National Library of Energy BETA

Sample records for metal products metal

  1. Production of magnesium metal

    DOE Patents [OSTI]

    Blencoe, James G. (Harriman, TN) [Harriman, TN; Anovitz, Lawrence M. (Knoxville, TN) [Knoxville, TN; Palmer, Donald A. (Oliver Springs, TN) [Oliver Springs, TN; Beard, James S. (Martinsville, VA) [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  2. Production of magnesium metal

    DOE Patents [OSTI]

    Blencoe, James G. (Harriman, TN); Anovitz, Lawrence M. (Knoxville, TN); Palmer, Donald A. (Oliver Springs, TN); Beard, James S. (Martinsville, VA)

    2012-04-10

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

  3. Metals Production Requirements for Rapid Photovoltaics Deployment

    E-Print Network [OSTI]

    Kavlak, Goksin; Jaffe, Robert L; Trancik, Jessika E

    2015-01-01

    If global photovoltaics (PV) deployment grows rapidly, the required input materials need to be supplied at an increasing rate. In this paper, we quantify the effect of PV deployment levels on the scale of metals production. For example, we find that if cadmium telluride {copper indium gallium diselenide} PV accounts for more than 3% {10%} of electricity generation by 2030, the required growth rates for the production of indium and tellurium would exceed historically-observed production growth rates for a large set of metals. In contrast, even if crystalline silicon PV supplies all electricity in 2030, the required silicon production growth rate would fall within the historical range. More generally, this paper highlights possible constraints to the rate of scaling up metals production for some PV technologies, and outlines an approach to assessing projected metals growth requirements against an ensemble of past growth rates from across the metals production sector. The framework developed in this paper may be...

  4. Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA)

    2000-01-01

    An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

  5. Hydrogen Production From Metal-Water Reactions

    E-Print Network [OSTI]

    Barthelat, Francois

    Hydrogen Production From Metal-Water Reactions Why Hydrogen Production? Hydrogen is a critical. Current methods of hydrogen storage in automobiles are either too bulky (large storage space for gas phase) or require a high input energy (cooling or pressurization systems for liquid hydrogen), making widespread use

  6. Process for production of a metal hydride

    DOE Patents [OSTI]

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  7. Metal aminoboranes

    DOE Patents [OSTI]

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya Kaviraj; Shrestha, Roshan P.

    2010-05-11

    Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  8. Process for improving metal production in steelmaking processes

    SciTech Connect (OSTI)

    Pal, Uday B. (Malden, MA); Gazula, Gopala K. M. (Somerville, MA); Hasham, Ali (Karachi, PK)

    1996-01-01

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements.

  9. Process for improving metal production in steelmaking processes

    DOE Patents [OSTI]

    Pal, U.B.; Gazula, G.K.M.; Hasham, A.

    1996-06-18

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements. 6 figs.

  10. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Douglas A. (Murrysville, PA)

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  11. Apparatus and method for the electrolytic production of metals

    DOE Patents [OSTI]

    Sadoway, Donald R. (Belmont, MA)

    1991-01-01

    Improved electrolytic cells and methods for producing metals by electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells and methods, a protective surface layer is formed upon at least one electrode in the electrolytic reduction cell and, optionally, upon the lining of the cell. This protective surface layer comprises a material that, at the operating conditions of the cell: (a) is not substantially reduced by the metal product; (b) is not substantially reactive with the cell electrolyte to form materials that are reactive with the metal product; and, (c) has an electrochemical potential that is more electronegative than that of the compound undergoing electrolysis to produce the metal product of the cell. The protective surface layer can be formed upon an electrode metal layer comprising a material, the oxide of which also satisfies the protective layer selection criteria. The protective layer material can also be used on the surface of a cell lining.

  12. Growth in metals production for rapid photovoltaics deployment

    E-Print Network [OSTI]

    Kavlak, Goksin

    If global photovoltaics (PV) deployment grows rapidly, the required input materials need to be supplied at an increasing rate. We quantify the effect of PV deployment levels on the scale of annual metals production. If a ...

  13. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  14. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, Jr., Howard W. (Oakridge, TN); Horton, James A. (Livermore, CA); Elliott, Guy R. B. (Los Alamos, NM)

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  15. Electrolytic production of metals using a resistant anode

    DOE Patents [OSTI]

    Tarcy, G.P.; Gavasto, T.M.; Ray, S.P.

    1986-11-04

    An electrolytic process is described comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO[sub 2] and/or Cu[sub 2]O. 2 figs.

  16. Metallic Membrane Materials Development for Hydrogen Production...

    Office of Scientific and Technical Information (OSTI)

    PRODUCTION; GREENHOUSE GASES The goals of Office of Clean Coal are: (1) Improved energy security; (2) Reduced green house gas emissions; (3) High tech job creation; and...

  17. Metal salen catalyzed production of polytrimethylene carbonate 

    E-Print Network [OSTI]

    Ganguly, Poulomi

    2009-06-02

    Over the past decade the focus of our group has been production of polycarbonates through environmentally friendly routes. Continuing with this tradition, one such route is the ring opening polymerization of cyclic carbonates. ...

  18. Metallic Membrane Materials Development for Hydrogen Production...

    Office of Scientific and Technical Information (OSTI)

    Production from Coal Derived Syngas The goals of Office of Clean Coal are: (1) Improved energy security; (2) Reduced green house gas emissions; (3) High tech job creation; and...

  19. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    DOE Patents [OSTI]

    Perkins, John (Boulder, CO); Van Hest, Marinus Franciscus Antonius Maria (Lakewood, CO); Ginley, David (Evergreen, CO); Taylor, Matthew (Golden, CO); Neuman, George A. (Holland, MI); Luten, Henry A. (Holland, MI); Forgette, Jeffrey A. (Hudsonville, MI); Anderson, John S. (Holland, MI)

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  20. Metal inks

    DOE Patents [OSTI]

    Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

    2014-02-04

    Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

  1. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  2. Dialing in color with rare earth metals: facile photoluminescent production of true white light

    E-Print Network [OSTI]

    Tew, Gregory N.

    Dialing in color with rare earth metals: facile photoluminescent production of true white light of lanthanide ions which is the focus of this report. Rare earth metal complexes have relatively good Combining polymeric architectures with metal ions produces hybrid materials with extremely rich properties

  3. Metal-doped single-walled carbon nanotubes and production thereof

    DOE Patents [OSTI]

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  4. Production of crystalline refractory metal oxides containing colloidal metal precipitates and useful as solar-effective absorbers

    DOE Patents [OSTI]

    Narayan, Jagdish (Knoxville, TN); Chen, Yok (Oak Ridge, TN)

    1983-01-01

    This invention is a new process for producing refractory crystalline oxides having improved or unusual properties. The process comprises the steps of forming a doped-metal crystal of the oxide; exposing the doped crystal in a bomb to a reducing atmosphere at superatmospheric pressure and a temperature effecting precipitation of the dopant metal in the crystal lattice of the oxide but insufficient to effect net diffusion of the metal out of the lattice; and then cooling the crystal. Preferably, the cooling step is effected by quenching. The process forms colloidal precipitates of the metal in the oxide lattice. The process may be used, for example, to produce thermally stable black MgO crystalline bodies containing magnetic colloidal precipitates consisting of about 99% Ni. The Ni-containing bodies are solar-selective absorbers, having a room-temperature absorptivity of about 0.96 over virtually all of the solar-energy spectrum and exhibiting an absorption edge in the region of 2 .mu.m. The process parameters can be varied to control the average size of the precipitates. The process can produce a black MgO crystalline body containing colloidal Ni precipitates, some of which have the face-centered-cubic structure and others of which have the body-centered cubic structure. The products of the process are metal-precipitate-containing refractory crystalline oxides which have improved or unique optical, mechanical, magnetic, and/or electronic properties.

  5. LIFE CYCLE INVENTORY ANALYSIS IN THE PRODUCTION OF METALS USED IN PHOTOVOLTAICS.

    SciTech Connect (OSTI)

    FTHENAKIS,V.M.; KIM, H.C.; WANG, W.

    2007-03-30

    Material flows and emissions in all the stages of production of zinc, copper, aluminum, cadmium, indium, germanium, gallium, selenium, tellurium, and molybdenum were investigated. These metals are used selectively in the manufacture of solar cells, and emission and energy factors in their production are used in the Life Cycle Analysis (LCA) of photovoltaics. Significant changes have occurred in the production and associated emissions for these metals over the last 10 years, which are not described in the LCA databases. Furthermore, emission and energy factors for several of the by-products of the base metal production were lacking. This report aims in updating the life-cycle inventories associated with the production of the base metals (Zn, Cu, Al, Mo) and in defining the emission and energy allocations for the minor metals (Cd, In, Ge, Se, Te and Ga) used in photovoltaics.

  6. Effects of trace metals on diatom export products from the euphotic zone and significance for biogeochemical cycles

    E-Print Network [OSTI]

    Richter, Daniel J.

    Geological considerations: export products of interest . . 4of production and particulate export in the surface ocean.of trace metals on diatom export products from the euphotic

  7. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOE Patents [OSTI]

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  8. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOE Patents [OSTI]

    Coops, Melvin S. (Livermore, CA)

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  9. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, Nathaniel M. (Espanola, NM); Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM); Birdsell, Stephan A. (Los Alamos, NM)

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  10. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  11. In situ production of ceramic reinforcement in metallic parts by thermal degradation of organometallics

    SciTech Connect (OSTI)

    Shivkumar, S.; Cournoyer, J.; Makhlouf, M. )

    1993-08-15

    The ability to enhance the physical and mechanical properties of metallic components by particulate ceramic reinforcement is well documented. Several methods have been used to incorporate the ceramic particles in the metallic matrix. These methods can be classified into three groups based on the physical state of the metallic phase during processing: (1) liquid phase methods, (2) solid state methods and (3) semi-solid state methods. Liquid phase methods have generated considerable interest because they offer the most economical route for the production of near-net-shape components. In order to realize the full benefits of the ceramic reinforcement, it is imperative that the interfacial bond strength between the ceramic and the metal be maximized. This interfacial bond strength depends to a large extent on the ability of the molten metal to wet the ceramic. It is often difficult to achieve good wetting between molten metals and ceramics because of the large surface tension commonly associated with metals. Several techniques have been used to improve metal/ceramic wetting characteristics. These methods include application of coatings on the ceramic, alloying the metal with reactive elements such as Li, Mg, Ca, Ti or Zr and heat treating the ceramic. A variety of new technologies are also emerging for the in situ production of the reinforcing phase. The in situ production of the ceramic could potentially enhance the wetting characteristics and may probide improved control of the size and level of reinforcement. In this contribution, the feasibility of producing ceramic reinforcements in situ by thermal degradation of a suitable organometallic in a liquid metal bath has been explored.

  12. Metallic Membrane Materials Development for Hydrogen Production from Coal

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport) | SciTechelementPatent: Metal alkoxides andDerived Syngas

  13. Metal Hydrides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial ReportProposal to changeNovemberEnergyMessage fromMetal

  14. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, N.N.; Watkin, J.G.

    1992-03-24

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  15. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, Nancy N. (Los Alamos, NM); Watkin, John G. (Los Alamos, NM)

    1992-01-01

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  16. Upgrading platform using alkali metals

    SciTech Connect (OSTI)

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  17. Metal filled porous carbon

    DOE Patents [OSTI]

    Gross, Adam F. (Los Angeles, CA); Vajo, John J. (West Hills, CA); Cumberland, Robert W. (Malibu, CA); Liu, Ping (Irvine, CA); Salguero, Tina T. (Encino, CA)

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  18. Method of producing adherent metal oxide coatings on metallic surfaces

    DOE Patents [OSTI]

    Lane, Michael H. (Clifton Park, NY); Varrin, Jr., Robert D. (McLean, VA)

    2001-01-01

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  19. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  20. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Phelps, Cindy (Moscow, ID)

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  1. COORDINATION CHEMISTRY OF METAL SURFACES AND METAL COMPLEXES

    E-Print Network [OSTI]

    Muetterties, E.L.

    2013-01-01

    4, 1980 Catalysis~ COORDINATION CHEMISTRY OF METAL SURFACESAND METAL COMPLEXES Earl L. Muetterties December 1979 TWO-10308 COORDINATION CHEt1ISTRY OF METAL SURFACES AND METAL

  2. Electroless metal plating of plastics

    DOE Patents [OSTI]

    Krause, L.J.

    1982-09-20

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  3. Electroless metal plating of plastics

    DOE Patents [OSTI]

    Krause, Lawrence J. (Chicago, IL)

    1984-01-01

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  4. Electroless metal plating of plastics

    DOE Patents [OSTI]

    Krause, Lawrence J. (Chicago, IL)

    1986-01-01

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  5. Metal plasmas for the fabrication of nanostructures

    E-Print Network [OSTI]

    Anders, Andre

    2006-01-01

    by Energetic Condensation of Metal Plasmas André AndersD: Appl. Phys. (2006) Metal plasmas for the fabrication ofA review is provided covering metal plasma production, the

  6. Production of glass or glass-ceramic to metal seals with the application of pressure

    DOE Patents [OSTI]

    Kelly, M.D.; Kramer, D.P.

    1985-01-04

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  7. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Trending: Metal Oxo Bonds Print Wednesday, 29 May 2013 00:00 Metal oxides are important for scientific and technical applications in a variety of...

  8. A New Process for Hot Metal Production at Low Fuel Rate - Phase 1 Feasibility Study

    SciTech Connect (OSTI)

    Dr. Wei-Kao Lu

    2006-02-01

    The project is part of the continuing effort by the North American steel industry to develop a coal-based, cokeless process for hot metal production. The objective of Phase 1 is to determine the feasibility of designing and constructing a pilot scale facility with the capacity of 42,000 mtpy of direct reduced iron (DRI) with 95% metallization. The primary effort is performed by Bricmont, Inc., an international engineering firm, under the supervision of McMaster University. The study focused on the Paired Straight Hearth furnace concept developed previously by McMaster University, The American Iron and Steel Institute and the US Department of Energy.

  9. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    SciTech Connect (OSTI)

    Ghorbani, H. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)] [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Rashidi, A.M., E-mail: Rashidiam@ripi.ir [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Rastegari, S.; Mirdamadi, S. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)] [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Alaei, M. [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)] [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)

    2011-05-15

    Research highlights: {yields} Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. {yields} Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. {yields} Optimum growth condition is CO/H{sub 2} = 1/1, 100 cm{sup 3}/min, at 620 {sup o}C under long term repetitive thermal cycling. {yields} Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H{sub 2} = 1/1, total gas flow rate 100 cm{sup 3}/min, at 620 {sup o}C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  10. Spray casting of metallic preforms

    DOE Patents [OSTI]

    Flinn, John E. (Idaho Falls, ID); Burch, Joseph V. (Shelley, ID); Sears, James W. (Niskayuna, NY)

    2000-01-01

    A metal alloy is melted in a crucible and ejected from the bottom of the crucible as a descending stream of molten metal. The descending stream is impacted with a plurality of primary inert gas jets surrounding the molten metal stream to produce a plume of atomized molten metal droplets. An inert gas is blown onto a lower portion of the plume with a plurality of auxiliary inert gas jets to deflect the plume into a more restricted pattern of high droplet density, thereby substantially eliminating unwanted overspray and resulting wasted material. The plume is projected onto a moving substrate to form a monolithic metallic product having generally parallel sides.

  11. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from condensation of vaporized material and subsequent rapid formation of aggregates. Particles of larger size, resulting from ejection of melted material or fragments from the cutting zone, were also observed. This study presents data regarding the metal cutting rate, particle size distribution, and their generation rate, while using different cutting tools and metals. The study shows that respirable particles constitute only a small fraction of the released kerf.

  12. Heavy metal biosensor

    DOE Patents [OSTI]

    Hillson, Nathan J; Shapiro, Lucille; Hu, Ping; Andersen, Gary L

    2014-04-15

    Compositions and methods are provided for detection of certain heavy metals using bacterial whole cell biosensors.

  13. Degenerate doping of metallic anodes

    SciTech Connect (OSTI)

    Friesen, Cody A; Zeller, Robert A; Johnson, Paul B; Switzer, Elise E

    2015-05-12

    Embodiments of the invention relate to an electrochemical cell comprising: (i) a fuel electrode comprising a metal fuel, (ii) a positive electrode, (iii) an ionically conductive medium, and (iv) a dopant; the electrodes being operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode and the dopant increases the conductivity of the metal fuel oxidation product. In an embodiment, the oxidation product comprises an oxide of the metal fuel which is doped degenerately. In an embodiment, the positive electrode is an air electrode that absorbs gaseous oxygen, wherein during discharge mode, oxygen is reduced at the air electrode. Embodiments of the invention also relate to methods of producing an electrode comprising a metal and a doped metal oxidation product.

  14. ORIGINAL PAPER Production of glassceramics from heavy metal gypsum

    E-Print Network [OSTI]

    Volinsky, Alex A.

    (973 K, 2 h) and a crystallization stage (1,173 K, 1 h). The main crystalline phase of the obtained is a product of the stainless steel pickling waste liquor disposed by the lime neutralization precipita- tion properties and randomly oriented crystals with some resi- dual glass with

  15. Bacterial Production of Mixed Metal Oxide Nanoparticles - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura BeaneCardwell,Production - Energy

  16. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect (OSTI)

    Dr. Ramana Reddy

    2012-04-12

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode. Successful extraction of metal from metal oxide dissolved in Urea/ChCl (2:1) was accomplished. The current efficiencies were relatively high in both the metal deposition processes with current efficiency greater than 86% for lead and 95% for zinc. This technology will advance the metal oxide reduction process by increasing the process efficiency and also eliminate the production of CO2 which makes this an environmentally benign technology for metal extraction.

  17. Method of manufacturing metallic products such as sheet by cold working and flash anealing

    DOE Patents [OSTI]

    Hajaligol, Mohammad R. (Midlothian, VA); Sikka, Vinod K. (Oak Ridge, TN)

    2001-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  18. Method of manufacturing metallic products such as sheet by cold working and flash annealing

    DOE Patents [OSTI]

    Hajaligol, Mohammad R. (Midlothian, VA); Sikka, Vinod K. (Oak Ridge, TN)

    2000-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  19. METAL NANOPARTICLES FUNCTIONALIZED WITH METAL-LIGAND COVALENT BONDS

    E-Print Network [OSTI]

    Kang, Xiongwu

    2012-01-01

    Formation of catalytic metal-molecule contacts. Science,of Organotransition Metal Compounds. Advances inof highly monodisperse metal nanoparticles. Journal of the

  20. Method for the preparation of metal colloids in inverse micelles and product preferred by the method

    DOE Patents [OSTI]

    Wilcoxon, Jess P. (Albuquerque, NM)

    1992-01-01

    A method is provided for preparing catalytic elemental metal colloidal particles (e.g. gold, palladium, silver, rhodium, iridium, nickel, iron, platinum, molybdenum) or colloidal alloy particles (silver/iridium or platinum/gold). A homogeneous inverse micelle solution of a metal salt is first formed in a metal-salt solvent comprised of a surfactant (e.g. a nonionic or cationic surfactant) and an organic solvent. The size and number of inverse micelles is controlled by the proportions of the surfactant and the solvent. Then, the metal salt is reduced (by chemical reduction or by a pulsed or continuous wave UV laser) to colloidal particles of elemental metal. After their formation, the colloidal metal particles can be stabilized by reaction with materials that permanently add surface stabilizing groups to the surface of the colloidal metal particles. The sizes of the colloidal elemental metal particles and their size distribution is determined by the size and number of the inverse micelles. A second salt can be added with further reduction to form the colloidal alloy particles. After the colloidal elemental metal particles are formed, the homogeneous solution distributes to two phases, one phase rich in colloidal elemental metal particles and the other phase rich in surfactant. The colloidal elemental metal particles from one phase can be dried to form a powder useful as a catalyst. Surfactant can be recovered and recycled from the phase rich in surfactant.

  1. Vivapure Metal Chelate Mini spin columns

    E-Print Network [OSTI]

    Lebendiker, Mario

    ® Vivapure Metal Chelate Mini spin columns Hisn #12;E. coli cell lysates containing a recombinant Hisn-tagged protein were purified using Vivapure Metal Chelate Mini spin columns and competitor products. The Vivapure Metal Chelate Mini spin columns were pre- loaded with different metal ions

  2. Effects of Dopant Metal Variation and Material Synthesis Method on the Material Properties of Mixed Metal Ferrites in Yttria Stabilized Zirconia for Solar Thermochemical Fuel Production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Leonard, Jeffrey; Reyes, Nichole; Allen, Kyle M.; Randhir, Kelvin; Li, Like; AuYeung, Nick; Grunewald, Jeremy; Rhodes, Nathan; Bobek, Michael; Klausner, James F.

    2015-01-01

    Mixed metal ferrites have shown much promise in two-step solar-thermochemical fuel production. Previous work has typically focused on evaluating a particular metal ferrite produced by a particular synthesis process, which makes comparisons between studies performed by independent researchers difficult. A comparative study was undertaken to explore the effects different synthesis methods have on the performance of a particular material during redox cycling using thermogravimetry. This study revealed that materials made via wet chemistry methods and extended periods of high temperature calcination yield better redox performance. Differences in redox performance between materials made via wet chemistry methods were minimal andmore »these demonstrated much better performance than those synthesized via the solid state method. Subsequently, various metal ferrite samples (NiFe 2 O 4 , MgFe 2 O 4 , CoFe 2 O 4 , and MnFe 2 O 4 ) in yttria stabilized zirconia (8YSZ) were synthesized via coprecipitation and tested to determine the most promising metal ferrite combination. It was determined that 10?wt.% CoFe 2 O 4 in 8YSZ produced the highest and most consistent yields of O 2 and CO. By testing the effects of synthesis methods and dopants in a consistent fashion, those aspects of ferrite preparation which are most significant can be revealed. More importantly, these insights can guide future efforts in developing the next generation of thermochemical fuel production materials. « less

  3. Metal halogen electrochemical cell

    SciTech Connect (OSTI)

    Walsh, F.M.

    1986-06-03

    An electrochemical cell is described having a metal anode selected from the group consisting of zinc and cadmium; a bromine cathode; and, an aqueous electrolyte containing a metal bromide, the metal having the same metal as the metal of the anode, the improvement comprising: a bromine complexing agent in the aqueous metal bromide electrolyte consisting solely of a tetraorgano substituted ammonium salt, which salt is soluble of water and forms and substantially water immiscible liquid bromine complex at temperatures in the range of about 10/sup 0/C. to about 60/sup 0/C. and wherein the tetraorgano substituted ammonium salt is selected from asymmetric quaternary ammonium compounds.

  4. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  5. Metal-Ion-Mediated Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal-Ion-Mediated Reactions Metal-Ion-Mediated Reactions Print Monday, 19 December 2011 18:29 While mononuclear, polynuclear, and polymeric metal complexes are most often...

  6. Characterization of Corrosion Products and Microbes on Various Types of Metal Coupons Using Beamline 1.4.3

    E-Print Network [OSTI]

    Characterization of Corrosion Products and Microbes on Various Types of Metal Coupons Using of California, Irvine and Mackay School of Mines, University of Nevada, Reno Microbes primarily exist in complex

  7. Inert anode containing oxides of nickel, iron and zinc useful for the electrolytic production of metals

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA); Liu, Xinghua (Monroeville, PA)

    2002-01-01

    An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and ZnO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and ZnO: 0.2 to 0.99 NiO; 0.0001 to 0.8 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.3 ZnO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

  8. Inert anode containing oxides of nickel iron and cobalt useful for the electrolytic production of metals

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA)

    2002-01-01

    An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and CoO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and CoO: 0.15 to 0.99 NiO; 0.0001 to 0.85 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.45 CoO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

  9. Supported molten-metal catalysts

    DOE Patents [OSTI]

    Datta, Ravindra (Iowa City, IA); Singh, Ajeet (Iowa City, IA); Halasz, Istvan (Iowa City, IA); Serban, Manuela (Iowa City, IA)

    2001-01-01

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  10. Liquid Metal Transformers

    E-Print Network [OSTI]

    Sheng, Lei; Liu, Jing

    2014-01-01

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clar...

  11. Metal phthalocyanine catalysts

    DOE Patents [OSTI]

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-10-11

    A new composition of matter is described which is an alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  12. Metal phthalocyanine catalysts

    DOE Patents [OSTI]

    Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

    1994-01-01

    As a new composition of matter, alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  13. The chemistry of transition metal complexes related to solar energy storage : H? production and small molecule (CO? and HX; X = Cl, Br) chemistry.

    E-Print Network [OSTI]

    Lee, Changhoon, Ph. D. Massachusetts Institute of Technology

    2011-01-01

    The studies in this thesis have focused on the chemistry of transition metal complexes related to solar energy storage: electrochemical H? production, HX splitting and CO? activation mediated by transition metal complexes. ...

  14. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  15. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, Paul O. (Golden, CO); Kennedy, Cheryl E. (Lafayette, CO); Jorgensen, Gary J. (Pine, CO); Shinton, Yvonne D. (Northglenn, CO); Goggin, Rita M. (Englewood, CO)

    1994-01-01

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  16. PHYTOEXTRACTION OF HEAVY METALS

    E-Print Network [OSTI]

    Blouin-Demers, Gabriel

    Plants Chelating agents Pb hyperaccumulation Effects of pH on metal extraction Disposal options contaminants from soils Contaminants must be in harvestable portions of the plant (Wongkongkatep et al. 2003) Chelating Agents: desorb heavy metals from soil matrix and form water-soluble metal complexes (Shen et al

  17. Metal Affinity Chromatography (MAC)

    E-Print Network [OSTI]

    Lebendiker, Mario

    Fractogel® Metal Affinity Chromatography (MAC) Resins and Cartridges Tools for His·Tag® Fusion-MACTM Cartridges #12;2 Novagen · Fractogel Metal Affinity Chromatography (MAC) Resins Ni-MACTM , Co-MACTM and u-MACTM Metal Affinity Chromatography (MAC) Resins and Cartridges HI Ni2+ Ni2+ Ni2+ HISHISHI SHISHISHIS Ni2

  18. Metal roofing Shingle roofing

    E-Print Network [OSTI]

    Hutcheon, James M.

