Powered by Deep Web Technologies
Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Method of manufacturing metallic products such as sheet by cold working and flash anealing  

DOE Patents [OSTI]

A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

Hajaligol, Mohammad R. (Midlothian, VA); Sikka, Vinod K. (Oak Ridge, TN)

2001-01-01T23:59:59.000Z

2

Method of manufacturing metallic products such as sheet by cold working and flash annealing  

DOE Patents [OSTI]

A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

Hajaligol, Mohammad R. (Midlothian, VA); Sikka, Vinod K. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

3

Manufacturing Metallic Parts with Designed Mesostructure  

E-Print Network [OSTI]

Additive Manufacturing Laser Engineered Net Shaping Electron Beam Melting Williams, C. B., F. M. Mistree, D Additive Manufacturing © Christopher B. Williams Electron Beam Melting Electron Beam Melting Direct Metal

4

Additive manufacturing of metallic tracks on  

E-Print Network [OSTI]

Additive manufacturing of metallic tracks on green ceramic/dielectrics Problem this technology microelectronics such as manufacture of LTCC ceramic/ Dielectric antenna and rapid PCB prototyping or repair (note: may require additional tooling/ set up time) · Rapid Prototyping & small scale manufacture

Painter, Kevin

5

Advanced Manufacturing Initiative Improves Turbine Blade Productivity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...

6

Development of a Process Planning Module for Metal Additive Manufacturing.  

E-Print Network [OSTI]

??Producing metallic parts using Laser Engineered Net Shaping (LENS) additive manufacturing allows for a wide range of flexibility and customization while reducing waste material compared (more)

Chernow, Eric

2013-01-01T23:59:59.000Z

7

Photographic lens manufacturing and production technologies  

E-Print Network [OSTI]

An investigation was conducted to determine the methods and processes required for the manufacture of photographic objective lenses. Production of photographic lenses requires incredible precision in the melting, mixing, ...

Kubaczyk, Daniel Mark

2011-01-01T23:59:59.000Z

8

The Productivity Dilemma in Manufacturing  

E-Print Network [OSTI]

industry's needs, improve productivity, and reduce costs is known, but the technology transfer needed to impact our industrial productivity has not taken place. A key factor in accomplishing technology transfer and implementation is the availability...

Byrer, T. G.

1983-01-01T23:59:59.000Z

9

Metal and Glass Manufacturers Reduce Costs by Increasing Energy...  

Broader source: Energy.gov (indexed) [DOE]

in Process Heating Systems Process heating plays a key role in producing steel, aluminum, and glass and in manufacturing products made from these materials. Faced with...

10

Production of magnesium metal  

DOE Patents [OSTI]

A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

Blencoe, James G. (Harriman, TN) [Harriman, TN; Anovitz, Lawrence M. (Knoxville, TN) [Knoxville, TN; Palmer, Donald A. (Oliver Springs, TN) [Oliver Springs, TN; Beard, James S. (Martinsville, VA) [Martinsville, VA

2010-02-23T23:59:59.000Z

11

Sustainable Manufacturing Greening Processes, Systems and Products  

E-Print Network [OSTI]

Strategies for Green Manufacturing, " Proceedings HighFH), Implementing green manufacturing, as the first stepASME, Evanston, IL, Green Manufacturing uk/sustainability/

Dornfeld, David

2010-01-01T23:59:59.000Z

12

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

for implementing green manufacturing, Trans. North AmericaStrategies for Green Manufacturing, Proc. of the 4th CIRPAppropriate Use of Green Manufacturing Frameworks, Proc. of

Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

2012-01-01T23:59:59.000Z

13

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

Operation Strategies for Green Manufacturing, Proceedings ofSymposium on Green Manufacturing and Applications (ISGMAfor implementing green manufacturing. Transactions of NAMRI/

Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

2011-01-01T23:59:59.000Z

14

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

D. , Sustainable Manufacturing - Greening Processes,Avoid) Increase process efficiency Most sustainable (Improvesustainable manufacturing. 2 They highlighted research needs in four categories: i) manufacturing processes and

Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

2012-01-01T23:59:59.000Z

15

Sustainable Manufacturing Greening Processes, Systems and Products  

E-Print Network [OSTI]

mittels Sustainable Manufacturing - Greening Processes,Sustainable for manufacturing Manufacturing Cambridge, accessed processes,processes due to energy awareness and environmental consciousness create many opportunities for sustainable

Dornfeld, David

2010-01-01T23:59:59.000Z

16

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

D. , Sustainable Manufacturing Greening Processes, Systemsorimpact low Most sustainable Increaseprocess efficiencysustainable manufacturing [1]. They highlighted research needs in four categories: i) manufacturing processes and

Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

2011-01-01T23:59:59.000Z

17

Manufacturing Ultra-Precision Meso-scale Products by Coining  

SciTech Connect (OSTI)

A method for replicating ultra-precision, meso-scale features onto a near-net-shape metallic blank has been demonstrated. The 'coining' technology can be used to imprint a wide range of features and/or profiles into two opposing surfaces. The instrumented system provides the ability to measure and control the product thickness and total thickness variation (TTV). The coining mechanism relies on kinematic principles to accurately and efficiently produce ultra-precision work pieces without the production of by products such as machining chips, or grinding swarf while preserving surface finish, material structure and overall form. Coining has been developed as a niche process for manufacturing difficult to machine, millimeter size components made from materials that may present hazardous conditions. In the case described in this paper a refractory metal part, tantalum (Ta) was produced with 4 {micro}m peak to valley 50 {micro}m special wavelength sine wave coined into the surface of 50 {micro}m blank. This technique shows promise for use on ductile materials that cannot be precision machined with conventional single crystal diamond tooling and/or has strict requirements on subsurface damage, surface impurities and grain structure. As a production process, it can be used to reduce manufacturing costs where large numbers of ultra-precision, repetitive designs are required and produce parts out of hazardous materials without generating added waste.

Seugling, R M; Davis, P J; Rickens, K; Osmer, J; Brinksmeier, E

2010-02-18T23:59:59.000Z

18

Development of Design Guidelines for Metal Additive Manufacturing and Process Selection.  

E-Print Network [OSTI]

??Producing parts using metal additive manufacturing (AM) allows for creativity and flexibility while minimizing waste material that comes with traditional subtracting manufacturing techniques. However, in (more)

Samperi, Matthew

2014-01-01T23:59:59.000Z

19

Manufacturers Saving with Lost Foam Metal Casting  

Broader source: Energy.gov [DOE]

The technology represents a 20- to 25-percent reduction in production costs and uses 7 percent fewer materials than traditional processes.

20

Alignment strategies for drug product process development and manufacturing  

E-Print Network [OSTI]

The transfer of information between the drug product development and manufacturing organizations is fundamental to drug product commercialization. This information is used to characterize the product-process interaction ...

Garvin, Christopher John

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Innovative Technologies to Manufacture Hybrid Metal Foam/Composite Components  

SciTech Connect (OSTI)

The aim of this paper is to verify the technological feasibility to realize hybrid metal-foam/composite component and the mechanical performances of the final structure. The hybrid component is composed by a cylindrical core in aluminum foam, the most used between those commercially available, and an outer layer in epoxy/S2-glass, manufactured by filament winding technology.A set of experimental tests have been carried out, to the aim to estimate the improvement of the hybrid component characteristics, compared to the sum of the single components (metal foam cylinder and epoxy/S2-glass tube).

Carrino, L.; Durante, M.; Franchitti, S. [DIMP, University of Naples 'Federico II', P.le Tecchio, 80-80125 Naples (Italy); Sorrentino, L.; Tersigni, L. [DII, University of Cassino, Via G. Di Biasio, 43-03043 Cassino (Italy)

2011-01-17T23:59:59.000Z

22

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

KEYWORDS: Life Cycle Assessment, LCA, Green manufacturing,cycle phases, Life Cycle Assessment (LCA). The followingimpact. 2.2 Life Cycle Assessment (LCA) and Related Metrics

Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

2012-01-01T23:59:59.000Z

23

Employment Forecasts for Ohio's Primary Metals Manufacturing and Administrative and Support Services Industries  

E-Print Network [OSTI]

that are outperforming the industry average. Additional research shows that the industry is reactive to manufacturingEmployment Forecasts for Ohio's Primary Metals Manufacturing and Administrative and Support, the primary metals manufacturing industry (NAICS 331000) employment in Ohio is forecasted to decline by 21

Illinois at Chicago, University of

24

Production of magnesium metal  

DOE Patents [OSTI]

A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

Blencoe, James G. (Harriman, TN); Anovitz, Lawrence M. (Knoxville, TN); Palmer, Donald A. (Oliver Springs, TN); Beard, James S. (Martinsville, VA)

2012-04-10T23:59:59.000Z

25

Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity  

SciTech Connect (OSTI)

Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

Selldorff, John; Atwell, Monte

2014-09-23T23:59:59.000Z

26

Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity  

ScienceCinema (OSTI)

Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

Selldorff, John; Atwell, Monte

2014-12-03T23:59:59.000Z

27

Introducing Energy Performances in Production Management: Towards Energy Efficient Manufacturing  

E-Print Network [OSTI]

Introducing Energy Performances in Production Management: Towards Energy Efficient Manufacturing.taisch}@polimi.it Abstract. Energy consumption is one of the main economic, environmental and societal issues. As stated by recent researches, manufacturing plays a major role in energy consumption. To react to this situation

Boyer, Edmond

28

International photovoltaic products and manufacturers directory, 1995  

SciTech Connect (OSTI)

This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

Shepperd, L.W. [ed.] [Florida Solar Energy Center, Cocoa, FL (United States)] [ed.; Florida Solar Energy Center, Cocoa, FL (United States)

1995-11-01T23:59:59.000Z

29

Improving energy efficiency in a pharmaceutical manufacturing environment -- production facility  

E-Print Network [OSTI]

The manufacturing plant of a pharmaceutical company in Singapore had low energy efficiency in both its office buildings and production facilities. Heating, Ventilation and Air-Conditioning (HVAC) system was identified to ...

Zhang, Endong, M. Eng. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

30

Property Tax Abatement for Production and Manufacturing Facilities  

Broader source: Energy.gov [DOE]

In May 2007, Montana enacted legislation (H.B. 3) that allows a property tax abatement for new renewable energy production facilities, new renewable energy manufacturing facilities, and renewable...

31

Products information interoperability in manufacturing Tursi A.1,2  

E-Print Network [OSTI]

Products information interoperability in manufacturing systems Tursi A.1,2 , Dassisti M.1 , Panetto (France), herve.panetto@cran.uhp-nancy.fr. Abstract Information flows and products traceability a system able to trace all relevant information related to the product lifecycle. This information is quite

Boyer, Edmond

32

An Innovative Framework Supporting SME Networks for Complex Product Manufacturing  

E-Print Network [OSTI]

An Innovative Framework Supporting SME Networks for Complex Product Manufacturing Luis Maia.kankaanpaa@uwasa.fi, ahsh@uwasa.fi Abstract. Current market dynamics require European SME's to focus on complex products collaboration processes and supporting ICT tools. This paper presents a framework to support SME

Boyer, Edmond

33

Metallization of bacterial cellulose for electrical and electronic device manufacture  

DOE Patents [OSTI]

A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN); Jansen, Valerie Malyvanh (Memphis, TN); Woodward, Jonathan (Knoxville, TN)

2011-06-07T23:59:59.000Z

34

Metallization of bacterial cellulose for electrical and electronic device manufacture  

DOE Patents [OSTI]

A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

Evans, Barbara R. (Oak Ridge, TN) [Oak Ridge, TN; O'Neill, Hugh M. (Knoxville, TN) [Knoxville, TN; Jansen, Valerie Malyvanh (Memphis, TN) [Memphis, TN; Woodward, Jonathan (Knoxville, TN) [Knoxville, TN

2010-09-28T23:59:59.000Z

35

A decomposition-based approach for the integration of product development and manufacturing system design  

E-Print Network [OSTI]

Using a structured approach to understand the interaction between product design decisions and manufacturing system design is critical to reflect manufacturing system issues early in the product development process. Early ...

Kim, Yong-Suk, 1975-

2002-01-01T23:59:59.000Z

36

Manufacturing  

Office of Environmental Management (EM)

Flow of Materials through Industry Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the TechnologySystem ......

37

Optimization of Design and Manufacturing Process of Metal Foam Filled Anti-Intrusion Bars  

SciTech Connect (OSTI)

The role of an anti-intrusion bar for automotive use is to absorb the kinetic energy of the colliding bodies that is partially converted into internal work of the bodies involved in the crash. The aim of this paper is to investigate the performances of a new kind of anti-intrusion bars for automotive use, filled with metallic foams. The reason for using a cellular material as a filler deals with its capacity to absorb energy during plastic deformation, while being lightweight. The study is the evolution of a previous paper presented by the authors at Esaform 2010 and will present new results and findings. It is conducted by evaluating some key technical issues of the manufacturing problem and by conducting experimental and numerical analyses. The evaluation of materials and shapes of the closed sections to be filled is made in the perspective of a car manufacturer (production costs, weight reduction, space availability in a car door, etc.). Experimentally, foams are produced starting from an industrial aluminium precursor with a TiH{sub 2} blowing agent. Bars are tested in three point bending, in order to evaluate their performances in terms of force-displacement response and other specific performance parameters. In order to understand the role of interface between the inner surface of the tube and the external surface of the foam, different kinds of interface are tested.

Villa, Andrea; Mussi, Valerio [Laboratorio MUSP-via Turotti 9, 29122 Piacenza (Italy); Strano, Matteo [Politecnico di Milano-Dipartimento di Meccanica, via La Masa 1, 20156, Milan (Italy)

2011-05-04T23:59:59.000Z

38

Metals Production Requirements for Rapid Photovoltaics Deployment  

E-Print Network [OSTI]

If global photovoltaics (PV) deployment grows rapidly, the required input materials need to be supplied at an increasing rate. In this paper, we quantify the effect of PV deployment levels on the scale of metals production. For example, we find that if cadmium telluride {copper indium gallium diselenide} PV accounts for more than 3% {10%} of electricity generation by 2030, the required growth rates for the production of indium and tellurium would exceed historically-observed production growth rates for a large set of metals. In contrast, even if crystalline silicon PV supplies all electricity in 2030, the required silicon production growth rate would fall within the historical range. More generally, this paper highlights possible constraints to the rate of scaling up metals production for some PV technologies, and outlines an approach to assessing projected metals growth requirements against an ensemble of past growth rates from across the metals production sector. The framework developed in this paper may be...

Kavlak, Goksin; Jaffe, Robert L; Trancik, Jessika E

2015-01-01T23:59:59.000Z

39

Viable System Model approach for holonic product-driven manufacturing systems  

E-Print Network [OSTI]

Viable System Model approach for holonic product-driven manufacturing systems Carlos Herrera , Sana manuscript, published in "1st Workshop on Service Orientation in Holonic and Multi Agent Manufacturing

Boyer, Edmond

40

Metallization of bacterial cellulose for electrical and electronic device manufacture  

DOE Patents [OSTI]

The employment of metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The fuel cell includes an electrolyte membrane comprising a membrane support structure comprising bacterial cellulose, an anode disposed on one side of the electrolyte membrane, and a cathode disposed on an opposite side of the electrolyte membrane. At least one of the anode and the cathode comprises an electrode support structure comprising bacterial cellulose, and a catalyst disposed in or on the electrode support structure.

Evans, Barbara R.; O'Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan

2006-01-17T23:59:59.000Z

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Cosmic metal production and the mean metallicity of the Universe  

E-Print Network [OSTI]

By means of detailed chemo-photometric models for elliptical, spiral and irregular galaxies, we evaluate the cosmic history of the production of chemical elements as well as the metal mass density of the present-day universe. We then calculate the mean metal abundances for galaxies of different morphological types, along with the average metallicity of galactic matter in the universe (stars, gas and intergalactic medium). For the average metallicity of galaxies in the local universe, we find Z_gal= 0.0175, i.e. close to the solar value. We find the main metal production in spheroids (ellipticals and bulges) to occur at very early times, implying an early peak in the metal production and a subsequent decrease. On the other hand, the metal production in spirals and irregulars is always increasing with time. We perform a self-consistent census of the baryons and metals in the local universe finding that, while the vast majority of the baryons lies outside galaxies in the inter-galactic medium (IGM), 52 % of the metals (with the exception of the Fe-peak elements) is locked up in stars and in the interstellar medium. We estimate indirectly the amount of baryons which resides in the IGM and we derive its mean Fe abundance, finding a value of X_Fe,IGM=0.05 X_Fe,sun. We believe that this estimate is uncertain by a factor of 2, owing to the normalization of the local luminosity function. This means that the Fe abundance of 0.3 solar inferred from X-ray observations of the hot intra-cluster medium (ICM) is higher than the average Fe abundance of the inter-galactic gas in the field.

F. Calura; F. Matteucci

2004-03-08T23:59:59.000Z

42

Process reengineering for the product development process at an analytical instrument manufacturer  

E-Print Network [OSTI]

In an analytical instrument manufacturing company, the new product development process was analyzed with the objective of reducing time to market, to full scale production of new products and to improve project management ...

Tandon, Shubhang

2014-01-01T23:59:59.000Z

43

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling  

E-Print Network [OSTI]

to bond with composite matrix material. It is important that a carbon fiber manufacturing cost model manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able associated with both the manufacture of carbon fibers themselves as well as their composites. Traditional

44

LIFE CYCLE INVENTORY ANALYSIS IN THE PRODUCTION OF METALS USED IN PHOTOVOLTAICS.  

