high ionic strength in microbial fuel  

E-Print Network [OSTI]

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation at high ionic strength in microbial fuel cell organic matter using elec- trochemically active bacteria as catalysts to generate electrical energy of the most exciting applications of MFCs is their use as benthic unattended generators to power electrical

Sun, Baolin

365

ELSEVIER Solid State Ionics 94 (1997) 17-25 Ceramic solid electrolytes  

E-Print Network [OSTI]

ELSEVIER Solid State Ionics 94 (1997) 17-25 SOLID STATE IoMcs Ceramic solid electrolytes John B electrolytes are best suited for solid reactants, as are found in most battery systems. Ceramic solid 78712-106.3. USA Abstract Strategies for the design of ceramic solid electrolytes are reviewed. Problems

Gleixner, Stacy

366

Solid-State Electrochromic Devices via Ionic Self-Assembled Multilayers  

E-Print Network [OSTI]

Solid-State Electrochromic Devices via Ionic Self-Assembled Multilayers (ISAM) of a Polyviologena-Galva´n, Harry W. Gibson, James R. Heflin* Introduction Electrochromic (EC) devices undergo reversible absorbance/ transmittance change on application of external voltage.[1] Since the first major report on electrochromism

Heflin, Randy

367

Ionic-passivated FeS2 photocapacitors for energy conversion and storage  

E-Print Network [OSTI]

, 49, 9260--9262 This journal is c The Royal Society of Chemistry 2013 Cite this: Chem. Commun.,2013, 49, 9260 Ionic-passivated FeS2 photocapacitors for energy conversion and storage† Maogang Gong,a Alec Kirkeminde,a Nardeep Kumar,b Hui Zhaob...

Gong, Maogang; Kirkeminde, Alec; Kumar, Nardeep; Zhao, Hui; Ren, Shenqiang

2013-08-08T23:59:59.000Z

368

Lithium-loaded liquid scintillators  

DOE Patents [OSTI]

The invention is directed to a liquid scintillating composition containing (i) one or more non-polar organic solvents; (ii) (lithium-6)-containing nanoparticles having a size of up to 10 nm and surface-capped by hydrophobic molecules; and (iii) one or more fluorophores. The invention is also directed to a liquid scintillator containing the above composition.

Dai, Sheng (Knoxville, TN); Kesanli, Banu (Mersin, TR); Neal, John S. (Knoxville, TN)

2012-05-15T23:59:59.000Z

369

Freezing of a Liquid Marble  

E-Print Network [OSTI]

In this study, we present for the first time the observations of a freezing liquid marble. In the experiment, liquid marbles are gently placed on the cold side of a Thermo-Electric Cooler (TEC) and the morphological changes are recorded and characterized thereafter. These liquid marbles are noticed to undergo a shape transition from a spherical to a flying-saucer shaped morphology. The freezing dynamics of liquid marbles is observed to be very different from that of a freezing water droplet on a superhydrophobic surface. For example, the pointy tip appearing on a frozen water drop could not be observed for a frozen liquid marble. In the end, we highlight a possible explanation for the observed morphology.

Ali Hashmi; Adam Strauss; Jie Xu

2012-07-03T23:59:59.000Z

370

Method for treating liquid wastes  

DOE Patents [OSTI]

The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering {sup 99}Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of {sup 99}TcO{sub 4}{sup {minus}} from aqueous solutions into organic solvents or mixed organic/polar media, extraction of {sup 99}Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester {sup 99}Tc from those liquids. 6 figs.

Katti, K.V.; Volkert, W.A.; Singh, P.; Ketring, A.R.

1995-12-26T23:59:59.000Z

371

Method for treating liquid wastes  

DOE Patents [OSTI]

The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering .sup.99 Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of .sup.99 TcO.sub.4.sup.- from aqueous solutions into organic solvents or mixed organic/polar media, extraction of .sup.99 Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester .sup.99 Tc from those liquids.

Katti, Kattesh V. (Columbia, MO); Volkert, Wynn A. (Columbia, MO); Singh, Prahlad (Columbia, MO); Ketring, Alan R. (Columbia, MO)

1995-01-01T23:59:59.000Z

372

Shearing Flows in Liquid Crystal Models  

E-Print Network [OSTI]

The liquid crystal phase is a phase of matter between the solid and liquid phase whose flow is characterized by a velocity field and a director field which describes locally the orientation of the liquid crystal. In this ...

Dorn, Timothy

2012-05-31T23:59:59.000Z

373

Method of measuring a liquid pool volume  

DOE Patents [OSTI]

A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid.

Garcia, Gabe V. (Las Cruces, NM); Carlson, Nancy M. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID)

1991-01-01T23:59:59.000Z

374

Renewable Liquid Fuels Reforming | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Renewable Liquid Fuels Reforming The Program anticipates that distributed reforming of biomass-derived liquid fuels could be commercial during the transition to hydrogen and used...

375

Singular Limits in Polymer Stabilized Liquid Crystals  

E-Print Network [OSTI]

We investigate equilibrium configurations for a polymer stabilized liquid crys- tal material ... eling the cross section of the liquid crystal-polymer fiber composite.

1910-31-00T23:59:59.000Z

376

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

377

Haze Formation and Behavior in Liquid-Liquid Extraction Processes  

SciTech Connect (OSTI)

Aqueous haze formation and behavior was studied in the liquid-liquid system tri-n-butyl phosphate in odorless kerosene and 3M nitric acid with uranyl nitrate and cesium nitrate representing the major solute and an impurity, respectively. A pulsed column, mixer-settler and centrifugal contactor were chosen to investigate the effect of different turbulence characteristics on the manifestation of haze since these contactors exhibit distinct mixing phenomena. The dispersive processes of drop coalescence and breakage, and water precipitation in the organic phase were observed to lead to the formation of haze drops of {approx}1 um in diameter. The interaction between the haze and primary drops of the dispersion was critical to the separation efficiency of the liquid-liquid extraction equipment. Conditions of high power input and spatially homogeneous mixing enabled the haze drops to become rapidly assimilated within the dispersion to maximize the scrub performance and separation efficiency of the equipment.

Arm, Stuart T.; Jenkins, J. A.

2006-07-31T23:59:59.000Z

378

Molecular Simulation of Henry's Constant at Vapor-Liquid and Liquid-Liquid Phase Richard J. Sadus  

E-Print Network [OSTI]

coexistence. 1. Introduction Henry's constant is a well-known measure of a solute's solubility in a particularMolecular Simulation of Henry's Constant at Vapor-Liquid and Liquid-Liquid Phase Boundaries Richard to determine Henry's constant from the residual chemical potential at infinite dilution at the vapor-liquid

379

High Electromechanical Response of Ionic Polymer Actuators with Controlled-Morphology Aligned Carbon Nanotube/Nafion Nanocomposite Electrodes  

E-Print Network [OSTI]

Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fraction create unique opportunities for markedly improving the electromechanical performance of ionic ...

Liu, Sheng

380

CdO as the Archetypical Transparent Conducting Oxide. Systematics of Dopant Ionic Radius and Electronic Structure  

E-Print Network [OSTI]

the last two decades as critical components of flat panel displays, solar cells, and low-emissivity windowsO-based TCO crystal and band structure: (1) lattice parameters contract as a function of dopant ionic radii

Medvedeva, Julia E.

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Role of Amorphous Boundary Layer in Enhancing Ionic Conductivity of Lithium–lanthanum–titanate Electrolyte  

SciTech Connect (OSTI)

The low ionic conductivity is a bottleneck of the inorganic solid state electrolyte used for lithium ion battery. In ceramic electrolytes, grain boundary usually dominates the total conductivity. In order to improve the grain boundary effect, an amorphous silica layer is introduced into grain boundary of ceramic electrolytes based on lithium-lanthanum-titanate, as evidenced by electron microscopy. The results showed that the total ionic conductivity could be to be enhanced over 1 x 10{sup -4} S/cm at room temperature. The reasons can be attributed to removing the anisotropy of outer-shell of grains, supplement of lithium ions in various sites in grain boundary and close bindings among grains by the amorphous boundary layer among grains.

Mei, A.; Wang, X.; Lana, J.-L.; Fenga, Y.-C.; Genga, H.-X.; Lina, Y.-H.; Nana, C.-W.

2010-03-01T23:59:59.000Z

382

Variation of stability constants of thorium citrate complexes and of thorium hydrolysis constants with ionic strength  

SciTech Connect (OSTI)

Citrate is among the organic anions that are expected to be present in the wastes planned for deposition in the Waste Isolation Pilot Plant repository. In this study, a solvent extraction method has been used to measure the stability constants of Thorium(IV)[Th(IV)] with citrate anions in aqueous solutions with (a) NaClO{sub 4} and (b) NaCl as the background electrolytes. The ionic strengths were varied up to 5 m (NaCl) and 14 m (NaClO{sub 4}). The data from the NaClO{sub 4} solutions at varying pH values were used to calculate the hydrolysis constants for formation of Th(OH){sup 3+} at the different ionic strengths.

Choppin, G.R.; Erten, H.N.; Xia, Y.X. [Florida State Univ., Tallahassee, FL (United States)

1995-09-01T23:59:59.000Z

383

Portlandite content and ionic transport properties of hydrated C{sub 3}S pastes  

SciTech Connect (OSTI)

This paper presents the results of a C{sub 3}S paste characterization study. The objective was to determine the parameters needed to model the process of degradation. The experimental study focused on determining the portlandite content and the ionic diffusion coefficients of C{sub 3}S paste. The molar C/S ratio of C-S-H in hydrated C{sub 3}S pastes was also investigated. The portlandite content was determined with an experimental method based on an electron microprobe analysis. This method leads to a portlandite mass content of 24.4 {+-} 2.3%. The diffusion coefficient of each ionic species was determined by inverse analysis of diffusion test data performed on hydrated C{sub 3}S samples using a multiionic transport model.

Henocq, P., E-mail: phenocq@simcotechnologies.com [SIMCO Technologies Inc., 1400, boul. du Parc-Technologique, Quebec, G1P 4R7 (Canada); Samson, E. [SIMCO Technologies Inc., 1400, boul. du Parc-Technologique, Quebec, G1P 4R7 (Canada); Marchand, J. [SIMCO Technologies Inc., 1400, boul. du Parc-Technologique, Quebec, G1P 4R7 (Canada); Department of Civil Engineering, Laval University, Quebec, G1K 7P4 (Canada)

2012-02-15T23:59:59.000Z

384

Ionic density distributions near the charged colloids: Spherical electric double layers  

SciTech Connect (OSTI)

We have studied the structure of the spherical electric double layers on charged colloids by a density functional perturbation theory, which is based both on the modified fundamental-measure theory for the hard spheres and on the one-particle direct correlation functional (DCF) for the electronic residual contribution. The contribution of one-particle DCF has been approximated as the functional integration of the second-order correlation function of the ionic fluids in a bulk phase. The calculated result is in very good agreement with the computer simulations for the ionic density distributions and the zeta potentials over a wide range of macroion sizes and electrolyte concentrations, and compares with the results of Yu et al. [J. Chem. Phys. 120, 7223 (2004)] and modified Poisson-Boltzmann approximation [L. B. Bhuiyan and C. W. Outhwaite, Condens. Matter Phys. 8, 287 (2005)]. The present theory is able to provide interesting insights about the charge inversion phenomena occurring at the interface.