    Metal roofing panel Shingle roofing Water & ice barrier Thermal Barrier Plywood Student: Arpit a cost benefit analysis and choose the most efficient and cost effective modification. Metal or shingle roof with only a water barrier between the plywood and the roofing panels. Metal roofing panel Shingle

  19. Backward and forward modes guided by metal-dielectric-metal

    E-Print Network [OSTI]

    Backward and forward modes guided by metal-dielectric-metal plasmonic waveguides Arthur R. Davoyan by metal-dielectric-metal plasmonic waveguides Arthur R. Davoyan,a Ilya V. Shadrivov,a Sergey I.davoyan@gmail.com Abstract. We revisited the problem of the existence of plasmonic modes guided by metal- dielectric-metal

  20. Heavy metal leaching from coal fly ash amended container substrates during Syngonium production

    SciTech Connect (OSTI)

    Li, Q.S.; Chen, J.J.; Li, Y.C.

    2008-02-15

    Coal fly ash has been proposed to be an alternative to lime amendment and a nutrient source of container substrates for ornamental plant production. A great concern over this proposed beneficial use, however, is the potential contamination of surface and ground water by heavy metals. In this study, three fly ashes collected from Florida, Michigan, and North Carolina and a commercial dolomite were amended in a basal substrate. The formulated substrates were used to produce Syngonium podophyllum Schott 'Berry Allusion' in 15-cm diameter containers in a shaded greenhouse. Leachates from the containers were collected during the entire six months of plant production and analyzed for heavy metal concentrations. There were no detectable As, Cr, Hg, Pb, and Se in the leachates; Cd and Mo were only detected in few leachate samples. The metals constantly detected were Cu, Mn, Ni, and Zn. The total amounts of Cu, Mn, Ni, and Zn leached during the six-month production period were 95, 210, 44, and 337 {mu} g per container, indicating that such amounts in leachates may contribute little to contamination of surface and ground water. In addition, plant growth indices and fresh and dry weights of S. podophyllum 'Berry Allusion' produced from fly ash and dolomite-amended substrates were comparable except for the plants produced from the substrate amended with fly ash collected from Michigan which had reduced growth indices and fresh and dry weights. Thus, selected fly ashes can be alternatives to commercial dolomites as amendments to container substrates for ornamental plant production. The use of fly ashes as container substrate amendments should represent a new market for the beneficial use of this coal combustion byproduct.

  1. Method of producing metallized chloroplasts and use thereof in the photochemical production of hydrogen and oxygen

    DOE Patents [OSTI]

    Greenbaum, Elias (Oak Ridge, TN)

    1987-01-01

    The invention is primarily a metallized chloroplast composition for use in a photosynthetic reaction. A catalytic metal is precipitated on a chloroplast membrane at the location where a catalyzed reduction reaction occurs. This metallized chloroplast is stabilized by depositing it on a support medium such as fiber so that it can be easily handled. A possible application of this invention is the splitting of water to form hydrogen and oxygen that can be used as a renewable energy source.

  2. High Metallicity LGRB Hosts

    E-Print Network [OSTI]

    Graham, J F; Levesque, E M; Kewley, L J; Tanvir, N R; Levan, A J; Patel, S K; Misra, K; Huang, K -H; Reichart, D E; Nysewander, M; Schady, P

    2015-01-01

    We present our imaging and spectroscopic observations of the host galaxies of two dark long bursts with anomalously high metallicities, LGRB 051022 and LGRB 020819B, which in conjunction with another LGRB event with an optical afterglow comprise the three LGRBs with high metallicity host galaxies in the Graham & Fruchter (2013) sample. In Graham & Fruchter (2013), we showed that LGRBs exhibit a strong and apparently intrinsic preference for low metallicity environments (12+log(O/H) & redshift. This is surprising: even among a preselected sample of high metallicity LGRBs, were the metal aversion to remain in effect for these objects, we would expect their metallicity to still be lower than the typical metallicity for the galaxies at that luminosity and redshift. Therefore we deduce that it...

  3. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect (OSTI)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-10

    This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

  4. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    SciTech Connect (OSTI)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini; Wiles Elder

    1999-04-05

    This eleventh quarterly report describes work done during the eleventh three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to two outside contacts.

  5. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect (OSTI)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-06-01

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

  6. Extraction process for removing metallic impurities from alkalide metals

    DOE Patents [OSTI]

    Royer, L.T.

    1987-03-20

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  7. Electronic structure of porphyrin-based metal-organic frameworks and their suitability for solar fuel production photocatalysis

    E-Print Network [OSTI]

    Hamad, Said; Aziz, Alex G; Ruiz-Salvador, A Rabdel; Calero, Sofia; Grau-Crespo, Ricardo

    2015-01-01

    Metal-organic frameworks (MOFs) can be exceptionally good catalytic materials thanks to the presence of active metal centres and a porous structure that is advantageous for molecular adsorption and confinement. We present here a first-principles investigation of the electronic structure of a family of MOFs based on porphyrins connected through phenyl-carboxyl ligands and AlOH species, in order to assess their suitability for the photocatalysis of fuel production reactions using sunlight.

  8. BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE

    E-Print Network [OSTI]

    Yang, Rosa L.

    2013-01-01

    nuclear fuels irradiated to high burnup metallic fissionoxide fuel and observed trails behind metallic 1on thesemetallic fission products arc found attached to of the central void of Lf\\1FBR fuels,

  9. Metal atomization spray nozzle

    DOE Patents [OSTI]

    Huxford, T.J.

    1993-11-16

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  10. Polyacidic multiloading metal extractants 

    E-Print Network [OSTI]

    Gordon, R. J.; Campbell, J.; Henderson, D.K.; Henry, D. C. R.; Swart, R. M.; Tasker, P. A.; White, F. J.; Wood, J. L.; Yellowlees, L. J

    2008-01-01

    Novel polynucleating, di- and tri-acidic ligands have been designed to increase the molar and mass transport efficiencies for the recovery of base metals by solvent extraction.

  11. Nucleosynthesis in Metal-Free and Metal-Poor Stars

    E-Print Network [OSTI]

    Yong-Zhong Qian

    2008-07-04

    There have been a number of important recent developments in theoretical and observational studies of nucleosynthesis, especially regarding nucleosynthetic sources at low metallicities. Those selected for discussion here include the origin of Li6, the primary production of N, the s-process, and the supernova sources for three groups of metals: (1) C to Zn with mass numbers A<70, (2) Sr to Ag with A~90-110, and (3) r-process nuclei with A~130 and above.

  12. Process for making surfactant capped metal oxide nanocrystals, and products produced by the process

    DOE Patents [OSTI]

    Alivisatos, A. Paul; Rockenberger, Joerg

    2006-01-10

    Disclosed is a process for making surfactant capped nanocrystals of metal oxides which are dispersable in organic solvents. The process comprises decomposing a metal cupferron complex of the formula MXCupX, wherein M is a metal, and Cup is a N-substituted N-Nitroso hydroxylamine, in the presence of a coordinating surfactant, the reaction being conducted at a temperature ranging from about 150 to about 400.degree. C., for a period of time sufficient to complete the reaction. Also disclosed are compounds made by the process.

  13. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.WeekProducts >TransportationEHSS A-ZTravisTrending: Metal

  14. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.WeekProducts >TransportationEHSSTrending: Metal Oxo Bonds

  15. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.WeekProducts >TransportationEHSSTrending: Metal Oxo

  16. Metal pad instabilities in liquid metal batteries

    E-Print Network [OSTI]

    Zikanov, Oleg

    2015-01-01

    A mechanical analogy is used to analyze the interaction between the magnetic field, electric current and deformation of interfaces in liquid metal batteries. It is found that, during charging or discharging, a sufficiently large battery is prone to instabilities of two types. One is similar to the metal pad instability known for aluminum reduction cells. Another type is new. It is related to the destabilizing effect of the Lorentz force formed by the azimuthal magnetic field induced by the base current and the current perturbations caused by the local variations of the thickness of the electrolyte layer.

  17. Comparative Summer Thermal Performance of Finished and Unfinished Metal Roofing Products with Composition Shingles 

    E-Print Network [OSTI]

    Parker, D. S.; Sherwin, J.; Sonne, J.

    2004-01-01

    of five roofing systems against a control roof using dark shingles. The intent of the testing is to evaluate how roofing systems impact residential cooling energy use. Recent testing emphasizes evaluation of how increasingly popular metal roofing systems...

  18. Heavy Metal Humor: Reconsidering Carnival in Heavy Metal Culture 

    E-Print Network [OSTI]

    Powell, Gary Botts

    2013-06-05

    Bakhtin?s carnivalesque theory by analyzing comedic rhetoric performed by two comedic metal bands. Through the theories of Johan Huizinga and Mikhail Bakhtin, Chapter I: I Play Metal argues that heavy metal culture is a modern carnivalesque play...

  19. Metal-Organic Frameworks Based on Main Group Metals

    E-Print Network [OSTI]

    Zhao, Xiang

    2011-01-01

    Based Frameworks with Open Metal Sites In previous work, weClusters Introduction Porous metal-organic frameworks (MOFs)abundant choice of metal ions and clusters, numerous organic

  20. Metallic nanowire networks

    DOE Patents [OSTI]

    Song, Yujiang; Shelnutt, John A.

    2012-11-06

    A metallic nanowire network synthesized using chemical reduction of a metal ion source by a reducing agent in the presence of a soft template comprising a tubular inverse micellar network. The network of interconnected polycrystalline nanowires has a very high surface-area/volume ratio, which makes it highly suitable for use in catalytic applications.

  1. Porous metallic bodies

    DOE Patents [OSTI]

    Landingham, R.L.

    1984-03-13

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides a

  2. Metallization of electronic insulators

    DOE Patents [OSTI]

    Gottesfeld, Shimshon (Los Alamos, NM); Uribe, Francisco A. (Los Alamos, NM)

    1994-01-01

    An electroplated element is formed to include an insulating substrate, a conducting polymer polymerized in situ on the substrate, and a metal layer deposited on the conducting polymer. In one application a circuit board is formed by polymerizing pyrrole on an epoxy-fiberglass substrate in a single step process and then electrodepositing a metal over the resulting polypyrrole polymer. No chemical deposition of the metal is required prior to electroplating and the resulting layer of substrate-polymer-metal has excellent adhesion characteristics. The metal deposition is surprisingly smooth and uniform over the relatively high resistance film of polypyrrole. A continuous manufacturing process is obtained by filtering the solution between successive substrates to remove polymer formed in the solution, by maintaining the solution oxidizing potential within selected limits, and by adding a strong oxidant, such as KMnO.sub.4 at periodic intervals to maintain a low sheet resistivity in the resulting conducting polymer film.

  3. Metal nanodisks using bicellar templates

    DOE Patents [OSTI]

    Song, Yujiang; Shelnutt, John A

    2013-12-03

    Metallic nanodisks and a method of making them. The metallic nanodisks are wheel-shaped structures that that provide large surface areas for catalytic applications. The metallic nanodisks are grown within bicelles (disk-like micelles) that template the growth of the metal in the form of approximately circular dendritic sheets. The zero-valent metal forming the nanodisks is formed by reduction of a metal ion using a suitable electron donor species.

  4. Metal-Poor Stars

    E-Print Network [OSTI]

    Anna Frebel

    2008-02-13

    The abundance patterns of metal-poor stars provide us a wealth of chemical information about various stages of the chemical evolution of the Galaxy. In particular, these stars allow us to study the formation and evolution of the elements and the involved nucleosynthesis processes. This knowledge is invaluable for our understanding of the cosmic chemical evolution and the onset of star- and galaxy formation. Metal-poor stars are the local equivalent of the high-redshift Universe, and offer crucial observational constraints on the nature of the first stars. This review presents the history of the first discoveries of metal-poor stars that laid the foundation to this field. Observed abundance trends at the lowest metallicities are described, as well as particular classes of metal-poor stars such as r-process and C-rich stars. Scenarios on the origins of the abundances of metal-poor stars and the application of large samples of metal-poor stars to cosmological questions are discussed.

  5. Production efficiency of thin metal flyers formed by laser ablation S. Cogan, E. Shirman, and Y. Haasa

    E-Print Network [OSTI]

    Haas, Yehuda

    Production efficiency of thin metal flyers formed by laser ablation S. Cogan, E. Shirman, and Y of these measurements allowed the determination of the flyer's kinetic energy and hence the efficiency of the launching and acceleration efficiencies up to 0.45 were measured under our experimental conditions. The results show

  6. EXELFS of Metallic Glasses

    SciTech Connect (OSTI)

    Ito, Y.; Alamgir, F.M.; Schwarz, R.B.; Jain, H.; Williams, D.B.

    1999-11-30

    The feasibility of using extended energy-loss fine structure (EXELFS) obtained from {approximately}1 nm regions of metallic glasses to study their short-range order has been examined. Ionization edges of the metallic glasses in the electron energy-loss spectrum (EELS) have been obtained from PdNiP bulk metallic glass and Ni{sub 2}P polycrystalline powder in a transmission electron microscope. The complexity of EXELFS analysis of L- and M-ionization edges of heavy elements (Z>22, i.e. Ni and Pd) is addressed by theoretical calculations using an ab initio computer code, and its results are compared with the experimental data.

  7. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2010-01-08

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  8. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2013-05-29

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  9. Transition Metal Switchable Mirror

    SciTech Connect (OSTI)

    2009-08-21

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  10. Transition Metal Switchable Mirror

    SciTech Connect (OSTI)

    None

    2009-01-01

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  11. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  12. Direct electrochemical reduction of metal-oxides

    DOE Patents [OSTI]

    Redey, Laszlo I. (Downers Grove, IL); Gourishankar, Karthick (Downers Grove, IL)

    2003-01-01

    A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

  13. Divalent metal nanoparticles

    E-Print Network [OSTI]

    DeVries, Gretchen Anne

    2008-01-01

    Metal nanoparticles hold promise for many scientific and technological applications, such as chemical and biological sensors, vehicles for drug delivery, and subdiffraction limit waveguides. To fabricate such devices, a ...

  14. METALS DESIGN HANDBOOK DISCLAIMER

    Office of Scientific and Technical Information (OSTI)

    9 06 Revision 0 METALS DESIGN HANDBOOK DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States...

  15. Molten metal reactors

    DOE Patents [OSTI]

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

    2013-11-05

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  16. Electrochemical nitridation of metal surfaces

    DOE Patents [OSTI]

    Wang, Heli; Turner, John A.

    2015-06-30

    Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.

  17. Thermally tolerant multilayer metal membrane

    DOE Patents [OSTI]

    Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM)

    2001-01-01

    A composite metal membrane including a first metal layer of a Group IVB or Group VB metal sandwiched between two layers of a Group VIIIB metal selected from the group consisting of palladium, platinum, nickel, rhodium, iridium, cobalt, and alloys thereof, and a non-continuous layer of a metal chalcogenide upon one layer of the Group VIIIB metal is disclosed together with a process for the recovery of hydrogen from a gaseous mixture using such a composite membrane and a process for forming such a composite metal membrane.

  18. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOE Patents [OSTI]

    Cassano, A.A.

    1985-07-02

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

  19. Method for hydrogen production and metal winning, and a catalyst/cocatalyst composition useful therefor

    DOE Patents [OSTI]

    Dhooge, Patrick M. (Corrales, NM)

    1987-10-13

    A catalyst/cocatalyst/organics composition of matter is useful in electrolytically producing hydrogen or electrowinning metals. Use of the catalyst/cocatalyst/organics composition causes the anode potential and the energy required for the reaction to decrease. An electrolyte, including the catalyst/cocatalyst composition, and a reaction medium composition further including organic material are also described.

  20. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOE Patents [OSTI]

    Cassano, Anthony A. (Allentown, PA)

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  1. PRODUCTION OF {sup 9}Be THROUGH THE {alpha}-FUSION REACTION OF METAL-POOR COSMIC RAYS AND STELLAR FLARES

    SciTech Connect (OSTI)

    Kusakabe, Motohiko; Kawasaki, Masahiro E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2013-04-10

    Spectroscopic observations of metal-poor stars have indicated possible {sup 6}Li abundances that are much larger than the primordial abundance predicted in the standard big bang nucleosynthesis model. Possible mechanisms of {sup 6}Li production in metal-poor stars include pregalactic and cosmological cosmic-ray (CR) nucleosynthesis and nucleosynthesis by flare-accelerated nuclides. We study {sup 9}Be production via two-step {alpha}-fusion reactions of CR or flare-accelerated {sup 3,4}He through {sup 6}He and {sup 6,7}Li, in pregalactic structure, intergalactic medium, and stellar surfaces. We solve transfer equations of CR or flare particles and calculate nuclear yields of {sup 6}He, {sup 6,7}Li, and {sup 9}Be taking account of probabilities of processing {sup 6}He and {sup 6,7}Li into {sup 9}Be via fusions with {alpha} particles. Yield ratios, i.e., {sup 9}Be/{sup 6}Li, are then calculated for the CR and flare nucleosynthesis models. We suggest that the future observations of {sup 9}Be in metal-poor stars may find enhanced abundances originating from metal-poor CR or flare activities.

  2. Displacement method and apparatus for reducing passivated metal powders and metal oxides

    DOE Patents [OSTI]

    Morrell; Jonathan S. (Knoxville, TN), Ripley; Edward B. (Knoxville, TN)

    2009-05-05

    A method of reducing target metal oxides and passivated metals to their metallic state. A reduction reaction is used, often combined with a flux agent to enhance separation of the reaction products. Thermal energy in the form of conventional furnace, infrared, or microwave heating may be applied in combination with the reduction reaction.

  3. Broadening the Statistical Search for Metal Price Super Cycles to Steel and Related Metals

    E-Print Network [OSTI]

    run up in metal prices, allegedly fueled by industrial development and urbanization in China, India for super-cycle behavior to three additional metal products that are critical in the early phases portfolio managers, and hedge funds are among those that have fueled the demand for these metal plays. #12

  4. Peroxotitanates for Biodelivery of Metals

    SciTech Connect (OSTI)

    Hobbs, David; Elvington, M.

    2009-02-11

    Metal-based drugs are largely undeveloped in pharmacology. One limiting factor is the systemic toxicity of metal-based compounds. A solid-phase, sequestratable delivery agent for local delivery of metals could reduce systemic toxicity, facilitating new drug development in this nascent area. Amorphous peroxotitanates (APT) are ion exchange materials with high affinity for several heavy metal ions, and have been proposed to deliver or sequester metal ions in biological contexts. In the current study, we tested a hypothesis that APT are able to deliver metals or metal compounds to cells. We exposed fibroblasts (L929) or monocytes (THP1) to metal-APT materials for 72 h in vitro, then measured cellular mitochondrial activity (SDH-MTT method) to assess the biological impact of the metal-APT materials vs. metals or APT alone. APT alone did not significantly affect cellular mitochondrial activity, but all metal-APT materials suppressed the mitochondrial activity of fibroblasts (by 30-65% of controls). The concentration of metal-APT materials required to suppress cellular mitochondrial activity was below that required for metals alone, suggesting that simple extracellular release of the metals from the metal-APT materials was not the primary mechanism of mitochondrial suppression. In contrast to fibroblasts, no metal-APT material had a measurable effect on THP1 monocyte mitochondrial activity, despite potent suppression by metals alone. This latter result suggested that 'biodelivery' by metal-APT materials may be cell type-specific. Therefore, it appears that APT are plausible solid phase delivery agents of metals or metal compounds to some types of cells for potential therapeutic effect.

  5. Liquid metal thermal electric converter

    DOE Patents [OSTI]

    Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  6. Method for forming metal contacts

    DOE Patents [OSTI]

    Reddington, Erik; Sutter, Thomas C; Bu, Lujia; Cannon, Alexandra; Habas, Susan E; Curtis, Calvin J; Miedaner, Alexander; Ginley, David S; Van Hest, Marinus Franciscus Antonius Maria

    2013-09-17

    Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.

  7. Final LDRD report : metal oxide films, nanostructures, and heterostructures for solar hydrogen production.

    SciTech Connect (OSTI)

    Kronawitter, Coleman X.; Antoun, Bonnie R.; Mao, Samuel S.

    2012-01-01

    The distinction between electricity and fuel use in analyses of global power consumption statistics highlights the critical importance of establishing efficient synthesis techniques for solar fuels-those chemicals whose bond energies are obtained through conversion processes driven by solar energy. Photoelectrochemical (PEC) processes show potential for the production of solar fuels because of their demonstrated versatility in facilitating optoelectronic and chemical conversion processes. Tandem PEC-photovoltaic modular configurations for the generation of hydrogen from water and sunlight (solar water splitting) provide an opportunity to develop a low-cost and efficient energy conversion scheme. The critical component in devices of this type is the PEC photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with the electrochemical scale for its charge carriers to have sufficient potential to drive the hydrogen and oxygen evolution reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions.

  8. High-Temperature Zirconia Oxygen Sensor with Sealed Metal/Metal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference...

  9. Alkali metal ionization detector

    DOE Patents [OSTI]

    Bauerle, James E. (Plum Borough, PA); Reed, William H. (Monroeville, PA); Berkey, Edgar (Murrysville, PA)

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  10. Method for locating metallic nitride inclusions in metallic alloy ingots

    DOE Patents [OSTI]

    White, Jack C. (Albany, OR); Traut, Davis E. (Corvallis, OR); Oden, Laurance L. (Albany, OR); Schmitt, Roman A. (Corvallis, OR)

    1992-01-01

    A method of determining the location and history of metallic nitride and/or oxynitride inclusions in metallic melts. The method includes the steps of labeling metallic nitride and/or oxynitride inclusions by making a coreduced metallic-hafnium sponge from a mixture of hafnium chloride and the chloride of a metal, reducing the mixed chlorides with magnesium, nitriding the hafnium-labeled metallic-hafnium sponge, and seeding the sponge to be melted with hafnium-labeled nitride inclusions. The ingots are neutron activated and the hafnium is located by radiometric means. Hafnium possesses exactly the proper metallurgical and radiochemical properties for this use.

  11. The Role of Primary 16O as a Neutron Poison in AGB stars and Fluorine primary production at Halo Metallicities

    E-Print Network [OSTI]

    Gallino, R; Cristallo, S; Straniero, O

    2010-01-01

    The discovery of a historical bug in the s-post-process AGB code obtained so far by the Torino group forced us to reconsider the role of primary 16O in the 13C-pocket, produced by the 13C(a, n)16O reaction, as important neutron poison for the build up of the s-elements at Halo metallicities. The effect is noticeable only for the highest 13C-pocket efficiencies (cases ST*2 and ST). For Galactic disc metallicities, the bug effect is negligible. A comparative analysis of the neutron poison effect of other primary isotopes (12C, 22Ne and its progenies) is presented. The effect of proton captures, by 14N(n, p)14C, boosts a primary production of Fluorine in Halo AGB stars, with [F/Fe] comparable to [C/Fe], without affecting the s-elements production.

  12. Metal-optic and Plasmonic Semiconductor-based Nanolasers

    E-Print Network [OSTI]

    Lakhani, Amit

    2012-01-01

    of Metals . . . . . . . . . . . . . . . . . . . . . . .coupled Metal-optic Nanocavities . . . . . . . . . . . . . .dependent quality factors Q metal for good conduc- tors.

  13. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, Haskell (Los Alamos, NM)

    1986-01-01

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  14. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, H.

    1983-07-26

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  15. Metallic carbon materials

    DOE Patents [OSTI]

    Cohen, Marvin Lou (Berkeley, CA); Crespi, Vincent Henry (Darien, IL); Louie, Steven Gwon Sheng (Berkeley, CA); Zettl, Alexander Karlwalter (Kensington, CA)

    1999-01-01

    Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

  16. Fast Rotation vs. Metallicity

    E-Print Network [OSTI]

    Ronaldo Levenhagen; Nelson Vani Leister; Juan Zorec; Yves Fremat

    2005-09-07

    Fast rotation seems to be the major factor to trigger the Be phenomenon. Surface fast rotation can be favored by initial formation conditions such as metal abundance. Models of fast rotating atmospheres and evolutionary tracks are used to determine the stellar fundamental parameters of 120 Be stars situated in spatially well-separated regions to imply there is between them some gradient of metallicity. We study the effects of the incidence of this gradient on the nature of the studied stars as fast rotators.

  17. Catalysis Without Precious Metals

    SciTech Connect (OSTI)

    Bullock, R. Morris

    2010-11-01

    Written for chemists in industry and academia, this ready reference and handbook summarizes recent progress in the development of new catalysts that do not require precious metals. The research thus presented points the way to how new catalysts may ultimately supplant the use of precious metals in some types of reactions, while highlighting the remaining challenges. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

  18. Metal alloy identifier

    DOE Patents [OSTI]

    Riley, William D. (Avondale, MD); Brown, Jr., Robert D. (Avondale, MD)

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  19. A Novel Thermal Electrochemical Synthesis Method for Production of Stable Colloids of "Naked" Metal (Ag) Nanocrystals

    SciTech Connect (OSTI)

    Hu, Michael Z.; Easterly, Clay E

    2009-01-01

    Solution synthesis of nanocrystal silver is reviewed. This paper reports a novel thermal electrochemical synthesis (TECS) for producing metal Ag nanocrystals as small as a few nanometers. The TECS method requires mild conditions (25-100oC), low voltage (1-50 V DC) on Ag electrodes, and simple water or aqueous solutions as reaction medium. Furthermore, a tubular dialysis membrane surround electrodes proves favorable to produce nanosized (<10 nm) Ag nanocrystals. Different from those nanocrystals reported in literature, our nanocrystals have several unique features: (1) small nanometer size, (2) nakedness , i.e., surfaces of metal nanocrystals are free of organic ligands or capping molecules and no need of dispersant in synthesis solutions, and (3) colloidally stable in water solutions. It was discovered that Ag nanoparticles with initially large size distribution can be homogenized into near-monodispersed system by a low power (< 15 mW) He-Ne laser exposure treatment. The combination of the TECS technique and the laser treatment could lead to a new technology that produces metal nanoparticles that are naked, stable, and uniform sized. In the presence of stabilizing agent (also as supporting electrolyte) such as polyvinyl alcohol (PVA), large yield of silver nanoparticles (<100nm) in the form of thick milky sols are produced.

  20. Fabricated Metals (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fabricated Metals (2010 MECS) Fabricated Metals (2010 MECS) Manufacturing Energy and Carbon Footprint for Fabricated Metals Sector (NAICS 332) Energy use data source: 2010 EIA MECS...