SciTech Connect (OSTI)

Material flows and emissions in all the stages of production of zinc, copper, aluminum, cadmium, indium, germanium, gallium, selenium, tellurium, and molybdenum were investigated. These metals are used selectively in the manufacture of solar cells, and emission and energy factors in their production are used in the Life Cycle Analysis (LCA) of photovoltaics. Significant changes have occurred in the production and associated emissions for these metals over the last 10 years, which are not described in the LCA databases. Furthermore, emission and energy factors for several of the by-products of the base metal production were lacking. This report aims in updating the life-cycle inventories associated with the production of the base metals (Zn, Cu, Al, Mo) and in defining the emission and energy allocations for the minor metals (Cd, In, Ge, Se, Te and Ga) used in photovoltaics.

FTHENAKIS,V.M.; KIM, H.C.; WANG, W.

2007-03-30T23:59:59.000Z

45

Implications of additive manufacturing on complexity management within supply chains in a production environment.  

E-Print Network [OSTI]

??Ph. D. This dissertation focuses on developing a generic framework for using additive manufacturing as an appropriate production method to address the management of complexity (more)

Kieviet, Andre, 1977-

2014-01-01T23:59:59.000Z

46

Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom  

DOE Patents [OSTI]

A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

Gupta, Sandhya (Bloomington, MN); Tuttle, Gary L. (Ames, IA); Sigalas, Mihail (Ames, IA); McCalmont, Jonathan S. (Ames, IA); Ho, Kai-Ming (Ames, IA)

2001-08-14T23:59:59.000Z

47

Liquid Phase 3D Printing for Quickly Manufacturing Metal Objects with Low Melting Point Alloy Ink  

E-Print Network [OSTI]

Conventional 3D printings are generally time-consuming and printable metal inks are rather limited. From an alternative way, we proposed a liquid phase 3D printing for quickly making metal objects. Through introducing metal alloys whose melting point is slightly above room temperature as printing inks, several representative structures spanning from one, two and three dimension to more complex patterns were demonstrated to be quickly fabricated. Compared with the air cooling in a conventional 3D printing, the liquid-phase-manufacturing offers a much higher cooling rate and thus significantly improves the speed in fabricating metal objects. This unique strategy also efficiently prevents the liquid metal inks from air oxidation which is hard to avoid otherwise in an ordinary 3D printing. Several key physical factors (like properties of the cooling fluid, injection speed and needle diameter, types and properties of the printing ink, etc.) were disclosed which would evidently affect the printing quality. In addit...

Wang, Lei

2014-01-01T23:59:59.000Z

48

Hydrogen Production From Metal-Water Reactions  

E-Print Network [OSTI]

Hydrogen Production From Metal-Water Reactions Why Hydrogen Production? Hydrogen is a critical. Current methods of hydrogen storage in automobiles are either too bulky (large storage space for gas phase) or require a high input energy (cooling or pressurization systems for liquid hydrogen), making widespread use

Barthelat, Francois

49

A tool to estimate materials and manufacturing energy for a product  

E-Print Network [OSTI]

This study proposes an easy-to-use methodology to estimate the materials embodied energy and manufacturing energy for a product. The tool requires as input the product's Bill of Materials and the knowledge on how these ...

Duque Ciceri, Natalia

50

Lost Opportunities in Industrial Energy Efficiency: New Production Lean Manufacturing and Lean Energy  

E-Print Network [OSTI]

companies regularly increase production by adding additional manufacturing equipment, or increasing operating hours. This approach can add large new energy loads to the electrical grid and gas distribution networks. Alternately, increasing production...Lost Opportunities in Industrial Energy Efficiency: New Production, Lean Manufacturing and Lean Energy John Seryak Gary Epstein Mark DAntonio Engineer jseryak@ers-inc.com President gepstein@ers-inc.com Vice President mdantonio...

Seryak, J.; Epstein, G.; D'Antonio, M.

2006-01-01T23:59:59.000Z

51

Liquid Phase 3D Printing for Quickly Manufacturing Metal Objects with Low Melting Point Alloy Ink  

E-Print Network [OSTI]

Conventional 3D printings are generally time-consuming and printable metal inks are rather limited. From an alternative way, we proposed a liquid phase 3D printing for quickly making metal objects. Through introducing metal alloys whose melting point is slightly above room temperature as printing inks, several representative structures spanning from one, two and three dimension to more complex patterns were demonstrated to be quickly fabricated. Compared with the air cooling in a conventional 3D printing, the liquid-phase-manufacturing offers a much higher cooling rate and thus significantly improves the speed in fabricating metal objects. This unique strategy also efficiently prevents the liquid metal inks from air oxidation which is hard to avoid otherwise in an ordinary 3D printing. Several key physical factors (like properties of the cooling fluid, injection speed and needle diameter, types and properties of the printing ink, etc.) were disclosed which would evidently affect the printing quality. In addition, a basic route to make future liquid phase 3D printer incorporated with both syringe pump and needle arrays was also suggested. The liquid phase 3D printing method, which owns potential values not available in a conventional modality, opens an efficient way for quickly making metal objects in the coming time.

Lei Wang; Jing Liu

2014-02-25T23:59:59.000Z

52

WPMT (Fall 2009) Page 1 June 8, 2009 Wood Products Manufacturing Technology  

E-Print Network [OSTI]

positions in wood products manufacturing, particularly for the hardwood cabinet and furniture industries to Lean Manufacturing (3) MET 14100 Materials I (4) Physics elective3 (3) STAT 30100 Elementary Sixth Semester (3) ECON 21000 Principles of Economics (3) FNR 31100 Wood Structure, Identification

53

Economic Contributions of Florida's Agricultural, Natural Resource, Food and Kindred Product Manufacturing and  

E-Print Network [OSTI]

Manufacturing and Distribution, and Service Industries in 20081 Alan W. Hodges and Mohammad Rahmani2 1 economic sectors for food and kindred product manufacturing, wholesale and retail distribution, input supplies, support services, and nature-based recreation/eco-tourism. In addition to farming, forestry

Florida, University of

54

Economic Contributions of Florida Agriculture, Natural Resources, Food and Kindred Product Manufacturing  

E-Print Network [OSTI]

Manufacturing and Distribution, and Service Industries in 20061 Alan W. Hodges, Mohammad Rahmani, and W. David range of other economic sectors for food and kindred products manufacturing, wholesale and retail distribution, input suppliers, support services, and nature-based recreation. In addition to farms, forests

Florida, University of

55

Production, Manufacturing and Logistics Managing inventories in a two-echelon dual-channel  

E-Print Network [OSTI]

Production, Manufacturing and Logistics Managing inventories in a two-echelon dual-channel supply We present a two-echelon dual-channel inventory model in which stocks are kept in both a manufacturer the Internet-based direct channel. The demand of retail customers is met with the on-hand inventory from

Chiang, Wei-yu Kevin

56

ME 4171 Environmentally Conscious Design & Manufacturing (Bras) Assignment Aircraft Fuel Tank Production Pollution Prevention  

E-Print Network [OSTI]

ME 4171 ­ Environmentally Conscious Design & Manufacturing (Bras) Assignment ­ Aircraft Fuel Tank Production Pollution Prevention A local company manufactures a wide variety of fabric fuel tanks for use mainly in the aircraft industry. The main reasons for using fabric in the construction of these tanks

57

A study of the manufacturing and product possibilities of a cork/polylactic acid compound  

E-Print Network [OSTI]

A study of the manufacturing and product capabilities of a cork/polylactic acid compound was conducted. Fine granulated cork, 1mm in diameter, was compounded with Natureworks' IngeoTM3051D PLA and extruded into pellets. ...

Reed, Sarah BR

2011-01-01T23:59:59.000Z

58

Highlights of Industrial Energy Audits with Application in Paper Product Manufacturing  

E-Print Network [OSTI]

Experience in executing comprehensive energy audits in varied industrial plants has resulted in a basic audit methodology and has revealed several interesting energy conservation opportunities applicable to paper products manufacturing. The most...

Hart, M. N.; Bond, S. K.

1979-01-01T23:59:59.000Z

59

The design and manufacture of mass production equipment for a pencil with a seed  

E-Print Network [OSTI]

Autosprout is the mass manufacturing equipment envisioned to produce Sprout, a pencil with a seed. This pencil concept was developed by MIT students a successful round of funding and first production run through Kickstarter. ...

Del Castillo, Eric A. (Eric Anthony)

2013-01-01T23:59:59.000Z

60

Effect of control frequency on the performance of manufacturing systems with controllable production rates  

E-Print Network [OSTI]

Flow-line manufacturing systems represent the most prevalent process structure in industry for the repetitive production of discrete items. Machine breakdowns, however, limit their reliability and efficiency. The control ...

Castaeda Vega, Jos Israel

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Strategic development of a manufacturing execution system (MES) for cold chain management using information product mapping  

E-Print Network [OSTI]

The Vaccines & Diagnostics (V&D) division of Novartis recently developed a global automation strategy that highlights the need to implement a manufacturing execution system (MES). Benefits of an MES (electronic production ...

Waldron, Todd Andrew

2011-01-01T23:59:59.000Z

62

Process for production of a metal hydride  

DOE Patents [OSTI]

A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

2014-08-12T23:59:59.000Z

63

(Data in thousand metric tons of silicon content unless otherwise noted) Domestic Production and Use: Estimated value of silicon alloys and metal (excluding semiconductor-and solar-  

E-Print Network [OSTI]

Production and Use: Estimated value of silicon alloys and metal (excluding semiconductor- and solar- grade and aluminum alloys and the chemical industry. The semiconductor and solar industries, which manufacture chips China, 49%; Russia, 20

64

Manufacturers of Noncompliant Products Agree to Civil Penalties...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

equipment found in violation included automatic commercial ice makers, distribution transformers, external power supplies, showerheads and lighting products. The companies ceased...

65

Improving Product and Manufacturing Process Design through a...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

enable more accurate modeling of machining processes, which will result in improved productivity. Graphic credit Third Wave Systems. fluid. This inefficient trial-and-error process...

66

TEHNOMUS -New Technologies and Products in Machine Manufacturing Technologies (1) CMM : coordinate measuring machine  

E-Print Network [OSTI]

TEHNOMUS - New Technologies and Products in Machine Manufacturing Technologies (1) CMM : coordinate measuring machine - 1 - COMPARISON OF A MACHINE OF MEASUREMENT WITHOUT CONTACT AND A CMM(1) : OPTIMIZATION products, the process of measurement usually proceeds on a type of machine (for example CMM

Paris-Sud XI, Université de

67

TEHNOMUS -New Technologies and Products in Machine Manufacturing Technologies" USING VIRTUAL PARTS TO OPTIMIZE THE METROLOGY  

E-Print Network [OSTI]

TEHNOMUS - New Technologies and Products in Machine Manufacturing Technologies" 9 USING VIRTUAL is a perfect perpendicular cylinder and all plane surfaces #12;TEHNOMUS - New Technologies and Products the dispersion of the position of different drilled holes (XYZ values in a coordinate system) when we change

Boyer, Edmond

68

Graphene as a manufactured product : a look forward  

E-Print Network [OSTI]

Graphene's unique electrical and mechanical properties have brought it into the spotlight in recent years. With the number of patents increasing rapidly every year, production of the material is becoming more and more ...

Frost, Stephen T

2013-01-01T23:59:59.000Z

69

The simulation and analysis of continuous single product manufacturing systems  

E-Print Network [OSTI]

there was insufficient time to develop new methods or concepts in ammunition production, even though more ad- vanced techn1ques were being employed by private 1ndustry in similar fields. After the war the Government Owned Contractor Operated (GOCO) Plants were either...

Snyder, Theodore Robert

1974-01-01T23:59:59.000Z

70

Process for improving metal production in steelmaking processes  

DOE Patents [OSTI]

A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements.

Pal, Uday B. (Malden, MA); Gazula, Gopala K. M. (Somerville, MA); Hasham, Ali (Karachi, PK)

1996-01-01T23:59:59.000Z

71

Process for improving metal production in steelmaking processes  

DOE Patents [OSTI]

A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements. 6 figs.

Pal, U.B.; Gazula, G.K.M.; Hasham, A.

1996-06-18T23:59:59.000Z

72

Life cycle cost study for coated conductor manufacture by metal organic chemical vapor deposition  

SciTech Connect (OSTI)

The purpose of this report is to calculate the cost of producing high temperature superconducting wire by the Metal Organic Chemical Vapor Deposition (MOCVD) process. The technology status is reviewed from the literature and a plant conceptual design is assumed for the cost calculation. The critical issues discussed are the high cost of the metal organic precursors, the material utilization efficiency and the capability of the final product as measured by the critical current density achieved. Capital, operating and material costs are estimated and summed as the basis for calculating the cost per unit length of wire. Sensitivity analyses of key assumptions are examined to determine their effects on the final wire cost. Additionally, the cost of wire on the basis of cost per kiloampere per meter is calculated for operation at lower temperatures than the liquid nitrogen boiling temperature. It is concluded that this process should not be ruled out on the basis of high cost of precursors alone.

Chapman, J.N.

1999-07-13T23:59:59.000Z

73

Design of a demand driven multi-item-multi-stage manufacturing system : production scheduling, WIP control and Kanban implementation  

E-Print Network [OSTI]

The project is conducted in a multi-item-multi-stage manufacturing system with high volume products. The objectives are to optimize the inventory structure and improve production scheduling process. The stock building plan ...

Zhou, Xiaoyu, M. Eng Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

74

Assessment of Lean and Green Strategies by Simulation of Manufacturing Systems in Discrete Production Environments  

E-Print Network [OSTI]

of implementing lean and green manufacturing strategies on5,6]. Research in green manufacturing spans a variety ofof lean and/or green strategies in manufacturing systems.

Diaz-Elsayed, Nancy; Jondral, Annabel; Greinacher, Sebastian; Dornfeld, David; Lanza, Gisela

2013-01-01T23:59:59.000Z

75

Electricity Diffusion and Trend Acceleration in Inter-War Manufacturing Productivity  

E-Print Network [OSTI]

counting both the horse power capacity of a steam turbine attached to an electric generator within the plant, and the horse power capacity of all the electric motors that use the electricity so generated to run production machinery in the factory. Clearly... for the period 1875-1885 also exist. Inspection of the trend of the pre-1913 period and the interwar period does not suggest that the inter-war period was one of trend accelerated growth rates. Growth rates of manufacturing sector labour productivity were high...

Ristuccia, Cristiano A; Solomou, Solomos

2004-06-16T23:59:59.000Z

76

ccsd00001984, Selective production of metallic carbon nanotubes  

E-Print Network [OSTI]

ccsd­00001984, version 1 ­ 18 Oct 2004 Selective production of metallic carbon nanotubes Yasushi- type nanotubes (metallic character) evaluated using the previous Huckel-Poisson method can be applied at the tip of a nanotube in a realistic system. Setting the cross-section of a nanotube and the external #12

77

A new Energy Saving method of manufacturing ceramic products from waste glass  

SciTech Connect (OSTI)

This final report summarizes the activities of the DOE Inventions and Innovations sponsored project, ''A New Energy Saving Method of Manufacturing Ceramic Products from Waste Glass.'' The project involved an innovative method of lowering energy costs of manufacturing ceramic products by substituting traditional raw materials with waste glass. The processing method is based on sintering of glass powder at {approx}750 C to produce products which traditionally require firing temperatures of >1200 C, or glass-melting temperatures >1500 C. The key to the new method is the elimination of previous processing problems, which have greatly limited the use of recycled glass as a ceramic raw material. The technology is aligned with the DOE-OIT Glass Industry Vision and Roadmap, and offers significant energy savings and environmental benefits compared to current technologies. A U.S. patent (No. 6,340,650) covering the technology was issued on January 22, 2002. An international PCT Patent Application is pending with designations made for all PCT regions and countries. The goal of the project was to provide the basis for the design and construction of an energy-efficient manufacturing plant that can convert large volumes of waste glass into high-quality ceramic tile. The main objectives of the project were to complete process development and optimization; construct and test prototype samples; and conduct market analysis and commercialization planning. Two types of ceramic tile products were targeted by the project. The first type was developed during the first year (Phase I) to have a glazed-like finish for applications where slip resistance is not critical, such as wall tile. The processing method optimized in Phase I produces a glossy surface with a translucent appearance, without the extra glazing steps required in traditional tile manufacturing. The second type of product was developed during the second year (Phase II). This product was designed to have an unglazed appearance for applications requiring slip resistance, such as floor tile. The coarser matte finish of this product type was produced by modifying the basic process to include crystalline fillers and partial crystallization of the glass. Additional details of the project results are discussed in Section III.

Haun Labs

2002-07-05T23:59:59.000Z

78

Growth in metals production for rapid photovoltaics deployment  

E-Print Network [OSTI]

If global photovoltaics (PV) deployment grows rapidly, the required input materials need to be supplied at an increasing rate. We quantify the effect of PV deployment levels on the scale of annual metals production. If a ...