Kim, Eun-Young; Kim, Soon-Chul, E-mail: sckim@andong.ac.kr [Department of Physics, Andong National University, Andong 760-749 (Korea, Republic of)] [Department of Physics, Andong National University, Andong 760-749 (Korea, Republic of)

2013-11-21T23:59:59.000Z

385

Calculate viscosities for 355 liquids  

SciTech Connect (OSTI)

Liquid viscosities are important factors in process design and operation. The viscosity of a liquid determines its flow properties, such as velocity and pressure drop. In addition, the heat- and mass-transfer characteristics of a liquid are affected by its viscosity. An equation can be used to calculate liquid viscosities as a function of temperature. In the accompanying table, regression coefficients are included for 355 compounds with five, six or seven carbon atoms--generally the most-widely used in the chemical and petroleum industries. To calculate the viscosity of a liquid at any temperature between its melting and critical points (T[sub min] and T[sub max]), use the following equation: log[sub 10] [eta][sub liq] = A + B/T + CT + DT[sup 2] where [eta][sub liq] = viscosity, cP, A,B,C and D = regression coefficients, and T = liquid temperature, K. Insert the temperature into the equation along with the corresponding regression coefficients from the table. The chemical formulae are listed by the number of carbon atoms.

Yaws, C.L.; Lin, Xiaoyan; Li Bu (Lamar Univ., TX (United States))

1994-04-01T23:59:59.000Z

386

Adaptive Liquid Crystal Windows  

SciTech Connect (OSTI)

Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of power consumption by ALCWs allows for on-board power electronics for automatic matching of transmission through windows to varying climate conditions without drawing the power from the power grid. ALCWs are capable of transmitting more sunlight in winters to assist in heating and less sunlight in summers to minimize overheating. As such, they can change the window from being a source of energy loss to a source of energy gain. In addition, the scalable AMI’s roll-to-roll process, proved by making 1ft × 1ftALCW prototype panels, allows for cost-effective production of large-scale window panels along with capability to change easily their color and shape. In addition to architectural glazing in houses and commercial buildings, ALCWs can be used in other applications where control of sunlight is needed, such as green houses, used by commercial produce growers and botanical gardens, cars, aircrafts, etc.

Taheri, Bahman; Bodnar, Volodymyr

2011-12-31T23:59:59.000Z

387

PHASE CHANGE LIQUIDS  

SciTech Connect (OSTI)

Work is being performed to develop a new shipping system for frozen environmental samples (or other materials) that uses an optimal phase change liquid (PCL) formulation and an insulated shipping container with an on-board digital temperature data logger to provide a history of the temperature profile within the container during shipment. In previous work, several PCL formulations with temperatures of fusion ranging from approximately -14 to -20 C were prepared and evaluated. Both temperature of fusion and heat of fusion of the formulations were measured, and an optimal PCL formulation was selected. The PCL was frozen in plastic bags and tested for its temperature profile in a cooler using a digital temperature data logger. This testing showed that the PCL formulation can maintain freezer temperatures (< -7 to -20 C) for an extended period, such as the time for shipping samples by overnight courier. The results of the experiments described in this report provide significant information for use in developing an integrated freezer system that uses a PCL formulation to maintain freezer temperatures in coolers for shipping environmental samples to the laboratory. Experimental results show the importance of the type of cooler used in the system and that use of an insulating material within the cooler improves the performance of the freezer system. A new optimal PCL formulation for use in the system has been determined. The new formulation has been shown to maintain temperatures at < -7 to -20 C for 47 hours in an insulated cooler system containing soil samples. These results are very promising for developing the new technology.

Susan S. Sorini; John F. Schabron

2006-03-01T23:59:59.000Z

388

Extremely Correlated Fermi Liquids B. Sriram Shastry  

E-Print Network [OSTI]

Extremely Correlated Fermi Liquids B. Sriram Shastry Physics Department, University of California the theory of an extremely correlated Fermi liquid with U ! 1. This liquid has an underlying auxiliary Fermi liquid Green's function that is further caparisoned by extreme correlations. The theory leads to two

California at Santa Cruz, University of

389

The effects of phosphorous ligands on the gas phase ligand exchange reactions of dichromium ionic cluster fragments  

E-Print Network [OSTI]

THE EFFECTS OF PHOSPHORUS LIGANDS ON THE GAS PHASE LIGAND EXCHANGE REACTIONS OF DICHROMIUM IONIC CLUSTER FRAGMENTS A Thesis by HANH DUC NGUYEN Submited to the Graduate College of Texas A&M University in partial fulfillment of the requirments... for the degree of MASTER OF SCIENCE May 1991 Major Subject: Chemistry THE EFFECTS OF PHOSPHORUS LIGANDS ON THE GAS PHASE LIGAND EXCHANGE REACTIONS OF DICHROMIUM IONIC CLUSTER FRAGMENTS A Thesis by HANH DUC NGUYEN Approved as to style and content by...

Nguyen, Hanh Duc

1991-01-01T23:59:59.000Z

390

Comment on `Nanoconfinement-enhanced conformational response of single DNA molecules to changes in ionic environment'  

E-Print Network [OSTI]

In the present Comment we show that, contrary to the recent findings of Reisner et al. [Phys. Rev. Lett. 99, 058302 (2007)], the excluded volume effect does not play an important role in determining DNA behavior in nanochannels at low ionic strength. We argue that the DNA extension data are described very well without the notion of an effective polymer width using the entropic depletion theory due to Odijk.

Madhavi Krishnan; Eugene P. Petrov

2008-05-14T23:59:59.000Z

391

Electronically and ionically conductive porous material and method for manufacture of resin wafers therefrom  

DOE Patents [OSTI]

An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.

Lin, YuPo J. (Naperville, IL); Henry, Michael P. (Batavia, IL); Snyder, Seth W. (Lincolnwood, IL)

2008-11-18T23:59:59.000Z

392

Electronically and ionically conductive porous material and method for manufacture of resin wafers therefrom  

DOE Patents [OSTI]

An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.

Lin, YuPo J. (Naperville, IL); Henry, Michael P. (Batavia, IL); Snyder, Seth W. (Lincolnwood, IL)

2011-07-12T23:59:59.000Z

393

A Neutral, Water-Soluble, -Helical Peptide: The Effect of Ionic Strength  

E-Print Network [OSTI]

Content of Peptide as a Function of Ion Strength -Na2SO4 -NaCl -CaCl2 #12;Changes in G for Helix Stability as a Function of Ionic Strength -Na2SO4 -NaCl -CaCl2 Equation used to calculate free energy: G= -RT ln (s-2 -Na2SO4 -NaCl -CaCl2 The magnitude of the dipole moment of the -helix is estimated from the slope

Benos, Takis

394

Effect of low energy oxygen ion beam irradiation on ionic conductivity of solid polymer electrolyte  

SciTech Connect (OSTI)

Over the past three decades, solid polymer electrolytes (SPEs) have drawn significant attention of researchers due to their prospective commercial applications in high energy-density batteries, electrochemical sensors and super-capacitors. The optimum conductivity required for such applications is about 10{sup ?2} – 10{sup ?4} S/cm, which is hard to achieve in these systems. It is known that the increase in the concentration of salt in the host polymer results in a continuous increase in the ionic conductivity. However, there is a critical concentration of the salt beyond which the conductivity decreases due to formation of ion pairs with no net charge. In the present study, an attempt is made to identify the concentration at which ion pair formation occurs in PEO: RbBr. We have attempted to modify microstructure of the host polymer matrix by low energy ion (Oxygen ion, O{sup +1} with energy 100 keV) irradiation. Ionic conductivity measurements in these systems were carried out using Impedance Spectroscopy before and after irradiation to different fluencies of the oxygen ion. It is observed that the conductivity increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains. The study reveals the importance of ion irradiation as an effective tool to enhance conductivity in SPEs.

Manjunatha, H., E-mail: gnk-swamy@blr.amrita.edu; Kumaraswamy, G. N., E-mail: gnk-swamy@blr.amrita.edu [Department of Physics, Amrita Vishwa Vidyapeetham, Bengaluru-560035 (India); Damle, R. [Department of Physics, Bangalore University, Bengaluru-560056 (India)

2014-04-24T23:59:59.000Z

395

Atomic Scale Design and Three-Dimensional Simulation of Ionic Diffusive Nanofluidic Channels  

E-Print Network [OSTI]

Recent advance in nanotechnology has led to rapid advances in nanofluidics, which has been established as a reliable means for a wide variety of applications, including molecular separation, detection, crystallization and biosynthesis. Although atomic and molecular level consideration is a key ingredient in experimental design and fabrication of nanfluidic systems, atomic and molecular modeling of nanofluidics is rare and most simulations at nanoscale are restricted to one- or two-dimensions in the literature, to our best knowledge. The present work introduces atomic scale design and three-dimensional (3D) simulation of ionic diffusive nanofluidic systems. We propose a variational multiscale framework to represent the nanochannel in discrete atomic and/or molecular detail while describe the ionic solution by continuum. Apart from the major electrostatic and entropic effects, the non-electrostatic interactions between the channel and solution, and among solvent molecules are accounted in our modeling. We derive generalized Poisson-Nernst-Planck (PNP) equations for nanofluidic systems. Mathematical algorithms, such as Dirichlet to Neumann mapping and the matched interface and boundary (MIB) methods are developed to rigorously solve the aforementioned equations to the second-order accuracy in 3D realistic settings. Three ionic diffusive nanofluidic systems, including a negatively charged nanochannel, a bipolar nanochannel and a double-well nanochannel are designed to investigate the impact of atomic charges to channel current, density distribution and electrostatic potential. Numerical findings, such as gating, ion depletion and inversion, are in good agreements with those from experimental measurements and numerical simulations in the literature.

Jin Kyoung Park; Kelin Xia; Guo-Wei We

2015-03-02T23:59:59.000Z

396

Pressure effect on ionic conductivity in yttrium-oxide-doped single-crystal zirconium oxide  

SciTech Connect (OSTI)

In this study, the authors investigated the effect of pressure on the ionic conductivity of a 9.5 mol% yttria-stabilized zirconia (YSZ) single crystal. The experiment was conducted in the elastic region, and the oxygen ion transport number was unity (t{sub ion} > 0.99999). A conventional four-probe DC method was used to measure the ionic conductivity of the rectangular-shaped sample under uniaxial pressures up to 600 atm at 750 C in air. Measured ionic conductivity decreased as applied pressure increased. Based on henry Eyring`s absolute reaction rate theory, which states that the calculated activation volume has a positive value ({Delta}V{sup 2} = 2.08 cm{sup 3}/mol of O{sup {minus}2}) for oxygen ion transport in the fluoride cubic lattice, they concluded that the results they obtained could be explained by an oxygen ion transport mechanism. This mechanism can explain the fact that the interionic distance increases during oxygen ion transport from one unit cell to neighboring unit cells.