  1. Locating experiential richness in doom metal

    E-Print Network [OSTI]

    Piper, Jonathan

    2013-01-01

    as Trouble) (1984), Metal Blade. Witchfinder General.Death Penalty (1982), Heavy Metal Records.the Balinese Death/ Thrash Metal Scene. ” Popular Music 22,

  2. Shaping metal nanocrystals through epitaxial seeded growth

    E-Print Network [OSTI]

    Habas, Susan E.; Lee, Hyunjoo; Radmilovic, Velimir; Somorjai, Gabor A.; Yang, Peidong

    2008-01-01

    Structural Evolution in Metal Oxide/Semiconductor Colloidalasymmetric one-sided metal-tipped semiconductor nanocrystalGrowth of Magnetic-Metal- Functionalized Semiconductor Oxide

  3. Metal working lubricant compositions

    SciTech Connect (OSTI)

    Andress, H.J.; Davis, R.H.; Schick, J.W.

    1981-08-11

    A lubricant concentrate for use in metal processing comprises a sulfur compound such as a sulfurized olefin or sulfurized mineral oil and an ester prepared from a fatty acid having 12 to 40 carbon atoms or the dimer thereof or a polyalkenylsuccinic acid or anhydride and a hydroxyl-containing amine.

  4. Ductile transplutonium metal alloys

    DOE Patents [OSTI]

    Conner, William V. (Boulder, CO)

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  5. Ductile transplutonium metal alloys

    DOE Patents [OSTI]

    Conner, W.V.

    1981-10-09

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  6. The erosion of metals

    E-Print Network [OSTI]

    Andrews, David Richard

    1980-10-21

    The study of the erosion of metallic surfaces by solid particles has been an area of dispute recently (1980) especially concerning the importance of target melting as a mechanism for the removal of material. In addition, erosion by particles at a...

  7. Erroneous Wave Functions of Ciuchi et al for Collective Modes in Neutron Production on Metallic Hydride Cathodes

    E-Print Network [OSTI]

    A. Widom; Y. N. Srivastava; L. Larsen

    2012-10-17

    There is a recent comment (Ciuchi et al., 2012) concerning the theory of collective many body effects on the neutron production rates in a chemical battery cathode. Ciuchi et al employ an inverse beta decay expression that contains a two body amplitude. Only one electron and one proton may exist in the Ciuchi et al model initial state wave function. A flaw in their reasoning is that one cannot in reality describe collective many body correlations with only a two particle wave function. One needs very many particles to describe collective effects. In the model wave functions of Ciuchi et al there are no metallic hydrides, there are no cathodes and there are no chemical batteries. Employing a wave function with only one electron and one proton is inadequate for describing collective metallic hydride surface quantum plasma physics in cathodes accurately.

  8. 9 Metal to Non-metal Transitions in Solids and on Surfaces studied using Photoemission Spectroscopy

    E-Print Network [OSTI]

    Redner, Sidney

    9 Metal to Non-metal Transitions in Solids and on Surfaces studied using Photoemission Spectroscopy of the electrical properties of a material between those of a metal and those of a non-metal (be it semiconducting metal to non-metal transitions. (Thephrase `metal to non-metal transition' is used in this paper

  9. Methods of recovering alkali metals

    DOE Patents [OSTI]

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  10. Inert electrode containing metal oxides, copper and noble metal

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

    2001-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  11. Inert electrode containing metal oxides, copper and noble metal

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

    2000-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  12. Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons

    SciTech Connect (OSTI)

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. Concentrations in produced water discharge plume/receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  13. FLUIDIC: Metal Air Recharged

    SciTech Connect (OSTI)

    Friesen, Cody

    2014-03-07

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  14. FLUIDIC: Metal Air Recharged

    ScienceCinema (OSTI)

    Friesen, Cody

    2014-04-02

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  15. Hydrothermal alkali metal recovery process

    DOE Patents [OSTI]

    Wolfs, Denise Y. (Houston, TX); Clavenna, Le Roy R. (Baytown, TX); Eakman, James M. (Houston, TX); Kalina, Theodore (Morris Plains, NJ)

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  16. Dimensionally stable metallic hydride composition

    DOE Patents [OSTI]

    Heung, Leung K. (Aiken, SC)

    1994-01-01

    A stable, metallic hydride composition and a process for making such a composition. The composition comprises a uniformly blended mixture of a metal hydride, kieselguhr, and a ballast metal, all in the form of particles. The composition is made by subjecting a metal hydride to one or more hydrogen absorption/desorption cycles to disintegrate the hydride particles to less than approximately 100 microns in size. The particles are partly oxidized, then blended with the ballast metal and the kieselguhr to form a uniform mixture. The mixture is compressed into pellets and calcined. Preferably, the mixture includes approximately 10 vol. % or more kieselguhr and approximately 50 vol. % or more ballast. Metal hydrides that can be used in the composition include Zr, Ti, V, Nb, Pd, as well as binary, tertiary, and more complex alloys of La, Al, Cu, Ti, Co, Ni, Fe, Zr, Mg, Ca, Mn, and mixtures and other combinations thereof. Ballast metals include Al, Cu and Ni.

  17. Corrosion protective coating for metallic materials

    DOE Patents [OSTI]

    Buchheit, R.G.; Martinez, M.A.

    1998-05-26

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

  18. Synthesis of transition metal carbonitrides

    DOE Patents [OSTI]

    Munir, Zuhair A. R. (Davis, CA); Eslamloo-Grami, Maryam (Davis, CA)

    1994-01-01

    Transition metal carbonitrides (in particular, titanium carbonitride, TiC.sub.0.5 N.sub.0.5) are synthesized by a self-propagating reaction between the metal (e.g., titanium) and carbon in a nitrogen atmosphere. Complete conversion to the carbonitride phase is achieved with the addition of TiN as diluent and with a nitrogen pressure .gtoreq.0.6 MPa. Thermodynamic phase-stability calculations and experimental characterizations of quenched samples provided revealed that the mechanism of formation of the carbonitride is a two-step process. The first step involves the formation of the nonstoichiometric carbide, TiC.sub.0.5, and is followed by the formation of the product by the incorporation of nitrogen in the defect-structure carbide.

  19. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect (OSTI)

    Marra, J.; Billings, A.

    2009-06-24

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  20. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect (OSTI)

    Marra, James C.; Billings, Amanda Y.; Crum, Jarrod V.; Ryan, Joseph V.; Vienna, John D.

    2010-02-26

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  1. COORDINATION CHEMISTRY OF METAL SURFACES AND METAL COMPLEXES

    E-Print Network [OSTI]

    Muetterties, E.L.

    2013-01-01

    molecular coordination chemistry of CH3NC has been reported.features of this surface chemistry. ACKNOw"LEDGMENTS The1980 Catalysis~ COORDINATION CHEMISTRY OF METAL SURFACES AND

  2. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout / TransformingTransuranic Waste RetrievalTrending: Metal Oxo

  3. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout / TransformingTransuranic Waste RetrievalTrending: Metal

  4. Probing metal solidification nondestructively

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions | National NuclearProbingProbing metal solidification

  5. Probing metal solidification nondestructively

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-Rich Matrices inPrincipalFirm Exchange . . .Probing metal

  6. Metal to ceramic sealed joint

    DOE Patents [OSTI]

    Lasecki, John V. (Livonia, MI); Novak, Robert F. (Farmington Hills, MI); McBride, James R. (Ypsilanti, MI)

    1991-01-01

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system.

  7. Metal to ceramic sealed joint

    DOE Patents [OSTI]

    Lasecki, J.V.; Novak, R.F.; McBride, J.R.

    1991-08-27

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system. 11 figures.

  8. REVERSIBLE METAL-TO-METAL METHYL TRANSFER IN n5-CYCLOPENTADIENYL(TRIPHENYLPHOSPHINE)DIMETHYLCOBALT(III)

    E-Print Network [OSTI]

    Bryndza, Henry E.

    2013-01-01

    transfer between transition metals which is assisted by aJournal of the American Chemical Society REVERSIBLE METAL-TO-METAL METHYL TRANSFER IN n 5-CYCLOPENTAOIENYL(

  9. Alkali metal ion battery with bimetallic electrode

    DOE Patents [OSTI]

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  10. Method for preparing porous metal hydride compacts

    DOE Patents [OSTI]

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  11. Method for preparing porous metal hydride compacts

    DOE Patents [OSTI]

    Ron, Moshe (Haifa, IL); Gruen, Dieter M. (Downers Grove, IL); Mendelsohn, Marshall H. (Woodridge, IL); Sheft, Irving (Oak Park, IL)

    1981-01-01

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  12. Electronic structure of metallic glasses

    SciTech Connect (OSTI)

    Oelhafen, P.; Lapka, R.; Gubler, U.; Krieg, J.; DasGupta, A.; Guentherodt, H.J.; Mizoguchi, T.; Hague, C.; Kuebler, J.; Nagel, S.R.

    1981-01-01

    This paper is organized in six sections and deals with (1) the glassy transition metal alloys, their d-band structure, the d-band shifts on alloying and their relation to the alloy heat of formation (..delta..H) and the glass forming ability, (2) the glass to crystal phase transition viewed by valence band spectroscopy, (3) band structure calculations, (4) metallic glasses prepared by laser glazing, (5) glassy normal metal alloys, and (6) glassy hydrides.

  13. Corrosion-resistant metal surfaces

    DOE Patents [OSTI]

    Sugama, Toshifumi (Wading River, NY)

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  14. Metal-ceramic joint assembly

    DOE Patents [OSTI]

    Li, Jian (New Milford, CT)

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  15. Metal-ion recycle technology for metal electroplating waste waters

    SciTech Connect (OSTI)

    Sauer, N.N.; Smith, B.F.

    1993-06-01

    As a result of a collaboration with Boeing Aerospace, the authors have begun a program to identify suitable treatments or to develop new treatments for electroplating baths. The target baths are mixed-metal or alloy baths that are being integrated into the Boeing electroplating complex. These baths, which are designed to replace highly toxic chromium and cadmium baths, contain mixtures of two metals, either nickel-tungsten, nickel-zinc, or zinc-tin. This report reviews the literature and details currently available on emerging technologies that could affect recovery of metals from electroplating baths under development by Boeing Aerospace. This literature survey summarizes technologies relevant to the recovery of metals from electroplating processes. The authors expanded the scope to investigate single metal ion recovery technologies that could be applied to metal ion recovery from alloy baths. This review clearly showed that the electroplating industry has traditionally relied on precipitation and more recently on electrowinning as its waste treatment methods. Despite the almost ubiquitous use of precipitation to remove contaminant metal ions from waste electroplating baths and rinse waters, this technology is clearly no longer feasible for the electroplating industry for several reasons. First, disposal of unstabilized sludge is no longer allowed by law. Second, these methods are no longer adequate as metal-removal techniques because they cannot meet stringent new metal discharge limits. Third, precious resources are being wasted or discarded because these methods do not readily permit recovery of the target metal ions. As a result, emerging technologies for metal recovery are beginning to see application to electroplating waste recycle. This report summarizes current research in these areas. Included are descriptions of various membrane technologies, such as reverse osmosis and ultrafiltration, ion exchange and chelating polymer technology, and electrodialysis.

  16. Clean Metal Casting

    SciTech Connect (OSTI)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  17. Metal deposition using seed layers

    DOE Patents [OSTI]

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  18. Root-induced Changes in Metal Speciation in the Rhizosphere and

    E-Print Network [OSTI]

    Sparks, Donald L.

    , and metal complexation with organic acids affected re-precipitation products. Spectromicroscopy was used

  19. Tritium production from a low voltage deuterium discharge on palladium and other metals

    SciTech Connect (OSTI)

    Claytor, T.N.; Jackson, D.D.; Tuggle, D.G.

    1995-09-01

    Over the past year the authors have been able to demonstrate that a plasma loading method produces an exciting and unexpected amount of tritium from small palladium wires. In contrast to electrochemical hydrogen or deuterium loading of palladium, this method yields a reproducible tritium generation rate when various electrical and physical conditions are met. Small diameter wires (100--250 microns) have been used with gas pressures above 200 torr at voltages and currents of about 2,000 V at 3--5 A. By carefully controlling the sputtering rate of the wire, runs have been extended to hundreds of hours allowing a significant amount (> 10`s nCi) of tritium to accumulate. they show tritium generation rates for deuterium-palladium foreground runs that are up to 25 times larger than hydrogen-palladium control experiments using materials from the same batch. They illustrate the difference between batches of annealed palladium and as received palladium from several batches as well as the effect of other metals (Pt, Ni, Nb, Zr, V, W, Hf) to demonstrate that the tritium generation rate can vary greatly from batch to batch.

  20. Metal sulfide initiators for metal oxide sorbent regeneration

    DOE Patents [OSTI]

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  1. Heavy metal movement in metal-contaminated soil profiles

    SciTech Connect (OSTI)

    Li, Zhenbin; Shuman, L.M.

    1996-10-01

    Heavy metal movement in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. In this study, three metal-contaminated soil (Fuquay, Dothan, and Clarendon) were selected from cropland were a high-metal flue dust had been applied annually for 6 years to raise soil pH, with application ending 4 years before sampling. One uncontaminated soil (Tifton) from the same physiographic area was also sampled as a control. Soil samples were collected in 15-cm increments from the surface to 105 cm in depth. Total contents of Zn, Cd, and Pb in the soils samples were determined. To better understand metal movement in relation to metal fractions in the soil profile, soil samples were also extracted sequentially for exchangeable (EXC), organic matter (OM), Mn oxide (MNO), amorphous Fe oxide (AFEO), crystalline Fe oxide (CFEO), and residual (RES) fractions. 35 refs., 6 figs., 2 tabs.

  2. metals Fischer, S.H.; Grubelich, M.C. 37 INORGANIC, ORGANIC,...

    Office of Scientific and Technical Information (OSTI)

    IGNITION; MIXTURES; PRODUCTION; REACTION HEAT; SPECIFIC HEAT; STABILITY Thermite (metal oxide) mixtures, intermetallic reactants, and metal fuels have long been used in...

  3. Hydrogen-permeable composite metal membrane and uses thereof

    DOE Patents [OSTI]

    Edlund, David J. (Bend, OR); Friesen, Dwayne T. (Bend, OR)

    1993-06-08

    Various hydrogen production and hydrogen sulfide decomposition processes are disclosed that utilize composite metal membranes that contain an intermetallic diffusion barrier separating a hydrogen-permeable base metal and a hydrogen-permeable coating metal. The barrier is a thermally stable inorganic proton conductor.

  4. Thin film hydrous metal oxide catalysts

    DOE Patents [OSTI]

    Dosch, Robert G. (Albuquerque, NM); Stephens, Howard P. (Albuquerque, NM)

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  5. Non-Destructive Inspection of Adhesive Bonds in Metal-Metal Joints...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inspection of Adhesive Bonds in Metal-Metal Joints Non-Destructive Inspection of Adhesive Bonds in Metal-Metal Joints 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  6. Histological Features of Pseudotumor-like Tissues From Metal-on-Metal Hips

    E-Print Network [OSTI]

    Campbell, Pat; Ebramzadeh, Edward; Nelson, Scott; Takamura, Karren; Smet, Koen; Amstutz, Harlan C.

    2010-01-01

    Fayyazi A, Flury R, Windler M, Koster G, Lohmann CH. Metal-on-metal bearings and hyper- sensitivity in patients withthe acetabular com- ponent and metal ion levels in metal-on-

  7. AN INITIAL ASSESSMENT OF POTENTIAL PRODUCTION TECHNOLOGIES FOR EPSILON-METAL WASTE FORMS

    SciTech Connect (OSTI)

    Rohatgi, Aashish; Strachan, Denis M.

    2011-03-01

    This report examines and ranks a total of seven materials processing techniques that may be potentially utilized to consolidate the undissolved solids from nuclear fuel reprocessing into a low-surface area form. Commercial vendors of processing equipment were contacted and literature researched to gather information for this report. Typical equipment and their operation, corresponding to each of the seven techniques, are described in the report based upon the discussions and information provided by the vendors. Although the report does not purport to describe all the capabilities and issues of various consolidation techniques, it is anticipated that this report will serve as a guide by highlighting the key advantages and disadvantages of these techniques. The processing techniques described in this report were broadly classified into those that employed melting and solidification, and those in which the consolidation takes place in the solid-state. Four additional techniques were examined that were deemed impractical, but were included for completeness. The techniques were ranked based on criteria such as flexibility in accepting wide-variety of feed-stock (chemistry, form, and quantity), ease of long-term maintenance, hot cell space requirements, generation of additional waste streams, cost, and any special considerations. Based on the assumption of ~2.5 L of waste to be consolidated per day, sintering based techniques, namely, microwave sintering, spark plasma sintering and hot isostatic pressing, were ranked as the top-3 choices, respectively. Melting and solidification based techniques were ranked lower on account of generation of volatile phases and difficulties associated with reactivity and containment of the molten metal.

  8. Expanding hollow metal rings

    DOE Patents [OSTI]

    Peacock, Harold B. (Evans, GA); Imrich, Kenneth J. (Grovetown, GA)

    2009-03-17

    A sealing device that may expand more planar dimensions due to internal thermal expansion of a filler material. The sealing material is of a composition such that when desired environment temperatures and internal actuating pressures are reached, the sealing materials undergoes a permanent deformation. For metallic compounds, this permanent deformation occurs when the material enters the plastic deformation phase. Polymers, and other materials, may be using a sealing mechanism depending on the temperatures and corrosivity of the use. Internal pressures are generated by either rapid thermal expansion or material phase change and may include either liquid or solid to gas phase change, or in the gaseous state with significant pressure generation in accordance with the gas laws. Sealing material thickness and material composition may be used to selectively control geometric expansion of the seal such that expansion is limited to a specific facing and or geometric plane.

  9. Liquid metal thermoacoustic engine

    SciTech Connect (OSTI)

    Swift, G.W.; Migliori, A.; Wheatley, J.C.

    1986-01-01

    We are studying a liquid metal thermoacoustic engine both theoretically and experimentally. This type of engine promises to produce large quantities of electrical energy from heat at modest efficiency with no moving parts. A sound wave is usually thought of as consisting of pressure oscillations, but always attendant to the pressure oscillation are temperature oscillations. The combination produces a rich variety of ''thermoacoustic'' effects. These effects are usually so small that they are never noticed in everyday life; nevertheless under the right circumstances they can be harnessed to produce powerful heat engines, heat pumps, and refrigerators. In our liquid metal thermoacoustic engine, heat flow from a high temperature source to a low temperature sink generates a high-amplitude standing acoustic wave in liquid sodium. This acoustic power is converted to electric power by a simple magnetohydrodynamic effect at the acoustic oscillation frequency. We have developed a detailed thermoacoustic theory applicable to this engine, and find that a reasonably designed liquid sodium engine operating between 700/sup 0/C and 100/sup 0/C should generate about 60 W/cm/sup 2/ of acoustic power at about 1/3 of Carnot's efficiency. Construction of a 3000 W-thermal laboratory model engine has just been completed, and we have exciting preliminary experimental results as of the time of preparation of this manuscript showing, basically, that the engine works. We have also designed and built a 1 kHz liquid sodium magnetohydrodynamic generator and have extensive measurements on it. It is now very well characterized both experimentally and theoretically. The first generator of its kind, it already converts acoustic power to electric power with 40% efficiency. 16 refs., 5 figs.

  10. Synthesis metal nanoparticle

    DOE Patents [OSTI]

    Bunge, Scott D.; Boyle, Timothy J.

    2005-08-16

    A method for providing an anhydrous route for the synthesis of amine capped coinage-metal (copper, silver, and gold) nanoparticles (NPs) using the coinage-metal mesityl (mesityl=C.sub.6 H.sub.2 (CH.sub.3).sub.3 -2,4,6) derivatives. In this method, a solution of (Cu(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5, (Ag(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.4, or (Au(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5 is dissolved in a coordinating solvent, such as a primary, secondary, or tertiary amine; primary, secondary, or tertiary phosphine, or alkyl thiol, to produce a mesityl precursor solution. This solution is subsequently injected into an organic solvent that is heated to a temperature greater than approximately 100.degree. C. After washing with an organic solvent, such as an alcohol (including methanol, ethanol, propanol, and higher molecular-weight alcohols), oxide free coinage NP are prepared that could be extracted with a solvent, such as an aromatic solvent (including, for example, toluene, benzene, and pyridine) or an alkane (including, for example, pentane, hexane, and heptane). Characterization by UV-Vis spectroscopy and transmission electron microscopy showed that the NPs were approximately 9.2.+-.2.3 nm in size for Cu.degree., (no surface oxide present), approximately 8.5.+-.1.1 nm Ag.degree. spheres, and approximately 8-80 nm for Au.degree..

  11. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1991-01-01

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  12. Treatability of Stormwater Heavy Metals

    E-Print Network [OSTI]

    Clark, Shirley E.

    1 Treatability of Stormwater Heavy Metals or Breaking the Irreducible Concentration Barrier R. Pitt Technologies for Urban Stormwater Conducted by the University of Alabamay y from 1999 to 2003 · Examined the characteristics and treatability of stormwater heavy metals at selected source areas and at outfalls. · Conducted

  13. URANIUM METAL POWDER PRODUCTION, PARTICLE DISTRIBUTION ANALYSIS, AND REACTION RATE STUDIES OF A HYDRIDE-DEHYDRIDE PROCESS 

    E-Print Network [OSTI]

    Sames, William

    2011-08-08

    Work was done to study a hydride-dehydride method for producing uranium metal powder. Particle distribution analysis was conducted using digital microscopy and grayscale image analysis software. The particle size was found ...

  14. Durability of metals from archaeological objects, metal meteorites, and native metals

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.; Francis, B.

    1980-01-01

    Metal durability is an important consideration in the multi-barrier nuclear waste storage concept. This study summarizes the ancient metals, the environments, and factors which appear to have contributed to metal longevity. Archaeological and radiochemical dating suggest that human use of metals began in the period 6000 to 7000 BC. Gold is clearly the most durable, but many objects fashioned from silver, copper, bronze, iron, lead, and tin have survived for several thousand years. Dry environments, such as tombs, appear to be optimum for metal preservation, but some metals have survived in shipwrecks for over a thousand years. The metal meteorites are Fe-base alloys with 5 to 60 wt% Ni and minor amounts of Co, I, and S. Some meteoritic masses with ages estimated to be 5,000 to 20,000 years have weathered very little, while other masses from the same meteorites are in advanced stages of weathering. Native metals are natural metallic ores. Approximately five million tonnes were mined from native copper deposits in Michigan. Copper masses from the Michigan deposits were transported by the Pleistocene glaciers. Areas on the copper surfaces which appear to represent glacial abrasion show minimal corrosion. Dry cooling tower technology has demonstrated that in pollution-free moist environments, metals fare better at temperatures above than below the dewpoint. Thus, in moderate temperature regimes, elevated temperatures may be useful rather than detrimental for exposures of metal to air. In liquid environments, relatively complex radiolysis reactions can occur, particularly where multiple species are present. A dry environment largely obviates radiolysis effects.

  15. Pressure-Induced Electronic Phase Transitions Transition Metal Oxides and Rare Earth Metals

    E-Print Network [OSTI]

    Islam, M. Saif

    Pressure-Induced Electronic Phase Transitions in Transition Metal Oxides and Rare Earth Metals Metal Oxides and Rare Earth Metals by Brian Ross Maddox Electron correlation can affect profound changes transition in a transition metal monoxide. iv #12;The lanthanides (the 4f metals also known as rare-earths

  16. Method for preparing metal powder, device for preparing metal powder, method for processing spent nuclear fuel

    DOE Patents [OSTI]

    Park, Jong-Hee (Clarendon Hills, IL)

    2011-11-29

    A method for producing metal powder is provided the comprising supplying a molten bath containing a reducing agent, contacting a metal oxide with the molten bath for a time and at a temperature sufficient to reduce the metal in the metal oxide to elemental metal and produce free oxygen; and isolating the elemental metal from the molten bath.

  17. Influence of lateral target size on hot electron production and electromagnetic pulse emission from laser-irradiated metallic targets

    SciTech Connect (OSTI)

    Chen Ziyu; Li Jianfeng; Yu Yong; Li Xiaoya; Peng Qixian; Zhu Wenjun [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Wang Jiaxiang [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China)

    2012-11-15

    The influences of lateral target size on hot electron production and electromagnetic pulse emission from laser interaction with metallic targets have been investigated. Particle-in-cell simulations at high laser intensities show that the yield of hot electrons tends to increase with lateral target size, because the larger surface area reduces the electrostatic field on the target, owing to its expansion along the target surface. At lower laser intensities and longer time scales, experimental data characterizing electromagnetic pulse emission as a function of lateral target size also show target-size effects. Charge separation and a larger target tending to have a lower target potential have both been observed. The increase in radiation strength and downshift in radiation frequency with increasing lateral target size can be interpreted using a simple model of the electrical capacity of the target.

  18. Metal-binding polymesr as chelating agents

    E-Print Network [OSTI]

    Mohammadi, Zahra

    2011-04-11

    , high affinity binding of toxic metals by these functionalized hydrogels offers potential applications in waste water treatment and may enable applications in acute metal poisoning. Finally, a unique synthetic methodology using similar metal chelating...

  19. Metal-directed protein self-assembly

    E-Print Network [OSTI]

    Salgado. Eric N.

    2010-01-01

    F. A. 2010. Evolution of metal selectivity in templatedR. J. , Tezcan, F. A. 2010. Metal-Directed Protein Self-B. , Tezcan, F. A. 2010. Metal templated design of protein

  20. Metal-templated assembly of protein cages

    E-Print Network [OSTI]

    Huard, Dustin Johnathen Edward

    2012-01-01

    Chapter 2. Generation of Metal-Responsive HuHF Buildingprotein interactions through metal coordination: Assembly ofSalgado, E.N. , et al. , Metal-mediated self-assembly of

  1. Modeling the glass forming ability of metals

    E-Print Network [OSTI]

    Cheney, Justin Lee

    2007-01-01

    compositions without rare earth metals in the Fe-Cr-Mo-C-B-Wsmall percentages of rare earth metals as the oxide formingmore, often containing rare earth metals, are among the best

  2. Strengthening porous metal skeletons by metal deposition from a nanoparticle dispersion

    E-Print Network [OSTI]

    Crane, Nathan B., 1974-

    2005-01-01

    The accuracy of solid freeform fabrication processes such as three-dimensional printing (3DP) and selective laser sintering (SLS) must be improved for them to achieve wide application in direct production of metal parts. ...

  3. METALLIC AND HYBRID NANOSTRUCTURES: FUNDAMENTALS AND APPLICATIONS

    SciTech Connect (OSTI)

    Murph, S.

