Sample records for metal tape measure

  1. Appendix A: Monitoring tools Measuring tapes, stakes and flags are available

    E-Print Network [OSTI]

    ) Materials needed for construction of stability kits: · Schedule 40 PVC pipe with a 3 /4 in inside diameter · PVC pipe cutter and hacksaw · Tape measure and pencil · A section of metal window screen (mesh size pieces of PVC pipe into 3 cm (1 1 /4 in) lengths. 1.2 Make a 2 cm deep, cross-sectional cut, 5 mm from

  2. Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes

    SciTech Connect (OSTI)

    Grin, A.; Lstiburek, J.

    2014-09-01T23:59:59.000Z

    This guide provides information and recommendations to the following groups: insulation contractors; general contractors; builders; home remodelers; mechanical contractors; and homeowners, as a guide to the work that needs to be done. The order of work completed during home construction and retrofit improvements is important. Health and safety issues must be addressed first and are more important than durability issues. And durability issues are more important than saving energy. Not all techniques can apply to all houses. Special conditions will require special action. Some builders or homeowners will wish to do more than the important but basic retrofit strategies outlined by this guide. The following are best practice and product recommendations from the interviewed contractors and homebuilders who collectively have a vast amount of experience. Three significant items were discussed with the group which are required to make taped insulating sheathing a simple, long term, and durable drainage plane: 1. Horizontal joints should be limited or eliminated wherever possible; 2. Where a horizontal joint exists use superior materials; 3. Frequent installation inspection and regular trade training are required to maintain proper installation. Section 5 of this measure guideline contains the detailed construction procedure for the three recommended methods to effectively seal the joints in exterior insulating sheathing to create a simple, long term, and durable drainage plane.

  3. Accelerated testing of metal foil tape joints and their effect of photovoltaic module reliability.

    SciTech Connect (OSTI)

    Puskar, Joseph David; Quintana, Michael A.; Sorensen, Neil Robert; Lucero, Samuel J.

    2009-07-01T23:59:59.000Z

    A program is underway at Sandia National Laboratories to predict long-term reliability of photovoltaic (PV) systems. The vehicle for the reliability predictions is a Reliability Block Diagram (RBD), which models system behavior. Because this model is based mainly on field failure and repair times, it can be used to predict current reliability, but it cannot currently be used to accurately predict lifetime. In order to be truly predictive, physics-informed degradation processes and failure mechanisms need to be included in the model. This paper describes accelerated life testing of metal foil tapes used in thin-film PV modules, and how tape joint degradation, a possible failure mode, can be incorporated into the model.

  4. Apparatus for measurement of critical current in superconductive tapes

    DOE Patents [OSTI]

    Coulter, J. Yates (Santa Fe, NM); DePaula, Raymond (Santa Fe, NM)

    2002-01-01T23:59:59.000Z

    A cryogenic linear positioner which is primarily used for characterizing coated conductor critical current homogeneity at 75K is disclosed. Additionally, this tool can be used to measure the positional dependence of the coated conductor resistance at room temperature, and the room temperature resistance of the underlying YBCB coating without the overlaying protective cover of silver.

  5. Thermoplastic tape compaction device

    DOE Patents [OSTI]

    Campbell, V.W.

    1994-12-27T23:59:59.000Z

    A device is disclosed for bonding a thermoplastic tape to a substrate to form a fully consolidated composite. This device has an endless chain associated with a frame so as to rotate in a plane that is perpendicular to a long dimension of the tape, the chain having pivotally connected chain links with each of the links carrying a flexible foot member that extends outwardly from the chain. A selected number of the foot members contact the tape, after the heating thereof, to cause the heated tape to bond to the substrate. The foot members are each a thin band of metal oriented transversely to the chain, with a flexibility and width and length to contact the tape so as to cause the tape to conform to the substrate to achieve consolidation of the tape and the substrate. A biased leaf-type spring within the frame bears against an inner surface of the chain to provide the compliant pressure necessary to bond the tape to the substrate. The chain is supported by sprockets on shafts rotatably supported in the frame and, in one embodiment, one of the shafts has a drive unit to produce rotation such that the foot members in contact with the tape move at the same speed as the tape. Cooling jets are positioned along the frame to cool the resultant consolidated composite. 5 figures.

  6. Duct Tape Durability Testing

    SciTech Connect (OSTI)

    Sherman, Max H.; Walker, Iain S.

    2004-04-01T23:59:59.000Z

    Duct leakage is a major source of energy loss in residential buildings. Most duct leakage occurs at the connections to registers, plenums, or branches in the duct system. At each of these connections, a method of sealing the duct system is required. Typical sealing methods include tapes or mastics applied around the joints in the system. Field examinations of duct systems have shown that taped seals tend to fail over extended periods of time. The Lawrence Berkeley National Laboratory (LBNL) has been testing sealant durability for several years using accelerated test methods and found that typical duct tape (i.e., cloth-backed tapes with natural rubber adhesives) fails more rapidly than other duct sealants. This report summarizes the results of duct sealant durability testing over two years for four UL 181B-FX listed duct tapes (two cloth tapes, a foil tape and an Oriented Polypropylene (OPP) tape). One of the cloth tapes was specifically developed in collaboration with a tape manufacturer to perform better in our durability testing. The tests involved the aging of common ''core-to-collar joints'' of flexible duct to sheet metal collars. Periodic air leakage tests and visual inspection were used to document changes in sealant performance. After two years of testing, the flex-to-collar connections showed little change in air leakage, but substantial visual degradation from some products. A surprising experimental result was failure of most of the clamps used to mechanically fasten the connections. This indicates that the durability of clamps also need to be addressed ensure longevity of the duct connection. An accelerated test method developed during this study has been used as the basis for an ASTM standard (E2342-03).

  7. Building America Case Study: Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01T23:59:59.000Z

    This guide provides information and recommendations to the following groups: Insulation contractors, General contractors, Builders, Home remodelers, Mechanical contractors, and Homeowners as a guide to the work that needs to be done. The order of work completed during home construction and retrofit improvements is important. Health and safety issues must be addressed first and are more important than durability issues. And durability issues are more important than saving energy. Not all techniques can apply to all houses. Special conditions will require special action. Some builders or homeowners will wish to do more than the important but basic retrofit strategies outlined by this guide. The following are best practice and product recommendations from the interviewed contractors and home builders who collectively have a vast amount of experience. Three significant items were discussed with the group which are required to make taped insulating sheathing a simple, long term, and durable drainage plane: 4. Horizontal joints should be limited or eliminated wherever possible 5. Where a horizontal joint exists use superior materials 6. Frequent installation inspection and regular trade training are required to maintain proper installation Section 5 of this measure guideline contains the detailed construction procedure for the three recommended methods to effectively seal the joints in exterior insulating sheathing to create a simple, long term, and durable drainage plane.

  8. Study of the Nucleation and Growth of YBCO on Oxide Buffered Metallic Tapes

    SciTech Connect (OSTI)

    Solovyov, Vyacheslav

    2009-04-10T23:59:59.000Z

    The CRADA collaboration concentrated on developing the scientific understanding of the factors necessary for commercialization of high temperature superconductors (HTS) based on the YBCO coated conductor technology for electric power applications. The project pursued the following objectives: 1. Establish the correlations between the YBCO nuclei density and the properties of the CeO{sub 2} layer of the RABiTS{trademark} template; 2. Compare the nucleation and growth of e-beam and MOD based precursors on the buffered RABiTS{trademark} templates and clarify the materials science behind the difference; and 3. Explore routes for the optimization of the nucleation and growth of thick film MOD precursors in order to achieve high critical current densities in thick films. The CRADA work proceeded in two steps: 1. Detailed characterization of epitaxial ceria layers on model substrates, such as (001) YSZ and on RABiTS tapes; and 2. Study of YBCO nucleation on well-defined substrates and on long-length RABiTS.

  9. High current density electropolishing in the preparation of highly smooth substrate tapes for coated conductors

    DOE Patents [OSTI]

    Kreiskott, Sascha (Los Alamos, NM); Matias, Vladimir (Santa Fe, NM); Arendt, Paul N. (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM)

    2009-03-31T23:59:59.000Z

    A continuous process of forming a highly smooth surface on a metallic tape by passing a metallic tape having an initial roughness through an acid bath contained within a polishing section of an electropolishing unit over a pre-selected period of time, and, passing a mean surface current density of at least 0.18 amperes per square centimeter through the metallic tape during the period of time the metallic tape is in the acid bath whereby the roughness of the metallic tape is reduced. Such a highly smooth metallic tape can serve as a base substrate in subsequent formation of a superconductive coated conductor.

  10. Mechanical stabilization of BSCCO-2223 superconducting tapes

    SciTech Connect (OSTI)

    King, C.G.; Grey, D.A.; Mantone, A. [GE Medical Systems, Florence, SC (United States)] [and others

    1996-12-31T23:59:59.000Z

    A system to provide mechanical stabilization to high temperature BSCCO-2223 superconducting tape by laminating 0.081 mm thick, spring hard, copper foil to both sides with lead-tin eutectic solder has been successfully optimized. This system has been applied as a method to create a strong, windable composite from pure silver BSCCO tapes with a minimum of critical current (I{sub c}) degradation. The {open_quotes}as received{close_quotes} conductor is evaluated for physical consistency of width and thickness over the 3000 meters that were later strengthened, insulated and wound into a demonstration coil. Electrical degradation in the strengthened tape as a result of lamination was found to average 24 percent with a range from 4 to 51 percent. This was less than the degradation that would have occurred in an unstrengthened tape during subsequent insulation and coil winding processes. Additional work was performed to evaluate the mechanical properties of the strengthened tapes. The copper can double the ultimate tensile strength of the pure silver tapes. Additionally, pure silver and dispersion strengthened silver matrix tapes are laminated with 0.025 mm thick copper and 304 stainless steel foil to investigate minimization of the cross sectional area of the strengthening component. The stainless steel can increase the UTS of the pure silver tapes sixfold. Metallography is used to examine the laminate and the conductor. Mechanical properties and critical currents of these tapes are also reported both before and after strengthening. The I{sub c} is also measured as a function of strain on the laminated tapes.

  11. Textured substrate tape and devices thereof

    DOE Patents [OSTI]

    Goyal, Amit

    2006-08-08T23:59:59.000Z

    A method for forming a sharply biaxially textured substrate, such as a single crystal substrate, includes the steps of providing a deformed metal substrate, followed by heating above the secondary recrystallization temperature of the deformed substrate, and controlling the secondary recrystallization texture by either using thermal gradients and/or seeding. The seed is selected to shave a stable texture below a predetermined temperature. The sharply biaxially textured substrate can be formed as a tape having a length of 1 km, or more. Epitaxial articles can be formed from the tapes to include an epitaxial electromagnetically active layer. The electromagnetically active layer can be a superconducting layer.

  12. Tamper tape seals

    SciTech Connect (OSTI)

    Wright, B.W.; Undem, H.A.

    1994-07-01T23:59:59.000Z

    Tamper tapes are appealing for many applications due to their ease of use and relative robustness. Applications include seals for temporary area denial, protection of sensitive equipment, chain-of-custody audit trails, and inventory control practices. A next generation of adhesive tamper tapes is being developed that combines the best features of commercially available devices with additional state-of-the-art features in tamper indication, tamper-resistance, and counterfeit-resistance. The additional features are based on U.S. Department of Energy (DOE) research and development (R&D) activities that were originally associated with preparations for the Strategic Arms Reduction Treaty (START). New features include rapid-set, chemical-cure adhesive systems that allow user-friendly application and layered levels of counterfeit-resistance based on unique {open_quotes}fingerprint{close_quotes} characteristics that can be accessed as desired.

  13. Method and apparatus for depositing a coating on a tape carrier

    DOE Patents [OSTI]

    Storer, Jonathan; Matias, Vladimir

    2010-06-15T23:59:59.000Z

    A system and method for depositing ceramic materials, such as nitrides and oxides, including high temperature superconducting oxides on a tape substrate. The system includes a tape support assembly that comprises a rotatable drum. The rotatable drum supports at least one tape substrate axially disposed on the surface of the drum during the deposition of metals on the tape and subsequent oxidation to form the ceramic materials. The drum is located within a stator having a slot that is axially aligned with the drum. A space exists between the drum and stator. The space is filled with a predetermined partial pressure of a reactive gas. The drum, stator, and space are heated to a predetermined temperature. To form the ceramic material on the tape substrate, the drum is first rotated to align the tape substrate with the slot, and at least one metal is deposited on the substrate. The drum then continues to rotate, bringing the tape substrate into the space, where the metal deposited on the tape substrate reacts with the reactive gas to form the ceramic material. In one embodiment, the tape support system also includes a pay-out/take-up system that co-rotates with the drum and provides a continuous length of tape substrate.

  14. Fully synthetic taped insulation cables

    DOE Patents [OSTI]

    Forsyth, Eric B. (Brookhaven, NY); Muller, Albert C. (Center Moriches, NY)

    1984-01-01T23:59:59.000Z

    A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.

  15. A method of measuring a molten metal liquid pool volume

    DOE Patents [OSTI]

    Garcia, G.V.; Carlson, N.M., Donaldson, A.D.

    1990-12-12T23:59:59.000Z

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figs.

  16. Quick-release medical tape

    E-Print Network [OSTI]

    Laulicht, Bryan E.

    Medical tape that provides secure fixation of life-sustaining and -monitoring devices with quick, easy, damage-free removal represents a longstanding unmet medical need in neonatal care. During removal of current medical ...

  17. DO NOT INCLUDE: flatten cardboard staples, tape & envelope windows ok

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    / bottles Metal items other than cans/foil Napkins Paper towels Plastic bags Plastic films Plastic utensilsDO NOT INCLUDE: flatten cardboard staples, tape & envelope windows ok Aerosol cans Books Bottle, PDAs, inkjet cartridges, CFL bulbs (cushioned, sealed in plastic) computers, printers, printer

  18. Fully synthetic taped insulation cables

    DOE Patents [OSTI]

    Forsyth, E.B.; Muller, A.C.

    1983-07-15T23:59:59.000Z

    The present invention is a cable which, although constructed from inexpensive polyolefin tapes and using typical impregnating oils, furnishes high voltage capability up to 765 kV, and has such excellent dielectric characteristics and heat transfer properties that it is capable of operation at capacities equal to or higher than presently available cables at a given voltage. This is accomplished by using polyethylene, polybutene or polypropylene insulating tape which has been specially processed to attain properties which are not generally found in these materials, but are required for their use in impregnated electrical cables. Chief among these properties is compatibility with impregnating oil.

  19. Critical current measurements of DI-BSCCO tapes as a function of angle in high magnetic This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Hampshire, Damian

    and excellent mechanical strength. These tapes are valuable for many applications such as power cables, transformers, motors, generators, and high field magnets. Hence their performance in high magnetic fields under. Unlike low temperature superconductors, high temperature superconducting (HTS) tapes are strongly

  20. Building America Case Study: Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeeting |Resources »Climate RegionsCold TestMeasure

  1. Read/write head for a magnetic tape device having grooves for reducing tape floating

    DOE Patents [OSTI]

    Aoki, Kenji (Kawasaki, JP)

    2005-08-09T23:59:59.000Z

    A read/write head for a magnetic tape includes an elongated chip assembly and a tape running surface formed in the longitudinal direction of the chip assembly. A pair of substantially spaced parallel read/write gap lines for supporting read/write elements extend longitudinally along the tape running surface of the chip assembly. Also, at least one groove is formed on the tape running surface on both sides of each of the read/write gap lines and extends substantially parallel to the read/write gap lines.

  2. Electromechanical characterization of superconducting wires and tapes at 77 K

    E-Print Network [OSTI]

    Bjoerstad, Roger

    The strain dependency of the critical current in state-of-the-art cuprate high-temperature superconductors (HTS) has been characterized. A universal test machine (UTM) combined with a critical current measurement system has been used to characterize the mechanical and the superconducting properties of conductors immersed in an open liquid nitrogen dewar. A set-up has been developed in order to perform simultaneous measurements of the superconductor lattice parameter changes, critical current, as well as the stress and strain at 77 K in self-field in a high energy synchrotron beamline. The HTS tapes and wires studied were based on YBCO, Bi-2223 and Bi-2212. The YBCO tapes were produced by SuperPower and American Superconductors (AMSC). Two types of Bi-2223 tapes, HT and G, were produced by Sumitomo Electric Industries (SEI). The Bi-2212 wires were produced by Oxford Superconducting Technology (OST) using Nexans granulate precursor, before undergoing a specialized over pressure (OP) processing and heat treatmen...

  3. Design of a Probe for Strain Sensitivity Studies of Critical Current Densities in SC Wires and Tapes

    SciTech Connect (OSTI)

    Dhanaraj, N.; Barzi, E.; Turrioni, D.; Rusy, A.; Lombardo, V.; /Fermilab

    2011-07-01T23:59:59.000Z

    The design of a variable-temperature probe used to perform strain sensitivity measurements on LTS wires and HTS wires and tapes is described. The measurements are intended to be performed at liquid helium temperatures (4.2 K). The wire or tape to be measured is wound and soldered on to a helical spring device, which is fixed at one end and subjected to a torque at the free end. The design goal is to be able to achieve {+-} 0.8 % strain in the wire and tape. The probe is designed to carry a current of 2000A.

  4. Measurement of local internal friction in metallic glasses

    SciTech Connect (OSTI)

    Wagner, H.; Bchsenschtz-Gbeler, M.; Luo, Y.; Samwer, K. [I. Physikalisches Institut, Georg-August Universitt, Friedrich-Hund-Platz 1, D-37077 Gttingen (Germany); Kumar, A. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Arnold, W., E-mail: w.arnold@mx.uni-saarland.de [I. Physikalisches Institut, Georg-August Universitt, Friedrich-Hund-Platz 1, D-37077 Gttingen (Germany); Department of Materials and Materials Technology, Saarland University, Campus D 2.2, D-66123 Saarbrcken (Germany)

    2014-04-07T23:59:59.000Z

    Atomic force acoustic microscopy (AFAM), an advanced scanning probe microscopy technique, has been used to measure local elastic properties with a spatial resolution given by the tip-sample contact radius. AFAM is based on inducing out-of-plane vibrations in the specimen. The vibrations are sensed by the AFM cantilever from by the photodiode signal when its tip is in contact with the material under test. To measure local damping, the inverse quality factor Q{sup ?1} of the resonance curve is usually evaluated. Here, from the contact-resonance spectra obtained, we determine the real and imaginary part of the contact stiffness k* and from these two quantities the local damping factor Q{sub loc}{sup ?1} is obtained which is proportional to the imaginary part ? of the contact stiffness. The evaluation of the data is based on the cantilever's mass distribution with damped flexural modes and not on an effective point-mass approximation for the cantilevers motion. The given equation is simple to use and has been employed to study the local Q{sub loc}{sup ?1} of amorphous PdCuSi metallic glass and its crystalline counterpart as a function of position of the AFM tip on the surface. The width of the distribution changes dramatically from the amorphous to the crystalline state as expected from the consequences of the potential-energy landscape picture. The center value of the distribution curve for Q{sub loc}{sup ?1} coincides very well with published data, based on global ultrasonic or internal friction measurements. This is compared to Q{sub loc}{sup ?1} measured in crystalline SrTiO{sub 3}, which exhibits a narrow distribution, as expected.

  5. Transition Metal Dimer Internuclear Distances from Measured Force Constants Joseph L. Jules and John R. Lombardi*

    E-Print Network [OSTI]

    Lombardi, John R.

    Transition Metal Dimer Internuclear Distances from Measured Force Constants Joseph L. Jules distances, have been extended to the transition metal dimers to test which one gives the most accurate fit's and Guggenheimer's for the transition metal dimers. Although Pauling's rule gives the best results, the remarkable

  6. High critical current superconducting tapes

    DOE Patents [OSTI]

    Holesinger, Terry G. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

    2003-09-23T23:59:59.000Z

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.

  7. Flagging Tape 3 Feet Mulch (2")

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Flagging Tape 3 Feet Mulch (2") How to Plant and Care for a Seedling Step 1. Keep roots cool into a plastic bag (roots only). Store seedlings in an unheated basement or refrigerator. Do not let the roots freeze. Step 3. Put some garden mulch, pine straw, or leaves in the three-foot area around the tree

  8. Apparatus for thermoelectric power measurements on metals and alloys in the liquid state.

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    595 Apparatus for thermoelectric power measurements on metals and alloys in the liquid state, for the determination of absolute thermoelectric power of liquid metals is described. The apparatus has been tested results for cadmium antimony alloys are reported. A change of sign of the thermoelectric power, versus

  9. Electromagnetic properties of Bi-2223/Ag concentric tapes

    SciTech Connect (OSTI)

    Majoros, M.; Polak, M.; Kvitkovic, J.; Suchon, D. [Slovak Academy of Sciences, Bratislava (Slovakia). Inst. of Electrical Engineering] [Slovak Academy of Sciences, Bratislava (Slovakia). Inst. of Electrical Engineering; Martini, L.; Ottoboni, V.; Zannella, S. [CISE SpA, Segrate (Italy)] [CISE SpA, Segrate (Italy)

    1996-07-01T23:59:59.000Z

    It is well established that near the silver interface highly textured Bi-2223 layers compared to the inner ceramic core may be obtained. Thus Bi-2223 multilayered concentric tapes with silver matrix are very promising in increasing transport critical current densities. In the present work the authors report on the electromagnetic characterization of short tapes having in their cross-section a very thin HTS flattened ring with Ag inside and outside of it. The samples were prepared by the powder in tube method and have self-field critical current densities J{sub c} of the order of 3 {times} 10{sup 4} A/cm{sup 2} at 77 K. Transport and SQUID magnetization measurements revealed weak link nature of the samples in low magnetic fields. Large transport J{sub c}(B) hysteresis was observed at 4.2 K and magnetic fields up to 20 T. Magnetic field profiles measurements with miniature Hall sensors are in qualitative accordance with model calculations supposing homogeneous current density distribution across the superconducting core.

  10. Prospecting in ultracool dwarfs: measuring the metallicities of mid- and late-M dwarfs

    SciTech Connect (OSTI)

    Mann, Andrew W. [Department of Astronomy, University of Texas at Austin, TX (United States); Deacon, Niall R. [Max Planck Institute for Astronomy, Konigstuhl 17, Heidelberg D-69117 (Germany); Gaidos, Eric [Department of Geology and Geophysics, University of Hawai'i, 1680 East-West Road, Honolulu, HI 96822 (United States); Ansdell, Megan; Liu, Michael C.; Magnier, Eugene A.; Aller, Kimberly M. [Institute for Astronomy, University of Hawai'i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Brewer, John M. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States)

    2014-06-01T23:59:59.000Z

    Metallicity is a fundamental parameter that contributes to the physical characteristics of a star. The low temperatures and complex molecules present in M dwarf atmospheres make it difficult to measure their metallicities using techniques that have been commonly used for Sun-like stars. Although there has been significant progress in developing empirical methods to measure M dwarf metallicities over the last few years, these techniques have been developed primarily for early- to mid-M dwarfs. We present a method to measure the metallicity of mid- to late-M dwarfs from moderate resolution (R ? 2000) K-band (? 2.2 ?m) spectra. We calibrate our formula using 44 wide binaries containing an F, G, K, or early-M primary of known metallicity and a mid- to late-M dwarf companion. We show that similar features and techniques used for early-M dwarfs are still effective for late-M dwarfs. Our revised calibration is accurate to ?0.07 dex for M4.5-M9.5 dwarfs with 0.58 < [Fe/H] < +0.56 and shows no systematic trends with spectral type, metallicity, or the method used to determine the primary star metallicity. We show that our method gives consistent metallicities for the components of M+M wide binaries. We verify that our new formula works for unresolved binaries by combining spectra of single stars. Lastly, we show that our calibration gives consistent metallicities with the Mann et al. study for overlapping (M4-M5) stars, establishing that the two calibrations can be used in combination to determine metallicities across the entire M dwarf sequence.

  11. Faceted ceramic fibers, tapes or ribbons and epitaxial devices therefrom

    DOE Patents [OSTI]

    Goyal, Amit

    2013-07-09T23:59:59.000Z

    A crystalline article includes a single-crystal ceramic fiber, tape or ribbon. The fiber, tape or ribbon has at least one crystallographic facet along its length, which is generally at least one meter long. In the case of sapphire, the facets are R-plane, M-plane, C-plane or A-plane facets. Epitaxial articles, including superconducting articles, can be formed on the fiber, tape or ribbon.

  12. Faceted ceramic fibers, tapes or ribbons and epitaxial devices therefrom

    DOE Patents [OSTI]

    Goyal, Amit (Knoxville, TN)

    2012-07-24T23:59:59.000Z

    A crystalline article includes a single-crystal ceramic fiber, tape or ribbon. The fiber, tape or ribbon has at least one crystallographic facet along its length, which is generally at least one meter long. In the case of sapphire, the facets are R-plane, M-plane, C-plane or A-plane facets. Epitaxial articles, including superconducting articles, can be formed on the fiber, tape or ribbon.

  13. Tape-cast sensors and method of making

    DOE Patents [OSTI]

    Mukundan, Rangachary (Santa Fe, NM); Brosha, Eric L. (Los Alamos, NM); Garzon, Fernando H. (Santa Fe, NM)

    2009-08-18T23:59:59.000Z

    A method of making electrochemical sensors in which an electrolyte material is cast into a tape. Prefabricated electrodes are then partially embedded between two wet layers of the electrolyte tape to form a green sensor, and the green sensor is then heated to sinter the electrolyte tape around the electrodes. The resulting sensors can be used in applications such as, but not limited to, combustion control, environmental monitoring, and explosive detection. A electrochemical sensor formed by the tape-casting method is also disclosed.

  14. Nationwide: Slashing Red Tape To Speed Solar Deployment for Homes...

    Broader source: Energy.gov (indexed) [DOE]

    Slashing Red Tape To Speed Solar Deployment for Homes and Businesses While solar panels, inverters and other hardware are more affordable than ever before (the average cost of...

  15. Sources of sintering inhibition in tape-cost aluminas

    SciTech Connect (OSTI)

    Geho, M.; Palmour, H. III [Kanebo Ltd, Osaka (Japan)

    1993-11-01T23:59:59.000Z

    High-purity, lightly MgO-doped Al2O3 tapes were tape cast from slurries. Dilatometric data obtained in directions both parallel and perpendicular to the cast plane under constant-rate-of-heating conditions were utilized to evaluate all aspects of densification behavior during sintering. 38 refs.

  16. Tape-Drive Based Plasma Mirror

    SciTech Connect (OSTI)

    Sokollik, Thomas; Shiraishi, Satomi; Osterhoff, Jens; Evans, Eugene; Gonsalves, Anthony; Nakamura, Kei; vanTilborg, Jeroen; Lin, Chen; Toth, Csaba; Leemans, Wim

    2011-07-22T23:59:59.000Z

    We present experimental results on a tape-drive based plasma mirror which could be used for a compact coupling of a laser beam into a staged laser driven electron accelerator. This novel kind of plasma mirror is suitable for high repetition rates and for high number of laser shots. In order to design a compact, staged laser plasma based accelerator or collider [1], the coupling of the laser beam into the different stages represents one of the key issues. To limit the spatial foot print and thus to realize a high overall acceleration gradient, a concept has to be found which realizes this in-coupling within a few centimeters (cf. Fig 1). The fluence of the laser pulse several centimeters away from the acceleration stage (focus) exceeds the damage threshold of any available mirror coating. Therefore, in reference [2] a plasma mirror was suggested for this purpose. We present experiments on a tape-drive based plasma mirror which could be used to reflect the focused laser beam into the acceleration stage. Plasma mirrors composed of antireflection coated glass substrates are usually used to improve the temporal laser contrast of laser pulses by several orders of magnitudes [3,4]. This is particularly important for laser interaction with solid matter, such as ion acceleration [5,6] and high harmonic generation on surfaces [7]. Therefore, the laser pulse is weekly focused onto a substrate. The main pulse generates a plasma and is reflected at the critical surface, whereas the low intensity pre-pulse (mainly the Amplified Spontaneous Emission pedestal) will be transmitted through the substrate before the mirror has been triggered. Several publications [3,4] demonstrate a conservation of the spatial beam quality and a reflectivity of about 70 %. The drawback of this technique is the limited repetition rate since for every shot a fresh surface has to be provided. In the past years several novel approaches for high repetition rate plasma mirrors have been developed [2, 8]. Nevertheless, for the staged accelerator scheme a second important requirement has to be considered. Since the electron beam has to propagate through the mirror, the thickness of the substrate has to be as thin as possible to reduce the distortion of the electron beam. A tape of only several micrometer thickness can overcome these disadvantages. It can be used with a sufficient repetition rate while it allows the electron beam to propagate through with a minimum of scattering.

  17. GET THE LEAD OUT Prior to November 2008 many autoclave tape brands such as FisherBrand, 3M

    E-Print Network [OSTI]

    Jia, Songtao

    autoclave tape as hazardous waste. Collect used pieces or tape roll in a ziplock bag Affix a hazardous

  18. Effect of Lamination Conditions on the Gas Permeability and Adhesion Strength of Green Ceramic Tapes

    SciTech Connect (OSTI)

    D. Krueger

    2007-08-31T23:59:59.000Z

    The gas permeability and adhesion strength of laminated green ceramic tapes were determined for samples comprised of barium titanate as the dielectric, and poly(vinyl butyral) and dioctyl phthalate as the main components of the binder mixture. The green tapes were laminated for times of 2-10 min, pressures of 1.8-7 MPa, and temperatures of 35-85?C. The adhesion strength, which was measured by a peel test, increased with increasing lamination time, temperature, and pressure. The permeability, which was determined from gas flux measurements, decreased with increasing lamination time, temperature, and pressure. The dependence of the permeability and adhesion strength on lamination time, temperature, and pressure is qualitatively consistent with a mechanistic description of the lamination process as one of binder flow in porous media

  19. Hybrid sensor for metal grade measurement of a falling stream of solid waste particles

    SciTech Connect (OSTI)

    Abdur Rahman, Md., E-mail: rahman@tudelft.nl; Bakker, M.C.M., E-mail: m.c.m.bakker@tudelft.nl

    2012-07-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer A new sensor system is developed for metal grade measurement of falling bottom ash particles. Black-Right-Pointing-Pointer The system is hybrid, consisting of an optical and an electromagnetic sensor. Black-Right-Pointing-Pointer Grade of ECS concentrated bottom ash in 1-6 mm sieve size accurately measured up to 143 p/s feed rate. Black-Right-Pointing-Pointer Accuracy reached was 2.4% with respect to manual analysis. Black-Right-Pointing-Pointer Measures for elimination of both stationary and stochastic errors are discussed. - Abstract: A hybrid sensor system for accurate detection of the metal grade of a stream of falling solid waste particles is investigated and experimentally verified. The system holds an infrared and an electromagnetic unit around a central tube and counts all the particles and only the metal particles, respectively. The count ratio together with the measured average particle mass ratio (k) of non-metal and metal particles is sufficient for calculation of grade. The performance of the system is accurately verified using synthetic mixtures of sand and metal particles. Towards an application a case study is performed using municipal solid waste incineration bottom ash in size fractions 1-6 mm, which presents a major challenge for nonferrous metal recovery. The particle count ratio was inherently accurate for particle feed rates up to 13 per second. The average value and spread of k for bottom ash was determined as 0.49 {+-} 0.07 and used to calculate grade within 2.4% from the manually analysed grade. At higher feed rates the sensors start missing particles which fall simultaneously through the central tube, but the hybrid system still counted highly repeatable. This allowed for implementation of a count correction ratio to eliminate the stationary error. In combination with averaging in measurement intervals for suppression of stochastic variations the hybrid system regained its accuracy for particle feed rates up to 143 per second. This performance and its special design, intended to render it insensitive to external interference and noise when applied in an eddy current separator, make the hybrid sensor suitable for applications such as quality control and sensor controlled separation.

  20. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    SciTech Connect (OSTI)

    SCHWINKENDORF, K.N.

    2006-05-12T23:59:59.000Z

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can supply useful information to analysts evaluating spent fuel subcriticality. The original purpose of the subcritical measurements was to validate computer model predictions that spent N Reactor fuel of a particular, typical exposure (2740 MWd/t) had a critical mass equal to twice that of unexposed fuel of the same type. The motivation for performing this work was driven by the need to increase spent fuel storage limits. These subcritical measurements confirmed the computer model predictions.

  1. Heat transfer and pressure drop in tape generated swirl flow

    E-Print Network [OSTI]

    Lopina, Robert F.

    1967-01-01T23:59:59.000Z

    The heat transfer and pressure drop characteristics of water in tape generated swirl flow were investigated. The test sections were electrically heated small diameter nickel tubes with tight fitting full length Inconel ...

  2. Irradiation of commercial, high-Tc superconducting tape for potential fusion applications: electromagnetic transport properties

    SciTech Connect (OSTI)

    Aytug, Tolga [ORNL; Gapud, Albert A. [University of South Alabama, Mobile; List III, Frederick Alyious [ORNL; Leonard, Keith J [ORNL; Rupich, Marty [American Superconductor Corporation, Westborough, MA; Zhang, Yanwen [ORNL; Greenwood, N T [University of South Alabama, Mobile; Alexander, J A [University of South Alabama, Mobile; Khan, A [University of South Alabama, Mobile

    2015-01-01T23:59:59.000Z

    Effects of low dose irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in the irradiative environment of fusion reactors. Three different tapes, each with unique as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results show that at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.

  3. A comparison of several surface finish measurement methods as applied to ground ceramic and metal surfaces

    SciTech Connect (OSTI)

    Blau, P.J.; Martin, R.L.; Riester, L.

    1996-01-01T23:59:59.000Z

    Surface finish is one of the most common measures of surface quality of ground ceramics and metal parts and a wide variety of methods and parameters have been developed to measure it. The purpose of this investigation was to compare the surface roughness parameters obtained on the same two specimens from three different types of measuring instruments: a traditional mechanical stylus system, a non-contact laser scanning system, and the atomic force microscope (two different AFM systems were compared). The same surface-ground silicon nitride and Inconel 625 alloy specimens were used for all measurements in this investigation. Significant differences in arithmetic average roughness, root-mean-square roughness, and peak-to-valley roughness were obtained when comparing data from the various topography measuring instruments. Non-contact methods agreed better with the others on the metal specimen than on the ceramic specimen. Reasons for these differences include the effective dimensions and geometry of the probe with respect to the surface topography; the reflectivity of the surface, and the type of filtering scheme Results of this investigation emphasize the importance of rigorously specifying the manner of surface roughness measurement when either reporting roughness data or when requesting that roughness data be provided.

  4. Chemical solution seed layer for rabits tapes

    SciTech Connect (OSTI)

    Goyal, Amit; Paranthaman, Mariappan; Wee, Sung-Hun

    2014-06-10T23:59:59.000Z

    A method for making a superconducting article includes the steps of providing a biaxially textured substrate. A seed layer is then deposited. The seed layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different rare earth or transition metal cations. A superconductor layer is grown epitaxially such that the superconductor layer is supported by the seed layer.

  5. Accelerated aging studies and environmental stability of prototype tamper tapes

    SciTech Connect (OSTI)

    Wright, B.W.; Wright, C.W. [Pacific Northwest Lab., Richland, WA (United States); Bunk, A.R. [Battelle Columbus Lab., OH (United States)] [and others

    1995-05-01T23:59:59.000Z

    This report describes the results of accelerated aging experiments (weathering) conducted on prototype tamper tapes bonded to a variety of surface materials. The prototype tamper tapes were based on the patented Confirm{reg_sign} tamper-indicating technology developed and produced by 3M Company. Tamper tapes bonded to surfaces using pressure sensitive adhesive (PSA) and four rapid-set adhesives were evaluated. The configurations of the PSA-bonded tamper tapes were 1.27-cm-wide Confirm{reg_sign} 1700 windows with vinyl underlay and 2.54-cm-wide Confirm{reg_sign} 1700 windows with vinyl and polyester underlays. The configurations of the rapid-set adhesive-bonded tamper tapes were 2.54-cm-wide Confirm{reg_sign} (1700, 1500 with and without primer, and 1300) windows with vinyl underlay. Surfaces used for bonding included aluminum, steel, stainless steel, Kevlar{reg_sign}, brass, copper, fiberglass/resin with and without gel coat, polyurethane-painted steel, acrylonitrile:butadiene:styrene plastic, polyester fiberglass board, Lexan polycarbonate, and cedar wood. Weathering conditions included a QUV cabinet (ultraviolet light at 60{degrees}C, condensing humidity at 40{degrees}C), a thermal cycling cabinet (-18{degrees}C to 46{degrees}C), a Weather-O-Meter (Xenon lamp), and exposure outdoors in Daytona Beach, Florida. Environmental aging exposures lasted from 7 weeks to 5 months. After exposure, the tamper tapes were visually examined and tested for transfer resistance. Tamper tapes were also exposed to a variety of chemical liquids (including organic solvents, acids, bases, and oxidizing liquids) to determine chemical resistance and to sand to determine abrasion resistance.

  6. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    SciTech Connect (OSTI)

    TOFFER, H.

    2006-07-18T23:59:59.000Z

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Fuel that had experienced a neutron environment in a reactor is known as spent, exposed, or irradiated fuel. In contrast fuel that has not yet been placed in a reactor is known as green, unexposed, or unirradiated fuel. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled (References 1 and 2) and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements (Reference 3). The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprised of two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with unirradiated fuel and one with irradiated fuel. Both the unirradiated and irradiated fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, three (3) green fuel and four (4) spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data, such as the uncertainty in fuel exposure impact on reactivity and the pulse neutron data evaluation methodology, failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements supply useful information to analysts evaluating spent fuel subcriticality. The original purpose of the subcritical measurements was to validate computer model predictions that spent N Reactor fuel of a particular, typical exposure (2740 MWd/t) had a critical mass equal to twice that of unexposed fuel of the same type. The motivation for performing this work was driven by the need to increase spent fuel storage limits. These subcritical measurements confirmed the computer model predictions.

  7. Spin transport parameters in metallic multilayers determined by ferromagnetic resonance measurements of spin-pumping

    SciTech Connect (OSTI)

    Boone, C. T.; Nembach, Hans T.; Shaw, Justin M.; Silva, T. J. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2013-04-21T23:59:59.000Z

    We measured spin-transport in nonferromagnetic (NM) metallic multilayers from the contribution to damping due to spin pumping from a ferromagnetic Co{sub 90}Fe{sub 10} thin film. The multilayer stack consisted of NM{sub 1}/NM{sub 2}/Co{sub 90}Fe{sub 10}(2 nm)/NM{sub 2}/NM{sub 3} with varying NM materials and thicknesses. Using conventional theory for one-dimensional diffusive spin transport in metals, we show that the effective damping due to spin pumping can be strongly affected by the spin transport properties of each NM in the multilayer, which permits the use of damping measurements to accurately determine the spin transport properties of the various NM layers in the full five-layer stack. We find that due to its high electrical resistivity, amorphous Ta is a poor spin conductor, in spite of a short spin-diffusion length of 1.0 nm, and that Pt is an excellent spin conductor by virtue of its low electrical resistivity and a spin diffusion length of only 0.5 nm. Spin Hall effect measurements may have underestimated the spin Hall angle in Pt by assuming a much longer spin diffusion length.

  8. Time-dependent dielectric breakdown measurements of porous organosilicate glass using mercury and solid metal probes

    SciTech Connect (OSTI)

    Pei, Dongfei; Nichols, Michael T.; Shohet, J. Leon, E-mail: shohet@engr.wisc.edu [Plasma Processing and Technology Laboratory, Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); King, Sean W.; Clarke, James S. [Intel Corporation, Hillsboro, Oregon 97124 (United States); Nishi, Yoshio [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2014-09-01T23:59:59.000Z

    Time-dependent dielectric breakdown (TDDB) is one of the major concerns for low-k dielectric materials. During plasma processing, low-k dielectrics are subjected to vacuum ultraviolet photon radiation and charged-particle bombardment. To examine the change of TDDB properties, time-to-breakdown measurements are made to porous SiCOH before and after plasma exposure. Significant discrepancies between mercury and solid-metal probes are observed and have been shown to be attributed to mercury diffusion into the dielectric porosities.