Park, E.T.; Park, J.H.

1998-06-01T23:59:59.000Z

397

Commercialization of Coal-to-Liquids Technology  

SciTech Connect (OSTI)

The report provides an overview of the current status of coal-to-liquids (CTL) commercialization efforts, including an analysis of efforts to develop and implement large-scale, commercial coal-to-liquids projects to create transportation fuels. Topics covered include: an overview of the history of coal usage and the current market for coal; a detailed description of what coal-to-liquids technology is; the history of coal-to-liquids development and commercial application; an analysis of the key business factors that are driving the increased interest in coal-to-liquids; an analysis of the issues and challenges that are hindering the commercialization of coal-to-liquids technology; a review of available coal-to-liquids technology; a discussion of the economic drivers of coal-to-liquids project success; profiles of key coal-to-liquids developers; and profiles of key coal-to-liquids projects under development.

NONE

2007-08-15T23:59:59.000Z

398

Nonlinear theory of ionic sound waves in a hot quantum-degenerate electron-positron-ion plasma  

SciTech Connect (OSTI)

A collisionless nonmagnetized e-p-i plasma consisting of quantum-degenerate gases of ions, electrons, and positrons at nonzero temperatures is considered. The dispersion equation for isothermal ionic sound waves is derived and analyzed, and an exact expression is obtained for the linear velocity of ionic sound. Analysis of the dispersion equation has made it possible to determine the ranges of parameters in which nonlinear solutions in the form of solitons should be sought. A nonlinear theory of isothermal ionic sound waves is developed and used for obtaining and analyzing the exact solution to the system of initial equations. Analysis has been carried out by the method of the Bernoulli pseudopotential. The ranges of phase velocities of periodic ionic sound waves and soliton velocities are determined. It is shown that in the plasma under investigation, these ranges do not overlap and that the soliton velocity cannot be lower than the linear velocity of ionic sound. The profiles of physical quantities in a periodic wave and in a soliton are constructed, as well as the dependences of the velocity of sound and the critical velocity on the ionic concentration in the plasma. It is shown that these velocities increase with the ion concentration.

Dubinov, A. E., E-mail: dubinov-ae@yandex.ru; Sazonkin, M. A., E-mail: figma@mail.r [Sarov State Physicotechnical Institute (Russian Federation)

2010-11-15T23:59:59.000Z

399

Core-softened Fluids, Water-like Anomalies and the Liquid-Liquid Critical Points  

E-Print Network [OSTI]

. INTRODUCTION Water is characterized by well-known thermodynamic and kinetic liquid-state anomalies; for examplePREPRINT Core-softened Fluids, Water-like Anomalies and the Liquid-Liquid Critical Points Evy simulations are used to examine the relationship between water-like anoma- lies and the liquid-liquid critical

Barbosa, Marcia C. B.

400

Nanophosphor composite scintillator with a liquid matrix  

DOE Patents [OSTI]

An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

McKigney, Edward Allen (Los Alamos, NM); Burrell, Anthony Keiran (Los Alamos, NM); Bennett, Bryan L. (Los Alamos, NM); Cooke, David Wayne (Santa Fe, NM); Ott, Kevin Curtis (Los Alamos, NM); Bacrania, Minesh Kantilal (Los Alamos, NM); Del Sesto, Rico Emilio (Los Alamos, NM); Gilbertson, Robert David (Los Alamos, NM); Muenchausen, Ross Edward (Los Alamos, NM); McCleskey, Thomas Mark (Los Alamos, NM)

2010-03-16T23:59:59.000Z

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

E-Print Network 3.0 - artificial muscles ionic Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering 7 Use of polymerionic liquid plasticizers as gel electrolytes in electrochromic devices Summary: on Biomimetics, Artificial Muscles and Nano-Bio IOP Publishing...

402

THESE DE DOCTORAT DE L'UNIVERSITE PIERRE ET MARIE CURIE  

E-Print Network [OSTI]

............................................................................................. 7 I.2 Synthesis of ionic liquids........................................................................................ 13 I.4.2 Heck reaction in ionic liquids .................................................................................. 18 18 19 20 21 I.5.2 Ionic polymerization in ionic liquids

Boyer, Edmond

403

Liquid-phase chromatography detector  

DOE Patents [OSTI]

A liquid-phase chromatography detector comprises a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focusing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof. 5 figs.

Voigtman, E.G.; Winefordner, J.D.; Jurgensen, A.R.

1983-11-08T23:59:59.000Z

404

Fragmentation of suddenly heated liquids  

SciTech Connect (OSTI)

Fragmentation of free liquids in Inertial Confinement Fusion reactors could determine the upper bound on reactor pulse rate. The x-ray ablated materials must cool and recondense to allow driver beam propagation. The increased surface area caused by fragmentation will enhance the cooling and condensation rates. Relaxation from the suddenly heated state will move a liquid into the negative pressure region under the liquid-vapor P-V dome. The lithium equation of state was used to demonstrate that neutron-induced vaporization uses only a minor fraction of the added heat, much less than would be required to drive the expansion. A 77% expansion of the lithium is required before the rapid vaporization process of spinodal decomposition could begin, and nucleation and growth are too slow to contribute to the expansion.

Blink, J.A.

1985-03-01T23:59:59.000Z

405

Liquid soap film generates electricity  

E-Print Network [OSTI]

We have observed that a rotating liquid soap film generates electricity when placed between two non-contact electrodes with a sufficiently large potential difference. In our experiments suspended liquid film (water + soap film) is formed on the surface of a circular frame, which is forced to rotate in the $x-y$ horizontal plane by a motor. This system is located at the center of two capacitor-like vertical plates to apply an external electric voltage difference in the $x-$direction. The produced electric current is collected from the liquid film using two conducting electrodes that are separated in the $y-$direction. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this paper we report a novel technique, in which a similar device can be used as an electric generator, converting the rotating mechanical energy to electrical energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed similarly in very small scales like micro scales with different applications. Although the device is comparable to commercial electric motors or electric generators, there is a significant difference in their working principles. Usually in an electric motor or generator the magnetic field causes the driving force, while in a LFM or LFEG the Coulomb force is the driving force. This fact is also interesting from the Bio-science point of view and brings a similarity to bio motors. Here we have investigated the electrical characteristics of such a generator for the first time experimentally and modelled the phenomenon with electroconvection governing equations. A numerical simulation is performed using the local approximation for the charge-potential relation and results are in qualitative agreement with experiments.

Ahmad Amjadi; Sadegh Feiz; Reza Montazeri Namin

2014-04-24T23:59:59.000Z

406

Method of measuring a liquid pool volume  

DOE Patents [OSTI]

A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools is disclosed, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figures.

Garcia, G.V.; Carlson, N.M.; Donaldson, A.D.

1991-03-19T23:59:59.000Z

407

First Principles Study of the Li[subscript 10]GeP[subscript 2]S[subscript 12] Lithium Super Ionic Conductor Material  

E-Print Network [OSTI]

The continued drive for high performance lithium batteries has imposed stricter requirements on the electrolyte materials. Solid electrolytes comprising lithium super ionic conductor materials exhibit good safety and ...

Mo, Yifei

408

THERMODYNAMICS OF SOLID AND LIQUID GROUP III-V ALLOYS  

E-Print Network [OSTI]

a high temperature heat capacity for liquid gallium which isthe molar heat capacity of the stoichiometric liquid and theheat capacity of the supercooled stoichiometric binary liquid

Anderson, T.J.

2011-01-01T23:59:59.000Z

409

Mixed Ionic and Electonic Conductors for Hydrogen Generation and Separation: A New Approach  

SciTech Connect (OSTI)

Composite mixed conductors comprising one electronic conducting phase, and one ionic conducting phase (MIECs) have been developed in this work. Such MIECs have applications in generating and separating hydrogen from hydrocarbon fuels at high process rates and high purities. The ionic conducting phase comprises of rare-earth doped ceria and the electronic conducting phase of rare-earth doped strontium titanate. These compositions are ideally suited for the hydrogen separation application. In the process studied in this project, steam at high temperatures is fed to one side of the MIEC membrane and hydrocarbon fuel or reformed hydrocarbon fuel to the other side of the membrane. Oxygen is transported from the steam side to the fuel side down the electrochemical potential gradient thereby enriching the steam side flow in hydrogen. The remnant water vapor can then be condensed to obtain high purity hydrogen. In this work we have shown that two-phase MIECs comprising rare-earth ceria as the ionic conductor and doped-strontium titanate as the electronic conductor are stable in the operating environment of the MIEC. Further, no adverse reaction products are formed when these phases are in contact at elevated temperatures. The composite MIECs have been characterized using a transient electrical conductivity relaxation technique to measure the oxygen chemical diffusivity and the surface exchange coefficient. Oxygen permeation and hydrogen generation rates have been measured under a range of process conditions and the results have been fit to a model which incorporates the oxygen chemical diffusivity and the surface exchange coefficient from the transient measurements.

Srikanth Gopalan

2006-12-31T23:59:59.000Z

410

Stiffening solids with liquid inclusions  

E-Print Network [OSTI]

From bone and wood to concrete and carbon fibre, composites are ubiquitous natural and engineering materials. Eshelby's inclusion theory describes how macroscopic stress fields couple to isolated microscopic inclusions, allowing prediction of a composite's bulk mechanical properties from a knowledge of its microstructure. It has been extended to describe a wide variety of phenomena from solid fracture to cell adhesion. Here, we show experimentally and theoretically that Eshelby's theory breaks down for small liquid inclusions in a soft solid. In this limit, an isolated droplet's deformation is strongly size-dependent with the smallest droplets mimicking the behaviour of solid inclusions. Furthermore, in opposition to the predictions of conventional composite theory, we find that finite concentrations of small liquid inclusions enhance the stiffness of soft solids. A straight-forward extension of Eshelby's theory, accounting for the surface tension of the solid-liquid interface, explains our experimental observations. The counterintuitive effect of liquid-stiffening of solids is expected whenever droplet radii are smaller than an elastocapillary length, given by the ratio of the surface tension to Young's modulus of the solid matrix.

Robert W. Style; Rostislav Boltyanskiy; Benjamin Allen; Katharine E. Jensen; Henry P. Foote; John S. Wettlaufer; Eric R. Dufresne

2014-07-24T23:59:59.000Z

411

Ionic conductivity and dielectric relaxation in {gamma}-irradiated TlGaTe{sub 2} crystals  

SciTech Connect (OSTI)

The switching effect, field and temperature dependences of the permittivity and conductivity of TlGaTe{sub 2} crystals subjected to various {gamma}-irradiation doses are studied. Under rather low electric fields, the phenomenon of threshold switching with an S-shaped current-voltage characteristic containing a portion with negative differential resistance is observed in the crystals. In the region of critical voltages, current and voltage oscillations and imposed modulation are observed. Possible mechanisms of switching, ionic conductivity, disorder, and electrical instability in TlGaTe{sub 2} crystals are discussed.