    2012-05-02

    This book chapter presents an overview of research conducted in our laboratory on preparation, optical and physico-chemical properties of metallic and nanohybrid materials. Metallic nanoparticles, particularly gold, silver, platinum or a combination of those are the main focus of this review manuscript. These metallic nanoparticles were further functionalized and used as templates for creation of complex and ordered nanomaterials with tailored and tunable structural, optical, catalytic and surface properties. Controlling the surface chemistry on/off metallic nanoparticles allows production of advanced nanoarchitectures. This includes coupled or encapsulated core-shell geometries, nano-peapods, solid or hollow, monometallic/bimetallic, hybrid nanoparticles. Rational assemblies of these nanostructures into one-, two- and tridimensional nano-architectures is described and analyzed. Their sensing, environmental and energy related applications are reviewed.

  4. Catalysis using hydrous metal oxide ion exchangers

    DOE Patents [OSTI]

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  5. MECS 2006 - Fabricated Metals | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    supporting documents Manufacturing Energy and Carbon Footprint Fabricated Metals More Documents & Publications Fabricated Metals (2010 MECS) MECS 2006 - Cement MECS 2006 - Glass...

  6. Engineering Metal Impurities in Multicrystalline Silicon Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Metal Impurities in Multicrystalline Silicon Solar Cells Print Transition metals are one of the main culprits in degrading the efficiency of multicrystalline solar...

  7. Thermodynamics of metallic systems | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermodynamics of metallic systems Many thermodynamics properties of metallic systems are not readily available through experimental measurements or widely available databases...

  8. BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE

    E-Print Network [OSTI]

    Yang, Rosa L.

    2013-01-01

    Metallic Inclusions in Uranium Dioxide", LBL-11117 (1980).in Hypostoichiornetric Uranium Dioxide 11 , LBL-11095 (OF METALLIC INCLUSIONS IN URANIUM DIOXIDE Rosa L. Yang and

  9. Metal Hydride Hydrogen Storage Research and Development

    Broader source: Energy.gov [DOE]

    DOE's research on complex metal hydrides targets the development of advanced metal hydride materials including light-weight complex hydrides, destabilized binary hydrides, intermetallic hydrides,...

  10. Novel in situ mechanical testers to enable integrated metal surface...

    Office of Scientific and Technical Information (OSTI)

    results are providing a foundation upon which to develop a stress-gradient-free thin film directly applicable to the production of freestanding metal structures. The issues of...

  11. THE HIGH TEMPERATURE BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE.

    E-Print Network [OSTI]

    Yang, Rosa Lu.

    2010-01-01

    Products in Irradiated Uranium Dioxide," UKAEA Report AERE-OF METALLIC INCLUSIONS IN URANIUM DIOXIDE Rosa Lu Yang (Chemical State of Irradiated Uranium- Plutonium Oxide Fuel

  12. Cobalt discovery replaces precious metals as industrial catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    processes Common cobalt may replace pricier, rare metal relatives Potential applications: biofuel production, carbon dioxide reduction, basic necessary chemistry LOS ALAMOS, N.M.,...

  13. Light metal explosives and propellants

    DOE Patents [OSTI]

    Wood, Lowell L.; Ishikawa, Muriel Y.; Nuckolls, John H.; Pagoria, Phillip F.; Viecelli, James A.

    2005-04-05

    Disclosed herein are light metal explosives, pyrotechnics and propellants (LME&Ps) comprising a light metal component such as Li, B, Be or their hydrides or intermetallic compounds and alloys containing them and an oxidizer component containing a classic explosive, such as CL-20, or a non-explosive oxidizer, such as lithium perchlorate, or combinations thereof. LME&P formulations may have light metal particles and oxidizer particles ranging in size from 0.01 .mu.m to 1000 .mu.m.

  14. Quinary metallic glass alloys

    DOE Patents [OSTI]

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  15. Quinary metallic glass alloys

    DOE Patents [OSTI]

    Lin, Xianghong (Pasadena, CA); Johnson, William L. (Pasadena, CA)

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  16. Pyroprocessing of IFR Metal Fuel

    SciTech Connect (OSTI)

    Laidler, J.J. [Argonne National Laboratory, IL (United States)

    1993-12-31

    The Integral Fast Reactor (IFR) fuel cycle features the use of an innovative reprocessing method, known as {open_quotes}pyroprocessing{close_quotes} featuring fused-salt electrofining of the spent fuel. Electrofining of IFR spent fuel involves uranium recovery by electro-transport to a solid steel cathode. The thermodynamics of the system preclude plutonium recovery in the same way, so a liquid cadmium cathode located in the electrolyte salt phase is utilized. The deposition of Pu, Am, Np, and Cm takes place at the liquid cadmium cathode in the form of cadmium intermetallic compounds (e.g, PuCd{sub 6}), and uranium deposits as the pure metal when cadmium saturation is reached. A small amount of rare earth fission products deposit together with the heavy metals at both the solid and liquid cadmium cathodes, providing a significant degree of self-protection. A full scope demonstration of the IFR fuel cycle will begin in 1993, using fuel irradiated in EBR-II.

  17. The Hardest Superconducting Metal Nitride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20?GPa. Here, we report high–pressure synthesis of hexagonal ?–MoN and cubic ?–MoN through an ion–exchange reaction at 3.5?GPa. The final products are in the bulk form with crystallite sizesmore »of 50 – 80??m. Based on indentation testing on single crystals, hexagonal ?–MoN exhibits excellent hardness of ~30?GPa, which is 30% higher than cubic ?–MoN (~23?GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for ?–MoN and cubic ?–MoN are 13.8 and 5.5?K, respectively, in good agreement with previous measurements.« less

  18. The Hardest Superconducting Metal Nitride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal ?–MoN and cubic ?–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form withmore »crystallite sizes of 50 – 80 ?m. Based on indentation testing on single crystals, hexagonal ?–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic ?–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for ?–MoN and cubic ?–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.« less

  19. Study on measurement of spatial dose rates from simulated products made from recycled metal below clearance levels arising from dismantling of nuclear facilities. Contract research

    E-Print Network [OSTI]

    Okamoto, A; Kitami, Y; Nakamura, H; Nakashima, M; Saitô, K

    2002-01-01

    In order to contribute to safety assessment of recycling products made from dismantling metal wastes, metal ingots containing sup 6 sup 0 Co were produced and spatial dose rates from ingots were evaluated by gamma-ray measurement and calculation. Stripping operations were made using detector response functions calculated by Monte Carlo program to derive spatial dose rates from measured gamma-ray spectra. In the computer simulation, Monte Carlo and point kernel calculation codes were used. Agreement between measured and calculated values was satisfactory in spite of an extremely low concentration of sup 6 sup 0 Co in the ingots and a complicated geometric condition between detector and samples.

  20. Organometallic chemistry of metal surfaces

    SciTech Connect (OSTI)

    Muetterties, E.L.

    1981-06-01

    The organometallic chemistry of metal surfaces is defined as a function of surface crystallography and of surface composition for a set of cyclic hydrocarbons that include benzene, toluene, cyclohexadienes, cyclohexene, cyclohexane, cyclooctatetraene, cyclooctadienes, cyclooctadiene, cycloheptatriene and cyclobutane. 12 figures.

  1. EROSION MECHANISM IN DUCTILE METALS

    E-Print Network [OSTI]

    Bellman Jr., Robert

    2013-01-01

    England. Mayvflle, fL A. , "Mechanism of fV1aterial RemovalSubmitted to WEAR EROSION MECHANISM IN DUCTILE METALS Robertmetals. ace and erosion rate mechanism is a signifi- mic in

  2. Time domain electromagnetic metal detectors

    SciTech Connect (OSTI)

    Hoekstra, P.

    1996-04-01

    This presentation focuses on illustrating by case histories the range of applications and limitations of time domain electromagnetic (TDEM) systems for buried metal detection. Advantages claimed for TDEM metal detectors are: independent of instrument response (Geonics EM61) to surrounding soil and rock type; simple anomaly shape; mitigation of interference by ambient electromagnetic noise; and responsive to both ferrous and non-ferrous metallic targets. The data in all case histories to be presented were acquired with the Geonics EM61 TDEM system. Case histories are a test bed site on Molokai, Hawaii; Fort Monroe, Virginia; and USDOE, Rocky Flats Plant. The present limitations of this technology are: discrimination capabilities in terms of type of ordnance, and depth of burial is limited, and ability of resolving targets with small metallic ambient needs to be improved.

  3. Nanostructured Metal Oxide Anodes (Presentation)

    SciTech Connect (OSTI)

    Dillon, A. C.; Riley, L. A.; Lee, S.-H.; Kim, Y.-H.; Ban, C.; Gillaspie, D. T.; Pesaran, A.

    2009-05-01

    This summarizes NREL's FY09 battery materials research activity in developing metal oxide nanostructured anodes to enable high-energy, durable and affordable li-ion batteries for HEVs and PHEVs.

  4. Metal-sensing layer-semiconductor and metal-sensing layer-metal heterostructure gas sensors

    SciTech Connect (OSTI)

    O'Leary, M.; Li, Zheng; Fonash, S.J.

    1987-01-01

    Extremely sensitive gas sensors can be fabricated using heterostructures of the form metal-sensing layer-semiconductor or metal-sensing layer-metal. These structures are heterostructure diodes which have the barrier controlling transport at least partially located in the sensing layer. In the presence of the gas species to be detected, the electrical properties of the sensing layer evolve, resulting in a modification of the barrier to electric current transport and, hence, resulting in detection due to changes in the current-voltage characteristics of the device. This type of sensor structure is demonstrated using the Pd/Ti-O/sub x/Ti heterostructure hydrogen detector.

  5. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    SciTech Connect (OSTI)

    Richard T. Scalettar; Warren E. Pickett

    2005-08-02

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.

  6. Metal detector technology data base

    SciTech Connect (OSTI)

    Porter, L.K.; Gallo, L.R.; Murray, D.W.

    1990-08-01

    The tests described in this report were conducted to obtain information on the effects target characteristics have on portal type metal detector response. A second purpose of the tests was to determine the effect of detector type and settings on the detection of the targets. Although in some cases comparison performance of different types and makes of metal detectors is found herein, that is not the primary purpose of the report. Further, because of the many variables that affect metal detector performance, the information presented can be used only in a general way. The results of these tests can show general trends in metal detection, but do little for making accurate predictions as to metal detector response to a target with a complex shape such as a handgun. The shape of an object and its specific metal content (both type and treatment) can have a significant influence on detection. Thus it should not be surprising that levels of detection for a small 100g stainless steel handgun are considerably different than for detection of the 100g stainless steel right circular cylinder that was used in these tests. 7 figs., 1 tab.

  7. Measurements of actinide-fission product yields in Caliban and Prospero metallic core reactor fission neutron fields

    SciTech Connect (OSTI)

    Casoli, P.; Authier, N. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Laurec, J.; Bauge, E.; Granier, T. [CEA, Centre DIF, 91297 Arpajon (France)

    2011-07-01

    In the 1970's and early 1980's, an experimental program was performed on the facilities of the CEA Valduc Research Center to measure several actinide-fission product yields. Experiments were, in particular, completed on the Caliban and Prospero metallic core reactors to study fission-neutron-induced reactions on {sup 233}U, {sup 235}U, and {sup 239}Pu. Thick actinide samples were irradiated and the number of nuclei of each fission product was determined by gamma spectrometry. Fission chambers were irradiated simultaneously to measure the numbers of fissions in thin deposits of the same actinides. The masses of the thick samples and the thin deposits were determined by mass spectrometry and alpha spectrometry. The results of these experiments will be fully presented in this paper for the first time. A description of the Caliban and Prospero reactors, their characteristics and performances, and explanations about the experimental approach will also be given in the article. A recent work has been completed to analyze and reinterpret these measurements and particularly to evaluate the associated uncertainties. In this context, calculations have also been carried out with the Monte Carlo transport code Tripoli-4, using the published benchmarked Caliban description and a three-dimensional model of Prospero, to determine the average neutron energy causing fission. Simulation results will be discussed in this paper. Finally, new fission yield measurements will be proposed on Caliban and Prospero reactors to strengthen the results of the first experiments. (authors)

  8. Impact of Fission Products Impurity on the Plutonium Content of Metal- and Oxide- Fuels in Sodium Cooled Fast Reactors

    SciTech Connect (OSTI)

    Hikaru Hiruta; Gilles Youinou

    2013-09-01

    This short report presents the neutronic analysis to evaluate the impact of fission product impurity on the Pu content of Sodium-cooled Fast Reactor (SFR) metal- and oxide- fuel fabrication. The similar work has been previously done for PWR MOX fuel [1]. The analysis will be performed based on the assumption that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate SFR fuels. Only non-gaseous FPs have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1 of Reference 1). Throughout of this report, we define the mixture of Pu and FPs as PuFP. The main objective of this analysis is to quantify the increase of the Pu content of SFR fuels necessary to maintain the same average burnup at discharge independently of the amount of FP in the Pu stream, i.e. independently of the PuFP composition. The FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

  9. Molten metal injector system and method

    DOE Patents [OSTI]

    Meyer, Thomas N. (Murrysville, PA); Kinosz, Michael J. (Apollo, PA); Bigler, Nicolas (Morin Heights, CA); Arnaud, Guy (Riviere-Beaudette, CA)

    2003-04-01

    Disclosed is a molten metal injector system including a holder furnace, a casting mold supported above the holder furnace, and a molten metal injector supported from a bottom side of the mold. The holder furnace contains a supply of molten metal having a metal oxide film surface. The bottom side of the mold faces the holder furnace. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The injector projects into the holder furnace and is in fluid communication with the mold cavity. The injector includes a piston positioned within a piston cavity defined by a cylinder for pumping the molten metal upward from the holder furnace and injecting the molten metal into the mold cavity under pressure. The piston and cylinder are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder further includes a molten metal intake for receiving the molten metal into the piston cavity. The molten metal intake is located below the metal oxide film surface of the molten metal when the holder furnace contains the molten metal. A method of injecting molten metal into a mold cavity of a casting mold is also disclosed.

  10. Metal salt catalysts for enhancing hydrogen spillover

    SciTech Connect (OSTI)

    Yang, Ralph T; Wang, Yuhe

    2013-04-23

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  11. Maskless laser writing of microscopic metallic interconnects

    DOE Patents [OSTI]

    Maya, L.

    1995-10-17

    A method of forming a metal pattern on a substrate is disclosed. The method includes depositing an insulative nitride film on a substrate and irradiating a laser beam onto the nitride film, thus decomposing the metal nitride into a metal constituent and a gaseous constituent, the metal constituent remaining in the nitride film as a conductive pattern. 4 figs.

  12. Metal sponge for cryosorption pumping applications

    DOE Patents [OSTI]

    Myneni, G.R.; Kneisel, P.

    1995-12-26

    A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area. 4 figs.

  13. Anaerobic microbial remobilization of coprecipitated metals

    DOE Patents [OSTI]

    Francis, A.J.; Dodge, C.J.

    1994-10-11

    A process is provided for solubilizing coprecipitated metals. Metals in waste streams are concentrated by treatment with an iron oxide coprecipitating agent. The coprecipitated metals are solubilized by contacting the coprecipitate with a bacterial culture of a Clostridium species ATCC 53464. The remobilized metals can then be recovered and recycled. 4 figs.

  14. Metal nanoparticles as a conductive catalyst

    DOE Patents [OSTI]

    Coker, Eric N. (Albuquerque, NM)

    2010-08-03

    A metal nanocluster composite material for use as a conductive catalyst. The metal nanocluster composite material has metal nanoclusters on a carbon substrate formed within a porous zeolitic material, forming stable metal nanoclusters with a size distribution between 0.6-10 nm and, more particularly, nanoclusters with a size distribution in a range as low as 0.6-0.9 nm.

  15. Dispersion enhanced metal/zeolite catalysts

    DOE Patents [OSTI]

    Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

    1987-03-31

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  16. METAL IONS: Physiological function and Pathological rle

    E-Print Network [OSTI]

    Morante, Silvia

    METAL IONS: Physiological function and Pathological rôle #12;METAL IONS ARE ESSENTIAL CELL COMPONENTS At least one-third of all proteins encoded in the human genome contain metal ions They can easily of biological processes Their ionization state influences how easily metal can get into cells (e.g.: Fe++ cross

  17. Horizontal electromagnetic casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  18. Horizontal electromagnetic casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  19. All-Angle Negative Refraction for Surface Plasmon Waves Using a Metal-Dielectric-Metal Structure

    E-Print Network [OSTI]

    Fan, Shanhui

    All-Angle Negative Refraction for Surface Plasmon Waves Using a Metal-Dielectric-Metal Structure, California 94305, USA (Received 16 September 2005; published 24 February 2006) We show that a metal-dielectric-metal structure can function as a negative refraction lens for surface plasmon waves on a metal surface

  20. Characterization and prioritization of mining-related metal sources with metal loading

    E-Print Network [OSTI]

    Ryan, Joe

    Characterization and prioritization of mining- related metal sources with metal loading tracer-related metal sources with metal loading tracer dilution tests, and a review of regulations and mine restoration by Professor Joseph N. Ryan Metal-mining associated wastes in the Lefthand Creek watershed in Boulder County

  1. Direct Electrolysis of Molten Lunar Regolith for the Production of Oxygen and Metals on the Moon

    E-Print Network [OSTI]

    Sirk, Aislinn H.

    The feasibility of producing oxygen by direct electrolysis of the molten lunar regolith at 1600 C was investigated and the generation of usable oxygen gas at the anode and concomitant production of iron and silicon at the ...

  2. Method of bonding metals to ceramics

    DOE Patents [OSTI]

    Maroni, V.A.

    1991-04-23

    A ceramic or glass having a thin layer of silver, gold or alloys thereof at the surface thereof is disclosed. A first metal is bonded to the thin layer and a second metal is bonded to the first metal. The first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Tl and alloys thereof, and the second metal is selected from the class consisting of Cu, Al, Pb, Au and alloys thereof. 3 figures.

  3. Method of bonding metals to ceramics

    DOE Patents [OSTI]

    Maroni, Victor A. (Naperville, IL)

    1991-01-01

    A ceramic or glass having a thin layer of silver, gold or alloys thereof at the surface thereof. A first metal is bonded to the thin layer and a second metal is bonded to the first metal. The first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Tl and alloys thereof, and the second metal is selected from the class consisting of Cu, Al, Pb, An and alloys thereof.

  4. Coated Metal Articles and Method of Making

    DOE Patents [OSTI]

    Boller, Ernest R.; Eubank, Lowell D.

    2004-07-06

    The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.

  5. Semiconductor assisted metal deposition for nanolithography applications

    DOE Patents [OSTI]

    Rajh, Tijana (Naperville, IL); Meshkov, Natalia (Downers Grove, IL); Nedelijkovic, Jovan M. (Belgrade, YU); Skubal, Laura R. (West Brooklyn, IL); Tiede, David M. (Elmhurst, IL); Thurnauer, Marion (Downers Grove, IL)

    2002-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  6. Coated metal articles and method of making

    DOE Patents [OSTI]

    Boller, Ernest R. (Van Buren Township, IN); Eubank, Lowell D. (Wilmington, DE)

    2004-07-06

    The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.

  7. Metal alkoxides and methods of making same

    DOE Patents [OSTI]

    Hentges, Patrick J.; Greene, Laura H.; Pafford, Margaret Mary; Westwood, Glenn; Klemperer, Walter G.

    2005-01-04

    A method of making a superconducting structure includes depositing a metal alkoxide on a surface of a metal and hydrolyzing the metal alkoxide on the surface to form a pinhole-free film. The metal is a superconductor. The metal alkoxide may be a compound of formula (I): where M is zirconium or hafnium, and the purity of the compound is at least 97% as measured by NMR spectroscopy.

  8. Reversible photodeposition and dissolution of metal ions

    DOE Patents [OSTI]

    Foster, Nancy S. (Boulder, CO); Koval, Carl A. (Golden, CO); Noble, Richard D. (Boulder, CO)

    1994-01-01

    A cyclic photocatalytic process for treating waste water containing metal and organic contaminants. In one embodiment of the method, metal ions are photoreduced onto the photocatalyst and the metal concentrated by resolubilization in a smaller volume. In another embodiment of the method, contaminant organics are first oxidized, then metal ions removed by photoreductive deposition. The present invention allows the photocatalyst to be recycled until nearly complete removal of metal ions and organic contaminants is achieved.

  9. Carbonation of metal silicates for long-term CO.sub.2 sequestration

    DOE Patents [OSTI]

    Blencoe, James G. (Harriman, TN); Palmer, Donald A. (Oliver Springs, TN); Anovitz, Lawrence M. (Knoxville, TN); Beard, James S. (Martinsville, VA)

    2012-02-14

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  10. Carbonation of metal silicates for long-term CO2 sequestration

    DOE Patents [OSTI]

    Blencoe, James G; Palmer, Donald A; Anovitz, Lawrence M; Beard, James S

    2014-03-18

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  11. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    SciTech Connect (OSTI)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  12. Metal Compression Forming of aluminum alloys and metal matrix composites

    SciTech Connect (OSTI)

    Viswanathan, S.; Ren, W.; Porter, W.D.; Brinkman, C.R.; Sabau, A.S.; Purgert, R.M.

    2000-02-01

    Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. However, the MCF process applies pressure on the entire mold face, thereby directing pressure on all regions of the casting and producing a uniformly sound part. The process is capable of producing parts with properties close to those of forgings, while retaining the near net shape, complexity in geometry, and relatively low cost of the casting process.

  13. ITP Metal Casting: A Vision for the U.S. Metal Casting Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Vision for the U.S. Metal Casting Industry: 2002 and Beyond ITP Metal Casting: A Vision for the U.S. Metal Casting Industry: 2002 and Beyond mcvision.pdf More Documents &...

  14. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOE Patents [OSTI]

    Ellis, Timothy W. (Ames, IA); Schmidt, Frederick A. (Ames, IA)

    1995-08-01

    Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.

  15. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOE Patents [OSTI]

    Ellis, T.W.; Schmidt, F.A.

    1995-08-01

    A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.

  16. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  17. Controlled temperature expansion in oxygen production by molten alkali metal salts

    DOE Patents [OSTI]

    Erickson, D.C.

    1985-06-04

    A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power. 1 fig.

  18. Photobiomolecular metallic particles and films

    DOE Patents [OSTI]

    Hu, Zhong-Cheng

    2003-05-06

    The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.

  19. Thermal barrier and overlay coating systems comprising composite metal/metal oxide bond coating layers

    DOE Patents [OSTI]

    Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL); Vance, Steven J. (Orlando, FL)

    2001-01-01

    The present invention generally describes multilayer coating systems comprising a composite metal/metal oxide bond coat layer. The coating systems may be used in gas turbines.

  20. Metal oxide and metal fluoride nanostructures and methods of making same

    DOE Patents [OSTI]

    Wong, Stanislaus S. (Stony Brook, NY); Mao, Yuanbing (Los Angeles, CA)

    2009-08-18

    The present invention includes pure single-crystalline metal oxide and metal fluoride nanostructures, and methods of making same. These nanostructures include nanorods and nanoarrays.

  1. Bullock--Catalysis without Precious Metals CobaltandNickelCatalyzedReactionsInvolvingCHandCN

    E-Print Network [OSTI]

    Jones, William D.

    these reactions have typically included noble transition metals or first row metals. Due to the cost and pathogenicity of these noble metals, the development of new catalytic routes using non-precious metals for the conversion of diallylanilines to quinolines.a) Entry Diallylaniline Product Temp.(°C) Isolatedyield,(%) 1 N

  2. Corrosion control of metals by organic coatings

    SciTech Connect (OSTI)

    Ooij, W.J. van; Bierwagen, G.P.; Skerry, B.S.; Mills, D.

    1999-01-01

    The authors present a comprehensive treatment of the entire field of corrosion control of metals, from mechanisms and testing procedures to modification of metal surfaces and interfaces by silanes and plasma techniques. They discuss the new, sophisticated analytical tools, such as Time-of-Flight SIMS and electrochemical impedance spectroscopy, and all materials -- metals, pretreatments, and paint systems. The contents include: (1) Corrosion under organic coatings; (2) Mechanisms of corrosion control by organic coatings; (3) Metal pretreatments; (4) Techniques to study organic coating-metal interfaces; (5) Modification of metal surfaces and interfaces; (6) corrosion testing; (7) Adhesion testing; (8) Paint systems; (9) Conclusions and prospects references.

  3. Method for producing metal oxide nanoparticles

    DOE Patents [OSTI]

    Phillips, Jonathan (Santa Fe, NM); Mendoza, Daniel (Santa Fe, NM); Chen, Chun-Ku (Albuquerque, NM)

    2008-04-15

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  4. Metal - non-metal transition and the second critical point in expanded metals

    E-Print Network [OSTI]

    V. B. Bobrov; S. A. Trigger; A. G. Zagorodny

    2013-02-16

    Based on the non-relativistic Coulomb model within which the matter is a system of interacting electrons and nuclei, using the quantum field theory and linear response theory methods, opportunity for the existence of the second critical point in expanded metals, which is directly related to the metal--nonmetal transition, predicted by Landau and Zeldovitch, is theoretically justified. It is shown that the matter at the second critical point is in the state of true dielectric with zero static conductivity. The results obtained are in agreement with recent experiments for expanded metals. The existence of the second critical point is caused by the initial multi-component nature of the matter consisting of electrons and nuclei and the long-range character of the Coulomb interaction. (Accepted in PTEP)

  5. Transition metal sulfide loaded catalyst

    DOE Patents [OSTI]

    Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

    1994-04-26

    A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  6. Transition metal sulfide loaded catalyst

    DOE Patents [OSTI]

    Maroni, Victor A. (Naperville, IL); Iton, Lennox E. (Downers Grove, IL); Pasterczyk, James W. (Westmont, IL); Winterer, Markus (Westmont, IL); Krause, Theodore R. (Lisle, IL)

    1994-01-01

    A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  7. Corrosion resistant metallic bipolar plate

    SciTech Connect (OSTI)

    Brady, Michael P.; Schneibel, Joachim H.; Pint, Bruce A.; Maziasz, Philip J.

    2007-05-01

    A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.

  8. Accelerated decarburization of Fe-C metal alloys

    DOE Patents [OSTI]

    Pal, U.B.; Sadoway, D.R.

    1997-05-27

    A process is described for improving the rate of metal production and FeO utilization in a steelmaking process or a process combining iron-making and steelmaking in a single reactor that uses or generates Fe-C metal alloy droplets submerged in an FeO-containing slag. The process involves discharging a charge build-up (electron accumulation) in the slag at the slag-metal alloy interface by means of an electron conductor connected between the metal alloy droplets and a gas at a gas-slag interface, said gas having an oxygen partial pressure of at least about 0.01 atmosphere. 2 figs.