  9. The measurement of non-linear damping in metal-matrix composites

    E-Print Network [OSTI]

    Ray, Sourav

    1994-01-01T23:59:59.000Z

    K. Kinra (Chair of Committee) Alan Wolfenden (Member) Thomas W. Strganac (Member) Walter E. Haisler (Head of Department) December 1994 Major Subject: Aerospace Engineering ABSTRACT The Measurement of Non-Linear Damping in Metal...-decrement method (LDM) for Mg- 0. 6%Zr Alloy (f = 89 Hz) . . . . 27 Figure 6b: Frequency dependence of P for Mg-0. 6%Zr (er = 70 pe). . . . . . . . . . 29 Figure 6c: Strain-dependent damping for a P55Gr/Mg-0. 6%Zr Composite (f = 51 Hz). . . . . . 30 Figure 7a...

  10. ORSPHERE: PHYSICS MEASUREMENTS FOR BARE, HEU(93.2)-METAL SPHERE

    SciTech Connect (OSTI)

    Margaret A. Marshall

    2014-03-01T23:59:59.000Z

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files (Reference 1). While performing the ORSphere experiments care was taken to accurately document component dimensions (0.0001 inches), masses (0.01 g), and material data. The experiment was also set up to minimize the amount of structural material in the sphere proximity. Two, correlated spheres were evaluated and judged to be acceptable as criticality benchmark experiments. This evaluation is given in HEU-MET-FAST-100. The second, smaller sphere was used for additional reactor physics measurements. Worth measurements (Reference 1, 2, 3 and 4), the delayed neutron fraction (Reference 3, 4 and 5) and surface material worth coefficient (Reference 1 and 2) are all measured and judged to be acceptable as benchmark data. The prompt neutron decay (Reference 6), relative fission density (Reference 7) and relative neutron importance (Reference 7) were measured, but are not evaluated. Information for the evaluation was compiled from References 1 through 7, the experimental logbooks 8 and 9 ; additional drawings and notes provided by the experimenter; and communication with the lead experimenter, John T. Mihalczo.

  11. A Foundation of Programming a Multi-Tape Quantum Turing machine

    E-Print Network [OSTI]

    Tomoyuki Yamakami

    1999-06-23T23:59:59.000Z

    The notion of quantum Turing machines is a basis of quantum complexity theory. We discuss a general model of multi-tape, multi-head Quantum Turing machines with multi final states that also allow tape heads to stay still.

  12. Apparatus and method for loading and unloading multiple digital tape cassettes utilizing a removable magazine

    DOE Patents [OSTI]

    Lindenmeyer, C.W.

    1993-01-26T23:59:59.000Z

    An apparatus and method to automate the handling of multiple digital tape cassettes for processing by commercially available cassette tape readers and recorders. A removable magazine rack stores a plurality of tape cassettes, and cooperates with a shuttle device that automatically inserts and removes cassettes from the magazine to the reader and vice-versa. Photocells are used to identify and index to the desired tape cassette. The apparatus allows digital information stored on multiple cassettes to be processed without significant operator intervention.

  13. LBNL-41434. CAN DUCT-TAPE TAKE THE HEAT?

    E-Print Network [OSTI]

    LBNL-41434. 1 CAN DUCT-TAPE TAKE THE HEAT? Max Sherman Iain Walker Energy Performance of Buildings sponsor. #12;LBNL-41434. 2 As anyone who has crawled around attics looking at ductwork knows, the sight ratings for sealant longevity existed. To examine this question, LBNL has used laboratory methods

  14. An Evaluation of Monte Carlo Simulations of Neutron Multiplicity Measurements of Plutonium Metal

    SciTech Connect (OSTI)

    Mattingly, John [North Carolina State University; Miller, Eric [University of Michigan; Solomon, Clell J. Jr. [Los Alamos National Laboratory; Dennis, Ben [University of Michigan; Meldrum, Amy [University of Michigan; Clarke, Shaun [University of Michigan; Pozzi, Sara [University of Michigan

    2012-06-21T23:59:59.000Z

    In January 2009, Sandia National Laboratories conducted neutron multiplicity measurements of a polyethylene-reflected plutonium metal sphere. Over the past 3 years, those experiments have been collaboratively analyzed using Monte Carlo simulations conducted by University of Michigan (UM), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and North Carolina State University (NCSU). Monte Carlo simulations of the experiments consistently overpredict the mean and variance of the measured neutron multiplicity distribution. This paper presents a sensitivity study conducted to evaluate the potential sources of the observed errors. MCNPX-PoliMi simulations of plutonium neutron multiplicity measurements exhibited systematic over-prediction of the neutron multiplicity distribution. The over-prediction tended to increase with increasing multiplication. MCNPX-PoliMi had previously been validated against only very low multiplication benchmarks. We conducted sensitivity studies to try to identify the cause(s) of the simulation errors; we eliminated the potential causes we identified, except for Pu-239 {bar {nu}}. A very small change (-1.1%) in the Pu-239 {bar {nu}} dramatically improved the accuracy of the MCNPX-PoliMi simulation for all 6 measurements. This observation is consistent with the trend observed in the bias exhibited by the MCNPX-PoliMi simulations: a very small error in {bar {nu}} is 'magnified' by increasing multiplication. We applied a scalar adjustment to Pu-239 {bar {nu}} (independent of neutron energy); an adjustment that depends on energy is probably more appropriate.

  15. Determination of the kinetic parameters of the CALIBAN metallic core reactor from stochastic neutron measurements

    SciTech Connect (OSTI)

    Casoli, P.; Authier, N.; Chapelle, A. [Commissariat a l'Energie Atomique et Aux Energies Alternatives, CEA, DAM, F-21120 Is sur Tille (France)

    2012-07-01T23:59:59.000Z

    Several experimental devices are operated by the Criticality and Neutron Science Research Dept. of the CEA Valduc Laboratory. One of these is the Caliban metallic core reactor. The purpose of this study is to develop and perform experiments allowing to determinate some of fundamental kinetic parameters of the reactor. The prompt neutron decay constant and particularly its value at criticality can be measured with reactor noise techniques such as Rossi-{alpha} and Feynman variance-to-mean methods. Subcritical, critical, and even supercritical experiments were performed. Fission chambers detectors were put nearby the core and measurements were analyzed with the Rossi-{alpha} technique. A new value of the prompt neutron decay constant at criticality was determined, which allows, using the Nelson number method, new evaluations of the effective delayed neutron fraction and the in core neutron lifetime. As an introduction of this paper, some motivations of this work are given in part 1. In part 2, principles of the noise measurements experiments performed at the CEA Valduc Laboratory are reminded. The Caliban reactor is described in part 3. Stochastic neutron measurements analysis techniques used in this study are then presented in part 4. Results of fission chamber experiments are summarized in part 5. Part 6 is devoted to the current work, improvement of the experimental device using He 3 neutron detectors and first results obtained with it. Finally, conclusions and perspectives are given in part 7. (authors)

  16. High-performance, high-reliability tape storage for midrange and server-based environments

    E-Print Network [OSTI]

    operations can take advan- tage of lower cost tape storage. With an industry-leading design that enables repetitive handling by automated pickers or human operators, thus protecting the tape from the physical, provide unparalleled time-to-data levels and reliability. Magstar MP Fast Access Linear Tape family

  17. A method for measurement of delayed neutron parameters for liquid-metal-cooled power reactors

    SciTech Connect (OSTI)

    Vilim, R.B. [Argonne National Lab., IL (United States); Brock, R.W. [Babcock and Wilcox, Lynchburg, VA (United States)

    1996-06-01T23:59:59.000Z

    The trend toward increased reliance on passive features for power reactor safety makes it important to obtain the characteristics of the reactor system from measurements on the system. A method is described for solving for the delayed neutron parameters in a liquid-metal power reactor by fitting an analytic solution of the point-kinetics equations to the flux die-away from a dropped rod in an initially critical core. The method includes treatment of those conditions found in a power reactor that depart from those in a critical assembly experiment. These include a comparatively long rod drop time and a detector signal that instead of providing an integrated count rate is a sampled data signal proportional to the instantaneous fission power. The delayed neutron parameter values calculated from a rod drop experiment in the Experimental Breeder Reactor II are in agreement with values calculated using first principles and knowledge of core material composition and nuclear cross sections.

  18. Measurement of the half-life of 198Au in a non-metal: High-precision measurement shows no host-material dependence

    E-Print Network [OSTI]

    J. R. Goodwin; N. Nica; V. E. Iacob; A. Dibidad; J. C. Hardy

    2010-09-10T23:59:59.000Z

    We have measured the half-life of the beta decay of 198Au to be 2.6948(9) d, with the nuclide sited in an insulating environment. Comparing this result with the half-life we measured previously with a metallic environment, we find the half-lives in both environments to be the same within 0.04%, thus contradicting a prediction that screening from a "plasma" of quasi-free electrons in a metal increases the half-life by as much as 7%.

  19. Measured voltages and currents internal to closed metal cylinders due to diffusion of simulated lightning currents

    SciTech Connect (OSTI)

    Schnetzer, G.H.; Fisher, R.J.

    1994-08-01T23:59:59.000Z

    One mechanism for the penetration of lightning energy into the interior of a weapon is by current diffusion through the exterior metal case. Tests were conducted in which simulated lightning currents were driven over the exteriors of similar aluminum and ferrous steel cylinders of 0.125-in wall thickness. Under conditions in which the test currents were driven asymmetrically over the exteriors of the cylinders, voltages were measured between various test points in the interior as functions of the amplitude and duration of the applied current. The maximum recorded open-circuit voltage, which occurred in the steel cylinder, was 1.7 V. On separate shots, currents flowing on a low impedance shorting conductor between the same set of test points were also measured, yielding a maximum current of 630 A, again occurring across the interior of the steel cylinder. Under symmetrical exterior drive current conditions, a maximum end-to-end internal voltage of 4.1 V was obtained, also in the steel cylinder, with a corresponding current of 480 A measured on a coaxial conductor connected between the two end plates of the cylinder. Data were acquired over a range of input current amplitudes between about 40 and 100 kA. These data provide the experimental basis for validating models that can subsequently be applied to real weapons and other objects of interest.

  20. Segmented superconducting tape having reduced AC losses and method of making

    DOE Patents [OSTI]

    Foltyn, Stephen R. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Arendt, Paul N. (Los Alamos, NM); Holesinger, Terry G. (Los Alamos, NM); Wang, Haiyan (Los Alamos, NM)

    2009-09-22T23:59:59.000Z

    A superconducting tape having reduced AC losses. The tape has a high temperature superconductor layer that is segmented. Disruptive strips, formed in one of the tape substrate, a buffer layer, and the superconducting layer create parallel discontinuities in the superconducting layer that separate the current-carrying elements of the superconducting layer into strips or filament-like structures. Segmentation of the current-carrying elements has the effect of reducing AC current losses. Methods of making such a superconducting tape and reducing AC losses in such tapes are also disclosed.

  1. Direct measurement of the kinetics of volume and enthalpy relaxation of an Au-based bulk metallic glass

    SciTech Connect (OSTI)

    Bnz, J.; Wilde, G. [Institute of Materials Physics, University of Mnster, 48149 Mnster (Germany)] [Institute of Materials Physics, University of Mnster, 48149 Mnster (Germany)

    2013-12-14T23:59:59.000Z

    Structural relaxation of glasses below their glass transition is a well-studied phenomenon that still poses several open issues. With the advent of bulk metallic glasses with exceptionally low glass transition temperatures, new options are available that are based on the experimental assessment of the time dependence of several different thermodynamic quantities by direct measurements with high accuracy. In this contribution the first direct measurement of the isothermal relaxation of the volume and the enthalpy of an Au-based bulk metallic glassformer are reported and discussed with respect of the characteristics describing the underlying processes.

  2. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    SciTech Connect (OSTI)

    Kenny, T.W.

    1989-05-01T23:59:59.000Z

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of /sup 4/He adsorbed on metallic films. In contrast to measurements of /sup 4/He adsorbed on all other insulating substrates, we have shown that /sup 4/He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, /sup 4/He adsorbed on sapphire and on Ag films and H/sub 2/ adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs.

  3. Picosecond soft X-ray absorption measurement of the photo-inducedinsulator-to-metal transition in VO2.

    SciTech Connect (OSTI)

    Cavalleri, Andrea; Chong, Henry H.W.; Fourmaux, Sylvain; Glover,Thornton E.; Heimann, Phil A.; Kieffer, Jean Claude; Mun, B. Simon; Padmore, Howard A.; Schoenlein, Robert W.

    2004-02-01T23:59:59.000Z

    We directly measure the photoinduced insulator-to-metal transition in VO2 using time-resolved near-edge x-ray absorption. Picosecond pulses of synchrotron radiation are used to detect the redshift in the vanadium L3edge at 516 eV, which is associated with the transient collapse of the low-temperature band gap. We identify a two-component temporal response, corresponding to an ultrafast transformation over a 50 nm surface layer, followed by 40 m/s thermal growth of the metallic phase into the bulk.

  4. High-peak-power surface high-harmonic generation at extreme ultra-violet wavelengths from a tape

    SciTech Connect (OSTI)

    Shaw, B. H. [Lawrence Berkeley National Lab, Berkeley, California 94720 (United States) [Lawrence Berkeley National Lab, Berkeley, California 94720 (United States); Applied Science and Technology, University of California, Berkeley, California 94720 (United States); Tilborg, J. van; Sokollik, T.; Schroeder, C. B.; McKinney, W. R.; Artemiev, N. A.; Yashchuk, V. V.; Gullikson, E. M. [Lawrence Berkeley National Lab, Berkeley, California 94720 (United States)] [Lawrence Berkeley National Lab, Berkeley, California 94720 (United States); Leemans, W. P. [Lawrence Berkeley National Lab, Berkeley, California 94720 (United States) [Lawrence Berkeley National Lab, Berkeley, California 94720 (United States); Physics Department, University of California, Berkeley, California 94720 (United States)

    2013-07-28T23:59:59.000Z

    Solid-based surface high-harmonic generation from a tape is experimentally studied. By operating at mildly relativistic normalized laser strengths a{sub 0}?0.2, harmonics up to the 17th order are efficiently produced in the coherent wake emission (CWE) regime. CWE pulse properties, such as divergence, energy, conversion efficiency, and spectrum, are investigated for various tape materials and drive laser conditions. A clear correlation between surface roughness and harmonic beam divergence is found. At the measured pulse properties for the 15th harmonic (conversion efficiency ?6.510{sup ?7}, divergence ?7?15 mrad), the 100-mJ-level drive laser produces several MWs of extreme ultra-violet pulses. The spooling tape configuration enables multi-Hz operation over thousands of shots, making this source attractive as a seed to the few-Hz laser-plasma-accelerator-driven free-electron laser (FEL). Models indicate that these CWE pulses with MW level powers are sufficient for seed-induced bunching and FEL gain.

  5. Measurement of the solar neutrino capture rate with gallium metal, part III

    SciTech Connect (OSTI)

    Elliott, Steven Ray [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    The Russian-American experiment SAGE began to measure the solar neutrino capture rate with a target of gallium metal in December 1989. Measurements have continued with only a few brief interruptions since that time. In this article we present the experimental improvements in SAGE since its last published data summary in December 2001. Assuming the solar neutrino production rate was constant during the period of data collection, combined analysis of 168 extractions through December 2007 gives a capture rate of solar neutrinos with energy more than 233 keY of 65.4{sup +3.1}{sub 3.0} (stat) {sup +2.6}{sub -2.8} (syst) SNU. The weighted average of the results of all three Ga solar neUlrino experiments, SAGE, Gallex, and GNO, is now 66.1 {+-} 3.1 SNU, where statistical and systematic uncertainties have been combined in quadrature. During the recent period of data collection a new test of SAGE was made with a reactor-produced {sup 37}Ar neutrino source. The ratio of observed to calculated rates in this experiment, combined with the measured rates in the three prior {sup 51}Cr neutrino-source experiments with Ga, is 0.88 {+-} 0.05. A probable explanation for this low result is that the cross section for neutrino capture by the two lowest-lying excited states in {sup 71}Ge has been overestimated. If we assume these cross sections are zero, then the standard solar model including neutrino oscillations predicts a total capture rate in Ga in the range of 63--67 SNU with an uncertainly of about 5%, in good agreement with experiment. We derive the current value of the pp neutrino flux produced in the Sun to be {phi}{sup {circle_dot}}{sub pp} = (6.1 {+-} 0.8) x 10{sup 10}/(cm{sup 2} s), which agrees well with the flux predicted by the standard solar model. Finally, we make several tests and show that the data are consistent with the assumption that the solar neutrino production rate is constant in time.

  6. Aluminum Tape Evaluation for Sealable Aluminum Tubes Containing Mark 22 Fuel Tubes

    SciTech Connect (OSTI)

    RHODES, WILLIAM

    2003-01-01T23:59:59.000Z

    As part of the HEU Blend Down project, aluminum tape is required to seal aluminum tubes that will hold contaminated Mark 22 fuel tubes for dissolution. From a large field of candidate tapes, Avery Dennison's Fasson 0802 tape (synthetic rubber adhesive system) was found to be acceptable for this application. This tape will disentangle in the normal H-Canyon dissolver solution and have no detrimental effect on the H-Canyon process. Upon placement of Fasson 0802 tape into the dissolver solution, nitric acid will attack and disentangle the block copolymer network and destroy the adhesive nature of the material, resulting in insoluble particles that can be removed via centrifuge operations (cake weight increase of no more than 1 percent). The addition of the tape will not generate off-gas products and the resultant solution characteristics (surface tension, viscosity, density, and disengagement time) will be unaffected. Further, the potential effect on the down-stream evaporation system is negligible. Since the tape will not be placed in a high radiation environment, radiation stability is not an issue. Through detailed discussions with Avery Dennison chemists and based on analytical tests, a fairly detailed understanding of the constituents comprising the proprietary adhesive system has been assembled. Most importantly, chlorine was not detected in the aluminum tape (neutron activation analysis detection limit is 16 ppm). Finally, application of this tape will not impact LEU specifications.

  7. Synthesis of Superconducting MgB2 Wire, Tapes and Films - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Transmission Find More Like This Return to Search Synthesis of Superconducting MgB2 Wire, Tapes and Films Ames Laboratory Contact AMES About This Technology...

  8. Methods for tape fabrication of continuous filament composite parts and articles of manufacture thereof

    DOE Patents [OSTI]

    Weisberg, Andrew H

    2013-10-01T23:59:59.000Z

    A method for forming a composite structure according to one embodiment includes forming a first ply; and forming a second ply above the first ply. Forming each ply comprises: applying a bonding material to a tape, the tape comprising a fiber and a matrix, wherein the bonding material has a curing time of less than about 1 second; and adding the tape to a substrate for forming adjacent tape winds having about a constant distance therebetween. Additional systems, methods and articles of manufacture are also presented.

  9. In-situ measurements of surface tension-driven shape recovery in a metallic glass

    E-Print Network [OSTI]

    Schuh, Christopher A.

    A new technique, involving nanoindentation and in situ scanning probe microscopy at high temperature under an inert atmosphere, is used to study deformation of a Pt-based metallic glass. As temperature is increased into ...

  10. Measuring the Kernel TimeDependent Density Functional Theory with XRay Absorption Spectroscopy Transition Metals

    E-Print Network [OSTI]

    Gross, E.K.U.

    Transition Metals Scherz, Gross, Appel, Sorg, K. Baberschke, and Wende Fachbereich Physik, Freie Universita­Kohn approximation prob­ lem shown, new approximation suggested. But the value DFT constructing approxi­ mation

  11. Low-cost Sensor Tape for Environmental Sensing Based on Roll-to-roll Manufacturing Process

    E-Print Network [OSTI]

    Abstract-- We describe the concept of fabricating low-cost sensor tape for fine-grid environmental sensing connections with low-cost conductive inkjet printed copper traces. Our first attempt is to fabricate humidityLow-cost Sensor Tape for Environmental Sensing Based on Roll-to-roll Manufacturing Process Nan

  12. Metal Mesh Foil Bearings: Prediction and Measurement for Static and Dynamic Performance Characteristics

    E-Print Network [OSTI]

    Chirathadam, Thomas

    2012-12-10T23:59:59.000Z

    pads and a smooth top foil. The analysis models the top foil as a 2D finite element (FE) shell supported uniformly by a metal mesh under-layer. The solution of the structural FE model coupled with a gas film model, governed by the Reynolds equation...

  13. Local measurements of diffusion length and chemical character of metal clusters in multicrystalline silicon

    E-Print Network [OSTI]

    -ray Microprobe Techniques X-ray Fluorescence Microscopy ( -XRF). Synchrotron-based X-ray fluorescence microscopy ( -XRF), also known as "Scanning -XRF" ( -SXRF), is used to detect and characterize the elemental compositions, sizes, and depths of metal-rich clusters. µ-XRF is similar to energy dispersive X

  14. Sliding contacts and the dynamics of magnetic tape transport

    E-Print Network [OSTI]

    Raeymaekers, Bart

    2007-01-01T23:59:59.000Z

    manufacturing of metal rolling cylinders with well-defined surface roughness [6.11] or the fabrication of laser

  15. Prediction of liquid metal alloy radiant properties from measurements of the Hall coefficient and the direct current resistivity

    SciTech Connect (OSTI)

    Havstad, M.A. [Lawrence Livermore National Lab., CA (United States); Qiu, T. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-04-01T23:59:59.000Z

    The thermal radiative properties of high temperature solid and liquid metal alloys are particularly useful to research and development efforts in laser cladding and machining, electron beam welding and laser isotope separation. However the cost, complexity, and difficulty of measuring these properties have forced the use of crude estimates from the Hagen-Rubens relation, the Drude relations, or extrapolation from low temperature or otherwise flawed data (e.g., oxidized). The authors have found in this work that published values for the Hall coefficient and the electrical resistivity of liquid metal alloys can provide useful estimates of the reflectance and emittance of some groups of binary liquid metal and high temperature solid alloys. The estimation method computes the Drude free electron parameters, and thence the optical constants and the radiant properties from the dependence of the Hall coefficient and direct current resistivity on alloy composition (the Hall coefficient gives the free electron density and the resistivity gives the average time between collisions). They find that predictions of the radiant properties of molten cerium-copper alloy, which use the measured variations in the Hall coefficient and resistivity (both highly nonlinear) as a function of alloy fraction (rather than linear combinations of the values of the pure elements) yield a good comparison to published measurements of the variation of the normal spectral emittance (a different but also nonlinear function) of cerium-copper alloy at the single wavelength available for comparison, 0.645 {mu}m. The success of the approach in the visible range is particularly notable because one expects a Drude based approach to improve with increasing wavelength from the visible into the infrared. Details of the estimation method, the comparison between the calculation and the measured emittance, and a discussion of what groups of elements may also provide agreement is given.

  16. Template-directed biopolymerization: tape-copying Turing machines

    E-Print Network [OSTI]

    Sharma, Ajeet K; 10.1142/S1793048012300083

    2013-01-01T23:59:59.000Z

    DNA, RNA and proteins are among the most important macromolecules in a living cell. These molecules are polymerized by molecular machines. These natural nano-machines polymerize such macromolecules, adding one monomer at a time, using another linear polymer as the corresponding template. The machine utilizes input chemical energy to move along the template which also serves as a track for the movements of the machine. In the Alan Turing year 2012, it is worth pointing out that these machines are "tape-copying Turing machines". We review the operational mechanisms of the polymerizer machines and their collective behavior from the perspective of statistical physics, emphasizing their common features in spite of the crucial differences in their biological functions. We also draw attention of the physics community to another class of modular machines that carry out a different type of template-directed polymerization. We hope this review will inspire new kinetic models for these modular machines.

  17. -RECORDING RELATIVE WATER TABLE DEPTH USING PVC TAPE DISCOLOURATION -21 Applied Vegetation Science 8: 21-26, 2005

    E-Print Network [OSTI]

    Navrátilová, Jana

    - RECORDING RELATIVE WATER TABLE DEPTH USING PVC TAPE DISCOLOURATION - 21 Applied Vegetation during restoration. The PVC tape discolouration method enables spatially and temporally extensive studies and the same variables indicated by discolouration of PVC tape attached to green bamboo stakes installed

  18. Coating thickness measurement by XRF in vacuum strip steel metallizing plants

    SciTech Connect (OSTI)

    Wenzel, D. [Von Ardenne Anlagentechnik GmbH, Dresden (Germany); Esche, H.J.; Pilz, J. [Amtec AnalysenmeBtechnik GmbH, Leipzig (Germany)

    1994-12-31T23:59:59.000Z

    Devised for use in vacuum equipment of PVD strip steel coaters is a multichannel counting technique for the continuous XRF measurement of the coating thickness. This XRF coating thickness gage is used in a batch-type strip steel coater. It measures the thickness of single-side, double-side and alloy coatings (element contents included). The new XRF method operates without etalons. It is also possible to measure adjacent elements in the periodic law of chemical elements without difficulty. With only minor deviations from the nominal value the new XRF measuring system allows to keep the coating thickness practically constant.

  19. Low-cost sensor tape for environmental sensing based on roll-to-roll manufacturing process

    E-Print Network [OSTI]

    Gong, Nan-Wei

    We describe the concept of fabricating low-cost sensor tape for fine-grid environmental sensing based on roll-to-roll manufacturing processes. We experiment with constructing sensors and electronic connections with low-cost ...

  20. An experimental device for critical surface characterization of YBCO tape superconductors

    E-Print Network [OSTI]

    Mangiarotti, Franco Julio

    2013-01-01T23:59:59.000Z

    The twisting stacked tape cabling (TSTC) method for YBCO superconductors is very attractive for high current density, high magnetic field applications, such as nuclear fusion reactors and high energy physics experiments. ...

  1. Optimization studies on thermal and mechanical manufacturing processes for multifilament superconducting tape and wire

    E-Print Network [OSTI]

    Basaran, Burak

    2004-11-15T23:59:59.000Z

    There are many parameters that significantly affect the electrical performance of ceramic-core superconducting composite wire and tapes, which remain ambiguous and require more labor on their optimization. BSCCO 2212 has ...

  2. Automated measurement system employing eddy currents to adjust probe position and determine metal hardness

    DOE Patents [OSTI]

    Prince, J.M.; Dodson, M.G.; Lechelt, W.M.

    1989-07-18T23:59:59.000Z

    A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis. 14 figs.

  3. Automated measurement system employing eddy currents to adjust probe position and determine metal hardness

    DOE Patents [OSTI]

    Prince, James M. (Kennewick, WA); Dodson, Michael G. (Richland, WA); Lechelt, Wayne M. (Benton City, WA)

    1989-01-01T23:59:59.000Z

    A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis.

  4. Geo-Measurements with Metallic TDR Cable Technology for Infrastructure Surveillance

    E-Print Network [OSTI]

    , and contaminating fluids. TDR technology can also be employed in a wide variety of deformation measurement in rock, base courses beneath highway pavements, bulk storage piles of minerals, and other granular materials

  5. Exploration of tektite formation processes through water and metal content measurements

    E-Print Network [OSTI]

    Lee, Cin-Ty Aeolus

    was used for water measurements and laser ablation inductively coupled plasma mass spectrometry was used data on 46 laser ablation spots from 19 tektite samples and The Meteoritical Society, 2011

  6. Electrical voltages and resistances measured to inspect metallic cased wells and pipelines

    DOE Patents [OSTI]

    Vail, III, William Banning (Bothell, WA); Momii, Steven Thomas (Seattle, WA)

    2001-01-01T23:59:59.000Z

    A cased well in the earth is electrically energized with A.C. current. Voltages are measured from three voltage measurement electrodes in electrical contact with the interior of the casing while the casing is electrically energized. In a measurement mode, A.C. current is conducted from a first current carrying electrode within the cased well to a remote second current carrying electrode located on the surface of the earth. In a calibration mode, current is passed from the first current carrying electrode to a third current carrying electrode located vertically at a different position within the cased well, where the three voltage measurement electrodes are located vertically in between the first and third current carrying electrodes. Voltages along the casing and resistances along the casing are measured to determine wall thickness and the location of any casing collars present so as to electrically inspect the casing. Similar methods are employed to energize a pipeline to measure the wall thickness of the pipeline and the location of pipe joints to electrically inspect the pipeline.

  7. Electrical voltages and resistances measured to inspect metallic cased wells and pipelines

    DOE Patents [OSTI]

    Vail, III, William Banning (Bothell, WA); Momii, Steven Thomas (Seattle, WA)

    2000-01-01T23:59:59.000Z

    A cased well in the earth is electrically energized with A.C. current. Voltages are measured from three voltage measurement electrodes in electrical contact with the interior of the casing while the casing is electrically energized. In a measurement mode, A.C. current is conducted from a first current carrying electrode within the cased well to a remote second current carrying electrode located on the surface of the earth. In a calibration mode, current is passed from the first current carrying electrode to a third current carrying electrode located vertically at a different position within the cased well, where the three voltage measurement electrodes are located vertically in between the first and third current carrying electrodes. Voltages along the casing and resistances along the casing are measured to determine wall thickness and the location of any casing collars present so as to electrically inspect the casing. Similar methods are employed to energize a pipeline to measure the wall thickness of the pipeline and the location of pipe joints to electrically inspect the pipeline.

  8. Electrical voltages and resistances measured to inspect metallic cased wells and pipelines

    DOE Patents [OSTI]

    Vail III, William Banning; Momii, Steven Thomas

    2003-06-10T23:59:59.000Z

    A cased well in the earth is electrically energized with A.C. current. Voltages are measured from three voltage measurement electrodes in electrical contact with the interior of the casing while the casing is electrically energized. In a measurement mode, A.C. current is conducted from a first current carrying electrode within the cased well to a remote second current carrying electrode located on the surface of the earth. In a calibration mode, current is passed from the first current carrying electrode to a third current carrying electrode located vertically at a different position within the cased well, where the three voltage measurement electrodes are located vertically in between the first and third current carrying electrodes. Voltages along the casing and resistances along the casing are measured to determine wall thickness and the location of any casing collars present so as to electrically inspect the casing. Similar methods are employed to energize a pipeline to measure the wall thickness of the pipeline and the location of pipe joints to electrically inspect the pipeline.

  9. Measurements of actinide-fission product yields in Caliban and Prospero metallic core reactor fission neutron fields

    SciTech Connect (OSTI)

    Casoli, P.; Authier, N. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Laurec, J.; Bauge, E.; Granier, T. [CEA, Centre DIF, 91297 Arpajon (France)

    2011-07-01T23:59:59.000Z

    In the 1970's and early 1980's, an experimental program was performed on the facilities of the CEA Valduc Research Center to measure several actinide-fission product yields. Experiments were, in particular, completed on the Caliban and Prospero metallic core reactors to study fission-neutron-induced reactions on {sup 233}U, {sup 235}U, and {sup 239}Pu. Thick actinide samples were irradiated and the number of nuclei of each fission product was determined by gamma spectrometry. Fission chambers were irradiated simultaneously to measure the numbers of fissions in thin deposits of the same actinides. The masses of the thick samples and the thin deposits were determined by mass spectrometry and alpha spectrometry. The results of these experiments will be fully presented in this paper for the first time. A description of the Caliban and Prospero reactors, their characteristics and performances, and explanations about the experimental approach will also be given in the article. A recent work has been completed to analyze and reinterpret these measurements and particularly to evaluate the associated uncertainties. In this context, calculations have also been carried out with the Monte Carlo transport code Tripoli-4, using the published benchmarked Caliban description and a three-dimensional model of Prospero, to determine the average neutron energy causing fission. Simulation results will be discussed in this paper. Finally, new fission yield measurements will be proposed on Caliban and Prospero reactors to strengthen the results of the first experiments. (authors)

  10. Evaluation of a strengthening and insulation system for high temperature BSCCO-2223 superconducting tape

    SciTech Connect (OSTI)

    King, C.; Mantone, A. [GE Medical Systems, Florence, SC (United States); Herd, K.; Laskaris, T. [GE Corp. Research and Development Center, Schenectady, NY (United States)

    1995-12-31T23:59:59.000Z

    Recent advances in BSCCO-2223 superconducting tape quality and length have led to demonstration programs for coil performance. The conductors in these coils need to be insulated without damage to the superconducting properties. A paper insulation process developed at the General Electric Company (GE) for low temperature superconducting Nb{sub 3}Sn tape has been modified to provide the same insulation system to high temperature (HTS) superconducting tapes, such as BSCCO-2223. In this paper, we report on the insulation process and its effect on the tape performance. Several long lengths of conductor have been tested, unwound, insulated and retested to examine any degradation issues. Additionally, it is known that HTS materials are inherently weak in relation to the winding and handling stresses in a manufacturing environment. A system to provide mechanical stabilization to Nb{sub 3}Sn tape through a lamination process has been successfully applied to high temperature superconductors as a method to build a strong, windable composite. The system is described and mechanical and electrical properties of the strengthened tapes are discussed.

  11. Standard test method for measurement of creep crack growth times in metals

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2007-01-01T23:59:59.000Z

    1.1 This test method covers the determination of creep crack growth (CCG) in metals at elevated temperatures using pre-cracked specimens subjected to static or quasi-static loading conditions. The time (CCI), t0.2 to an initial crack extension ?ai = 0.2 mm from the onset of first applied force and creep crack growth rate, ?a or da/dt is expressed in terms of the magnitude of creep crack growth relating parameters, C* or K. With C* defined as the steady state determination of the crack tip stresses derived in principal from C*(t) and Ct (1-14). The crack growth derived in this manner is identified as a material property which can be used in modeling and life assessment methods (15-25). 1.1.1 The choice of the crack growth correlating parameter C*, C*(t), Ct, or K depends on the material creep properties, geometry and size of the specimen. Two types of material behavior are generally observed during creep crack growth tests; creep-ductile (1-14) and creep-brittle (26-37). In creep ductile materials, where cr...

  12. Ultra-fast x-ray Thomson scattering measurements of insulator-metal transition in shock-compressed matter

    SciTech Connect (OSTI)

    Kritcher, A; Neumayer, P; Castor, J; Doppner, T; Falcone, R W; Landen, O L; Lee, H J; Lee, R W; Morse, E C; Ng, A; Pollaine, S; Price, D; Glenzer, S H

    2008-05-16T23:59:59.000Z

    Spectrally resolved scattering of ultra-short pulse laser-generated K-{alpha} x rays has been applied to measure the heating and compression of shocked solid-density lithium hydride. Two shocks launched by a nanosecond laser pulse coalesce yielding pressures of 400 gigapascals. The evolution of the intensity of the elastic (Rayleigh) scattering component indicates rapid heating to temperatures of 25,000 K on a 100 ps time scale. At shock coalescence, the scattering spectra show the collective plasmon oscillations indicating the transition to the dense metallic plasma state. The plasmon frequency determines the material compression, which is found to be a factor of three thereby reaching conditions in the laboratory important for studying astrophysics phenomena.

  13. Infrared measurements and simulations of metal meshes in a focused beam

    SciTech Connect (OSTI)

    Stewart, K. P., E-mail: ken.stewart@nrl.navy.mil [Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Mller, K. D.; Grebel, H. [Electrical Engineering Department, New Jersey Institute of Technology, Electronic Imaging Center, Newark, New Jersey 07102 (United States)

    2014-02-07T23:59:59.000Z

    Infrared transmittance measurements of quasioptical filters are often restricted to a focused beam due to the optical design of the spectrometer. In contrast, numerical simulations assume an incident plane wave, which makes it difficult to compare theory with experimental data. We compare transmittance measurements with numerical simulations of square arrays of circular holes in 3-?m thick Cu sheets at angles of incidence from 0 to 20 for both s and p polarizations. These simple structures allow detailed tests of our electromagnetic simulation methods and show excellent agreement between theory and measurement. Measurements in a focused beam are accurately simulated by combining plane wave calculations over a range of angles that correspond to the focal ratio of the incident beam. Similar screens have been used as components of narrow bandpass filters for far-infrared astronomy, but these results show that the transmittance variations with angle of incidence and polarization limit their use to collimated beams at near normal incidence. The simulations are accurate enough to eliminate a costly trial-and-error approach to the design of more complex and useful quasioptical infrared filters and to predict their in-band performance and out-of-band blocking in focused beams.

  14. STANFORD IN-SITU HIGH RATE YBCO PROCESS: TRANSFER TO METAL TAPES AND PROCESS SCALE UP

    SciTech Connect (OSTI)

    Malcolm R. Beasley; Robert H.Hammond

    2009-04-14T23:59:59.000Z

    Executive Summary The materials science understanding of high rate low cost processes for Coated Conductor will benefit the application to power utilities for low loss energy transportation and power generation as well for DOD applications. The research in this program investigated several materials processing approaches that are new and original, and are not being investigated elsewhere. This work added to the understanding of the material science of high rate PVD growth of HTSC YBCO assisted by a liquid phase. A new process discovered uses amorphous glassy precursors which can be made at high rate under flexible conditions of temperature and oxygen, and later brought to conditions of oxygen partial pressure and temperature for rapid conversion to YBCO superconductor. Good critical current densities were found, but further effort is needed to optimize the vortex pinning using known artificial inclusions. A new discovery of the physics and materials science of vortex pinning in the HTSC system using Sm in place of Y came at growth at unusually low oxygen pressure resulting in clusters of a low or non superconducting phase within the nominal high temperature phase. The driving force for this during growth is new physics, perhaps due to the low oxygen. This has the potential for high current in large magnetic fields at low cost, applicable to motors, generators and transformers. The technical demands of this project were the motivation for the development of instrumentation that could be essential to eventual process scale up. These include atomic absorption based on tunable diode lasers for remote monitoring and control of evaporation sources (developed under DARPA support), and the utility of Fourier Transform Infrared Reflectivity (FTIR) for aid in the synthesis of complex thin film materials (purchased by a DURIP-AFOSR grant).

  15. Measurement of volume resistivity/conductivity of metallic alloy in inhibited seawater by optical interferometry techniques

    SciTech Connect (OSTI)

    Habib, K. [Materials Science Laboratory, Department of Advanced Systems KISR, P.O. Box 24885, SAFAT 13109 (Kuwait)

    2011-03-15T23:59:59.000Z

    Optical interferometry techniques were used for the first time to measure the volume resistivity/conductivity of carbon steel samples in seawater with different concentrations of a corrosion inhibitor. In this investigation, the real-time holographic interferometry was carried out to measure the thickness of anodic dissolved layer or the total thickness, U{sub total}, of formed oxide layer of carbon steel samples during the alternating current (ac) impedance of the samples in blank seawater and in 5-20 ppm TROS C-70 inhibited seawater, respectively. In addition, a mathematical model was derived in order to correlate between the ac impedance (resistance) and the surface (orthogonal) displacement of the surface of the samples in solutions. In other words, a proportionality constant [resistivity ({rho}) or conductivity ({sigma})= 1/{rho}] between the determined ac impedance [by electrochemical impedance spectroscopy (EIS) technique] and the orthogonal displacement (by the optical interferometry techniques) was obtained. The value of the resistivity of the carbon steel sample in the blank seawater was found similar to the value of the resistivity of the carbon steel sample air, around 1 x 10{sup -5}{Omega} cm. On the contrary, the measured values of the resistivity of the carbon steel samples were 1.85 x 10{sup 7}, 3.35 x 10{sup 7}, and 1.7 x 10{sup 7}{Omega} cm in 5, 10, and 20 ppm TROS C-70 inhibited seawater solutions, respectively. Furthermore, the determined value range of {rho} of the formed oxide layers, from 1.7 x 10{sup 7} to 3.35 x 10{sup 7}{Omega} cm, is found in a reasonable agreement with the one found in literature for the Fe oxide-hydroxides, i.e., goethite ({alpha}-FeOOH) and for the lepidocrocite ({gamma}-FeOOH), 1 x 10{sup 9}{Omega} cm. The {rho} value of the Fe oxide-hydroxides, 1 x 10{sup 9}{Omega} cm, was found slightly higher than the {rho} value range of the formed oxide layer of the present study. This is because the former value was determined by a dc method rather than by an electromagnetic method, i.e., holographic interferometry with applications of EIS, i.e., ac method. As a result, erroneous measurements were recorded due to the introduction of heat to Fe oxide-hydroxides.