Kavlak, Goksin

79

Energy Saving Method of Manufacturing Ceramic Products from Fiber Glass Waste  

SciTech Connect (OSTI)

The U.S. fiber glass industry disposes of more than 260,000 tons of industrial fiber glass waste in landfills annually. New technology is needed to reprocess this industrial waste into useful products. A low-cost energy-saving method of manufacturing ceramic tile from fiber glass waste was developed. The technology is based on sintering fiber glass waste at 700-900 degrees C to produce products which traditionally require firing temperatures of >1200 degrees C, or glass-melting temperatures >1500 degrees C. The process also eliminates other energy intensive processing steps, including mining and transportation of raw materials, spray-drying to produce granulated powder, drying pressed tile, and glazing. The technology completely transforms fiber glass waste into a dense ceramic product, so that all future environmental problems in the handling and disposal of the fibers is eliminated. The processing steps were developed and optimized to produce glossy and matte surface finishes for wall and floor tile applications. High-quality prototype tile samples were processed for demonstration and tile standards testing. A Market Assessment confirmed the market potential for tile products produced by the technology. Manufacturing equipment trials were successfully conducted for each step of the process. An industrial demonstration plant was designed, including equipment and operating cost analysis. A fiber glass manufacturer was selected as an industrial partner to commercialize the technology. A technology development and licensing agreement was completed with the industrial partner. Haun labs will continue working to transfer the technology and assist the industrial partner with commercialization beyond the DOE project.

Michael J. Haun

2005-07-15T23:59:59.000Z

80

Roll-To-Roll Process for Transparent Metal Electrodes in OLED Manufacturing  

SciTech Connect (OSTI)

This program will develop and demonstrate a new manufacturing technology that can help to improve the efficiency and reduce the cost of producing the next generation solid-state lighting (OLEDs)for a broad range of commercial applications. This will not only improve US competitiveness in the manufacturing sector but will also result in a positive impact in meeting the Department of Energys goal of developing high efficiency lighting while reducing the environmental impact.

Slafer, W. Dennis

2010-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

MANUFACTURING Manufacturing and Biomanufacturing  

E-Print Network [OSTI]

process improvements to manufacturing. In addition, the critical national need area of Manufacturing hasMANUFACTURING Manufacturing and Biomanufacturing: Materials Advances and Critical Processes NATIONAL NEED The proposed topics within "Manufacturing and Biomanufacturing: Materials Advances

Magee, Joseph W.

82

Metal matrix coated fiber composites and the methods of manufacturing such composites  

DOE Patents [OSTI]

A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials.

Weeks, Jr., Joseph K. (Salt Lake City, UT); Gensse, Chantal (Salt Lake City, UT)

1993-01-01T23:59:59.000Z

83

ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES  

SciTech Connect (OSTI)

FMC Lithium Division has successfully completed the project Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

Yakovleva, Marina

2012-12-31T23:59:59.000Z

84

Metal matrix coated fiber composites and the methods of manufacturing such composites  

DOE Patents [OSTI]

A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.

Weeks, J.K. Jr.; Gensse, C.

1993-09-14T23:59:59.000Z

85

Manufacturing technologies  

SciTech Connect (OSTI)

The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

NONE

1995-09-01T23:59:59.000Z

86

Process for continuous production of metallic uranium and uranium alloys  

DOE Patents [OSTI]

A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

1995-06-06T23:59:59.000Z

87

Process for continuous production of metallic uranium and uranium alloys  

DOE Patents [OSTI]

A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

Hayden, Jr., Howard W. (Oakridge, TN); Horton, James A. (Livermore, CA); Elliott, Guy R. B. (Los Alamos, NM)

1995-01-01T23:59:59.000Z

88

Manufacturing technology  

SciTech Connect (OSTI)

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

89

Manufacturing Energy and Carbon Footprint - Sector: Fabricated Metals (NAICS 332), January 2014 (MECS 2010)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll Manufacturing

90

REMEDIAT1NG AT MANUFACTURED GAS  

E-Print Network [OSTI]

, comhusti- hle gas manufactured Pfrom coke, coal, and oil 1 served as the major gas- eous fuel for urban for the three primary gas production meth- ods: coal carbonization, carbureted water gas production, and oil gas, and metals. Tar resid- uals were produced from the vola- tiIe component of bituminous coals in coal

Peters, Catherine A.

91

Posted 10/18/11 MANUFACTURING ENGINEER  

E-Print Network [OSTI]

manufacturing processes in our Metal Fabrication and Assembly departments. Additional responsibilities includePosted 10/18/11 MANUFACTURING ENGINEER Kenall Manufacturing Gurnee, IL Kenall, a leading manufacturer of advanced lighting solutions for specialized environments, has exceptional opportunities

Heller, Barbara

92

Production of Oxygen Gas and Liquid Metal by Electrochemical Decomposition of Molten Iron Oxide  

E-Print Network [OSTI]

on the moon and on Mars for the generation of oxygen along with the production of structural metalsProduction of Oxygen Gas and Liquid Metal by Electrochemical Decomposition of Molten Iron Oxide) is the electrolytic decomposition of a metal oxide, most preferably into liquid metal and oxygen gas. The successful

Sadoway, Donald Robert

93

Assessment of Lean and Green Strategies by Simulation of Manufacturing Systems in Discrete Production Environments  

E-Print Network [OSTI]

manufacturing systems performance indicators while using amanufacturing systems performance indicators while using atheir impact on performance indicators [24], and bundling

Diaz-Elsayed, Nancy; Jondral, Annabel; Greinacher, Sebastian; Dornfeld, David; Lanza, Gisela

2013-01-01T23:59:59.000Z

94

Capacity analysis, cycle time optimization, and supply chain strategy in multi-product biopharmaceutical manufacturing operations  

E-Print Network [OSTI]

Application of system optimization theory, supply chain principles, and capacity modeling are increasingly valuable tools for use in pharmaceutical manufacturing facilities. The dynamics of the pharmaceutical industry - ...

Fetcho-Phillips, Kacey L. (Kacey Lynn)

2011-01-01T23:59:59.000Z

95

Titanium Metal Powder Production by the Plasma Quench Process  

SciTech Connect (OSTI)

The goals of this project included the scale-up of the titanium hydride production process to a production rate of 50 kg/hr at a purity level of 99+%. This goal was to be achieved by incrementally increasing the production capability of a series of reactor systems. This methodic approach was designed to allow Idaho Titanium Technologies to systematically address the engineering issues associated with plasma system performance, and powder collection system design and performance. With quality powder available, actual fabrication with the titanium hydride was to be pursued. Finally, with a successful titanium production system in place, the production of titanium aluminide was to be pursued by the simultaneously injection of titanium and aluminum precursors into the reactor system. Some significant accomplishments of the project are: A unique and revolutionary torch/reactor capable of withstanding temperatures up to 5000 C with high thermal efficiency has been operated. The dissociation of titanium tetrachloride into titanium powder and HC1 has been demonstrated, and a one-megawatt reactor potentially capable of producing 100 pounds per hour has been built, but not yet operated at the powder level. The removal of residual subchlorides and adsorbed HC1 and the sintering of powder to form solid bodies have been demonstrated. The production system has been operated at production rates up to 40 pounds per hour. Subsequent to the end of the project, Idaho Titanium Technologies demonstrated that titanium hydride powder can indeed be sintered into solid titanium metal at 1500 C without sintering aids.

R. A. Cordes; A. Donaldson

2000-09-01T23:59:59.000Z

96

A 10-kW SiC Inverter with A Novel Printed Metal Power Module With Integrated Cooling Using Additive Manufacturing  

SciTech Connect (OSTI)

With efforts to reduce the cost, size, and thermal management systems for the power electronics drivetrain in hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs), wide band gap semiconductors including silicon carbide (SiC) have been identified as possibly being a partial solution. This paper focuses on the development of a 10-kW all SiC inverter using a high power density, integrated printed metal power module with integrated cooling using additive manufacturing techniques. This is the first ever heat sink printed for a power electronics application. About 50% of the inverter was built using additive manufacturing techniques.

Chinthavali, Madhu Sudhan [ORNL; Ayers, Curtis William [ORNL; Campbell, Steven L [ORNL; Wiles, Randy H [ORNL; Ozpineci, Burak [ORNL

2014-01-01T23:59:59.000Z

97

Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report  

SciTech Connect (OSTI)

Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

Azimi, S.A.; Conrad, J.L.; Reed, J.E.

1985-03-01T23:59:59.000Z

98

Friction welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon  

DOE Patents [OSTI]

A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor and a ceramic electrode body connected by a friction weld between a portion of the body having a level of free metal or metal alloy sufficient to effect such a friction weld and a portion of the metal conductor.

Byrne, Stephen C. (Monroeville, PA); Ray, Siba P. (Pittsburgh, PA); Rapp, Robert A. (Columbus, OH)

1984-01-01T23:59:59.000Z

99

Manufacturing Tech Team | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Tech Team Manufacturing Tech Team Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Industrial efficiency and low-cost energy...

100

Appropriate use of Green Manufacturing Frameworks  

E-Print Network [OSTI]

for Implementing Green Manufacturing, Trans. North AmericanAppropriate use of Green Manufacturing Frameworks C. Reich-for sustainable or green manufacturing systems and products,

Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Leveraging Manufacturing for a Sustainable Future  

E-Print Network [OSTI]

2010): Sustainable Manufacturing Greening Processes,processes and systems) can play in creating a sustainablesustainable manufacturing as the creation of manufacturing products that use materials and processes

Dornfeld, David

2011-01-01T23:59:59.000Z

102

Assessment of Lean and Green Strategies by Simulation of Manufacturing Systems in Discrete Production Environments  

E-Print Network [OSTI]

2012) Valuation of Increased Production System Performanceby Integrated Production Systems. Production Engineeringing Energy-Ef?cient Production Systems. Annals of the CIRP

Diaz-Elsayed, Nancy; Jondral, Annabel; Greinacher, Sebastian; Dornfeld, David; Lanza, Gisela

2013-01-01T23:59:59.000Z

103

Customized digital manufacturing : concept to construction methods across varying product scales  

E-Print Network [OSTI]

Architectural design and construction is rapidly changing through the extensive adoption of digital design, manufacture and assembly tools. Customized assemblies are paired and recombined to create unique spatial enclosures. ...

Botha, Marcel

2006-01-01T23:59:59.000Z

104

Industrial Scale Demonstration of Smart Manufacturing Achieving...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Industrial Scale Demonstration of Smart Manufacturing Achieving...

105

Industrial Scale Demonstration of Smart Manufacturing Achieving...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Development of an Open Architecture, Widely Applicable Smart Manufacturing...

106

A Review of Engineering Research in Sustainable Manufacturing  

E-Print Network [OSTI]

shape part, e.g. , additive manufacturing, Transactions offace operations. Additive manufacturing of metal componentsenvironmen- tal merits of additive manufacturing relative to

2013-01-01T23:59:59.000Z

107

Introduction of a method for presenting health-based impacts of the emission from products, based on emission measurements of materials used in manufacturing of the products  

SciTech Connect (OSTI)

A method for presenting the health impact of emissions from furniture is introduced, which could be used in the context of environmental product declarations. The health impact is described by the negative indoor air quality potential, the carcinogenic potential, the mutagenic and reprotoxic potential, the allergenic potential, and the toxicological potential. An experimental study of emissions from four pieces of furniture is performed by testing both the materials used for production of the furniture and the complete piece of furniture, in order to compare the results gained by adding emissions of material with results gained from testing the finished piece of furniture. Calculating the emission from a product based on the emission from materials used in the manufacture of the product is a new idea. The relation between calculated results and measured results from the same products differ between the four pieces of furniture tested. Large differences between measured and calculated values are seen for leather products. More knowledge is needed to understand why these differences arise. Testing materials allows us to compare different suppliers of the same material. Four different foams and three different timber materials are tested, and the results vary between materials of the same type. If the manufacturer possesses this type of knowledge of the materials from the subcontractors it could be used as a selection criterion according to production of low emission products. -- Highlights: A method for presenting health impact of emissions is introduced. An experimental study of emissions from four pieces of furniture is performed. Health impact is calculated based on sum of contribution from the materials used. Calculated health impact is compared to health impact of the manufactured product. The results show that health impact could be useful in product development and for presentation in EPDs.

Jrgensen, Rikke Bramming, E-mail: rikke.jorgensen@iot.ntnu.no

2013-11-15T23:59:59.000Z

108

OPTIMIZATION OF CUTTING CONDITIONS FOR SUSTAINABLE MACHINING OF SINTERED POWDER METAL STEELS USING PCBN AND CARBIDE TOOLS.  

E-Print Network [OSTI]

??Powder metals are becoming a popular choice in the automotive and other manufacturing industries because of their ability to meet wide ranging product functional requirements (more)

Joshi, Kunal J.

2006-01-01T23:59:59.000Z

109

Design and Development of a LayerDesign and Development of a Layer--Based Additive ManufacturingBased Additive Manufacturing Process for the Realization of Metal Parts of Designed MesostrucProcess for the Realization of Metal Parts of Designed Mesostructu  

E-Print Network [OSTI]

· High stiffness · Acoustic & vibration dampening · Strain isolation · Energy absorption · Excellent heat Engineering Georgia Institute of Technology Systems Realization Laboratory Rapid Prototyping and Manufacturing in a reducing atmosphere. Motivation Low-density cellular materials are metallic bodies in which any kind

110

Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof  

DOE Patents [OSTI]

Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

Perkins, John (Boulder, CO); Van Hest, Marinus Franciscus Antonius Maria (Lakewood, CO); Ginley, David (Evergreen, CO); Taylor, Matthew (Golden, CO); Neuman, George A. (Holland, MI); Luten, Henry A. (Holland, MI); Forgette, Jeffrey A. (Hudsonville, MI); Anderson, John S. (Holland, MI)

2010-07-13T23:59:59.000Z

111

Process for the manufacture of an electrode for electrochemical process and a cathode for the electrolytic production of hydrogen  

SciTech Connect (OSTI)

An electrically conductive substrate is coated with a material containing an unsintered powder of a metal active for electrochemical proton reduction and colloidal silica and the said material is heated on the substrate successively in an oxidizing atmosphere and then in a reducing atmosphere. The electrode may be employed as a cathode for electrolytic production of hydrogen in an alkaline medium.

Nicolas, E.; Merckaert, L.

1985-08-13T23:59:59.000Z

112

Electrolytic production of metals using a resistant anode  

DOE Patents [OSTI]

An electrolytic process comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO.sub.2 and/or Cu.sub.2 O.

Tarcy, Gary P. (Plum Borough, PA); Gavasto, Thomas M. (New Kensington, PA); Ray, Siba P. (Plum Borough, PA)

1986-01-01T23:59:59.000Z

113

Electrolytic production of metals using a resistant anode  

DOE Patents [OSTI]

An electrolytic process is described comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO[sub 2] and/or Cu[sub 2]O. 2 figs.

Tarcy, G.P.; Gavasto, T.M.; Ray, S.P.

1986-11-04T23:59:59.000Z

114

Manufacturing Energy and Carbon Footprint - Sector: Forest Products (NAICS 321, 322), January 2014 (MECS 2010)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll ManufacturingFood and Beverage

115

Advanced Materials Manufacturing | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

existing manufacturing industries and result in creative new products. Stronger, more corrosion-resistant and lower cost steel alloys are being developed and commercialized to...

116

Manufacturing | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

117

SSL Manufacturing Roadmap  

Broader source: Energy.gov [DOE]

Report detailing DOE Solid-State Lighting Program activities to accelerate manufacturing improvements that reduce costs and enhance the quality of SSL products.

118

Process for manufacture of inertial confinement fusion targets and resulting product  

DOE Patents [OSTI]

An ICF target comprising a spherical pellet of fusion fuel surrounded by a concentric shell; and a process for manufacturing the same which includes the steps of forming hemispheric shells of a silicon or other substrate material, adhering the shell segments to each other with a fuel pellet contained concentrically therein, then separating the individual targets from the parent substrate. Formation of hemispheric cavities by deposition or coating of a mold substrate is also described. Coatings or membranes may also be applied to the interior of the hemispheric segments prior to joining.

Masnari, Nino A. (Ann Arbor, MI); Rensel, Walter B. (Ann Arbor, MI); Robinson, Merrill G. (Ann Arbor, MI); Solomon, David E. (Ann Arbor, MI); Wise, Kensall D. (Ann Arbor, MI); Wuttke, Gilbert H. (Ypsilanti Township, Washtenaw County, MI)

1982-01-01T23:59:59.000Z

119

Process reengineering for new product introduction at an analytical instrument manufacturing firm  

E-Print Network [OSTI]

The process of transforming Research and Development knowledge to successfully introducing new products in the market forms a key competency of an innovative company. This new product introduction process was studied at ...

Ranjan, Aditya

2014-01-01T23:59:59.000Z

120

STATE OF CALIFORNIA NATURAL RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor Attention: Air Filter product manufacturers  

E-Print Network [OSTI]

Commission intends to maintain a simple online database of air filter product performance information. We link below) for your California-market filter products to the Energy Commission. Air be utilized to demonstrate compliance with the air filter product performance requirements in ASHRAE 62

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Apparatus and method for making metal chloride salt product  

DOE Patents [OSTI]

A method of producing metal chlorides is disclosed in which chlorine gas is introduced into liquid Cd. CdCl.sub.2 salt is floating on the liquid Cd and as more liquid CdCl.sub.2 is formed it separates from the liquid Cd metal and dissolves in the salt. The salt with the CdCl.sub.2 dissolved therein contacts a metal which reacts with CdCl.sub.2 to form a metal chloride, forming a mixture of metal chloride and CdCl.sub.2. After separation of bulk Cd from the salt, by gravitational means, the metal chloride is obtained by distillation which removes CdCl.sub.2 and any Cd dissolved in the metal chloride.