Sardarli, R. M., E-mail: sardarli@yahoo.com; Samedov, O. A.; Abdullayev, A. P. [National Academy of Sciences of Azerbaijan, Institute of Radiation Problems (Azerbaijan); Huseynov, E. K. [National Academy of Sciences of Azerbaijan, Institute of Physics (Azerbaijan); Salmanov, F. T.; Alieva, N. A.; Agaeva, R. Sh. [National Academy of Sciences of Azerbaijan, Institute of Radiation Problems (Azerbaijan)

2013-05-15T23:59:59.000Z

412

Ionic Cloud Distribution close to a Charged Surface in the Presence of Salt  

E-Print Network [OSTI]

Despite its importance, the understanding of ionic cloud distribution close to a charged macroion under physiological salt conditions has remained very limited especially for strongly coupled systems with, for instance, multivalent counterions. Here we present a formalism that predicts both counterion and coion distributions in the vicinity of a charged macroion for an arbitrary amount of added salt and in both limits of mean field and strong coupling. The distribution functions are calculated explicitly for ions next to an infinite planar charged wall. We present a schematic phase diagram identifying different physical regimes in terms of electrostatic coupling parameter and bulk salt concentration.

Olli Punkkinen; Ali Naji; Rudolf Podgornik; Ilpo Vattulainen; Per-Lyngs Hansen

2007-12-29T23:59:59.000Z

413

MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT  

E-Print Network [OSTI]

of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines#12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry

414

Nanopatterned anchoring layers for liquid crystals  

E-Print Network [OSTI]

This thesis describes the theory and fabrication of inhomogeneous Liquid Crystal anchoring layers. While chemical anchoring techniques have proved useful for many applications, especially Liquid Crystal Displays, they have ...

Gear, Christopher S. (Christopher Stanwood)

2014-01-01T23:59:59.000Z

415

Can hedge funds time market liquidity?  

E-Print Network [OSTI]

We explore a new dimension of fund managers' timing ability by examining whether they can time market liquidity through adjusting their portfolios' market exposure as aggregate liquidity conditions change. Using a large ...

Cao, Charles

416

Mixing in a liquid metal electrode  

E-Print Network [OSTI]

Fluid mixing has first-order importance for many engineering problems in mass transport, including design and optimization of liquid-phase energy storage devices. Liquid metal batteries are currently being commercialized ...

Kelley, Douglas H.

417

Heterophase liquid states: Thermodynamics, structure, dynamics  

E-Print Network [OSTI]

An overview of theoretical results and experimental data on the thermodynamics, structure and dynamics of the heterophase glass-forming liquids is presented. The theoretical approach is based on the mesoscopic heterophase fluctuations model (HPFM) developed within the framework of the bounded partition function approach. The Fischer cluster phenomenon, glass transition, liquid-liquid transformations, parametric phase diagram, cooperative dynamics and fragility of the glass-forming liquids is considered.

A. S. Bakai

2015-01-12T23:59:59.000Z

418

Cooperative motions in supercooled liquids and glasses  

E-Print Network [OSTI]

P. Heat capacity and entropy of an equilibrium liquid fromliquids should correlate inversely with the con?gurational heat capacity,

Stevenson, Jacob D.

2009-01-01T23:59:59.000Z

419

Vapor-liquid equilibrium of the Mg(NO/sub 3/)/sub 2/-HNO/sub 3/-H/sub 2/O system  

SciTech Connect (OSTI)

The vapor-liquid equilibrium of the Mg(NO/sub 3/)/sub 2/-HNO/sub 3/-H/sub 2/O system in concentrations of 0 to 70 wt % Mg(NO/sub 3/)/sub 2/ and 0 to 75 wt % HNO/sub 3/ at atmospheric pressure was correlated by two approaches. One was based on a dissociation equilibrium expression in which the activities of the reacting species (HNO/sub 3/, NO/sub 3//sup -/, and H/sup +/) were approximated with mole fractions. The activity coefficients of the undissociated HNO/sub 3/ and H/sub 2/O were correlated as functions of the concentrations of magnesium nitrate and nitric acid by second-order polynomials. The average absolute difference between predicted and experimental values was 8% for the mole fraction of acid in the vapor and 8/sup 0/K for the bubble-point temperature. The second approach was to correlate the mean ionic rational activity coefficient of water with a form of the excess Gibbs energy composed of two terms. One term, a function of the ionic strength, accounts for the coulombic (ionic) interactions; the other term accounts for the non-coulombic (molecular) interactions. The average absolute difference between predicted and experimental values was 9% for the mole fraction of acid in the vapor, and 10/sup 0/K for the bubble-point temperature.

Thompson, B.E.; Derby, J.J.; Stalzer, E.H.

1983-06-01T23:59:59.000Z

420

Apparatus and method for spraying liquid materials  

DOE Patents [OSTI]

A method for spraying liquids involving a flow of gas which shears the liquid. A flow of gas is introduced in a converging-diverging nozzle where it meets and shears the liquid into small particles which are of a size and uniformity which can be controlled through adjustment of pressures and gas velocity. 5 figs.

Alvarez, J.L.; Watson, L.D.

1988-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Commercialization of coal to liquids technology  

SciTech Connect (OSTI)

After an overview of the coal market, technologies for producing liquids from coal are outlined. Commercialisation of coal-to-liquid fuels, the economics of coal-to-liquids development and the role of the government are discussed. Profiles of 8 key players and the profiles of 14 projects are finally given. 17 figs., 8 tabs.

NONE

2007-07-01T23:59:59.000Z

422

Liquid Transportation Fuels from Coal and Biomass  

E-Print Network [OSTI]

Liquid Transportation Fuels from Coal and Biomass Technological Status, Costs, and Environmental Katzer #12;CHARGE TO THE ALTF PANEL · Evaluate technologies for converting biomass and coal to liquid for liquid fuels produced from coal or biomass. · Evaluate environmental, economic, policy, and social

423

Response functions near the liquid-liquid critical point of ST2 water  

E-Print Network [OSTI]

speci¿c heat capacity CP and the isothermal compressibility KT . We use two different methods: (i) fromResponse functions near the liquid-liquid critical point of ST2 water Erik Lascaris , T. A, and for four different system sizes, N = 63, 73, 83, and 93. We locate the liquid-liquid phase transition line

Stanley, H. Eugene

424

Erasing no-man's land by thermodynamically stabilizing the liquid-liquid transition in tetrahedral particles  

E-Print Network [OSTI]

compressibility KT and the isobaric heat capacity CP . In the LLCP hypothesis, the density anomalies of waterErasing no-man's land by thermodynamically stabilizing the liquid-liquid transition in tetrahedral, Sapienza, Universit´a di Roma, Piazzale Aldo Moro 2, I-00185, Roma, Italy. EFFECTS OF THE LIQUID-LIQUID

Loss, Daniel

425

Computation of liquid-liquid equilibrium in multicomponent electrolyte systems  

SciTech Connect (OSTI)

A computational algorithm for predicting liquid-liquid equilibrium (LLE) data, based on a generalization of the maximum likelihood method applied to implicit constraints, is presented. The algorithm accepts multicomponent data and binary interaction parameters. A comparative study of the models NRTL and electrolyte-NRTL, used for estimating activity coefficients in a quaternary electrolyte system, is presented and discussed. Results show that both models give accurate predictions and the algorithm presents a good performance without convergence or initialization problems. This suggests that the basic NRTL model can be used for describing phase behavior in weak electrolyte systems and the procedure can be of great use for design and optimization of processes involving multicomponent electrolyte systems. 9 refs., 1 fig., 1 tab.

Vianna, R.F.; d`Avila, S.G. [Universidade Estadual de Campinas (Brazil)

1996-12-31T23:59:59.000Z

426

Electrolyte Solvation and Ionic Association. V. Acetonitrile-Lithium Bis(fluorosulfonyl)imide (LiFSI) Mixtures  

SciTech Connect (OSTI)

Electrolytes with the salt lithium bis(fluorosulfonyl)imide (LiFSI) have been evaluated relative to comparable electrolytes with other lithium salts. Acetonitrile (AN) has been used as a model electrolyte solvent. The information obtained from the thermal phase behavior, solvation/ionic association interactions, quantum chemical (QC) calculations and molecular dynamics (MD) simulations (with an APPLE&P many-body polarizable force field for the LiFSI salt) of the (AN)n-LiFSI mixtures provides detailed insight into the coordination interactions of the FSI- anions and the wide variability noted in the electrolyte transport property (i.e., viscosity and ionic conductivity).

Han, Sang D.; Borodin, Oleg; Seo, D. M.; Zhou, Zhi B.; Henderson, Wesley A.

2014-09-30T23:59:59.000Z

427

Electro-Ionics at metal oxide interfaces Hellsing (520720), Winkler, Wahnstrm, Olsson, Knee, Granath CURRICULUM VITAE Bo Hellsing (520720-3950)  

E-Print Network [OSTI]

Electro-Ionics at metal oxide interfaces Hellsing (520720), Winkler, Wahnström, Olsson, Knee: Electronic properties of Metal Quantum Wells and Varistor Materials" PhD: Asier Eiguren (2003), "Electron Chis (May 2006), "Electron and #12;Electro-Ionics at metal oxide interfaces Hellsing (520720), Winkler

Hellsing, Bo

428

Alien liquid detector and control  

SciTech Connect (OSTI)

An alien liquid detector employs a monitoring element and an energizing circuit for maintaining the temperature of the monitoring element substantially above ambient temperature. For this purpose an electronic circit controls a flow of heating current to the monitoring element. The presence of an alien liquid is detected by sensing a predetermined change in heating current flow to the monitoring element, e.g., to distinguish between water and oil. In preferred embodiments the monitoring element is a thermistor whose resistance is compared with a reference resistance and heating current through the thermistor is controlled in accordance with the difference. In one embodiment a bridge circuit senses the resistance difference; the difference may be sensed by an operational amplifier arrangement. Features of the invention include positioning the monitoring element at the surface of water, slightly immersed, so that the power required to maintain the thermistor temperature substantially above ambient temperature serves to detect presence of oil pollution at the surface.

Potter, B.M.

1980-09-02T23:59:59.000Z

429

Catalyst for hydrotreating carbonaceous liquids  

DOE Patents [OSTI]

A catalyst for denitrogenating and desulfurating carbonaceous liquid such as solvent refined coal includes catalytic metal oxides impregnated within a porous base of mostly alumina with relatively large pore diameters, surface area and pore volume. The base material includes pore volumes of 0.7-0.85 ml/g, surface areas of 200-350 m.sup.2 /g and pore diameters of 85-200 Angstroms. The catalytic metals impregnated into these base materials include the oxides of Group VI metals, molybdenum and tungsten, and the oxides of Group VIII metals, nickel and cobalt, in various combinations. These catalysts and bases in combination have effectively promoted the removal of chemically combined sulfur and nitrogen within a continuous flowing mixture of carbonaceous liquid and hydrogen gas.