  9. Metal oxide porous ceramic membranes with small pore sizes

    DOE Patents [OSTI]

    Anderson, Marc A. (Madison, WI); Xu, Qunyin (Madison, WI)

    1991-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  10. New applications of noble metal catalysts in hydrocracking

    SciTech Connect (OSTI)

    Mitchell, D.H.G.; Bertram, R.V. [UOP, Des Plaines, IL (United States); Dencker, G.D. [Marathon Oil Co., Robinson, IL (United States). Illinois Refining Div.

    1995-09-01

    The paper explores how a noble metal hydrocracking catalyst functions stably in a hydrogen sulfide and ammonia environment and, in particular, how the physical positioning of the noble metal molecules affects catalyst performance. A commercial example, HC-28 catalyst in the Unicracking unit at Marathon Oil Refinery in Robinson, Illinois, demonstrates the success of the noble metal catalyst approach for naphtha production. In addition, a new Unicracking catalyst, HC-35, which uses a noble metal component to produce high-quality middle distillates, is introduced. The paper also shows how refiners may derive increased economic and operational benefits from their catalyst investment by using the latest developments in reactor internals design.

  11. Aspects of the mechanics of metallic glasses

    E-Print Network [OSTI]

    Henann, David Lee

    2011-01-01

    Metallic glasses are amorphous materials that possess unique mechanical properties, such as high tensile strengths and good fracture toughnesses. Also, since they are amorphous, metallic glasses exhibit a glass transition, ...

  12. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01

    CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Corrosion of Oil Shale Retort Component Materials," LBL-

  13. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01

    CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Elevated Temperature Corrosion of Oil Shale Retort Component

  14. Gas adsorption on metal-organic frameworks

    DOE Patents [OSTI]

    Willis, Richard R. (Cary, IL); Low, John J. (Schaumburg, IL), Faheem, Syed A. (Huntley, IL); Benin, Annabelle I. (Oak Forest, IL); Snurr, Randall Q. (Evanston, IL); Yazaydin, Ahmet Ozgur (Evanston, IL)

    2012-07-24

    The present invention involves the use of certain metal organic frameworks that have been treated with water or another metal titrant in the storage of carbon dioxide. The capacity of these frameworks is significantly increased through this treatment.

  15. Advances in Energy Storage, Batteries, and Metal Extraction

    E-Print Network [OSTI]

    Aazhang, Behnaam

    Advances in Energy Storage, Batteries, and Metal Extraction Event Sponsors Join the MIT Enterprise Professor of Material Chemistry, MIT discuss Innovation in Electrochemical Technology from Batteries or photovoltaic solar or a solution to the problem of the carbon intensity associated with metals production

  16. NREL: Awards and Honors - Electroexploded Metal Nanopowders

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Nanopowders include catalysis, batteries, microelectronic contacts, lubrication, sinteringwelding, coating substrates for wear or corrosion resistance, and more...

  17. Sintering and ripening resistant noble metal nanostructures

    DOE Patents [OSTI]

    van Swol, Frank B; Song, Yujiang; Shelnutt, John A; Miller, James E; Challa, Sivakumar R

    2013-09-24

    Durable porous metal nanostructures comprising thin metal nanosheets that are metastable under some conditions that commonly produce rapid reduction in surface area due to sintering and/or Ostwald ripening. The invention further comprises the method for making such durable porous metal nanostructures. Durable, high-surface area nanostructures result from the formation of persistent durable holes or pores in metal nanosheets formed from dendritic nanosheets.

  18. Preparation of metal-triazolate frameworks

    SciTech Connect (OSTI)

    Yaghi, Omar M; Uribe-Romo, Fernando J; Gandara-Barragan, Felipe; Britt, David K

    2014-10-07

    The disclosure provides for novel metal-triazolate frameworks, methods of use thereof, and devices comprising the frameworks thereof.

  19. Method for plating with metal oxides

    DOE Patents [OSTI]

    Silver, G.L.; Martin, F.S.

    1994-08-23

    A method is disclosed of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate. 1 fig.

  20. Method for plating with metal oxides

    DOE Patents [OSTI]

    Silver, Gary L. (Centerville, OH); Martin, Frank S. (Farmersville, OH)

    1994-08-23

    A method of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate.

  1. CONCAVE LIQUID METAL DIVERTOR FOR SPHERICAL TOKAMAKS

    E-Print Network [OSTI]

    Harilal, S. S.

    CONCAVE LIQUID METAL DIVERTOR FOR SPHERICAL TOKAMAKS Isak Konkashbaev and Ahmed Hassanein Argonne considered for tokamak divertors in magnetic fusion devices. One of such concepts is the use of liquid metals associated with a liquid metal being in the strong tokamak magnetic field. This is particularly important

  2. Method for the melting of metals

    DOE Patents [OSTI]

    White, Jack C. (Albany, OR); Traut, Davis E. (Corvallis, OR)

    1992-01-01

    A method of quantitatively determining the molten pool configuration in melting of metals. The method includes the steps of introducing hafnium metal seeds into a molten metal pool at intervals to form ingots, neutron activating the ingots and determining the hafnium location by radiometric means. Hafnium possesses exactly the proper metallurgical and radiochemical properties for this use.

  3. Method for decontamination of radioactive metal surfaces

    DOE Patents [OSTI]

    Bray, L.A.

    1996-08-13

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  4. Spectroscopic investigation of metal-RNA interactions 

    E-Print Network [OSTI]

    Vogt, Matthew John

    2005-02-17

    Metal-RNA interactions are important to neutralize the negative charge and aid in correctly folding the RNA. Spectroscopically active metal ions, especially Mn2+, have been used to probe the type of interaction the metal has with RNA. In previous...

  5. Vivapure Metal Chelate Maxi spin columns

    E-Print Network [OSTI]

    Lebendiker, Mario

    ® Vivapure Metal Chelate Maxi spin columns Hisn Technical data and operating instructions. For in vitro use only. #12;2 Handling overview Vivapure Metal Chelate Maxi spin columns - for the purification of proteins with poly-histidine tags Storage conditions Vivapure Metal Chelate Maxi spin columns can be stored

  6. NUCLEATION IN A TWO COMPONENT METAL ALLOY

    E-Print Network [OSTI]

    Sander, Evelyn

    NUCLEATION IN A TWO COMPONENT METAL ALLOY Kalea Sebesta Department of Applied Mathematics, known as nucleation, in a two component metal alloy. The motivation behind this study is to use component metal alloys. These alloys are seen in material sciences; therefore, understanding

  7. Vivapure Metal Chelate Mini spin columns

    E-Print Network [OSTI]

    Lebendiker, Mario

    ® Vivapure Metal Chelate Mini spin columns Hisn Technical data and operating instructions. For in vitro use only. #12;2 Handling overview Vivapure Metal Chelate Mini spin columns - for the purification of proteins with poly-histidine tags Storage conditions Vivapure Metal Chelate Mini spin columns can be stored

  8. Metal Biosorption Equilibria in a Ternary System

    E-Print Network [OSTI]

    Volesky, Bohumil

    Metal Biosorption Equilibria in a Ternary System K. H. Chong and B. Volesky* Department of Chemical/Accepted October 4, 1995 Equilibrium metal uptake performance of a biosorbent prepared from Ascophyllum equilibrium sorption data. Application of the multicomponent Langmuir model to describe the three-metal system

  9. Vivapure Metal Chelate Mega spin columns

    E-Print Network [OSTI]

    Lebendiker, Mario

    ®® Vivapure Metal Chelate Mega spin columns Hisn Technical data and operating instructions. For in vitro use only. #12;2 Handling overview Vivapure Metal Chelate Mega spin columns - for the purification of proteins with poly-histidine tags Storage conditions Vivapure Metal Chelate Mega spin columns can be stored

  10. Process for making transition metal nitride whiskers

    DOE Patents [OSTI]

    Bamberger, C.E.

    1988-04-12

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.

  11. Imestigation ol" Maenons in Rare Earth Metals

    E-Print Network [OSTI]

    Imestigation ol" Maenons in Rare Earth Metals b\\ Inelastic Neutron Scattering tL Bjerrum Moiler #12;BLANK PAGE #12;Riso Report No. 178 Investigation of Magnons in Rare Earth Metals by Inelastic NeutronN LANGF h. a. dec. #12;Contents Page PREFACE 7 I. INTRODUCTION *> 1. Magnetism of Rare Earth Metals 10 2

  12. PROPERTIES, IDENTIFICATION, HEAT TREATMENT OF METALS

    E-Print Network [OSTI]

    Gellman, Andrew J.

    to be drawn or stretched permanently without rupture or fracture (Figure 2-5). Metals that lack ductility-524 TOUGHNESS Toughness is the ability of a metal to resist fracture plus the ability to resist failure after. For example, if the hardness of a metal is increased, the brittleness usually increases and the toughness

  13. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  14. Ammonia release method for depositing metal oxides

    DOE Patents [OSTI]

    Silver, G.L.; Martin, F.S.

    1994-12-13

    A method is described for depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates. 1 figure.

  15. Ammonia release method for depositing metal oxides

    DOE Patents [OSTI]

    Silver, Gary L. (Centerville, OH); Martin, Frank S. (Farmersville, OH)

    1994-12-13

    A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

  16. Semiconductor to Metal to Half-Metal Transition in Pt-Embedded Zigzag Graphene Nanoribbons

    E-Print Network [OSTI]

    Krasheninnikov, Arkady V.

    Semiconductor to Metal to Half-Metal Transition in Pt-Embedded Zigzag Graphene Nanoribbons Xiaohui properties of Pt-embedded zigzag graphene nanoribbons (Pt-ZGNRs) are investigated using density-functional theory calculations. It is found that Pt-ZGNRs exhibit a semiconductor-metal-half-metal transition

  17. Vapor-Phase Metalation by Atomic Layer Deposition in a Metal-Organic Framework

    E-Print Network [OSTI]

    Vapor-Phase Metalation by Atomic Layer Deposition in a Metal- Organic Framework Joseph E. Mondloch introduce a new synthetic strategy capable of metallating MOFs from the gas phase: atomic layer deposition and in some instances host- guest interactions may lead to unstable metal@MOFs. Atomic layer deposition (ALD

  18. METAL-NON METAL TRANSITIONS /N RARE EARTH COMPOUNDS. EXPERIMENT AND THEORK /.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    METAL-NON METAL TRANSITIONS /N RARE EARTH COMPOUNDS. EXPERIMENT AND THEORK /. VALENCE INSTABILITIES, superconductivity, electron-phonon and band theory, to name a few. 2. Properties of normal rare earth metals. - Before discussing rare earth valence instabilities, three relevant general features of rare earth metals

  19. Sol-gel processing with inorganic metal salt precursors

    DOE Patents [OSTI]

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  20. Reclaiming metallic material from an article comprising a non-metallic friable substrate

    DOE Patents [OSTI]

    Bohland, John Raphael (Oregon, OH); Anisimov, Igor Ivanovich (Whitehouse, OH); Dapkus, Todd James (Toledo, OH); Sasala, Richard Anthony (Toledo, OH); Smigielski, Ken Alan (Toledo, OH); Kamm, Kristin Danielle (Swanton, OH)

    2000-01-01

    A method for reclaiming a metallic material from a article including a non-metallic friable substrate. The method comprising crushing the article into a plurality of pieces. An acidic solution capable of dissolving the metallic material is provided dissolving the metallic material in the acidic material to form an etchant effluent. The etchant effluent is separated from the friable substrate. A precipitation agent, capable of precipitating the metallic material, is added to the etchant effluent to precipitate out the metallic material from the etchant effluent. The metallic material is then recovered.

  1. Electrochemistry, Photoelectrochemistry And Photoelectron Spectroscopy Of Nanostructured Metal Oxides

    E-Print Network [OSTI]

    Södergren, S

    1997-01-01

    Electrochemistry, Photoelectrochemistry And Photoelectron Spectroscopy Of Nanostructured Metal Oxides

  2. NEUTRAL-BEAM PLASMA SOURCE METAL-ARC PROTECTION CIRCUIT

    E-Print Network [OSTI]

    deVries, G.J.

    2010-01-01

    e r . METAL ARCS IN PLASMAS Metal-arcs in plasma sources are1981 NEUTRAL-BEAM PLASMA SOURCE METAL-ARC PROTECTION CIRCUIT48 NEUTRAL-BEAM PLASMA SOURCE METAL-ARC PROTECTION CIRCUIT*

  3. FUNDAMENTALS OF WETTING AND BONDING BETWEEN CERAMICS AND METALS

    E-Print Network [OSTI]

    Pask, J.A.

    2010-01-01

    WETTING AND BONDING BETWEEN CERAMICS AND METALS Jo s eph A.OF WETTING AND BONDING BETWEEN CERAMICS AND METALS Joseph A.and glass-to-metal or ceramic-to-metal seals. Both physical

  4. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.WeekProducts >TransportationEHSS A-ZTravisTrending:

  5. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.WeekProducts >TransportationEHSS

  6. Direct metal brazing to cermet feedthroughs

    DOE Patents [OSTI]

    Not Available

    1982-07-29

    An improved method for brazing metallic components to a cermet surface in an alumina substrate eliminates the prior art metallized layer over the cermet via and adjoining alumina surfaces. Instead, a nickel layer is applied over the cermet surface only and metallic components are brazed directly to this nickel coated cermet surface. As a result, heretofore unachievable tensile strength joints are produced. In addition, cermet vias with their brazed metal components can be spaced more closely in the alumina substrate because of the elimination of the prior art metallized alumina surfaces.

  7. Liquid metal Flow Meter - Final Report

    SciTech Connect (OSTI)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  8. Direct metal brazing to cermet feedthroughs

    DOE Patents [OSTI]

    Hopper, Jr., Albert C. (St. Petersburg, FL)

    1984-12-18

    An improved method for brazing metallic components to a cermet surface in an alumina substrate eliminates the prior art metallized layer over the cermet via and adjoining alumina surfaces. Instead, a nickel layer is applied over the cermet surface only and metallic components are brazed directly to this nickel coated cermet surface. As a result, heretofore unachievable tensile strength joints are produced. In addition, cermet vias with their brazed metal components can be spaced more closely in the alumina substrate because of the elimination of the prior art metallized alumina surfaces.

  9. Submicron patterned metal hole etching

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA); Contolini, Robert J. (Lake Oswego, OR); Liberman, Vladimir (Needham, MA); Morse, Jeffrey (Martinez, CA)

    2000-01-01

    A wet chemical process for etching submicron patterned holes in thin metal layers using electrochemical etching with the aid of a wetting agent. In this process, the processed wafer to be etched is immersed in a wetting agent, such as methanol, for a few seconds prior to inserting the processed wafer into an electrochemical etching setup, with the wafer maintained horizontal during transfer to maintain a film of methanol covering the patterned areas. The electrochemical etching setup includes a tube which seals the edges of the wafer preventing loss of the methanol. An electrolyte composed of 4:1 water: sulfuric is poured into the tube and the electrolyte replaces the wetting agent in the patterned holes. A working electrode is attached to a metal layer of the wafer, with reference and counter electrodes inserted in the electrolyte with all electrodes connected to a potentiostat. A single pulse on the counter electrode, such as a 100 ms pulse at +10.2 volts, is used to excite the electrochemical circuit and perform the etch. The process produces uniform etching of the patterned holes in the metal layers, such as chromium and molybdenum of the wafer without adversely effecting the patterned mask.

  10. Boron Nitride Nanoribbons Becomes Metallic

    SciTech Connect (OSTI)

    Huang, Jingsong [ORNL; Terrones Maldonado, Humberto [ORNL; Sumpter, Bobby G [ORNL; Lopez-Benzanilla, Alejandro [Oak Ridge National Laboratory (ORNL)

    2011-01-01

    Standard spin-polarized density functional theory calculations have been conducted to study the electronic structures and magnetic properties of O and S functionalized zigzag boron nitride nanoribbons (zBNNRs). Unlike the semiconducting and nonmagnetic H edge-terminated zBNNRs, the O edge-terminated zBNNRs have two energetically degenerate magnetic ground states with a ferrimagnetic character on the B edge, both of which are metallic. In contrast, the S edge-terminated zBNNRs are nonmagnetic albeit still metallic. An intriguing coexistence of two different Peierls-like distortions is observed for S edge-termination that manifests as a strong S dimerization at the B zigzag edge and a weak S trimerization at the N zigzag edge, dictated by the band fillings at the vicinity of the Fermi level. Nevertheless, metallicity is retained along the S wire on theNedge due to the partial filling of the band derived from the pz orbital of S. A second type of functionalization with O or S atoms embedded in the center of zBNNRs yields semiconducting features. Detailed examination of both types of functionalized zBNNRs reveals that the p orbitals on O or S play a crucial role in mediating the electronic structures of the ribbons.We suggest that O and S functionalization of zBNNRs may open new routes toward practical electronic devices based on boron nitride materials.

  11. Metal resistance sequences and transgenic plants

    DOE Patents [OSTI]

    Meagher, Richard Brian (Athens, GA); Summers, Anne O. (Athens, GA); Rugh, Clayton L. (Athens, GA)

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  12. Methods of selectively incorporating metals onto substrates

    DOE Patents [OSTI]

    Ernst; Richard D. (Salt Lake City, UT), Eyring; Edward M. (Salt Lake City, UT), Turpin; Gregory C. (Salt Lake City, UT), Dunn; Brian C. (Salt Lake City, UT)

    2008-09-30

    A method for forming multi-metallic sites on a substrate is disclosed and described. A substrate including active groups such as hydroxyl can be reacted with a pretarget metal complex. The target metal attached to the active group can then be reacted with a secondary metal complex such that an oxidation-reduction (redox) reaction occurs to form a multi-metallic species. The substrate can be a highly porous material such as aerogels, xerogels, zeolites, and similar materials. Additional metal complexes can be reacted to increase catalyst loading or control co-catalyst content. The resulting compounds can be oxidized to form oxides or reduced to form metals in the ground state which are suitable for practical use.

  13. Method of nitriding refractory metal articles

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Omatete, Ogbemi O. (Lagos, NG); Young, Albert C. (Flushing, NY)

    1994-01-01

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  14. Method For Characterizing Residual Stress In Metals

    DOE Patents [OSTI]

    Jacobson, Loren A. (Santa Fe, NM); Michel, David J. (Alexandria, VA); Wyatt, Jeffrey R. (Burke, VA)

    2002-12-03

    A method is provided for measuring the residual stress in metals. The method includes the steps of drilling one or more holes in a metal workpiece to a preselected depth and mounting one or more acoustic sensors on the metal workpiece and connecting the sensors to an electronic detecting and recording device. A liquid metal capable of penetrating into the metal workpiece placed at the bottom of the hole or holes. A recording is made over a period of time (typically within about two hours) of the magnitude and number of noise events which occur as the liquid metal penetrates into the metal workpiece. The magnitude and number of noise events are then correlated to the internal stress in the region of the workpiece at the bottom of the hole.

  15. Induction slag reduction process for purifying metals

    DOE Patents [OSTI]

    Traut, Davis E. (Corvallis, OR); Fisher, II, George T. (Albany, OR); Hansen, Dennis A. (Corvallis, OR)

    1991-01-01

    A continuous method is provided for purifying and recovering transition metals such as neodymium and zirconium that become reactive at temperatures above about 500.degree. C. that comprises the steps of contacting the metal ore with an appropriate fluorinating agent such as an alkaline earth metal fluosilicate to form a fluometallic compound, and reducing the fluometallic compound with a suitable alkaline earth or alkali metal compound under molten conditions, such as provided in an induction slag metal furnace. The method of the invention is advantageous in that it is simpler and less expensive than methods used previously to recover pure metals, and it may be employed with a wide range of transition metals that were reactive with enclosures used in the prior art methods and were hard to obtain in uncontaminated form.

  16. BIOMIMETIC PROCESSING OF CERAMICS AND CERAMIC-METAL COMPOSITES

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    625 BIOMIMETIC PROCESSING OF CERAMICS AND CERAMIC-METAL COMPOSITES M. YASREBI, G. H. KIM, K. E by a combination of tape casting of the ceramic and infiltration of the metal. The resultant cermets displayed a 40 such as metal-metal,' metal-ceramic,2 internietallic-intermetallic,1 metal-intermetallic,3 and ceramic-ceramic4

  17. New Insights into the Mechanism of Bacterial Metal Respiration

    SciTech Connect (OSTI)

    DiChristina, Thomas J.

    2004-04-17

    This project goal is to identify genes and gene products required for microbial metal reduction: reductive dissolution of iron; reductive dissolution of manganese; reductive precipitation of selenium; reductive precipitation of uranium; and reductive precipitation of technetium.

  18. Manufacturers Saving with Lost Foam Metal Casting | Department...

    Energy Savers [EERE]

    Metal casting was identified as one of the top 10 energy users in manufacturing. The technology represents a 20- to 25-percent reduction in production costs and uses 7 percent...

  19. Metal Can and Bottle FabricationMetal Can and Bottle Fabrication ME 4210: Manufacturing Processes and Engineering

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Metal Can and Bottle FabricationMetal Can and Bottle Fabrication ver. 1 ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton © GIT 2009 1 #12;Metal CansMetal Cans ME 4210: Manufacturing and Engineering Prof. J.S. Colton © GIT 2009 3 #12;Metal Cans and BottlesMetal Cans and Bottles ME 4210

  20. Sumitomo Metal Industries Ltd Sumitomo Metals | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarket StudiesStrategicStoriesSuezSprings ValleyMetal

  1. Method and apparatus for dissociating metals from metal compounds extracted into supercritical fluids

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Hunt, Fred H. (Moscow, ID); Smart, Neil G. (Workington, GB); Lin, Yuehe (Richland, WA)

    2000-01-01

    A method for dissociating metal-ligand complexes in a supercritical fluid by treating the metal-ligand complex with heat and/or reducing or oxidizing agents is described. Once the metal-ligand complex is dissociated, the resulting metal and/or metal oxide form fine particles of substantially uniform size. In preferred embodiments, the solvent is supercritical carbon dioxide and the ligand is a .beta.-diketone such as hexafluoroacetylacetone or dibutyldiacetate. In other preferred embodiments, the metals in the metal-ligand complex are copper, silver, gold, tungsten, titanium, tantalum, tin, or mixtures thereof. In preferred embodiments, the reducing agent is hydrogen. The method provides an efficient process for dissociating metal-ligand complexes and produces easily-collected metal particles free from hydrocarbon solvent impurities. The ligand and the supercritical fluid can be regenerated to provide an economic, efficient process.

  2. System and method for producing metallic iron

    DOE Patents [OSTI]

    Englund, David J.; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan

    2014-07-29

    A method of production of metallic iron nodules comprises assembling a hearth furnace having a moveable hearth comprising refractory material and having a conversion zone and a fusion zone, providing a hearth material layer comprising carbonaceous material on the refractory material, providing a layer of reducible material comprising and iron bearing material arranged in discrete portions over at least a portion of the hearth material layer, delivering oxygen gas into the hearth furnace to a ratio of at least 0.8:1 ponds of oxygen to pounds of iron in the reducible material to heat the conversion zone to a temperature sufficient to at least partially reduce the reducible material and to heat the fusion zone to a temperature sufficient to at least partially reduce the reducible material, and heating the reducible material to form one or more metallic iron nodules and slag.

  3. Electrolytic extraction of a metal from its metal compound: estimates of optimal energy requirements and their consequences

    E-Print Network [OSTI]

    Angarita Fonseca, Maria Paula

    2015-01-01

    To ensure the sustainability of a world whose growing population demands more materials, products, and energy, we must closely examine the sustainability of the industries that supply them. Metal-making industries encounter ...

  4. Microjet formation and hard x-ray production from a liquid metal target irradiated by intense femtosecond laser pulses

    SciTech Connect (OSTI)

    Lar'kin, A. Uryupina, D.; Ivanov, K.; Savel'ev, A.; Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Spohr, K.; Breil, J.; Chimier, B.; Dorchies, F.; Fourment, C.; Leguay, P.-M.; Tikhonchuk, V. T.

    2014-09-15

    By using a liquid metal as a target one may significantly enhance the yield of hard x-rays with a sequence of two intense femtosecond laser pulses. The influence of the time delay between the two pulses is studied experimentally and interpreted with numerical simulations. It was suggested that the first arbitrary weak pulse produces microjets from the target surface, while the second intense pulse provides an efficient electron heating and acceleration along the jet surface. These energetic electrons are the source of x-ray emission while striking the target surface. The microjet formation is explained based on the results given by both optical diagnostics and hydrodynamic modeling by a collision of shocks originated from two distinct zones of laser energy deposition.

  5. Methods of producing adsorption media including a metal oxide

    DOE Patents [OSTI]

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  6. Polymer filtration: An emerging technology for selective metals recovery

    SciTech Connect (OSTI)

    Smith, B.F.; Robison, T.W.; Cournoyer, M.E.

    1995-12-31

    A new technology is under development to selectively recover regulated metal ions from electroplating rinse waters. The electroplating metal ions are recovered in a concentrated form with the appropriate counter ions ready for return to the original electroplating bath. The technology is based on the use of specially designed water-soluble polymers that selectively bind with the metal ions in the rinse bath. The polymers have such a large molecular weight that they can be physically separated using available ultrafiltration technology. The advantages of this technology are high metal selectivity with no sludge formation, rapid processing, low energy, low capital costs, and small size. We have tested and demonstrated the recovery of zinc and nickel (a new alloy electroplating bath designed to replace cadmium) from rinse waters. The metal-ion concentrate was returned to the original electroplating bath. Applications of this technology include waste treatment for textile, paint and dye production, chemical manufacturing, and nuclear reactor and reprocessing operations.

  7. Method for converting uranium oxides to uranium metal

    DOE Patents [OSTI]

    Duerksen, Walter K. (Norris, TN)

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  8. Polymer quenched prealloyed metal powder

    DOE Patents [OSTI]

    Hajaligol, Mohammad R. (Midlothian, VA); Fleischhauer, Grier (Midlothian, VA); German, Randall M. (State College, PA)

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  9. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, Edward F. (P.O. Box 900, Isle of Palms, SC 29451)

    1992-01-01

    A method for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF.sub.4 and HNO.sub.3 and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200.degree. C. The porous material can be pulverized before immersion to further increase the leach rate.

  10. Clamshell closure for metal drum

    DOE Patents [OSTI]

    Blanton, Paul S

    2014-09-30

    Closure ring to retain a lid in contact with a metal drum in central C-section conforming to the contact area between a lid and the rim of a drum and further having a radially inwardly directed flange and a vertically downwardly directed flange attached to the opposite ends of the C-section. The additional flanges reinforce the top of the drum by reducing deformation when the drum is dropped and maintain the lid in contact with the drum. The invention is particularly valuable in transportation and storage of fissile material.