Miller, William E. (Naperville, IL); Tomczuk, Zygmunt (Homer Glen, IL); Richmann, Michael K. (Carlsbad, NM)

2007-05-15T23:59:59.000Z

122

Method and apparatus for the production of metal oxide powder  

DOE Patents [OSTI]

The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Byers, Charles H. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

123

Method and apparatus for the production of metal oxide powder  

DOE Patents [OSTI]

The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Byers, Charles H. (Oak Ridge, TN)

1992-01-01T23:59:59.000Z

124

Method and apparatus for the production of metal oxide powder  

DOE Patents [OSTI]

The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed. 2 figs.

Harris, M.T.; Scott, T.C.; Byers, C.H.

1992-06-16T23:59:59.000Z

125

Interactive influences of bioactive trace metals on biological production in oceanic waters  

SciTech Connect (OSTI)

The authors present an overview of the oceanic chemistries of the bioactive trace metals, Mn, Fe, Co, Ni, Cu, and Zn; the authors combine field data with results from laboratory phytoplankton culture-trace metal studies and speculate on the potential influences of these trace metals on oceanic plankton production and species composition. Most field studies have focused on the effects of single metals. However, they propose that synergistic and antagonistic interactions between multiple trace metals could be very important in the oceans. Trace metal antagonisms that may prove particularly important are those between Cu and the potential biolimiting metals Fe, Mn, and Zn. These antagonistic interactions could have the greatest influence on biological productivity in areas of the open ocean isolated from terrestrial inputs, such as the remote high nutrient regions of the Pacific and Antarctic Oceans. The emerging picture of trace metal-biota interactions in these oceanic areas is one in which biology strongly influences distribution and chemical speciation of all these bioactive trace metals. It also seems likely that many of these bioactive trace metals and their speciation may influence levels of primary productivity, species composition, and trophic structure. Future investigations should give more complete consideration to the interactive effects of biologically important trace metals.

Bruland, K.W.; Donat, J.R.; Hutchins, D.A. (Univ. of California, Santa Cruz (United States))

1991-12-01T23:59:59.000Z

126

Manufacturing Cost Analysis for YSZ-Based FlexCells at Pilot and Full Scale Production Scales  

SciTech Connect (OSTI)

Significant reductions in cell costs must be achieved in order to realize the full commercial potential of megawatt-scale SOFC power systems. The FlexCell designed by NexTech Materials is a scalable SOFC technology that offers particular advantages over competitive technologies. In this updated topical report, NexTech analyzes its FlexCell design and fabrication process to establish manufacturing costs at both pilot scale (10 MW/year) and full-scale (250 MW/year) production levels and benchmarks this against estimated anode supported cell costs at the 250 MW scale. This analysis will show that even with conservative assumptions for yield, materials usage, and cell power density, a cost of $35 per kilowatt can be achieved at high volume. Through advancements in cell size and membrane thickness, NexTech has identified paths for achieving cell manufacturing costs as low as $27 per kilowatt for its FlexCell technology. Also in this report, NexTech analyzes the impact of raw material costs on cell cost, showing the significant increases that result if target raw material costs cannot be achieved at this volume.

Scott Swartz; Lora Thrun; Robin Kimbrell; Kellie Chenault

2011-05-01T23:59:59.000Z

127

Method of making metal-doped organic foam products  

DOE Patents [OSTI]

Organic foams having a low density and very small cell size and method for roducing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

Rinde, James A. (Livermore, CA)

1981-01-01T23:59:59.000Z

128

Massive zero-metal stars: Energy production and mixing  

E-Print Network [OSTI]

Time-dependent nuclear network calculations at constant temperature show that for zero-metal stars >= 20 Msun (i) beta-decay reactions and (ii) the 13N(p,gamma)14O reaction must be included. It is also shown that the nuclear timescale in these zero-metal stars is shorter than the mixing timescale and therefore the assumption of instantaneous mixing across convective regions is not fulfilled. We conclude that proper modeling of these processes may alter the evolution of massive zero-metal stars.

C. W. Straka; W. M. Tscharnuter

2001-03-21T23:59:59.000Z

129

New Metallization Technique Suitable for 6-MW Pilot Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Categorical Exclusion Determination Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update Mass Production Cost Estimation...

130

Product development of a device for manufacturing medical equipment for use in low-resource settings  

E-Print Network [OSTI]

The objective of this paper is to describe the product design of a device that can be used to create medical supplies on-site in clinics in low-resource settings. The machine uses purely mechanical elements to cut and fold ...

Schlecht, Lisa (Lisa Anne)

2010-01-01T23:59:59.000Z

131

Clean Energy Manufacturing Initiative Industrial Efficiency and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

132

ccsd-00001984,version1-18Oct2004 Selective production of metallic carbon nanotubes  

E-Print Network [OSTI]

ccsd-00001984,version1-18Oct2004 Selective production of metallic carbon nanotubes Yasushi- type nanotubes (metallic character) evaluated using the previous H¨uckel-Poisson method can be applied at the tip of a nanotube in a realistic system. Setting the cross-section of a nanotube and the external

Paris-Sud XI, Université de

133

E-Print Network 3.0 - automated manufacturing systems Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by delighting the customers. IIMC Manufacturing Systems & Technology Manufacturing... in manufacturing, Awareness of green production and Big R in manufacturing IIT Automation &...

134

Bio-Manufacturing: A Strategic clean energy manufacturing opportunity  

Broader source: Energy.gov [DOE]

Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Libby Wayman, Director, EERE Clean Energy Manufacturing Initiative

135

Engineered Products: Order (2012-SE-5401)  

Broader source: Energy.gov [DOE]

DOE ordered Engineered Products Company to pay a $480 civil penalty after finding EPCO had manufactured/privately labeled and distributed in commerce in the U.S. 19 units of basic model 15701, a metal halide lamp fixture.

136

Production of crystalline refractory metal oxides containing colloidal metal precipitates and useful as solar-effective absorbers  

DOE Patents [OSTI]

This invention is a new process for producing refractory crystalline oxides having improved or unusual properties. The process comprises the steps of forming a doped-metal crystal of the oxide; exposing the doped crystal in a bomb to a reducing atmosphere at superatmospheric pressure and a temperature effecting precipitation of the dopant metal in the crystal lattice of the oxide but insufficient to effect net diffusion of the metal out of the lattice; and then cooling the crystal. Preferably, the cooling step is effected by quenching. The process forms colloidal precipitates of the metal in the oxide lattice. The process may be used, for example, to produce thermally stable black MgO crystalline bodies containing magnetic colloidal precipitates consisting of about 99% Ni. The Ni-containing bodies are solar-selective absorbers, having a room-temperature absorptivity of about 0.96 over virtually all of the solar-energy spectrum and exhibiting an absorption edge in the region of 2 .mu.m. The process parameters can be varied to control the average size of the precipitates. The process can produce a black MgO crystalline body containing colloidal Ni precipitates, some of which have the face-centered-cubic structure and others of which have the body-centered cubic structure. The products of the process are metal-precipitate-containing refractory crystalline oxides which have improved or unique optical, mechanical, magnetic, and/or electronic properties.

Narayan, Jagdish (Knoxville, TN); Chen, Yok (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

137

Direct Electrolysis of Molten Lunar Regolith for the Production of Oxygen and Metals on the Moon  

E-Print Network [OSTI]

regolith at 1600 C was investigated. Oxygen gas at the anode was generated concomitantly with productionDirect Electrolysis of Molten Lunar Regolith for the Production of Oxygen and Metals on the Moon A Center, Florida 32899, USA The feasibility of producing oxygen by direct electrolysis of molten lunar

Sadoway, Donald Robert

138

Understanding Life Cycle Social Impacts in Manufacturing: A processed-based approach  

E-Print Network [OSTI]

socially sustainable manufacturing processes, software toolsc t Developing sustainable products and processes is growingsustainable manufacturing systems and production processes

Hutchins, Margot J.; Robinson, Stefanie L.; Dornfeld, David

2013-01-01T23:59:59.000Z

139

Purdue, GE Collaborate On Advanced Manufacturing | GE Global...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the production side. For manufacturing operations the size of GE's, just a 1 percent improvement in manufacturing productivity would save 500 million." GE and Purdue have been...

140

The critical role of manufacturing-process innovation on product development excellence in high-technology companies  

E-Print Network [OSTI]

Few managers of high-technology companies view manufacturing-process development as primary source of competitive advantage. For the last two decades trends have shown an increasing number of high-tech industries outsourcing ...

Duarte, Carlos E. A., 1962-

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Manufacturing Demonstration Facility Technology Collaborations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from industry to assess applicability of new technologies that can reduce manufacturing energy intensity or produce new, energy-efficient products. As part of the technology...

142

Hydrogen production during processing of radioactive sludge containing noble metals  

SciTech Connect (OSTI)

Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 {times}10{sup {minus}7} g H{sub 2}/hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 {times}10{sup {minus}4} g H{sub 2}/hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges.

Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

1992-09-01T23:59:59.000Z

143

Hydrogen production during processing of radioactive sludge containing noble metals  

SciTech Connect (OSTI)

Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 {times}10{sup {minus}7} g H{sub 2}/hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 {times}10{sup {minus}4} g H{sub 2}/hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges.

Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

1992-01-01T23:59:59.000Z

144

Industrial recovered-materials-utilization targets for the metals and metal-products industry  

SciTech Connect (OSTI)

The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

None

1980-03-01T23:59:59.000Z

145

Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis  

E-Print Network [OSTI]

a methanogenic biofilm on the cathode by either direct electron transfer or evolved hydrogen. To optimize methane, Microbial electrolysis cell, Power-to-gas, Microbially influenced corrosion, Carbon black, Graphite, hydro- gen gas production by water electrolysis often requires expensive precious metals to reduce

146

Petrick Technology Trends Of Manufacturing  

E-Print Network [OSTI]

#12;323 Petrick Technology Trends chapter 9 The Future Of Manufacturing Irene Petrick Technology Trends This chapter is a story about the future of manufacturing based on three predictions: that firms sophisticated modeling and simulation of both new products and production processes; that additive

147

Mass production of multi-wall carbon nanotubes by metal dusting process with high yield  

SciTech Connect (OSTI)

Research highlights: {yields} Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. {yields} Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. {yields} Optimum growth condition is CO/H{sub 2} = 1/1, 100 cm{sup 3}/min, at 620 {sup o}C under long term repetitive thermal cycling. {yields} Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H{sub 2} = 1/1, total gas flow rate 100 cm{sup 3}/min, at 620 {sup o}C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

Ghorbani, H. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)] [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Rashidi, A.M., E-mail: Rashidiam@ripi.ir [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Rastegari, S.; Mirdamadi, S. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)] [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Alaei, M. [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)] [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)

2011-05-15T23:59:59.000Z

148

A New Process for Hot Metal Production at Low Fuel Rate - Phase 1 Feasibility Study  

SciTech Connect (OSTI)

The project is part of the continuing effort by the North American steel industry to develop a coal-based, cokeless process for hot metal production. The objective of Phase 1 is to determine the feasibility of designing and constructing a pilot scale facility with the capacity of 42,000 mtpy of direct reduced iron (DRI) with 95% metallization. The primary effort is performed by Bricmont, Inc., an international engineering firm, under the supervision of McMaster University. The study focused on the Paired Straight Hearth furnace concept developed previously by McMaster University, The American Iron and Steel Institute and the US Department of Energy.

Dr. Wei-Kao Lu

2006-02-01T23:59:59.000Z

149

Biofuels production from hydrotreating of vegetable oil using supported noble metals, and transition metal carbide and nitride.  

E-Print Network [OSTI]

?? The focus of this research is to prepare non-sulfided hydrotreating catalysts, supported noble metal and transition metal carbide/ nitride, and evaluate their hydrocracking activities (more)

Wang, Huali

2012-01-01T23:59:59.000Z

150

Process for manufacturing multilayer capacitors  

DOE Patents [OSTI]

The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

1996-01-01T23:59:59.000Z

151

Manufacturing consumption of energy 1994  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

NONE

1997-12-01T23:59:59.000Z

152

Beryllium Manufacturing Processes  

SciTech Connect (OSTI)

This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61 cm high), may be cut or machined into parts or be thermomechanically processed to develop the desired microstructure, properties, and shapes. Vacuum hot-isostatic pressing and cold-isostatic pressing (CIP) followed by sintering and possibly by a final HIP'ing (CIP/Sinter/HIP) are important in their use for the production of near net-shaped parts. For the same starting powder, a HIP'ed product will have less anisotropy than that obtained for a VHP'ed product. A schematic presentation illustrating the difference between VHP'ing and HIP'ing is shown in Figure I-1. The types of powders and the various beryllium grades produced from the consolidated powders and their ambient-temperature mechanical properties were presented in the consolidation report referred to above. Elevated-temperature properties and the effect of processing variables on mechanical properties are described in the mechanical properties report. Beryllium can also be deposited as coatings as well as freestanding forms. The microstructure, properties, and various methods used that are related to the deposition of beryllium are discussed in the report on beryllium coatings.

Goldberg, A

2006-06-30T23:59:59.000Z

153

PRODUCTION START-UP OF 2 MW a-Si PV MANUFACTURING LINE AT SOVLUX M. Im, X. Den& II. C. Ovshinsky,R. Crucetand S.R Ovshimky  

E-Print Network [OSTI]

PRODUCTION START-UP OF 2 MW a-Si PV MANUFACTURING LINE AT SOVLUX PLANT M. Im, X. Den& II. C start-up efforts at the 2MW Sovlux photovoltaic production line. Triple-junction solar cells with higher than 10% initial effXency were producedin this production line with subcell yield up to 96

Deng, Xunming

154

COMPOSITES AND MANUFACTURED PRODUCTS MANUFACTURING PARTICLEBOARD  

E-Print Network [OSTI]

panels with two density levels. The panels were tested for mechanical strength and dimensional stability soils and under vxying climatic conditions. This adaptability has enhanced redce- dar's recent spread for shelterbelts, windbreaks, andor soil conservation. Wood composition panels such as particleboard are commodity

155

Method for manufacturing magnetohydrodynamic electrodes  

DOE Patents [OSTI]

A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.

Killpatrick, D.H.; Thresh, H.R.

1980-06-24T23:59:59.000Z

156

Join Us for the Clean Energy Manufacturing Initiative's Western...  

Energy Savers [EERE]

resources, as well as best practices and cutting-edge technologies, to boost energy productivity across the entire U.S. manufacturing supply chain will make our manufacturing...

157

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...  

Broader source: Energy.gov (indexed) [DOE]

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations Commonwealth Aluminum: Manufacturer Conducts Plant-Wide...

158

Additive Manufacturing: Implications on Research and Manufacturing  

E-Print Network [OSTI]

Additive Manufacturing: Implications on Research and Manufacturing With recent developments, etc.), additive manufacturing (AM) has the potential to become a transformative technology in innovation-based manufacturing. Agencies such as the Department of Defense, the National Science Foundation

Crawford, T. Daniel

159

SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING  

SciTech Connect (OSTI)

During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from condensation of vaporized material and subsequent rapid formation of aggregates. Particles of larger size, resulting from ejection of melted material or fragments from the cutting zone, were also observed. This study presents data regarding the metal cutting rate, particle size distribution, and their generation rate, while using different cutting tools and metals. The study shows that respirable particles constitute only a small fraction of the released kerf.

M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

2001-01-01T23:59:59.000Z

160

Productization and Manufacturing Scaling of High-Efficiency Solar Cell and Module Products Based on a Disruptive Low-Cost, Mono-Crystalline Technology: Final Technical Progress Report, April 1, 2009 - December 30, 2010  

SciTech Connect (OSTI)

Final report for PV incubator subcontract with Solexel, Inc. The purpose of this project was to develop Solexel's Unique IP, productize it, and transfer it to manufacturing. Silicon constitutes a significant fraction of the total solar cell cost, resulting in an industry-wide drive to lower silicon usage. Solexel's disruptive Solar cell structure got around these challenges and promised superior light trapping, efficiency and mechanical strength, despite being significantly thinner than commercially available cells. Solexel's successful participation in this incubator project became evident as the company is now moving into commercial production and position itself to be competitive for the next Technology Pathway Partnerships (TPP) funding opportunity.

Fatemi, H.

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect (OSTI)

Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

James T. Cobb, Jr.

2003-09-12T23:59:59.000Z

162

MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION  

E-Print Network [OSTI]

MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION In this course you product development and innovation. You will develop a rich knowledge of additive manufacturing processes enabling advanced/additive manufacturing and personal fabrication. You will have the opportunity

Schumacher, Russ

163

Resource Conservative Manufacturing Transforming Waste into High Value Resource through Closed-Loop Product Systems (ResCoM)  

E-Print Network [OSTI]

and the environment, the EU has no choice but to go for the transition to a resource-efficient and ultimately), supply chain management (integrated supply chains), business model development (closed-loop business of closed loop product design in terms of resource efficiency, CO2 production and energy use

Arleo, Angelo

164

Supply chain networks, consisting of manufacturers, distributors, retailers, and consumers, provide the critical infrastructure for the production of goods,  

E-Print Network [OSTI]

developed in Part I to energy supply chains in the form of electric power generation and distri- bution not only in terms of the product flows but also in terms of pricing in order to satisfy the consumers competition as well as cooperation and yield the resulting product and ma- terial flows and prices

Nagurney, Anna

165

Advanced Manufacture of Reflectors  

Broader source: Energy.gov [DOE]

The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

166

Advanced manufacturing by spray forming: Aluminum strip and microelectromechanical systems  

SciTech Connect (OSTI)

Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. INEL is developing a unique spray-forming method based on de Laval (converging/diverging) nozzle designs to produce near-net-shape solids and coatings of metals, polymers, and composite materials. Properties of the spray-formed material are tailored by controlling the characteristics of the spray plume and substrate. Two examples are described: high-volume production of aluminum alloy strip, and the replication of micron-scale features in micropatterned polymers during the production of microelectromechanical systems.