  16. New Measurements of the Solubility of Metal Oxides at High Temperature

    SciTech Connect (OSTI)

    G.A. Palmer; P. Benezeth; D.J. Wesolowski; S.A. Wood; C. Xiao

    2000-06-30T23:59:59.000Z

    The results of high temperature solubility studies at ORNL are presented in which mainly direct pH measurements were made of aqueous solutions in contact with the crystalline solid phases: Al(OH){sub 3}, AlOOH, Fe{sub 3}O{sub 4}, Mg(OH){sub 2}, Nd(OH){sub 3}, and ZnO. Examples are highlighted of specific phenomena such as: the kinetics of gibbsite and boehmite dissolution and precipitation; the appearance of metastable equilibria in the dissolution of Fe{sub 3}O{sub 4}; the extremely rapid precipitation of crystalline brucite, Mg(OH){sub 2}; and anomalies in the apparent solubility profiles of AlO(OH) and ZnO. General trends associated with the effects of temperature and ionic strength are mentioned. Some of the potentiometric investigations were augmented by conventional batch [AlO(OH) and ZnO], and flow-through column (ZnO) experiments. In the additional case of ZnCr{sub 2}O{sub 4}, the extremely low solubility of this spinel permitted application of only the latter technique and these results are discussed in terms of the measured chromium levels that resulted from incongruent dissolution.

  17. Studies of Shear Band Velocity Using Spatially and Temporally Resolved Measurements of Strain During Quasistatic Compression of Bulk Metallic Glass

    SciTech Connect (OSTI)

    Wright, W J; Samale, M; Hufnagel, T; LeBlanc, M; Florando, J

    2009-06-15T23:59:59.000Z

    We have made measurements of the temporal and spatial features of the evolution of strain during the serrated flow of Pd{sub 40}Ni{sub 40}P{sub 20} bulk metallic glass tested under quasistatic, room temperature, uniaxial compression. Strain and load data were acquired at rates of up to 400 kHz using strain gages affixed to all four sides of the specimen and a piezoelectric load cell located near the specimen. Calculation of the displacement rate requires an assumption about the nature of the shear displacement. If one assumes that the entire shear plane displaces simultaneously, the displacement rate is approximately 0.002 m/s. If instead one assumes that the displacement occurs as a localized propagating front, the velocity of the front is approximately 2.8 m/s. In either case, the velocity is orders of magnitude less than the shear wave speed ({approx}2000 m/s). The significance of these measurements for estimates of heating in shear bands is discussed.

  18. Microstructure dependence of the c-axis critical current density in second-generation YBCO tapes.

    SciTech Connect (OSTI)

    Jia, Y.; Welp, U.; Crabtree, G. W.; Kwok, W. K.; Malozemoff, A. P.; Rupich, M. W.; Fleshler, S.; Clem, J. R. (Materials Science Division); (American Superconductor Corp.); (Ames Lab.); (Iowa State Univ.)

    2011-10-01T23:59:59.000Z

    C-axis current flow in high temperature superconductor (HTS) tape-shaped wires arises in configurations where the local wire axis is not perpendicular to the local magnetic field, such as in power cables with helically wound HTS tapes. The c-axis critical current density J{sub c}{sup c} has been recently found to be orders of magnitude lower than the ab-plane critical current density J{sub c}{sup ab}. Here we report on J{sub c}{sup c} (77 K, sf) values of various YBa{sub 2}Cu{sub 3}O{sub 7}-based (YBCO) tapes with different microstructures. Our results show that the value of J{sub c}{sup c} (77 K, sf) decreases significantly with increasing concentration of ab-plane stacking faults in YBCO thin films and that the critical current anisotropy {gamma} = J{sub c}{sup ab}/J{sub c}{sup c} can reach values as high as 2070, implying that in the highest-anisotropy tape, {approx}20% of the tape width carries c-axis current in a helically wound power cable.

  19. Microstructure dependence of the c-axis critical current density in second generation YBCO tapes

    SciTech Connect (OSTI)

    Jia, Y. Welp, U. Crabtree, G.W.; Kwok, W.K.; Malozemoff, A.P.; Rupich, M.W.; Fleshler, S.; Clem, J.R.

    2011-10-31T23:59:59.000Z

    C-axis current flow in high temperature superconductor (HTS) tape-shaped wires arises in configurations where the local wire axis is not perpendicular to the local magnetic field, such as in power cables with helically wound HTS tapes. The c-axis critical current density J{sub c}{sup c} has been recently found to be orders of magnitude lower than the ab-plane critical current density J{sub c}{sup ab}. Here we report on J{sub c}{sup c} (77 K, sf) values of various YBa{sub 2}Cu{sub 3}O{sub 7}-based (YBCO) tapes with different microstructures. Our results show that the value of J{sub c}{sup c} (77 K, sf) decreases significantly with increasing concentration of ab-plane stacking faults in YBCO thin films and that the critical current anisotropy {gamma} = J{sub c}{sup ab}/J{sub c}{sup c} can reach values as high as 2070, implying that in the highest-anisotropy tape, {approx}20% of the tape width carries c-axis current in a helically wound power cable.

  20. JOURNAL DE PHYSIQUE Colloque C4, supplment au n 4, Tome 40, avril 1979, page C4-131 Optical reflectivity measurements on thorium metal samples

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    reflectivity measurements on thorium metal samples C. Alvani and J. Naegele Commission of the European chantillons de thorium dont la surface a t prpare par polissage mcanique et lectrolytique ou qui ont t bons rsultats. Abstract. -- Thorium samples, the surfaces of which were mechanically polished

  1. High Variability of the Metal Content of Tree Growth Rings as Measured by Synchrotron Micro X-ray Fluorescence Spectrometry

    SciTech Connect (OSTI)

    Martin,R.; Naftel, S.; Macfie, S.; Jones, K.; Feng, H.; Trembley, C.

    2006-01-01T23:59:59.000Z

    Synchrotron radiation analysis was used to investigate the metal content of tree rings collected from paper birch, Betula papyrifera Marsh, on transects downwind from two metal smelters (nickel and copper). Individual trees reflected changes in ring metal content with time, which may be presumed to represent changes in local metal bioavailability. However, between-tree variations were large and no statistically significant differences in metal content as a function of time were found within or between sites. Although concentrations of both total and exchangeable copper and nickel in the soil increased with proximity to the respective smelter, this pattern was reflected only in the nickel content of rings near the nickel smelter; copper content did not vary with distance from either smelter. The sites did differ with respect to lead, manganese and zinc content of the rings, which may be related to pH. In conclusion, the variability between trees at each site suggests that dendroanalysis is a poor method for evaluating metal exposure at a large (site) scale. Tree ring metal content may be used to evaluate the metal uptake by individual trees but metal mobility in the stem makes it difficult to establish a reliable chronology.

  2. Time-series investigation of anomalous thermocouple responses in a liquid-metal-cooled reactor

    SciTech Connect (OSTI)

    Gross, K.C.; Planchon, H.P.; Poloncsik, J.

    1988-03-24T23:59:59.000Z

    A study was undertaken using SAS software to investigate the origin of anomalous temperature measurements recorded by thermocouples (TCs) in an instrumented fuel assembly in a liquid-metal-cooled nuclear reactor. SAS macros that implement univariate and bivariate spectral decomposition techniques were employed to analyze data recorded during a series of experiments conducted at full reactor power. For each experiment, data from physical sensors in the tests assembly were digitized at a sampling rate of 2/s and recorded on magnetic tapes for subsequent interactive processing with CMS SAS. Results from spectral and cross-correlation analyses led to the identification of a flow rate-dependent electromotive force (EMF) phenomenon as the origin of the anomalous TC readings. Knowledge of the physical mechanism responsible for the discrepant TC signals enabled us to device and justify a simple correction factor to be applied to future readings.

  3. Development of Micro Catalytic Combustor Using Ceramic Tape Casting Takashi OKAMASA, Gwang-Goo LEE, Yuji SUZUKI, and Nobuhide KASAGI

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    Development of Micro Catalytic Combustor Using Ceramic Tape Casting Takashi OKAMASA, Gwang-Goo LEE@thtlab.t.u-tokyo.ac.jp Abstract Micro-scale catalytic combustor fueled by butane is investigated. A cost-effective ceramic combustor is developed using high- precision tape-casting technology. Nano-porous alumina fabricated through

  4. Development of Micro Catalytic Combustor Using Tape-casting Ceramic Structure Yuya HORII, Yuji SUZUKI, and Nobuhide KASAGI

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    Development of Micro Catalytic Combustor Using Tape-casting Ceramic Structure Yuya HORII, Yuji through anodic oxidation of thermally-evaporated aluminum is employed for the catalyst support. A ceramic combustor with a 3-D manifold is made using high-precision tape-catsing method, and Pt/Al2 O3 catalyst layer

  5. Evaluation of 230 kV HPFF pipe-type cable with wrinkled and creased insulating tapes

    SciTech Connect (OSTI)

    Seman, G.W.; Katz, C. [Cable Technology Labs., Inc., New Brunswick, NJ (United States)] [Cable Technology Labs., Inc., New Brunswick, NJ (United States); Pancholi, S.V. [Potomac Electric Power Co., Washington, DC (United States)] [Potomac Electric Power Co., Washington, DC (United States)

    1995-01-01T23:59:59.000Z

    Severe collapse wrinkles and circumferential creases were discovered in the cellulose paper insulating tapes of a newly installed IIPFF pipe-type cable during splicing and terminating. An evaluation program was developed to assess the electrical and mechanical integrity of the cable having wrinkled and creased insulating tapes. The test results indicated that the cable would perform satisfactorily in service.

  6. CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership

    E-Print Network [OSTI]

    CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership Rooftop Solar Challenge 1 Sunshot #12;WASHINGTON PV CONTEXTWASHINGTON PV CONTEXT 285 cities, 39 Installations happen where process is easier #12;EVERGREEN STATE SOLAR PARTNERSHIP Commerce NWSEEDEdmonds

  7. Industrial Cu-Ni alloys for HTS coated conductor tape. A Girard1,2,3

    E-Print Network [OSTI]

    Boyer, Edmond

    Industrial Cu-Ni alloys for HTS coated conductor tape. A Girard1,2,3 , C E Bruzek4 , J L Jorda1 , L efficient substrates for coated conductor wires. The study is focused on two industrial compositions: Cu55Ni-textured substrate is one of the critical steps for the HTS coated conductor development. The RABiTS (Rolling

  8. ac loss measurement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tape, tem- perature dependence, total ac loss, transport loss. I. INTRODUCTION HIGH 6 Heat Loss Measurement Using Infrared Imaging Texas A&M University - TxSpace Summary: in...

  9. Computing AC losses in stacks of high-temperature superconducting tapes This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Prigozhin, Leonid

    generation (2G) high-temperature superconductor tapes. The tapes can be wound into coils with a large number-mail: leonid@math.bgu.ac.il and sokolovv@bgu.ac.il Received 26 January 2011, in final form 2 May 2011 Published 26 May 2011 Online at stacks.iop.org/SUST/24/075012 Abstract Superconducting tape coils and Roebel

  10. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    SciTech Connect (OSTI)

    John D. Bess

    2010-03-01T23:59:59.000Z

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these experiments were of particular importance because they provide extensive information which can be directly applied to the design of large LMFBRs. It should be recognized that the data presented in the initial report were evaluated only to the extent necessary to ensure that adequate data were obtained. Later reports provided further interpretation and detailed comparisons with prediction techniques. The conclusion of the isothermal physics measurements was that the FFTF nuclear characteristics were essentially as designed and all safety requirements were satisfied. From a nuclear point of view, the FFTF was qualified to proceed into power operation mode. The FFTF was completed in 1978 and first achieved criticality on February 9, 1980. Upon completion of the isothermal physics and reactor characterization programs, the FFTF operated for ten years from April 1982 to April 1992. Reactor operations of the FFTF were terminated and the reactor facility was then defueled, deactivated, and placed into cold standby condition. Deactivation of the reactor was put on hold from 1996 to 2000 while the U.S. Department of Energy examined alternative uses for the FFTF but then announced the permanent deactivation of the FFTF in December 2001. Its core support basket was later drilled in May 2005, so as to remove all remaining sodium coolant. On April 17, 2006, the American Nuclear Society designated the FFTF as a National Nuclear Historic Landmark.

  11. Speed of Sound in metal Speed of Sound in metal

    E-Print Network [OSTI]

    Yu, Jaehoon

    the metal rod and metal bar. 2. Acquire a metal bar or rod and measure its mass. Use the meter stick and measure and record the length in meters. Use the vernier calipers and measure the other dimensionBar Select the Smart Tool. Position the Smart tool so that the vertical line bisects the pulse. The (x

  12. Localised mobilisation of metals, as measured by diffusive gradients in thin-films, in soil historically treated with sewage sludge

    E-Print Network [OSTI]

    Ma, Lena

    historically treated with sewage sludge Jun Luo a,c , Hao Zhang a, , William Davison a , Ronald G. McLaren b online 11 September 2012 Keywords: Trace metals Soil Sewage sludge Mn oxide Diffusive gradients in thin was investigated in a sandy loam soil historically treated with sewage sludge. After deployment of two DGT

  13. Metal dependent structure, dynamics, and function in RNA measured by site-directed spin labeling and EPR spectroscopy

    E-Print Network [OSTI]

    Kim, Nak-Kyoon

    2007-04-25T23:59:59.000Z

    .................................................................................... 43 III SEPARATE METAL REQUIREMENTS FOR LOOP INTERACTION AND CATALYSIS IN EXTENDED HAMMERHEAD RIBOZYME ................................................... 44 Summary... macroscopic disordering (MOMD) model .................................. 62 3-8 Mg2+-dependent folding of the extended HHRz ........................................ 63 3-9 Mg -dependent catalysis in extended HHRz with spin label at U2+ 1...

  14. Determination of irreversibility field variations in mono- and multifilamentary (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} tapes by transport current methods

    SciTech Connect (OSTI)

    Anderson, J.W.; Parrell, J.A.; Polak, M.; Larbalestier, D.C. [Applied Superconductivity Center and Materials Science Program, University of Wisconsin--Madison, Madison, Wisconsin 53706 (United States)] [Applied Superconductivity Center and Materials Science Program, University of Wisconsin--Madison, Madison, Wisconsin 53706 (United States)

    1997-12-01T23:59:59.000Z

    The irreversibility field, H{sup {asterisk}}, has been measured for a variety of mono- and multifilamentary (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (2223) tapes using two different transport current techniques. It is common to characterize the quality of 2223 tapes by their zero-field, 77 K critical current density [J{sub c}(0T, 77 K)], even though this ignores the fact that significant self-fields depress J{sub c}(0T,77K) and the possibility that the in-field J{sub c}(B) characteristics may be optimized independently of the J{sub c}(0T,77K) value. To provide more useful information, we propose a second characterization, that of the irreversibility field, H{sup {asterisk}}. Having both H{sup {asterisk}} and J{sub c}(0T,77K) information helps in separating the two independent contributions that better connectivity and stronger flux pinning can make to the J{sub c} of a tape. We illustrate this point with results from a variety of mono- and multifilamentary Bi-2223/Ag tapes in damaged and undamaged conditions, which show that H{sup {asterisk}} (77 K) can vary from {approximately}100 to {approximately}200mT and not directly correlate with J{sub c}(0T,77K). The two proposed protocols for H{sup {asterisk}} measurement are robust and compatible with common transport measurement procedures. {copyright} {ital 1997 American Institute of Physics.}

  15. Experimental studies of helical solenoid model based on YBCO tape-bridge joints

    SciTech Connect (OSTI)

    Yu, M.; Lombardo, V.; Turrioni, D.; Zlobin, A.V.; /Fermilab; Flangan, G.; /MUONS Inc., Batavia; Lopes, M.L.; /Fermilab; Johnson, R.P.; /Fermilab

    2011-06-01T23:59:59.000Z

    Helical solenoids that provide solenoid, helical dipole and helical gradient field components are designed for a helical cooling channel (HCC) proposed for cooling of muon beams in a muon collider. The high temperature superconductor (HTS), 12 mm wide and 0.1 mm thick YBCO tape, is used as the conductor for the highest-field section of HCC due to certain advantages, such as its electrical and mechanical properties. To study and address the design, and technological and performance issues related to magnets based on YBCO tapes, a short helical solenoid model based on double-pancake coils was designed, fabricated and tested at Fermilab. Splicing joints were made with Sn-Pb solder as the power leads and the connection between coils, which is the most critical element in the magnet that can limit the performance significantly. This paper summarizes the test results of YBCO tape and double-pancake coils in liquid nitrogen and liquid helium, and then focuses on the study of YBCO splices, including the soldering temperatures and pressures, and splice bending test.

  16. Evaluation of inter-laminar shear strength of GFRP composed of bonded glass/polyimide tapes and cyanate-ester/epoxy blended resin for ITER TF coils

    SciTech Connect (OSTI)

    Hemmi, T.; Matsui, K.; Koizumi, N. [Japan Atomic Energy Agency, Fusion Research and Development Directorate 801-1 Mukoyama, Naka, Ibaraki, 311-0193 (Japan); Nishimura, A. [National Institute for Fusion Science, Fusion Engineering Research Center 322-6 Oroshi-cho, Toki, Gifu, 509-5292 (Japan); Nishijima, S. [Osaka University, Division of Sustainable Energy and Environmental Engineering 1-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Shikama, T. [Tohoku University, Institute for Materials Research 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577 (Japan)

    2014-01-27T23:59:59.000Z

    The insulation system of the ITER TF coils consists of multi-layer glass/polyimide tapes impregnated a cyanate-ester/epoxy resin. The ITER TF coils are required to withstand an irradiation of 10 MGy from gamma-ray and neutrons since the ITER TF coils is exposed by fast neutron (>0.1 MeV) of 10{sup 22} n/m{sup 2} during the ITER operation. Cyanate-ester/epoxy blended resins and bonded glass/polyimide tapes are developed as insulation materials to realize the required radiation-hardness for the insulation of the ITER TF coils. To evaluate the radiation-hardness of the developed insulation materials, the inter-laminar shear strength (ILSS) of glass-fiber reinforced plastics (GFRP) fabricated using developed insulation materials is measured as one of most important mechanical properties before/after the irradiation in a fission reactor of JRR-3M. As a result, it is demonstrated that the GFRPs using the developed insulation materials have a sufficient performance to apply for the ITER TF coil insulation.

  17. Stabilization of Electrocatalytic Metal Nanoparticles at Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points. Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene...

  18. Measurement Form Please fill out this measurement sheet to the best of your ability. It is easiest to

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Measurement Form Please fill out this measurement sheet to the best of your ability. It is easiest to get a friend or parent to help you take your measurements. If you don't have a measuring tape, use a piece of string, or ribbon, and then mark and measure it with a ruler or yardstick. The more accurate

  19. Measurement of the Europium Isotope Ratio for the Extremely Metal-Poor, r-Process-Enhanced Star CS31082-001

    E-Print Network [OSTI]

    W. Aoki; S. Honda; T. C. Beers; C. Sneden

    2002-11-28T23:59:59.000Z

    We report the first measurement of the isotope fraction of europium (151Eu and 153Eu) for the extremely metal-poor, r-process-enhanced star CS31082-001, based on high-resolution spectra obtained with the Subaru Telescope High Dispersion Spectrograph. We have also obtained new measurements of this ratio for two similar stars with previous europium isotope measurements, CS22892-052 and HD115444. The measurements were made using observations of the Eu lines in these spectra that are most significantly affected by isotope shifts and hyperfine splitting. The fractions of 151Eu derived for CS31082-001, CS22892-052, and HD115444 are 0.44, 0.51, and 0.46, respectively, with uncertainties of about +/-0.1. CS31082-001, the first star with a meaningful measurement of U outside of the solar system, is known to exhibit peculiar abundance ratios between the actinide and rare-earth elements (e.g., Th/Eu), ratios that are significantly different from those for other stars with large excesses of r-process elements, such as our two comparison objects. Nevertheless, our analysis indicates that the Eu isotope ratio of CS31082-001 agrees, within the errors, with those of other r-process-enhanced objects, and with that of solar-system material.

  20. Insert Coil Test for HEP High Field Magnets Using YBCO Coated Conductor Tapes

    SciTech Connect (OSTI)

    Lombardo, V.; Barzi, E.; Turrioni, D.; Zlobin, A.V.; /Fermilab

    2011-06-15T23:59:59.000Z

    The final beam cooling stages of a Muon Collider may require DC solenoid magnets with magnetic fields of 30-50 T. In this paper we present progress in insert coil development using commercially available YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} Coated Conductor. Technological aspects covered in the development, including coil geometry, insulation, manufacturing process and testing are summarized and discussed. Test results of double pancake coils operated in liquid nitrogen and liquid helium are presented and compared with the performance of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} tape short samples.

  1. A technique for converting serial PCM data to computer formatted tape

    E-Print Network [OSTI]

    Kirst, Alfred

    1965-01-01T23:59:59.000Z

    Page I. Synchroni. zer-Formator Interface, II. Formator-Tape Transport Interface. 11 13 III. Flag Bits. 26 IV. Core Memory Specifications 37 vii LIST OF FIGURES Figures 1, Pield Data System at Panama City, Florida Page 2. Input Data Format... SEA CABLE FROM STAGE D TIMER AND RECORDER SELECTOR BEACH TOWER FIELD DATA SYSTEM AT PANAMA CITY, FLORIDA FIGURE I TH K ? I WORD K WORD TH MSD D D D D D LSPWSMSD D D D D DLS PWS LEGEND: MS = MOST SIGNIFICANT DATA BIT L S = LEAST SIGNIFICANT...

  2. TAPE CALENDERING MANUFACTURING PROCESS FOR MULTILAYER THIN-FILM SOLID OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Nguyen Minh; Kurt Montgomery

    2004-10-01T23:59:59.000Z

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the Phases I and II under Contract DE-AC26-00NT40705 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Tape Calendering Manufacturing Process For Multilayer Thin-Film Solid Oxide Fuel Cells''. The main objective of this project was to develop the manufacturing process based on tape calendering for multilayer solid oxide fuel cells (SOFC's) using the unitized cell design concept and to demonstrate cell performance under specified operating conditions. Summarized in this report is the development and improvements to multilayer SOFC cells and the unitized cell design. Improvements to the multilayer SOFC cell were made in electrochemical performance, in both the anode and cathode, with cells demonstrating power densities of nearly 0.9 W/cm{sup 2} for 650 C operation and other cell configurations showing greater than 1.0 W/cm{sup 2} at 75% fuel utilization and 800 C. The unitized cell design was matured through design, analysis and development testing to a point that cell operation at greater than 70% fuel utilization was demonstrated at 800 C. The manufacturing process for both the multilayer cell and unitized cell design were assessed and refined, process maps were developed, forming approaches explored, and nondestructive evaluation (NDE) techniques examined.

  3. Metal aminoboranes

    DOE Patents [OSTI]

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya; Shrestha, Roshan P.

    2010-05-11T23:59:59.000Z

    Metal aminoboranes of the formula M(NH2BH3)n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  4. Joints and terminations for pipe-type cable insulated with paper-polypropylene-paper tapes: Final report

    SciTech Connect (OSTI)

    Engelhardt, J.S.; Ernst, A.; Gear, R.B.

    1988-10-01T23:59:59.000Z

    This work developed optimized joint and terminal options for 138--550 kV paper-polypropylene-paper (PPP) cables using conventional materials. In the process, the state of the art of conventional jointing and terminating techniques worldwide was examined and a design process formulated and presented. Test data available on hand-taped joints suggested a maximum radial design stress level of 1750 V/mil at impulse for hand-taped PPP splices. Additional testing is recommended to confirm the maximum axial stress level, but available data indicate that levels much greater than present US practice are acceptable. 86 refs., 78 figs., 16 tabs.

  5. Fabrication of metallic glass structures

    DOE Patents [OSTI]

    Cline, C.F.

    1983-10-20T23:59:59.000Z

    Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature regime.

  6. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    SciTech Connect (OSTI)

    Chen, Kevin

    2014-08-31T23:59:59.000Z

    This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers, rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100oC have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800oC. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750oC, first distributed chemical measurements at the record high temperature up to 700oC, first distributed pressure measurement at the record high temperature up to 800oC, and the fiber laser sensors with the record high operation temperature up to 700oC. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.

  7. Controlling the tape's gap in robotized fiber placement process using a visual servoing external hybrid control scheme

    E-Print Network [OSTI]

    Boyer, Edmond

    of automated fiber placement named AFP. This system uses an industrial manipulator robot with six axes has developed a solution for Automated Fiber Placement. The robotic cell is made of a six DOF robotACMA 2014 Controlling the tape's gap in robotized fiber placement process using a visual servoing

  8. Tape Casting of Proton Conducting Ceramic Material RMI COSTA, JULIEN HAFSAOUI, ANA PAULA ALMEIDA DE OLIVEIRA, ARNAUD GROSJEAN,

    E-Print Network [OSTI]

    Boyer, Edmond

    . Introduction Solid Oxide Fuel Cells (SOFC) are promising power generating systems which are currently based to the shaping of YSZ-based SOFC: however, water-based tape casting of BCY10 appeared to be impracticable : 10.1007/s10800-008-9671-7 #12;2 temperature of YSZ-based SOFC is usually high (> 900 C) in order

  9. Millimeter-scale contact printing of aqueous solutions using a stamp made out of paper and tape

    E-Print Network [OSTI]

    Prentiss, Mara

    three-dimensional, microfluidic, paper-based analyt- ical devices (3D-mPADs) as ``stamps'' (eMillimeter-scale contact printing of aqueous solutions using a stamp made out of paper and tape This communication describes a simple method for printing aqueous solutions with millimeter-scale patterns

  10. Phase evolution study on the melting and recrystallization of ceramic core in the (Bi,Pb)-2223 tape

    E-Print Network [OSTI]

    Boyer, Edmond

    of the superconducting core, may facilitate contacts and interactions between the crystals, reduce porosities, heal connectivity and high critical current density in superconducting tapes can be attained. Besides, the alignment in "Physica C: Superconductivity and its Applications 450 (2006) 56-60" DOI : 10.1016/j.physc.2006.08.010 #12

  11. Lavender Foal Syndrome Hair Sample Sheet Please tape hair samples within boxed area as illustrated and place in individual envelope.

    E-Print Network [OSTI]

    Keinan, Alon

    Lavender Foal Syndrome Hair Sample Sheet Please tape hair samples within boxed area as illustrated and place in individual envelope. *Pull 50 hairs from the tail or mane (do not use hairs shed on brush) #Hairs must be pulled, not cut #Hairs must contain hair root *Align the "roots" of the hairs and trim

  12. Critical currents of YBCO tapes and Bi-2212 wires at different temperatures and magnetic fields

    SciTech Connect (OSTI)

    Lombardo, V.; Barzi, e.; Turrioni, D.; Zlobin, A.V.; /Fermilab

    2010-08-01T23:59:59.000Z

    Design studies for the cooling channel of a Muon Collider call for straight and helical solenoids generating field well in excess of the critical fields of state of the art Low Temperature Superconductors (LTS) such as Nb{sub 3}Sn or NbTi. Therefore, High Temperature Superconductors (HTS) will need to be used for the manufacturing of all or certain sections of such magnets to be able to generate and withstand the field levels at the cryogenic temperatures required by the new machine. In this work, two major High Temperature Superconductors - Bi2212 round wires and YBCO coated conductor tapes - are investigated to understand how critical current density of such conductors scales as a function of external field and operating temperature. This is vital information to make conductor choices depending on the application and to proceed with the design of such magnets.

  13. Metal inks

    DOE Patents [OSTI]

    Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

    2014-02-04T23:59:59.000Z

    Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

  14. Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta-W alloys

    SciTech Connect (OSTI)

    Nemat-Nasser, S.; Isaacs, J.B. [Univ. of California, San Diego, La Jolla, CA (United States)] [Univ. of California, San Diego, La Jolla, CA (United States)

    1997-03-01T23:59:59.000Z

    A technique is developed for measuring the flow stress of metals over a broad range of strains, strain rates, and temperatures, in uniaxial compression. It utilizes a recent, enhanced version of the classical (Kolsky) compression split Hopkinson bar, in which a sample is subjected to a single stress pulse of a predefined profile, and then recovered without being subjected to any other additional loading. For the present application, the UCSD`s split Hopkinson bar is further enhanced by the addition of a new mechanism by means of which the incident and transmission bars of the split Hopkinson construction are moved into a constant-temperature furnace containing the sample, and gently brought into contact with the sample, as the elastic stress pulse reaches and loads the sample. Using several samples of the same material and testing them at the same strain rate and temperature, but different incremental strains, an accurate estimate of the material`s isothermal flow stress can be obtained. Additionally, the modified Hopkinson technique allows the direct measurement of the change in the (high strain-rate) flow stress with a change of the strain rate, while the strain and temperature are kept constant, i.e., the strain rate can be increased or decreased during the high strain-rate test. The technique is applied to obtain both quasi-isothermal and adiabatic flow stresses of tantalum (Ta) and a tantalum-tungsten (Ta-W) alloy at elevated temperatures. These experimental results show the flow stress of these materials to be controlled by a simple long-range plastic-strain-dependent barrier, and a short-range thermally activated Peierls mechanism. For tantalum, a model which fits the experimental data over strains from a few to over 100%, strain rates from quasi-static to 40,000/s, and temperatures from {minus}200 to 1,000 C, is presented and discussed.

  15. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09T23:59:59.000Z

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  16. High precision measurements of Na-26 beta(-) decay

    E-Print Network [OSTI]

    Grinyer, GF; Svensson, CE; Andreoiu, C.; Andreyev, AN; Austin, RAE; Ball, GC; Chakrawarthy, RS; Finlay, P.; Garrett, PE; Hackman, G.; Hardy, John C.; Hyland, B.; Iacob, VE; Koopmans, KA; Kulp, WD; Leslie, JR; Macdonald, JA; Morton, AC; Ormand, WE; Osborne, CJ; Pearson, CJ; Phillips, AA; Sarazin, F.; Schumaker, MA; Scraggs, HC; Schwarzenberg, J.; Smith, MB; Valiente-Dobon, JJ; Waddington, JC; Wood, JL; Zganjar, EF.

    2005-01-01T23:59:59.000Z

    High-precision measurements of the half-life and beta-branching ratios for the beta(-) decay of Na-26 to Mg-26 have been measured in beta-counting and gamma-decay experiments, respectively. A 4 pi proportional counter and fast tape transport system...

  17. Composite Metal-hydrogen Electrodes for Metal-Hydrogen Batteries

    SciTech Connect (OSTI)

    Ruckman, M W; Wiesmann, H; Strongin, M; Young, K; Fetcenko, M

    1997-04-01T23:59:59.000Z

    The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries. The anodes could be incorporated in thin film solid state Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped metal-hydrogen ratios exceeding and fast hydrogen charging and Nb films, these studies suggested that materials with those of commercially available metal hydride materials discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films-and multiiayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 m thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for modern electronic devices.

  18. Measurement of the solar neutrino capture rate with gallium metal. III. Results for the 2002-2007 data-taking period

    SciTech Connect (OSTI)

    Abdurashitov, J. N.; Gavrin, V. N.; Gorbachev, V. V.; Gurkina, P. P.; Ibragimova, T. V.; Kalikhov, A. V.; Khairnasov, N. G.; Knodel, T. V.; Mirmov, I. N.; Shikhin, A. A.; Veretenkin, E. P.; Yants, V. E.; Zatsepin, G. T.; Bowles, T. J.; Elliott, S. R.; Teasdale, W. A.; Nico, J. S.; Cleveland, B. T.; Wilkerson, J. F. [Institute for Nuclear Research, Russian Academy of Sciences, RU-117312 Moscow (Russian Federation); Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); National Institute of Standards and Technology, Stop 8461, Gaithersburg, Maryland 20899 (United States); University of Washington, Seattle, Washington 98195 (United States)

    2009-07-15T23:59:59.000Z

    The Russian-American experiment SAGE began to measure the solar neutrino capture rate with a target of gallium metal in December 1989. Measurements have continued with only a few brief interruptions since that time. In this article we present the experimental improvements in SAGE since its last published data summary in December 2001. Assuming the solar neutrino production rate was constant during the period of data collection, combined analysis of 168 extractions through December 2007 gives a capture rate of solar neutrinos with energy more than 233 keV of 65.4{sub -3.0}{sup +3.1} (stat) {sub -2.8}{sup +2.6} (syst) SNU. The weighted average of the results of all three Ga solar neutrino experiments, SAGE, Gallex, and GNO, is now 66.1{+-}3.1 SNU, where statistical and systematic uncertainties have been combined in quadrature. During the recent period of data collection a new test of SAGE was made with a reactor-produced {sup 37}Ar neutrino source. The ratio of observed to calculated rates in this experiment, combined with the measured rates in the three prior {sup 51}Cr neutrino-source experiments with Ga, is 0.87{+-}0.05. A probable explanation for this low result is that the cross section for neutrino capture by the two lowest-lying excited states in {sup 71}Ge has been overestimated. If we assume these cross sections are zero, then the standard solar model including neutrino oscillations predicts a total capture rate in Ga in the range of 63 SNU to 66 SNU with an uncertainty of about 4%, in good agreement with experiment. We derive the current value of the neutrino flux produced in the Sun by the proton-proton fusion reaction to be {phi}{sub pp}{sup {center_dot}}=(6.0{+-}0.8)x10{sup 10}/(cm{sup 2} s), which agrees well with the pp flux predicted by the standard solar model. Finally, we make several tests and show that the data are consistent with the assumption that the solar neutrino production rate is constant in time.

  19. Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002--2007 data-taking period

    E-Print Network [OSTI]

    SAGE Collaboration; J. N. Abdurashitov; V. N. Gavrin; V. V. Gorbachev; P. P. Gurkina; T. V. Ibragimova; A. V. Kalikhov; N. G. Khairnasov; T. V. Knodel; I. N. Mirmov; A. A. Shikhin; E. P. Veretenkin; V. E. Yants; G. T. Zatsepin; T. J. Bowles; S. R. Elliott; W. A. Teasdale; J. S. Nico; B. T. Cleveland; J. F. Wilkerson

    2009-08-10T23:59:59.000Z

    The Russian-American experiment SAGE began to measure the solar neutrino capture rate with a target of gallium metal in Dec. 1989. Measurements have continued with only a few brief interruptions since that time. We give here the experimental improvements in SAGE since its last published data summary in Dec. 2001. Assuming the solar neutrino production rate was constant during the period of data collection, combined analysis of 168 extractions through Dec. 2007 gives a capture rate of solar neutrinos with energy more than 233 keV of 65.4 (+3.1)(-3.0) (stat) (+2.6)(-2.8) (syst) SNU. The weighted average of the results of all three Ga solar neutrino experiments, SAGE, Gallex, and GNO, is now 66.1 +/- 3.1 SNU, where statistical and systematic uncertainties have been combined in quadrature. During the recent period of data collection a new test of SAGE was made with a reactor-produced 37Ar neutrino source. The ratio of observed to calculated rates in this experiment, combined with the measured rates in the three prior 51Cr neutrino-source experiments with Ga, is 0.87 +/- 0.05. A probable explanation for this low result is that the cross section for neutrino capture by the two lowest-lying excited states in 71Ge has been overestimated. If we assume these cross sections are zero, then the standard solar model including neutrino oscillations predicts a total capture rate in Ga in the range of 63-66 SNU with an uncertainty of about 4%, in good agreement with experiment. We derive the current value of the neutrino flux produced in the Sun by the proton-proton fusion reaction to be (6.0 +/- 0.8) x 10^(10)/(cm^2 s), which agrees well with the pp flux predicted by the standard solar model. Finally, we show that the data are consistent with the assumption that the solar neutrino production rate is constant in time.

  20. Liquid metal Flow Meter - Final Report

    SciTech Connect (OSTI)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30T23:59:59.000Z

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  1. Proposal for the Award of Two Contracts for the Supply of High Temperature SuperconductingTape for the LHC

    E-Print Network [OSTI]

    2003-01-01T23:59:59.000Z

    This document concerns the award of two contracts for the supply of high temperature superconducting (HTS) BSCCO 2223 Ag-Au tape, of two different types, for the LHC. Following a call for tenders (IT-3143/AT/LHC) sent on 5 March 2003 to four firms in two Member States and one firm in the US, CERN received one tender from a firm in a Member State and one tender from the firm in the United States. The Finance Committee is invited to agree to the negotiation of contracts with: - VACUUMSCHMELZE (DE), for the supply of 17 km of HTS BSCCO 2223 Ag-Au tape with Ic > 66 A at 77 K for a total amount of 807 833 euros (1 201 900 Swiss francs), not subject to revision, with an option for the supply of up to additional 17 km of HTS BSCCO 2223 Ag-Au tape, for a total amount of up to 807 833 euros (1 201 900 Swiss francs), not subject to revision, bringing the total amount to a maximum of 1 615 666 euros (2 403 800 Swiss francs), not subject to revision. The rate of exchange used is that stipulated in the tender.

  2. Measurement Measurement

    E-Print Network [OSTI]

    Type Measurement Type Measurement Type Measurement Type Measurement Catch Composition - Pelagic codes M Male F Female I Indeterminate U Unknown (not inspected) #12;Type Measurement Type Measurement Type Measurement Type Measurement Photos Comment Length 1 Version 1.2 6/2011 HookNo. Species name

  3. Measuring the Kernel of Time-Dependent Density Functional Theory with X-Ray Absorption Spectroscopy of 3d Transition Metals

    E-Print Network [OSTI]

    Gross, E.K.U.

    of 3d Transition Metals A. Scherz,* E. K. U. Gross, H. Appel, C. Sorg, K. Baberschke, and H. Wende, and a new approximation suggested. But the true value of DFT is in constructing one XC approxi- mation

  4. Polymer quenched prealloyed metal powder

    DOE Patents [OSTI]

    Hajaligol, Mohammad R. (Midlothian, VA); Fleischhauer, Grier (Midlothian, VA); German, Randall M. (State College, PA)

    2001-01-01T23:59:59.000Z

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  5. JOURNAL DE PHYSIQUE Colloque C2, suppl&mentau no 3, Tome 40, mars 1979,page C2-135 MOSSBAUER AND MAGNET1C MEASUREMENTS I N AMORPHOUS RARE EARTH-TRANS I T 1ON METAL F I LMS

    E-Print Network [OSTI]

    Boyer, Edmond

    AND MAGNET1C MEASUREMENTS I N AMORPHOUS RARE EARTH-TRANS I T 1ON METAL F I LMS T. Katayama, Y. Nishihara, Y perpendicular to the film phous rare earth-transition metal (R-T) films, being planes. But the spectra of B,., is the isomer shift relative to metallic iron, H the hyperfine field at the maximum proba&ility in P(H) curve

  6. Metal oxide films on metal

    DOE Patents [OSTI]

    Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

    1995-01-01T23:59:59.000Z

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  7. Metals 2000

    SciTech Connect (OSTI)

    Allison, S.W.; Rogers, L.C.; Slaughter, G. [Oak Ridge National Lab., TN (United States); Boensch, F.D. [6025 Oak Hill Lane, Centerville, OH (United States); Claus, R.O.; de Vries, M. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1993-05-01T23:59:59.000Z

    This strategic planning exercise identified and characterized new and emerging advanced metallic technologies in the context of the drastic changes in global politics and decreasing fiscal resources. In consideration of a hierarchy of technology thrusts stated by various Department of Defense (DOD) spokesmen, and the need to find new and creative ways to acquire and organize programs within an evolving Wright Laboratory, five major candidate programs identified are: C-17 Flap, Transport Fuselage, Mach 5 Aircraft, 4.Fighter Structures, and 5. Missile Structures. These results were formed by extensive discussion with selected major contractors and other experts, and a survey of advanced metallic structure materials. Candidate structural applications with detailed metal structure descriptions bracket a wide variety of uses which warrant consideration for the suggested programs. An analysis on implementing smart skins and structures concepts is given from a metal structures perspective.

  8. Dendritic metal nanostructures

    DOE Patents [OSTI]

    Shelnutt, John A. (Tijeras, NM); Song, Yujiang (Albuquerque, NM); Pereira, Eulalia F. (Vila Nova de Gaia, PT); Medforth, Craig J. (Winters, CA)

    2010-08-31T23:59:59.000Z

    Dendritic metal nanostructures made using a surfactant structure template, a metal salt, and electron donor species.