  11. Contour forming of metals by laser peening

    DOE Patents [OSTI]

    Hackel, Lloyd (Livermore, CA); Harris, Fritz (Rocklin, CA)

    2002-01-01

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  12. Nanostructured metal foams: synthesis and applications

    SciTech Connect (OSTI)

    Luther, Erik P; Tappan, Bryce; Mueller, Alex; Mihaila, Bogdan; Volz, Heather; Cardenas, Andreas; Papin, Pallas; Veauthier, Jackie; Stan, Marius

    2009-01-01

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  13. Metastable Metal Hydrides for Hydrogen Storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Graetz, Jason

    2012-01-01

    The possibility of using hydrogen as a reliable energy carrier for both stationary and mobile applications has gained renewed interest in recent years due to improvements in high temperature fuel cells and a reduction in hydrogen production costs. However, a number of challenges remain and new media are needed that are capable of safely storing hydrogen with high gravimetric and volumetric densities. Metal hydrides and complex metal hydrides offer some hope of overcoming these challenges; however, many of the high capacity “reversible” hydrides exhibit a large endothermic decomposition enthalpy making it difficult to release the hydrogen at low temperatures. Onmore »the other hand, the metastable hydrides are characterized by a low reaction enthalpy and a decomposition reaction that is thermodynamically favorable under ambient conditions. The rapid, low temperature hydrogen evolution rates that can be achieved with these materials offer much promise for mobile PEM fuel cell applications. However, a critical challenge exists to develop new methods to regenerate these hydrides directly from the reactants and hydrogen gas. This spotlight paper presents an overview of some of the metastable metal hydrides for hydrogen storage and a few new approaches being investigated to address the key challenges associated with these materials.« less

  14. Versatile Applications of Nanostructured Metal Oxides

    E-Print Network [OSTI]

    Li, Li

    2014-05-29

    of nanopar- ticles becomes broader, an onion type morphology was observed, particles larger than RPEO segregate out, forming a silica-rich core surrounded by a lamellar or lamel- lar/hexagonal structure. This can be understood by the entropic contributions... , acids or bases, metal salts, enzymes, radical initia- tors and solvents. Heterogeneous catalysts typically are solids that do not dissolve. For example, supported metals, transition metal oxides and sulfides, solid acids and bases, immobilized enzymes...

  15. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, D.G.; Miller, J.L.

    1993-02-23

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  16. Liquid metal cooled nuclear reactor plant system

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  17. Metal oxide composite dosimeter method and material

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1998-01-01

    The present invention is a method of measuring a radiation dose wherein a radiation responsive material consisting essentially of metal oxide is first exposed to ionizing radiation. The metal oxide is then stimulating with light thereby causing the radiation responsive material to photoluminesce. Photons emitted from the metal oxide as a result of photoluminescence may be counted to provide a measure of the ionizing radiation.

  18. Method of stripping metals from organic solvents

    DOE Patents [OSTI]

    Todd, Terry A. (Aberdeen, ID); Law, Jack D. (Pocatello, ID); Herbst, R. Scott (Idaho Falls, ID); Romanovskiy, Valeriy N. (St. Petersburg, RU); Smirnov, Igor V. (St.-Petersburg, RU); Babain, Vasily A. (St-Petersburg, RU); Esimantovski, Vyatcheslav M. (St-Petersburg, RU)

    2009-02-24

    A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

  19. Synthesis of new amorphous metallic spin glasses

    DOE Patents [OSTI]

    Haushalter, R.C.

    1985-02-11

    Disclosed are: amorphous metallic precipitates having the formula (M/sub 1/)/sub a/(M/sub 2/)/sub b/ wherein M/sub 1/ is at least one transition metal, M/sub 2/ is at least one main group metal and the integers ''a'' and ''b'' provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  20. Three-Electrode Metal Oxide Reduction Cell

    DOE Patents [OSTI]

    Dees, Dennis W. (Downers Grove, IL); Ackerman, John P. (Downers Grove, IL)

    2005-06-28

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  1. Fabrication of metallic microstructures by micromolding nanoparticles

    DOE Patents [OSTI]

    Morales, Alfredo M. (Livermore, CA); Winter, Michael R. (Goleta, CA); Domeier, Linda A. (Danville, CA); Allan, Shawn M. (Henrietta, NY); Skala, Dawn M. (Fremont, CA)

    2002-01-01

    A method is provided for fabricating metallic microstructures, i.e., microcomponents of micron or submicron dimensions. A molding composition is prepared containing an optional binder and nanometer size (1 to 1000 nm in diameter) metallic particles. A mold, such as a lithographically patterned mold, preferably a LIGA or a negative photoresist mold, is filled with the molding composition and compressed. The resulting microstructures are then removed from the mold and the resulting metallic microstructures so provided are then sintered.

  2. Three-electrode metal oxide reduction cell

    DOE Patents [OSTI]

    Dees, Dennis W. (Downers Groves, IL); Ackerman, John P. (Downers Grove, IL)

    2008-08-12

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  3. Method for making monolithic metal oxide aerogels

    SciTech Connect (OSTI)

    Coronado, Paul R. (Livermore, CA)

    1999-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  4. Method for making monolithic metal oxide aerogels

    SciTech Connect (OSTI)

    Droege, Michael W. (Livermore, CA); Coronado, Paul R. (Livermore, CA); Hair, Lucy M. (Livermore, CA)

    1995-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.

  5. Method for making monolithic metal oxide aerogels

    DOE Patents [OSTI]

    Droege, M.W.; Coronado, P.R.; Hair, L.M.

    1995-03-07

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.

  6. Synthesis of new amorphous metallic spin glasses

    DOE Patents [OSTI]

    Haushalter, Robert C. (Clinton, NJ)

    1988-01-01

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  7. Synthesis of new amorphous metallic spin glasses

    DOE Patents [OSTI]

    Haushalter, Robert C. (Clinton, NJ)

    1986-01-01

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  8. Nanoscopy Reveals Metallic Black Phosphorus

    E-Print Network [OSTI]

    Abate, Yohannes; Zhen, Li; Cronin, Stephen B; Wang, Han; Babicheva, Viktoriia; Javani, Mohammad H; Stockman, Mark I

    2015-01-01

    Layered and two-dimensional (2D) materials such as graphene, boron nitride, transition metal dichalcogenides(TMDCs), and black phosphorus (BP) have intriguing fundamental physical properties and bear promise of numerous important applications in electronics and optics. Of them, BP is a novel 2D material that has been theoretically predicted to acquire plasmonic behavior for frequencies below ~0.4 eV when highly doped. The electronic properties of BP are unique due to an anisotropic structure, which could strongly influence collective electronic excitations. Advantages of BP as a material for nanoelectronics and nanooptics are due to the fact that, in contrast to metals, the free carrier density in it can be dynamically controlled by electrostatic gating, which has been demonstrated by its use in field-effect transistors. Despite all the interest that BP attracts, near-field and plasmonic properties of BP have not yet been investigated experimentally. Here we report the first observation of nanoscopic near-fie...

  9. 'Thirsty' Metals Key to Longer Battery Lifetimes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Replacing lithium with other metals with multiple charges could greatly increase battery capacity. But first researchers need to understand how to keep multiply charged...

  10. Method and apparatus for melting metals

    DOE Patents [OSTI]

    Moore, Alan F.; Schechter, Donald E.; Morrow, Marvin Stanley

    2006-03-14

    A method and apparatus for melting metals uses microwave energy as the primary source of heat. The metal or mixture of metals are placed in a ceramic crucible which couples, at least partially, with the microwaves to be used. The crucible is encased in a ceramic casket for insulation and placed within a microwave chamber. The chamber may be evacuated and refilled to exclude oxygen. After melting, the crucible may be removed for pouring or poured within the chamber by dripping or running into a heated mold within the chamber. Apparent coupling of the microwaves with softened or molten metal produces high temperatures with great energy savings.

  11. Plasma nonuniformities induced by dissimilar electrode metals

    SciTech Connect (OSTI)

    Barnat, E.V.; Hebner, G.A. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1423 (United States)

    2005-07-01

    Nonuniformities in both sheath electric field and plasma excitation were observed around dissimilar metals placed on a rf electrode. Spatial maps of the rf sheath electric field obtained by laser-induced fluorescence-dip (LIF-dip) spectroscopy show that the sheath structure was a function of the electrode metal. In addition to the electric-field measurements, LIF, optical emission, and Langmuir probe measurements show nonuniform excitation around the dissimilar metals. The degree and spatial extent of the discharge nonuniformities were dependent on discharge conditions and the history of the metal surfaces.

  12. STANDARD OPERATING PROCEDURE HEAVY METAL SALTS (selected)

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    (s): ___________________________________________________ Chemical(s): heavy metal salts: acetates, chlorides, sulfates, nitrates, anhydrides, oxides, hydroxides, etc., of arsenic, cadmium, chromium, cobalt, lead, mercury, osmium, silver, and uranium. Specific

  13. Evaluation of monolayer protected metal nanoparticle technology

    E-Print Network [OSTI]

    Wu, Diana J

    2005-01-01

    Self assembling nanostructured nanoparticles represent a new class of synthesized materials with unique functionality. Such monolayer protected metal nanoparticles are capable of resisting protein adsorption, and if utilized ...

  14. Lateral electrodeposition of compositionally modulated metal layers

    DOE Patents [OSTI]

    Hearne, Sean J

    2014-03-25

    A method for making a laterally modulated metallic structure that is compositionally modulated in the lateral direction with respect to a substrate.

  15. Method of measuring metal coating adhesion

    DOE Patents [OSTI]

    Roper, John R. (Northglenn, CO)

    1985-01-01

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  16. Separation of metal ions from aqueous solutions

    DOE Patents [OSTI]

    Almon, Amy C. (Augusta, GA)

    1994-01-01

    A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.

  17. Preparation of metal-catecholate frameworks

    SciTech Connect (OSTI)

    Yaghi, Omar M.; Gandara-Barragan, Felipe; Lu, Zheng; Wan, Shun

    2014-06-03

    The disclosure provides for metal catecholate frameworks, and methods of use thereof, including gas separation, gas storage, catalysis, tunable conductors, supercapacitors, and sensors.

  18. Electrolytic systems and methods for making metal halides and refining metals

    DOE Patents [OSTI]

    Holland, Justin M.; Cecala, David M.

    2015-05-26

    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  19. Water Adsorption in Metal-Organic Frameworks with Open-Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Adsorption in Metal-Organic Frameworks with Open-Metal Sites Previous Next List Xuan Peng, Li-Chiang Lin, Weizhen Sun and Berend Smit, AIChe J. 6, 677-687 (2015) DOI:...

  20. Numerical models for scoring failures of flexible metal to metal face seals

    E-Print Network [OSTI]

    Hong, Jinchul, 1977-

    2005-01-01

    The flexible metal to metal face seals (FMMFS) has unique features including much more flexibility in the circumferential direction than in the radial direction, identical rotating and stationary seals, and a loading ...

  1. MMT Extremely Metal Poor Galaxy Survey I. An Efficient Technique to Identify Metal Poor Galaxies

    E-Print Network [OSTI]

    Warren R. Brown; Lisa J. Kewley; Margaret J. Geller

    2007-09-27

    We demonstrate a successful strategy for identifying extremely metal poor galaxies. Our preliminary survey of 24 candidates contains 10 metal poor galaxies of which 4 have 12+log(O/H)metallicity blue compact galaxies known to date. Interestingly, our sample of metal poor galaxies have systematically lower metallicity for their luminosity than comparable samples of blue compact galaxies, dIrrs, and normal star-forming galaxies. Our metal poor galaxies share very similar properties, however, with the host galaxies of nearby long-duration gamma-ray bursts (GRBs), including similar metallicity, stellar ages, and star formation rates. We use H\\beta to measure the number of OB stars present in our galaxies and estimate a core-collapse supernova rate of ~10^-3 yr^-1. A larger sample of metal poor galaxies may provide new clues into the environment where GRBs form and may provide a list of potential GRB hosts.

  2. Mechanistic studies aimed at the development of single site metal alkoxide catalysts for the production of polyoxygenates from renewable resources.

    SciTech Connect (OSTI)

    Chisholm, Malcolm H.

    2015-12-15

    The work proposed herein follows on directly from the existing 3 year grant and the request for funding is for 12 months to allow completion of this work and graduation of current students supported by DOE. The three primary projects are as follows. 1.) A comparative study of the reactivity of LMg(OR) (solvent), where L= a ?-diiminate or pyrromethene ligand, in the ring-opening of cyclic esters. 2.) The homopolymerization of expoxides, particularly propylene oxide and styrene oxide, and their copolymerizations with carbon dioxide or organic anhydrides to yield polycarbonates or polyesters, respectively. 3.) The development of well-defined bismuth (III) complexes for ring-opening polymerizations that are tolerant of both air and water. In each of these topics special emphasis is placed on developing a detailed mechanistic understanding of the ring-opening event and how this is modified by the employment of specific metal and ligand combinations. This document also provides a report on findings of the past grant period that are not yet in the public domain/published and shows how the proposed work will bring the original project to conclusion.

  3. Transition metal oxide improves overall efficiency and maintains performance with inexpensive metals.

    E-Print Network [OSTI]

    that inserting a transition metal oxide (TMO) between the lead sulfide (PbS) quantum dot (QD) layer and the metalTransition metal oxide improves overall efficiency and maintains performance with inexpensive of performance. n-type TMOs consisting of molybdenum oxide (MoOx) and vanadium oxide (V2Ox) were used

  4. Ceramic to metal attachment system. [Ceramic electrode to metal conductor in MHD generator

    DOE Patents [OSTI]

    Marchant, D.D.

    1983-06-10

    A composition and method are described for attaching a ceramic electrode to a metal conductor. A layer of randomly interlocked metal fibers saturated with polyimide resin is sandwiched between the ceramic electrode and the metal conductor. The polyimide resin is then polymerized providing bonding.

  5. Recent Development of SOFC Metallic Interconnect

    SciTech Connect (OSTI)

    Wu JW, Liu XB

    2010-04-01

    Interest in solid oxide fuel cells (SOFC) stems from their higher e±ciencies and lower levels of emitted pollu- tants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i:e:, to maintain high elec- trical conductivity, good stability in both reducing and oxidizing atmospheres, and close coe±cient of thermal expansion (CTE) match and good compatibility with other SOFC ceramic components. The paper reviewed the interconnect materials, and coatings for metallic interconnect materials.

  6. Metal inhibition of human alkylpurine-DNA-N-glycosylase activity in base excision repair

    E-Print Network [OSTI]

    Wang, Ping; Guliaev, Anton B.; Hang, Bo

    2006-01-01

    0.38 nM ) Zn 2+ Cd 2 + Metal ion (µM) Product % Relativeof hAPE1 Zn 2 + Cd 2 + Metal ion (µM) Figure 6 Figure 7Interactions by carcinogenic metal compounds with DNA repair

  7. Transition Metal Nutrition: A Balance Between Deficiency and Toxicity

    E-Print Network [OSTI]

    Hamel, Patrice

    333 Transition Metal Nutrition: A Balance Between Deficiency and Toxicity CHAPTER 10 CHAPTER CONTENTS I. Introduction 334 II. Components of the metal homeostasis network 335 A. Metal transporters 335 B. Metal chelation 349 C. Differences with other photosynthetic organisms 352 III. Metal tolerance

  8. The METAL Machine Learning Experimentation Environment V3.0

    E-Print Network [OSTI]

    METAL The METAL Machine Learning Experimentation Environment V3.0 (METAL­MLEE) Manual ­ Version 3 in the package . . . . . . . . . 7 3 What METAL­MLEE Does 7 4 Standard Database Format 8 4.1 Names File.pl . . . . . . . . . . . . 22 3 #12;6 Adapting METAL­MLEE 22 6.1 Adding Learning Algorithm Interface Scripts

  9. Safety and core design of large liquid-metal cooled fast breeder reactors

    E-Print Network [OSTI]

    Qvist, Staffan Alexander

    2013-01-01

    4.3.4 Metallic fuel geometry and burnupdata for metallic fuel . . . . . . . . . . . . . . . . .new correlation for metallic fuel elastic modulus . . . . .

  10. Corrosion of Metal Inclusions In Bulk Vitrification Waste Packages

    SciTech Connect (OSTI)

    Bacon, Diana H.; Pierce, Eric M.; Wellman, Dawn M.; Strachan, Denis M.; Josephson, Gary B.

    2006-07-31

    The primary purpose of the work reported here is to analyze the potential effect of the release of technetium (Tc) from metal inclusions in bulk vitrification waste packages once they are placed in the Integrated Disposal Facility (IDF). As part of the strategy for immobilizing waste from the underground tanks at Hanford, selected wastes will be immobilized using bulk vitrification. During analyses of the glass produced in engineering-scale tests, metal inclusions were found in the glass product. This report contains the results from experiments designed to quantify the corrosion rates of metal inclusions found in the glass product from AMEC Test ES-32B and simulations designed to compare the rate of Tc release from the metal inclusions to the release of Tc from glass produced with the bulk vitrification process. In the simulations, the Tc in the metal inclusions was assumed to be released congruently during metal corrosion as soluble TcO4-. The experimental results and modeling calculations show that the metal corrosion rate will, under all conceivable conditions at the IDF, be dominated by the presence of the passivating layer and corrosion products on the metal particles. As a result, the release of Tc from the metal particles at the surfaces of fractures in the glass releases at a rate similar to the Tc present as a soluble salt. The release of the remaining Tc in the metal is controlled by the dissolution of the glass matrix. To summarize, the release of 99Tc from the BV glass within precipitated Fe is directly proportional to the diameter of the Fe particles and to the amount of precipitated Fe. However, the main contribution to the Tc release from the iron particles is over the same time period as the release of the soluble Tc salt. For the base case used in this study (0.48 mass% of 0.5 mm diameter metal particles homogeneously distributed in the BV glass), the release of 99Tc from the metal is approximately the same as the release from 0.3 mass% soluble Tc salt in the castable refractory block and it is released over the same time period as the salt. Therefore, to limit the impact of precipitated Fe on the release of 99Tc, both the amount of precipitated Fe in the BV glass and the diameter of these particles should be minimized.

  11. Challenges to achievement of metal sustainability in our high-tech society

    SciTech Connect (OSTI)

    Izatt, Reed M.; Izatt, Steven R.; Bruening, Ronald L.; Izatt, Neil; Moyer, Bruce A

    2014-01-01

    Achievement of sustainability in metal life cycles from mining of virgin ore to consumer and industrial devices to end-of-life products requires greatly increased recycling and improved processing of metals. Electronic and other high-tech products containing precious, toxic, and specialty metals usually have short lifetimes and low recycling rates. Products containing these metals generally are incinerated, discarded as waste in landfills, or dismantled in informal recycling using crude and environmentally irresponsible procedures. Low metal recycling rates coupled with increasing demand for products containing them necessitate increased mining with attendant environmental, health, energy, water, and carbon-footprint consequences. In this tutorial review, challenges to achieving metal sustainability in present high-tech society are presented; health, environmental, and economic incentives for various stakeholders to improve metal sustainability are discussed; a case for technical improvements in separations technology, especially employing molecular recognition, is given; and global consequences of continuing on the present path are examined.

  12. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1992-10-13

    A method is described for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF[sub 4] and HNO[sub 3] and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200 C. The porous material can be pulverized before immersion to further increase the leach rate.

  13. Biaxially textured metal substrate with palladium layer

    DOE Patents [OSTI]

    Robbins, William B. (Maplewood, MN)

    2002-12-31

    Described is an article comprising a biaxially textured metal substrate and a layer of palladium deposited on at least one major surface of the metal substrate; wherein the palladium layer has desired in-plane and out-of-plane crystallographic orientations, which allow subsequent layers that are applied on the article to also have the desired orientations.

  14. Metal pollution of river Msimbazi, Tanzania

    SciTech Connect (OSTI)

    Ak'habuhaya, J.; Lodenius, M. )

    1988-01-01

    The Misimbazi River in Dar es Salaam is polluted with industrial, urban and agricultural waste waters. A preliminary investigation on the extent of metal pollution (Hg, Cr, Cu, Zn, Fe, Ni, Cd, Mn, Al) was made from samples of sediments and biological indicators. The metal concentrations were in general low, but some of our results indicated industrial pollution.

  15. Arrays of stacked metal coordination compounds

    DOE Patents [OSTI]

    Bulkowski, J.E.

    1986-10-21

    A process is disclosed for preparing novel arrays of metal coordination compounds characterized by arrangement of the metal ions, separated by a linking agent, in stacked order one above the other. The process permits great flexibility in the design of the array. For example, layers of different composition can be added to the array at will. 3 figs.

  16. Mesoscale Metallic Pyramids with Nanoscale Tips

    E-Print Network [OSTI]

    Odom, Teri W.

    Mesoscale Metallic Pyramids with Nanoscale Tips Joel Henzie, Eun-Soo Kwak, and Teri W. Odom generate free-standing mesoscale metallic pyramids composed of one or more materials and having nanoscale tips (radii of curvature of less than 2 nm). Mesoscale holes (100-300 nm) in a chromium film are used

  17. THE COORDINATION CHEMISTRY OF METAL SURFACES

    SciTech Connect (OSTI)

    Muetterties, Earl L.

    1980-10-01

    In coordinately unsaturated molecular metal complexes, carbon-hydrogen bonds of the peripheral ligands may, if the stereochemistry allows, closely approach a metal center so as to develop a three-center two-electron bond between the carbon, the hydrogen, and the metal atoms, C-H-M. In some instances, the interaction .is followed by a scission of the C-H bond whereby the metal is effectively oxidized and discrete M-H and M-C {sigma} bonds are forrned. This class of metal-hydrogen-carbon interactions and reactions is shown to be a common phenomenon in metal surface chemistry. Ultra high vacuum studies of nickel and platinum with simple organic molecules like olefins, and arenes are described. These surface chemistry studies were done as a function of surface crystallography and surface composition. The discussion is largely limited to the chemistry of methyl isocyanide, acetonitrile, benzene and toluene. Molecular orbital calculations are presented that support the experimental identification of the importance of C-H-M metal bonding for metal surfaces.

  18. Bacterio-electric leaching of metals

    DOE Patents [OSTI]

    Lazaroff, Norman (Vestal, NY); Dugan, Patrick R. (Idaho Falls, ID)

    1992-01-01

    The separation of cationic materials from an ore body is assisted by the application of an electric potential, and resulting current, to the ore body, in association with iron or sulphur oxidizing bacteria. The combined process induces migration of cationic metals to a cathode suspended within the ore body so that the cationic metal can be preferentially separated from the ore body.

  19. Trace metals in sediments of coastal Siberia 

    E-Print Network [OSTI]

    Esnough, Teresa Elizabeth

    1996-01-01

    , suggesting a more mafic (basaltic) mineral phase at some locations and/or diagenetic redistribution of these metals. No statistically significant differences were found between metal to Fe ratios at the surface (0-2.5 cm) of the sediment cores and the bottoms...

  20. Implementation of Metal Casting Best Practices

    SciTech Connect (OSTI)

    None

    2007-01-01

    The project examined cases where metal casters had implemented ITP research results and the benefits they received due to that implementation. In cases where casters had not implemented those results, the project examined the factors responsible for that lack of implementation. The project also informed metal casters of the free tools and service offered by the ITP Technology Delivery subprogram.

  1. Process for electrolytically preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A. (Knoxville, TN)

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  2. Fiber metal interlayer improves ceramic coating performance

    SciTech Connect (OSTI)

    Jarrabet, G.P.

    1994-11-01

    This article is a review of the use of a compliant fiber metal inner layer between a ceramic coating and metal. The material used is Zirconia with phase stabilizers of magnesium oxide, calcium oxide, and yttrium oxide. Design, fabrication, and testing of the stabilized zirconia is discussed.

  3. Bacterio-electric leaching of metals

    DOE Patents [OSTI]

    Lazaroff, Norman; Dugan, Patrick R.

    1992-07-07

    The separation of cationic materials from an ore body is assisted by the application of an electric potential, and resulting current, to the ore body, in association with iron or sulphur oxidizing bacteria. The combined process induces migration of cationic metals to a cathode suspended within the ore body so that the cationic metal can be preferentially separated from the ore body.

  4. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  5. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  6. High temperature ceramic/metal joint structure

    DOE Patents [OSTI]

    Boyd, Gary L. (Tempe, AZ)

    1991-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  7. Synthesis of Graphene Layers from Metal-Carbon Melts: Nucleation and Growth Kinetics

    E-Print Network [OSTI]

    Amini, Shaahin

    2012-01-01

    Complete Casting Handbook: Metal Casting Processes,Solidification and Casting of Metals, The Metal Society, [Solidification and Casting of Metals Sheffield, UK, 1977. [

  8. Extraction of trace metals from fly ash

    DOE Patents [OSTI]

    Blander, Milton (Palos Park, IL); Wai, Chien M. (Moscow, ID); Nagy, Zoltan (Woodridge, IL)

    1984-01-01

    A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  9. Extraction of trace metals from fly ash

    DOE Patents [OSTI]

    Blander, M.; Wai, C.M.; Nagy, Z.

    1983-08-15

    A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  10. Sewage sludge dewatering using flowing liquid metals

    DOE Patents [OSTI]

    Carlson, Larry W. (Oswego, IL)

    1986-01-01

    A method and apparatus for reducing the moisture content of a moist sewage sludge having a moisture content of about 50% to 80% and formed of small cellular micro-organism bodies having internally confined water is provided. A hot liquid metal is circulated in a circulation loop and the moist sewage sludge is injected in the circulation loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies. The vapor produced, the dried sludge, and the liquid metal are then separated. Preferably, the moist sewage sludge is injected into the hot liquid metal adjacent the upstream side of a venturi which serves to thoroughly mix the hot liquid metal and the moist sewage sludge. The venturi and the drying zone after the venturi are preferably vertically oriented. The dried sewage sludge recovered is available as a fuel and is preferably used for heating the hot liquid metal.