McHugh, K.M.

1994-12-31T23:59:59.000Z

167

Development of High Temperature Capacitor Technology and Manufacturing Capability  

SciTech Connect (OSTI)

The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: ? Deeper oil exploration in higher temperature and pressure environments ? Enabling power electronic and control equipment to operate in higher temperature environments ? Enabling reduced cooling requirements of electronics ? Increasing reliability and life of capacitors operating below rated temperature ? Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: ? FPE Film is difficult to handle and wind, resulting in poor yields ? Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) ? Encapsulation technologies must be improved to enable higher temperature operation ? Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/?m. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200C and non-hermetic packages at 250C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

None

2011-05-15T23:59:59.000Z

168

Metal aminoboranes  

DOE Patents [OSTI]

Metal aminoboranes of the formula M(NH2BH3)n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya; Shrestha, Roshan P.

2010-05-11T23:59:59.000Z

169

Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

170

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect (OSTI)

This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

1999-06-01T23:59:59.000Z

171

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect (OSTI)

This fifteenth quarterly report describes work done during the fifteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to several outside contacts.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

1999-05-11T23:59:59.000Z

172

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect (OSTI)

This seventeenth quarterly report describes work done during the seventeenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, submitting a manuscript and making and responding to one outside contact.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

1999-01-01T23:59:59.000Z

173

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect (OSTI)

This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

1999-05-10T23:59:59.000Z

174

Trends in Selective Hydrogen Peroxide Production on Transition Metal Surfaces from First Principles  

SciTech Connect (OSTI)

We present a comprehensive, Density Functional Theory-based analysis of the direct synthesis of hydrogen peroxide, H2O2, on twelve transition metal surfaces. We determine the full thermodynamics and selected kinetics of the reaction network on these metals, and we analyze these energetics with simple, microkinetically motivated rate theories to assess the activity and selectivity of hydrogen peroxide production on the surfaces of interest. By further exploiting Brnsted-Evans-Polanyi relationships and scaling relationships between the binding energies of different adsorbates, we express the results in the form of a two dimensional contour volcano plot, with the activity and selectivity being determined as functions of two independent descriptors, the atomic hydrogen and oxygen adsorption free energies. We identify both a region of maximum predicted catalytic activity, which is near Pt and Pd in descriptor space, and a region of selective hydrogen peroxide production, which includes Au. The optimal catalysts represent a compromise between activity and selectivity and are predicted to fall approximately between Au and Pd in descriptor space, providing a compact explanation for the experimentally known performance of Au-Pd alloys for hydrogen peroxide synthesis, and suggesting a target for future computational screening efforts to identify improved direct hydrogen peroxide synthesis catalysts. Related methods of combining activity and selectivity analysis into a single volcano plot may be applicable to, and useful for, other aqueous phase heterogeneous catalytic reactions where selectivity is a key catalytic criterion.

Rankin, Rees B.; Greeley, Jeffrey P.

2012-10-19T23:59:59.000Z

175

Green Manufacturing  

SciTech Connect (OSTI)

Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

Patten, John

2013-12-31T23:59:59.000Z

176

Pseudomonas fluorescens -A robust manufacturing platform  

E-Print Network [OSTI]

Pseudomonas fluorescens -A robust manufacturing platform Reprinted from July/August 2004 Speciality at efficient- ly transporting single chain antibodies and other mammalian-derived proteins. In addition production. Dowpharma, a contract manufacturing services unit of Dow Chemical, has developed a manufacturing

Lebendiker, Mario

177

By Patricia A. Plunkert Domestic primary aluminum production increased slightly in  

E-Print Network [OSTI]

of primary metal produced domestically in 1995 was Voluntary Aluminum Industrial Partnership (VAIP) committed metal came from new (manufacturing) scrap and 47% from old scrap (discarded aluminum products, and Washington conjunction with the domestic primary aluminum industry, accounted for 36% of the production

178

The chemistry of transition metal complexes related to solar energy storage : H? production and small molecule (CO? and HX; X = Cl, Br) chemistry.  

E-Print Network [OSTI]

The studies in this thesis have focused on the chemistry of transition metal complexes related to solar energy storage: electrochemical H? production, HX splitting and CO? activation mediated by transition metal complexes. ...

Lee, Changhoon, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

179

Estimating the expected latency to failure due to manufacturing defects  

E-Print Network [OSTI]

Manufacturers of digital circuits test their products to find defective parts so they are not sold to customers. Despite extensive testing, some of their products that are defective pass the testing process. To combat this problem, manufacturers...

Dorsey, David Michael

2004-09-30T23:59:59.000Z

180

Posted 5/10/12 Manufacturing /Process Engineer  

E-Print Network [OSTI]

. Plymouth Tube Company is committed to providing products and services that meet or exceed customers to improve safety, quality, and manufacturing efficiency throughout the manufacturing area. Utilization, reduce cycle times, improve productivity, create and find capacity, improve process reliability

Heller, Barbara

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Solidification/stabilization of toxic metal wastes using coke and coal combustion by-products  

SciTech Connect (OSTI)

A study has been conducted to evaluate the potential of a special rubber waste, NISCO Cyclone Ash (NCA), which contains substantial calcium oxide and calcium sulfites/sulfates for solidification/stabilization (S/S) of toxic metal wastes. The mineralogical compositions of the NCA and a class ``C`` fly ash have been characterized by X-ray diffraction (XRD). Hydrated mixtures of these wastes have been examined by XRD and found to form ettringite. Low concentrations of As (15 {micro}g ml{sup {minus}1}), Ba (500 {micro}g ml{sup {minus}1}), Pb (15 {micro}g ml{sup {minus}1}), and Zn (1,000 {micro}g ml{sup {minus}1}) were added to these hydrated mixtures and found to be successfully immobilized and solidified, as determined by the Toxicity Characteristic Leaching Procedure (TCLP). In addition, the mineralogy, chemistry and leaching characteristics of these combined waste products and their interactions with toxic metals are discussed.

Vempati, R.K.; Mollah, M.Y.A.; Chinthala, A.K.; Cocke, D.L. [Lamar Univ., Beaumont, TX (United States)] [Lamar Univ., Beaumont, TX (United States); Beeghly, J.H. [Dravo Lime, Pittsburgh, PA (United States)] [Dravo Lime, Pittsburgh, PA (United States)

1995-12-31T23:59:59.000Z

182

Production of glass or glass-ceramic to metal seals with the application of pressure  

DOE Patents [OSTI]

In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

Kelly, Michael D. (West Alexandria, OH); Kramer, Daniel P. (Dayton, OH)

1987-11-10T23:59:59.000Z

183

Production of glass or glass-ceramic to metal seals with the application of pressure  

DOE Patents [OSTI]

In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

Kelly, M.D.; Kramer, D.P.

1985-01-04T23:59:59.000Z

184

A survey of foundries that cast red brass products to ascertain an effective pouring rate of molten metal  

E-Print Network [OSTI]

A SURVEY OF FOUNDRIES THAT CAST RED BRASS PRODUCTS TO ASCERTAIN AN EFPECTIVE POURING RATE OF MOLTEN METAL A Thesis by RONALD KEE TOM Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE May 1974 Major Subject: Industrial Technology A SURVEY OF FOUNDRIES THAT CAST RED BRASS PRODUCTS TO ASCERTAIN AN EFFECTIVE POURING RATE OF MOLTEN METAL A Thesis by RONALD KEE TOM Approved as to style and content by...

Tom, Ronald Kee

1974-01-01T23:59:59.000Z

185

Method and article of manufacture corresponding to a composite comprised of ultra nonacrystalline diamond, metal, and other nanocarbons useful for thermoelectric and other applications  

DOE Patents [OSTI]

One provides (101) disperse ultra-nanocrystalline diamond powder material that comprises a plurality of substantially ordered crystallites that are each sized no larger than about 10 nanometers. One then reacts (102) these crystallites with a metallic component. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also substantially preserving the thermal conductivity behavior of the disperse ultra-nanocrystalline diamond powder material. The reaction process can comprise combining (201) the crystallites with one or more metal salts in an aqueous solution and then heating (203) that aqueous solution to remove the water. This heating can occur in a reducing atmosphere (comprising, for example, hydrogen and/or methane) to also reduce the salt to metal.

Gruen, Dieter M.

2010-05-18T23:59:59.000Z

186

Cost of quality tradeoffs in manufacturing process and inspection strategy selection  

E-Print Network [OSTI]

In today's highly competitive markets manufacturers must provide high quality products to survive. Manufacturers can achieve higher levels of quality by changing their manufacturing process and/or by product inspection ...

Zaklouta, Hadi

2011-01-01T23:59:59.000Z

187

Advanced Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Better Buildings, Better Plants Clean Energy Manufacturing Initiative Combined Heat and Power Innovative Manufacturing Initiative National Network for Manufacturing Innovation...

188

Manufacturing Battle Creek  

E-Print Network [OSTI]

Computer simulation Facilities design Finite element analysis Green manufacturing Industrial materialsManufacturing Research Center Kalamazoo Battle Creek The College of Engineering and Applied Sciences The Supporting manufacturing industries by providing opportunities for collaboration with faculty

de Doncker, Elise

189

u.s. department of commerce national institute of standards and technology manufacturing extension partnership W W W . n i s t . g o v / m e p 1 -8 0 0 -m e p -4 m F g  

E-Print Network [OSTI]

and private sectors to help identify areas of improvement, streamline processes, and ultimately increase & Product Development, Leadership Development, Lean Manufacturing, Quality Improvement, Six Sigma companies, ABC Metals, Inc. and HTI, Inc. Rather than just promoting the sale of an existing product

Perkins, Richard A.

190

Final LDRD report : metal oxide films, nanostructures, and heterostructures for solar hydrogen production.  

SciTech Connect (OSTI)

The distinction between electricity and fuel use in analyses of global power consumption statistics highlights the critical importance of establishing efficient synthesis techniques for solar fuels-those chemicals whose bond energies are obtained through conversion processes driven by solar energy. Photoelectrochemical (PEC) processes show potential for the production of solar fuels because of their demonstrated versatility in facilitating optoelectronic and chemical conversion processes. Tandem PEC-photovoltaic modular configurations for the generation of hydrogen from water and sunlight (solar water splitting) provide an opportunity to develop a low-cost and efficient energy conversion scheme. The critical component in devices of this type is the PEC photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with the electrochemical scale for its charge carriers to have sufficient potential to drive the hydrogen and oxygen evolution reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions.

Kronawitter, Coleman X. [Lawrence Berkeley National Laboratory, Berkeley, CA; Antoun, Bonnie R.; Mao, Samuel S. [Lawrence Berkeley National Laboratory, Berkeley, CA

2012-01-01T23:59:59.000Z

191

Metrics for Sustainable Manufacturing  

E-Print Network [OSTI]

a system or process in maintaining a sustainable level of afor manufacturing processes to achieve truly sustainablesustainable phase of the automobile manufacturing process

Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

2008-01-01T23:59:59.000Z

192

The following are appendices A, B1 and B2 of our paper, "Integrated Process Modeling and Product Design of Biodiesel Manufacturing", that appears in the Industrial and  

E-Print Network [OSTI]

Design of Biodiesel Manufacturing", that appears in the Industrial and Engineering Chemistry Research a Biodiesel Process Model To access NIST TDE Data Engine in Aspen Plus version 2006.5 or V7.0 Step 1. Enter

Liu, Y. A.

193

Method of producing metallized chloroplasts and use thereof in the photochemical production of hydrogen and oxygen  

DOE Patents [OSTI]

The invention is primarily a metallized chloroplast composition for use in a photosynthetic reaction. A catalytic metal is precipitated on a chloroplast membrane at the location where a catalyzed reduction reaction occurs. This metallized chloroplast is stabilized by depositing it on a support medium such as fiber so that it can be easily handled. A possible application of this invention is the splitting of water to form hydrogen and oxygen that can be used as a renewable energy source.

Greenbaum, Elias (Oak Ridge, TN)

1987-01-01T23:59:59.000Z

194

The Future of Manufacturing Takes Shape: 3D Printed Car on Display...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lead, Advanced Manufacturing Office Additive manufacturing - often referred to as 3D printing - is a revolutionary way to design and build products. Until now, 3D printing has...

195

Engineered Products: Proposed Penalty (2012-SE-5401)  

Broader source: Energy.gov [DOE]

DOE alleged in a Notice of Proposed Civil Penalty that Engineered Products Company manufactured/privately-labeled and distributed a number of units of noncompliant basic model 15701, a metal halide lamp fixture with a magnetic probe-start ballast in the U.S.

196

Inbound freight consolidation for US manufacturers at China  

E-Print Network [OSTI]

In recent years, China has become the world factory for a sizable portion of products. Most manufacturing conglomerates in the United States now have contract manufacturing plants in China. Because many of these US companies ...

Fang, Yi, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

197

A Global Assessment of Manufacturing: Economic  

E-Print Network [OSTI]

A Global Assessment of Manufacturing: Economic Development, Energy Use, Carbon Emissions Keywords production, materials, closed loop, China, emerging economies Abstract We present in two parts an assessment of global manufacturing. In the first part, we review economic development, pollution, and carbon

Gutowski, Timothy

198

Comparative Summer Thermal Performance of Finished and Unfinished Metal Roofing Products with Composition Shingles  

E-Print Network [OSTI]

of five roofing systems against a control roof using dark shingles. The intent of the testing is to evaluate how roofing systems impact residential cooling energy use. Recent testing emphasizes evaluation of how increasingly popular metal roofing systems...

Parker, D. S.; Sherwin, J.; Sonne, J.

2004-01-01T23:59:59.000Z

199

The infusion of intelligence that transforms the way industries conceptualize, design and operate the manufacturing enterprise.  

E-Print Network [OSTI]

Intelligence & Collaborative Manufacturing Green Light Analyze - to put into production Make ­ right the manufacturing enterprise. Smart Manufacturing as a Real-Time Networked Information Enterprise Jim Davis UCLA://smartmanufacturingcoalition.org http://smartmanufacturing.com #12;What is Smart Manufacturing? Smart Manufacturing enables all

Grossmann, Ignacio E.

200

Study of metal dusting phenomenon and development of materials resistant to metal dusting.  

SciTech Connect (OSTI)

The deposition of carbon from carbonaceous gaseous environments is prevalent in many chemical and petrochemical processes such as reforming systems, syngas production systems, iron reduction plants, and others. One of the major consequences of carbon deposition is the degradation of structural materials by a phenomenon known as metal dusting. There are two major issues of importance in metal dusting. First is formation of carbon and subsequent deposition of carbon on metallic materials. Second is the initiation of metal dusting degradation of the alloy. Details are presented on a research program that is underway at Argonne National Laboratory to study the metal dusting phenomenon from a fundamental scientific base involving laboratory research in simulated process conditions and field testing of materials in actual process environments. The project has participation from the US chemical industry, alloy manufacturers, and the Materials Technology Institute, which serves the chemical process industry.

Natesan, K.

2002-03-13T23:59:59.000Z

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Requirements & Status for Volume Fuel Cell Manufacturing  

E-Print Network [OSTI]

Requirements & Status for Volume Fuel Cell Manufacturing DOE Hydrogen Program, Washington, DC July ­Eliminate components, parts and process steps ­Standardize core components across products ­Standardize non-core

202

4D printing : towards biomimetic additive manufacturing  

E-Print Network [OSTI]

Inherent across all scales in Nature's material systems are multiple design dimensions, the existences of which are products of both evolution and environment. In human manufacturing where design must be preconceived and ...

Tsai, Elizabeth Yinling

2013-01-01T23:59:59.000Z

203

Erroneous Wave Functions of Ciuchi et al for Collective Modes in Neutron Production on Metallic Hydride Cathodes  

E-Print Network [OSTI]

There is a recent comment (Ciuchi et al., 2012) concerning the theory of collective many body effects on the neutron production rates in a chemical battery cathode. Ciuchi et al employ an inverse beta decay expression that contains a two body amplitude. Only one electron and one proton may exist in the Ciuchi et al model initial state wave function. A flaw in their reasoning is that one cannot in reality describe collective many body correlations with only a two particle wave function. One needs very many particles to describe collective effects. In the model wave functions of Ciuchi et al there are no metallic hydrides, there are no cathodes and there are no chemical batteries. Employing a wave function with only one electron and one proton is inadequate for describing collective metallic hydride surface quantum plasma physics in cathodes accurately.

Widom, A; Larsen, L

2012-01-01T23:59:59.000Z

204

Erroneous Wave Functions of Ciuchi et al for Collective Modes in Neutron Production on Metallic Hydride Cathodes  

E-Print Network [OSTI]

There is a recent comment (Ciuchi et al., 2012) concerning the theory of collective many body effects on the neutron production rates in a chemical battery cathode. Ciuchi et al employ an inverse beta decay expression that contains a two body amplitude. Only one electron and one proton may exist in the Ciuchi et al model initial state wave function. A flaw in their reasoning is that one cannot in reality describe collective many body correlations with only a two particle wave function. One needs very many particles to describe collective effects. In the model wave functions of Ciuchi et al there are no metallic hydrides, there are no cathodes and there are no chemical batteries. Employing a wave function with only one electron and one proton is inadequate for describing collective metallic hydride surface quantum plasma physics in cathodes accurately.