Berg, Lloyd (Bozeman, MT); McCandless, Frank P. (Bozeman, MT); Ramer, Ronald J. (Idaho Falls, ID)

1982-01-01T23:59:59.000Z

430

Membrane Separations of Liquid Mixtures  

E-Print Network [OSTI]

MEMBRANE SEPARATIONS OF LIQUID MIXTURES Douglas R. Lloyd Separations Research Program Department of Chemical Engineering The University of Texas at Austin Austin, Texas In recent years considerable attention has been given to the need... for reduced energy costs in the chemical processing industry. A major portion of the energy consumed in this industry is associated with the separation and recovery of chemicals. Membrane processes offer energy-efficient, cost effective methods...

Lloyd, D. R.

431

Plasma-Surface Interactions on Liquids  

SciTech Connect (OSTI)

Liquid plasma-facing surfaces have been suggested as an option for advanced fusion devices, particularly in regions where solid materials may not survive over long operating periods. Because liquid surfaces can be replenished, they offer the possibility of tolerating intense particle bombardment and of recovering from off-normal events. As a preliminary step in understanding the nature of plasma-surface interactions on liquids, the authors consider some of the surface processes occurring in liquids undergoing irradiation by energetic particles. These include (1) sputtering, (2) segregation of liquid component species and impurities, (3) evaporation, and (4) trapping and release of incident particles. Aspects of these processes are examined for several candidate liquids, which represent three types of low-Z liquids: pure metals (Li), metallic alloys (Sn-Li), and compound insulators (Li{sub 2}BeF{sub 4}).

R. Bastasz; W. Eckstein

2000-05-01T23:59:59.000Z

432

Fretting-corrosion between 316L SS and PMMA: influence of ionic strength, protein and electrochemical conditions on material  

E-Print Network [OSTI]

1 Fretting-corrosion between 316L SS and PMMA: influence of ionic strength, protein Line (to be inserted by Production) (8 pt) Abstract In biomedical field, fretting-corrosion between 316. This article investigates wear by fretting-corrosion at the contact between 316L and PMMA . The influences

Paris-Sud XI, Université de

433

The role of linear and voltage-dependent ionic currents in the generation of slow wave oscillations  

E-Print Network [OSTI]

The role of linear and voltage-dependent ionic currents in the generation of slow wave oscillations voltages, re- spectively. Oscillations are created by inward currents driving the cell away from rest voltages and one outward current that repolarizes the cell. Such currents have traditionally been assumed

Bose, Amitabha

434

A model of CA1 neurons with astrocytic input: a study of epileptiform bursting These ionic currents are given by  

E-Print Network [OSTI]

A model of CA1 neurons with astrocytic input: a study of epileptiform bursting These ionic currents for the ion i. How do CA1 neurons communicate with each other? When excited, the presynaptic neuron releases with which the AMPA-activated channels close. How do astrocytes communicate with the CA1 neuron? An activated

Campbell, Sue Ann

435

Self-Assembly of the Ionic Peptide EAK16: The Effect of Charge Distributions on Self-Assembly  

E-Print Network [OSTI]

Self-Assembly of the Ionic Peptide EAK16: The Effect of Charge Distributions on Self-Assembly S understanding of self-assembly phenomena of naturally occurring peptides/proteins. Here, we study the influence of molecular architecture and interactions on the self-assembly of model peptides (EAK16s), using both

Bechhoefer, John

436

EFFECT OF STRESS GRADIENT AT THE VICINITY OF A CRACK TIP ON IONIC DIFFUSION IN SILICATE GLASSES: AN AFM STUDY.  

E-Print Network [OSTI]

1 EFFECT OF STRESS GRADIENT AT THE VICINITY OF A CRACK TIP ON IONIC DIFFUSION IN SILICATE GLASSES.marliere@univ-montp2.fr ABSTRACT The slow advance of a crack in sodo-silicate glasses was studied at nanometer scale-micrometric vicinity of the tip of a crack running in silicate glass with mobile ions (as sodium cations) and check

Demouchy, Sylvie

437

Subangstrom Crystallography Reveals that Short Ionic Hydrogen Bonds, and Not a His-Asp Low-Barrier Hydrogen  

E-Print Network [OSTI]

Subangstrom Crystallography Reveals that Short Ionic Hydrogen Bonds, and Not a His-Asp Low-Barrier Hydrogen Bond, Stabilize the Transition State in Serine Protease Catalysis Cynthia N. Fuhrmann, Matthew D that destabilizes the His57-Ser195 hydrogen bond, preventing the back-reaction. In both structures the His57-Asp102

Agard, David

438

Transient-Liquid-Phase and Liquid-Film-Assisted Joining ofCeramics  

SciTech Connect (OSTI)

Two joining methods, transient-liquid-phase (TLP) joining and liquid-film-assisted joining (LFAJ), have been used to bond alumina ceramics. Both methods rely on multilayer metallic interlayers designed to form thin liquid films at reduced temperatures. The liquid films either disappear by interdiffusion (TLP) or promote ceramic/metal interface formation and concurrent dewetting of the liquid film (LFAJ). Progress on extending the TLP method to lower temperatures by combining low-melting-point (<450 C) liquids and commercial reactive-metal brazes is described. Recent LFAJ work on joining alumina to niobium using copper films is presented.

Sugar, Joshua D.; McKeown, Joseph T.; Akashi, Takaya; Hong, SungM.; Nakashima, Kunihiko; Glaeser, Andreas M.

2005-02-09T23:59:59.000Z

439

Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries  

DOE Patents [OSTI]

Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

2013-10-08T23:59:59.000Z

440

The adsorption and desorption of picloram, trifluralin, and paraquat by ionic and nonionic exchange resins  

E-Print Network [OSTI]

!nc of soi ution and vc ry s!n&11 anount o( a&isorbe?t us?&i in !! nst of. 1:he =, t urlies r&v i ?wed. Th? srna1 1 vol u!nes us& d in ti!is sLuriy . I I!niLcd the lr vel s of. herhi cidal co!. cent rations. I CHg CI-Ig c . J 2' 2CI C N-IC ? C-(. )2...THE ADSORPTION AND DESORPTIOV OF PICLORAM, TRIi LURALIN, AND PARAQUAT BY IONIC AND NON-IOiVIC EXCHANGE RESINS A Thesi. s HO~!1L'R GEiVE MCCAJ I. Silhmfti c~1 1 o the Cr icli! ite C& I lece of ieicc! s Arc M Ull 1 i '1". s1. I v i. il part Ial...

McCall, Homer Gene

1970-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Comparative study of methods used to estimate ionic diffusion coefficients using migration tests  

SciTech Connect (OSTI)

Ionic diffusion coefficients are estimated rapidly using electromigration tests. In this paper, electromigration tests are accurately simulated by numerically solving the Nernst-Planck (NP) equation (coupled with the electroneutrality condition (EN)) using the finite element method. Numerical simulations are validated against experimental data obtained elsewhere [E. Samson, J. Marchand, K.A. Snyder, Calculation of ionic diffusion coefficients on the basis of migration test results, Materials and Structures/Materiaux et Constructions 36 (257) (2003) 156-165., H. Friedmann, O. Amiri, A. Ait-Mokhtar, A direct method for determining chloride diffusion coefficient by using migration test, Cement and Concrete Research 34 (11) (2004) 1967-1973.]. It is shown that migration due to the non-linear electric potential completely overwhelms diffusion due to concentration gradients. The effects of different applied voltage differences and chloride source concentrations on estimations of chloride diffusion coefficients are explored. We show that the pore fluid within concrete and mortar specimens generally differs from the curing solution, lowering the apparent diffusion coefficient, primarily due to interactions of chloride ions with other ions in the pore fluid. We show that the variation of source chloride concentration strongly affects the estimation of diffusion coefficients in non-steady-state tests; however this effect vanishes under steady-state conditions. Most importantly, a comparison of diffusion coefficients obtained from sophisticated analyses (i.e., NP-EN) and a variety of commonly used simplifying methods to estimate chloride diffusion coefficients allows us to identify those methods and experimental conditions where both approaches deliver good estimates for chloride diffusion coefficients. Finally, we demonstrate why simultaneous use and monitoring of current density and fluxes are recommended for both the non-steady and steady-state migration tests.

Narsilio, G.A. [Department of Civil and Environmental Engineering, School of Engineering, University of Melbourne, Victoria 3010 (Australia)], E-mail: narsilio@unimelb.edu.au; Li, R. [Department of Civil and Environmental Engineering, School of Engineering, University of Melbourne, Victoria 3010 (Australia); Institute of Geotechnical Engineering, Southeast University (SEU), Nanjing, Jiangsu (China)], E-mail: lirenmin@seu.edu.cn; Pivonka, P. [Department of Civil and Environmental Engineering, School of Engineering, University of Melbourne, Victoria 3010 (Australia)], E-mail: ppivonka@unimelb.edu.au; Smith, D.W. [Department of Civil and Environmental Engineering, School of Engineering, University of Melbourne, Victoria 3010 (Australia)], E-mail: david.smith@unimelb.edu.au

2007-08-15T23:59:59.000Z

442

Ionic Asymmetry and Solvent Excluded Volume Effects on Spherical Electric Double Layers: A Density Functional Approach  

SciTech Connect (OSTI)

In this article we present a classical density functional theory for electrical double layers of spherical macroions that extends the capabilities of conventional approaches by accounting for electrostatic ion correlations, size asymmetry and excluded volume effects. The approach is based on a recent approximation introduced by Hansen-Goos and Roth for the hard sphere excess free energy of inhomogeneous fluids (J. Chem. Phys. 124, 154506). It accounts for the proper and efficient description of the effects of ionic asymmetry and solvent excluded volume, especially at high ion concentrations and size asymmetry ratios including those observed in experimental studies. Additionally, we utilize a leading functional Taylor expansion approximation of the ion density profiles. In addition, we use the Mean Spherical Approximation for multi-component charged hard sphere fluids to account for the electrostatic ion correlation effects. These approximations are implemented in our theoretical formulation into a suitable decomposition of the excess free energy which plays a key role in capturing the complex interplay between charge correlations and excluded volume effects. We perform Monte Carlo simulations in various scenarios to validate the proposed approach, obtaining a good compromise between accuracy and computational cost. We use the proposed computational approach to study the effects of ion size, ion size asymmetry and solvent excluded volume on the ion profiles, integrated charge, mean electrostatic potential, and ionic coordination number around spherical macroions in various electrolyte mixtures. Our results show that both solvent hard sphere diameter and density play a dominant role in the distribution of ions around spherical macroions, mainly for experimental water molarity and size values where the counterion distribution is characterized by a tight binding to the macroion, similar to that predicted by the Stern model.