  9. Metal Hydrides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19,DepartmentEnergyMetalMetal

  10. Get the LEAD Out!Most lead-containing autoclave tape has stripes running across at an angle ( / / / / / / ); if it has very faint text (the word "autoclaved"), it most likely is a lead-free alternative.

    E-Print Network [OSTI]

    Ford, James

    Get the LEAD Out!Most lead-containing autoclave tape has stripes running across at an angle ( / / / / / / ); if it has very faint text (the word "autoclaved"), it most likely is a lead-free alternative. ADDITIONAL Programs Office (650.723.0110) REPLACE lead-containing rolls of auto- clave tape with a non-lead containing

  11. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing...

  12. Enhancement of transport critical current density of SmFeAsO{sub 1?x}F{sub x} tapes fabricated by an ex-situ powder-in-tube method with a Sn-presintering process

    SciTech Connect (OSTI)

    Zhang, Qianjun; Yao, Chao; Lin, He; Zhang, Xianping; Wang, Dongliang; Dong, Chiheng; Yuan, Pusheng; Tang, Shaopu; Ma, Yanwei, E-mail: ywma@mail.iee.ac.cn [Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Awaji, Satoshi; Watanabe, Kazuo [High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Tsuchiya, Yuji; Tamegai, Tsuyoshi [Department of Applied Physics, The University of Tokyo, Hongo, Tokyo 113-8656 (Japan)

    2014-04-28T23:59:59.000Z

    SmFeAsO{sub 1?x}F{sub x} (Sm1111) tapes were prepared by an ex-situ powder-in-tube method with a Sn-presintering process. Scanning electron microscopy revealed apparent difference in microstructure between Sn-presintered tapes and the previously reported polycrystalline Sm1111 bulk, since Sn has reduced FeAs wetting phase and filled the voids between Sm1111 grains. The Sn-presintered tapes showed significant enhanced field dependences of transport J{sub c} compared with Sn-added tapes. A highest transport critical current density (J{sub c}) of 3.45??10{sup 4}?A cm{sup ?2} at 4.2?K and self-field is achieved. Magneto-optical imaging further confirmed large and well-distributed global and intergranular J{sub c} in Sn-presintered Sm1111 tapes.

  13. ALTERNATING CURRENT LOSSES IN AG-SHEATHED BSCCO (2212 AND 2223) TAPES AND WIRES AND YBCO (123) COATED CONDUCTORS

    SciTech Connect (OSTI)

    Dr. John S. Hurley

    2000-01-01T23:59:59.000Z

    In this study, we focus on the examination of ac losses in conductors utilizing Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O [BSCCO (2223)] high TC superconductors (HTS). In addition, we seek to assist other facilities such as the University of Wisconsin-Madison Applied Superconductivity Center (UW-ASC), Brookhaven National Laboratory, and other DoE facilities investigating the use of HTS in electric power applications (e.g., generators, motors, and transformers). To accomplish this we will develop an ac losses capability at Clark Atlanta University to complement the established ac losses efforts at Brookhaven National Laboratory (BSCCO) on BSCCO/Ag and various material characterization efforts taking place at the UW-ASC. Our goal is through this effort to gain a greater understanding of the effects on ac losses due to parameters such as ac/dc current, J{sub c}, tape geometry, voltage tap placement, field orientation, material anisotropy, surface irregularities, percolations and filament coupling effects. As a result, we expect to better understand how to minimize ac losses in applications requiring real or practical conductors. HTS conductors based on BSCCO-2223 are now being routinely produced in industrial lengths of high quality. Vendors such as Southwire and ASC are producing multi-filamentary tapes in lengths of 6 km or more carrying critical current densities of up to 3 kA/cm**2 at 77 K. While this is approaching the level of performance where some large-scale applications are considered to be economically viable, a number of problems remain to be solved. The remaining issues include: rapid reduction in JC in magnetic fields; and power dissipation due to varying magnetic fields or currents (ac losses).

  14. Metallicity and Quasar Outflows

    E-Print Network [OSTI]

    Wang, Huiyuan; Yuan, Weimin; Wang, Tinggui

    2012-01-01T23:59:59.000Z

    Correlations are investigated of the outflow strength of quasars, as measured by the blueshift and asymmetry index (BAI) of the CIV line (Wang et al. 2011), with intensities and ratios of broad emission lines, based on composite quasar spectra built from the Sloan Digital Sky Survey. We find that most of the line ratios of other ions to CIV prominently increases with BAI. These behaviors can be well understood in the context of increasing metallicity with BAI. The strength of dominant coolant, CIV line, decreases and weak collisionally excited lines increase with gas metallicity as a result of the competition between different line coolants. Using SiIV+OIV]/CIV as an indicator of gas metallicity, we present, for the first time, a strong correlation between the metallicitiy and the outflow strength of quasars over a wide range of 1.7 to 6.9 times solar abundance. Our result implies that the metallicity plays an important role in the formation of quasar outflows, likely via affecting outflow acceleration. This ...

  15. Direct fabrication of nanopores in a metal foil using focused ion beam with in situ measurements of the penetrating ion beam current

    SciTech Connect (OSTI)

    Nagoshi, Kotaro; Honda, Junki; Sakaue, Hiroyuki; Takahagi, Takayuki; Suzuki, Hitoshi [Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan)

    2009-12-15T23:59:59.000Z

    A through hole with a diameter less than 100 nm was fabricated in an Ag foil using only a focused ion beam (FIB) system and in situ measurements of the penetrating ion beam. During the drilling of the foil by a FIB of Ga{sup +} ions, the transmitted part of the beam was measured with an electrode mounted on the back face of the foil. When the beam current penetrating through the nanopore reached a certain value, irradiation was stopped and the area of the created aperture was measured with a scanning electron microscope. The resulting area was correlated with the current of the penetrating ion beam. This suggests that we can fabricate a nanopore of the desired size by controlling the ion beam via penetrating ion beam measurements. The smallest aperture thus created was circular with diameter of 30 nm.

  16. Plasma nonuniformities induced by dissimilar electrode metals

    SciTech Connect (OSTI)

    Barnat, E.V.; Hebner, G.A. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1423 (United States)

    2005-07-01T23:59:59.000Z

    Nonuniformities in both sheath electric field and plasma excitation were observed around dissimilar metals placed on a rf electrode. Spatial maps of the rf sheath electric field obtained by laser-induced fluorescence-dip (LIF-dip) spectroscopy show that the sheath structure was a function of the electrode metal. In addition to the electric-field measurements, LIF, optical emission, and Langmuir probe measurements show nonuniform excitation around the dissimilar metals. The degree and spatial extent of the discharge nonuniformities were dependent on discharge conditions and the history of the metal surfaces.

  17. Method For Characterizing Residual Stress In Metals

    DOE Patents [OSTI]

    Jacobson, Loren A. (Santa Fe, NM); Michel, David J. (Alexandria, VA); Wyatt, Jeffrey R. (Burke, VA)

    2002-12-03T23:59:59.000Z

    A method is provided for measuring the residual stress in metals. The method includes the steps of drilling one or more holes in a metal workpiece to a preselected depth and mounting one or more acoustic sensors on the metal workpiece and connecting the sensors to an electronic detecting and recording device. A liquid metal capable of penetrating into the metal workpiece placed at the bottom of the hole or holes. A recording is made over a period of time (typically within about two hours) of the magnitude and number of noise events which occur as the liquid metal penetrates into the metal workpiece. The magnitude and number of noise events are then correlated to the internal stress in the region of the workpiece at the bottom of the hole.

  18. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25T23:59:59.000Z

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  19. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Phelps, Cindy (Moscow, ID)

    1997-01-01T23:59:59.000Z

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  20. Targeted Protein Degradation of Outer Membrane Decaheme Cytochrome MtrC Metal Reductase in Shewanella oneidensis MR-1 Measured Using Biarsenical Probe CrAsH-EDT2

    SciTech Connect (OSTI)

    Xiong, Yijia; Chen, Baowei; Shi, Liang; Fredrickson, Jim K.; Bigelow, Diana J.; Squier, Thomas C.

    2011-10-14T23:59:59.000Z

    Development of efficient microbial biofuel cells requires an ability to exploit interfacial electron transfer reactions to external electron acceptors, such as metal oxides; such reactions occur in the facultative anaerobic gram-negative bacterium Shewanella oneidensis MR-1 through the catalytic activity of the outer membrane decaheme c-type cytochrome MtrC. Central to the utility of this pathway to synthetic biology is an understanding of cellular mechanisms that maintain optimal MtrC function, cellular localization, and renewal by degradation and resynthesis. In order to monitor trafficking to the outer membrane, and the environmental sensitivity of MtrC, we have engineered a tetracysteine tag (i.e., CCPGCC) at its C-terminus that permits labeling by the cell impermeable biarsenical fluorophore, carboxy-FlAsH (CrAsH) of MtrC at the surface of living Shewanella oneidensis MR-1 cells. In comparison, the cell permeable reagent FlAsH permits labeling of the entire population of MtrC, including proteolytic fragments resulting from incorrect maturation. We demonstrate specific labeling by CrAsH of engineered MtrC which is dependent on the presence of a functional type-2 secretion system (T2S), as evidenced by T2S system gspD or gspG deletion mutants which are incapable of CrAsH labeling. Under these latter conditions, MtrC undergoes proteolytic degradation to form a large 35-38 kDa fragment; this degradation product is also resolved during normal turnover of the CrAsH-labeled MtrC protein. No MtrC protein is released into the medium during turnover, suggesting the presence of cellular turnover systems involving MtrC reuptake and degradation. The mature MtrC localized on the outer membrane is a long-lived protein, with a turnover rate of 0.043 hr-1 that is insensitive to O2 concentration. Maturation of MtrC is relatively inefficient, with substantial rates of turnover of the immature protein prior to export to the outer membrane (i.e., 0.028 hr-1) that are consistent with the inherent complexity associated with correct heme insertion and acylation of MtrC that occurs in the periplasm prior to its targeting to the outer membrane. These latter results suggest that MtrC protein trafficking to the outer membrane and its subsequent degradation are tightly regulated, which is consistent with cellular processing pathways that target MtrC to extracellular structures and their possible role in promoting electron transfer from Shewanella to extracellular acceptors.

  1. INEL metal recycle radioactive scrap metal survey report

    SciTech Connect (OSTI)

    Funk, D.M.

    1994-09-01T23:59:59.000Z

    DOE requested that inventory and characterization of radioactive scrap metal (RSM) be conducted across the DOE complex. Past studies have estimated the metal available from unsubstantiated sources. In meetings held in FY-1993, with seven DOE sites represented and several DOE-HQ personnel present, INEL personnel discovered that these numbers were not reliable and that large stockpiles did not exist. INEL proposed doing in-field measurements to ascertain the amount of RSM actually available. This information was necessary to determine the economic viability of recycling and to identify feed stock that could be used to produce containers for radioactive waste. This inventory measured the amount of RSM available at the selected DOE sites. Information gathered included radionuclide content and chemical form, general radiation field, alloy type, and mass of metal.

  2. "A High Speed Laser Profiling Device for Refractory Lininig Thickness Measurements In a Gasifier with Cross-Cut to the Metals, Forest Products, Chemical and Power Generation Industries"

    SciTech Connect (OSTI)

    Michel Bonin; Tom Harvill; Jared Hoog; Don Holve; Alan Alsing; Bob Clark; Steve Hrivnak

    2007-11-01T23:59:59.000Z

    Process Metrix began this project with the intent of modifying an existing ranging system and combining the same with a specially designed optical scanner to yield three dimensional range images that could be used to determine the refractory lining thickness in a gasifier. The goal was to make these measurements during short outages while the gasifier was at or near operating temperature. Our initial estimates of the photon counts needed for the modulation-based range finder were optimistic, and we were forced to undertake a redesign of the range finder portion of the project. This ultimately created significant and unanticipated time delays that were exacerbated when Acuity Technologies, the subcontractor responsible for delivering the redesigned range finder, failed to deliver electrical components capable of meeting the specific range error requirements needed for accurate lining thickness measurement. An extensive search for an alternate, off-the-shelf solution was unsuccessful, and Process Metrix was forced to undertake the electronics development internally without project funds. The positive outcome of this effort is a documented set of range finder electronics that have exceptional accuracy, simplicity, temperature stability and detection limit; in sum a package perfectly suited to the measurement requirements and within our control. It is unfortunate yet understandable, given the time delays involved in reaching this milestone, that the Department of Energy decided not to continue the project to completion. The integration of this electronics set into the optomechanical hardware also developed within the scope of the project remains as follow-on project that Process Metrix will finish within the calendar year 2008. Testing in the gasifier is, at this point, not certain pending the award of additional funding needed for field trials. Eastman, our industrial partner in this project, remains interested in evaluating a finished system, and working together we will attempt to secure funding from alternate sources that have been referenced by our contract monitor. It remains our hope and goal to follow this project through to completion, thereby achieving the objectives outlined at the start of our effort.

  3. Metal-phosphate binders

    DOE Patents [OSTI]

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12T23:59:59.000Z

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  4. Characteristic impedance and capacitance analysis of Blumlein type pulse forming line of accelerator based on tape helix

    SciTech Connect (OSTI)

    Zhang Yu; Liu Jinliang; Fan Xuliang; Zhang Hongbo; Wang Shiwen; Feng Jiahuai [College of Opto-electronic Science and Engineering, National University of Defense Technology, Changsha, 410073 (China)

    2011-10-15T23:59:59.000Z

    In this paper, the electromagnetic dispersion theory and the classic telegraph equations were combined to calculate the important parameters of the helical Blumlein pulse forming line (BPFL) of accelerator based on tape helix. In the work band of the BPFL at several hundred ns range, electromagnetic dispersion characteristics were almost determined by the zeroth harmonic. In order to testify the dispersion theory of BPFL in this paper, filling dielectrics, such as de-ionized water, transformer oil, and air were employed in the helical BPFL, respectively. Parameters such as capacitance, inductance, characteristic impedance, and pulse duration of the BPFL were calculated. Effects of dispersion on these parameters were analyzed. Circuit simulation and electromagnetic simulation were carried out to prove these parameters of BPFL filled with these three kinds of dielectrics, respectively. The accelerator system was set up, and experimental results also corresponded to the theoretical calculations. The average theoretical errors of impedances and pulse durations were 3.5% and 3.4%, respectively, which proved the electromagnetic dispersion analyses in this paper.

  5. Underground coal gasification data base. [Information on 14 US DOE sponsored tests; also available on computer tapes

    SciTech Connect (OSTI)

    Cena, R.J.; Thorsness, C.B.; Ott, L.L.

    1982-11-24T23:59:59.000Z

    The Lawrence Livermore National Laboratory has developed a data base containing results from fourteen DOE-sponsored underground coal gasification (UCG) field tests. These tests include three performed by LLNL near Gillette, Wyoming at the Hoe Creek site, eight performed by LETC at a site near Hanna, Wyoming, two by GULF near Rawlings, Wyoming, and one performed by METC near Princetown, West Virginia. All tests were done in flat lying coal seams except the Rawlings tests, which utilized a steeply dipping seam. The report presents process parameters and the results of material and energy balances for each test in a variety of forms. The raw process data used to construct the data base is first discussed along with material and energy balance conventions. Following this, each test is described with the process geometry and a brief operating chronology given. Differential and integral summary information in tabular and graphic form is provided for each test. Computer tapes of the entire data base may be requested from the authors through the Lawrence Livermore National Laboratory.

  6. Metal Hydrides - Science Needs

    Broader source: Energy.gov (indexed) [DOE]

    with traditions in metal hydride research Metal and Ceramic Sciences Condensed Matter Physics Materials Chemistry Chemical and Biological Sciences Located on campus of Tier...

  7. Composite metal-hydrogen electrodes for metal-hydrogen batteries. Final report, October 1, 1993--April 15, 1997

    SciTech Connect (OSTI)

    Ruckman, M.W.; Strongin, M.; Weismann, H. [and others

    1997-04-01T23:59:59.000Z

    The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped Nb films, these studies suggested that materials with metal-hydrogen ratios exceeding those of commercially available metal hydride materials and fast hydrogen charging and discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films and multilayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 {mu}m thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for modern electronic devices.

  8. Method of manufacturing metallic products such as sheet by cold working and flash anealing

    DOE Patents [OSTI]

    Hajaligol, Mohammad R. (Midlothian, VA); Sikka, Vinod K. (Oak Ridge, TN)

    2001-01-01T23:59:59.000Z

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  9. Method of manufacturing metallic products such as sheet by cold working and flash annealing

    DOE Patents [OSTI]

    Hajaligol, Mohammad R. (Midlothian, VA); Sikka, Vinod K. (Oak Ridge, TN)

    2000-01-01T23:59:59.000Z

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  10. On the role of pre-existing, unhealed cracks on the bending strain response of Ag-clad (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} tapes

    SciTech Connect (OSTI)

    Polak, M.; Parrell, J.A.; Polyanskii, A.A.; Pashitski, A.E.; Larbalestier, D.C. [Applied Superconductivity Center, University of Wisconsin, Madison, Wisconsin 53706 (United States)] [Applied Superconductivity Center, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    1997-02-01T23:59:59.000Z

    Studies of the transport critical current (I{sub c}), magnetization, magnetic flux penetration, and microstructure of pressed and rolled Ag-clad (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} tapes (2223) have been made as a function of bending strain. Pressed tapes exhibited markedly less degradation of I{sub c} from strain than did rolled tapes, while the magnetization of pressed tapes declined much more rapidly with bending strain than did either of the transport currents. Magneto-optical imaging of nonbent pressed samples revealed a network of flux-penetrated defect channels that were primarily oriented parallel to the tape axis. Bending such samples to a small strain increased the visibility of these defects, believed to be cracks. This network correlates well to the cracks produced in intermediate thermomechanical processing deformation steps. The greater sensitivity of the transport current of rolled samples to bending is further direct proof of the fact that the tape {open_quotes}remembers{close_quotes} the cracks induced in the core during intermediate deformation and that heat treatment after the deformation does not heal all damage. {copyright} {ital 1997 American Institute of Physics.}

  11. Heavy metal biosensor

    SciTech Connect (OSTI)

    Hillson, Nathan J; Shapiro, Lucille; Hu, Ping; Andersen, Gary L

    2014-04-15T23:59:59.000Z

    Compositions and methods are provided for detection of certain heavy metals using bacterial whole cell biosensors.

  12. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01T23:59:59.000Z

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  13. Mechanical property measurement by indentation techniques

    E-Print Network [OSTI]

    Janakiraman, Balasubramanian

    2006-04-12T23:59:59.000Z

    optic sensing technique is developed. An incident light beam from a semiconductor laser is coupled back into an optical fiber upon reflection from the metal surface. By measuring the diffused light power reflected from the metal surface, the diameter...

  14. Mechanical property measurement by indentation techniques

    E-Print Network [OSTI]

    Janakiraman, Balasubramanian

    2006-04-12T23:59:59.000Z

    optic sensing technique is developed. An incident light beam from a semiconductor laser is coupled back into an optical fiber upon reflection from the metal surface. By measuring the diffused light power reflected from the metal surface, the diameter...

  15. From Ions to Wires to the Grid: The Transformational Science of LANL Research in High-Tc Superconducting Tapes and Electric Power Applications

    SciTech Connect (OSTI)

    Ken Marken

    2009-05-20T23:59:59.000Z

    The Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) has been tasked to lead national efforts to modernize the electric grid, enhance security and reliability of the energy infrastructure, and facilitate recovery from disruptions to energy supplies. LANL has pioneered the development of coated conductors high-temperature superconducting (HTS) tapes which permit dramatically greater current densities than conventional copper cable, and enable new technologies to secure the national electric grid. Sustained world-class research from concept, demonstration, transfer, and ongoing industrial support has moved this idea from the laboratory to the commercial marketplace.

  16. From Ions to Wires to the Grid: The Transformational Science of LANL Research in High-Tc Superconducting Tapes and Electric Power Applications

    SciTech Connect (OSTI)

    Marken, Ken (Superconductivity Technology Center, Los Alamos) [Superconductivity Technology Center, Los Alamos

    2009-05-20T23:59:59.000Z

    The Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) has been tasked to lead national efforts to modernize the electric grid, enhance security and reliability of the energy infrastructure, and facilitate recovery from disruptions to energy supplies. LANL has pioneered the development of coated conductors - high-temperature superconducting (HTS) tapes - which permit dramatically greater current densities than conventional copper cable, and enable new technologies to secure the national electric grid. Sustained world-class research from concept, demonstration, transfer, and ongoing industrial support has moved this idea from the laboratory to the commercial marketplace.

  17. From Ions to Wires to the Grid: The Transformational Science of LANL Research in High-Tc Superconducting Tapes and Electric Power Applications

    ScienceCinema (OSTI)

    Ken Marken

    2010-01-08T23:59:59.000Z

    The Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) has been tasked to lead national efforts to modernize the electric grid, enhance security and reliability of the energy infrastructure, and facilitate recovery from disruptions to energy supplies. LANL has pioneered the development of coated conductors ? high-temperature superconducting (HTS) tapes ? which permit dramatically greater current densities than conventional copper cable, and enable new technologies to secure the national electric grid. Sustained world-class research from concept, demonstration, transfer, and ongoing industrial support has moved this idea from the laboratory to the commercial marketplace.

  18. HSI Tape Ordering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this into several smaller lists and running mulitple retrivals in parallel. The following command will give you four text files, each with 5000 lines and names like...

  19. HSI Tape Ordering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonic EngineHIV and evolution studiedHPSSHPSSTape

  20. Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal

    SciTech Connect (OSTI)

    Babu, N. Kishore [Singapore Institute of Manufacturing Technology; Cross, Carl E. [Los Alamos National Laboratory

    2012-06-28T23:59:59.000Z

    The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought base metal levels.

  1. Impact of GaN cap on charges in Al?O?/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations

    SciTech Connect (OSTI)

    ?apajna, M., E-mail: milan.tapajna@savba.sk; Jurkovi?, M.; Vlik, L.; Ha?k, .; Greguov, D.; Kuzmk, J. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dbravsk cesta 9, 841 04 Bratislava (Slovakia); Brunner, F.; Cho, E.-M. [Ferdinand-Braun-Institut, Leibniz Institut fr Hchstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Hashizume, T. [Research Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, 060-0814 Sapporo, Japan and JST-CREST, 102-0075 Tokyo (Japan)

    2014-09-14T23:59:59.000Z

    Oxide/semiconductor interface trap density (D{sub it}) and net charge of Al?O?/(GaN)/AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor (MOS-HEMT) structures with and without GaN cap were comparatively analyzed using comprehensive capacitance measurements and simulations. D{sub it} distribution was determined in full band gap of the barrier using combination of three complementary capacitance techniques. A remarkably higher D{sub it} (?58??10eV??cm?) was found at trap energies ranging from EC-0.5 to 1?eV for structure with GaN cap compared to that (D{sub it}???23??10eV??cm?) where the GaN cap was selectively etched away. D{sub it} distributions were then used for simulation of capacitance-voltage characteristics. A good agreement between experimental and simulated capacitance-voltage characteristics affected by interface traps suggests (i) that very high D{sub it} (>10eV??cm?) close to the barrier conduction band edge hampers accumulation of free electron in the barrier layer and (ii) the higher D{sub it} centered about EC-0.6?eV can solely account for the increased C-V hysteresis observed for MOS-HEMT structure with GaN cap. Analysis of the threshold voltage dependence on Al?O? thickness for both MOS-HEMT structures suggests that (i) positive charge, which compensates the surface polarization, is not necessarily formed during the growth of III-N heterostructure, and (ii) its density is similar to the total surface polarization charge of the GaN/AlGaN barrier, rather than surface polarization of the top GaN layer only. Some constraints for the positive surface compensating charge are discussed.

  2. Metal phthalocyanine catalysts

    DOE Patents [OSTI]

    Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

    1994-01-01T23:59:59.000Z

    As a new composition of matter, alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  3. Liquid Metal Transformers

    E-Print Network [OSTI]

    Sheng, Lei; Liu, Jing

    2014-01-01T23:59:59.000Z

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clar...

  4. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, Paul O. (Golden, CO); Kennedy, Cheryl E. (Lafayette, CO); Jorgensen, Gary J. (Pine, CO); Shinton, Yvonne D. (Northglenn, CO); Goggin, Rita M. (Englewood, CO)

    1994-01-01T23:59:59.000Z

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  5. PHYTOEXTRACTION OF HEAVY METALS

    E-Print Network [OSTI]

    Blouin-Demers, Gabriel

    Plants Chelating agents Pb hyperaccumulation Effects of pH on metal extraction Disposal options contaminants from soils Contaminants must be in harvestable portions of the plant (Wongkongkatep et al. 2003) Chelating Agents: desorb heavy metals from soil matrix and form water-soluble metal complexes (Shen et al

  6. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01T23:59:59.000Z

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  7. New experiments elucidating the current limiting mechanisms of Ag-sheathed (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} tapes.

    SciTech Connect (OSTI)

    Anderson, J.W.; Babcock, S.E.; Cai, X.Y.; Dorris, S.E.; Feldmann, M.; Jiang, J.; Larbalestier, D.C.; Li, Q.; Parrell, J.A.; Parrella, R.; Polak, M.; Polyanskii, A.; Riley, G.N. Jr.; Rupich, M.; Wu, Y.

    1999-01-15T23:59:59.000Z

    Multiple current limiting mechanisms exist from the nanometer to millimeter scale in Ag-sheathed (Bi,Pb)-2223 tapes. Recent studies of the zero-field critical current density (J{sub c} (0T, 77K)), the irreversibility field (H*) and the crack microstructure elucidate these properties. We show that H*(77K) can vary significantly over the range {approximately}120-260 mT, independently of J{sub c} (0T, 77K). Cracks, actual or incipient, exist on the sub to several hundred micron scale. Surface magneto optical imaging of whole tapes, correlated to subsequent ultrasonic fracture analysis of. the bare 2223 filaments extracted by dissolving away the Ag shows that even composites having J{sub c} (0T, 77K) values of 60 kA/cm{sup 2} exhibit strong signs of unhealed rolling damage. These combined studies show that today's very best 2223 tapes are still far from full optimization.

  8. Probes for investigating the effect of magnetic field, field orientation, temperature and strain on the critical current density of anisotropic high-temperature superconducting tapes in a split-pair 15 T horizontal magnet

    SciTech Connect (OSTI)

    Sunwong, P.; Higgins, J. S.; Hampshire, D. P. [Superconductivity Group, Centre for Materials Physics, Department of Physics, University of Durham, Durham DH1 3LE (United Kingdom)

    2014-06-15T23:59:59.000Z

    We present the designs of probes for making critical current density (J{sub c}) measurements on anisotropic high-temperature superconducting tapes as a function of field, field orientation, temperature and strain in our 40 mm bore, split-pair 15 T horizontal magnet. Emphasis is placed on the design of three components: the vapour-cooled current leads, the variable temperature enclosure, and the springboard-shaped bending beam sample holder. The vapour-cooled brass critical-current leads used superconducting tapes and in operation ran hot with a duty cycle (D) of ?0.2. This work provides formulae for optimising cryogenic consumption and calculating cryogenic boil-off, associated with current leads used to make J{sub c} measurements, made by uniformly ramping the current up to a maximum current (I{sub max}) and then reducing the current very quickly to zero. They include consideration of the effects of duty cycle, static helium boil-off from the magnet and Dewar (b{sup ?}), and the maximum safe temperature for the critical-current leads (T{sub max}). Our optimized critical-current leads have a boil-off that is about 30% less than leads optimized for magnet operation at the same maximum current. Numerical calculations show that the optimum cross-sectional area (A) for each current lead can be parameterized by LI{sub max}/A=[1.46D{sup ?0.18}L{sup 0.4}(T{sub max}?300){sup 0.25D{sup ?{sup 0{sup .{sup 0{sup 9}}}}}}+750(b{sup ?}/I{sub max})D{sup 10{sup ?{sup 3I{sub m}{sub a}{sub x}?2.87b{sup ?}}}}] 10{sup 6}A m{sup ?1} where L is the current lead's length and the current lead is operated in liquid helium. An optimum A of 132 mm{sup 2} is obtained when I{sub max} = 1000 A, T{sub max} = 400 K, D = 0.2, b{sup ?} = 0.3 l?h{sup ?1} and L = 1.0 m. The optimized helium consumption was found to be 0.7 l?h{sup ?1}. When the static boil-off is small, optimized leads have a boil-off that can be roughly parameterized by: b/I{sub max?} ? (1.35 10{sup ?3})D{sup 0.41} l?h{sup ?1}?A{sup ?1}. A split-current-lead design is employed to minimize the rotation of the probes during the high current measurements in our high-field horizontal magnet. The variable-temperature system is based on the use of an inverted insulating cup that operates above 4.2 K in liquid helium and above 77.4 K in liquid nitrogen, with a stability of 80 mK to 150 mK. Uniaxial strains of ?1.4% to 1.0% can be applied to the sample, with a total uncertainty of better than 0.02%, using a modified bending beam apparatus which includes a copper beryllium springboard-shaped sample holder.

  9. Liquid Metal Transformers

    E-Print Network [OSTI]

    Lei Sheng; Jie Zhang; Jing Liu

    2014-01-30T23:59:59.000Z

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clarified. Such events are hard to achieve otherwise on rigid metal or conventional liquid spheres. This finding has both fundamental and practical significances which suggest a generalized way of making smart soft machine, collecting discrete metal fluids, as well as flexibly manipulating liquid metal objects including accompanying devices.

  10. Extraction process for removing metallic impurities from alkalide metals

    DOE Patents [OSTI]

    Royer, Lamar T. (Knoxville, TN)

    1988-01-01T23:59:59.000Z

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  11. Ketone-like derivatization reactions of metal carbonyls. Attempts to measure the equilibrium constant for ketalization of a carbonyl ligand in (Re(CO)/sub 6/)/sup +/ by ethylene glycol

    SciTech Connect (OSTI)

    Andrews, M.A.; Myles, W.L.

    1988-03-23T23:59:59.000Z

    In order to determine whether the inability to ketalize simple metal carbonyls such as W(CO)/sub 6/ and Fe(CO)/sub 5/ with alcohols under typical neutral or acidic conditions was a kinetic or thermodynamic problem, the reaction was approached from the reverse direction. Cationic complexes such as (Re(CO)/sub 6/)/sup +/ for which the forward and reverse kinetics were expected to be more favorable were also studied. It is concluded from the slow kinetics and unfavorable equilibrium constant observed here for ketalization of a metal carbonyl that it will be difficult to achieve practical carbon monoxide activation by this type of reaction. 17 refs.

  12. Metal atomization spray nozzle

    DOE Patents [OSTI]

    Huxford, T.J.

    1993-11-16T23:59:59.000Z

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  13. Fabrication and Performance of Ni-YSZ Anode Supported Cell for Coal Derived Syngas Application by Tape Casting and Spin Coating

    SciTech Connect (OSTI)

    Gong, Mingyang (West Virginia U., Morgantown WV); Jiang, Yinglu (West Virginia U., Morgantown WV); Johnson, C.D.; Xingbo, Liu (West Virginia U., Morgantown WV)

    2007-10-01T23:59:59.000Z

    Ni-YSZ anode supported cell has been developed for direct utilization of coal derived syngas as fuel in the temperature range of 700-850 C. The porous Ni-YSZ anode substrate was prepared based on processes of slip casting and lamination of anode tape. Then thin-film YSZ electrolyte was deposited on pre-sintered anode substrate via a colloidal spin coating technique and an optimized final sintering route. Dense and crackfree YSZ electrolyte was successfully obtained after sintering at 1440C for 4hrs. Processing factors like pre-sintering of anode, solvent, coating cycles and sintering route on the final properties of YSZ film was studied. A power density of 0.62W/cm2 has been achieved for the anode supported cell tested in 97%H2/3%H2O at 800C. EIS test results indicated the cell performance was essentially influenced by interfacial resistance and charge transfer process.

  14. Heavy Metal Humor: Reconsidering Carnival in Heavy Metal Culture

    E-Print Network [OSTI]

    Powell, Gary Botts

    2013-06-05T23:59:59.000Z

    This thesis considers Bakhtin?s carnivalesque theory by analyzing comedic rhetoric performed by two comedic metal bands. Through the theories of Johan Huizinga and Mikhail Bakhtin, Chapter I: I Play Metal argues that heavy metal culture is a modern...

  15. Transition Metal Dopants Essential for Producing Ferromagnetism...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Dopants Essential for Producing Ferromagnetism in Metal Oxide Nanoparticles. Transition Metal Dopants Essential for Producing Ferromagnetism in Metal Oxide Nanoparticles....

  16. Metal roofing Shingle roofing

    E-Print Network [OSTI]

    Hutcheon, James M.

    Metal roofing panel Shingle roofing Water & ice barrier Thermal Barrier Plywood Student: Arpit between the roof and the attic. Apply modifications to traditional roofing assembly and roofing roof with only a water barrier between the plywood and the roofing panels. Metal roofing panel Shingle

  17. Porous metallic bodies

    DOE Patents [OSTI]

    Landingham, R.L.

    1984-03-13T23:59:59.000Z

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides a

  18. Production of magnesium metal

    DOE Patents [OSTI]

    Blencoe, James G. (Harriman, TN) [Harriman, TN; Anovitz, Lawrence M. (Knoxville, TN) [Knoxville, TN; Palmer, Donald A. (Oliver Springs, TN) [Oliver Springs, TN; Beard, James S. (Martinsville, VA) [Martinsville, VA

    2010-02-23T23:59:59.000Z

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  19. Hysteresis losses in BSCCO(2223)/Ag multifilamentary tapes D. Zola *, M. Polichetti, C. Senatore, T. Di Matteo, S. Pace

    E-Print Network [OSTI]

    Di Matteo, Tiziana

    2223-01-01T23:59:59.000Z

    to the induced currents in the normal matrix which usually embedded the superconducting wires or stripes measurements performed on HTS samples, the value of M depends on the ramp rate of He and therefore on first

  20. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOE Patents [OSTI]

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03T23:59:59.000Z

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  1. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14T23:59:59.000Z

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  2. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, N.N.; Watkin, J.G.

    1992-03-24T23:59:59.000Z

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  3. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, Nancy N. (Los Alamos, NM); Watkin, John G. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  4. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  5. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  6. Transition Metal Switchable Mirror

    SciTech Connect (OSTI)

    None

    2009-01-01T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  7. Transition Metal Switchable Mirror

    SciTech Connect (OSTI)

    2009-08-21T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  8. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  9. Muon spin depolarization in nonmagnetic metals doped with paramagnetic impurities

    SciTech Connect (OSTI)

    Heffner, R.H.

    1980-01-01T23:59:59.000Z

    The diffusion of muons and their magnetic interactions are treated by describing the physics to be learned from experiments which measure muon depolarization in metallic hosts doped with dilute concentrations of magnetic impurities. (GHT)

  10. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOE Patents [OSTI]

    Coops, Melvin S. (Livermore, CA)

    1992-01-01T23:59:59.000Z

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  11. Divalent metal nanoparticles

    E-Print Network [OSTI]

    DeVries, Gretchen Anne

    2008-01-01T23:59:59.000Z

    Metal nanoparticles hold promise for many scientific and technological applications, such as chemical and biological sensors, vehicles for drug delivery, and subdiffraction limit waveguides. To fabricate such devices, a ...

  12. Production of magnesium metal

    DOE Patents [OSTI]

    Blencoe, James G. (Harriman, TN); Anovitz, Lawrence M. (Knoxville, TN); Palmer, Donald A. (Oliver Springs, TN); Beard, James S. (Martinsville, VA)

    2012-04-10T23:59:59.000Z

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

  13. Functionalized Silicone Nanospheres: Synthesis, Transition Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functionalized Silicone Nanospheres: Synthesis, Transition Metal Immobilization, and Catalytic Applications. Functionalized Silicone Nanospheres: Synthesis, Transition Metal...

  14. Molten metal reactors

    DOE Patents [OSTI]

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

    2013-11-05T23:59:59.000Z

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  15. TRACE METAL CONTENT OF COAL AND ASH AS DETERMINED USING SCANNINGELECTRON MICROSCOPYWITE

    E-Print Network [OSTI]

    Laughlin, Robert B.

    TRACE METAL CONTENT OF COAL AND ASH AS DETERMINED USING SCANNINGELECTRON MICROSCOPYWITE WAVELENGTH Grand Forks, ND 58202-9018 Keywords: scanning electron microscopy, trace metals, coal analysis ABSTRACT Scanningelectron microscopy with wavelength-dispersive spectrometry has been used to measure trace metals in coal

  16. Method of ultrasonic measurement of texture

    DOE Patents [OSTI]

    Thompson, R.B.; Smith, J.F.; Lee, S.S.; Taejon Ch'ungmam; Yan Li.

    1993-10-12T23:59:59.000Z

    A method for measuring texture of metal plates or sheets using non-destructive ultrasonic investigation includes measuring the velocity of ultrasonic energy waves in lower order plate modes in one or more directions, and measuring phase velocity dispersion of higher order modes of the plate or sheet if needed. Texture or preferred grain orientation can be derived from these measurements with improves reliability and accuracy. The method can be utilized in production on moving metal plate or sheet. 9 figures.

  17. Measurement-Measurement-

    E-Print Network [OSTI]

    Jeong, Jaehoon "Paul"

    Internet Measurement- System A Measurement- System B Control System GPS Satellite GPS Satellite GPS Receiver GPS Receiver 2) measurement 3) data1) command Methodology for One-way IP Performance Measurement This paper proposes a methodology for measurement of one-way IP performance metrics such as one-way delay

  18. Method of measuring a liquid pool volume

    DOE Patents [OSTI]

    Garcia, G.V.; Carlson, N.M.; Donaldson, A.D.

    1991-03-19T23:59:59.000Z

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools is disclosed, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figures.

  19. Method for forming metal contacts

    DOE Patents [OSTI]

    Reddington, Erik; Sutter, Thomas C; Bu, Lujia; Cannon, Alexandra; Habas, Susan E; Curtis, Calvin J; Miedaner, Alexander; Ginley, David S; Van Hest, Marinus Franciscus Antonius Maria

    2013-09-17T23:59:59.000Z

    Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.

  20. High-Temperature Zirconia Oxygen Sensor with Sealed Metal/Metal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference...

  1. The effect of stabilizer on the trapped field of stacks of superconducting tape magnetized by a pulsed field

    E-Print Network [OSTI]

    Page, A. G.; Patel, A.; Baskys, A.; Hopkins, S. C.; Kalitka, V.; Molodyk, A.; Glowacki, B. A.

    2015-01-01T23:59:59.000Z

    were measured 30 s after a pulse to allow time for the most rapid flux creep, which occurs before 30 s. The IMRA pulse sequence was applied at 4 different temperatures starting with 77.4 K as detailed in Table 1. After magnetization at each... at the lowest temperature stages. For more details on this see the MPSC method of pulse magnetization (Multi-Pulse with Stepwise Cooling) [11]. For any new sample it is impossible to know the optimum IMRA sequence to apply at each temperature before testing...

  2. Identifying Nuclear Material via Prompt Photo-Neutron Multiplicity Measurements Paul A. Hausladen, John T. Mihalczo

    E-Print Network [OSTI]

    Pennycook, Steve

    measurements of prompt neutron emissions were performed, both for depleted uranium (DU) metal and Pb enriched uranium. #385 #12;

  3. Method of depositing an electrically conductive oxide film on a textured metallic substrate and articles formed therefrom

    DOE Patents [OSTI]

    Christen, David K. (Oak Ridge, TN); He, Qing (Bloomington, MN)

    2003-04-29T23:59:59.000Z

    The present invention provides a biaxially textured laminate article having a polycrystalline biaxially textured metallic substrate with an electrically conductive oxide layer epitaxially deposited thereon and methods for producing same. In one embodiment a biaxially texture Ni substrate has a layer of LaNiO.sub.3 deposited thereon. An initial layer of electrically conductive oxide buffer is epitaxially deposited using a sputtering technique using a sputtering gas which is an inert or forming gas. A subsequent layer of an electrically conductive oxide layer is then epitaxially deposited onto the initial layer using a sputtering gas comprising oxygen. The present invention will enable the formation of biaxially textured devices which include HTS wires and interconnects, large area or long length ferromagnetic and/or ferroelectric memory devices, large area or long length, flexible light emitting semiconductors, ferroelectric tapes, and electrodes.