A. Widom; Y. N. Srivastava; L. Larsen

2012-10-17T23:59:59.000Z

205

RRR Niobium Manufacturing Experience  

SciTech Connect (OSTI)

ATI Wah Chang has been manufacturing RRR niobium for more than 30 years using electron beam melting techniques. Fabricated forms include plate, sheet, foil, bar, rod and tubing. This paper provides manufacturing information.

Graham, Ronald A. [ATI Wah Chang, An Allegheny Technologies Company, Albany, Oregon 97321 (United States)

2007-08-09T23:59:59.000Z

206

Metrics for Sustainable Manufacturing  

E-Print Network [OSTI]

for implementing green manufacturing. Trans. of NAMRI/SME,the imple- mentation of green manufacturing, where a wedgemanufacturing scope of the assessment. While it is always important in the development of green

Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

2008-01-01T23:59:59.000Z

207

Nano-Manufacturing While nanotechnology promises to revolutionize everything from  

E-Print Network [OSTI]

Nano-Manufacturing While nanotechnology promises to revolutionize everything from energy production futuristic systems will remain science fiction without practical and scalable nano-manufacturing capabilities. Researchers at the University of Maryland's NanoCenter have the manufacturing capabilities needed for turning

Hill, Wendell T.

208

Manufacturing Industrial Development for the Alternative Energy Systems-Final Report  

SciTech Connect (OSTI)

NCMS identified and developed critical manufacturing technology assessments vital to the affordable manufacturing of alternative-energy systems. NCMS leveraged technologies from other industrial sectors and worked with our extensive member organizations to provide DOE with two projects with far-reaching impact on the generation of wind energy. In the response for a call for project ideas, 26 project teams submitted ideas. Following a detailed selection criteria, two projects were chosen for development: Advanced Manufacturing for Modular Electro-kinetic (E-K) Wind Energy Conversion Technology - The goal of this project was to demonstrate that a modular wind energy technology based on electrohydrodynamic wind energy principles and employing automotive heritage high volume manufacturing techniques and modular platform design concepts can result in significant cost reductions for wind energy systems at a range of sizes from 100KW to multi-MW. During this program, the Accio/Boeing team made major progress on validating the EHD wind energy technology as commercially viable in the wind energy sector, and moved along the manufacturing readiness axis with a series of design changes that increased net system output. Hybrid Laser Arc Welding for Manufacture of Wind Towers - The goal of this research program was to reduce the cost of manufacturing wind towers through the introduction of hybrid laser arc welding (HLAW) into the supply chain for manufacturing wind towers. HLAW has the potential to enhance productivity while reducing energy consumption to offset the foreign low-cost labor advantage and thereby enhance U.S. competitiveness. HLAW technology combines laser welding and arc welding to produce an energy efficient, high productivity, welding process for heavy manufacturing. This process leverages the ability of a laser to produce deep weld penetration and the ability of gas metal arc welding (GMAW) to deposit filler material, thereby producing stable, high quality, welds on joints with gaps and mismatches typical of those seen in heavy manufacturing. Wind towers utilize varying thicknesses of steel throughout their structures to meet the mechanical load requirements while keeping material costs low. A typical tower might have as many as twelve different material thicknesses. Joining each thickness requires a unique joint design and welding approach to enable the management of quality, productivity, and mechanical properties. In this program, laser joining of materials with thicknesses ranging from 12mm to 35mm were evaluated against the standard quality and mechanical requirements for General Electric wind tower components. The joining processes demonstrated showed the ability to meet key requirements with the appropriate process controls in place.

Dr. Chuck Ryan, National Center for Manufacturing Sciences; Dr. Dawn White, Accio Energy; Mr. Duncan Pratt, General Electric Global Research

2013-01-30T23:59:59.000Z

209

Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles  

DOE Patents [OSTI]

A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

Cassano, Anthony A. (Allentown, PA)

1985-01-01T23:59:59.000Z

210

Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles  

DOE Patents [OSTI]

A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

Cassano, A.A.

1985-07-02T23:59:59.000Z

211

Method for hydrogen production and metal winning, and a catalyst/cocatalyst composition useful therefor  

DOE Patents [OSTI]

A catalyst/cocatalyst/organics composition of matter is useful in electrolytically producing hydrogen or electrowinning metals. Use of the catalyst/cocatalyst/organics composition causes the anode potential and the energy required for the reaction to decrease. An electrolyte, including the catalyst/cocatalyst composition, and a reaction medium composition further including organic material are also described.

Dhooge, Patrick M. (Corrales, NM)

1987-10-13T23:59:59.000Z

212

Hollings Manufacturing Extension Partnership: Delivering Measurable Results to Manufacturing Clients  

E-Print Network [OSTI]

of services, from innovation strategies to process improvements to green manufacturing. MEP also worksHollings Manufacturing Extension Partnership: Delivering Measurable Results to Manufacturing Clients MEP · MANUFACTURING EXTENSION PARTNERSHIP NationalInstituteofStandardsandTechnology March2013

Perkins, Richard A.

213

Hot-gas filter manufacturing assessments: Volume 5. Final report, April 15, 1997  

SciTech Connect (OSTI)

The development of advanced filtration media for advanced fossil-fueled power generating systems is a critical step in meeting the performance and emissions requirements for these systems. While porous metal and ceramic candle-filters have been available for some time, the next generation of filters will include ceramic-matrix composites (CMCs), intermetallic alloys, and alternate filter geometries. The goal of this effort was to perform a cursory review of the manufacturing processes used by 5 companies developing advanced filters from the perspective of process repeatability and the ability for their processes to be scale-up to production volumes. It was found that all of the filter manufacturers had a solid understanding of the product development path. Given that these filters are largely developmental, significant additional work is necessary to understand the process-performance relationships and projecting manufacturing costs. While each organization had specific needs, some common among all of the filter manufacturers were access to performance testing of the filters to aide process/product development, a better understanding of the stresses the filters will see in service for use in structural design of the components, and a strong process sensitivity study to allow optimization of processing.

Boss, D.E.

1997-12-31T23:59:59.000Z

214

Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing  

E-Print Network [OSTI]

process control charts (SPC) for product quality and processstatistical process control (SPC) charts. The concept is toMethods Univariate SPC for semiconductor manufacturing

Zeng, Dekong

2012-01-01T23:59:59.000Z

215

Resource Consumption in Additive Manufacturing with a PSS Approach.  

E-Print Network [OSTI]

??Since the 1980s, additive manufacturing (AM) has gradually advanced from rapid prototyping applications towards fabricating end consumer products. Many small companies may prefer accessing AM (more)

Nopparat, Nanond; Kianian, Babak; Thompson, Anthony

2012-01-01T23:59:59.000Z

216

A hybrid genetic algorithm for manufacturing cell formation  

E-Print Network [OSTI]

... in cellular manufacturing is the formation of product families and machine cells. ... Computational experience with the algorithm on a set of group technology...

Jos F. Gonalves

217

A new DFM approach to combine machining and additive manufacturing  

E-Print Network [OSTI]

Design For Manufacturing (DFM) approaches aim to integrate manufacturability aspects during the design stage. Most of DFM approaches usually consider only one manufacturing process, but products competitiveness may be improved by designing hybrid modular products, in which products are seen as 3-D puzzles with modules realized aside by the best manufacturing process and further gathered. A new DFM system is created in order to give quantitative information during the product design stage of which modules will benefit in being machined and which ones will advantageously be realized by an additive process (such as Selective Laser Sintering or laser deposition). A methodology for a manufacturability evaluation in case of a subtractive or an additive manufacturing process is developed and implemented in a CAD software. Tests are carried out on industrial products from automotive industry.

Kerbrat, Olivier; Hascot, Jean-Yves; 10.1016/j.compind.2011.04.003

2011-01-01T23:59:59.000Z

218

Manufacture of Advanced Battery Metal Containers & Components  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

219

Enabling Manufacturing Research through Interoperability  

E-Print Network [OSTI]

sustainable or environmentally benign manufacturing processes andAND SUSTAINABLE FIGURE 8: LIFE-CYCLE OF MANUFACTURING PROCESSES (

Dornfeld, David; Wright, Paul; Helu, Moneer; Vijayaraghavan, Athulan

2009-01-01T23:59:59.000Z

220

Investigation of structure and properties of the Nb rods manufactured by different deformation and heat treatment regimes in mass production conditions for the Nb{sub 3}Sn strands  

SciTech Connect (OSTI)

From 2009 the mass production of the Nb{sub 3}Sn strands for ITER with the yield of several tens of tons per year operates at JSC Chepetsky Mechanical Plant (Glazov, Russia). In order to enhance the stability of output characteristics of the produced Nb{sub 3}Sn strands, to increase the Nb filaments dimensional homogeneity the manufacture regimes improvement of the used semiproducts such as Nb rods intended for the superconducting filaments formation in the finished strands has been carried out. In the work the investigations of the Nb rheological behavior, the influence of heat treatment in the wide temperature range from 700 to 1300 C on the predeformed Nb rods structure and mechanical properties have been performed. Different production routes of the Nb rods, including such operations like forging, extrusion and drawing combined with the recrystallization annealings, were used. Composite Nb{sub 3}Sn strands have been produced and their electrophysical properties have been tested. For the first time influence of the niobium rods manufacture regimes on the current carrying capacity of the industrial Nb{sub 3}Sn strands has been investigated.

Abdyukhanov, I. M.; Vorobieva, A. E.; Alekseev, M. V.; Mareev, K. A.; Dergunova, E. A.; Peredkova, T. N. [JSC Bochvar High-Technology Research Institute of Inorganic Materials, 5a Rogova St., Moscow, 123060 (Russian Federation); Shikov, A. K. [NRC Kurchatov Institute, 1 Akademika Kurchatova Sq., Moscow, 123182 (Russian Federation); Utkin, K. V.; Vorobieva, A. V.; Kharkovsky, D. N. [JSC Chepetsky Mechanical Plant, 7 Belova St., Glazov, 427620 (Russian Federation)

2014-01-27T23:59:59.000Z

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Specific PVMaT R and D in CdTe product manufacturing: Phase 1 annual report, 5 May 1998--4 May 1999  

SciTech Connect (OSTI)

This report documents the work performed by First Solar, LLC, during the first year of this Photovoltaic Manufacturing Technology (PVMaT) subcontract. The following milestones were successfully completed: (1) Initiate lamination development program by interviewing key suppliers and experts such as STR, Inc., ARRI, and automotive glass manufacturers; (2) Complete process specification for high-throughput laminator; (3) Initiate contact with module testing laboratory and complete preliminary module design review; (4) Complete review and survey of current environmental, health and safety (EHS) programs; (5) Complete design specifications for the high-throughput laminator; (6) Complete preliminary testing of modules; (7) Establish Qualification Testing Schedule; (8) Develop plans for critical areas of EHS improvement with the assistance of industry experts such as OSHA On-Site Consultation; (9) Begin de-bug of high-throughput laminator; (10) Initiate qualification testing on First Solar's standard modules; (11) Initiate EHS improvement projects; (12) Complete prove-in of high-throughput laminator at a rate of 30 modules per hour; (13) Complete report on lamination rates, yields, and reductions in labor and equipment costs; (14) Complete qualification testing on First Solar's standard module for IEEE 1262 and UL 1703; and (15) Complete implementation of critical EHS improvements.

Bohland, J.; Kormanyos, K.; Faykosh, G.; Champion, V.; Cox, S.; McCarthur, M.; Dapkus, T.; Kamm, K.; Flis, M.

2000-03-01T23:59:59.000Z

222

IT/Automation Cost Reduction in Intels Manufacturing Environment  

E-Print Network [OSTI]

Intel manufacturing relies heavily on IT and Factory Automation during the manufacturing processes. At Intel, everything from scheduling products on the floor and product delivery systems to statistical process control is ...

Subirana, Brian

2004-03-05T23:59:59.000Z

223

Direct Electrolysis of Molten Lunar Regolith for the Production of Oxygen and Metals on the Moon  

E-Print Network [OSTI]

The feasibility of producing oxygen by direct electrolysis of the molten lunar regolith at 1600 C was investigated and the generation of usable oxygen gas at the anode and concomitant production of iron and silicon at the ...

Sirk, Aislinn H.

224

Autothermal oxidative pyrolysis of biomass feedstocks over noble metal catalysts to liquid products.  

E-Print Network [OSTI]

??Two thermal processing technologies have emerged for processing biomass into renewable liquid products: pyrolysis and gasification/Fischer-Tropsch processing. The work presented here will demonstrate oxidative pyrolysis (more)

Balonek, Christine Marie

2011-01-01T23:59:59.000Z

225

Production of pulsed, mass-selected beams of metal and semiconductor clusters  

SciTech Connect (OSTI)

We report on the development of a beam line for mass-selected metal and semiconductor clusters. The cluster source combines the principles of plasma sputtering and gas condensation. Both techniques together allow to produce clusters in a wide size range. With the aid of a time-of-flight system, small clusters (i.e., Cu{sub n}{sup +}, n<100) are selected and pure beams containing only one cluster size are provided. For large clusters (containing several thousands of atoms), a beam with a narrow size distribution is obtained. A 90 deg. quadrupole deviator is used to separate charged clusters from neutral ones.

Kamalou, Omar; Rangama, Jimmy; Ramillon, Jean-Marc; Guinement, Patrick; Huber, Bernd A. [CIMAP, CEA-CNRS-ENSICaen-UCBN, Bv. Henry Becquerel (B.P. 5133), F-14070 Caen Cedex 05 (France)

2008-06-15T23:59:59.000Z

226

Locating Chicago Manufacturing  

E-Print Network [OSTI]

Renaissance Council, is among the nation's leading public high schools focused on manufac- turing area's econ- omy, including how important manufacturing is to that economy, which manufac- turing

Illinois at Chicago, University of

227

Acoustics by additive manufacturing:.  

E-Print Network [OSTI]

??This study focuses on exploring the merging field of additive manufacturing and acoustics and introduces a new type of sound absorber which is regulating performance (more)

Setaki, F.

2012-01-01T23:59:59.000Z

228

Additive Manufacturing: Going Mainstream  

Broader source: Energy.gov [DOE]

Additive manufacturing, or 3D printing, is receiving attention from media, investment communities and governments around the world transforming it from obscurity to something to be talked about.

229

Method for forming metal contacts  

DOE Patents [OSTI]

Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.

Reddington, Erik; Sutter, Thomas C; Bu, Lujia; Cannon, Alexandra; Habas, Susan E; Curtis, Calvin J; Miedaner, Alexander; Ginley, David S; Van Hest, Marinus Franciscus Antonius Maria

2013-09-17T23:59:59.000Z

230

Lessons Learned During the Manufacture of the NCSX Modular Coils  

SciTech Connect (OSTI)

The National Compact Stellarator Experiment's (NCSX) modular coils presented a number of engineering and manufacturing challenges due to their complex shapes, requirements for high dimensional accuracy and high current density requirements due to space constraints. Being the first of their kind, these coils required the implementation of many new manufacturing and measuring techniques and procedures. This was the first time that these manufacturing techniques and methods were applied in the production of coils at the laboratory. This resulted in a steep learning curve for the first several coils. Through the effective use of procedures, tooling modifications, involvement and ownership by the manufacturing workforce, and an emphasis on safety, the assembly team was able to reduce the manufacturing times and improve upon the manufacturing methods. This paper will discuss the learning curve and steps that were taken to improve the manufacturing efficiency and reduce the manufacturing times for the modular coils without forfeiting quality.

James H. Chrzanowski,Thomas G. Meighan, Steven Raftopoulos and Lawrence Dudek and Paul J. Fogarty

2009-09-15T23:59:59.000Z

231

MUC-NOTE-TARGET-234 Moving Solid Metallic Targets for Pion Production in the Muon Collider /  

E-Print Network [OSTI]

/ Neutrino Factory Project P.A. Thieberger and H.G. Kirk Brookhaven National Laboratory Introduction The production of large fluxes of pions and muons using high energy, high intensity proton pulses impinging) , extremely small, beam-induced strains in a carbon-carbon composite indicate that such a material may perhaps

McDonald, Kirk

232

Dust production from sub-solar to super-solar metallicity in Thermally Pulsing Asymptotic Giant Branch Stars  

E-Print Network [OSTI]

We discuss the dust chemistry and growth in the circumstellar envelopes (CSEs) of Thermally Pulsing Asymptotic Giant Branch (TP-AGB) star models computed with the COLIBRI code, at varying initial mass and metallicity (Z=0.001, 0.008, 0.02, 0.04, 0.06). A relevant result of our analysis deals with the silicate production in M-stars. We show that, in order to reproduce the observed trend between terminal velocities and mass-loss rates in Galactic M-giants, one has to significantly reduce the efficiency of chemisputtering by H2 molecules, usually considered as the most effective dust destruction mechanism. This indication is also in agreement with the most recent laboratory results, which show that silicates may condense already at T=1400 K, instead than at Tcond=1000 K, as obtained by models that include chemisputtering. From the analysis of the total dust ejecta, we find that the total dust-to-gas ejecta of intermediate-mass stars are much less dependent on metallicity than usually assumed. In a broader contex...