  11. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Kim, Jeom-Soo (Naperville, IL); Johnson, Christopher S. (Naperville, IL)

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  12. Metal-to-ceramic attachment device

    DOE Patents [OSTI]

    Pavelka, Edwin A. (Bartlesville, OK); Grindstaff, Quirinus G. (Bartlesville, OK); Scheppele, Stuart E. (Bartlesville, OK)

    1985-01-01

    A metal-to-ceramic fastening device is disclosed for securing a metal member to a ceramic member with respective confronting surfaces thereon clamped together, comprising a threaded bolt adapted to extend through a bolt hole in the metal member and into an aligned opening in the ceramic member, a rod nut threadedly receiving the bolt and adapted to span the opening in the ceramic member, and a pressure limiting member received on the bolt between the nut and the confronting surface of the metal member for limiting the movement of the nut toward the metal member when the bolt is tightened, so as to limit the pressure applied by the nut to the ceramic member to avoid damage thereto. The fastening device also prevents damage to the ceramic member due to thermal stresses. The pressure limiting member may have a shallow dish-shaped depression facing the rod nut to assist in accommodating thermal stresses.

  13. Metallic coatings on silicon substrates, and methods of forming metallic coatings on silicon substrates

    DOE Patents [OSTI]

    Branagan, Daniel J. (Idaho Falls, ID); Hyde, Timothy A. (Idaho Falls, ID); Fincke, James R. (Los Alamos, NM)

    2008-03-11

    The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.

  14. High Activity of Ce1-xNixO2-y for H2 Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal-Oxide Interactions

    SciTech Connect (OSTI)

    G Zhou; L Barrio; S Agnoli; S Senanayake; J Evans; A Kubacka; M Estrella; J Hanson; A Martinez-Arias; et al.

    2011-12-31

    The importance of the oxide: Ce{sub 0.8}Ni{sub 0.2}O{sub 2-y} is an excellent catalyst for ethanol steam reforming. Metal-oxide interactions perturb the electronic properties of the small particles of metallic nickel present in the catalyst under the reaction conditions and thus suppress any methanation activity. The nickel embedded in ceria induces the formation of O vacancies, which facilitate cleavage of the OH bonds in ethanol and water.

  15. ITP Metal Casting: Energy and Environmental Profile of the U...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Environmental Profile of the U.S. Metal casting Industry ITP Metal Casting: Energy and Environmental Profile of the U.S. Metal casting Industry profile.pdf More Documents &...

  16. THE HIGH TEMPERATURE BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE.

    E-Print Network [OSTI]

    Yang, Rosa Lu.

    2010-01-01

    gradient in the reactor fuel, the metallic inclusions moveA. B. Metallic Inclusions in Reactor Fuel Related Work inI. INTRODUCTION A. Metallic Inclusions in Reactor Fuel The

  17. On Extrusion Forging and Extrusion Rolling of Thin Metal Sheets 

    E-Print Network [OSTI]

    Feng, Zhujian

    2013-01-10

    Sheet metal surfaces with pin-fin features have potential fluid and thermal applications. Extrusion forging process and extrusion rolling process can be used to create such surface features on sheet metals. Extrusion forging process is a metal...

  18. Metal mesh scaffold for tissue engineering of membranes.

    E-Print Network [OSTI]

    Alavi, S Hamed; Kheradvar, Arash

    2012-01-01

    Congiu Castellano, A. Cell-metal interaction studied by cy-Jansen, S. , and Lens, P.N. Metal supplementation to uasbbioreactors: from cell-metal inter- actions to full-scale

  19. TECHNICAL SUPPORT DOCUMENT POTENTIAL RECYCLING OF SCRAP METAL

    E-Print Network [OSTI]

    TECHNICAL SUPPORT DOCUMENT POTENTIAL RECYCLING OF SCRAP METAL FROM NUCLEAR FACILITIES PART I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 2 Overview of Scrap Metal Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 2.3 Principal Scrap Metal Operations Considered

  20. Metal Oxide Nanostructured Materials for Optical and Energy Applications

    E-Print Network [OSTI]

    Moore, Michael Christopher

    2013-01-01

    of a Stack of Two Metal Micromeshes. The Journal of Physicalals 3, 601 (2004). M. T. Hill et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Optics

  1. Thermodynamics and kinetics of ceramic/metal interfacial interactions

    E-Print Network [OSTI]

    Arróyave, Raymundo, 1975-

    2004-01-01

    Ceramic/metal interfaces occur in a great number of important applications, such as ceramic/metal composites, microelectronics packaging, ceramic/metal seals, and so forth. Understanding the formation and evolution of such ...

  2. Rotordynamic evaluation of hybrid damper seals with metal mesh elements 

    E-Print Network [OSTI]

    Bhamidipati, Laxmi Narasimha Kameswara Sarma

    2003-01-01

    Metal mesh hybrid damper seals (MHS) were proposed to be an alternative for brush hybrid pocket damper seals (PDS) in turbomachinery. The metal mesh hybrid damper seal is a hybrid of the pocket damper seal and the metal ...

  3. Polarimetry of thin metal transmission gratings in the resonance region and its impact on the response of metal-semiconductor-metal

    E-Print Network [OSTI]

    Polarimetry of thin metal transmission gratings in the resonance region and its impact on the response of metal-semiconductor-metal photodetectors Erli Chena) and Stephen Y. Chou Department Received 17 December 1996; accepted for publication 4 March 1997 The resonance behavior of metal

  4. HOW MANY NUCLEOSYNTHESIS PROCESSES EXIST AT LOW METALLICITY?

    SciTech Connect (OSTI)

    Hansen, C. J. [Landessternwarte, ZAH, Heidelberg University, Königstuhl 12, D-69117 Heidelberg (Germany); Montes, F. [Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Arcones, A., E-mail: cjhansen@lsw.uni-heidelberg.de, E-mail: cjhansen@dark-cosmology.dk, E-mail: montes@nscl.msu.edu, E-mail: almudena.arcones@physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstr. 2, Darmstadt D-64289 (Germany)

    2014-12-20

    Abundances of low-metallicity stars offer a unique opportunity to understand the contribution and conditions of the different processes that synthesize heavy elements. Many old, metal-poor stars show a robust abundance pattern for elements heavier than Ba, and a less robust pattern between Sr and Ag. Here we probe if two nucleosynthesis processes are sufficient to explain the stellar abundances at low metallicity, and we carry out a site independent approach to separate the contribution from these two processes or components to the total observationally derived abundances. Our approach provides a method to determine the contribution of each process to the production of elements such as Sr, Zr, Ba, and Eu. We explore the observed star-to-star abundance scatter as a function of metallicity that each process leads to. Moreover, we use the deduced abundance pattern of one of the nucleosynthesis components to constrain the astrophysical conditions of neutrino-driven winds from core-collapse supernovae.

  5. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quartery report, August 1994--November 1994

    SciTech Connect (OSTI)

    1994-12-01

    This first quarterly report describes work during the first three months of the University of Pittsburgh`s (Pitt`s) project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with Pitt on this project are Dravo Lime Company (DLC), Mill Service, Inc. (MSO and the Center for Hazardous Materials Research (CHMR)). The report states the goals of the project - both general and specific - and then describes the activities of the project team during the reporting period. All of this work has been organizational and developmental in nature. No data has yet been collected. Technical details and data will appear for the first time in the second quarterly report and be the major topic of subsequent reports.

  6. Preparation and use of crystalline bis-monoorganic phosphonate and phosphate salts of tetravalent metals

    DOE Patents [OSTI]

    Maya, L.

    1980-06-26

    A method of preparing and using the crystalline organic derivatives of the tetravalent metal phosphates and phosphonates provides for the contacting of an aqueous solution of a metal nitrate, with a solution of an organophosphorus acid for a period of time at room temperature that is sufficient for the formation of a metal phosphate product, and thereafter recovering said product. According to the invention, the product of the disclosed process is used in effecting analytical separations, such as ion exchange and chromatography.

  7. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, November 1994--February 1995

    SciTech Connect (OSTI)

    1995-03-01

    This second quarterly report describes work during the second three months of the University of Pittsburgh`s (Pitt`s) project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with Pitt on this project are Dravo Lime Company (DLC), Mill Service, Inc. (MSI) and the Center for Hazardous Materials Research (CHMR). The report describes the activities of the project team during the reporting period. The principal work has focussed upon the acquisition of by-product samples and their initial analysis. Other efforts during the second quarter have been directed toward identifying the first hazardous waste samples and preparing for their treatment and analysis. Relatively little data has yet been collected. Major presentation of technical details and data will appear for the first time in the third quarterly report. The activity on the project during the second quarter of Phase One, as presented in the following sections, has fallen into seven areas: (1) Acquiring by-products, (2) Analyzing by-products, (3) Identifying, analyzing and treating suitable hazardous wastes, (4) Carrying out the quality assurance/quality control program, (5) Developing background, and (6) Initiating public relations

  8. Process for producing elements from a fused bath using a metal strap and ceramic electrode body nonconsumable electrode assembly

    DOE Patents [OSTI]

    Byrne, S.C.

    1984-07-03

    A nonconsumable electrode assembly is described suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a ceramic electrode body and a metal subassembly of a metal conductor rod and at least one metal strap affixed to an end of the rod with opposing portions extending radially outwardly from the rod axis and having the ends of the strap attached to the electrode body. 7 figs.

  9. ITP Metal Casting: Advanced Melting Technologies: Energy Saving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and...

  10. Cobalt discovery replaces precious metals as industrial catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Replaces Precious Metals Cobalt discovery replaces precious metals as industrial catalyst Cobalt holds promise as an industrial catalyst with potential applications...

  11. Reliability Tools for Resonance Inspection of Light Metal Castings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tools for Resonance Inspection of Light Metal Castings Reliability Tools for Resonance Inspection of Light Metal Castings 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  12. Microbial-mediated method for metal oxide nanoparticle formation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search Title: Microbial-mediated method for metal oxide nanoparticle formation The invention is directed to a method for producing metal oxide nanoparticles, the method...

  13. Nanocomposite of graphene and metal oxide materials | OSTI, US...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanocomposite of graphene and metal oxide materials Re-direct Destination: Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The...

  14. Next-Generation Lithium Metal Anode Engineering via Atomic Layer...

    Office of Scientific and Technical Information (OSTI)

    Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition Citation Details In-Document Search Title: Next-Generation Lithium Metal Anode Engineering via Atomic...

  15. Next Generation Metallic Iron Nodule Technology in Electric Furnace...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking This factsheet...

  16. Understanding of Rare Earth Metals from Theory | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Rare Earth Metals from Theory The rare earth metals are becoming increasingly applicable in our everyday life. The enormous importance of rare earths in the technology,...

  17. Graphene physics and insulator-metal transition in compressed...

    Office of Scientific and Technical Information (OSTI)

    Graphene physics and insulator-metal transition in compressed hydrogen Title: Graphene physics and insulator-metal transition in compressed hydrogen Authors: Naumov, Ivan I. ;...

  18. Tunable Electrical Conductivity in Metal-Organic Framework Thin...

    Office of Scientific and Technical Information (OSTI)

    Tunable Electrical Conductivity in Metal-Organic Framework Thin-Film Devices Citation Details In-Document Search Title: Tunable Electrical Conductivity in Metal-Organic Framework...

  19. Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Presents...

  20. STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS...

    Office of Scientific and Technical Information (OSTI)

    STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS Anter El-Azab 36 MATERIALS SCIENCE dislocation dynamics; mesoscale deformation of metals; crystal mechanics...

  1. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

  2. Correlations Between Metallic Lubricant Additive Species in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Correlations Between Metallic Lubricant Additive Species in the Ring Pack and Ash Emissions and Their Dependence on Crankcase Oil Properties Correlations Between Metallic Lubricant...

  3. Metal Oxide Semiconductor Nanoparticles Open the Door to New...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Oxide Semiconductor Nanoparticles Open the Door to New Medical Innovations Technology available for licensing: novel nanometer-sized metal oxide semiconductors that allow...

  4. Metal Ion-Assisted Transformations of 2-Pyridinealdoxime and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Ion-Assisted Transformations of 2-Pyridinealdoxime and Hexafluorophosphate Metal Ion-Assisted Transformations of 2-Pyridinealdoxime and Hexafluorophosphate Print Monday, 05...

  5. Design Potential of Metal Foil Substrates for Optimized DOC Performanc...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential of Metal Foil Substrates for Optimized DOC Performance Design Potential of Metal Foil Substrates for Optimized DOC Performance Poster presentation at the 2007 Diesel...

  6. Method of forming a thin unbacked metal foil

    SciTech Connect (OSTI)

    Duchane, D.V.; Barthell, B.L.

    1983-02-23

    The present invention relates generally to metal foils and methods of making the same. More particularly, this invention pertains to the fabrication of very thin, unbacked metal foils.

  7. Electrophilic Metal Alkyl Chemistry in New Ligand Environments...

    Office of Scientific and Technical Information (OSTI)

    Electrophilic Metal Alkyl Chemistry in New Ligand Environments Citation Details In-Document Search Title: Electrophilic Metal Alkyl Chemistry in New Ligand Environments The goals...

  8. Metallic substrates for high temperature superconductors

    DOE Patents [OSTI]

    Truchan, Thomas G. (Chicago, IL); Miller, Dean J. (Darien, IL); Goretta, Kenneth C. (Downers Grove, IL); Balachandran, Uthamalingam (Hinsdale, IL); Foley, Robert (Chicago, IL)

    2002-01-01

    A biaxially textured face-centered cubic metal article having grain boundaries with misorientation angles greater than about 8.degree. limited to less than about 1%. A laminate article is also disclosed having a metal substrate first rolled to at least about 95% thickness reduction followed by a first annealing at a temperature less than about 375.degree. C. Then a second rolling operation of not greater than about 6% thickness reduction is provided, followed by a second annealing at a temperature greater than about 400.degree. C. A method of forming the metal and laminate articles is also disclosed.

  9. Process for removing metals from water

    DOE Patents [OSTI]

    Napier, J.M.; Hancher, C.M.; Hackett, G.D.

    1987-06-29

    A process for removing metals from water including the steps of prefiltering solids from the water, adjusting the pH to between about 2 and 3, reducing the amount of dissolved oxygen in the water, increasing the pH to between about 6 and 8, adding water-soluble sulfide to precipitate insoluble sulfide- and hydroxide-forming metals, adding a containing floc, and postfiltering the resultant solution. The postfiltered solution may optionally be eluted through an ion exchange resin to remove residual metal ions. 2 tabs.

  10. Incorporation of noble metals into aerogels

    DOE Patents [OSTI]

    Hair, L.M.; Sanner, R.D.; Coronado, P.R.

    1998-12-22

    Aerogels or xerogels containing atomically dispersed noble metals for applications such as environmental remediation are disclosed. New noble metal precursors, such as Pt--Si or Pd(Si--P){sub 2}, have been created to bridge the incompatibility between noble metals and oxygen, followed by their incorporation into the aerogel or xerogel through sol-gel chemistry and processing. Applications include oxidation of hydrocarbons and reduction of nitrogen oxide species, complete oxidation of volatile organic carbon species, oxidative membranes for photocatalysis and partial oxidation for synthetic applications.

  11. Liquid metal ion source and alloy

    SciTech Connect (OSTI)

    Clark, Jr., William M. (Thousand Oaks, CA); Utlaut, Mark W. (Saugus, CA); Behrens, Robert G. (Los Alamos, NM); Szklarz, Eugene G. (Los Alamos, NM); Storms, Edmund K. (Los Alamos, NM); Santandrea, Robert P. (Santa Fe, NM); Swanson, Lynwood W. (McMinnville, OR)

    1988-10-04

    A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from about 24 to about 33 atomic percent arsenic. Such an alloy may be readily prepared by a combustion synthesis technique. Liquid metal ion sources thus prepared produce arsenic ions for implantation, have long lifetimes, and are highly stable in operation.

  12. Incorporation of noble metals into aerogels

    DOE Patents [OSTI]

    Hair, Lucy M. (Livermore, CA); Sanner, Robert D. (Livermore, CA); Coronado, Paul R. (Livermore, CA)

    1998-01-01

    Aerogels or xerogels containing atomically dispersed noble metals for applications such environmental remediation. New noble metal precursors, such as Pt--Si or Pd(Si--P).sub.2, have been created to bridge the incompatibility between noble metals and oxygen, followed by their incorporation into the aerogel or xerogel through sol-gel chemistry and processing. Applications include oxidation of hydrocarbons and reduction of nitrogen oxide species, complete oxidation of volatile organic carbon species, oxidative membranes for photocatalysis and partial oxidation for synthetic applications.

  13. Synthesis and Characterization of Metal–Organic Framework-74 Containing 2, 4, 6, 8, and 10 Different Metals

    SciTech Connect (OSTI)

    Wang, Lisa J.; Deng, Hexiang; Furukawa, Hiroyasu; Gándara, Felipe; Cordova, Kyle E.; Peri, Dani; Yaghi, Omar M.

    2014-06-16

    Metal–organic frameworks (MOFs) containing more than two types of metal ions mixed within one secondary building unit are studied.

  14. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOE Patents [OSTI]

    Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN); Jansen, Valerie Malyvanh (Memphis, TN); Woodward, Jonathan (Knoxville, TN)

    2011-06-07

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  15. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOE Patents [OSTI]

    Evans, Barbara R. (Oak Ridge, TN) [Oak Ridge, TN; O'Neill, Hugh M. (Knoxville, TN) [Knoxville, TN; Jansen, Valerie Malyvanh (Memphis, TN) [Memphis, TN; Woodward, Jonathan (Knoxville, TN) [Knoxville, TN

    2010-09-28

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  16. Method for making radioactive metal articles having small dimensions

    DOE Patents [OSTI]

    Ohriner, Evan K. (Knoxville, TN)

    2000-01-01

    A method for making a radioactive article such as wire, includes the steps of providing a metal article having a first shape, such a cylinder, that is either radioactive itself or can be converted to a second, radioactive isotope by irradiation; melting the metal article one or more times; optionally adding an alloying metal to the molten metal in order to enhance ductility or other properties; placing the metal article having the first shape (e.g., cylindrical) into a cavity in the interior of an extrusion body (e.g., a cylinder having a cylindrical cavity therein); extruding the extrusion body and the article having the first shape located in the cavity therein, resulting in an elongated extrusion body and an article having a second shape; removing the elongated extrusion body, for example by chemical means, leaving the elongated inner article substantially intact; optionally repeating the extrusion procedure one or more times; and then drawing the elongated article to still further elongate it, into wire, foil, or another desired shape. If the starting metal is enriched in a radioactive isotope or a precursor thereof, the end product can provide a more intense radiation source than conventionally manufactured radioactive wire, foil, or the like.

  17. (Data in thousand metric tons of silicon content unless otherwise noted) Domestic Production and Use: Estimated value of silicon alloys and metal produced in the United States in 2011

    E-Print Network [OSTI]

    and aluminum alloys and the chemical industry. The semiconductor and solar industries, which manufacture chips%; and other, 4%. Silicon metal: Brazil, 39%; South Africa, 22%; Canada, 13%; Australia, 10%; and other, 16 secondary aluminum production--the primary materials source for aluminum-silicon alloys--was projected

  18. Coherent detection of metal-metal terahertz quantum cascade lasers with improved emission characteristics

    SciTech Connect (OSTI)

    Brewer, Anthony; Beere, Harvey E.; Ritchie, David A. [Semiconductor Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Freeman, Joshua R., E-mail: j.r.freeman@leeds.ac.uk; Cavalié, Pierrick; Maysonnave, Jean; Tignon, Jérôme; Dhillon, Sukhdeep S. [Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS (UMR 8551), Université P. et M. Curie, Université D. Diderot, 75231 Paris Cedex 05 (France)

    2014-02-24

    Coherent detection of emission from quantum cascade lasers with metal-metal waveguides is demonstrated through free-space coupling of a THz pulse to the sub-wavelength waveguide. We implement a simple, monolithic planar horn antenna design on the metal-metal waveguide that reduces the impedance mis-match to the waveguide. The resulting devices show up to 10 times more directed output power than conventional metal-metal waveguides. This enhanced coupling to free-space allows a more efficient injection of broad-band THz pulses into the waveguide. Through this, we are able to seed the laser emission and coherently detect the laser emission by electro-optic sampling.

  19. Synthesis of transition-metal phosphides from oxidic precursors by reduction in hydrogen plasma

    SciTech Connect (OSTI)

    Guan Jie [Department of Catalytic Chemistry and Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012 (China); Wang Yao [Liaoning Key Laboratory of Petrochemical Technology and Equipments, Dalian University of Technology, Dalian 116012 (China); Qin Minglei; Yang Ying [Department of Catalytic Chemistry and Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012 (China); Li Xiang [Department of Catalytic Chemistry and Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012 (China); Liaoning Key Laboratory of Petrochemical Technology and Equipments, Dalian University of Technology, Dalian 116012 (China); Wang Anjie, E-mail: ajwang@dlut.edu.c [Department of Catalytic Chemistry and Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012 (China); Liaoning Key Laboratory of Petrochemical Technology and Equipments, Dalian University of Technology, Dalian 116012 (China)

    2009-06-15

    A series of transition metal phosphides, including MoP, WP, CoP, Co{sub 2}P, and Ni{sub 2}P, were synthesized from their oxidic precursors by means of hydrogen plasma reduction under mild conditions. The effects of reduction conditions, such as metal to phosphorus molar ratio, power input, and reduction time, on the synthesis of metal phosphides were investigated. The products were identified by means of XRD characterization. It is indicated that metal phosphides were readily synthesized stoichiometrically from their oxides in hydrogen plasma under mild conditions. - Graphical abstract: Metal phosphides were obtained stoichiometrically from their oxidic precursors by hydrogen plasma reaction under mild conditions.

  20. Manufacturing Metallic Parts with Designed Mesostructure

    E-Print Network [OSTI]

    material geometry: ­ Thin walls ­ Angled trusses ­ Small channels · What is our answer? ­ 3DP of metal? · Preliminary results - characteristic cellular material geometry: ­ Thin walls ­ Angled trusses ­ Small Cellular Material Manufacturing Stochastic Cellular Material Manufacturing (Hydro / Alcan / Combal Process

  1. Novel deposition methods for metal dithiolenes 

    E-Print Network [OSTI]

    Dalgleish, Simon

    2010-01-01

    Square planar metal bis-dithiolenes are interesting targets for incorporation into electronic and optoelectronic devices as they characteristically display multiple stable redox states, coupled with strong absorption at ...

  2. Homochiral metal complexes for biodegradable polymer synthesis 

    E-Print Network [OSTI]

    Buffet, Jean-Charles

    2010-01-01

    Chapter One introduces the principle of alkoxide and phosphine oxide as ligands for lanthanides and electropositive metals, ligand self-recognition, stereoselective polymerisation of lactide, fixation of CO2 and finally ...

  3. Recirculating Molten Metal Supply System And Method

    DOE Patents [OSTI]

    Kinosz, Michael J. (Apollo, PA); Meyer, Thomas N. (Murrysville, PA)

    2003-07-01

    The melter furnace includes a heating chamber (16), a pump chamber (18), a degassing chamber (20), and a filter chamber (22). The pump chamber (18) is located adjacent the heating chamber (16) and houses a molten metal pump (30). The degassing chamber (20) is located adjacent and in fluid communication with the pump chamber (18), and houses a degassing mechanism (36). The filter chamber (22) is located adjacent and in fluid communication with the degassing chamber (20). The filter chamber (22) includes a molten metal filter (38). The melter furnace (12) is used to supply molten metal to an externally located holder furnace (14), which then recirculates molten metal back to the melter furnace (12).

  4. Liquid metal cooled divertor for ARIES

    SciTech Connect (OSTI)

    Muraviev, E. [Gosudarstvennyj Komitet po Ispol`zovaniyu Atomnoj Ehnergii SSSR, Moscow (Russian Federation). Inst. Atomnoj Ehnergii

    1995-01-01

    A liquid metal, Ga-cooled divertor design was completed for the double null ARIES-II divertor design. The design analysis indicated a surface heat flux removal capability of up to 15 MW/m{sup 2}, and its relative easy maintenance. Design issues of configuration, thermal hydraulics, thermal stresses, liquid metal loop and safety effects were evaluated. For coolant flow control, it was found that it is necessary to use some part of the blanket cooling ducts for the draining of liquid metal from the top divertor. In order to minimize the inventory of Ga, it was recommended that the liquid metal loop equipment should be located as close to the torus as possible. More detailed analysis of transient conditions especially under accident conditions was identified as an issue that will need to be addressed.

  5. Composite metal foil and ceramic fabric materials

    DOE Patents [OSTI]

    Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.

    1992-03-24

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.

  6. Plasticity of metallic nanostructures : molecular dynamics simulations 

    E-Print Network [OSTI]

    Healy, Con

    2014-11-27

    During high speed cutting processes, metals are subject to high strains and strain rates. The dynamic nature of the deformation during high speed cutting makes it difficult to detect atomic scale deformation mechanisms ...

  7. Mixing in a liquid metal electrode

    E-Print Network [OSTI]

    Kelley, Douglas H.

    Fluid mixing has first-order importance for many engineering problems in mass transport, including design and optimization of liquid-phase energy storage devices. Liquid metal batteries are currently being commercialized ...

  8. Incoherent transport in clean quantum critical metals

    E-Print Network [OSTI]

    Richard A. Davison; Blaise Goutéraux; Sean A. Hartnoll

    2015-07-25

    In a clean quantum critical metal, and in the absence of umklapp, most d.c. conductivities are formally infinite due to momentum conservation. However, there is a particular combination of the charge and heat currents which has a finite, universal conductivity. In this paper, we describe the physics of this conductivity $\\sigma_Q$ in quantum critical metals obtained by charge doping a strongly interacting conformal field theory. We show that it satisfies an Einstein relation and controls the diffusivity of a conserved charge in the metal. We compute $\\sigma_Q$ in a class of theories with holographic gravitational duals. Finally, we show how the temperature scaling of $\\sigma_Q$ depends on certain critical exponents characterizing the quantum critical metal. The holographic results are found to be reproduced by the scaling analysis, with the charge density operator becoming marginal in the emergent low energy quantum critical theory.

  9. Incoherent transport in clean quantum critical metals

    E-Print Network [OSTI]

    Davison, Richard A; Hartnoll, Sean A

    2015-01-01

    In a clean quantum critical metal, and in the absence of umklapp, most d.c. conductivities are formally infinite due to momentum conservation. However, there is a particular combination of the charge and heat currents which has a finite, universal conductivity. In this paper, we describe the physics of this conductivity $\\sigma_Q$ in quantum critical metals obtained by charge doping a strongly interacting conformal field theory. We show that it satisfies an Einstein relation and controls the diffusivity of a conserved charge in the metal. We compute $\\sigma_Q$ in a class of theories with holographic gravitational duals. Finally, we show how the temperature scaling of $\\sigma_Q$ depends on certain critical exponents characterizing the quantum critical metal. The holographic results are found to be reproduced by the scaling analysis, with the charge density operator becoming marginal in the emergent low energy quantum critical theory.