Medasani, Bharat; Ovanesyan, Zaven; Thomas, Dennis G.; Sushko, Maria L.; Marucho, Marcelo

2014-05-29T23:59:59.000Z

443

2012 MOLECULAR AND IONIC CLUSTERS GORDON RESEARCH CONFERENCE, JANUARY 29 - FEBRUARY 3, 2012  

SciTech Connect (OSTI)

The Gordon Research Conference on 'Molecular and Ionic Clusters' focuses on clusters, which are the initial molecular species found in gases when condensation begins to occur. Condensation can take place solely from molecules interacting with each other, mostly at low temperatures, or when molecules condense around charged particles (electrons, protons, metal cations, molecular ions), producing ion molecule clusters. These clusters provide models for solvation, allow a pristine look at geometric as well as electronic structures of molecular complexes or matter in general, their interaction with radiation, their reactivity, their thermodynamic properties and, in particular, the related dynamics. This conference focuses on new ways to make clusters composed of different kinds of molecules, new experimental techniques to investigate the properties of the clusters and new theoretical methods with which to calculate the structures, dynamical motions and energetics of the clusters. Some of the main experimental methods employed include molecular beams, mass spectrometry, laser spectroscopy (from infrared to XUV; in the frequency as well as the time domain) and photoelectron spectroscopy. Techniques include laser absorption spectroscopy, laser induced fluorescence, resonance enhanced photoionization, mass-selected photodissociation, photofragment imaging, ZEKE photoelectron spectroscopy, etc. From the theoretical side, this conference highlights work on potential surfaces and measurable properties of the clusters. The close ties between experiment, theory and computation have been a hallmark of the Gordon Research Conference on Molecular and Ionic Clusters. In the 2012 meeting, we plan to have sessions that will focus on topics including: (1) The use of cluster studies to probe fundamental phenomena; (2) Finite size effects on structure and thermodynamics; (3) Intermolecular forces and cooperative effects; (4) Molecular clusters as models for solvation; and (5) Studies of clusters at XUV light sources.

Anne McCoy

2012-02-03T23:59:59.000Z

444

Orifice mixing of immiscible liquids  

E-Print Network [OSTI]

solution (7). The present study of orif1ce mixing is a continuation of previous research on this project which yielded a relationship explaining the effect of operating conditions upon the format1on of 1nterfacial area for the system water-kerosene.... The experimental technique evolved by Helch (18), Vesselhoff (19), McNair (8), and Scott (IA) was changed only slightly. Their work on water-kerosene was repeated for the liquid pairs trichloroethylene-water, heptanol-water, 20 per oent aqueous sucrose-kerosene...

McDonough, Joseph Aloysius

1960-01-01T23:59:59.000Z

445

Mechanism of constitution liquid film migration  

SciTech Connect (OSTI)

Liquid film migration (LFM) in liquid phase sintering classically involves a large metastable liquid volume adjacent to solid, and migration occurs at an isolated solid-liquid (S-L) interface. Constitutional liquid film migration (CLFM), discovered in alloy 718, has major characteristics similar to those of LFM, except that the metastable liquid is from the constitutional liquation of precipitates on the grain boundary. The similarity between LFM and CLFM has led to the theory that coherency lattice strain responsible for LFM is also responsible for CLFM. The coherency strain hypothesis was tested in this study by evaluating whether the Hillert model of LFM would also apply for CLFM. Experimental results of CLFM in alloy 718 showed that migration velocity followed the trend predicted by the Hillert model. This indicates that the coherency strain hypothesis of LFM also applies for CLFM and that the coherency lattice strain responsible for LFM is also the driving force for CLFM.

NONE

1999-06-01T23:59:59.000Z

446

Flowing Liquid Crystal Simulating the Schwarzschild Metric  

E-Print Network [OSTI]

We show how to simulate the equatorial section of the Schwarzschild metric through a flowing liquid crystal in its nematic phase. Inside a liquid crystal in the nematic phase, a traveling light ray feels an effective metric, whose properties are linked to perpendicular and parallel refractive indexes, $n_o$ e $n_e$ respectively, of the rod-like molecule of the liquid crystal. As these indexes depend on the scalar order parameter of the liquid crystal, the Beris-Edwards hydrodynamic theory is used to connect the order parameter with the velocity of a liquid crystal flow at each point. This way we calculate a radial velocity profile that simulates the equatorial section of the Schwarzschild metric, in the region outside of Schwarzschild's radius, in the nematic phase of the liquid crystal. In our model, the higher flow velocity can be of the order of some meters per second.

Erms R. Pereira; Fernando Moraes

2010-11-21T23:59:59.000Z

447

Liquid metal cooled nuclear reactor plant system  

DOE Patents [OSTI]

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1993-01-01T23:59:59.000Z

448

Gas well operation with liquid production  

SciTech Connect (OSTI)

Prediction of liquid loading in gas wells is discussed in terms of intersecting tubing or system performance curves with IPR curves and by using a more simplified critical velocity relationship. Different methods of liquid removal are discussed including such methods as intermittent lift, plunger lift, use of foam, gas lift, and rod, jet, and electric submersible pumps. Advantages, disadvantages, and techniques for design and application of the methods of liquid removal are discussed.

Lea, J.F.; Tighe, R.E.

1983-02-01T23:59:59.000Z

449

Adsorptive Drying of Organic Liquids- An Update  

E-Print Network [OSTI]

reactions lowering yields and compro mising product quality. In these several situations where liquids are involved, any of the following means may be used to lower the water content: Inert Gas Purging Liquid Extraction Freeze Drying Pervaporation... Fractional Distillation Adsorption Although fractional distillation and adsorption are almost exclusively used, the others are included to complete the list. Inert Gas Purging This method can be used to dry high boiling liquids such as gear oils...

Joshi, S.; Humphrey, J. L.; Fair, J. R.

450

Dynamic Solvation in Room-Temperature Ionic Liquids P. K. Chowdhury, M. Halder, L. Sanders, T. Calhoun, J. L. Anderson, D. W. Armstrong,  

E-Print Network [OSTI]

. Calhoun, J. L. Anderson, D. W. Armstrong, X. Song, and J. W. Petrich* Department of Chemistry, Iowa State

Song, Xueyu

451

Superacidic Ionic liquids: properties and applications. C. A. Angell, J.P. Belieres, J. Blanchard, B. R. Cherry, G. P. Holland, J. L. Yarger  

E-Print Network [OSTI]

diagram constructed on these ideas4 has allowed the design of neutral and basic electrolytes which have the thermal stability is controlled by the energy gap between them (thus pKa). A proton free energy level

Angell, C. Austen

452

Catalysis of Multi-walled Carbon Nanotubes Supported PdxCoy Nanoparticles Prepared by a Pyrolysis Method Using Ionic Liquids as the Solvent toward Ethanol  

E-Print Network [OSTI]

Engineering, Lamar University, Beaumont, TX 77710, USA (Received: Jan. 4, 2013; Accepted: Apr. 1, 2013

Guo, John Zhanhu

453

Beyond the Gas Phase: Towards Modeling Bulk Ionic Liquids with a Comparison of Density Functional Tight Binding (DFTB) to Density Functional Theory (DFT).  

E-Print Network [OSTI]

??Coal-fired power plants are a leading contributor to the increase in CO2 released into the atmosphere. Alkanolamines are considered a potential solvent to capture this… (more)

Danser, Mandelle Ann

2010-01-01T23:59:59.000Z

454

Pysico-chemical properties of hydrophobic ionic liquids containing 1-octylpyridinium, 1-octyl-2-methylpyridinium or 1-octyl-4-methylpyridinium cations  

E-Print Network [OSTI]

respectively, in acetonitrile at 70 °C. All syntheses werepurity), and 50 mL acetonitrile. After cooling to room98 % purity), and 25 mL acetonitrile. After cooling to room

Papaiconomou, Nicolas; Salminen, Justin; Lee, Jong-Min; Prausnitz, John M.

2006-01-01T23:59:59.000Z

455

Hazardous Liquid Pipelines and Storage Facilities (Iowa)  

Broader source: Energy.gov [DOE]

This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

456

Liquid phase sintering of silicon carbide  

DOE Patents [OSTI]

Liquid phase sintering is used to densify silicon carbide based ceramics using a compound comprising a rare earth oxide and aluminum oxide to form liquids at temperatures in excess of 1600.degree. C. The resulting sintered ceramic body has a density greater than 95% of its theoretical density and hardness in excess of 23 GPa. Boron and carbon are not needed to promote densification and silicon carbide powder with an average particle size of greater than one micron can be densified via the liquid phase process. The sintered ceramic bodies made by the present invention are fine grained and have secondary phases resulting from the liquid phase.

Cutler, Raymond A. (Bountiful, UT); Virkar, Anil V. (Salt Lake City, UT); Hurford, Andrew C. (Salt Lake City, UT)

1989-01-01T23:59:59.000Z

457

Onsite Wastewater Treatment Systems: Liquid Chlorination  

E-Print Network [OSTI]

This publication explains the process, components, legal requirements, factors affecting performance, and maintenance needs of liquid chlorination systems for onsite wastewater treatment....

Weaver, Richard; Lesikar, Bruce J.; Richter, Amanda; O'Neill, Courtney

2008-10-23T23:59:59.000Z

458

Liquid metal Flow Meter - Final Report  

SciTech Connect (OSTI)

Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

Andersen C, Hoogendoom S, Hudson B, Prince J, Teichert K, Wood J, Chase K

2007-01-30T23:59:59.000Z

459

Closed-field capacitive liquid level sensor  

DOE Patents [OSTI]

A liquid level sensor based on a closed field circuit comprises a ring oscillator using a symmetrical array of plate units that creates a displacement current. The displacement current varies as a function of the proximity of a liquid to the plate units. The ring oscillator circuit produces an output signal with a frequency inversely proportional to the presence of a liquid. A continuous liquid level sensing device and a two point sensing device are both proposed sensing arrangements. A second set of plates may be located inside of the probe housing relative to the sensing plate units. The second set of plates prevent any interference between the sensing plate units.

Kronberg, J.W.

1995-01-01T23:59:59.000Z

460

Liquid composition having ammonia borane and decomposing to form hydrogen and liquid reaction product  

DOE Patents [OSTI]

Liquid compositions of ammonia borane and a suitably chosen amine borane material were prepared and subjected to conditions suitable for their thermal decomposition in a closed system that resulted in hydrogen and a liquid reaction product.

Davis, Benjamin L; Rekken, Brian D

2014-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Pipe effect in viscous liquids  

E-Print Network [OSTI]

A detailed experimental and theoretical study has been performed about a phenomenon, not previously reported in the literature, occurring in highly viscous liquids: the formation of a definite pipe structure induced by the passage of a heavy body, this structure lasting for quite a long time. A very rich phenomenology (including mechanical, optical and structural effects) associated with the formation of the pipe has been observed in different liquids. Actually, the peculiar dynamical evolution of that structure does not appear as a trivial manifestation of standard relaxation or spurious effects. In particular we have revealed different time scales during the evolution of the pipe and a non-monotonous decreasing of the persistence time with decreasing viscosity (with the appearance of at least two different maxima). A microscopic model consistent with the experimental data, where the pipe behaves as a cylindrical dielectric shell, has been proposed. The general time evolution of the structure has been described in terms of a simple thermodynamical model, predicting several peculiarities effectively observed.