Ambra, Nanni; Paola, Marigo; Lo, Girardi; Atefeh, Javadi; Jacco, van Loon

2014-01-01T23:59:59.000Z

233

Electromagnetic compatibility in semiconductor manufacturing  

SciTech Connect (OSTI)

Electromagnetic Interference (EMI) causes problems in semiconductor manufacturing facilities that range from nuisances to major disruptions of production. In many instances, these issues are addressed in a reactionary rather than proactive manner by individuals who do not have the experience or the equipment necessary to combat EMI problems in a timely, cost effective manner. This approach leads to expensive retrofits, reduced equipment availability, long recovery times, and in some cases, line yield impacts. The goal of electromagnetic compatibility (EMC) in semiconductor manufacturing is to ensure that semiconductor process, metrology, and support equipment operate as intended without being affected by electromagnetic disturbances either transmitted through air (radiated interference), or transferred into the equipment via a conductive media (conducted interference). Rather than being neglected until serious issues arise, EMC should be considered in the early stages of facility design, in order to gain the most benefit at the lowest cost.

Montoya, J.A. [Intel Corp., Hillsboro, OR (United States)

1995-12-31T23:59:59.000Z

234

Ohio Advanced Energy Manufacturing Center  

SciTech Connect (OSTI)

The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

Kimberly Gibson; Mark Norfolk

2012-07-30T23:59:59.000Z

235

MANUFACTURING & SERVICE OPERATIONS MANAGEMENT  

E-Print Network [OSTI]

MANUFACTURING & SERVICE OPERATIONS MANAGEMENT Vol. 14, No. 4, Fall 2012, pp. 495­511 ISSN 1523 research directions, expanding upon the key points raised by Green [Green LV (2012) The vital role of operations analysis in improving healthcare delivery. Manufacturing Service Oper. Management 14

Boucherie, Richard J.

236

MANUFACTURING & SERVICE OPERATIONS MANAGEMENT  

E-Print Network [OSTI]

;Green and Soares: Note Manufacturing & Service Operations Management 9(1), pp. 54­61, © 2007 INFORMS 55MANUFACTURING & SERVICE OPERATIONS MANAGEMENT Vol. 9, No. 1, Winter 2007, pp. 54­61 issn 1523-Dependent Waiting Time Probabilities in M t /M/s t Queuing Systems Linda V. Green Graduate School of Business

Soares, João Luís Cardoso

237

Decision support tool for dynamic workforce scheduling in manufacturing environments \\  

E-Print Network [OSTI]

Scheduling for production in manufacturing environments requires an immense amount of planning. A large number of factors such as part availability, production cost, space constraints and labor supply must be taken into ...

Malik, Radhika, M. Eng. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

238

Presentation to DOE Fuel Cell Manufacturing Workshop 2011  

E-Print Network [OSTI]

: JP-8, diesel Fuel Cell Project Scope #12;Soldier Power Unmanned UAV Emergency Power Tactical Vehicle Automation · Production Material · QC during Manufacturing · QC for Product · BOP Hardware · BOP Performance

239

LED Manufacturing Process Modifications Will Boost Quality and  

E-Print Network [OSTI]

2012 The Issue Highly energyefficient LightEmitting Diode (LED) lighting products have made great process that will enable LED manufacturers to produce higher quality, energyefficient products at lower

240

Reduction of rework at a large aerospace manufacturer  

E-Print Network [OSTI]

It is an axiom of the manufacturing of any complex product that errors will occur that require repair or discard of said product. In building aircraft, Raptor Aerospace encounters and repairs numerous deviations from the ...

Lieberman, Jeremy A. (Jeremy Alan)

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Tritium production from a low voltage deuterium discharge on palladium and other metals  

SciTech Connect (OSTI)

Over the past year the authors have been able to demonstrate that a plasma loading method produces an exciting and unexpected amount of tritium from small palladium wires. In contrast to electrochemical hydrogen or deuterium loading of palladium, this method yields a reproducible tritium generation rate when various electrical and physical conditions are met. Small diameter wires (100--250 microns) have been used with gas pressures above 200 torr at voltages and currents of about 2,000 V at 3--5 A. By carefully controlling the sputtering rate of the wire, runs have been extended to hundreds of hours allowing a significant amount (> 10`s nCi) of tritium to accumulate. they show tritium generation rates for deuterium-palladium foreground runs that are up to 25 times larger than hydrogen-palladium control experiments using materials from the same batch. They illustrate the difference between batches of annealed palladium and as received palladium from several batches as well as the effect of other metals (Pt, Ni, Nb, Zr, V, W, Hf) to demonstrate that the tritium generation rate can vary greatly from batch to batch.

Claytor, T.N.; Jackson, D.D.; Tuggle, D.G.

1995-09-01T23:59:59.000Z

242

Manufacturing improvements in the Photovoltaic Manufacturing Technology (PVMaT) Project  

SciTech Connect (OSTI)

The Photovoltaic Manufacturing Technology Project (PVMaT) is a government/industry research and development (R and D) partnership between the US federal government (through the US Department of Energy [DOE]) and members of the US PV industry. The goals of PVMaT are to help the US PV industry improve module manufacturing processes and equipment; accelerate manufacturing cost reductions for PV modules, balance-of-systems components, and integrated systems; increase commercial product performance and reliability; and enhance the investment opportunities for substantial scale-ups of US-based PV manufacturing plant capacities. The approach for PVMaT has been to cost-share risk taking by industry as it explores new manufacturing options and ideas for improved PV modules and other components, advances system and product integration, and develops new system designs, all of which will lead to overall reduced system life-cycle costs for reliable PV end products. The PVMaT Phase 4A module manufac turing R and D projects are just being completed, and initial results for the work directed primarily to module manufacture are reported in this paper. Fourteen new Phase 5A subcontracts have also just been awarded, and planned R and D areas for the ten focused on module manufacture are described. Finally, government funding, subcontractor cost-sharing, and a comparison of the relative efforts by PV technology throughout the PVMaT project are presented.

Witt, C.E.; Mitchell, R.L.; Thomas, H.P.; Symko, M.I. [National Renewable Energy Lab., Golden, CO (United States); King, R. [Dept. of Energy, Washington, DC (United States); Ruby, D.S. [Sandia National Labs., Albuquerque, NM (United States)

1998-08-01T23:59:59.000Z

243

MCM-C Multichip Module Manufacturing Guide  

SciTech Connect (OSTI)

Honeywell Federal Manufacturing & Technologies (FM&T) provides complete microcircuit capabilities from design layout through manufacturing and final electrical testing. Manufacturing and testing capabilities include design layout, electrical and mechanical computer simulation and modeling, circuit analysis, component analysis, network fabrication, microelectronic assembly, electrical tester design, electrical testing, materials analysis, and environmental evaluation. This document provides manufacturing guidelines for multichip module-ceramic (MCM-C) microcircuits. Figure 1 illustrates an example MCM-C configuration with the parts and processes that are available. The MCM-C technology is used to manufacture microcircuits for electronic systems that require increased performance, reduced volume, and higher density that cannot be achieved by the standard hybrid microcircuit or printed wiring board technologies. The guidelines focus on the manufacturability issues that must be considered for low-temperature cofired ceramic (LTCC) network fabrication and MCM assembly and the impact that process capabilities have on the overall MCM design layout and product yield. Prerequisites that are necessary to initiate the MCM design layout include electrical, mechanical, and environmental requirements. Customer design data can be accepted in many standard electronic file formats. Other requirements include schedule, quantity, cost, classification, and quality level. Design considerations include electrical, network, packaging, and producibility; and deliverables include finished product, drawings, documentation, and electronic files.

Blazek, R.J.; Kautz, D.R.; Galichia, J.V.

2000-11-20T23:59:59.000Z

244

Measurements of actinide-fission product yields in Caliban and Prospero metallic core reactor fission neutron fields  

SciTech Connect (OSTI)

In the 1970's and early 1980's, an experimental program was performed on the facilities of the CEA Valduc Research Center to measure several actinide-fission product yields. Experiments were, in particular, completed on the Caliban and Prospero metallic core reactors to study fission-neutron-induced reactions on {sup 233}U, {sup 235}U, and {sup 239}Pu. Thick actinide samples were irradiated and the number of nuclei of each fission product was determined by gamma spectrometry. Fission chambers were irradiated simultaneously to measure the numbers of fissions in thin deposits of the same actinides. The masses of the thick samples and the thin deposits were determined by mass spectrometry and alpha spectrometry. The results of these experiments will be fully presented in this paper for the first time. A description of the Caliban and Prospero reactors, their characteristics and performances, and explanations about the experimental approach will also be given in the article. A recent work has been completed to analyze and reinterpret these measurements and particularly to evaluate the associated uncertainties. In this context, calculations have also been carried out with the Monte Carlo transport code Tripoli-4, using the published benchmarked Caliban description and a three-dimensional model of Prospero, to determine the average neutron energy causing fission. Simulation results will be discussed in this paper. Finally, new fission yield measurements will be proposed on Caliban and Prospero reactors to strengthen the results of the first experiments. (authors)

Casoli, P.; Authier, N. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Laurec, J.; Bauge, E.; Granier, T. [CEA, Centre DIF, 91297 Arpajon (France)

2011-07-01T23:59:59.000Z

245

Impact of Fission Products Impurity on the Plutonium Content of Metal- and Oxide- Fuels in Sodium Cooled Fast Reactors  

SciTech Connect (OSTI)

This short report presents the neutronic analysis to evaluate the impact of fission product impurity on the Pu content of Sodium-cooled Fast Reactor (SFR) metal- and oxide- fuel fabrication. The similar work has been previously done for PWR MOX fuel [1]. The analysis will be performed based on the assumption that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate SFR fuels. Only non-gaseous FPs have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1 of Reference 1). Throughout of this report, we define the mixture of Pu and FPs as PuFP. The main objective of this analysis is to quantify the increase of the Pu content of SFR fuels necessary to maintain the same average burnup at discharge independently of the amount of FP in the Pu stream, i.e. independently of the PuFP composition. The FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

Hikaru Hiruta; Gilles Youinou

2013-09-01T23:59:59.000Z

246

COAL DERIVED MATRIX PITCHES FOR CARBON-CARBON COMPOSITE MANUFACTURE/PRODUCTION OF FIBERS AND COMPOSITES FROM COAL-BASED PRECURSORS  

SciTech Connect (OSTI)

The Consortium for premium Carbon Products from Coal, with funding from the US Department of Energy, National Energy Technology Laboratory continue with the development of innovative technologies that will allow coal or coal-derived feedstocks to be used in the production of value-added carbon materials. In addition to supporting eleven independent projects during budget period 3, three meetings were held at two separate locations for the membership. The first was held at Nemacolin Woodlands Resort on May 15-16, 2000. This was followed by two meetings at Penn State, a tutorial on August 11, 2000 and a technical progress meeting on October 26-27.

Peter G. Stansberry; John W. Zondlo

2001-07-01T23:59:59.000Z

247

AN INITIAL ASSESSMENT OF POTENTIAL PRODUCTION TECHNOLOGIES FOR EPSILON-METAL WASTE FORMS  

SciTech Connect (OSTI)

This report examines and ranks a total of seven materials processing techniques that may be potentially utilized to consolidate the undissolved solids from nuclear fuel reprocessing into a low-surface area form. Commercial vendors of processing equipment were contacted and literature researched to gather information for this report. Typical equipment and their operation, corresponding to each of the seven techniques, are described in the report based upon the discussions and information provided by the vendors. Although the report does not purport to describe all the capabilities and issues of various consolidation techniques, it is anticipated that this report will serve as a guide by highlighting the key advantages and disadvantages of these techniques. The processing techniques described in this report were broadly classified into those that employed melting and solidification, and those in which the consolidation takes place in the solid-state. Four additional techniques were examined that were deemed impractical, but were included for completeness. The techniques were ranked based on criteria such as flexibility in accepting wide-variety of feed-stock (chemistry, form, and quantity), ease of long-term maintenance, hot cell space requirements, generation of additional waste streams, cost, and any special considerations. Based on the assumption of ~2.5 L of waste to be consolidated per day, sintering based techniques, namely, microwave sintering, spark plasma sintering and hot isostatic pressing, were ranked as the top-3 choices, respectively. Melting and solidification based techniques were ranked lower on account of generation of volatile phases and difficulties associated with reactivity and containment of the molten metal.

Rohatgi, Aashish; Strachan, Denis M.

2011-03-01T23:59:59.000Z

248

Manufacturing Renaissance: Return of manufacturing to western countries.  

E-Print Network [OSTI]

??Manufacturing Renaissance, i.e. return of manufacturing to west, has been recently observed. This paper analyzes the patterns observed within each of the four main drivers (more)

Kianian, Babak; Larsson, Tobias

2013-01-01T23:59:59.000Z

249

Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons  

SciTech Connect (OSTI)

This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. Concentrations in produced water discharge plume/receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

Continental Shelf Associates, Inc.

1999-08-16T23:59:59.000Z

250

Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons.  

SciTech Connect (OSTI)

This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. concentrations in produced water discharge plume / receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentration of metals and hydrocarbons determined in the samples.

NONE

1997-06-01T23:59:59.000Z

251

Manufacturing Licenses Available | Tech Transfer | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deposition Manufacturing 201303127 Methods and Materials for Room Temperature Polymer Additive Manufacturing 201303140 Reactive Polymer Fused Deposition Manufacturing 201303151...

252

11th IFAC Workshop on Intelligent Manufacturing System IMS'13, Sao Paulo, Brazil, May 22-24, 2013 Improving production process performance thanks to neuronal analysis  

E-Print Network [OSTI]

processes is linked to the quality problem. Policies such as Total Quality Management (TQM) are defined.chaprentier@univ-lorraine.fr and andre.thomas@univ-lorraine.fr). Abstract: Product quality level is become a key factor for companies can ensure the required quality thanks to an "on-line quality approch" and proposes a neural network

Paris-Sud XI, Université de

253

EA-1692: Red River Environmental Products, LLC Activated Carbon...  

Broader source: Energy.gov (indexed) [DOE]

2: Red River Environmental Products, LLC Activated Carbon Manufacturing Facility, Red River Parish, LA EA-1692: Red River Environmental Products, LLC Activated Carbon Manufacturing...

254

Photovoltaic Manufacturing Technology, Phase 1, Final report  

SciTech Connect (OSTI)

This report examines the cost-effective manufacture of dendritic-web-based photovoltaic modules. It explains how process changes can increase production and reduce manufacturing costs. Long-range benefits of these improved processes are also discussed. Problems are identified that could impede increasing production and reducing costs; approaches to solve these problems are presented. These approaches involve web growth throughput, cell efficiency, process yield, silicon use, process control, automation, and module efficiency. Also discussed are the benefits of bifacial module design, unique to the dendritic web process.

Easoz, J.R.; Herlocher, R.H. (Westinghouse Electric Corp., Pittsburgh, PA (United States))

1991-12-01T23:59:59.000Z

255

Advanced Manufacture of Reflectors  

SciTech Connect (OSTI)

The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square a unique capability. The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test

Angel, Roger [University of Arizona

2014-12-17T23:59:59.000Z

256

Controlled temperature expansion in oxygen production by molten alkali metal salts  

DOE Patents [OSTI]

A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power. 1 fig.

Erickson, D.C.

1985-06-04T23:59:59.000Z

257

Noble Metal-Free Reduced Graphene Oxide-ZnxCd1-xS Nanocomposite with Enhanced Solar Photocatalytic H2Production  

E-Print Network [OSTI]

solar energy by production of hydrogen from water splitting is of great importance from both theoretical strategy for solving simultaneously the incoming energy and environmental problems.2 So far, numerousNoble Metal-Free Reduced Graphene Oxide-ZnxCd1-xS Nanocomposite with Enhanced Solar Photocatalytic

Gong, Jian Ru

258

"Technology Wedges" for Implementing Green Manufacturing  

E-Print Network [OSTI]

issues in green design and manufacturing." ManufacturingFOR IMPLEMENTING GREEN MANUFACTURING David Dornfeld BerkeleyCalifornia KEYWORDS Green Manufacturing, Technology,

Dornfeld, David; Wright, Paul

2007-01-01T23:59:59.000Z

259

MDF | Manufacturing Demonstration Facility | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration...

260

Material Design, Selection, and Manufacturing Methods for System Sustainment  

SciTech Connect (OSTI)

This paper describes a material selection and validation process proven to be successful for manufacturing high-reliability long-life product. The National Secure Manufacturing Center business unit of the Kansas City Plant (herein called KCP) designs and manufactures complex electrical and mechanical components used in extreme environments. The material manufacturing heritage is founded in the systems design to manufacturing practices that support the U.S. Department of Energys National Nuclear Security Administration (DOE/NNSA). Material Engineers at KCP work with the systems designers to recommend materials, develop test methods, perform analytical analysis of test data, define cradle to grave needs, present final selection and fielding. The KCP material engineers typically will maintain cost control by utilizing commercial products when possible, but have the resources and to develop and produce unique formulations as necessary. This approach is currently being used to mature technologies to manufacture materials with improved characteristics using nano-composite filler materials that will enhance system design and production. For some products the engineers plan and carry out science-based life-cycle material surveillance processes. Recent examples of the approach include refurbished manufacturing of the high voltage power supplies for cockpit displays in operational aircraft; dry film lubricant application to improve bearing life for guided munitions gyroscope gimbals, ceramic substrate design for electrical circuit manufacturing, and tailored polymeric materials for various systems. The following examples show evidence of KCP concurrent design-to-manufacturing techniques used to achieve system solutions that satisfy or exceed demanding requirements.