  4. Method of depositing an electrically conductive oxide film on a textured metallic substrate and articles formed therefrom

    DOE Patents [OSTI]

    Christen, David K. (Oak Ridge, TN); He, Qing (Bloomington, MN)

    2001-01-01T23:59:59.000Z

    The present invention provides a biaxially textured laminate article having a polycrystalline biaxially textured metallic substrate with an electrically conductive oxide layer epitaxially deposited thereon and methods for producing same. In one embodiment a biaxially texture Ni substrate has a layer of LaNiO.sub.3 deposited thereon. An initial layer of electrically conductive oxide buffer is epitaxially deposited using a sputtering technique using a sputtering gas which is an inert or forming gas. A subsequent layer of an electrically conductive oxide layer is then epitaxially deposited onto the initial layer using a sputtering gas comprising oxygen. The present invention will enable the formation of biaxially textured devices which include HTS wires and interconnects, large area or long length ferromagnetic and/or ferroelectric memory devices, large area or long length, flexible light emitting semiconductors, ferroelectric tapes, and electrodes.

  5. Nitrided Metallic Bipolar Plates

    SciTech Connect (OSTI)

    Brady, Michael P [ORNL; Tortorelli, Peter F [ORNL; Pihl, Josh A [ORNL; Toops, Todd J [ORNL; More, Karren Leslie [ORNL; Meyer III, Harry M [ORNL; Vitek, John Michael [ORNL; Wang, Heli [National Renewable Energy Laboratory (NREL); Turner, John [National Renewable Energy Laboratory (NREL); Wilson, Mahlon [Los Alamos National Laboratory (LANL); Garzon, Fernando [Los Alamos National Laboratory (LANL); Rockward, Tommy [Los Alamos National Laboratory (LANL); Connors, Dan [GenCell Corp; Rakowski, Jim [Allegheny Ludlum; Gervasio, Don [Arizona State University

    2008-01-01T23:59:59.000Z

    The objectives are: (1) Develop and optimize stainless steel alloys amenable to formation of a protective Cr-nitride surface by gas nitridation, at a sufficiently low cost to meet DOE targets and with sufficient ductility to permit manufacture by stamping. (2) Demonstrate capability of nitridation to yield high-quality stainless steel bipolar plates from thin stamped alloy foils (no significant stamped foil warping or embrittlement). (3) Demonstrate single-cell fuel cell performance of stamped and nitrided alloy foils equivalent to that of machined graphite plates of the same flow-field design ({approx}750-1,000 h, cyclic conditions, to include quantification of metal ion contamination of the membrane electrode assembly [MEA] and contact resistance increase attributable to the bipolar plates). (4) Demonstrate potential for adoption in automotive fuel cell stacks. Thin stamped metallic bipolar plates offer the potential for (1) significantly lower cost than currently-used machined graphite bipolar plates, (2) reduced weight/volume, and (3) better performance and amenability to high volume manufacture than developmental polymer/carbon fiber and graphite composite bipolar plates. However, most metals exhibit inadequate corrosion resistance in proton exchange membrane fuel cell (PEMFC) environments. This behavior leads to high electrical resistance due to the formation of surface oxides and/or contamination of the MEA by metallic ions, both of which can significantly degrade fuel cell performance. Metal nitrides offer electrical conductivities up to an order of magnitude greater than that of graphite and are highly corrosion resistant. Unfortunately, most conventional coating methods (for metal nitrides) are too expensive for PEMFC stack commercialization or tend to leave pinhole defects, which result in accelerated local corrosion and unacceptable performance.

  6. Metallic coating of microspheres

    SciTech Connect (OSTI)

    Meyer, S.F.

    1980-08-15T23:59:59.000Z

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates.

  7. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, Haskell (Los Alamos, NM)

    1986-01-01T23:59:59.000Z

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  8. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, H.

    1983-07-26T23:59:59.000Z

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  9. Metal alloy identifier

    DOE Patents [OSTI]

    Riley, William D. (Avondale, MD); Brown, Jr., Robert D. (Avondale, MD)

    1987-01-01T23:59:59.000Z

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  10. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliancesTrending: Metal Oxo Bonds Print Metal

  11. Measurements on Subscale Y-Ba-Cu-O Racetrack Coils at 77 K and Self-Field

    SciTech Connect (OSTI)

    Wang, X.; Caspi, S.; Cheng, D. W.; Dietderich, D. R.; Felice, H.; Ferracin, P.; Godeke, A.; Joseph, J. M.; Lizarazo, J.; Prestemon, S. O.; Sabbi, G.

    2009-10-19T23:59:59.000Z

    YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) tapes carry significant amount of current at fields beyond the limit of Nb-based conductors. This makes the YBCO tapes a possible conductor candidate for insert magnets to increase the bore field of Nb{sub 3}Sn high-field dipoles. As an initial step of the YBCO insert technology development, two subscale racetrack coils were wound using Kapton-insulated commercial YBCO tapes. Both coils had two layers; one had 3 turns in each layer and the other 10 turns. The coils were supported by G10 side rails and waxed strips and not impregnated. The critical current of the coils was measured at 77 K and self-field. A 2D model considering the magnetic-field dependence of the critical current was used to estimate the expected critical current. The measured results show that both coils reached 80%-95% of the expected values, indicating the feasibility of the design concept and fabrication process.

  12. Wick for metal vapor laser

    DOE Patents [OSTI]

    Duncan, David B. (Livermore, CA)

    1992-01-01T23:59:59.000Z

    An improved wick for a metal vapor laser is made of a refractory metal cylinder, preferably molybdenum or tungsten for a copper laser, which provides the wicking surface. Alternately, the inside surface of the ceramic laser tube can be metalized to form the wicking surface. Capillary action is enhanced by using wire screen, porous foam metal, or grooved surfaces. Graphite or carbon, in the form of chunks, strips, fibers or particles, is placed on the inside surface of the wick to reduce water, reduce metal oxides and form metal carbides.

  13. Lithium Metal Anodes for Rechargeable Batteries. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

  14. Measure Your Sew - How: Sewing Tools.

    E-Print Network [OSTI]

    Saunders, Becky

    1979-01-01T23:59:59.000Z

    in this series . ? Extension clothing specialist. The Texas A&M University System. Measuring Measuring tools are important in fitting to obtain a symmetrical appearance. Most measuring tools available today are marked in inches and yards as well... most straight, flat areas. Wood may warp or chip; if used, however, it should have a metal edge for accuracy. Sewing Gauge. Sewing gauges are usually metal or plastic in 6-inch (15 cm) lengths and have a moveable slide for marking certain lengths...

  15. Attenuation of external Bremsstrahlung in metallic absorbers

    SciTech Connect (OSTI)

    Dhaliwal, A.S.; Powar, M.S.; Singh, M. (Punjabi Univ., Physics Dept., Patiala 147002 (IN))

    1990-12-01T23:59:59.000Z

    In this paper attenuation of bremsstrahlung from {sup 147}Pm and {sup 170}Tm beta emitters has been studied in aluminum, copper, tin, and lead metallic absorbers. Bremsstrahlung spectra and mass attenuation coefficients for monoenergetic gamma rays are used to calculate theoretical attenuation curves. Magnetic deflection and beta stopping techniques are used to measure the integral bremsstrahlung intensities above 30 keV in different target thicknesses. Comparison of measured and calculated attenuation curves shows a good agreement for various absorbers, thus providing a test of this technique, which may be useful in understanding bremsstrahlung intensity buildup and in the design of optimum shielding for bremsstrahlung sources. It is found that the absorption of bremsstrahlung in metallic absorbers does not obey an exponential law and that absorbers act as energy filters.

  16. Ductile transplutonium metal alloys

    DOE Patents [OSTI]

    Conner, W.V.

    1981-10-09T23:59:59.000Z

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  17. Method of producing adherent metal oxide coatings on metallic surfaces

    DOE Patents [OSTI]

    Lane, Michael H. (Clifton Park, NY); Varrin, Jr., Robert D. (McLean, VA)

    2001-01-01T23:59:59.000Z

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  18. Calixarene supported transition metal clusters

    E-Print Network [OSTI]

    Taylor, Stephanie Merac

    2013-06-29T23:59:59.000Z

    This thesis describes a series of calix[n]arene polynuclear transition metal and lanthanide complexes. Calix[4]arenes possess lower-rim polyphenolic pockets that are ideal for the complexation of various transition metal ...

  19. Electroless metal plating of plastics

    DOE Patents [OSTI]

    Krause, Lawrence J. (Chicago, IL)

    1984-01-01T23:59:59.000Z

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  20. Electroless metal plating of plastics

    DOE Patents [OSTI]

    Krause, L.J.

    1982-09-20T23:59:59.000Z

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  1. Electroless metal plating of plastics

    DOE Patents [OSTI]

    Krause, Lawrence J. (Chicago, IL)

    1986-01-01T23:59:59.000Z

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  2. Upgrading platform using alkali metals

    DOE Patents [OSTI]

    Gordon, John Howard

    2014-09-09T23:59:59.000Z

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  3. Methods of recovering alkali metals

    DOE Patents [OSTI]

    Krumhansl, James L; Rigali, Mark J

    2014-03-04T23:59:59.000Z

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  4. Integrated decontamination process for metals

    DOE Patents [OSTI]

    Snyder, Thomas S. (Oakmont, PA); Whitlow, Graham A. (Murrysville, PA)

    1991-01-01T23:59:59.000Z

    An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.

  5. Second-harmonic generation in transition-metal-organic compounds

    SciTech Connect (OSTI)

    Frazier, C.C.; Harvey, M.A.; Cockerham, M.P.; Hand, H.M.; Chauchard, E.A.; Lee, C.H.

    1986-10-23T23:59:59.000Z

    The second-harmonic generation efficiencies of over 60 transition-metal-organic compounds in powder form were measured, using 1.06 ..mu..m light from a Nd:YAG laser. Most of the studied compounds were either group VI metal carbonyl arene, pyridyl, or chiral phosphine complexes. Four the complexes doubled the laser fundamental as well as or better than ammonium dihydrogen phosphate (ADP). The study shows that the same molecular features (e.g., conjugation and low-lying spectroscopic charge transfer) that contribute to second-order optical nonlinearity in organic compounds also enhance second-order effects in transition-metal-organic compounds.

  6. Nuclear orientation studies of rare-earth metals

    SciTech Connect (OSTI)

    Krane, K.S.; Morgan, G.L.; Moses, J.D.

    1980-01-01T23:59:59.000Z

    The angular distributions of gamma rays from /sup 166m/Ho and /sup 160/Tb aligned at low temperatures in, respectively, Ho metal and Tb metal have been measured. Large hyperfine splittings, expected for the rare earths, have been deduced from the temperature dependence of the gamma-ray anisotropies. Both samples show a macroscopic magnetic anisotropy that is not consistent with an interpretation in terms of a randomly oriented polycrystalline structure.

  7. Method for controlling gas metal arc welding

    DOE Patents [OSTI]

    Smartt, Herschel B. (Idaho Falls, ID); Einerson, Carolyn J. (Idaho Falls, ID); Watkins, Arthur D. (Idaho Falls, ID)

    1989-01-01T23:59:59.000Z

    The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections.

  8. Method for controlling gas metal arc welding

    DOE Patents [OSTI]

    Smartt, H.B.; Einerson, C.J.; Watkins, A.D.

    1987-08-10T23:59:59.000Z

    The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections. 3 figs., 1 tab.

  9. Automated Immobilized Metal Affinity Chromatography System for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Immobilized Metal Affinity Chromatography System for Enrichment of Escherichia coli Phosphoproteome. Automated Immobilized Metal Affinity Chromatography System for Enrichment of...

  10. Spray casting of metallic preforms

    DOE Patents [OSTI]

    Flinn, John E. (Idaho Falls, ID); Burch, Joseph V. (Shelley, ID); Sears, James W. (Niskayuna, NY)

    2000-01-01T23:59:59.000Z

    A metal alloy is melted in a crucible and ejected from the bottom of the crucible as a descending stream of molten metal. The descending stream is impacted with a plurality of primary inert gas jets surrounding the molten metal stream to produce a plume of atomized molten metal droplets. An inert gas is blown onto a lower portion of the plume with a plurality of auxiliary inert gas jets to deflect the plume into a more restricted pattern of high droplet density, thereby substantially eliminating unwanted overspray and resulting wasted material. The plume is projected onto a moving substrate to form a monolithic metallic product having generally parallel sides.

  11. Functional Metal Phosphonates

    E-Print Network [OSTI]

    Perry, Houston Phillipp

    2012-02-14T23:59:59.000Z

    ......................................................... 39 12 Zr6 prepared at 205 ?C with HF as a solubilizing agent ................................ 43 13 Layered structure of Zn(O3PC6H4CN)(H2O) and Mn(O3PC6H4CN)(H2O) viewed along the c-axis. The coordinating water molecules are between... acid groups form hydrogen-bonded pairs in in Zn(O3PC6H4CO2H)(H2O) and Mn(O3PC6H4CO2H)(H2O). ..................... 55 15 Inorganic layered structure common to divalent metal phosphonates. Octahedral metal ions are coordinated by five phosphonate...

  12. FLUIDIC: Metal Air Recharged

    ScienceCinema (OSTI)

    Friesen, Cody

    2014-04-02T23:59:59.000Z

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  13. FLUIDIC: Metal Air Recharged

    SciTech Connect (OSTI)

    Friesen, Cody

    2014-03-07T23:59:59.000Z

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  14. Metal enrichment processes

    E-Print Network [OSTI]

    S. Schindler; A. Diaferio

    2008-01-07T23:59:59.000Z

    There are many processes that can transport gas from the galaxies to their environment and enrich the environment in this way with metals. These metal enrichment processes have a large influence on the evolution of both the galaxies and their environment. Various processes can contribute to the gas transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy interactions and others. We review their observational evidence, corresponding simulations, their efficiencies, and their time scales as far as they are known to date. It seems that all processes can contribute to the enrichment. There is not a single process that always dominates the enrichment, because the efficiencies of the processes vary strongly with galaxy and environmental properties.

  15. Corrosion protective coating for metallic materials

    DOE Patents [OSTI]

    Buchheit, Rudolph G. (Albuquerque, NM); Martinez, Michael A. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds.

  16. Corrosion protective coating for metallic materials

    DOE Patents [OSTI]

    Buchheit, R.G.; Martinez, M.A.

    1998-05-26T23:59:59.000Z

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

  17. Hydrothermal alkali metal recovery process

    DOE Patents [OSTI]

    Wolfs, Denise Y. (Houston, TX); Clavenna, Le Roy R. (Baytown, TX); Eakman, James M. (Houston, TX); Kalina, Theodore (Morris Plains, NJ)

    1980-01-01T23:59:59.000Z

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  18. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect (OSTI)

    Dr. Ramana Reddy

    2012-04-12T23:59:59.000Z

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode. Successful extraction of metal from metal oxide dissolved in Urea/ChCl (2:1) was accomplished. The current efficiencies were relatively high in both the metal deposition processes with current efficiency greater than 86% for lead and 95% for zinc. This technology will advance the metal oxide reduction process by increasing the process efficiency and also eliminate the production of CO2 which makes this an environmentally benign technology for metal extraction.

  19. Highly reproducible and reliable metal/graphene contact by ultraviolet-ozone treatment

    SciTech Connect (OSTI)

    Li, Wei [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Hacker, Christina A.; Cheng, Guangjun; Hight Walker, A. R.; Richter, Curt A.; Gundlach, David J., E-mail: david.gundlach@nist.gov, E-mail: liangxl@pku.edu.cn [Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Liang, Yiran; Tian, Boyuan; Liang, Xuelei, E-mail: david.gundlach@nist.gov, E-mail: liangxl@pku.edu.cn; Peng, Lianmao [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China)

    2014-03-21T23:59:59.000Z

    Resist residue from the device fabrication process is a significant source of contamination at the metal/graphene contact interface. Ultraviolet Ozone (UVO) treatment is proven here, by X-ray photoelectron spectroscopy and Raman measurement, to be an effective way of cleaning the metal/graphene interface. Electrical measurements of devices that were fabricated by using UVO treatment of the metal/graphene contact region show that stable and reproducible low resistance metal/graphene contacts are obtained and the electrical properties of the graphene channel remain unaffected.

  20. Pulsed DD Neutron Generator Measurements for HEU Oxide Fuel Pins Using Liquid Scintillators with Pulse Shape Discrimination

    E-Print Network [OSTI]

    Pennycook, Steve

    measurements have been performed on high-enriched uranium (HEU) oxide fuel pins and depleted uranium metal

  1. UPTAKE OF RADIONUCLIDE METALS BY SPME FIBERS

    SciTech Connect (OSTI)

    Duff, M; S Crump, S; Robert02 Ray, R; Keisha Martin, K; Donna Beals, D

    2006-08-28T23:59:59.000Z

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) and fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of HE and FD residue involves using solid phase microextraction or SPME fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research was to examine the affinity of dissolved radionuclide ({sup 239/240}Pu, {sup 238}U, {sup 237}Np, {sup 85}Sr, {sup 133}Ba, {sup 137}Cs, {sup 60}Co and {sup 226}Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE and FD residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE and FD residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection.

  2. Tape Mounts Last 30 Days

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails TakingRTape Mounts Last 30

  3. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z Site Map OrganizationFAQTrending: Metal Oxo

  4. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z Site Map OrganizationFAQTrending: Metal

  5. METALS DESIGN HANDBOOK DISCLAIMER

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamics in807 DE899 06 Revision 0 METALS

  6. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliancesTrending: Metal Oxo Bonds Print

  7. Metal coupled emission process

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMayEnergy Metal Organic Heat Carrierscom,

  8. Metal to ceramic sealed joint

    DOE Patents [OSTI]

    Lasecki, John V. (Livonia, MI); Novak, Robert F. (Farmington Hills, MI); McBride, James R. (Ypsilanti, MI)

    1991-01-01T23:59:59.000Z

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system.

  9. Metal to ceramic sealed joint

    DOE Patents [OSTI]

    Lasecki, J.V.; Novak, R.F.; McBride, J.R.

    1991-08-27T23:59:59.000Z

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system. 11 figures.

  10. Supported molten-metal catalysts

    DOE Patents [OSTI]

    Datta, Ravindra (Iowa City, IA); Singh, Ajeet (Iowa City, IA); Halasz, Istvan (Iowa City, IA); Serban, Manuela (Iowa City, IA)

    2001-01-01T23:59:59.000Z

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  11. Metals removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C. (Pleasanton, CA); Von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Brummond, William A. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

    2002-01-01T23:59:59.000Z

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  12. Method for preparing porous metal hydride compacts

    DOE Patents [OSTI]

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21T23:59:59.000Z

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  13. Method for preparing porous metal hydride compacts

    DOE Patents [OSTI]

    Ron, Moshe (Haifa, IL); Gruen, Dieter M. (Downers Grove, IL); Mendelsohn, Marshall H. (Woodridge, IL); Sheft, Irving (Oak Park, IL)

    1981-01-01T23:59:59.000Z

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  14. Performance testing of multi-metal continuous emissions monitors

    SciTech Connect (OSTI)

    Haas, W.J. [Ames Lab., IA (United States); French, N.B. [Sky+, Inc. (United States); Brown, C.H. [Oak Ridge National Lab., TN (United States); Burns, D.B. [Westinghouse Savannah River Co., Aiken, SC (United States); Lemieux, P.M.; Ryan, J.V. [National Risk Management Research Lab., Research Triangle Park, NC (United States); Priebe, S.J. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States); Waterland, L.R. [Acurex Environmental Corp. (United States)

    1997-11-17T23:59:59.000Z

    Three prototype multi-metals continuous emissions monitors (CEMs) were tested in April 1996 at the Rotary Kiln Incinerator Simulator facility at the US Environmental Protection Agency (EPA) National Risk Management Research Laboratory, Research Triangle Park, North Carolina. The CEM instruments were: Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES); Laser Induced Breakdown Spectrometry-Atomic Emission Spectroscopy (LIBS); and Laser Spark Spectrometry, another LIBS instrument. The three CEMs were tested simultaneously during test periods in which low, medium, and high concentration levels of seven toxic metals -- antimony, arsenic, beryllium, cadmium, chromium, lead, and mercury -- were maintained under carefully controlled conditions. Two methods were used to introduce the test metals into the flue gas: (1) solution atomization, introducing metal-containing aerosol directly into the secondary combustion burner, and (2) injection of fly ash particulates. The testing addressed four measures of CEM performance: relative accuracy (RA), calibration drift, zero drift, and response time. These were accomplished by comparing the toxic metal analyte concentrations reported by the CEMs to the concentrations measured using the EPA reference method (RM) for the same analytes. Overall, the test results showed the prototype nature of the test CEMs and the clear need for further development. None of the CEMs tested consistently achieved RA values of 20% or less as required by the EPA draft performance specification. Instrument size reduction and automation will also likely need additional attention before multi-metal CEMs systems become commercially available for service as envisioned by regulators and citizens.

  15. Metal-ceramic joint assembly

    DOE Patents [OSTI]

    Li, Jian (New Milford, CT)

    2002-01-01T23:59:59.000Z

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  16. Corrosion-resistant metal surfaces

    DOE Patents [OSTI]

    Sugama, Toshifumi (Wading River, NY)

    2009-03-24T23:59:59.000Z

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  17. Metal deposition using seed layers

    DOE Patents [OSTI]

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12T23:59:59.000Z

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  18. Heavy metal concentration in bay sediments of Japan

    SciTech Connect (OSTI)

    Fukue, Masaharu; Kato, Yoshihisa; Nakamura, Takaaki [Tokai Univ., Shimizu (Japan); Yamasaki, Shoichi [Aoki Marine Ltd., Fukushima, Osaka (Japan)

    1995-12-31T23:59:59.000Z

    Because industry discharge wastes into the sea, marine sediments can be contaminated with various kinds of hazardous and toxic substances. This study discusses how the degree of pollution of heavy metals affects the marine sediments from Osaka Bay and Tokyo Bay. In this study, the concentrations of various metals, such as manganese, iron, aluminum, titanium, vanadium, copper, phosphorus, etc., were measured from sediment samples obtained from different sites in the bays. However, the results had to be corrected because background concentrations for each metal differ with site location and grain size characteristics. The large difference between background and individual concentrations at various soil depths indicates that the surface layers of the seabed are significantly polluted with some species of heavy metal and other elements.

  19. Magnetic metallic multilayers

    SciTech Connect (OSTI)

    Hood, R.Q.

    1994-04-01T23:59:59.000Z

    Utilizing self-consistent Hartree-Fock calculations, several aspects of multilayers and interfaces are explored: enhancement and reduction of the local magnetic moments, magnetic coupling at the interfaces, magnetic arrangements within each film and among non-neighboring films, global symmetry of the systems, frustration, orientation of the various moments with respect to an outside applied field, and magnetic-field induced transitions. Magnetoresistance of ferromagnetic-normal-metal multilayers is found by solving the Boltzmann equation. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by an external magnetic field. The calculation depends on (1) geometric parameters (thicknesses of layers), (2) intrinsic metal parameters (number of conduction electrons, magnetization, and effective masses in layers), (3) bulk sample properties (conductivity relaxation times), (4) interface scattering properties (diffuse scattering versus potential scattering at the interfaces, and (5) outer surface scattering properties (specular versus diffuse surface scattering). It is found that a large negative magnetoresistance requires considerable asymmetry in interface scattering for the two spin orientations. Features of the interfaces that may produce an asymmetrical spin-dependent scattering are studied: varying interfacial geometric random roughness with no lateral coherence, correlated (quasi-periodic) roughness, and varying chemical composition of the interfaces. The interplay between these aspects of the interfaces may enhance or suppress the magnetoresistance, depending on whether it increases or decreases the asymmetry in the spin-dependent scattering of the conduction electrons.

  20. ``Towards Strange Metallic Holography'

    SciTech Connect (OSTI)

    Hartnoll, Sean A.; /Harvard U., Phys. Dept. /Santa Barbara, KITP /UC, Santa Barbara; Polchinski, Joseph; Silverstein, Eva; /Santa Barbara, KITP /UC, Santa Barbara; Tong, David; /Cambridge U., DAMTP /Santa Barbara, KITP /UC, Santa Barbara

    2010-08-26T23:59:59.000Z

    We initiate a holographic model building approach to 'strange metallic' phenomenology. Our model couples a neutral Lifshitz-invariant quantum critical theory, dual to a bulk gravitational background, to a finite density of gapped probe charge carriers, dually described by D-branes. In the physical regime of temperature much lower than the charge density and gap, we exhibit anomalous scalings of the temperature and frequency dependent conductivity. Choosing the dynamical critical exponent z appropriately we can match the non-Fermi liquid scalings, such as linear resistivity, observed in strange metal regimes. As part of our investigation we outline three distinct string theory realizations of Lifshitz geometries: from F theory, from polarized branes, and from a gravitating charged Fermi gas. We also identify general features of renormalization group flow in Lifshitz theories, such as the appearance of relevant charge-charge interactions when z {ge} 2. We outline a program to extend this model building approach to other anomalous observables of interest such as the Hall conductivity.

  1. Clean Metal Casting

    SciTech Connect (OSTI)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05T23:59:59.000Z

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  2. Direct electrodeposition of metals and conducting polymers on nonwoven thermoplastics on a continuous basis

    SciTech Connect (OSTI)

    Kathirgamanathan, P.; Boland, B. (Univ. College, London (United Kingdom). Dept. of Chemistry)

    1993-10-01T23:59:59.000Z

    Direct electrodeposition of nickel and poly(pyrrole) onto carbon impregnated nonwoven polyesters produces conductive tapes suitable for electromagnetic shielding. The use of a partly immersed cylindrical horizontal revolving electrode (PICHRE) permits the production of these tapes on a continuous basis. Conductivity vs. strain characteristics, shielding efficiency, surface transfer impedance, and mechanical properties are described.

  3. Metal sulfide initiators for metal oxide sorbent regeneration

    DOE Patents [OSTI]

    Turk, B.S.; Gupta, R.P.

    1999-06-22T23:59:59.000Z

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  4. Semi-automatic for ultrasonic measurement of texture

    DOE Patents [OSTI]

    Thompson, R.B.; Smith, J.F.; Lee, S.S.; Li, Y.

    1990-02-13T23:59:59.000Z

    A method for measuring texture of metal plates or sheets using non-destructive ultrasonic investigation includes measuring the velocity of ultrasonic energy waves in lower order plate modes in one or more directions, and measuring phase velocity dispersion of higher order modes of the plate or sheet if needed. Texture or preferred grain orientation can be derived from these measurements with improved reliability and accuracy. The method can be utilized in production on moving metal plate or sheet. 9 figs.

  5. Creating bulk nanocrystalline metal.

    SciTech Connect (OSTI)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

    2008-10-01T23:59:59.000Z

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  6. Expanding hollow metal rings

    DOE Patents [OSTI]

    Peacock, Harold B. (Evans, GA); Imrich, Kenneth J. (Grovetown, GA)

    2009-03-17T23:59:59.000Z

    A sealing device that may expand more planar dimensions due to internal thermal expansion of a filler material. The sealing material is of a composition such that when desired environment temperatures and internal actuating pressures are reached, the sealing materials undergoes a permanent deformation. For metallic compounds, this permanent deformation occurs when the material enters the plastic deformation phase. Polymers, and other materials, may be using a sealing mechanism depending on the temperatures and corrosivity of the use. Internal pressures are generated by either rapid thermal expansion or material phase change and may include either liquid or solid to gas phase change, or in the gaseous state with significant pressure generation in accordance with the gas laws. Sealing material thickness and material composition may be used to selectively control geometric expansion of the seal such that expansion is limited to a specific facing and or geometric plane.

  7. Metal-carbon nanostructures

    SciTech Connect (OSTI)

    Puretzky, A.A.; Hettich, R.L.; Jin, Changming; Haufler, R.E.; Compton, R.N. [Oak Ridge National Lab., TN (United States); Tuinman, A.A. [Tennessee Univ., Knoxville, TN (United States). Dept. of Chemistry

    1993-12-31T23:59:59.000Z

    Ultrafine particles formed by XeCl laser photolysis of M(CO){sub 6}, M = V, Cr, Mo, and W, have been analyzed by Fourier transform mass spectrometry and other techniques. Novel metal carbide clusters, (MoC{sub 4}){sub n}, n = 1 {minus} 4 and (WC{sub 4}){sub m}, m = 1 {minus} 8, were detected and studied. The material produced by photolysis of V(CO){sub 6} shows a series of vanadium-oxygen clusters, V{sub x}O{sub 2x+2}, x = 2 {minus} 10. No clusters of any type were detected in the photolysis product of Cr(CO){sub 6}. Structures based on the experimental evidence are proposed and discussed in light of their chemical reactivity.

  8. Nanostructured metal-polyaniline composites

    SciTech Connect (OSTI)

    Wang, Hsing-Lin (Los Alamos, NM); Li, Wenguang (Elgin, IL); Bailey, James A. (Los Alamos, NM); Gao, Yuan (Brewer, ME)

    2010-08-31T23:59:59.000Z

    Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

  9. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1991-01-01T23:59:59.000Z

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  10. Synthesis metal nanoparticle

    DOE Patents [OSTI]

    Bunge, Scott D.; Boyle, Timothy J.

    2005-08-16T23:59:59.000Z

    A method for providing an anhydrous route for the synthesis of amine capped coinage-metal (copper, silver, and gold) nanoparticles (NPs) using the coinage-metal mesityl (mesityl=C.sub.6 H.sub.2 (CH.sub.3).sub.3 -2,4,6) derivatives. In this method, a solution of (Cu(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5, (Ag(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.4, or (Au(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5 is dissolved in a coordinating solvent, such as a primary, secondary, or tertiary amine; primary, secondary, or tertiary phosphine, or alkyl thiol, to produce a mesityl precursor solution. This solution is subsequently injected into an organic solvent that is heated to a temperature greater than approximately 100.degree. C. After washing with an organic solvent, such as an alcohol (including methanol, ethanol, propanol, and higher molecular-weight alcohols), oxide free coinage NP are prepared that could be extracted with a solvent, such as an aromatic solvent (including, for example, toluene, benzene, and pyridine) or an alkane (including, for example, pentane, hexane, and heptane). Characterization by UV-Vis spectroscopy and transmission electron microscopy showed that the NPs were approximately 9.2.+-.2.3 nm in size for Cu.degree., (no surface oxide present), approximately 8.5.+-.1.1 nm Ag.degree. spheres, and approximately 8-80 nm for Au.degree..

  11. Stage IV work hardening in cubic metals

    SciTech Connect (OSTI)

    Rollett, A.D.; Kocks, U.F.; Doherty, R.D.

    1986-01-01T23:59:59.000Z

    The work hardening of fcc metals at large strains is discussed with reference to the linear stress-strain behavior often observed at large strains and known as Stage IV. The experimental evidence shows that Stage IV is a work hardening phenomenon that is found quite generally, even in pure fcc metals subjected to homogeneous deformation. A simple model for Stage IV in pure metals is presented, based on the accumulation of dislocation debris. Experiments are described for large strain torsion tests on four aluminum alloys. The level and extent of Stage IV scaled with the saturation stress that would represent the end of Stage III in the absence of a Stage IV. Reversing the torsion after large prestrains produced transient reductions in the work hardening. The strain rate sensitivity was also measured before and during the transient and found not to vary significantly. The microstructure observed at large strains in an Mg alloy suggest that Stage IV can occur in the absence of microband formation. Previous proposals for the cause of Stage IV are reviewed and found to be not supported by recent experimental data.

  12. Method for preparing metal powder, device for preparing metal powder, method for processing spent nuclear fuel

    DOE Patents [OSTI]

    Park, Jong-Hee (Clarendon Hills, IL)

    2011-11-29T23:59:59.000Z

    A method for producing metal powder is provided the comprising supplying a molten bath containing a reducing agent, contacting a metal oxide with the molten bath for a time and at a temperature sufficient to reduce the metal in the metal oxide to elemental metal and produce free oxygen; and isolating the elemental metal from the molten bath.

  13. Pressure-Induced Electronic Phase Transitions Transition Metal Oxides and Rare Earth Metals

    E-Print Network [OSTI]

    Islam, M. Saif

    Pressure-Induced Electronic Phase Transitions in Transition Metal Oxides and Rare Earth Metals Metal Oxides and Rare Earth Metals by Brian Ross Maddox Electron correlation can affect profound changes transition in a transition metal monoxide. iv #12;The lanthanides (the 4f metals also known as rare-earths

  14. Coherent ExcitonSurface-Plasmon-Polariton Interaction in Hybrid Metal-Semiconductor Nanostructures

    E-Print Network [OSTI]

    Oldenburg, Carl von Ossietzky Universitt

    Coherent ExcitonSurface-Plasmon-Polariton Interaction in Hybrid Metal-Semiconductor Nanostructures 2008; published 8 September 2008) We report measurements of a coherent coupling between surface plasmon when placed close to a metallic nanostructure due to its coupling to surface plasmon polaritons (SPPs

  15. Dislocation mobility in gum metal -titanium alloy studied via in situ transmission electron microscopy

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Dislocation mobility in gum metal -titanium alloy studied via in situ transmission electron in a transmission electron microscope were carried out on a "Gum Metal" titanium alloy. Conventional dislocation and the variation in energy due to the core structure of screw dislocations were measured and compared

  16. Optical excitations of metallic nanoclusters buried in TiO2 for solar photochemistry

    E-Print Network [OSTI]

    to the solar spectrum.3 A natural dielectric to consider is to encapsulate these metal clusters supported on TiOptical excitations of metallic nanoclusters buried in TiO2 for solar photochemistry Fei WangV range, a much better match to the solar spectrum than the 3.8 eV Ag plasmon. AFM measurements indicate

  17. Modeling the glass forming ability of metals

    E-Print Network [OSTI]

    Cheney, Justin Lee

    2007-01-01T23:59:59.000Z

    compositions without rare earth metals in the Fe-Cr-Mo-C-B-Wsmall percentages of rare earth metals as the oxide formingmore, often containing rare earth metals, are among the best

  18. Superconducting ``metals'' and ``insulators'' Smitha Vishveshwara

    E-Print Network [OSTI]

    Superconducting ``metals'' and ``insulators'' Smitha Vishveshwara Department of Physics, University to the distinction between normal metals and insulators: the superconducting ``metal'' with delocalized qua- siparticle excitations and the superconducting ``insulator'' with localized quasiparticles. We describe

  19. Cosmic metal production and the mean metallicity of the Universe

    E-Print Network [OSTI]

    F. Calura; F. Matteucci

    2004-03-08T23:59:59.000Z

    By means of detailed chemo-photometric models for elliptical, spiral and irregular galaxies, we evaluate the cosmic history of the production of chemical elements as well as the metal mass density of the present-day universe. We then calculate the mean metal abundances for galaxies of different morphological types, along with the average metallicity of galactic matter in the universe (stars, gas and intergalactic medium). For the average metallicity of galaxies in the local universe, we find Z_gal= 0.0175, i.e. close to the solar value. We find the main metal production in spheroids (ellipticals and bulges) to occur at very early times, implying an early peak in the metal production and a subsequent decrease. On the other hand, the metal production in spirals and irregulars is always increasing with time. We perform a self-consistent census of the baryons and metals in the local universe finding that, while the vast majority of the baryons lies outside galaxies in the inter-galactic medium (IGM), 52 % of the metals (with the exception of the Fe-peak elements) is locked up in stars and in the interstellar medium. We estimate indirectly the amount of baryons which resides in the IGM and we derive its mean Fe abundance, finding a value of X_Fe,IGM=0.05 X_Fe,sun. We believe that this estimate is uncertain by a factor of 2, owing to the normalization of the local luminosity function. This means that the Fe abundance of 0.3 solar inferred from X-ray observations of the hot intra-cluster medium (ICM) is higher than the average Fe abundance of the inter-galactic gas in the field.

  20. Method of coating metal surfaces to form protective metal coating thereon

    DOE Patents [OSTI]

    Krikorian, Oscar H. (Danville, CA); Curtis, Paul G. (Tracy, CA)

    1992-01-01T23:59:59.000Z

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof.

  1. Method of coating metal surfaces to form protective metal coating thereon

    DOE Patents [OSTI]

    Krikorian, O.H.; Curtis, P.G.

    1992-03-31T23:59:59.000Z

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof. 1 figure.

  2. Catalysis using hydrous metal oxide ion exchangers

    DOE Patents [OSTI]

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21T23:59:59.000Z

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  3. Characterization of Thermal Properties of Depleted Uranium Metal Microspheres

    E-Print Network [OSTI]

    Humrickhouse, Carissa Joy

    2012-07-16T23:59:59.000Z

    of the DU microspheres was 0.431 13% W/m-K compared to approximately 32 W/m-K for solid uranium metal. Characterization of the developed apparatus revealed a method that may be useful for measuring the thermal diffusivity of powders and liquids....

  4. Efficient Resampling, Compression and Rendering of Metallic and Pearlescent Paint

    E-Print Network [OSTI]

    Behnke, Sven

    a complex, pure stochastic spatial structure and an- gular dependent color shifts. Hybrid approaches by measuring real paint sam- ples and split the data into a homogeneous (spatially invariant) part and slow decoding speed. The stochastic nature of the spatial and angular varia- tions of metallic paints

  5. Hall effect at a tunable metal-insulator transition

    E-Print Network [OSTI]

    Teizer, Winfried; Hellman, F.; Dynes, RC.

    2003-01-01T23:59:59.000Z

    Using a rotating magnetic field, the Hall effect in three-dimensional amorphous GdxSi1-x has been measured in the critical regime of the metal-insulator transition for a constant total magnetic field. The Hall coefficient R-0 is negative, indicating...

  6. Epsilon Metal Summary Report FY 2011

    SciTech Connect (OSTI)

    Strachan, Denis M.; Crum, Jarrod V.; Zumhoff, Mac R.; Bovaird, Chase C.; Windisch, Charles F.; Riley, Brian J.

    2011-09-30T23:59:59.000Z

    The Epsilon-metal ({var_epsilon}-metal) phase was selected in FY 2009 as a potential waste form to for immobilizing the noble metals found in the undissolved solids + aqueous stream, and the soluble Tc from ion-exchange process, each resulting from proposed aqueous reprocessing. {var_epsilon}-metal phase is observed in used nuclear fuel and the natural reactors of Oklobono in Gabon, where the long-term corrosion behavior was demonstrated. This makes {var_epsilon}-metal a very attractive waste form. Last fiscal year, {var_epsilon}-metal was successfully fabricated by combining the five-metals, Mo, Ru, Rh, Pd and Re (surrogate for Tc), into pellets followed by consolidation with an arc melter. The arc melter produced fully dense samples with the epsilon structure. However, some chemistry differences were observed in the microstructure that resulted in regions rich in Re and Mo, and others rich in Pd, while Ru and Rh remained fairly constant throughout. This year, thermal stability (air), and corrosion testing of the samples fabricated by arc melting were the main focus for experimental work. Thermal stability was measured with a differential scanning calorimeter - thermogravimetric analyzer, by both ramp heating as well as step heating. There is clear evidence during the ramp heating experiment of an exothermic event + a weight loss peak both beginning at {approx}700 C. Step heating showed an oxidation event at {approx}690 C with minimal weight gain that occurs just before the weight loss event at 700 C. The conclusion being that the e-metal begins to oxidize and then become volatile. These findings are useful for considering the effects of voloxidation process. Three different pellets were subjected to electrochemical testing to study the corrosion behavior of the epsilon-metal phase in various conditions, namely acidic, basic, saline, and inert. Test was done according to an interim procedure developed for the alloy metal waste form. First an open circuit potential was measured, followed by linear polarization sweeps. The linear polarization sweep range was the Tafel equation was fit to the linear polarization sweep data to determine the corrosion rate of each pellet in each test solution. The average calculated corrosion rates of the three pellets according to solution conditions were: -1.91 x 10{sup -4} mm/yr (0.001 M NaOH), -1.48 x 10{sup -3} mm/yr (0.01 M NaCl), -8.77 x 10{sup -4} mm/yr (0.001 M H{sub 2}SO{sub 4}), -2.09 x 10{sup -3} mm/yr (0.001 M NaOH + 0.01 M NaCl), and -1.54 x 10{sup -3} mm/yr (0.001 M H{sub 2}SO{sub 4} + 0.01 M NaCl). Three single-pass flow through (SPFT) test were conducted at a flow rate of 10 ml/day, at 90 C, and pH of 2.5, 7.0, and 9.0 for up to 322 days. Results of the tests indicate that dissolution rates were 5 x 10{sup -4} g m{sup 2} d{sup -1} at pH 9.0, 1.2 x 10{sup -4} g m{sup -2} d{sup -1} at pH 7.0, and 2 x 10{sup -4} g m{sup -2} d{sup -1} at pH 2.5. The sample used for the pH 7.0 SPFT test contains extra Re compared to samples used for the other two SPFT test, which came from a single pellet. The corrosion data measured this year indicate that the {var_epsilon}-metal phase is chemically durable. The two chemically different phases, but structurally the same, behave differently during dissolution according to the microstructure changes observed in both the electrochemical and in SPFT test. Characterization of the test specimens after testing suggests that the dissolution is complex and involves oxidative dissolution followed by precipitation of both oxide and metallic phases. These data suggest that the dissolution in the electrochemical and SPFT tests is different; a process that needs further investigation.