V. Capano; S. Esposito; G. Salesi

2008-12-23T23:59:59.000Z

462

Spiers Memorial Lecture Recent experimental advances in studies of liquid/liquid  

E-Print Network [OSTI]

complicated processes such as molecular transport across cell membranes. A variety of techniques have been on the interaction of a hydrophobic surface with water, and ion and solute transport across these and other liquid/hydrophilic properties of liquid/ liquid interfaces. In biological systems, protein folding and membrane formation rely

Richmond, Geraldine L.

463

Arrays and Cascades of Fluorescent Liquid-Liquid Waveguides: Broadband Light Sources for  

E-Print Network [OSTI]

Arrays and Cascades of Fluorescent Liquid-Liquid Waveguides: Broadband Light Sources) microchannel waveguides with liquid cores containing fluorescent dyes, excited by incident light from an external halogen bulb. Simultaneous use of multiple fluorophores in a common solution, in a single L2 light

Prentiss, Mara

464

Assessment of coal liquids as refinery feedstocks  

SciTech Connect (OSTI)

The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

Zhou, P.

1992-02-01T23:59:59.000Z

465

Assessment of coal liquids as refinery feedstocks  

SciTech Connect (OSTI)

The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

Zhou, P.

1992-02-01T23:59:59.000Z

466

Understanding graphene production by ionic surfactant exfoliation: A molecular dynamics simulation study  

E-Print Network [OSTI]

simulated sodium dodecyl sulfate (SDS) surfactant/water þ bilayer graphene mixture system to investigate two attention is being paid to its potential applications, such as transistors,9 electrode,10 solar cells,11 elec- tronic structure of graphene.18 Recently, an alternative top-down liquid exfoliation approach

Simons, Jack

467

Fiber-optic liquid level sensor  

DOE Patents [OSTI]

A fiber-optic liquid level sensor measures the height of a column of liquid through the hydrostatic pressure it produces. The sensor employs a fiber-optic displacement sensor to detect the pressure-induced displacement of the center of a corrugated diaphragm.

Weiss, Jonathan D. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

468

Liquid Biofuels Strategies and Policies in selected  

E-Print Network [OSTI]

June 2011 Liquid Biofuels Strategies and Policies in selected African Countries A review of some of the challenges, activities and policy options for liquid biofuels Prepared for PISCES by Practical Action Biofuels Strategies and Policies in selected African Countries Although this research is funded by DFID

469

CMD-3 Liquid Xenon Calorimeter's signals processing  

E-Print Network [OSTI]

CMD-3 Liquid Xenon Calorimeter's signals processing for timing measurements. Leonid Epshtein Budker connected to constitute 264 «towers»; signal of each tower is processed by electronic channel. Liquid Xenon functional channel scheme and signal's shapes in the typical point. Digital Signal Processing ADCCSALXe

470

Remarks on Liquid Wall Research Mohamed Abdou  

E-Print Network [OSTI]

Remarks on Liquid Wall Research Mohamed Abdou Professor Mechanical and Aerospace Engineering UCLA physicists and engineering scientists · Enhances synergism between IFE and MFE · Provides excellent disciplines. #12;Several "Ideas" Have Been Proposed for Liquid Walls Fluids 1) High-conductivity, low Pr

California at Los Angeles, University of

471

Carbon Ionic Conductors for use in Novel Carbon-Ion Fuel Cells  

SciTech Connect (OSTI)

Carbon-consuming fuel cells have many potential advantages, including increased efficiency and reduced pollution in power generation from coal. A large amount of work has already been done on coal fuel cells that utilize yttria-stabilized zirconium carbide as an oxygen-ion superionic membrane material. But high-temperature fuel cells utilizing yttria-stabilized zirconium require partial combustion of coal to carbon monoxide before final oxidation to carbon dioxide occurs via utilization of the oxygen- ion zirconia membrane. A carbon-ion superionic membrane material would enable an entirely new class of carbon fuel cell to be developed, one that would use coal directly as the fuel source, without any intervening combustion process. However, a superionic membrane material for carbon ions has not yet been found. Because no partial combustion of coal would be required, a carbon-ion superionic conductor would allow the direct conversion of coal to electricity and pure CO{sub 2} without the formation of gaseous pollutants. The objective of this research was to investigate ionic lanthanide carbides, which have an unusually high carbon-bond ionicity as potential superionic carbide-ion conductors. A first step in this process is the stabilization of these carbides in the cubic structure, and this stabilization has been achieved via the preparation of pseudobinary lanthanide carbides. The diffusion rates of carbon have been measured in these carbides as stabilized to preserve the high temperature cubic structure down to room temperature. To prepare these new compounds and measure these diffusion rates, a novel, oxide-based preparation method and a new C{sup 13}/C{sup 12} diffusion technique have been developed. The carbon diffusion rates in La{sup 0.5}Er{sup 0.5}C{sub 2}, Ce{sup 0.5}Er{sup 0.5}C{sub 2}, and La{sup 0.5}Y{sup 0.5}C{sub 2}, and Ce{sup 0.5}Tm0.5C{sub 2} modified by the addition of 5 wt %Be{sub 2}C, have been determined at temperatures from 850 C to 1150 C. The resulting diffusion constants as measured were all less than 10{sup -11} cm{sup 2}/sec, and therefore these compounds are not superionic. However, there remain a large number of potentially superionic pseudobinary lanthanide compounds and a number of alternate ionic carbides which might act as dopants to produce vacancies on the carbon-ion sublattice and thereby increase carbon-ion diffusion rates. The discovery of a superionic carbon conductor would usher in a truly revolutionary new coal technology, and could dramatically improve the way in which we generate electricity from coal. The work completed to date is a promising first step towards this end.

Franklin H. Cocks; W. Neal Simmons; Paul A. Klenk

2005-11-01T23:59:59.000Z

472

Dual liquid and gas chromatograph system  

DOE Patents [OSTI]

A chromatographic system that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a non-transparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extremely low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

Gay, Don D. (Aiken, SC)

1985-01-01T23:59:59.000Z

473

Sewage sludge dewatering using flowing liquid metals  

DOE Patents [OSTI]

A method and apparatus for reducing the moisture content of a moist sewage sludge having a moisture content of about 50% to 80% and formed of small cellular micro-organism bodies having internally confined water is provided. A hot liquid metal is circulated in a circulation loop and the moist sewage sludge is injected in the circulation loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies. The vapor produced, the dried sludge, and the liquid metal are then separated. Preferably, the moist sewage sludge is injected into the hot liquid metal adjacent the upstream side of a venturi which serves to thoroughly mix the hot liquid metal and the moist sewage sludge. The venturi and the drying zone after the venturi are preferably vertically oriented. The dried sewage sludge recovered is available as a fuel and is preferably used for heating the hot liquid metal.

Carlson, Larry W. (Oswego, IL)

1986-01-01T23:59:59.000Z

474

Liquid crystal device and method thereof  

DOE Patents [OSTI]

The invention provides a liquid crystal device and method thereof. Subsequent to applying a first electrical voltage on a liquid crystal to induce a reorientation of the liquid crystal, a second electrical voltage with proper polarity is applied on the liquid crystal to assist the relaxation of the reorientation that was induced by the first electrical voltage. The "switch-off" phase of the liquid crystal can therefore be accelerated or temporally shortened, and the device can exhibit better performance such as fast response to on/off signals. The invention can be widely used LCD, LC shutter, LC lens, spatial light modulator, telecommunication device, tunable filter, beam steering device, and electrically driven LC device, among others.

Shiyanovskii, Sergij V; Gu, Mingxia; Lavrentovich, Oleg D

2012-10-23T23:59:59.000Z

475

On the Fluctuations that Order and Frustrate Liquid Water  

E-Print Network [OSTI]

Most nonpolar liquids have heat capacities that range from 8the maximum liquid state heat capacity[173]. ExperimentallyLIQUID AND SOLID WATER (a) Density (b) Compressibility (c) Heat Capacity

Limmer, David

2013-01-01T23:59:59.000Z

476

Competing effects of electronic and nuclear energy loss on microstructural evolution in ionic-covalent materials  

SciTech Connect (OSTI)

Ever increasing energy needs have raised the demands for advanced fuels and cladding materials that withstand the extreme radiation environments with improved accident tolerance over a long period of time. Ceria (CeO2) is a well known ionic conductor that is isostructural with urania and plutonia-based nuclear fuels. In the context of nuclear fuels, immobilization and transmutation of actinides, CeO2 is a model system for radiation effect studies. Covalent silicon carbide (SiC) is a candidate for use as structural material in fusion, cladding material for fission reactors, and an inert matrix for the transmutation of plutonium and other radioactive actinides. Understanding microstructural change of these ionic-covalent materials to irradiation is important for advanced nuclear energy systems. While displacements from nuclear energy loss may be the primary contribution to damage accumulation in a crystalline matrix and a driving force for the grain boundary evolution in nanostructured materials, local non-equilibrium disorder and excitation through electronic energy loss may, however, produce additional damage or anneal pre-existing defect. At intermediate transit energies where electronic and nuclear energy losses are both significant, synergistic, additive or competitive processes may evolve that affect the dynamic response of materials to irradiation. The response of crystalline and nanostructured CeO2 and SiC to ion irradiation are studied under different nuclear and electronic stopping powers to describe some general material response in this transit energy regime. Although fast radiation-induced grain growth in CeO2 is evident with no phase transformation, different fluence and dose dependence on the growth rate is observed under Si and Au irradiations. While grain shrinkage and amorphization are observed in the nano-engineered 3C SiC with a high-density of stacking faults embedded in nanosize columnar grains, significantly enhanced radiation resistance is attributed to stacking faults that promote efficient point defect annihilation. Moreover, competing effects of electronic and nuclear energy loss on the damage accumulation and annihilation are observed in crystalline 4H-SiC. Systematic experiments and simulation effort are needed to understand the competitive or synergistic effects.