  10. Microbial controls on metal ion mobility

    E-Print Network [OSTI]

    Leslie, Karla Louise

    2012-12-31

    '' %-0),' '''+,%'-0):)-*'%&>#&?),0' <-*6);-+#'E&+:5&6-,='' '''''''')C'0"#$%&0' <-*6);&4F&=&:+?),'' ''''''+00)*-+?),0' 6 This research investigates the biogeochemical controls on metal mobility in the subsurface and soil anomaly...

  11. Oxygen addition to sulfur of metal thiolates 

    E-Print Network [OSTI]

    Soma, Takako

    1996-01-01

    chemistry. The oxidation reactions of metal thiolates by hydrogen peroxide, molecular oxygen, dioxiranes, and peracids have been reviewed. The compounds resulting from oxidation and oxygenation of nickel thiolate complexes have been isolated, separated...

  12. Metal-silicane: Stability and properties

    SciTech Connect (OSTI)

    Yang, Huan-Cheng; Wang, Jing, E-mail: jwang@hebtu.edu.cn [Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Liu, Ying [Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); National Key Laboratory for Materials Simulation and Design, Beijing 100083 (China)

    2014-08-28

    The decoration of silicane using 16 different metal adatoms and the adsorption of small molecules are studied using first-principles calculations. Of the 16 metal adatoms, Li, Na, K, Ca, In, and Sc show a larger binding energy with silicane than their corresponding cohesive energy in the bulk, which suggests they can form 2D layers on the surface of silicane. The band analysis indicates that decoration with metal atoms can effectively tailor the electronic properties of silicane. The adsorption for hydrogen and carbon monoxide on Li-silicane system demonstrates that each Li atom can adsorb a maximum of five H{sub 2} or four CO molecules with the average adsorption energy of 0.18 and 0.23 eV/atom, respectively. The calculated results suggest that metal-silicane systems can provide more information for applications as hydrogen-storage or environment-protection materials.

  13. Transition metal fluorides: from superconductors to multiferroics. 

    E-Print Network [OSTI]

    Drathen, Christina

    2013-06-29

    Transition metal fluorides represent an important family of complex solids displaying a variety of different properties and interesting phenomena. Despite their remarkable behaviour, these classes of materials have not ...

  14. Method of boronizing transition metal surfaces

    DOE Patents [OSTI]

    Koyama, Koichiro; Shimotake, Hiroshi.

    1983-08-16

    A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB[sub 2], or CrB[sub 2]. A transition metal to be coated is immersed in the melt at a temperature of no more than 700 C and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface. 4 figs.

  15. Method of boronizing transition metal surfaces

    DOE Patents [OSTI]

    Koyama, Koichiro (Hyogo, JP); Shimotake, Hiroshi (Hinsdale, IL)

    1983-01-01

    A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB.sub.2, or CrB.sub.2. A transition metal to be coated is immersed in the melt at a temperature of no more than 700.degree. C. and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface.

  16. Locating experiential richness in doom metal

    E-Print Network [OSTI]

    Piper, Jonathan

    2013-01-01

    by Mastodon, a popular sludge doom band (this style isstyle to counteract an explosion of variation, sludge doom (or sludge metal) was consciously created out of a mixture of

  17. Uranium Metal Analysis via Selective Dissolution

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Chenault, Jeffrey W.

    2008-09-10

    Uranium metal, which is present in sludge held in the Hanford Site K West Basin, can create hazardous hydrogen atmospheres during sludge handling, immobilization, or subsequent transport and storage operations by its oxidation/corrosion in water. A thorough knowledge of the uranium metal concentration in sludge therefore is essential to successful sludge management and waste process design. The goal of this work was to establish a rapid routine analytical method to determine uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of up to 1000-fold higher total uranium concentrations (i.e., up to 30 wt% and more uranium) for samples to be taken during the upcoming sludge characterization campaign and in future analyses for sludge handling and processing. This report describes the experiments and results obtained in developing the selective dissolution technique to determine uranium metal concentration in K Basin sludge.

  18. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOE Patents [OSTI]

    Farmer, Joseph C. (Tracy, CA); Wong, Frank M. G. (Livermore, CA); Haslam, Jeffery J. (Livermore, CA); Yang, Nancy (Lafayette, CA); Lavernia, Enrique J. (Davis, CA); Blue, Craig A. (Knoxville, TN); Graeve, Olivia A. (Reno, NV); Bayles, Robert (Annandale, VA); Perepezko, John H. (Madison, WI); Kaufman, Larry (Brookline, MA); Schoenung, Julie (Davis, CA); Ajdelsztajn, Leo (Walnut Creek, CA)

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  19. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    SciTech Connect (OSTI)

    Farmer, Joseph C.; Wong, Frank M.G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2014-07-15

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  20. METAL MEDIA FILTERS, AG-1 SECTION FI

    SciTech Connect (OSTI)

    Adamson, D.

    2012-05-23

    One application of metal media filters is in various nuclear air cleaning processes including applications for protecting workers, the public and the environment from hazardous and radioactive particles. To support this application the development of the ASME AG-1 FI Standard on Metal Media has been under way for more than ten years. Development of the proposed section has required resolving several difficult issues associated with operating conditions (media velocity, pressure drop, etc.), qualification testing, and quality acceptance testing. Performance characteristics of metal media are dramatically different than the glass fiber media with respect to parameters like differential pressures, operating temperatures, media strength, etc. These differences make existing data for a glass fiber media inadequate for qualifying a metal media filter for AG-1. In the past much work has been conducted on metal media filters at facilities such as Lawrence Livermore National Laboratory (LLNL) and Savannah River National Laboratory (SRNL) to qualify the media as High Efficiency Particulate Air (HEPA) Filters. Particle retention testing has been conducted at Oak Ridge Filter Test Facility and at Air Techniques International (ATI) to prove that the metal media meets or exceeds the 99.97% particle retention required for a HEPA Filter. Even with his testing, data was lacking to complete an AG-1 FI Standard on metal media. With funding secured by Mississippi State University (MSU) from National Nuclear Security Administration (NNSA), a research test stand is being designed and fabricated at MSU's Institute for Clean Energy Technology (ICET) Facility to obtain qualification data on metal media. This in turn will support required data needed for the FI Standard. The paper will discuss in detail how the test stand at MSU will obtain the necessary data to complete the FI Standard.

  1. Tokamak with liquid metal toroidal field coil

    DOE Patents [OSTI]

    Ohkawa, Tihiro (La Jolla, CA); Schaffer, Michael J. (San Diego, CA)

    1981-01-01

    Tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. Electric current is passed through the liquid metal over a conductive path linking the toroidal space to produce a toroidal magnetic field within the toroidal space about the major axis thereof. Toroidal plasma is developed within the toroidal space about the major axis thereof.

  2. Process for etching mixed metal oxides

    DOE Patents [OSTI]

    Ashby, C.I.H.; Ginley, D.S.

    1994-10-18

    An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.

  3. Metal loading and reactivity of Zeolite Y 

    E-Print Network [OSTI]

    Sa?enz, Marc Gerard

    1988-01-01

    V) are transi- tion metal oxides or sulfides on an alumina support. These catalysts were not specifically developed for hydrodenitrogenaiion but were adopted from hydrocracking or hydrodesul- furization (HDS) processes. HDN is more difficult than HDS; thus... No. ;&778365, "Hydrocracking and Hydrodenitrogenation of Shale Oil" (7). The patent disclosed a class of catalysi. s based on large pore zeolites loaded v;ith transition metals. The zeolite based catalysts were preferred over the traditional alumina...

  4. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect (OSTI)

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.; Zeitoon, B.M.

    1995-12-01

    Molten Metal Technology was awarded a contract to demonstrate the applicability of the Catalytic Extraction Process, a proprietary process that could be applied to US DOE`s inventory of low level mixed waste. This paper is a description of that technology, and included within this document are discussions of: (1) Program objectives, (2) Overall technology review, (3) Organic feed conversion to synthetic gas, (4) Metal, halogen, and transuranic recovery, (5) Demonstrations, (6) Design of the prototype facility, and (7) Results.

  5. Method for electrochemical decontamination of radioactive metal

    DOE Patents [OSTI]

    Ekechukwu, Amy A. (Augusta, GA)

    2008-06-10

    A decontamination method for stripping radionuclides from the surface of stainless steel or aluminum material comprising the steps of contacting the metal with a moderately acidic carbonate/bicarbonate electrolyte solution containing sodium or potassium ions and thereafter electrolytically removing the radionuclides from the surface of the metal whereby radionuclides are caused to be stripped off of the material without corrosion or etching of the material surface.

  6. Promises and problems with metallic interconnects for reduced temperature solid oxide fuel cells

    E-Print Network [OSTI]

    Hou, Peggy Y.; Huang, Keqin; Bakker, Wate T.

    1999-01-01

    METALLIC INTERCONNECTS FOR REDUCED TEMPERATURE SOLID OXIDE FUELto fuel cell stacks with multiple metallic interconnects.

  7. THE CHOICE OF THE PROPER REFRACTORY FOR THE CASTING OF HIGH MELTING ELECTROPOSITIVE METALS

    E-Print Network [OSTI]

    Brewer, Leo

    2008-01-01

    for the Casting of High Melting Electropositive Metals Leothe Casting of High Melting Electropositive Metals" (Report

  8. Synthesis and characterization of nanostructured transition metal oxides for energy storage devices

    E-Print Network [OSTI]

    Kim, Jong Woung

    2012-01-01

    nanostructured transition metal oxides for energy storage devicesnanostructured transition metal oxides for energy storage devices

  9. Platinum-coated non-noble metal-noble metal core-shell electrocatalysts

    DOE Patents [OSTI]

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir

    2015-04-14

    Core-shell particles encapsulated by a thin film of a catalytically active metal are described. The particles are preferably nanoparticles comprising a non-noble core with a noble metal shell which preferably do not include Pt. The non-noble metal-noble metal core-shell nanoparticles are encapsulated by a catalytically active metal which is preferably Pt. The core-shell nanoparticles are preferably formed by prolonged elevated-temperature annealing of nanoparticle alloys in an inert environment. This causes the noble metal component to surface segregate and form an atomically thin shell. The Pt overlayer is formed by a process involving the underpotential deposition of a monolayer of a non-noble metal followed by immersion in a solution comprising a Pt salt. A thin Pt layer forms via the galvanic displacement of non-noble surface atoms by more noble Pt atoms in the salt. The overall process is a robust and cost-efficient method for forming Pt-coated non-noble metal-noble metal core-shell nanoparticles.

  10. Electrolytic recovery of reactor metal fuel

    DOE Patents [OSTI]

    Miller, W.E.; Tomczuk, Z.

    1994-09-20

    A new electrolytic process and apparatus are provided using sodium, cerium or a similar metal in alloy or within a sodium beta or beta[double prime]-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then shunted to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required. 2 figs.

  11. Electrolytic recovery of reactor metal fuel

    DOE Patents [OSTI]

    Miller, W.E.; Tomczuk, Z.

    1993-02-03

    This invention is comprised of a new electrolytic process and apparatus using sodium, cerium or a similar metal in an alloy or within a sodium beta or beta-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for Cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then changed to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required.

  12. Electrolytic recovery of reactor metal fuel

    DOE Patents [OSTI]

    Miller, William E. (Naperville, IL); Tomczuk, Zygmunt (Lockport, IL)

    1994-01-01

    A new electrolytic process and apparatus are provided using sodium, cerium or a similar metal in alloy or within a sodium beta or beta"-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then chanted to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required.

  13. METAL HYDRIDE HYDROGEN COMPRESSORS: A REVIEW

    SciTech Connect (OSTI)

    Bowman Jr, Robert C; Yartys, Dr. Volodymyr A.; Lototskyy, Dr. Michael V; Pollet, Dr. B.G.

    2014-01-01

    Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine the metal hydride material itself should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal-hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimized to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation. The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal-hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.

  14. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  15. Method for synthesizing metal bis(borano) hypophosphite complexes

    DOE Patents [OSTI]

    Cordaro, Joseph G.

    2013-06-18

    The present invention describes the synthesis of a family of metal bis(borano) hypophosphite complexes. One procedure described in detail is the syntheses of complexes beginning from phosphorus trichloride and sodium borohydride. Temperature, solvent, concentration, and atmosphere are all critical to ensure product formation. In the case of sodium bis(borano) hypophosphite, hydrogen gas was evolved upon heating at temperatures above 150.degree. C. Included in this family of materials are the salts of the alkali metals Li, Na and K, and those of the alkaline earth metals Mg and Ca. Hydrogen storage materials are possible. In particular the lithium salt, Li[PH.sub.2(BH.sub.3).sub.2], theoretically would contain nearly 12 wt % hydrogen. Analytical data for product characterization and thermal properties are given.

  16. DEVELOPMENT OF A NON-NOBLE METAL HYDROGEN PURIFICATION SYSTEM

    SciTech Connect (OSTI)

    Korinko, P; Kyle Brinkman, K; Thad Adams, T; George Rawls, G

    2008-11-25

    Development of advanced hydrogen separation membranes in support of hydrogen production processes such as coal gasification and as front end gas purifiers for fuel cell based system is paramount to the successful implementation of a national hydrogen economy. Current generation metallic hydrogen separation membranes are based on Pd-alloys. Although the technology has proven successful, at issue is the high cost of palladium. Evaluation of non-noble metal based dense metallic separation membranes is currently receiving national and international attention. The focus of the reported work was to develop a scaled reactor with a VNi-Ti alloy membrane to replace a production Pd-alloy tube-type purification/diffuser system.

  17. Method of bonding metals to ceramics and other materials

    DOE Patents [OSTI]

    Gruen, D.M.; Krauss, A.R.; DeWald, A.P.; Chienping Ju; Rigsbee, J.M.

    1993-01-05

    A composite and method of forming same wherein the composite has a non-metallic portion and an alloy portion wherein the alloy comprises an alkali metal and a metal which is an electrical conductor such as Cu, Ag, Al, Sn or Au and forms an alloy with the alkali metal. A cable of superconductors and composite is also disclosed.

  18. Microwave-assisted synthesis of transition metal phosphide

    DOE Patents [OSTI]

    Viswanathan, Tito

    2014-12-30

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  19. A transparent electrode based on a metal nanotrough network

    E-Print Network [OSTI]

    Fan, Shanhui

    and is produced with a process involving electrospinning and metal deposition. We demonstrate the practical

  20. REVIEW PAPER Watershed land use as a determinant of metal

    E-Print Network [OSTI]

    Mazumder, Asit

    REVIEW PAPER Watershed land use as a determinant of metal concentrations in freshwater systems- lating concentrations and behavior of metals in freshwater systems. Results from the review suggest metal­DOM­pH interactions) affect the metal concentrations in freshwater systems. Among the watershed

  1. A combined flood surface and geochemical analysis of metal

    E-Print Network [OSTI]

    Hren, Michael

    A combined flood surface and geochemical analysis of metal fluxes in a historically mined region anthropogenic sediments in a naturally metal-rich region, delin- eating zones of sediments with elevated metal®cally, the distribu- tion of metals in Fisher Creek of the New World Mining District, Montana, suggests the following

  2. Predicting Metal-Binding Sites from Protein Sequence

    E-Print Network [OSTI]

    Passerini, Andrea

    Predicting Metal-Binding Sites from Protein Sequence Andrea Passerini, Marco Lippi, and Paolo algorithmic ideas based on structured- output learning for determining transition-metal-binding sites coordinate more than one metal ion, we prove that metal binding has the algebraic structure of a matroid

  3. High surface area, electrically conductive nanocarbon-supported metal oxide

    DOE Patents [OSTI]

    Worsley, Marcus A; Han, Thomas Yong-Jin; Kuntz, Joshua D; Cervanted, Octavio; Gash, Alexander E; Baumann, Theodore F; Satcher, Jr., Joe H

    2014-03-04

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

  4. Computational Design of Metal Ion Sequestering Agents

    SciTech Connect (OSTI)

    Hay, Benjamin P.; Rapko, Brian M.

    2005-06-15

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort. This project seeks to enhance and strengthen the traditional approach through computer-aided design of new and improved host molecules. Accurate electronic structure calculations are coupled with experimental data to provide fundamental information about ligand structure and the nature of metal-donor group interactions (design criteria). This fundamental information then is used in a molecular mechanics model (MM) that helps us rapidly screen proposed ligand architectures and select the best members from a set of potential candidates. By using combinatorial methods, molecule building software has been developed that generates large numbers of candidate architectures for a given set of donor groups. The specific goals of this project are: • further understand the structural and energetic aspects of individual donor group- metal ion interactions and incorporate this information within the MM framework • further develop and evaluate approaches for correlating ligand structure with reactivity toward metal ions, in other words, screening capability • use molecule structure building software to generate large numbers of candidate ligand architectures for given sets of donor groups • screen candidates and identify ligand architectures that will exhibit enhanced metal ion recognition. These new capabilities are being applied to ligand systems identified under other DOEsponsored projects where studies have suggested that modifying existing architectures will lead to dramatic enhancements in metal ion binding affinity and selectivity. With this in mind, we are collaborating with Professors R. T. Paine (University of New Mexico), K. N. Raymond (University of California, Berkeley), and J. E. Hutchison (University of Oregon), and Dr. B. A. Moyer (Oak Ridge National Laboratory) to obtain experimental validation of the predicted new ligand structures. Successful completion of this study will yield molecular-level insight into the role that ligand architecture plays in controlling metal ion complexation and will provide a computational approach to ligand design.

  5. Growth morphology and properties of metals on graphene

    SciTech Connect (OSTI)

    Liu, Xiaojie; Han, Yong; Evans, James W.; Engstfeld, Albert K.; Behm, R. Juergen; Tringides, Michael C.; Hupalo, Myron; Lin, Hai-Qing; Huang, Li; Ho, Kai-Ming; Appy, David; Thiel, Patricia A.; Wang, Cai-Zhuang

    2015-12-01

    Graphene, a single atomic layer of graphite, has been the focus of recent intensive studies due to its novel electronic and structural properties. Metals grown on graphene also have been of interest because of their potential use as metal contacts in graphene devices, for spintronics applications, and for catalysis. All of these applications require good understanding and control of the metal growth morphology, which in part reflects the strength of the metal–graphene bond. The interaction between graphene and metal is sufficiently strong to modify the electronic structure of graphene is also of great importance. We will discuss recent experimental and computational studies related to deposition of metals on graphene supported on various substrates (SiC, SiO2, and hexagonal close-packed metal surfaces). Of specific interest are the metal–graphene interactions (adsorption energies and diffusion barriers of metal adatoms), and the crystal structures and thermal stability of the metal nanoclusters.

  6. Growth morphology and properties of metals on graphene

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Xiaojie; Han, Yong; Evans, James W.; Engstfeld, Albert K.; Behm, R. Juergen; Tringides, Michael C.; Hupalo, Myron; Lin, Hai -Qing; Huang, Li; Ho, Kai -Ming; et al

    2015-12-01

    Graphene, a single atomic layer of graphite, has been the focus of recent intensive studies due to its novel electronic and structural properties. With this study, metals grown on graphene also have been of interest because of their potential use as metal contacts in graphene devices, for spintronics applications, and for catalysis. All of these applications require good understanding and control of the metal growth morphology, which in part reflects the strength of the metal–graphene bond. The interaction between graphene and metal is sufficiently strong to modify the electronic structure of graphene is also of great importance. We will discussmore »recent experimental and computational studies related to deposition of metals on graphene supported on various substrates (SiC, SiO2, and hexagonal close-packed metal surfaces). Of specific interest are the metal–graphene interactions (adsorption energies and diffusion barriers of metal adatoms), and the crystal structures and thermal stability of the metal nanoclusters.« less

  7. EFFECTS ON CHP PLANT EFFICIENCY OF H2 PRODUCTION THROUGH PARTIAL OXYDATION OF NATURAL GAS OVER TWO GROUP VIII METAL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    EFFECTS ON CHP PLANT EFFICIENCY OF H2 PRODUCTION THROUGH PARTIAL OXYDATION OF NATURAL GAS OVER TWO with natural gas in spark ignition engines can increase for electric efficiency. In-situ H23 production for spark ignition engines fuelled by natural gas has therefore been investigated recently, and4 reformed

  8. METAL TRANSFER CONTROL IN GAS METAL ARC WELDING L.A. Jones, T.W. Eagar, J.H. Lang

    E-Print Network [OSTI]

    Eagar, Thomas W.

    controls both the metal transfer process and the base-plate heating process. It would be advantageousMETAL TRANSFER CONTROL IN GAS METAL ARC WELDING L.A. Jones, T.W. Eagar, J.H. Lang Massachusetts, precision current control, and flexible real-time computer control is described. 1 Introduction Gas metal

  9. Metal-ion rescue revisited: Biochemical detection of site-bound metal ions important for RNA folding

    E-Print Network [OSTI]

    Das, Rhiju

    Metal-ion rescue revisited: Biochemical detection of site-bound metal ions important for RNA-dimensional architectures of RNA molecules, divalent metal ions populate specific locations, shedding their water molecules make essential contributions to function. Defining the locations of these site-bound metal ions remains

  10. Metal-doped organic gels and method thereof

    DOE Patents [OSTI]

    Satcher, Jr., Joe H. (Patterson, CA); Baumann, Theodore F. (Tracy, CA)

    2007-10-23

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  11. Metal-doped organic gels and method thereof

    DOE Patents [OSTI]

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2003-09-02

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  12. Method for producing nanostructured metal-oxides

    DOE Patents [OSTI]

    Tillotson, Thomas M.; Simpson, Randall L.; Hrubesh, Lawrence W.; Gash, Alexander

    2006-01-17

    A synthetic route for producing nanostructure metal-oxide-based materials using sol-gel processing. This procedure employs the use of stable and inexpensive hydrated-metal inorganic salts and environmentally friendly solvents such as water and ethanol. The synthesis involves the dissolution of the metal salt in a solvent followed by the addition of a proton scavenger, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively. Using this method synthesis of metal-oxide nanostructured materials have been carried out using inorganic salts, such as of Fe.sup.3+, Cr.sup.3+, Al.sup.3+, Ga.sup.3+, In.sup.3+, Hf.sup.4+, Sn.sup.4+, Zr.sup.4+, Nb.sup.5+, W.sup.6+, Pr.sup.3+, Er.sup.3+, Nd.sup.3+, Ce.sup.3+, U.sup.3+ and Y.sup.3+. The process is general and nanostructured metal-oxides from the following elements of the periodic table can be made: Groups 2 through 13, part of Group 14 (germanium, tin, lead), part of Group 15 (antimony, bismuth), part of Group 16 (polonium), and the lanthanides and actinides. The sol-gel processing allows for the addition of insoluble materials (e.g., metals or polymers) to the viscous sol, just before gelation, to produce a uniformly distributed nanocomposites upon gelation. As an example, energetic nanocomposites of Fe.sub.xO.sub.y gel with distributed Al metal are readily made. The compositions are stable, safe, and can be readily ignited to thermitic reaction.

  13. Molecular Rectification in a Metal-Insulator-Metal Junction Based on Self-Assembled Monolayers

    E-Print Network [OSTI]

    Jacobs, Heiko O.

    Molecular Rectification in a Metal-Insulator-Metal Junction Based on Self-Assembled Monolayers Received April 8, 2002 Abstract: An electrical junction formed by mechanical contact between two self-assembled. The hypothesis underlying this design is based on the relative energies of the highest occupied molecular orbital

  14. Metallization of Fluid Hydrogen 3.1 Introduction to Metallic Hydrogen

    E-Print Network [OSTI]

    Louis, Ard

    Chapter 3 Metallization of Fluid Hydrogen 3.1 Introduction to Metallic Hydrogen 3.1.1 Some background on dense hydrogen Hydrogen, out of it the Universe evolved, every atom and leaf, marine iguana and apricot­smelling chanterelle. But my, my, what alchemy: nondescript H 2 --Diane Ackerman 1 -- Hydrogen

  15. RARE-EARTH METALS--1997 61.1 RARE-EARTH METALS

    E-Print Network [OSTI]

    RARE-EARTH METALS--1997 61.1 RARE-EARTH METALS By James B. Hedrick The rare earths are a relatively million, to thulium and lutetium, the least abundant rare-earth elements at about 0.5 parts per million. Scandium, atomic number 21, is the lightest rare-earth element. It is the 31st most abundant element

  16. Wear 258 (2005) 17871793 Finite element analysis and experiments of metal/metal

    E-Print Network [OSTI]

    Sawyer, Wallace

    2005-01-01

    Wear 258 (2005) 1787­1793 Finite element analysis and experiments of metal/metal wear-on-disk experiments. The results from the finite element analysis were in close agreement with the block of this simulation. © 2004 Published by Elsevier B.V. Keywords: Wear modeling; Finite element analysis 1

  17. Metal Oxide Thin Films Deposited from Metal Organic Precursors in Supercritical CO2 Solutions

    E-Print Network [OSTI]

    Gougousi, Theodosia

    Metal Oxide Thin Films Deposited from Metal Organic Precursors in Supercritical CO2 Solutions and oxidizing agents are delivered in liquid and supercritical CO2. A cyclic deposition process is presented properties of supercritical CO2 can aid in the delivery of precursors and in the removal of byproducts

  18. Epsilon Metal Waste Form for Immobilization of Noble Metals from Used Nuclear Fuel

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Strachan, Denis M.; Rohatgi, Aashish; Zumhoff, Mac R.

    2013-10-01

    Epsilon metal (?-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass and thus the processing problems related there insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high reaction temperatures to form the alloy, expected to be 1500 - 2000°C making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).

  19. Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal-Organic Frameworks

    E-Print Network [OSTI]

    Yaghi, Omar M.

    Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal-Organic Frameworks cuboctahedral units linked by either porphyrin (MOF-525) or cruciform (MOF-535). Another zirconium) based on the zirconium(IV) cuboctahedral secondary building unit (SBU), Zr6O4(OH)4(CO2)12 (Figure 1A

  20. Process for the production of hydrogen and carbonyl sulfide from hydrogen sulfide and carbon monoxide using a metal boride, nitride, carbide and/or silicide catalyst

    SciTech Connect (OSTI)

    McGuiggan, M.F.; Kuch, P.L.

    1984-05-08

    Hydrogen and carbonyl sulfide are produced by a process comprising contacting gaseous hydrogen sulfide with gaseous carbon monoxide in the presence of a metal boride, carbide, nitride and/or silicide catalyst, such as titanium carbide, vanadium boride, manganese nitride or molybdenum silicide.