  7. Molten metal feed system controlled with a traveling magnetic field

    DOE Patents [OSTI]

    Praeg, Walter F. (Palos Park, IL)

    1991-01-01T23:59:59.000Z

    A continuous metal casting system in which the feed of molten metal is controlled by means of a linear induction motor capable of producing a magnetic traveling wave in a duct that connects a reservoir of molten metal to a caster. The linear induction motor produces a traveling magnetic wave in the duct in opposition to the pressure exerted by the head of molten metal in the reservoir so that p.sub.c =p.sub.g -p.sub.m where p.sub.c is the desired pressure in the caster, p.sub.g is the gravitational pressure in the duct exerted by the force of the head of molten metal in the reservoir, and p.sub.m is the electromagnetic pressure exerted by the force of the magnetic field traveling wave produced by the linear induction motor. The invention also includes feedback loops to the linear induction motor to control the casting pressure in response to measured characteristics of the metal being cast.

  8. Electromagnetic confinement for vertical casting or containing molten metal

    DOE Patents [OSTI]

    Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1991-01-01T23:59:59.000Z

    An apparatus and method adapted to confine a molten metal to a region by means of an alternating electromagnetic field. As adapted for use in the present invention, the alternating electromagnetic field given by B.sub.y =(2.mu..sub.o .rho.gy).sup.1/2 (where B.sub.y is the vertical component of the magnetic field generated by the magnet at the boundary of the region; y is the distance measured downward form the top of the region, .rho. is the metal density, g is the acceleration of gravity and .mu..sub.o is the permeability of free space) induces eddy currents in the molten metal which interact with the magnetic field to retain the molten metal with a vertical boudnary. As applied to an apparatus for the continuous casting of metal sheets or rods, metal in liquid form can be continuously introduced into the region defined by the magnetic field, solidified and conveyed away from the magnetic field in solid form in a continuous process.

  9. The Role of Environment in the Mass-Metallicity Relation

    E-Print Network [OSTI]

    Michael C. Cooper; Christy A. Tremonti; Jeffrey A. Newman; Ann I. Zabludoff

    2008-05-02T23:59:59.000Z

    Using a sample of 57,377 star-forming galaxies drawn from the Sloan Digital Sky Survey, we study the relationship between gas-phase oxygen abundance and environment in the local Universe. We find that there is a strong relationship between metallicity and environment such that more metal-rich galaxies favor regions of higher overdensity. Furthermore, this metallicity-density relation is comparable in strength to the color-density relation along the blue cloud. After removing the mean dependence of environment on color and luminosity, we find a significant residual trend between metallicity and environment that is largely driven by galaxies in high-density regions, such as groups and clusters. We discuss the potential source of this relationship between metallicity and local galaxy density in the context of feedback models, with special attention paid to quantifying the impact of environment on the scatter in the mass-metallicity relation. We find that environment is a non-negligible source of scatter in this fundamental relation, with > 15% of the measured scatter correlated with environment.

  10. Heterogeneous Catalysis on Atomically Dispersed Supported Metals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalysis on Atomically Dispersed Supported Metals: CO2 Reduction on Multifunctional Pd Catalysts. Heterogeneous Catalysis on Atomically Dispersed Supported Metals: CO2 Reduction...

  11. Recommendation 221: Recommendation Regarding Recycling of Metals...

    Office of Environmental Management (EM)

    221: Recommendation Regarding Recycling of Metals and Materials Recommendation 221: Recommendation Regarding Recycling of Metals and Materials In addition to the DOE making a final...

  12. Engineering Metal Impurities in Multicrystalline Silicon Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Metal Impurities in Multicrystalline Silicon Solar Cells Print Transition metals are one of the main culprits in degrading the efficiency of multicrystalline solar...

  13. ANGULAR MEASUREMENTS OF HTS CRITICAL CURRENT FOR HIGH FIELD SOLENOIDS

    SciTech Connect (OSTI)

    Turrioni, D.; Barzi, E.; Lamm, M.; Lombardo, V.; Zlobin, A. V. [Fermi National Accelerator Laboratory Batavia, Illinois, 60510 (United States); Thieme, C. [American Superconductor (AMSC) Westborough, MA, 01581 (United States)

    2008-03-03T23:59:59.000Z

    An experiment is in the works at Fermilab to confirm that ionization cooling is an efficient way to shrink the size of a muon beam. This would pave the way for Muon Collider machines, which however require in their last stages of acceleration very high field solenoids. The use of high temperature superconducting materials (HTS) is being considered for these magnets using Helium or higher temperature refrigeration. A sample holder was designed to perform critical current (I{sub c}) measurements of HTS conductors under externally applied magnetic fields varying from zero to 90 degree with respect to the c-axis. This was performed in an ample range of temperatures and magnetic field values. A description of the test setup and results for (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (BSCCO-2223) tapes, and Second Generation HTS in the form of 348 superconductor are presented.

  14. Creep measuring device for low melting point metals

    E-Print Network [OSTI]

    Portal, Marc-Emmanuel Gilbert

    1987-01-01T23:59:59.000Z

    that there is little concern about the mechanical interaction of the coolant in the solid state and the walls. Because of its suitable thermophysicsl properties, lithium has been selected for the coolant in the SP-100 space reactor design. During launch, the lithium... properties of lithium. An experiment was conducted on lead at 90% of melting temperature (541 K). The results of this experiment agreed well with theoretical predictions of the Harper-Dorn creep model. The three predicted stages of creep were observed...

  15. Direct Measurement of Adsorbed Gas Redistribution in Metal-Organic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date: Contact: Shelley Martin,Frameworks | Center for

  16. Heavy Metal Humor: Reconsidering Carnival in Heavy Metal Culture

    E-Print Network [OSTI]

    Powell, Gary Botts

    2013-06-05T23:59:59.000Z

    the majority of the land and maintained a social hierarchy that created a vast wealth disparity between the peasants and the church and upper classes. The Church?s feudal ownership of the land meant that it had power over the peasants, limiting social... manifest itself in metal culture. It may further 16 be suggested that the socio-economic climate from which metal culture developed has analogous threads to 16th century French feudal society. While feudalism and capitalism differ, both French...

  17. Quinary metallic glass alloys

    DOE Patents [OSTI]

    Lin, Xianghong (Pasadena, CA); Johnson, William L. (Pasadena, CA)

    1998-01-01T23:59:59.000Z

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  18. Quinary metallic glass alloys

    DOE Patents [OSTI]

    Lin, X.; Johnson, W.L.

    1998-04-07T23:59:59.000Z

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  19. SBAT: A Tool for Estimating Metal Bioaccessibility in Soils

    SciTech Connect (OSTI)

    Heuscher, S.A.

    2004-04-21T23:59:59.000Z

    Heavy metals such as chromium and arsenic are widespread in the environment due to their usage in many industrial processes. These metals may pose significant health risks to humans, especially children, due to their mutagenic and carcinogenic properties. Typically, the health risks associated with the ingestion of soil-bound metals are estimated by assuming that the metals are completely absorbed through the human intestinal tract (100% bioavailable). This assumption potentially overestimates the risk since soils are known to strongly sequester metals thereby potentially lowering their bioavailability. Beginning in 2000, researchers at Oak Ridge National Laboratory, with funding from the Strategic Environmental Research and Development Program (SERDP), studied the effect of soil properties on the bioaccessibility of soil-bound arsenic and chromium. Representative A and upper-B horizons from seven major U.S. soil orders were obtained from the U.S. Department of Agriculture's National Resources Conservation Service and the U.S. Department of Energy's Oak Ridge Reservation. The soils were spiked with known concentrations of arsenic (As(III) and As(V)) and chromium (Cr(III) and Cr(VI)), and the bioaccessibility was measured using a physiologically based extraction test that mimics the gastric activity of children. Linear regression models were then developed to relate the bioaccessibility measurements to the soil properties (Yang et al. 2002; Stewart et al. 2003a). Important results from these publications and other studies include: (1) Cr(VI) and As(III) are more toxic and bioavailable than Cr(III) and As(V) respectively. (2) Several favorable processes can occur in soils that promote the oxidation of As(III) to As(V) and the reduction of Cr(VI) to Cr(III), thereby lowering bioaccessibility. Iron and manganese oxides are capable of oxidizing As(III) to As(V), whereas organic matter and Fe(II)-bearing minerals are capable of reducing Cr(VI) to Cr(III). (3) The ubiquitous metal-sequestering properties of soils significantly lower the bioaccessibility of arsenic and chromium upon ingestion relative to the currently used 100% default values. (4) Key soil physical and chemical properties (particle size, pH, mineral oxide, clay, and organic matter contents) govern the extent of toxic metal bioaccessibility thus providing the necessary conceptual understanding for building accurate predictive models. (5) The As(V) regression model was able to predict the in vivo bioavailability in ten contaminated soils within a root mean square error of <10%. (6) Metal bioaccessibility is controlled by molecular-level speciation, where metal sequestration and solid phase stability are enhanced by increased soil-metal contact time.

  20. Evolution of the X-ray luminosity and metallicity of starburst blown superbubbles

    E-Print Network [OSTI]

    Sergey A. Silich; Guillermo Tenorio-Tagle; Roberto Terlevich; Elena Terlevich; Hagai Netzer

    2000-09-06T23:59:59.000Z

    We calculate the time-dependent metal production expected from starbursts and use them as boundary conditions in our 2D simulations of evolving superbubbles. We assume that the produced metals (oxygen and iron) thoroughly mix with the ejected stellar envelopes, and/or with the matter thermally evaporated from the superbubble cold outer shell. The metal production process determines the time-dependent metallicity in hot superbubble interiors, and leads to values of Z greater or equal than solar, when oxygen is used as tracer, and under-solar when the metallicity is measured with respect to iron. In either case, the enhanced metallicity boosts the X-ray emissivity of superbubbles, bringing theory and observations closer together.

  1. Al-Ca and Al-Fe metal-metal composite strength, conductivity, and microstructure relationships

    SciTech Connect (OSTI)

    Kim, Hyong June

    2011-12-01T23:59:59.000Z

    Deformation processed metal-metal composites (DMMCs) are composites formed by mechanical working (i.e., rolling, swaging, or wire drawing) of two-phase, ductile metal mixtures. Since both the matrix and reinforcing phase are ductile metals, the composites can be heavily deformed to reduce the thickness and spacing of the two phases. Recent studies have shown that heavily drawn DMMCs can achieve anomalously high strength and outstanding combinations of strength and conductivity. In this study, Al-Fe wire composite with 0.07, 0.1, and 0.2 volume fractions of Fe filaments and Al-Ca wire composite with 0.03, 0.06, and 0.09 volume fractions of Ca filaments were produced in situ, and their mechanical properties were measured as a function of deformation true strain. The Al-Fe composites displayed limited deformation of the Fe phase even at high true strains, resulting in little strengthening effect in those composites. Al-9vol%Ca wire was deformed to a deformation true strain of 13.76. The resulting Ca second-phase filaments were deformed to thicknesses on the order of one micrometer. The ultimate tensile strength increased exponentially with increasing deformation true strain, reaching a value of 197 MPa at a true strain of 13.76. This value is 2.5 times higher than the value predicted by the rule of mixtures. A quantitative relationship between UTS and deformation true strain was determined. X-ray diffraction data on transformation of Al + Ca microstructures to Al + various Al-Ca intermetallic compounds were obtained at the Advanced Photon Source at Argonne National Laboratory. Electrical conductivity was measured over a range of true strains and post-deformation heat treatment schedules.

  2. Thanks to recent work from UC Berkeley engineers, the makers of Scotch Tape may have to rethink their prod-uct line. Taking a cue from geckos--which can climb nearly any surface with their sticky but self-cleaning

    E-Print Network [OSTI]

    6 Thanks to recent work from UC Berkeley engineers, the makers of Scotch Tape may have to rethinkJonghoLeeandNASAImagescourtesyofCERNandAllonHochbaum Fossil fuel combustion produces about 90% of the world's power, but in the process, 60 to 70

  3. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    SciTech Connect (OSTI)

    Richard T. Scalettar; Warren E. Pickett

    2005-08-02T23:59:59.000Z

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.

  4. Metal-sensing layer-semiconductor and metal-sensing layer-metal heterostructure gas sensors

    SciTech Connect (OSTI)

    O'Leary, M.; Li, Zheng; Fonash, S.J.

    1987-01-01T23:59:59.000Z

    Extremely sensitive gas sensors can be fabricated using heterostructures of the form metal-sensing layer-semiconductor or metal-sensing layer-metal. These structures are heterostructure diodes which have the barrier controlling transport at least partially located in the sensing layer. In the presence of the gas species to be detected, the electrical properties of the sensing layer evolve, resulting in a modification of the barrier to electric current transport and, hence, resulting in detection due to changes in the current-voltage characteristics of the device. This type of sensor structure is demonstrated using the Pd/Ti-O/sub x/Ti heterostructure hydrogen detector.

  5. Memory matrix theory of magnetotransport in strange metals

    E-Print Network [OSTI]

    Andrew Lucas; Subir Sachdev

    2015-04-30T23:59:59.000Z

    We model strange metals as quantum liquids without quasiparticle excitations, but with slow momentum relaxation, and with slow diffusive dynamics of a conserved charge and energy. General expressions are obtained for electrical, thermal and thermoelectric transport in the presence of an applied magnetic field using the memory matrix formalism. In the appropriate limits, our expressions agree with previous hydrodynamic and holographic results. We discuss the relationship of such results to thermoelectric and Hall transport measurements in the strange metal phase of the hole-doped cuprates.

  6. Neutron apparatus for measuring strain in composites

    DOE Patents [OSTI]

    Kupperman, David S. (Oak Park, IL); Majumdar, Saurindranath (Naperville, IL); Faber, Jr., John F. (Downers Grove, IL); Singh, J. P. (Bolingbrook, IL)

    1990-01-01T23:59:59.000Z

    A method and apparatus for orienting a pulsed neutron source and a multi-angle diffractometer toward a sample of a ceramic-matrix or metal-matrix composite so that the measurement of internal strain (from which stress is calculated) is reduced to uncomplicated time-of-flight measurements.

  7. Titanium metal: extraction to application

    SciTech Connect (OSTI)

    Gambogi, Joseph (USGS, Reston, VA); Gerdemann, Stephen J.

    2002-09-01T23:59:59.000Z

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium. In this paper, we discuss all aspects of the titanium industry from ore deposits through extraction to present and future applications. The methods of both primary (mining of ore, extraction, and purification) and secondary (forming and machining) operations will be analyzed. The chemical and physical properties of titanium metal will be briefly examined. Present and future applications for titanium will be discussed. Finally, the economics of titanium metal production also are analyzed as well as the advantages and disadvantages of various alternative extraction methods.

  8. Metal sponge for cryosorption pumping applications

    DOE Patents [OSTI]

    Myneni, G.R.; Kneisel, P.

    1995-12-26T23:59:59.000Z

    A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area. 4 figs.

  9. Metal salt catalysts for enhancing hydrogen spillover

    DOE Patents [OSTI]

    Yang, Ralph T; Wang, Yuhe

    2013-04-23T23:59:59.000Z

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  10. Horizontal electromagnetic casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1987-01-01T23:59:59.000Z

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  11. Horizontal electromagnetic casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1988-01-01T23:59:59.000Z

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  12. Maskless laser writing of microscopic metallic interconnects

    DOE Patents [OSTI]

    Maya, L.

    1995-10-17T23:59:59.000Z

    A method of forming a metal pattern on a substrate is disclosed. The method includes depositing an insulative nitride film on a substrate and irradiating a laser beam onto the nitride film, thus decomposing the metal nitride into a metal constituent and a gaseous constituent, the metal constituent remaining in the nitride film as a conductive pattern. 4 figs.

  13. Maskless laser writing of microscopic metallic interconnects

    DOE Patents [OSTI]

    Maya, Leon (Oak Ridge, TN)

    1995-01-01T23:59:59.000Z

    A method of forming a metal pattern on a substrate. The method includes depositing an insulative nitride film on a substrate and irradiating a laser beam onto the nitride film, thus decomposing the metal nitride into a metal constituent and a gaseous constituent, the metal constituent remaining in the nitride film as a conductive pattern.

  14. Dispersion enhanced metal/zeolite catalysts

    DOE Patents [OSTI]

    Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

    1987-03-31T23:59:59.000Z

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  15. TRANSITION DE MOTT METAL-INSULATOR TRANSITIONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    TRANSITION DE MOTT METAL-INSULATOR TRANSITIONS IN TRANSITION METAL OXIDES by D. B. McWHAN, A. MENTH oxydes de metaux de transition on observe une transition d'isolant a metal puis de metal a isolant de type Mott lorsque l'on augmentelenombre d'electrons d. Danslesysthe(V1-~Cr~)203une transition de Mott

  16. Metal nanoparticles as a conductive catalyst

    DOE Patents [OSTI]

    Coker, Eric N. (Albuquerque, NM)

    2010-08-03T23:59:59.000Z

    A metal nanocluster composite material for use as a conductive catalyst. The metal nanocluster composite material has metal nanoclusters on a carbon substrate formed within a porous zeolitic material, forming stable metal nanoclusters with a size distribution between 0.6-10 nm and, more particularly, nanoclusters with a size distribution in a range as low as 0.6-0.9 nm.

  17. Metal oxide nanostructures with hierarchical morphology

    DOE Patents [OSTI]

    Ren, Zhifeng (Newton, MA); Lao, Jing Yu (Saline, MI); Banerjee, Debasish (Ann Arbor, MI)

    2007-11-13T23:59:59.000Z

    The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.

  18. Metal sponge for cryosorption pumping applications

    DOE Patents [OSTI]

    Myneni, Ganapati R. (Yorktown, VA); Kneisel, Peter (Williamsburg, VA)

    1995-01-01T23:59:59.000Z

    A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area.

  19. Molten metal injector system and method

    DOE Patents [OSTI]

    Meyer, Thomas N. (Murrysville, PA); Kinosz, Michael J. (Apollo, PA); Bigler, Nicolas (Morin Heights, CA); Arnaud, Guy (Riviere-Beaudette, CA)

    2003-04-01T23:59:59.000Z

    Disclosed is a molten metal injector system including a holder furnace, a casting mold supported above the holder furnace, and a molten metal injector supported from a bottom side of the mold. The holder furnace contains a supply of molten metal having a metal oxide film surface. The bottom side of the mold faces the holder furnace. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The injector projects into the holder furnace and is in fluid communication with the mold cavity. The injector includes a piston positioned within a piston cavity defined by a cylinder for pumping the molten metal upward from the holder furnace and injecting the molten metal into the mold cavity under pressure. The piston and cylinder are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder further includes a molten metal intake for receiving the molten metal into the piston cavity. The molten metal intake is located below the metal oxide film surface of the molten metal when the holder furnace contains the molten metal. A method of injecting molten metal into a mold cavity of a casting mold is also disclosed.

  20. Anaerobic microbial remobilization of coprecipitated metals

    DOE Patents [OSTI]

    Francis, A.J.; Dodge, C.J.

    1994-10-11T23:59:59.000Z

    A process is provided for solubilizing coprecipitated metals. Metals in waste streams are concentrated by treatment with an iron oxide coprecipitating agent. The coprecipitated metals are solubilized by contacting the coprecipitate with a bacterial culture of a Clostridium species ATCC 53464. The remobilized metals can then be recovered and recycled. 4 figs.

  1. Method of bonding metals to ceramics

    DOE Patents [OSTI]

    Maroni, V.A.

    1991-04-23T23:59:59.000Z

    A ceramic or glass having a thin layer of silver, gold or alloys thereof at the surface thereof is disclosed. A first metal is bonded to the thin layer and a second metal is bonded to the first metal. The first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Tl and alloys thereof, and the second metal is selected from the class consisting of Cu, Al, Pb, Au and alloys thereof. 3 figures.

  2. Coated metal articles and method of making

    DOE Patents [OSTI]

    Boller, Ernest R. (Van Buren Township, IN); Eubank, Lowell D. (Wilmington, DE)

    2004-07-06T23:59:59.000Z

    The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.

  3. Coated Metal Articles and Method of Making

    DOE Patents [OSTI]

    Boller, Ernest R.; Eubank, Lowell D.

    2004-07-06T23:59:59.000Z

    The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.

  4. Single-magnet rotary flowmeter for liquid metals

    E-Print Network [OSTI]

    Priede, J?nis; Gerbeth, Gunter

    2010-01-01T23:59:59.000Z

    We present the theory of single-magnet flowmeter for liquid metals and compare it with experimental results. The flowmeter consists of a freely rotating permanent magnet, which is magnetized perpendicularly to the axle it is mounted on. When such a magnet is placed close to a tube carrying liquid metal flow, it rotates so that the driving torque due to the eddy currents induced by the flow is balanced by the braking torque induced by the rotation itself. The equilibrium rotation rate depends directly on the flow rate but not on the electrical conductivity of the metal or the magnet strength. We obtain simple analytical solutions for the force and torque on slowly moving and rotating magnets due to eddy currents in a layer of infinite horizontal extent. The predicted equilibrium rotation rate for a dipole agrees well with the magnet rotation rate measured at a stainless steel duct with a liquid sodium flow.

  5. Residual stresses in dielectrics caused by metallization lines and pads

    SciTech Connect (OSTI)

    He, M.Y.; Lipkin, J.; Clarke, D.R. [Univ. of California, Santa Barbara, CA (United States). Materials Dept.] [Univ. of California, Santa Barbara, CA (United States). Materials Dept.; Evans, A.G. [Harvard Univ., Cambridge, MA (United States). Div. of Applied Sciences] [Harvard Univ., Cambridge, MA (United States). Div. of Applied Sciences; Tenhover, M. [Carborundum Co., Niagara Falls, NY (United States)] [Carborundum Co., Niagara Falls, NY (United States)

    1996-06-01T23:59:59.000Z

    Residual stresses in dielectrics and semiconductors induced by metal lines, pads and vias can have detrimental effects on the performance of devices and electronic packages. Analytical and numerical calculations of these stresses have been performed for two purposes. (1) To illustrate how these stresses relate to the residual stress in the metallization and its geometry; (2) to calibrate a piezo-spectroscopic method for measuring these stresses with high spatial resolution. The results of the calculations have been presented using non-dimensional parameters that both facilitate scaling and provide connections to the stresses in the metal, with or without yielding. Preliminary experimental results obtained for Au/Ge eutectic pads illustrate the potential of the method and the role of the stress analysis.

  6. Process of preparing metal parts to be heated by means of infrared radiance

    DOE Patents [OSTI]

    Mayer, Howard Robinson (Cincinnati, OH); Blue, Craig A. (Knoxville, TN)

    2009-06-09T23:59:59.000Z

    A method for preparing metal for heating by infrared radiance to enable uniform and consistent heating. The surface of one or more metal parts, such as aluminum or aluminum alloy parts, is treated to alter the surface finish to affect the reflectivity of the surface. The surface reflectivity is evaluated, such as by taking measurements at one or more points on the surface, to determine if a desired reflectivity has been achieved. The treating and measuring are performed until the measuring indicates that the desired reflectivity has been achieved. Once the treating has altered the surface finish to achieve the desired reflectivity, the metal part may then be exposed to infrared radiance to heat the metal part to a desired temperature, and that heating will be substantially consistent throughout by virtue of the desired reflectivity.

  7. Transport band gap opening at metalorganic interfaces

    SciTech Connect (OSTI)

    Haidu, Francisc, E-mail: francisc.haidu@physik.tu-chemnitz.de; Salvan, Georgeta; Zahn, Dietrich R. T. [Semiconductor Physics, Technische Universitt Chemnitz, D-09107 Chemnitz (Germany); Smykalla, Lars; Hietschold, Michael [Solid Surfaces Analysis, Technische Universitt Chemnitz, D-09107 Chemnitz (Germany); Knupfer, Martin [Electronic and Optical Properties Department, IFW Dresden, D-01171 Dresden (Germany)

    2014-07-01T23:59:59.000Z

    The interface formation between copper phthalocyanine (CuPc) and two representative metal substrates, i.e., Au and Co, was investigated by the combination of ultraviolet photoelectron spectroscopy and inverse photoelectron spectroscopy. The occupied and unoccupied molecular orbitals and thus the transport band gap of CuPc are highly influenced by film thickness, i.e., molecule substrate distance. Due to the image charge potential given by the metallic substrates the transport band gap of CuPc opens from (1.4??0.3) eV for 1?nm thickness to (2.2??0.3) eV, and saturates at this value above 10?nm CuPc thickness. The interface dipoles with values of 1.2?eV and 1.0?eV for Au and Co substrates, respectively, predominantly depend on the metal substrate work functions. X-ray photoelectron spectroscopy measurements using synchrotron radiation provide detailed information on the interaction between CuPc and the two metal substrates. While charge transfer from the Au or Co substrate to the Cu metal center is present only at sub-monolayer coverages, the authors observe a net charge transfer from the molecule to the Co substrate for films in the nm range. Consequently, the Fermi level is shifted as in the case of a p-type doping of the molecule. This is, however, a competing phenomenon to the energy band shifts due to the image charge potential.

  8. TOWARD AN ACCURATE MODEL OF METAL SORPTION IN SOILS

    E-Print Network [OSTI]

    All T. Cygan; Howard L. Anderson; Sara E. Arthur; Patrick V. Brady; Carlos F. Jove; Jian-jie Liang; Eric R. Lindgren; Malcolm D. Siegel; David M. Teter; Henry R. Westrich; Pengchu Zhang

    Radionuclide transport in soils and groundwaters is routinely evaluated in performance assessment (PA) using simplified conceptual models (e.g., KD method) to describe radionuclide sorption. However, the KD approach with linear and reversible sorption of metal cations is rarely observed in the field. Inaccuracies of this model are typically addressed by conservativeness in the use of the chemical partitioning parameters, and often result in failed transport predictions or in increased costs for the cleanup of a site. Realistic assessments of radionuclide transport over a wide range of environmental conditions can proceed only from accurate and mechanistic models of the metal sorption process. Our research has recently examined the sorption mechanisms and partition coefficients for Ba2+ (analog for 226Ra2+) onto soil minerals (iron oxides and clay phases) using a combination of isothermal sorption/desorption measurements, synchrotron spectroscopic analyses of metal sorbed substrates, and computer molecular modeling simulations. Research goals include 1) evaluation and quantification of the critical mechanisms and geochemical parameters that control the retardation of radionuclides on the sorbing phases in near-field soils, 2) use of atomistic computer simulations to predict radionuclide KD values based on the partitioning of the metal cations between the solution and mineral surface, and 3) identification of the general trends in metal plume length associated with field sites. Results should improve our ability to estimate radionuclide migration at contaminated sites.

  9. Elevated sulfate reduction in metal-contaminated freshwater lake sediments

    SciTech Connect (OSTI)

    Gough, H.L.; Dahl, A.L.; Tribou, E.; Noble, P.A.; Gaillard, J.-F.; Stahl, D.A. (UWASH); (NWU)

    2009-01-06T23:59:59.000Z

    Although sulfate-reducing prokaryotes have long been studied as agents of metals bioremediation, impacts of long-term metals exposure on biologically mediated sulfur cycling in natural systems remains poorly understood. The effects of long-term exposure to metal stress on the freshwater sulfur cycle were studied, with a focus on biologic sulfate reduction using a combination of microbial and chemical methods. To examine the effects after decades of adaptation time, a field-based experiment was conducted using multiple study sites in a natural system historically impacted by a nearby zinc smelter (Lake DePue, Illinois). Rates were highest at the most metals-contaminated sites (-35 {mu}mol/cm{sup 3}/day) and decreased with decreased pore water zinc and arsenic contamination levels, while other environmental characteristics (i.e., pH, nutrient concentrations and physical properties) showed little between-site variation. Correlations were established using an artificial neural network to evaluate potentially non-linear relationships between sulfate reduction rates (SRR) and measured environmental variables. SRR in Lake DePue were up to 50 times higher than rates previously reported for lake sediments and the chemical speciation of Zn was dominated by the presence of ZnS as shown by X-ray Absorption Spectroscopy (XAS). These results suggest that long-term metal stress of natural systems might alter the biogeochemical cycling of sulfur by contributing to higher rates of sulfate reduction.

  10. Preparation of waste oil for analysis to determine hazardous metals

    SciTech Connect (OSTI)

    Essling, A.M.; Huff, D.R.; Huff, E.A.; Fox, I.M.; Graczyk, D.G.

    1995-07-01T23:59:59.000Z

    Two methods for preparing waste-oil samples to permit measurement of their metals content were evaluated. For this evaluation, metals-in-oil standard reference materials were prepared by each method and the resulting solutions were analyzed for 20 metals, including those (As, Ba, Cd, Cr, Pb, Hg, Se, and Ag) regulated as hazardous under the Resource Conservation and Recovery Act. One preparation method involved combustion of the waste oil under oxygen at 25 atm pressure, as described in the American Society for Testing and Materials test method E926-88. As we applied it, this method gave recoveries well under 90% for most of the metals that we examined and, hence, proved unsatisfactory for routine application to waste-oil analysis. With the other method, nitric acid decomposition in a sealed vessel heated with microwave energy (analogous to US Environmental Protection Agency Method 3051), recoveries of all 20 metal contaminants were within 90 to 110% of the certified values. This microwave digestion procedure was also more efficient since it allowed six samples to be prepared together, whereas the oxygen combustion approach allowed processing of only one sample at a time.

  11. Zone refining of plutonium metal

    SciTech Connect (OSTI)

    Blau, M.S.

    1994-08-01T23:59:59.000Z

    The zone refining process was applied to Pu metal containing known amounts of impurities. Rod specimens of plutonium metal were melted into and contained in tantalum boats, each of which was passed horizontally through a three-turn, high-frequency coil in such a manner as to cause a narrow molten zone to pass through the Pu metal rod 10 times. The impurity elements Co, Cr, Fe, Ni, Np, U were found to move in the same direction as the molten zone as predicted by binary phase diagrams. The elements Al, Am, and Ga moved in the opposite direction of the molten zone as predicted by binary phase diagrams. As the impurity alloy was zone refined, {delta}-phase plutonium metal crystals were produced. The first few zone refining passes were more effective than each later pass because an oxide layer formed on the rod surface. There was no clear evidence of better impurity movement at the slower zone refining speed. Also, constant or variable coil power appeared to have no effect on impurity movement during a single run (10 passes). This experiment was the first step to developing a zone refining process for plutonium metal.

  12. Methods for reducing the loss of metal in a metal vapor laser

    DOE Patents [OSTI]

    Duncan, David B. (Auburn, CA); Alger, Terry W. (Tracy, CA)

    1990-01-01T23:59:59.000Z

    Methods are provided for reducing loss of metal from a metal vapor laser by collecting metal present outside the hot zone of the laser and introducing or confining it in the hot zone.

  13. Equilibrium metal concentration at zero net sorption (EMC{sub 0}): A new concept

    SciTech Connect (OSTI)

    Yuan, G.; Lavkulich, L.M. [Univ. of British Columbia, Vancouver, British Columbia (Canada). Dept. of Soil Sciences

    1995-12-31T23:59:59.000Z

    Heavy metals in soils and waters are of environmental concerns. Since total concentration of a metal in soil is not directly related to its bioavailability, soil tests rely on measurement of extractable or labile fractions of metals. However, reagents used in the measurements are significantly different from natural waters entering soils in terms of ionic strength, acidity, and heavy metal concentration, making the direct interpretation of test results difficult if correlation between chemical test data and plant response in the field is not available. It is suggested that EMC{sub 0} be used as an indicator of heavy metal status in soils. EMC{sub 0} can be determined as follows: solutions with various metal concentrations (C{sub 0}) in 0.005 M CaCl{sub 2} matrix are added to soil samples at a fixed soil/solution ratio. The suspensions are shaken 24 hrs to achieve equilibrium, and centrifuged. Metal concentrations in supernatants are analyzed and plotted against C{sub 0}. A regression line based on plotted data an da 1:1 line are drawn. The X-axis value corresponding t the intersection of the liens is EMC{sub 0}. At the intersection, metal concentration at equilibrium equals that in the initial solution; indicating net sorption of the metal is zero. A EMC{sub 0} value of 0.27 mg/kg Zn was determined in a soil sample from the Fraser Valley in British Columbia. The soil received heavy applications of poultry manure.This value is much greater than water soluble Zn (0.06 mg/kg) of the sample. The significance of EMC{sub 0} is when concentrations of a metal in natural waters are less than EMC{sub 0}, soil will release the metal to soil solution. EMC{sub 0} may be useful in comparing relative degrees of contamination in contaminated soils.

  14. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOE Patents [OSTI]

    Ellis, T.W.; Schmidt, F.A.

    1995-08-01T23:59:59.000Z

    A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.

  15. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOE Patents [OSTI]

    Ellis, Timothy W. (Ames, IA); Schmidt, Frederick A. (Ames, IA)

    1995-08-01T23:59:59.000Z

    Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.

  16. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    SciTech Connect (OSTI)

    Ebbinghaus, B.B.

    1991-05-01T23:59:59.000Z

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cell technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF[sub 2], ThO[sub 2], YDT(0.85ThO[sub 2]-0.15YO[sub 1.5]), and LDT(0.85ThO[sub 2]- 0.15LaO[sub 1.5]) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.

  17. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    SciTech Connect (OSTI)

    Ebbinghaus, B.B.

    1991-05-01T23:59:59.000Z

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cell technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF{sub 2}, ThO{sub 2}, YDT(0.85ThO{sub 2}-0.15YO{sub 1.5}), and LDT(0.85ThO{sub 2}- 0.15LaO{sub 1.5}) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.

  18. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11T23:59:59.000Z

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  19. Metal volatilization and separation during incineration

    SciTech Connect (OSTI)

    Ho, T.C.; Chu, H.W.; Hopper, J.R. (Lamar Univ., Beaumont, TX (United States). Dept. of Chemical Engineering)

    1993-01-01T23:59:59.000Z

    The US Environmental Protection Agency (US EPA) has reported that metals can account for almost all of the identified risks from a thermal treatment process. Fundamental research leading to better understanding of their behavior and improved control of their emissions is greatly needed. This paper reports studies on metal volatilization and separation during incineration. Metal volatilization studies were carried out in two separate experiments. In the first experiment, the dynamic volatilization characteristics of various metals during the combustion of metal-containing wood pellets were investigated in a high-temperature electric furnace. In addition to uncontrolled volatilization, the potential of employing chemical additives to bind metals and prevent them from volatilizing during combustion was also investigated. The second experiment involved the investigation of metal volatilization characteristics during the thermal treatment of metal-contaminated clay in a fluidized bed unit. The metal species tested in both experiments were compounds of lead and cadmium. Metal capture/separation studies were also carried out in two separate experiments. The first involved the use of sorbents in the combustion chamber to capture metals during the fluidized bed incineration of metal-containing wood pellets. The second experiments, however, employed sorbents to absorb metal vapors in a fluidized-bed waste-heat boiler. The objective of both the experiments is to characterize the metal absorption efficiency associated with the processes.

  20. Approximating Metal-Insulator Transitions

    E-Print Network [OSTI]

    C. Danieli; K. Rayanov; B. Pavlov; G. Martin; S. Flach

    2014-05-06T23:59:59.000Z

    We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate metal-insulator transitions (MIT) at the finite iteration steps. We also report evidence on mobility edges which are at variance to the celebrated Aubry-Andre model. The dynamics near the MIT shows a critical slowing down of the ballistic group velocity in the metallic phase similar to the divergence of the localization length in the insulating phase.

  1. Metallization and insulization during impact

    SciTech Connect (OSTI)

    Gilman, J.J.

    1992-10-01T23:59:59.000Z

    It is pointed out that the large strains produced by hypervelocity impacts can be expected to produce dramatic changes in the chemical bonding (electronic structures) of materials. This will change the mechanical behavior towards increased ductility when a semiconductor is compressed until it becomes metallic; and towards increased brittleness when a transition metal is expanded so as to localize its d-band electrons. Both isotropic compression (expansion) and shear strains can cause these transformations. Critical deformation criteria are given based on the observed cubic to tetragonal transformations in compressed semiconductors.

  2. Laser photodeposition of refractory metals

    SciTech Connect (OSTI)

    Solanki, R.; Boyer, P.K.; Mahan, J.E.; Collins, G.J.

    1981-04-01T23:59:59.000Z

    We report the deposition of the refractory metals chromium, molybdenum, and tungsten through the laser-induced gas-phase photolysis of their respective hexacarbonyls. A copper, hollow cathode laser was used at ultraviolet wavelengths matched to peaks in the absorption spectra of the carbonyl molecules. Localized room-temperature metal deposition was achieved by focusing the beam into a cell containing the carbonyl gas and helium as a buffer. No major differences were noted for deposition on a polished silicon wafer, a thermally oxidized silicon wafer, and a quartz flat.

  3. Photobiomolecular metallic particles and films

    DOE Patents [OSTI]

    Hu, Zhong-Cheng

    2003-05-06T23:59:59.000Z

    The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.

  4. Thermal barrier and overlay coating systems comprising composite metal/metal oxide bond coating layers

    DOE Patents [OSTI]

    Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL); Vance, Steven J. (Orlando, FL)

    2001-01-01T23:59:59.000Z

    The present invention generally describes multilayer coating systems comprising a composite metal/metal oxide bond coat layer. The coating systems may be used in gas turbines.

  5. Metal oxide and metal fluoride nanostructures and methods of making same

    DOE Patents [OSTI]

    Wong, Stanislaus S. (Stony Brook, NY); Mao, Yuanbing (Los Angeles, CA)

    2009-08-18T23:59:59.000Z

    The present invention includes pure single-crystalline metal oxide and metal fluoride nanostructures, and methods of making same. These nanostructures include nanorods and nanoarrays.

  6. Method for producing metal oxide nanoparticles

    DOE Patents [OSTI]

    Phillips, Jonathan (Santa Fe, NM); Mendoza, Daniel (Santa Fe, NM); Chen, Chun-Ku (Albuquerque, NM)

    2008-04-15T23:59:59.000Z

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  7. Mechanics of Metals with Phase Changes

    SciTech Connect (OSTI)

    Lashley, J.C.