Zhang, Yanwen [ORNL] [ORNL; Varga, Tamas [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Ishimaru, Dr. Manabu [Osaka University] [Osaka University; Edmondson, Dr. Philip [University of Oxford] [University of Oxford; Xue, Haizhou [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Liu, Peng [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Moll, Sandra [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette] [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette; Namavar, Fereydoon [University of Nebraska Medical Center] [University of Nebraska Medical Center; Hardiman, Chris [North Carolina State University] [North Carolina State University; Shannon, Prof. Steven [North Carolina State University] [North Carolina State University; Weber, William J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

477

Increase of ionic conductivity in the microporous lithosilicate RUB-29 by Na-ion exchange processes  

SciTech Connect (OSTI)

The ionic conductivity in the zeolite-like lithosilicate RUB-29 (Cs{sub 14}Li{sub 24}[Li{sub 18}Si{sub 72}O{sub 172}].14H{sub 2}O [S.-H. Park, J.B. Parise, H. Gies, H. Liu, C.P. Grey, B.H. Toby, J. Am. Chem. Soc. 122 (2000) 11023-11024]) increases via simple ion-exchange processes, in particular when Na cations replace a part of Cs{sup +} and Li{sup +} of the material. The resulting ionic conductivity value of 3.2x10{sup -3} S cm{sup -1} at 885 K is about two orders higher than that for the original material [S.-H. Park, J.B. Parise, M.E. Franke, T. Seydel, C. Paulmann, Micropor. Mesopor. Mater., in print ( (doi:10.1016/j.micromeso.2007.03.040) available online since April 19, 2007)]. The structural basis of a Na{sup +}-exchanged RUB-29 sample (Na-RUB-29) at 673 K could be elucidated by means of neutron powder diffraction. Rietveld refinements confirmed the replacement of Na{sup +} for both parts of Cs and Li cations, agreeing with idealized cell content, Na{sub 8}Cs{sub 8}Li{sub 40}Si{sub 72}O{sub 172}. As a result of the incorporation of Na{sup +} in large pores, the number of Li{sup +} vacancies in dense Li{sub 2}O-layers of the structure could increase. This can be one of the main reasons for the improved conductivity in Na-RUB-29. In addition, mobile Na cations may also contribute to the conductivity in Na-RUB-29 as continuous scattering length densities were found around the sites for Na in difference Fourier map. - Graphical abstract: Li{sub 2}O-layers formed by edge- and corner-sharing LiO{sub 4}- and LiO{sub 3}-moieties in the zeolite-like lithosilicate RUB-29 provide optimal pathways for conducting Li{sup +}. The number of empty Li sites in this layer-like configuration could increase via 'simple' Na{sup +}-exchange processes, promoting fast Li motions.

Park, S.-H. [Section Crystallography, Earth and Environmental Sciences, Ludwig-Maximilians-Universitaet Muenchen, Theresienstr. 41, 80333 Munich (Germany)], E-mail: sohyun.park@lmu.de; Senyshyn, A. [Material- and Earth Sciences, Technische Universitaet Darmstadt, Petersenstr. 23, 64287 Darmstadt (Germany); Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Lichtenbergstr. 1, 85747 Garching (Germany); Paulmann, C. [Mineralogisch-Petrographisches Institut, Universitaet Hamburg, Grindelallee 48, 20146 Hamburg (Germany); HASYLAB, DESY, Notkestr. 85, 22603 Hamburg (Germany)

2007-12-15T23:59:59.000Z

478

Ionic Conductivity of Block Copolymer Electrolytes in the Vicinity of Order?Disorder and Order?Order Transitions  

SciTech Connect (OSTI)

Order-order and order-disorder phase transitions in mixtures of poly(styrene-block-ethylene oxide) (SEO) copolymers and lithium bis(trifluoromethylsulfonimide) (LiTFSI), a common lithium salt used in polymer electrolytes, were studied using a combination of small-angle X-ray scattering (SAXS), birefringence, and ac impedance spectroscopy. The SEO/LiTFSI mixtures exhibit lamellar, hexagonally packed cylinders, and gyroid microphases. The molecular weight of the blocks and the salt concentration was adjusted to obtain order-order and order-disorder transition temperatures within the available experimental window. The ionic conductivities of the mixtures, normalized by the ionic conductivity of a 20 kg/mol homopolymer PEO sample at the salt concentration and temperature of interest, were independent of temperature, in spite of the presence of the above-mentioned phase transitions.

Wanakule, Nisita S.; Panday, Ashoutosh; Mullin, Scott A.; Gann, Eliot; Hexemer, Alex; Balsara, Nitash P.; (UCB); (LBNL)

2009-09-15T23:59:59.000Z

479

Complexation and optimization of use of non-ionic ethoxylated surfactants in EOR from low temperature fields  

SciTech Connect (OSTI)

Complexation with aquated cations (e.g., Al/sup 3/, etc.) is shown to enable the extent of adsorption of ethoxylated non-ionic surfactants on sandstone and limestone reservoir rocks to be controlled and minimized. If such reservoirs are at temperatures below the cloud point of the complexed surfactants, such methods can allow EOR with such non-ionic surfactants in low concentrations, NMR evidence is presented to show how the complexation takes place and how it may be controlled. Its beneficial effect on oil recovery is demonstrated with microcapillary de-oiling and surfactant flood tests. Its effect is explained in terms of changes in surfactant characteristics, e.g., phase equilibria, rate and extent of adsorption, oil solubilization and solubility, interfacial tension, viscosity, and contact angles.

Lawrence, S.A.; Pilc, J.; Sermon, P.A.; Readman, J.; Hurd, B.G.

1988-05-01T23:59:59.000Z

480

Direct Probing of Charge Injection and Polarization-Controlled Ionic Mobility on Ferroelectric LiNbO3 Surfaces  

SciTech Connect (OSTI)

Mapping surface potential with time-resolved Kelvin Probe Force Microscopy (tr-KPFM) in LiNbO3 periodically-poled single crystal revealed activation of the surface ionic subsystem. Electric fields higher than certain threshold value but lower than the switching field induce injection of charge from the biased electrode, formation of an active region in its vicinity and uneven distribution of screening charge on the opposite ferroelectric domains. Tr-KPFM technique allows investigating these phenomena in details.

Strelcov, Evgheni [ORNL] [ORNL; Ievlev, Dr. Anton [Ural State University, Russia] [Ural State University, Russia; Jesse, Stephen [ORNL] [ORNL; Kravchenko, Ivan I [ORNL] [ORNL; Shur, V.Y. [Institute of Physics and Applied Mathematics, Ural State University] [Institute of Physics and Applied Mathematics, Ural State University; Kalinin, Sergei V [ORNL] [ORNL

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal-air ionic liquid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Coupling and Testing the Fate and Transport of Heavy Metals and Other Ionic Species in a Groundwater Setting at Oak Ridge, TN - 13498  

SciTech Connect (OSTI)

Historical data show that heavy metals (including mercury) were released from Y -12 National Security Complex (NSC) at Oak Ridge, Tennessee, to the surrounding environments during its operation in 1950's. Studies have also shown that metals accumulated in the soil, rock, and groundwater, and are, at the present time, sources of contamination to nearby rivers and creeks (e.g., East Fork Poplar Creek, Bear Creek). For instance, mercury (Hg), zinc (Zn), cadmium (Cd) and lead (Pb) have been found and reported on the site groundwater. The groundwater type at the site is Ca-Mg-HCO{sub 3}. This paper presents a modeling application of PHREEQC, a model that simulates geochemical processes and couples them to flow and transport settings. The objective was to assess the capability of PHREEQC to simulate the transport of ionic species in groundwater at Oak Ridge, Tennessee; data were available from core holes and monitoring wells over a 736-m distance, within 60-300 m depths. First, predictions of the transport of major ionic species (i.e., Ca{sup 2+} and Mg{sup 2+}) in the water were made between monitoring wells and for GW-131. Second, the model was used to assess hypotheses under two scenarios of transport for Zn, Cd, Pb and Hg, in Ca-Mg-HCO{sub 3} water, as influenced by the following solid-liquid interactions: a) the role of ion exchange and b) the role of both ion exchange and sorption, the latter via surface complexation with Fe(OH){sub 3}. The transport scenario with ion exchange suggests that significant ion exchange is expected to occur for Zn, Cd and Pb concentrations, with no significant impact on Hg, within the first 100 m. Predictions match the expected values of the exchange coefficients relative to Ca{sup 2+} and Mg{sup 2+} (e.g., K{sub Ca/Zn} = K{sub Ca/Cd} > K{sub Ca/Pb} > K{sub Ca/Hg}). The scenario with both ion exchange and sorption does affect the concentrations of Zn and Cd to a small extent within the first 100 m, but does more meaningfully reduce the concentration of Pb, within the same distance, and also decreases the concentration of Hg in between core holes. Analysis of the above results, in the light of available literature on the ions of this study, does fundamentally support the capability of PHREEQC to predict the transport of major ions in a groundwater setting; it also generally supports the hypothesized role of ion exchange and sorption. The results indicate the potential of the model as a tool in the screening, selection and monitoring of remediation technologies for contaminated groundwater sites. (authors)

Noosai, Nantaporn; Fuentes, Hector R. [CEE Florida International University, Miami, FL 33174 (United States)] [CEE Florida International University, Miami, FL 33174 (United States)

2013-07-01T23:59:59.000Z

482

Technical Assessment of Organic Liquid Carrier Hydrogen Storage...  

Broader source: Energy.gov (indexed) [DOE]

and long cycle life, and that remain liquid over the working temperature range. Air Products and Chemicals Inc (APCI) investigated many candidates for potential liquid...

483

Low-Emissions Burner Technology using Biomass-Derived Liquid...  

Broader source: Energy.gov (indexed) [DOE]

Emissions Burner Technology using Biomass-Derived Liquid Fuels Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels This factsheet describes a project that developed...

484

Enabling Small-Scale Biomass Gasification for Liquid Fuel Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Breakout Session 2A-Conversion...

485

Distributed Reforming of Renewable Liquids via Water Splitting...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) (Presentation) Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen Transport...

486

antiferroelectric liquid crystals: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of phases in antiferroelectric liquid crystals Condensed Matter (arXiv) Summary: The free energy of antiferroelectric liquid crystal which takes into account polar order...

487

antiferroelectric liquid crystal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of phases in antiferroelectric liquid crystals Condensed Matter (arXiv) Summary: The free energy of antiferroelectric liquid crystal which takes into account polar order...

488

alcohol liquid diet: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biodiesel. Open Access Theses and Dissertations Summary: ??The most widely used process technology for biodiesel manufacture is the base-catalysed liquid-liquid...

489

Agenda for the Derived Liquids to Hydrogen Distributed Reforming...  

Broader source: Energy.gov (indexed) [DOE]

Agenda for the Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Hydrogen Production Technical Team Research Review Agenda for the Derived Liquids to...

490

Formation of iron complexs from trifluoroacetic acid based liquid...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of iron complexs from trifluoroacetic acid based liquid chromatography mobile phases as interference ions in liquid Formation of iron complexs from trifluoroacetic acid based...

491

Formation of Supercooled Liquid Solutions from Nanoscale Amorphous...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supercooled Liquid Solutions from Nanoscale Amorphous Solid Films of Methanol and Ethanol. Formation of Supercooled Liquid Solutions from Nanoscale Amorphous Solid Films of...

492

Mixing it up - Measuring diffusion in supercooled liquid solutions...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mixing it up - Measuring diffusion in supercooled liquid solutions of methanol and ethanol at temperatures near the glass Mixing it up - Measuring diffusion in supercooled liquid...

493

Case Study: Evaluating Liquid versus Air Cooling in the Maui...  

Broader source: Energy.gov (indexed) [DOE]

Case Study: Evaluating Liquid versus Air Cooling in the Maui High Performance Computing Center Case Study: Evaluating Liquid versus Air Cooling in the Maui High Performance...

494