    2001-01-01T23:59:59.000Z

    New experimental data is presented on some exotic metals that exhibit phase changes at cryogenic temperatures. The types of phase changes that were detected in the specific heat data range from martensitic (diffusion less) transitions to superconducting transitions. In addition, the charge density wave (CDW) state in uranium metal was detected in the specific heat. Specific-heat measurements were made in zero-magnetic field using an apparatus capable of obtaining temperatures as low as 0.4 K. Calibration performed on this apparatus, using a single-crystal copper sample, show its accuracy to be 0.50%, while the resolution was better than 0.1%. Our measurements demonstrate that similar high precision and accurate specific-heat measurements can be obtained on milligram-scale samples. In Chapters 2 and 3, specific-heat measurements are presented for the B2 (CsCl structure) alloy AuZn and for {alpha}-uranium (orthorhombic symmetry). The AuZn alloy exhibits a continuous transition at 64.75 K and an entropy of transition of ({Delta}S{sub tr}) 2.02 J K{sup {minus}1} mol{sup {minus}1}. Calculation of the Debye temperature, by extrapolating of the high temperature phase elastic constants to T = 0 K yields a value of 207 K ({+-}2 K), in favorable agreement with the calorimetric value of 219 K ({+-}0.50 K), despite the intervening martensitic transition. Reported results for single-crystal {alpha}-U show a low-temperature limiting {Theta}{sub D} of 256 K ({+-}0.50 K) and four low-temperature anomalies: a superconducting transition below 1 K, an electronic transition at 22 K, and two anomalies at 38 K and at 42 K indicative of the CDW state. In order to continue the study of the actinide series of elements, a program was initiated to first purify and then grow single crystals of plutonium. Accordingly, the focus of Chapters 4 through 6 will be a description of plutonium sample preparation. In this program plutonium metal was purified via zone refining, using a levitated molten zone to minimize the introduction of impurities. Several impurities were reduced to levels below that of instrument detection limits. Results indicate that six sequential zone refining passes are required to obtain metal with 130 ppm total impurities (excluding N, O, F, Cl, and Br). Small single crystals with a volume of 1 mm{sup 3} were grown of {delta}-plutonium by a strain-anneal technique. The values obtained for the critical strain in the strain-anneal experiments are in favorable agreement with values obtained by other researches using loading methods other than biaxial loading.

  8. SciTech Connect: Metal-Organic Framework Templated Inorganic...

    Office of Scientific and Technical Information (OSTI)

    Metal-Organic Framework Templated Inorganic Sorbents for Rapid and Efficient Extraction of Heavy Metals Citation Details In-Document Search Title: Metal-Organic Framework Templated...

  9. Cobalt discovery replaces precious metals as industrial catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    develop alternatives to the precious metal catalysts by using relatively inexpensive, earth-abundant metals. The chemical complexities of the more common metals have made this...

  10. Metal accumulation in terrestrial pulmonates at a lead/zinc smelter site in Arnoldstein, Austria

    SciTech Connect (OSTI)

    Rabitsch, W.B. [Univ. of Vienna, Vienna (Austria)] [Univ. of Vienna, Vienna (Austria)

    1996-05-01T23:59:59.000Z

    Recently,the suitability of terrestrial gastropods was reviewed as quantitative indicator organisms for environmental metal pollution. The peculiar metal accumulation capabilities in molluscs have been known in detail for decades, but {open_quotes}only few data are available for terrestrial pulmonates{close_quotes}. Furthermore, data are restricted to only a few species, and despite similarities in metabolic pathways, species-specific properties in metal-budget strategies exist. Information concerning the potential range of metal burden in these animals form the field are, therefore, of ecophysical relevance. Snails satisfy a basic demand as quantitative indicators of the bioavailable fraction of terrestrial metal pollution. In this study concentrations of lead, cadmium, copper and zinc were measured in tissues of 4 species of snails collected in the vicinity of a lead/zinc smelter with a long history of pollution. 23 refs., 3 figs., 1 tab.

  11. Corrosion resistant metallic bipolar plate

    DOE Patents [OSTI]

    Brady, Michael P. (Oak Ridge, TN); Schneibel, Joachim H. (Knoxville, TN); Pint, Bruce A. (Knoxville, TN); Maziasz, Philip J. (Oak Ridge, TN)

    2007-05-01T23:59:59.000Z

    A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.

  12. Transition metal sulfide loaded catalyst

    DOE Patents [OSTI]

    Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

    1994-04-26T23:59:59.000Z

    A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  13. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    SciTech Connect (OSTI)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01T23:59:59.000Z

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This

  14. Gas adsorption on metal-organic frameworks

    DOE Patents [OSTI]

    Willis, Richard R. (Cary, IL); Low, John J. (Schaumburg, IL), Faheem, Syed A. (Huntley, IL); Benin, Annabelle I. (Oak Forest, IL); Snurr, Randall Q. (Evanston, IL); Yazaydin, Ahmet Ozgur (Evanston, IL)

    2012-07-24T23:59:59.000Z

    The present invention involves the use of certain metal organic frameworks that have been treated with water or another metal titrant in the storage of carbon dioxide. The capacity of these frameworks is significantly increased through this treatment.

  15. Postsynthetic modification of metal-organic frameworks

    E-Print Network [OSTI]

    Tanabe, Kristine Kimie

    2011-01-01T23:59:59.000Z

    S. M. "Tuning Hydrogen Sorption Properties of Metal-OrganicS. M. "Tuning Hydrogen Sorption Properties of Metal-OrganicA summary of hydrogen sorption properties of three distinct

  16. Aspects of the mechanics of metallic glasses

    E-Print Network [OSTI]

    Henann, David Lee

    2011-01-01T23:59:59.000Z

    Metallic glasses are amorphous materials that possess unique mechanical properties, such as high tensile strengths and good fracture toughnesses. Also, since they are amorphous, metallic glasses exhibit a glass transition, ...

  17. NANO - "Green" metal oxides ... | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Green" metal oxides ... Water and nano-sized particles isolated from trees, plants and algae are the ingredients of a new recipe for low-cost metal oxides that are widely used in...

  18. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01T23:59:59.000Z

    CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Corrosion of Oil Shale Retort Component Materials," LBL-

  19. Metal salen catalyzed production of polytrimethylene carbonate

    E-Print Network [OSTI]

    Ganguly, Poulomi

    2009-06-02T23:59:59.000Z

    of Lewis acidic metal salen complexes (Al & Sn), as catalysts for this process. This was followed by the utilization of metal salen complexes of biometals as catalysts for the synthesis of these biodegradable polymers, as well as for the copolymerization...

  20. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01T23:59:59.000Z

    CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Elevated Temperature Corrosion of Oil Shale Retort Component

  1. Metallicity of the Intergalactic Medium Using Pixel Statistics: I. Method

    E-Print Network [OSTI]

    Anthony Aguirre; Joop Schaye; Tom Theuns

    2002-07-04T23:59:59.000Z

    Studies of absorption spectra of high-z QSOs have revealed that the intergalactic medium at z ~ 2-3 is enriched to ~ 0.1%-1% solar for gas densities more than a few times the mean cosmic density, but have not yet produced an accurate metallicity estimate, nor constrained variations in the metallicity with density, redshift, or spatial location. This paper discusses the ``pixel optical depth'' (POD) method of QSO spectrum analysis, using realistic simulated spectra from cosmological simulations. In this method, absorption in Ly-alpha is compared to corresponding metal absorption on a pixel-by-pixel basis, yielding for each analyzed spectrum a single statistical correlation encoding metal enrichment information. Our simulations allow testing and optimization of each step of the technique's implementation. Tests show that previous studies have probably been limited by C IV self-contamination and O VI contamination by HI lines; we have developed and tested an effective method of correcting for both contaminants. We summarize these and other findings, and provide a useful recipe for the POD technique's application to observed spectra. Our tests reveal that the POD technique applied to spectra of presently available quality is effective in recovering useful metallicity information even in underdense gas. We present an extension of the POD technique to directly recover the intergalactic metallicity as a function of gas density. For a given ionizing background, both the oxygen and carbon abundance can be measured with errors of at most a factor of a few over at least an order of magnitude in density, using a single high-quality spectrum.

  2. Preparation of metal-triazolate frameworks

    DOE Patents [OSTI]

    Yaghi, Omar M; Uribe-Romo, Fernando J; Gandara-Barragan, Felipe; Britt, David K

    2014-10-07T23:59:59.000Z

    The disclosure provides for novel metal-triazolate frameworks, methods of use thereof, and devices comprising the frameworks thereof.

  3. Spectroscopic studies of metal growth on oxides

    E-Print Network [OSTI]

    Luo, Kai

    2000-01-01T23:59:59.000Z

    : Chemistry SPECTROSCOPIC STUDIES OF METAL GROWTH ON OXIDES A Thesis by KAI LUO Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style a d content by: avid W. Goodman.... , Jilin University, P. R. China Chair of Advisory Committee: Dr, David W. Goodman Metal/oxide chemistry and metal cluster growth on oxides are fundamental to our understanding of the catalytic activity and selectivity of metal catalysts, thus...

  4. Sintering and ripening resistant noble metal nanostructures

    DOE Patents [OSTI]

    van Swol, Frank B; Song, Yujiang; Shelnutt, John A; Miller, James E; Challa, Sivakumar R

    2013-09-24T23:59:59.000Z

    Durable porous metal nanostructures comprising thin metal nanosheets that are metastable under some conditions that commonly produce rapid reduction in surface area due to sintering and/or Ostwald ripening. The invention further comprises the method for making such durable porous metal nanostructures. Durable, high-surface area nanostructures result from the formation of persistent durable holes or pores in metal nanosheets formed from dendritic nanosheets.

  5. Carbon and Strontium Abundances of Metal-Poor Stars

    E-Print Network [OSTI]

    David K. Lai; Jennifer A. Johnson; Michael Bolte; Sara Lucatello

    2007-06-20T23:59:59.000Z

    We present carbon and strontium abundances for 100 metal-poor stars measured from R$\\sim $7000 spectra obtained with the Echellette Spectrograph and Imager at the Keck Observatory. Using spectral synthesis of the G-band region, we have derived carbon abundances for stars ranging from [Fe/H]$=-1.3$ to [Fe/H]$=-3.8$. The formal errors are $\\sim 0.2$ dex in [C/Fe]. The strontium abundance in these stars was measured using spectral synthesis of the resonance line at 4215 {\\AA}. Using these two abundance measurments along with the barium abundances from our previous study of these stars, we show it is possible to identify neutron-capture-rich stars with our spectra. We find, as in other studies, a large scatter in [C/Fe] below [Fe/H]$ = -2$. Of the stars with [Fe/H]$carbon-rich metal-poor stars. The Sr and Ba abundances show that three of the carbon-rich stars are neutron-capture-rich, while two have normal Ba and Sr. This fraction of carbon enhanced stars is consistent with other studies that include this metallicity range.

  6. Trace Metal Source Terms in Carbon Sequestration Environments

    SciTech Connect (OSTI)

    Karamalidis, Athanasios K.; Torres, Sharon G.; Hakala, J. Alexandra; Shao, Hongbo; Cantrell, Kirk J.; Carroll, Susan

    2013-01-01T23:59:59.000Z

    Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising, however, possible CO{sub 2} or CO{sub 2}-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define trace metal source terms from the reaction of supercritical CO{sub 2}, storage reservoir brines, reservoir and cap rocks. Storage reservoir source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from sandstones, shales, carbonates, evaporites, basalts and cements from the Frio, In Salah, Illinois Basin Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution is tracked by measuring solution concentrations over time under conditions (e.g. pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for Maximum Contaminant Levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments due to the presence of CO{sub 2}. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rock exceed the MCLs by an order of magnitude while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the reservoir and caprock source term to further evaluate the impact of leakage on groundwater quality.

  7. subcollector Schottky collector contact & interconnect metals

    E-Print Network [OSTI]

    Rodwell, Mark J. W.

    base collector depletion layer subcollector ohmic metal (a) base collector depletion layer Schottky metal base emitter collector collector We emitter base emitter emitter We Wc Wc (b) Schottky collector contact & interconnect metals Emitter & collector Ohmics undoped collector depletion layer base N

  8. Process for making transition metal nitride whiskers

    DOE Patents [OSTI]

    Bamberger, Carlos E. (Oak Ridge, TN)

    1989-01-01T23:59:59.000Z

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites.

  9. Process for making transition metal nitride whiskers

    DOE Patents [OSTI]

    Bamberger, C.E.

    1988-04-12T23:59:59.000Z

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.

  10. Imestigation ol" Maenons in Rare Earth Metals

    E-Print Network [OSTI]

    Imestigation ol" Maenons in Rare Earth Metals b\\ Inelastic Neutron Scattering tL Bjerrum Moiler #12;BLANK PAGE #12;Riso Report No. 178 Investigation of Magnons in Rare Earth Metals by Inelastic NeutronN LANGF h. a. dec. #12;Contents Page PREFACE 7 I. INTRODUCTION *> 1. Magnetism of Rare Earth Metals 10 2

  11. Method for decontamination of radioactive metal surfaces

    DOE Patents [OSTI]

    Bray, L.A.

    1996-08-13T23:59:59.000Z

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  12. Plasticity of Metal Nanowires Christopher R. Weinberger

    E-Print Network [OSTI]

    Cai, Wei

    Plasticity of Metal Nanowires Christopher R. Weinberger Sandia National Laboratories, Albuquerque-4040 (Dated: November 24, 2011) Abstract The mechanisms of plasticity in metal naowires with diameters below 100 nm are reviewed. At these length scales, plasticity in face-centered-cubic metals subjected

  13. Method for decontamination of radioactive metal surfaces

    DOE Patents [OSTI]

    Bray, Lane A. (Richland, WA)

    1996-01-01T23:59:59.000Z

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  14. Spectroscopic investigation of metal-RNA interactions

    E-Print Network [OSTI]

    Vogt, Matthew John

    2005-02-17T23:59:59.000Z

    Metal-RNA interactions are important to neutralize the negative charge and aid in correctly folding the RNA. Spectroscopically active metal ions, especially Mn2+, have been used to probe the type of interaction the metal has with RNA. In previous...

  15. Starbursts and their contribution to metal enrichment

    E-Print Network [OSTI]

    Kunth Daniel

    2007-04-28T23:59:59.000Z

    I review the properties of starburst galaxies, compare the properties of the local ones with more distant starburts and examine their role in the metal enrichment of the interstellar medium and the intergalactic-intracluster medium. Metallicity is not an arrow of time and contrary to current belief metal rich galaxies can also be found at high redshift.

  16. Adsorption of Chromium (VI) by metal hydroxide sludge from the metal finishing

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    1 Adsorption of Chromium (VI) by metal hydroxide sludge from the metal finishing Loc Perrin Ecole sludge (MHS) during the treatment of their liquid effluents charged with heavy metals. Generally, a small part of these sludge is valorized because of their important metal fickleness. Consequently

  17. Slag Metal Reactions in Binary CaF2-Metal Oxide Welding Fluxes

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) Slag Metal Reactions in Binary CaF2-Metal Oxide Welding Fluxes Some otherwise chemically stable fluxes may decompose into suboxides in the presence of welding arcs, thereby providing higher levels of 0 2 in weld metal than those oxides which do not form suboxides ABSTRACT. The stability of metal

  18. Transition metal oxide improves overall efficiency and maintains performance with inexpensive metals.

    E-Print Network [OSTI]

    Transition metal oxide improves overall efficiency and maintains performance with inexpensive that inserting a transition metal oxide (TMO) between the lead sulfide (PbS) quantum dot (QD) layer and the metal-Yu Chen; Octavi E. Semonin; Arthur J. Nozik; Randy J. Ellingson; Matthew C. Beard."n-Type Transition Metal

  19. METAL-NON METAL TRANSITIONS /N RARE EARTH COMPOUNDS. EXPERIMENT AND THEORK /.

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    METAL-NON METAL TRANSITIONS /N RARE EARTH COMPOUNDS. EXPERIMENT AND THEORK /. VALENCE INSTABILITIES, superconductivity, electron-phonon and band theory, to name a few. 2. Properties of normal rare earth metals. - Before discussing rare earth valence instabilities, three relevant general features of rare earth metals

  20. Percolation of gallium dominates the electrical resistance of focused ion beam deposited metals

    SciTech Connect (OSTI)

    Faraby, H. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093 (United States); DiBattista, M. [Qualcomm Technologies Incorporated, San Diego, California 92121 (United States); Bandaru, P. R., E-mail: pbandaru@ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093 (United States)

    2014-04-28T23:59:59.000Z

    Metal deposition through focused ion beam (FIB) based systems is thought to result in material composed of the primary metal from the metallo-organic precursor in addition to carbon, oxygen, and gallium. We determined, through electrical resistance and chemical composition measurements on a wide range of FIB deposited platinum and tungsten lines, that the gallium ion (Ga{sup +}) concentration in the metal lines plays the dominant role in controlling the electrical resistivity. Effective medium theory, based on McLachlan's formalisms, was used to describe the relationship between the Ga{sup +} concentration and the corresponding resistivity.

  1. Removal of Heavy Metals from Aqueous Systems with Thiol Functionalized...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heavy Metals from Aqueous Systems with Thiol Functionalized Superparamagnetic Nanoparticles. Removal of Heavy Metals from Aqueous Systems with Thiol Functionalized...

  2. Layer-by-Layer Fabrication of Oriented Porous Thin Films Based on Porphyrin-Containing Metal-Organic Frameworks

    E-Print Network [OSTI]

    with number of growth cycles. Polarization excitation and fluorescence measurements indicate, Papanikolas et al. have reported on the fabrication and energy migration dynamics of metal for its exploitation for the preparation of molecular devices.19 Example materials include HKUST-1

  3. Low contact resistivity of metals on nitrogen-doped cuprous oxide (Cu 2O) thin-films

    E-Print Network [OSTI]

    Siah, Sin Cheng

    Forming low-resistivity contacts on cuprous oxide (Cu[subscript 2]O) is an essential step toward demonstrating its suitability as a candidate solar cell material. We measure the contact resistivity of three noble metals ...

  4. CVD of refractory amorphous metal alloys

    SciTech Connect (OSTI)

    Tenhover, M. [The Carborundum Co., Niagara Falls, NY (United States). Technology Div.

    1995-08-01T23:59:59.000Z

    In this work, a novel process is described for the fabrication of multi-metallic amorphous metal alloy coatings using a chemical vapor deposition (CVD) technique. Of special interest in this work are amorphous metal alloys containing Mo and/or Cr which have high crystallization temperatures and readily available low decomposition temperature metal-bearing precursors. The conditions for amorphous alloy formation via CVD are described as well as the chemical properties of these materials. High temperature, aqueous corrosion tests have shown these materials (especially those containing Cr) are among the most corrosion resistant metal alloys known.

  5. Directly susceptible, noncarbon metal ceramic composite crucible

    DOE Patents [OSTI]

    Holcombe, Jr., Cressie E. (Farragut, TN); Kiggans, Jr., James O. (Oak Ridge, TN); Morrow, S. Marvin (Kingston, TN); Rexford, Donald (Pattersonville, NY)

    1999-01-01T23:59:59.000Z

    A sintered metal ceramic crucible suitable for high temperature induction melting of reactive metals without appreciable carbon or silicon contamination of the melt. The crucible comprises a cast matrix of a thermally conductive ceramic material; a perforated metal sleeve, which serves as a susceptor for induction heating of the crucible, embedded within the ceramic cast matrix; and a thermal-shock-absorber barrier interposed between the metal sleeve and the ceramic cast matrix to allow for differential thermal expansions between the matrix and the metal sleeve and to act as a thermal-shock-absorber which moderates the effects of rapid changes of sleeve temperature on the matrix.

  6. Direct electrochemical reduction of metal-oxides

    DOE Patents [OSTI]

    Redey, Laszlo I. (Downers Grove, IL); Gourishankar, Karthick (Downers Grove, IL)

    2003-01-01T23:59:59.000Z

    A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

  7. Synthesis of transition metal carbonitrides

    DOE Patents [OSTI]

    Munir, Zuhair A. R. (Davis, CA); Eslamloo-Grami, Maryam (Davis, CA)

    1994-01-01T23:59:59.000Z

    Transition metal carbonitrides (in particular, titanium carbonitride, TiC.sub.0.5 N.sub.0.5) are synthesized by a self-propagating reaction between the metal (e.g., titanium) and carbon in a nitrogen atmosphere. Complete conversion to the carbonitride phase is achieved with the addition of TiN as diluent and with a nitrogen pressure .gtoreq.0.6 MPa. Thermodynamic phase-stability calculations and experimental characterizations of quenched samples provided revealed that the mechanism of formation of the carbonitride is a two-step process. The first step involves the formation of the nonstoichiometric carbide, TiC.sub.0.5, and is followed by the formation of the product by the incorporation of nitrogen in the defect-structure carbide.

  8. Amorphous metal alloy and composite

    DOE Patents [OSTI]

    Wang, Rong (Richland, WA); Merz, Martin D. (Richland, WA)

    1985-01-01T23:59:59.000Z

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  9. Metal resistance sequences and transgenic plants

    DOE Patents [OSTI]

    Meagher, Richard Brian (Athens, GA); Summers, Anne O. (Athens, GA); Rugh, Clayton L. (Athens, GA)

    1999-10-12T23:59:59.000Z

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  10. Metalization of lipid vesicles via electroless plating

    SciTech Connect (OSTI)

    Ferrar, W.T.; O'Brien, D.F.; Warshawsky, A.; Voycheck, C.L.

    1988-01-06T23:59:59.000Z

    The encapsulation of metallic particles and metallic oxides within lipid vesicles has recently been of interest for applications such as catalysis, water splitting, and magnetic control of spin coupling. In this communication the authors introduce the concept and practice of the deposition of metal on vesicles by using electroless plating techniques. Coordination of low valent transition metals to organic functional groups on the surface of the bilayer membrane provides a means of binding metal atoms to vesicles. Chemical reduction produced zero valent atoms which serve as sites for further metal deposition by the chemical reduction techniques of electroless plating. Specifically, this procedure involved the binding of a small amount of tetrachloropalladate to the vesicle bilayer, reduction of the palladium(II) to palladium(0), followed by the deposition of much larger amounts of metal from an electroless plating solution. Electroless plating solutions were used for the deposition of palladium, nickel, cobalt, or copper metal onto the catalytic palladium centers. Since the metallic particles were associated with the vesicles, colloids were formed that were stable in water for much longer periods than the control metal particles formed in water alone. If the vesicles were composed in part of unsaturated lipids, with the olefinic groups on the hydrocarbon chains, the initial evidence suggests the transition metal was directed into the bilayer, rather than staying on the surface.

  11. Submicron patterned metal hole etching

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA); Contolini, Robert J. (Lake Oswego, OR); Liberman, Vladimir (Needham, MA); Morse, Jeffrey (Martinez, CA)

    2000-01-01T23:59:59.000Z

    A wet chemical process for etching submicron patterned holes in thin metal layers using electrochemical etching with the aid of a wetting agent. In this process, the processed wafer to be etched is immersed in a wetting agent, such as methanol, for a few seconds prior to inserting the processed wafer into an electrochemical etching setup, with the wafer maintained horizontal during transfer to maintain a film of methanol covering the patterned areas. The electrochemical etching setup includes a tube which seals the edges of the wafer preventing loss of the methanol. An electrolyte composed of 4:1 water: sulfuric is poured into the tube and the electrolyte replaces the wetting agent in the patterned holes. A working electrode is attached to a metal layer of the wafer, with reference and counter electrodes inserted in the electrolyte with all electrodes connected to a potentiostat. A single pulse on the counter electrode, such as a 100 ms pulse at +10.2 volts, is used to excite the electrochemical circuit and perform the etch. The process produces uniform etching of the patterned holes in the metal layers, such as chromium and molybdenum of the wafer without adversely effecting the patterned mask.

  12. Method of nitriding refractory metal articles

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Omatete, Ogbemi O. (Lagos, NG); Young, Albert C. (Flushing, NY)

    1994-01-01T23:59:59.000Z

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  13. Induction slag reduction process for purifying metals

    DOE Patents [OSTI]

    Traut, Davis E. (Corvallis, OR); Fisher, II, George T. (Albany, OR); Hansen, Dennis A. (Corvallis, OR)

    1991-01-01T23:59:59.000Z

    A continuous method is provided for purifying and recovering transition metals such as neodymium and zirconium that become reactive at temperatures above about 500.degree. C. that comprises the steps of contacting the metal ore with an appropriate fluorinating agent such as an alkaline earth metal fluosilicate to form a fluometallic compound, and reducing the fluometallic compound with a suitable alkaline earth or alkali metal compound under molten conditions, such as provided in an induction slag metal furnace. The method of the invention is advantageous in that it is simpler and less expensive than methods used previously to recover pure metals, and it may be employed with a wide range of transition metals that were reactive with enclosures used in the prior art methods and were hard to obtain in uncontaminated form.

  14. Methods of selectively incorporating metals onto substrates

    DOE Patents [OSTI]

    Ernst; Richard D. (Salt Lake City, UT), Eyring; Edward M. (Salt Lake City, UT), Turpin; Gregory C. (Salt Lake City, UT), Dunn; Brian C. (Salt Lake City, UT)

    2008-09-30T23:59:59.000Z

    A method for forming multi-metallic sites on a substrate is disclosed and described. A substrate including active groups such as hydroxyl can be reacted with a pretarget metal complex. The target metal attached to the active group can then be reacted with a secondary metal complex such that an oxidation-reduction (redox) reaction occurs to form a multi-metallic species. The substrate can be a highly porous material such as aerogels, xerogels, zeolites, and similar materials. Additional metal complexes can be reacted to increase catalyst loading or control co-catalyst content. The resulting compounds can be oxidized to form oxides or reduced to form metals in the ground state which are suitable for practical use.

  15. DOWN-STREAM SPATIAL DISTRIBUTION OF ANTIBIOTIC RESISTANCE TRAITS ALONG METAL CONTAMINATED STREAM REACHES

    SciTech Connect (OSTI)

    Tuckfield, C; J V Mcarthur (NOEMAIL), J

    2007-04-16T23:59:59.000Z

    Sediment bacteria samples were collected from three streams in South Carolina, two contaminated with multiple metals (Four Mile Creek and Castor Creek), one uncontaminated (Meyers Branch), and another metal contaminated stream (Lampert Creek) in northern Washington State. Growth plates inoculated with Four Mile Creek sample extracts show bacteria colony growth after incubation on plates containing either one of two aminoglycosides (kanamycin or streptomycin), tetracycline or chloramphenocol. This study analyzes the spatial pattern of antibiotic resistance in culturable sediment bacteria in all four streams that may be due to metal contamination. We summarize the two aminoglycoside resistance measures and the 10 metals concentrations by Principal Components Analysis. Respectively, 63% and 58% of the variability was explained in the 1st principal component of each variable set. We used the respective multivariate summary metrics (i.e. 1st principal component scores) as input measures for exploring the spatial correlation between antibiotic resistance and metal concentration for each stream reach sampled. Results show a significant and negative correlation between metals scores versus aminoglycoside resistance scores and suggest that selection for metal tolerance among sediment bacteria may influence selection for antibiotic resistance differently than previously supposed.. In addition, we borrow a method from geostatistics (variography) wherein a spatial cross-correlation analysis shows that decreasing metal concentrations scores are associated with increasing aminoglycoside resistance scores as the separation distance between sediment samples decreases, but for contaminated streams only. Since these results were counter to our initial expectation and to other experimental evidence for water column bacteria, we suspect our field results are influenced by metal bioavailability in the sediments and by a contaminant promoted interaction or ''cocktail effect'' from complex combinations of pollution mediated selection agents.

  16. Method and apparatus for dissociating metals from metal compounds extracted into supercritical fluids

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Hunt, Fred H. (Moscow, ID); Smart, Neil G. (Workington, GB); Lin, Yuehe (Richland, WA)

    2000-01-01T23:59:59.000Z

    A method for dissociating metal-ligand complexes in a supercritical fluid by treating the metal-ligand complex with heat and/or reducing or oxidizing agents is described. Once the metal-ligand complex is dissociated, the resulting metal and/or metal oxide form fine particles of substantially uniform size. In preferred embodiments, the solvent is supercritical carbon dioxide and the ligand is a .beta.-diketone such as hexafluoroacetylacetone or dibutyldiacetate. In other preferred embodiments, the metals in the metal-ligand complex are copper, silver, gold, tungsten, titanium, tantalum, tin, or mixtures thereof. In preferred embodiments, the reducing agent is hydrogen. The method provides an efficient process for dissociating metal-ligand complexes and produces easily-collected metal particles free from hydrocarbon solvent impurities. The ligand and the supercritical fluid can be regenerated to provide an economic, efficient process.

  17. Effect of residual gases in high vacuum on the energy-level alignment at noble metal/organic interfaces

    SciTech Connect (OSTI)

    Helander, M. G.; Wang, Z. B.; Lu, Z. H.

    2011-10-31T23:59:59.000Z

    The energy-level alignment at metal/organic interfaces has traditionally been studied using ultraviolet photoelectron spectroscopy (UPS) in ultra-high vacuum (UHV). However, since most devices are fabricated in high vacuum (HV), these studies do not accurately reflect the interfaces in real devices. We demonstrate, using UPS measurements of samples prepared in HV and UHV and current-voltage measurements of devices prepared in HV, that the small amounts of residual gases that are adsorbed on the surface of clean Cu, Ag, and Au (i.e., the noble metals) in HV can significantly alter the energy-level alignment at metal/organic interfaces.

  18. Sumitomo Metal Industries Ltd Sumitomo Metals | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL ElecStrategicStories HomeSumco Techxiv CorporationMetal

  19. Optical detection of spin Hall effect in metals

    SciTech Connect (OSTI)

    Erve, O. M. J. van t, E-mail: Olaf.Vanterve@nrl.navy.mil; Hanbicki, A. T.; McCreary, K. M.; Li, C. H.; Jonker, B. T. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-04-28T23:59:59.000Z

    Optical techniques have been widely used to probe the spin Hall effect in semiconductors. In metals, however, only electrical methods such as nonlocal spin valve transport, ferromagnetic resonance, or spin torque transfer experiments have been successful. These methods require complex processing techniques and measuring setups. We show here that the spin Hall effect can be observed in non-magnetic metals such as Pt and ?-W, using a standard bench top magneto-optical Kerr system with very little sample preparation. Applying a square wave current and using Fourier analysis significantly improve our detection level. One can readily determine the angular dependence of the induced polarization on the bias current direction (very difficult to do with voltage detection), the orientation of the spin Hall induced polarization, and the sign of the spin Hall angle. This optical approach is free from the complications of various resistive effects, which can compromise voltage measurements. This opens up the study of spin Hall effect in metals to a variety of spin dynamic and spatial imaging experiments.

  20. High Frequency Microphone Measurements for Transition Detection

    E-Print Network [OSTI]

    : Aeroelastic Design - Wind Energy Department Abstract: ISSN 0106-2840 This report is an appendix to [1 side 7 3.1.1 C16 Clean - 7 3.1.2 C3 Clean - 10 3.1.3 C4 Clean - 12 3.1.4 C5 Clean - 14 3.1.5 C6 Clean tape 2% - 35 3.1.14 T6 Trip wire. Bump tape 2% - 38 3.1.15 C16a Clean 200x200 40 3.1.16 C3a Clean 200x

  1. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheat flux ARM DatagovMeasurementsVisibilityMeasurements

  2. Methods of producing adsorption media including a metal oxide

    DOE Patents [OSTI]

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04T23:59:59.000Z

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  3. Maternal exposure to metalsConcentrations and predictors of exposure

    SciTech Connect (OSTI)

    Callan, A.C., E-mail: a.callan@ecu.edu.au [Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia); Hinwood, A.L.; Ramalingam, M.; Boyce, M. [Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia)] [Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia); Heyworth, J. [School Population Health, The University of Western Australia, 35 Stirling Highway Crawley, WA 6009 (Australia)] [School Population Health, The University of Western Australia, 35 Stirling Highway Crawley, WA 6009 (Australia); McCafferty, P. [ChemCentre, PO Box 1250, Bentley, WA 6983 (Australia)] [ChemCentre, PO Box 1250, Bentley, WA 6983 (Australia); Odland, J.. [Department of Community Medicine, University of Troms, N-9037 Troms (Norway)] [Department of Community Medicine, University of Troms, N-9037 Troms (Norway)

    2013-10-15T23:59:59.000Z

    A variety of metals are important for biological function but have also been shown to impact health at elevated concentrations, whereas others have no known biological function. Pregnant women are a vulnerable population and measures to reduce exposure in this group are important. We undertook a study of maternal exposure to the metals, aluminium, arsenic, copper, cobalt, chromium, lithium, manganese, nickel, selenium, tin, uranium and zinc in 173 participants across Western Australia. Each participant provided a whole blood and urine sample, as well as drinking water, residential soil and dust samples and completed a questionnaire. In general the concentrations of metals in all samples were low with the notable exception of uranium (blood U mean 0.07 g/L, range <0.010.25 g/L; urinary U mean 0.018 g/g creatinine, range <0.010.199 g/g creatinine). Factors that influenced biological concentrations were consumption of fish which increased urinary arsenic concentrations, hobbies (including mechanics and welding) which increased blood manganese concentrations and iron/folic acid supplement use which was associated with decreased concentrations of aluminium and nickel in urine and manganese in blood. Environmental concentrations of aluminium, copper and lithium were found to influence biological concentrations, but this was not the case for other environmental metals concentrations. Further work is underway to explore the influence of diet on biological metals concentrations in more detail. The high concentrations of uranium require further investigation. -- Highlights: High concentrations of uranium with respect to international literature. Environmental concentrations of Al, Cu and Li influenced urinary concentrations. Exposure to mechanics/welding hobbies increased blood Mn concentrations. Iron/Folic acid supplements reduced biological concentrations of Al, Ni and Mn.

  4. A New Technique for Determining Europium Abundances in Solar-Metallicity Stars

    E-Print Network [OSTI]

    Peek, Kathryn M G

    2009-01-01T23:59:59.000Z

    We present a new technique for measuring the abundance of europium, a representative r-process element, in solar-metallicity stars. Our algorithm compares LTE synthetic spectra with high-resolution observational spectra using a chi-square-minimization routine. The analysis is fully automated, and therefore allows consistent measurement of blended lines even across very large stellar samples. We compare our results with literature europium abundance measurements and find them to be consistent; we also find our method generates smaller errors.

  5. New Processing and Characterization Approaches for Achieving Full Performance of High Temperature Superconducting Tapes of (Bi,Pb)2Sr2Ca2Cu3Ox

    SciTech Connect (OSTI)

    E.E. Hellstrom; D.C. Larbalestier

    2006-03-22T23:59:59.000Z

    The thrust of this research was to identify and understand current limiting mechanisms (CLMs) that limit the current carrying capacity of (Bi,Pb)2Sr2Ca2Cu3Ox (2223) in Ag-sheathed wire. Our program concentrated on developing new methods to identify CLMs at the micrometer scale and new processing techniques to eliminate CLMs. All of the DOE Superconductivity Partnership Initiative (SPI) programs are using 2223 wire, so increasing the critical current density (Jc) in the wire can improve the technical performance of the demonstration projects, and at the same time it can decrease the cost of the wire. The important cost metric for superconducting wire is $/kA?m, so increasing Jc, which is in the denominator, decreases the wire cost. The obvious CLMs were micrometer size obstacles in the 2223 ceramic that block current flow, including: misaligned grains, cracks, pores, and nonsuperconducting phases. Pores and cracks - regions where there is no superconductor or the grains are not physically connected to one another ? cannot carry supercurrent, so they were the first CLMs we tried to eliminate with improved processing. Prior to the contract, we had started investigating overpressure (OP) processing with Williams at ORNL to heal cracks and remove pores. OP processing, which is a variant of hot isostatic pressing (HIP), uses an Ar/O2 gas mixture to apply a high pressure (up to 200 atm) to compress the sample and to set the oxygen partial pressure (pO2) to form 2223. Williams had a static pressure system we used to demonstrate that OP processing healed cracks and densified the wire, but the static system limited the processing parameters we could investigate. We proposed building a new gas-flow OP system to expand the experimental capabilities and to investigate new processing routes using the gas-flow OP system. Using the gas-flow OP system, we established new world records in 2003 for Jc and Ic. These records were finally matched by Sumitomo Electric Company in early 2006. The finest scale at which we could probe the local electromagnetic properties of a sample was about 100 ?m at the beginning of the contract. This was done by attaching voltage taps (10 ?m diameter wires) about 100 ?m apart on the 2223 conductor, and measuring the local I-V characteristics between each set of voltage taps. However, the largest CLMs were 2-3 times smaller than this length scale, and most CLMs were even much smaller. The original proposal was to investigate new methods to identify specific regions in samples that contained CLMs from their electromagnetic response, then to examine these regions of the sample using microstructural techniques to identify the CLM. We extended the use of magneto-optic (MO) imaging and magneto-optic current reconstruction (MOCR) and began developing a low-temperature laser scanning microscope (LTLSM) to show local current flow and local current dissipation, respectively, with a resolution of ~5 ?m. With MOCR we were able to show that local Jc in small regions of OP processed 2223 wire was as high as 300 kA/cm2 at 77K, which was 5-6 times higher than the average Jc measured across the whole sample.

  6. Constructivism, measurement, mathematics Concepts of measurement

    E-Print Network [OSTI]

    Hennig, Christian

    Constructivism, measurement, mathematics Concepts of measurement Measurement and statistics Conclusion Measurement as a constructive act - a statistician's view Christian Hennig March 14, 2013 Christian Hennig Measurement as a constructive act - a statistician's view #12;Constructivism, measurement

  7. Neutron irradiation effects on metal-gallium nitride contacts

    SciTech Connect (OSTI)

    Katz, Evan J.; Lin, Chung-Han; Zhang, Zhichun [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Qiu, Jie; Cao, Lei [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Mishra, Umesh K. [Departments of Electrical and Computer Engineering and Materials Science and Engineering University of California, Santa Barbara, California 93106 (United States); Brillson, Leonard J., E-mail: brillson.1@osu.edu [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Physics and Center for Materials Research, The Ohio State University, Columbus, Ohio 43210 (United States)

    2014-03-28T23:59:59.000Z

    We have measured the effect of fast and thermal neutrons on GaN Schottky barriers and ohmic contacts using currentvoltage and transmission line method electrical techniques, optical, atomic force and scanning electron microscopy morphological techniques, and X-ray photoemission spectroscopy chemical techniques. These studies reveal a 10{sup 15}?n/cm{sup 2} neutron threshold for Schottky barrier ideality factor increases, a 10{sup 15}?n/cm{sup 2} fast plus thermal neutron threshold for ohmic contact sheet and contact resistance increases, and 10{sup 16}?n/cm{sup 2} neutron fluence threshold for major device degradation identified with thermally driven diffusion of Ga and N into the metal contacts and surface phase changes. These results demonstrate the need for protecting metal-GaN contacts in device applications subject to neutron radiation.

  8. A Liquid Metal Flume for Free Surface Magnetohydrodynamic Experiments

    SciTech Connect (OSTI)

    Nornberg, M.D.; Ji, H.; Peterson, J.L.; Rhoads, J.R.

    2008-08-27T23:59:59.000Z

    We present an experiment designed to study magnetohydrodynamic effects in free-surface channel flow. The wide aspect ratio channel (the width to height ratio is about 15) is completely enclosed in an inert atmosphere to prevent oxidization of the liquid metal. A custom-designed pump reduces entrainment of oxygen, which was found to be a problem with standard centrifugal and gear pumps. Laser Doppler Velocimetry experiments characterize velocity profiles of the flow. Various flow constraints mitigate secondary circulation and end effects on the flow. Measurements of the wave propagation characteristics in the liquid metal demonstrate the surfactant effect of surface oxides and the damping of fluctuations by a cross-channel magnetic field.

  9. Elastic properties of Pu metal and Pu-Ga alloys

    SciTech Connect (OSTI)

    Soderlind, P; Landa, A; Klepeis, J E; Suzuki, Y; Migliori, A

    2010-01-05T23:59:59.000Z

    We present elastic properties, theoretical and experimental, of Pu metal and Pu-Ga ({delta}) alloys together with ab initio equilibrium equation-of-state for these systems. For the theoretical treatment we employ density-functional theory in conjunction with spin-orbit coupling and orbital polarization for the metal and coherent-potential approximation for the alloys. Pu and Pu-Ga alloys are also investigated experimentally using resonant ultrasound spectroscopy. We show that orbital correlations become more important proceeding from {alpha} {yields} {beta} {yields} {gamma} plutonium, thus suggesting increasing f-electron correlation (localization). For the {delta}-Pu-Ga alloys we find a softening with larger Ga content, i.e., atomic volume, bulk modulus, and elastic constants, suggest a weakened chemical bonding with addition of Ga. Our measurements confirm qualitatively the theory but uncertainties remain when comparing the model with experiments.

  10. Spectrophotometric indices and metal content of galactic globular clusters

    E-Print Network [OSTI]

    Covino, S; Pasinetti, L E; Covino, S; Galletti, S; Pasinetti, L E

    1995-01-01T23:59:59.000Z

    Spectrophotometric indices for 18 Galactic globular clusters, obtained from CCD observations and careful reductions, were used to determine reliable calibrations on metallicity [Fe/H]. The indices were measured in the bandpasses adopted by Burnstein et al. (\\cite{BFGK84}). Adding other observations of Burnstein et al. (\\cite{BFGK84}) we obtained our results from an homogeneous sample of indices for 26 globular clusters. Relations with indices defined by other Authors and with metallicity photometric indices or parameters were also computed. In each case the relations are quite satisfactory. Observational data were compared with synthetic indices derived from Buzzoni's (\\cite{B89}) models and detailed discussions were performed for Mg_2, Fe_{52}, and H_\\beta. The observational points seem to be systematically shifted with respect to the fiducial lines traced by the models. The scenario confirms that a certain degree of oxygen enhancement would be necessary to obtain a better agreement between observed data and...

  11. Clamshell closure for metal drum

    DOE Patents [OSTI]

    Blanton, Paul S

    2014-09-30T23:59:59.000Z

    Closure ring to retain a lid in contact with a metal drum in central C-section conforming to the contact area between a lid and the rim of a drum and further having a radially inwardly directed flange and a vertically downwardly directed flange attached to the opposite ends of the C-section. The additional flanges reinforce the top of the drum by reducing deformation when the drum is dropped and maintain the lid in contact with the drum. The invention is particularly valuable in transportation and storage of fissile material.

  12. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, Edward F. (P.O. Box 900, Isle of Palms, SC 29451)

    1992-01-01T23:59:59.000Z

    A method for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF.sub.4 and HNO.sub.3 and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200.degree. C. The porous material can be pulverized before immersion to further increase the leach rate.

  13. Metal-Ion-Mediated Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from aRod EggertMercuryAdvancedMetal-Ion-Mediated

  14. Rapid Freeform Sheet Metal Forming

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified11 Connecticut2 of 3)theDieselFreeform Sheet Metal

  15. The Measure of a Measurement

    E-Print Network [OSTI]

    Palle E. T. Jorgensen

    2007-07-23T23:59:59.000Z

    While finite non-commutative operator systems lie at the foundation of quantum measurement, they are also tools for understanding geometric iterations as used in the theory of iterated function systems (IFSs) and in wavelet analysis. Key is a certain splitting of the total Hilbert space and its recursive iterations to further iterated subdivisions. This paper explores some implications for associated probability measures (in the classical sense of measure theory), specifically their fractal components. We identify a fractal scale $s$ in a family of Borel probability measures $\\mu$ on the unit interval which arises independently in quantum information theory and in wavelet analysis. The scales $s$ we find satisfy $s\\in \\mathbb{R}_{+}$ and $s\

  16. METAL-POOR STARS OBSERVED WITH THE MAGELLAN TELESCOPE. I. CONSTRAINTS ON PROGENITOR MASS AND METALLICITY OF AGB STARS UNDERGOING s-PROCESS NUCLEOSYNTHESIS

    E-Print Network [OSTI]

    Placco, Vinicius M.

    We present a comprehensive abundance analysis of two newly discovered carbon-enhanced metal-poor (CEMP) stars. HE 2138?3336 is a s-process-rich star with [Fe/H] = -2.79, and has the highest [Pb/Fe] abundance ratio measured ...

  17. Apparatus and method for measuring critical current properties of a coated conductor

    DOE Patents [OSTI]

    Mueller, Fred M. (Los Alamos, NM); Haenisch, Jens (Dresden, DE)

    2012-07-24T23:59:59.000Z

    The transverse critical-current uniformity in a superconducting tape was determined using a magnetic knife apparatus. A critical current I.sub.c distribution and transverse critical current density J.sub.c distribution in YBCO coated conductors was measured nondestructively with high resolution using a magnetic knife apparatus. The method utilizes the strong depression of J.sub.c in applied magnetic fields. A narrow region of low, including zero, magnetic field in a surrounding higher field is moved transversely across a sample of coated conductor. This reveals the critical current density distribution. A Fourier series inversion process was used to determine the transverse J.sub.c distribution in the sample.

  18. Trace Metal Source Terms in Carbon Sequestration Environments

    SciTech Connect (OSTI)

    Karamalidis, Athanasios; Torres, Sharon G.; Hakala, Jacqueline A.; Shao, Hongbo; Cantrell, Kirk J.; Carroll, Susan A.

    2013-01-01T23:59:59.000Z

    ABSTRACT: Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising; however, possible CO2 or CO2-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define to provide a range of concentrations that can be used as the trace element source term for reservoirs and leakage pathways in risk simulations. Storage source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from cements and sandstones, shales, carbonates, evaporites, and basalts from the Frio, In Salah, Illinois Basin, Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands, and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution was tracked by measuring solution concentrations over time under conditions (e.g., pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for maximum contaminant levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments because of the presence of CO2. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rocks exceed the MCLs byan order of magnitude, while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the trace element source term for reservoirs and leakage pathways in risk simulations to further evaluate the impact of leakage on groundwater quality.

  19. Contour forming of metals by laser peening

    DOE Patents [OSTI]

    Hackel, Lloyd (Livermore, CA); Harris, Fritz (Rocklin, CA)

    2002-01-01T23:59:59.000Z

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  20. Nanostructured metal foams: synthesis and applications

    SciTech Connect (OSTI)

    Luther, Erik P [Los Alamos National Laboratory; Tappan, Bryce [Los Alamos National Laboratory; Mueller, Alex [Los Alamos National Laboratory; Mihaila, Bogdan [Los Alamos National Laboratory; Volz, Heather [Los Alamos National Laboratory; Cardenas, Andreas [Los Alamos National Laboratory; Papin, Pallas [Los Alamos National Laboratory; Veauthier, Jackie [Los Alamos National Laboratory; Stan, Marius [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  1. Irradiation behavior of metallic fast reactor fuels

    SciTech Connect (OSTI)

    Pahl, R.G.; Porter, D.L.; Crawford, D.C.; Walters, L.C.

    1991-01-01T23:59:59.000Z

    Metallic fuels were the first fuels chosen for liquid metal cooled fast reactors (LMR's). In the late 1960's world-wide interest turned toward ceramic LMR fuels before the full potential of metallic fuel was realized. However, during the 1970's the performance limitations of metallic fuel were resolved in order to achieve a high plant factor at the Argonne National Laboratory's Experimental Breeder Reactor II. The 1980's spawned renewed interest in metallic fuel when the Integral Fast Reactor (IFR) concept emerged at Argonne National Laboratory. A fuel performance demonstration program was put into place to obtain the data needed for the eventual licensing of metallic fuel. This paper will summarize the results of the irradiation program carried out since 1985.

  2. Removal of metal ions from aqueous solution

    DOE Patents [OSTI]

    Jackson, Paul J. (both Los Alamos, NM); Delhaize, Emmanuel (both Los Alamos, NM); Robinson, Nigel J. (Durham, GB2); Unkefer, Clifford J. (Los Alamos, NM); Furlong, Clement (Seattle, WA)

    1990-11-13T23:59:59.000Z

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat unit for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heayv metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  3. Removal of metal ions from aqueous solution

    DOE Patents [OSTI]

    Jackson, Paul J. (Los Alamos, NM); Delhaize, Emmanuel (Los Alamos, NM); Robinson, Nigel J. (Durham, GB2); Unkefer, Clifford J. (Los Alamos, NM); Furlong, Clement (Seattle, WA)

    1990-01-01T23:59:59.000Z

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  4. THE IMPACT OF METALLICITY ON THE RATE OF TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Kistler, Matthew D. [California Institute of Technology, Mail Code 350-17, Pasadena, CA 91125 (United States); Stanek, K. Z.; Kochanek, Christopher S.; Thompson, Todd A. [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Prieto, Jose L. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2013-06-20T23:59:59.000Z

    The metallicity of a star strongly affects both its evolution and the properties of the stellar remnant that results from its demise. It is generally accepted that stars with initial masses below {approx}8 M{sub Sun} leave behind white dwarfs and that some sub-population of these lead to Type Ia supernovae (SNe Ia). However, it is often tacitly assumed that metallicity has no effect on the rate of SNe Ia. We propose that a consequence of the effects of metallicity is to significantly increase the SN Ia rate in lower-metallicity galaxies, in contrast to previous expectations. This is because lower-metallicity stars leave behind higher-mass white dwarfs, which should be easier to bring to explosion. We first model SN Ia rates in relation to galaxy masses and ages alone, finding that the elevation in the rate of SNe Ia in lower-mass galaxies measured by Lick Observatory SN Search is readily explained. However, we then see that models incorporating this effect of metallicity agree just as well. Using the same parameters to estimate the cosmic SN Ia rate, we again find good agreement with data up to z Almost-Equal-To 2. We suggest that this degeneracy warrants more detailed examination of host galaxy metallicities. We discuss additional implications, including for hosts of high-z SNe Ia, the SN Ia delay time distribution, super-Chandrasekhar SNe, and cosmology.

  5. METALLICITY DIFFERENCES IN TYPE Ia SUPERNOVA PROGENITORS INFERRED FROM ULTRAVIOLET SPECTRA

    SciTech Connect (OSTI)

    Foley, Ryan J.; Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-05-20T23:59:59.000Z

    Two ''twin'' Type Ia supernovae (SNe Ia), SNe 2011by and 2011fe, have extremely similar optical light-curve shapes, colors, and spectra, yet have different ultraviolet (UV) continua as measured in Hubble Space Telescope spectra and measurably different peak luminosities. We attribute the difference in the UV continua to significantly different progenitor metallicities. This is the first robust detection of different metallicities for SN Ia progenitors. Theoretical reasoning suggests that differences in metallicity also lead to differences in luminosity. SNe Ia with higher progenitor metallicities have lower {sup 56}Ni yields and lower luminosities for the same light-curve shape. SNe 2011by and 2011fe have different peak luminosities ({Delta}M{sub V} Almost-Equal-To 0.6 mag), which correspond to different {sup 56}Ni yields: M{sub 11fe}({sup 56}Ni) / M{sub 11by}({sup 56}Ni) = 1.7{sup +0.7}{sub -0.5}. From theoretical models that account for different neutron-to-proton ratios in progenitors, the differences in {sup 56}Ni yields for SNe 2011by and 2011fe imply that their progenitor stars were above and below solar metallicity, respectively. Although we can distinguish progenitor metallicities in a qualitative way from UV data, the quantitative interpretation in terms of abundances is limited by the present state of theoretical models.

  6. Method of stripping metals from organic solvents

    DOE Patents [OSTI]

    Todd, Terry A. (Aberdeen, ID); Law, Jack D. (Pocatello, ID); Herbst, R. Scott (Idaho Falls, ID); Romanovskiy, Valeriy N. (St. Petersburg, RU); Smirnov, Igor V. (St.-Petersburg, RU); Babain, Vasily A. (St-Petersburg, RU); Esimantovski, Vyatcheslav M. (St-Petersburg, RU)

    2009-02-24T23:59:59.000Z

    A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

  7. Three-Electrode Metal Oxide Reduction Cell

    DOE Patents [OSTI]

    Dees, Dennis W. (Downers Grove, IL); Ackerman, John P. (Downers Grove, IL)

    2005-06-28T23:59:59.000Z

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  8. Three-electrode metal oxide reduction cell

    DOE Patents [OSTI]

    Dees, Dennis W. (Downers Groves, IL); Ackerman, John P. (Downers Grove, IL)

    2008-08-12T23:59:59.000Z

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  9. Synthesis of new amorphous metallic spin glasses

    DOE Patents [OSTI]

    Haushalter, R.C.

    1985-02-11T23:59:59.000Z

    Disclosed are: amorphous metallic precipitates having the formula (M/sub 1/)/sub a/(M/sub 2/)/sub b/ wherein M/sub 1/ is at least one transition metal, M/sub 2/ is at least one main group metal and the integers ''a'' and ''b'' provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  10. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA); Miller, John L. (Dublin, CA)

    1993-01-01T23:59:59.000Z

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  11. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, D.G.; Miller, J.L.

    1993-02-23T23:59:59.000Z

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  12. Synthesis of new amorphous metallic spin glasses

    DOE Patents [OSTI]

    Haushalter, Robert C. (Clinton, NJ)

    1988-01-01T23:59:59.000Z

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  13. Internal gettering by metal alloy clusters

    DOE Patents [OSTI]

    Buonassisi, Anthony (San Diego, CA); Heuer, Matthias (Berkeley, CA); Istratov, Andrei A. (Albany, CA); Pickett, Matthew D. (Berkeley, CA); Marcus, Mathew A. (Berkeley, CA); Weber, Eicke R. (Piedmont, CA)

    2010-07-27T23:59:59.000Z

    The present invention relates to the internal gettering of impurities in semiconductors by metal alloy clusters. In particular, intermetallic clusters are formed within silicon, such clusters containing two or more transition metal species. Such clusters have melting temperatures below that of the host material and are shown to be particularly effective in gettering impurities within the silicon and collecting them into isolated, less harmful locations. Novel compositions for some of the metal alloy clusters are also described.

  14. Liquid metal cooled nuclear reactor plant system

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1993-01-01T23:59:59.000Z

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  15. Fabrication of metallic microstructures by micromolding nanoparticles

    DOE Patents [OSTI]

    Morales, Alfredo M. (Livermore, CA); Winter, Michael R. (Goleta, CA); Domeier, Linda A. (Danville, CA); Allan, Shawn M. (Henrietta, NY); Skala, Dawn M. (Fremont, CA)

    2002-01-01T23:59:59.000Z

    A method is provided for fabricating metallic microstructures, i.e., microcomponents of micron or submicron dimensions. A molding composition is prepared containing an optional binder and nanometer size (1 to 1000 nm in diameter) metallic particles. A mold, such as a lithographically patterned mold, preferably a LIGA or a negative photoresist mold, is filled with the molding composition and compressed. The resulting microstructures are then removed from the mold and the resulting metallic microstructures so provided are then sintered.

  16. Method for making monolithic metal oxide aerogels

    DOE Patents [OSTI]

    Droege, M.W.; Coronado, P.R.; Hair, L.M.

    1995-03-07T23:59:59.000Z

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.

  17. Method for making monolithic metal oxide aerogels

    SciTech Connect (OSTI)

    Coronado, Paul R. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  18. Method for making monolithic metal oxide aerogels

    DOE Patents [OSTI]

    Droege, Michael W. (Livermore, CA); Coronado, Paul R. (Livermore, CA); Hair, Lucy M. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.

  19. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become a User Recovery ActgovMeasurements Measurement

  20. 'Thirsty' Metals Key to Longer Battery Lifetimes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    needed. In all three cases, today's batteries simply do not hold enough charge. Replacing lithium with other metals with multiple charges could greatly increase battery capacity....

  1. Lateral electrodeposition of compositionally modulated metal layers

    DOE Patents [OSTI]

    Hearne, Sean J

    2014-03-25T23:59:59.000Z

    A method for making a laterally modulated metallic structure that is compositionally modulated in the lateral direction with respect to a substrate.

  2. Locating experiential richness in doom metal

    E-Print Network [OSTI]

    Piper, Jonathan

    2013-01-01T23:59:59.000Z

    made my return to metal fandom and pushed farther into moreTo be sure I take this fandom to be prior to, and the basis

  3. Evaluation of monolayer protected metal nanoparticle technology

    E-Print Network [OSTI]

    Wu, Diana J

    2005-01-01T23:59:59.000Z

    Self assembling nanostructured nanoparticles represent a new class of synthesized materials with unique functionality. Such monolayer protected metal nanoparticles are capable of resisting protein adsorption, and if utilized ...

  4. Geothermal: Sponsored by OSTI -- Trace metal characterization...

    Office of Scientific and Technical Information (OSTI)

    Trace metal characterization and speciation in geothermal effluent by multiple scanning anodic stripping voltammetry and atomic absorpotion analysis. Annual progress report...

  5. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01T23:59:59.000Z

    at the National Association of Corrosion EngineersConference, Corrosion '81, Toronto, Ontario, Canada,April 6-10, 1981 CORROSION OF METALS IN OIL SHALE

  6. Electronic Relaxation Dynamics in Coupled Metal Nanoparticles

    E-Print Network [OSTI]

    Scherer, Norbert F.

    of hot electrons for photoelectrochemical processes, including solar energy conversion or organic wasteElectronic Relaxation Dynamics in Coupled Metal Nanoparticles Mark J. Feldstein, Christine D

  7. Method and apparatus for melting metals

    DOE Patents [OSTI]

    Moore, Alan F.; Schechter, Donald E.; Morrow, Marvin Stanley

    2006-03-14T23:59:59.000Z

    A method and apparatus for melting metals uses microwave energy as the primary source of heat. The metal or mixture of metals are placed in a ceramic crucible which couples, at least partially, with the microwaves to be used. The crucible is encased in a ceramic casket for insulation and placed within a microwave chamber. The chamber may be evacuated and refilled to exclude oxygen. After melting, the crucible may be removed for pouring or poured within the chamber by dripping or running into a heated mold within the chamber. Apparent coupling of the microwaves with softened or molten metal produces high temperatures with great energy savings.

  8. Preparation of metal-catecholate frameworks

    SciTech Connect (OSTI)

    Yaghi, Omar M.; Gandara-Barragan, Felipe; Lu, Zheng; Wan, Shun

    2014-06-03T23:59:59.000Z

    The disclosure provides for metal catecholate frameworks, and methods of use thereof, including gas separation, gas storage, catalysis, tunable conductors, supercapacitors, and sensors.

  9. Magnetism in metal-organic capsules

    E-Print Network [OSTI]

    Atwood, Jerry L.

    2010-01-01T23:59:59.000Z

    Quantum Spin Chains in Magnetism: Molecules to Materials, J.Magnetism in metal-organic capsules Jerry L. Atwood,* a Euan

  10. About Rare Earth Metals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Rare Earth Metals What Are Rare Earths? Ames Laboratory's Materials Preparation Center The Ames Process for Purification of Rare Earths USGS Rare Earth Information Rare Earth...

  11. Composite Electrolytes to Stabilize Metallic Linium Anodes

    Broader source: Energy.gov (indexed) [DOE]

    metal anode and its poor cycling as the fundamental problem for very high energy Li batteries. Hence, research takes the approach of completely isolating the anode from the...

  12. Thermal and Physical Properties of Plutonium Dioxide Produced from the Oxidation of Metal: a Data Summary

    SciTech Connect (OSTI)

    Wayne, David M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-13T23:59:59.000Z

    The ARIES Program at the Los Alamos National Laboratory removes plutonium metal from decommissioned nuclear weapons, and converts it to plutonium dioxide in a specially-designed Direct Metal Oxidation furnace. The plutonium dioxide is analyzed for specific surface area, particle size distribution, and moisture content. The purpose of these analyses is to certify that the plutonium dioxide powder meets or exceeds the specifications of the end-user, and the specifications for the packaging and transport of nuclear materials. Analytical results from plutonium dioxide from ARIES development activities, from ARIES production activities, from muffle furnace oxidation of metal, and from metal that was oxidized over a lengthy time interval in air at room temperature, are presented. The processes studied produce plutonium dioxide powder with distinct differences in measured properties, indicating the significant influence of oxidation conditions on physical properties.

  13. Pyroprocessing of IFR Metal Fuel

    SciTech Connect (OSTI)

    Laidler, J.J. [Argonne National Laboratory, IL (United States)

    1993-12-31T23:59:59.000Z

    The Integral Fast Reactor (IFR) fuel cycle features the use of an innovative reprocessing method, known as {open_quotes}pyroprocessing{close_quotes} featuring fused-salt electrofining of the spent fuel. Electrofining of IFR spent fuel involves uranium recovery by electro-transport to a solid steel cathode. The thermodynamics of the system preclude plutonium recovery in the same way, so a liquid cadmium cathode located in the electrolyte salt phase is utilized. The deposition of Pu, Am, Np, and Cm takes place at the liquid cadmium cathode in the form of cadmium intermetallic compounds (e.g, PuCd{sub 6}), and uranium deposits as the pure metal when cadmium saturation is reached. A small amount of rare earth fission products deposit together with the heavy metals at both the solid and liquid cadmium cathodes, providing a significant degree of self-protection. A full scope demonstration of the IFR fuel cycle will begin in 1993, using fuel irradiated in EBR-II.

  14. Deformation Behavior of Nanoporous Metals

    SciTech Connect (OSTI)

    Biener, J; Hodge, A M; Hamza, A V

    2007-11-28T23:59:59.000Z

    Nanoporous open-cell foams are a rapidly growing class of high-porosity materials (porosity {ge} 70%). The research in this field is driven by the desire to create functional materials with unique physical, chemical and mechanical properties where the material properties emerge from both morphology and the material itself. An example is the development of nanoporous metallic materials for photonic and plasmonic applications which has recently attracted much interest. The general strategy is to take advantage of various size effects to introduce novel properties. These size effects arise from confinement of the material by pores and ligaments, and can range from electromagnetic resonances to length scale effects in plasticity. In this chapter we will focus on the mechanical properties of low density nanoporous metals and how these properties are affected by length scale effects and bonding characteristics. A thorough understanding of the mechanical behavior will open the door to further improve and fine-tune the mechanical properties of these sometimes very delicate materials, and thus will be crucial for integrating nanoporous metals into products. Cellular solids with pore sizes above 1 micron have been the subject of intense research for many years, and various scaling relations describing the mechanical properties have been developed.[4] In general, it has been found that the most important parameter in controlling their mechanical properties is the relative density, that is, the density of the foam divided by that of solid from which the foam is made. Other factors include the mechanical properties of the solid material and the foam morphology such as ligament shape and connectivity. The characteristic internal length scale of the structure as determined by pores and ligaments, on the other hand, usually has only little effect on the mechanical properties. This changes at the submicron length scale where the surface-to-volume ratio becomes large and the effect of free surfaces can no longer be neglected. As the material becomes more and more constraint by the presence of free surfaces, length scale effects on plasticity become more and more important and bulk properties can no longer be used to describe the material properties. Even the elastic properties may be affected as the reduced coordination of surface atoms and the concomitant redistribution of electrons may soften or stiffen the material. If, and to what extend, such length scale effects control the mechanical behavior of nanoporous materials depends strongly on the material and the characteristic length scale associated with its plastic deformation. For example, ductile materials such as metals which deform via dislocation-mediated processes can be expected to exhibit pronounced length scale effects in the sub-micron regime where free surfaces start to constrain efficient dislocation multiplication. In this chapter we will limit our discussion to our own area of expertise which is the mechanical behavior of nanoporous open-cell gold foams as a typical example of nanoporous metal foams. Throughout this chapter we will review our current understanding of the mechanical properties of nanoporous open-cell foams including both experimental and theoretical studies.

  15. Metal and Ceramic Thin Film Growth by Reaction of Alkali Metals with Metal Halides: A New Route for

    E-Print Network [OSTI]

    Zachariah, Michael R.

    or metal oxide ceramic films are easily formed by the introduction of nitrogen or oxygen gases the precursors of sodium metal vapor, titanium tetrachloride (the limiting reagent), and either Ar or N2 gas, salt-free titanium (Ti), titanium nitride (TiN), and titanium silicide (TixSiy) thin films have been

  16. ~DELING OF METAL TRANSFKR IN GAS METAL ARC WELDING Yong -Seog Kim and T. W. Eagar

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) ) ) ~DELING OF METAL TRANSFKR IN GAS METAL ARC WELDING Yong -Seog Kim and T. W. Eagar theory and the pinch i ns t a bility theor y as a function of welding cur rent . Experimental of the gas metal arc process in the late 1940s, it has become one of the most important welding processes

  17. Displacement method and apparatus for reducing passivated metal powders and metal oxides

    DOE Patents [OSTI]

    Morrell; Jonathan S. (Knoxville, TN), Ripley; Edward B. (Knoxville, TN)

    2009-05-05T23:59:59.000Z

    A method of reducing target metal oxides and passivated metals to their metallic state. A reduction reaction is used, often combined with a flux agent to enhance separation of the reaction products. Thermal energy in the form of conventional furnace, infrared, or microwave heating may be applied in combination with the reduction reaction.

  18. Heat and Metal Transfer in Gas Metal Arc Welding Using Argon and Helium

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Heat and Metal Transfer in Gas Metal Arc Welding Using Argon and Helium P.G. JONSSON, T.W. EAGAR transfer in gas metal arc welding (GMAW) of mild steel using argon and helium shielding gases. Major dif properties. Various findings from the study include that an arc cannot be stru~k in a pure helium atmosphere

  19. Ceramic to metal attachment system. [Ceramic electrode to metal conductor in MHD generator

    DOE Patents [OSTI]

    Marchant, D.D.

    1983-06-10T23:59:59.000Z

    A composition and method are described for attaching a ceramic electrode to a metal conductor. A layer of randomly interlocked metal fibers saturated with polyimide resin is sandwiched between the ceramic electrode and the metal conductor. The polyimide resin is then polymerized providing bonding.

  20. Broadening the Statistical Search for Metal Price Super Cycles to Steel and Related Metals

    E-Print Network [OSTI]

    Broadening the Statistical Search for Metal Price Super Cycles to Steel and Related Metals of industrial development and urbanization: steel, pig iron, and molybdenum (a key ingredient in many steel's (2008) econometric search for super cycles in metals prices to our `steel group', defined here as steel

  1. Measurement of \

    E-Print Network [OSTI]

    Aguilar-Arevalo, A A; Bazarko, A O; Brice, S J; Brown, B C; Bugel, L; Cao, J; Coney, L; Conrad, J M; Cox, D C; Curioni, A; Djurcic, Z; Finley, D A; Fleming, B T; Ford, R; Garcia, F G; Garvey, G T; Gonzales, J; Grange, J; Green, C; Green, J A; Hart, T L; Hawker, E; Imlay, R; Johnson, R A; Karagiorgi, G; Kasper, P; Katori, T; Kobilarcik, T; Kourbanis, I; Koutsoliotas, S; Laird, E M; Linden, S K; Link, J M; Liu, Y; Louis, W C; Mahn, K B M; Marsh, W; Mauger, C; McGary, V T; McGregor, G; Metcalf, W; Meyers, P D; Mills, F; Mills, G B; Monroe, J; Moore, C D; Mousseau, J; Nelson, R H; Nienaber, P; Nowak, J A; Osmanov, B; Ouedraogo, S; Patterson, R B; Pavlovic, Z; Perevalov, D; Polly, C C; Prebys, E; Raaf, J L; Ray, H; Roe, B P; Russell, A D; Sandberg, V; Schirato, R; Schmitz, D; Shaevitz, M H; Shoemaker, F C; Smith, D; Soderberg, M; Sorel, M; Spentzouris, P; Spitz, J; Stancu, I; Stefanski, R J; Sung, M; Tanaka, H A; Tayloe, R; Tzanov, M; Van de Water, R G; Wascko, M O; White, D H; Wilking, M J; Yang, H J; Zeller, G P; Zimmerman, E D

    2009-01-01T23:59:59.000Z

    MiniBooNE reports the first absolute cross sections for neutral current single \\pi^0 production on CH_2 induced by neutrino and antineutrino interactions measured from the largest sets of NC \\pi^0 events collected to date. The principal result consists of differential cross sections measured as functions of \\pi^0 momentum and \\pi^0 angle averaged over the neutrino flux at MiniBooNE. We find total cross sections of (4.76+/-0.05_{stat}+/-0.40_{sys})*10^{-40} cm^2/nucleon at a mean energy of =808 MeV and (1.48+/-0.05_{stat}+/-0.14_{sys})*10^{-40} cm^2/nucleon at a mean energy of =664 MeV for \

  2. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheat flux ARM DatagovMeasurementsVisibility ARMProject

  3. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheat flux ARM DatagovMeasurementsVisibility

  4. Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal

    SciTech Connect (OSTI)

    Jing, Dapeng

    2010-12-15T23:59:59.000Z

    The work presented in this thesis mainly focuses on the nucleation and growth of metal thin films on multimetallic surfaces. First, we have investigated the Ag film growth on a bulk metallic glass surface. Next, we have examined the coarsening and decay of bilayer Ag islands on NiAl(110) surface. Third, we have investigated the Ag film growth on NiAl(110) surface using low-energy electron diffraction (LEED). At last, we have reported our investigation on the epitaxial growth of Ni on NiAl(110) surface. Some general conclusions can be drawn as follows. First, Ag, a bulk-crystalline material, initially forms a disordered wetting layer up to 4-5 monolayers on Zr-Ni-Cu-Al metallic glass. Above this coverage, crystalline 3D clusters grow, in parallel with the flatter regions. The cluster density increases with decreasing temperature, indicating that the conditions of island nucleation are far-from-equilibrium. Within a simple model where clusters nucleate whenever two mobile Ag adatoms meet, the temperature-dependence of cluster density yields a (reasonable) upper limit for the value of the Ag diffusion barrier on top of the Ag wetting layer of 0.32 eV. Overall, this prototypical study suggests that it is possible to grow films of a bulk-crystalline metal that adopt the amorphous character of a glassy metal substrate, if film thickness is sufficiently low. Next, the first study of coarsening and decay of bilayer islands has been presented. The system was Ag on NiAl(110) in the temperature range from 185 K to 250 K. The coarsening behavior, has some similarities to that seen in the Ag(110) homoepitaxial system studied by Morgenstern and co-workers. At 185 K and 205 K, coarsening of Ag islands follows a Smoluchowski ripening pathway. At 205 K and 250 K, the terrace diffusion limited Ostwald ripening dominants. The experimental observed temperature for the transition from SR to OR is 205 K. The SR exhibits anisotropic island diffusion and the OR exhibits 1D decay of island length while keeping the corresponding island width constant. Third, LEED indicates that, up to about 6 BL (12 ML), the Ag film adopts the (110) structure on lattice matched NiAl(110) surface, supporting the previous assignment based upon island heights measured in STM. Starting at 4.5 to 6 BL, (111) diffraction pattern is detected. This is also in agreement with previous STM study. Careful examinations of the LEED patterns reveal the slight difference in lattice constants between bulk Ag and bulk NiAl. At last, we performed STM studies of Ni deposition on NiAl(110) in the temperature range from 200 K to 400 K. Ni forms 'dense' Ni(100)-like islands on NiAl(110) with a zig-zag shaped stripe feature which is probably due to strain relief. DFT analysis provides insights into the island growth shapes, which are rationalized by the thermodynamics and kinetics of the film growth process. For thick Ni films (coverage exceeding 6 ML), a Ni(111)-like structure developed. Traditional MF theory is applied to analyze island density at 200 K. Deviation from homogeneous nucleation behavior for island size distribution and island density reveals the presence of heterogeneous nucleation mediated by the Ni antisite point defects on NiAl(110) surface.

  5. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1992-10-13T23:59:59.000Z

    A method is described for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF[sub 4] and HNO[sub 3] and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200 C. The porous material can be pulverized before immersion to further increase the leach rate.

  6. Process for electrolytically preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A. (Knoxville, TN)

    1989-01-01T23:59:59.000Z

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  7. Dissimilatory Metal Reduction by Anaeromyxobacter Species

    SciTech Connect (OSTI)

    Qingzhong Wu; Cornell Gayle; Frank Lffler; Sanford, Robert

    2004-03-17T23:59:59.000Z

    Recent findings suggest that Anaeromyxobacter populations play relevant roles in metal and radionuclide reduction and immobilization at contaminated DOE sites. This research effort will characterize Anaeromyxobacter dehalogenans strain 2CP-C as well as other Anaeromyxobacter isolates in hand, and assess their contribution towards metal detoxification and plume stabilization under environmentally relevant conditions.

  8. Method for dry etching of transition metals

    DOE Patents [OSTI]

    Ashby, Carol I. H. (Edgewood, NM); Baca, Albert G. (Albuquerque, NM); Esherick, Peter (Albuquerque, NM); Parmeter, John E. (Albuquerque, NM); Rieger, Dennis J. (Tijeras, NM); Shul, Randy J. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A method for dry etching of transition metals. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorous-containing .pi.-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/.pi.-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the .pi.-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the .pi.-acceptor ligand for forming the volatile transition metal/.pi.-acceptor ligand complex.

  9. Toolbox Safety Talk Welding & Metal Work Safety

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Welding & Metal Work Safety Environmental Health & Safety Facilities Safety or harmful emission giving metals. Welding Safety When welding outside of a designated welding booth, ensure injury. Avoid welding on materials such as galvanized or stainless steel in order to minimize toxic fume

  10. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15T23:59:59.000Z

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  11. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04T23:59:59.000Z

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  12. Radiation Induced Nanocrystal Formation in Metallic Glasses

    E-Print Network [OSTI]

    Carter, Jesse

    2010-01-14T23:59:59.000Z

    The irradiation of metallic glasses to induce nanocrystallization was studied in two metallic glass compositions, Cu50Zr45Ti5 and Zr55Cu30Al10Ni5. Atomic mobility was described using a model based on localized excess free volume due to displace...

  13. RESEARCH ARTICLE Assessment of metal contaminations leaching

    E-Print Network [OSTI]

    Short, Daniel

    RESEARCH ARTICLE Assessment of metal contaminations leaching out from recycling plastic bottles syntheses, partic- ularly antimony, human exposure to metal release from plastic bottles has been a serious from a series of recycling plastic bottles upon treatments. Methodology In this study, leaching

  14. Mesoscale Metallic Pyramids with Nanoscale Tips

    E-Print Network [OSTI]

    Odom, Teri W.

    Mesoscale Metallic Pyramids with Nanoscale Tips Joel Henzie, Eun-Soo Kwak, and Teri W. Odom generate free-standing mesoscale metallic pyramids composed of one or more materials and having nanoscale tips (radii of curvature of less than 2 nm). Mesoscale holes (100-300 nm) in a chromium film are used

  15. Metal articles having ultrafine particles dispersed therein

    SciTech Connect (OSTI)

    Alexander, G.B.; Nadkarni, R.A.

    1992-07-28T23:59:59.000Z

    This patent describes a metal article of manufacture. It comprises: a metal selected from the group consisting of copper, silver, gold, lead, tin, nickel, zinc, cobalt, antimony, bismuth, iron, cadmium, chromium, germanium, gallium, selenium, tellurium, mercury, tungsten arsenic, manganese, iridium, indium, ruthenium, rhenium, rhodium, molybdenum, palladium, osmium and platinum; and a plurality of ultrafine particles.

  16. Metallicities of M Dwarf Planet Hosts from Spectral Synthesis

    E-Print Network [OSTI]

    Jacob L. Bean; G. Fritz Benedict; Michael Endl

    2006-11-02T23:59:59.000Z

    We present the first spectroscopic metallicities of three M dwarfs with known or candidate planetary mass companions. We have analyzed high resolution, high signal-to-noise spectra of these stars which we obtained at McDonald Observatory. Our analysis technique is based on spectral synthesis of atomic and molecular features using recently revised cool-star model atmospheres and spectrum synthesis code. The technique has been shown to yield results consistent with the analyses of solar-type stars and allows measurements of M dwarf [M/H] values to 0.12 dex precision. From our analysis, we find [M/H] = -0.12, -0.32, and -0.33 for GJ 876, GJ 436, and GJ 581 respectively. These three M dwarf planet hosts have sub-solar metallicities, a surprising departure from the trend observed in FGK-type stars. This study is the first part of our ongoing work to determine the metallicities of the M dwarfs included in the McDonald Observatory planet search program.

  17. Conduction properties of metal/organic monolayer/semiconductor heterostructures

    SciTech Connect (OSTI)

    Li, D.; Bishop, A.; Gim, Y.; Shi, X.B.; Fitzsimmons, M.R.; Jia, Q.X. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1998-11-01T23:59:59.000Z

    We have fabricated and characterized rectifying devices made of metal/organic monolayer/semiconductor heterostructures. The devices consist of an organic barrier layer sandwiched between an aluminum (Al) metal contact and a {ital p}-type Si semiconductor. The barrier materials were chosen from three types of self-assembled monolayers (SAMs) with different electronic properties: (1) wide-band gap poly(diallydimethyl ammonium) chloride (PDDA), (2) narrow-band gap PDDA/NiPc (nickel phthalocyanine tetrasulfonate), and (3) donor type PDDA/PPP (poly {ital p}-quaterphenylene-disulfonic-dicarboxylic acid). From current{endash}voltage (I{endash}V) measurements at room temperature, we have found the turn-on voltage of the devices can be tuned by varying the structure, hence electronic properties, of the organic monolayers, and that there exists a power-law dependence of {ital I} on V, I{proportional_to}V{sup {alpha}}, with the exponent {alpha}=2.2 for PDDA, 2.7 for PDDA/NiPc, and 1.44 for PDDA/PPP as the barrier layer, respectively. Our results imply that the transport properties are controlled by both the electronic properties of the SAMs and those of the metal and semiconductor, as indicated by the power-law dependence of the I{endash}V characteristics. {copyright} {ital 1998 American Institute of Physics.}

  18. Metallicity at the explosion sites of interacting transients

    E-Print Network [OSTI]

    Taddia, F; Fremling, C; Pastorello, A; Leloudas, G; Fransson, C; Nyholm, A; Stritzinger, M D; Ergon, M; Roy, R; Migotto, K

    2015-01-01T23:59:59.000Z

    Context. Some circumstellar-interacting (CSI) supernovae (SNe) are produced by the explosions of massive stars that have lost mass shortly before the SN explosion. There is evidence that the precursors of some SNe IIn were luminous blue variable (LBV) stars. For a small number of CSI SNe, outbursts have been observed before the SN explosion. Eruptive events of massive stars are named as SN impostors (SN IMs) and whether they herald a forthcoming SN or not is still unclear. The large variety of observational properties of CSI SNe suggests the existence of other progenitors, such as red supergiant (RSG) stars with superwinds. Furthermore, the role of metallicity in the mass loss of CSI SN progenitors is still largely unexplored. Aims. Our goal is to gain insight on the nature of the progenitor stars of CSI SNe by studying their environments, in particular the metallicity at their locations. Methods. We obtain metallicity measurements at the location of 60 transients (including SNe IIn, SNe Ibn, and SN IMs), via...

  19. SPECTROPHOTOMETRIC INDICES AND METAL CONTENT OF GALACTIC GLOBULAR CLUSTERS

    E-Print Network [OSTI]

    S. Covino; S. Galletti; L. E. Pasinetti

    1995-03-06T23:59:59.000Z

    Spectrophotometric indices for $18$ Galactic globular clusters, obtained from CCD observations and careful reductions, were used to determine reliable calibrations on metallicity $[Fe/H]$. The indices were measured in the bandpasses adopted by Burnstein et al. (\\cite{BFGK84}). Adding other observations of Burnstein et al. (\\cite{BFGK84}) we obtained our results from an homogeneous sample of indices for $26$ globular clusters. Relations with indices defined by other Authors and with metallicity photometric indices or parameters were also computed. In each case the relations are quite satisfactory. Observational data were compared with synthetic indices derived from Buzzoni's (\\cite{B89}) models and detailed discussions were performed for $Mg_2$, $Fe_{52}$, and $H_\\beta$. The observational points seem to be systematically shifted with respect to the fiducial lines traced by the models. The scenario confirms that a certain degree of oxygen enhancement would be necessary to obtain a better agreement between observed data and theoretical predictions. This enhancement, however, removes some of the disagreement, but not all of it. The dependence of the observed $Fe_{52}$ and $H_\\beta$ indices on the metal content for different HB morphologies was considered. Finally, some results were also discussed from a statistical point of view. A principal component analysis was applied to the index sample to study the number of independent parameters necessary to reproduce the observations. The whole index set is completely consistent with a one-parameter family.

  20. High temperature behavior of metallic inclusions in uranium dioxide

    SciTech Connect (OSTI)

    Yang, R.L.

    1980-08-01T23:59:59.000Z

    The object of this thesis was to construct a temperature gradient furnace to simulate the thermal conditions in the reactor fuel and to study the migration of metallic inclusions in uranium oxide under the influence of temperature gradient. No thermal migration of molybdenum and tungsten inclusions was observed under the experimental conditions. Ruthenium inclusions, however, dissolved and diffused atomically through grain boundaries in slightly reduced uranium oxide. An intermetallic compound (probably URu/sub 3/) was formed by reaction of Ru and UO/sub 2-x/. The diffusivity and solubility of ruthenium in uranium oxide were measured.