David Sowder, Jim Lula, Curtis Marshall

2010-02-18T23:59:59.000Z

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Precision replenishable grinding tool and manufacturing process  

DOE Patents [OSTI]

A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools.

Makowiecki, Daniel M. (Livermore, CA); Kerns, John A. (Livermore, CA); Blaedel, Kenneth L. (Livermore, CA); Colella, Nicholas J. (Livermore, CA); Davis, Pete J. (Pleasanton, CA); Juntz, Robert S. (Hayward, CA)

1998-01-01T23:59:59.000Z

262

Precision replenishable grinding tool and manufacturing process  

DOE Patents [OSTI]

A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool are disclosed. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools. 11 figs.

Makowiecki, D.M.; Kerns, J.A.; Blaedel, K.L.; Colella, N.J.; Davis, P.J.; Juntz, R.S.

1998-06-09T23:59:59.000Z

263

CIMplementation: Evaluating Manufacturing Automation  

E-Print Network [OSTI]

management and labor. In the new shop, ma~? agers will be unable to succeed unless thet earn the respect and cooperation of their I subordinates. Managers need to address th~ fear and resistance of manufacturing emPlofees before and during a transition.... Managers are becoming more interested in these methods, but they should be aware that implementing them will be a slow, complex task. This technology will require changes in manufacturing organization. This paper discusses changes required...

Krakauer, J.

264

Friction Stir Processing for Efficient Manufacturing  

SciTech Connect (OSTI)

Friction at contacting surfaces in relative motion is a major source of parasitic energy loss in machine systems and manufacturing processes. Consequently, friction reduction usually translates to efficiency gain and reduction in energy consumption. Furthermore, friction at surfaces eventually leads to wear and failure of the components thereby compromising reliability and durability. In order to reduce friction and wear in tribological components, material surfaces are often hardened by a variety of methods, including conventional heat treatment, laser surface hardening, and thin-film coatings. While these surface treatments are effective when used in conjunction with lubrication to prevent failure, they are all energy intensive and could potentially add significant cost. A new concept for surface hardening of metallic materials and components is Friction Stir Processing (FSP). Compared to the current surface hardening technologies, FSP is more energy efficient has no emission or waste by products and may result in better tribological performance. FSP involves plunging a rotating tool to a predetermined depth (case layer thickness) and translating the FSP tool along the area to be processed. This action of the tool produces heating and severe plastic deformation of the processed area. For steel the temperature is high enough to cause phase transformation, ultimately forming hard martensitic phase. Indeed, FSP has been used for surface modification of several metals and alloys so as to homogenize the microstructure and refine the grain size, both of which led to improved fatigue and corrosion resistance. Based on the effect of FSP on near-surface layer material, it was expected to have beneficial effects on friction and wear performance of metallic materials. However, little or no knowledge existed on the impact of FSP concerning friction and wear performance the subject of the this project and final report. Specifically for steel, which is the most dominant tribological material, FSP can replace the current conventional surface hardening techniques used for friction and wear performance. Friction Stir Link Inc. (FSL) is teamed with Argonne National Laboratory (ANL) to develop and optimize FSP for friction and wear performance enhancement. The ultimate goal is to offer FSP and an effective alternative to some of the current energy intensive and high-cost surface hardening processes.

Mr. Christopher B. Smith; Dr. Oyelayo Ajayi

2012-01-31T23:59:59.000Z

265

Advanced technologies for decontamination and conversion of scrap metal  

SciTech Connect (OSTI)

In October 1993, Manufacturing Sciences Corporation was awarded DOE contract DE-AC21-93MC30170 to develop and test recycling of radioactive scrap metal (RSM) to high value and intermediate and final product forms. This work was conducted to help solve the problems associated with decontamination and reuse of the diffusion plant barrier nickel and other radioactively contaminated scrap metals present in the diffusion plants. Options available for disposition of the nickel include decontamination and subsequent release or recycled product manufacture for restricted end use. Both of these options are evaluated during the course of this research effort. work during phase I of this project successfully demonstrated the ability to make stainless steel from barrier nickel feed. This paved the way for restricted end use products made from stainless steel. Also, after repeated trials and studies, the inducto-slag nickel decontamination process was eliminated as a suitable alternative. Electro-refining appeared to be a promising technology for decontamination of the diffusion plant barrier material. Goals for phase II included conducting experiments to facilitate the development of an electro-refining process to separate technetium from nickel. In parallel with those activities, phase II efforts were to include the development of the necessary processes to make useful products from radioactive scrap metal. Nickel from the diffusion plants as well as stainless steel and carbon steel could be used as feed material for these products.

MacNair, V.; Muth, T.; Shasteen, K.; Liby, A.; Hradil, G.; Mishra, B.

1996-12-31T23:59:59.000Z

266

Helicon wave excitation to produce energetic electrons for manufacturing semiconductors  

DOE Patents [OSTI]

A helicon plasma source is controlled by varying the axial magnetic field or rf power controlling the formation of the helicon wave. An energetic electron current is carried on the wave when the magnetic field is 90 G; but there is minimal energetic electron current when the magnetic field is 100 G in one particular plasma source. Similar performance can be expected from other helicon sources by properly adjusting the magnetic field and power to the particular geometry. This control for adjusting the production of energetic electrons can be used in the semiconductor and thin-film manufacture process. By applying energetic electrons to the insulator layer, such as silicon oxide, etching ions are attracted to the insulator layer and bombard the insulator layer at higher energy than areas that have not accumulated the energetic electrons. Thus, silicon and metal layers, which can neutralize the energetic electron currents will etch at a slower or non-existent rate. This procedure is especially advantageous in the multilayer semiconductor manufacturing because trenches can be formed that are in the range of 0.18-0.35 mm or less.

Molvik, Arthur W. (Livermore, CA); Ellingboe, Albert R. (Fremont, CA)

1998-01-01T23:59:59.000Z

267

Helicon wave excitation to produce energetic electrons for manufacturing semiconductors  

DOE Patents [OSTI]

A helicon plasma source is controlled by varying the axial magnetic field or rf power controlling the formation of the helicon wave. An energetic electron current is carried on the wave when the magnetic field is 90 G; but there is minimal energetic electron current when the magnetic field is 100 G in one particular plasma source. Similar performance can be expected from other helicon sources by properly adjusting the magnetic field and power to the particular geometry. This control for adjusting the production of energetic electrons can be used in the semiconductor and thin-film manufacture process. By applying energetic electrons to the insulator layer, such as silicon oxide, etching ions are attracted to the insulator layer and bombard the insulator layer at higher energy than areas that have not accumulated the energetic electrons. Thus, silicon and metal layers, which can neutralize the energetic electron currents will etch at a slower or non-existent rate. This procedure is especially advantageous in the multilayer semiconductor manufacturing because trenches can be formed that are in the range of 0.18--0.35 mm or less. 16 figs.

Molvik, A.W.; Ellingboe, A.R.

1998-10-20T23:59:59.000Z

268

Integrated Control of Solidification Microstructure and Melt Pool Dimensions In Additive Manufacturing Of Ti - 6Al - 4V.  

E-Print Network [OSTI]

??Additive manufacturing (AM) offers reduced material waste and energy usage, as well as an increase in precision. Direct metal AM is used not only for (more)

Gockel, Joy E.

2014-01-01T23:59:59.000Z

269

New Metallization Technique Suitable for 6-MW Pilot Production of Efficient Multicrystalline Solar Cells Using Upgraded Metallurgical Silicon: Final Technical Progress Report, December 17, 2007-- June 16, 2009  

Broader source: Energy.gov [DOE]

This report describes CaliSolar's work as a Photovoltaic Technology Incubator awardee within the U.S. Department of Energy's Solar Energy Technologies Program. The term of this subcontract with the National Renewable Energy Laboratory was two years. During this time, CaliSolar evolved from a handful of employees to over 100 scientists, engineers, technicians, and operators. On the technical side, the company transitioned from a proof-of-concept through pilot-scale to large-scale industrial production. A fully automated 60-megawatt manufacturing line was commissioned in Sunnyvale, California. The facility converts upgraded metallurgical-grade silicon feedstock to ingots, wafers, and high-efficiency multicrystalline solar cells.

270

An empirical analysis of manufacturing re-shoring and supply chain risk  

E-Print Network [OSTI]

After an exodus of jobs in the last few years, the U.S. is committed to improving its manufacturing competiveness by investing in manufacturing innovation and increasing its labor force productivity. With rising labor costs ...

Kyratzoglou, loannis M

2013-01-01T23:59:59.000Z

271

Lepech Sustainable Precast Infrastructure 2 Sustainable Design and Manufacturing of Prefabricated Durable Infrastructure  

E-Print Network [OSTI]

Lepech Sustainable Precast Infrastructure 2 Sustainable Design and Manufacturing of Prefabricated prefabrication and construction technologies, the environmental impacts of adopting "green" construction of such disadvantages, the cement and concrete product manufacturing industry remains vital to the US economy along

Lepech, Michael D.

272

Manufactured caverns in carbonate rock  

DOE Patents [OSTI]

Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

2007-01-02T23:59:59.000Z

273

Pollution Prevention and Lean Manufacturing Paper # 360  

E-Print Network [OSTI]

Pollution Prevention and Lean Manufacturing Paper # 360 Harry W. Edwards and Jason M. Jonkman, the CSU IAC promotes energy conservation, pollution prevention, and productivity improvement. During that generated a total of 467 assessment recommendations (ARs) with pollution prevention benefits. Such benefits

274

Advanced Manufacturing: Using Composites for Clean Energy  

Broader source: Energy.gov [DOE]

Advanced fiber-reinforced polymer composites, which combine strong fibers with tough plastics, are lighter and stronger than steel. These materials could lower overall production costs in U.S. manufacturing and ultimately drive the adoption of a new clean energy way of life.

275

Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, February--May 1995  

SciTech Connect (OSTI)

This report describes the activities of the project team during the reporting period. The principal work has focused upon the laboratory treatment of six wastes with three by-products and the evaluation of the stability of the resulting eighteen materials. Other efforts during the third quarter have been directed toward completion of the collection and analysis of by-products, the identification of a suitable fourth by-product, and the definition of the approach to the solidification tests. The activity on the project during the third quarter of Phase One has fallen into three major areas: acquiring and analyzing by-products; treating hazardous wastes with by-products in the laboratory and analyzing the results; and conducting administrative activities, including public relations and personnel additions. The hazardous wastes that are used include industrial wastewater treatment residue from battery manufacturing plant; contaminated soil from a remediation project conducted at a munitions depot; contaminated soil from a remediation project conducted at an abandoned industrial site; contaminated soil from a remediation project conducted at a former sewage treatment plant; air pollution control dust from basic oxygen furnace steel production; and air pollution control ash from municipal waste incineration.

NONE

1995-07-01T23:59:59.000Z

276

ATS materials/manufacturing  

SciTech Connect (OSTI)

The Materials/Manufacturing Technology subelement is a part of the base technology portion of the Advanced Turbine Systems (ATS) Program. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. The projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single crystal airfoil manufacturing technologies, materials characterization, and technology information exchange. This paper presents highlights of the activities during the past year. 12 refs., 24 figs., 4 tabs.

Karnitz, M.A.; Wright, I.G.; Ferber, M.K. [and others

1997-11-01T23:59:59.000Z

277

The distribution of copper, manganese, zinc, and iron in antarctic waters and the relation of the concentrations of these metals to biological primary productivity  

E-Print Network [OSTI]

THE DISTRIBUTION OF COPPER, MANGANESE, ZINC, AND IRON IN ANTARCTIC WATERS AND THE RELATION OF THE CONCENTRATIONS OF THESE METALS TO BIOLOGICAL PRIMARY PRODUCTIVITY A Thesis By MARTIN EDWARD ARHELGER Submitted to the Graduate College... of the Texas A& 1 University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August I967 Major Subj ect: CHEMICAL OCEANOGRAPHY THE DISTRIBUTION OF COPPER, MANGANESE, ZINC, AND IRON IN ANTARCTIC WATERS AND THE RELATION...

Arhelger, Martin Edward

1967-01-01T23:59:59.000Z

278

Information tracking and sharing in organic photovoltaic panel manufacturing  

E-Print Network [OSTI]

The MIT MEng team of four worked with Konarka Technologies, a world leading organic solar panel manufacturer, on production tracking and analysis as well as various operational improvement projects. MIT's collaborative ...

Gong, Ming, M. Eng. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

279

Energy Used in Manufacturing Sales and Use Tax Exemption  

Broader source: Energy.gov [DOE]

Georgia enacted legislation in April 2012 (HB 386) creating an exemption for energy used in the manufacturing of a product from the state's sales and use taxes. The sale, use, storage, or...

280

Improving energy efficiency in a pharmaceutical manufacturing environment -- office building  

E-Print Network [OSTI]

Reducing energy consumption without compromising the quality of products in a pharmaceutical manufacturing environment and maintaining the comfort of employees is of critical important in maintaining the financial viability ...

Li, Wu, M. Eng Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

An application of lean principles within a semiconductor manufacturing environment  

E-Print Network [OSTI]

Intel Corporation's Fab 23 is committed to implementing lean manufacturing to reduce their production cycle times and cost. This thesis is focused around the development of the principles of lean that are most relevant to ...

Wildeman, Roy C

2005-01-01T23:59:59.000Z

282

Obama Administration Launches Competition for Three New Manufacturing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

against the initial Federal award. Additive manufacturing, often referred to as 3D printing, is a new way of making products and components from a digital model, and will have...

283

Recovery Act Helps GE in-source Manufacturing | Department of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

interior and making a modern, efficient space inside the existing 1950s shell. The hybrid water heaters, which had previously been manufactured in China, will go into production at...

284

Quality improvement strategy in a dynamic aerospace manufacturing environment  

E-Print Network [OSTI]

In the manufacturing of any complex product it is a generally accepted phenomenon that defects will occur at various stages in the process. In aircraft modification and repair facilities, the low levels of automation and ...

English, Orion T. (Orion Tyler)

2014-01-01T23:59:59.000Z

285

Additive Manufacturing for Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE)

Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

286

Effects of trace metals on diatom export products from the euphotic zone and significance for biogeochemical cycles  

E-Print Network [OSTI]

metal are also reported (Cu from Coale and Bruland, 1988;Zn from Bruland, 1989; Cd from Lane et al. , 2008). Free52:843855. Buck, K. N. and Bruland, K. W. (2005). Copper

Richter, Daniel J.

287

Oxhide ingots, copper production, and the mediterranean trade in copper and other metals in the bronze age  

E-Print Network [OSTI]

invaluable for the discussions of the physical characteristics of Bronze Age copper ingots and the vi technology involved in ancient smelting, refining, and casting of metal ingots. I am indebted to the many students and colleagues of Dr...

Jones, Michael Rice

2007-09-17T23:59:59.000Z

288

COOPERATION BETWEEN BUSINESS AND HOLONIC MANUFACTURING DECISION SYSTEMS  

E-Print Network [OSTI]

COOPERATION BETWEEN BUSINESS AND HOLONIC MANUFACTURING DECISION SYSTEMS Rémi Pannequin, André holonic products, in order to enable cooperation between centralised business and distributed of the holonic product and finally study the possible interaction protocols between the products and the decision

Boyer, Edmond

289

Bolt Manufacture: Process Selection  

E-Print Network [OSTI]

file · Selective Laser Sintering (SLS) 3 D P i ti· 3-D Printing · Light Engineered Net Shaping (LENS Processes and Systems Prof. J.S. Colton © GIT 2009 20 #12;3D Printing Process (Soligen) ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 21 #12;3D Printing Head (Soligen)3D Printing

Colton, Jonathan S.

290

Manufacturing High Temperature Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll ManufacturingFoodOctoberto DOE

291

Manufacturing Success Stories  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment, SafetyWater ConservationDepartmentEnergy Manufacturing Energy6

292

Washington: Battery Manufacturer Brings Material Production Home...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

most of the project's equipment, and this project is helping to build out a domestic industry that creates jobs for U.S. workers. EnerG2 created more than 200 temporary...

293

Manufacturing/Production Steering Committee Meeting  

SciTech Connect (OSTI)

JOWOG 30 has been reorganized and reinvigorated over the past couple of years to: (1) Drive an increased level of value and accomplishment; (2) Broaden engagement from LANL to both NNSA and full Weapons Complex; and (3) Incorporate the Strategic Technical Facilities Modernization (STFM) initiative into J30 structure. Recent/Ongoing Exchanges (2011 and 2012) - Current Exchanges entirely focused within the five J30 tasking areas: Capability Gap, Facility Re-Kit, Commissioning, Environmental Liabilities, Safety Basis. Future Exchanges (2012 to 2015) - Continue current tasks according to plan, include additional tasks/teams in areas such as Criticality Safety and Radiation Protection.

Nuckols, Matthew M. [Los Alamos National Laboratory; Hedley, Richard [AWE; McKamy, Dr. Jerry N. [NNSA

2012-08-14T23:59:59.000Z

294

Sustainable Manufacturing Greening Processes, Systems and Products  

E-Print Network [OSTI]

house gas emissions and carbon footprint are numerous. Thisgas emissions and carbon footprint are numerous. In thispayback time Carbon footprint Efficiency improvement (

Dornfeld, David

2010-01-01T23:59:59.000Z

295

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

cycle phases, Life Cycle Assessment (LCA). The followingvs use phase [3] 2.2 Life Cycle Assessment (LCA) and Relatedused method is Life Cycle Assessment (LCA), including its

Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

2011-01-01T23:59:59.000Z

296

Establishing Greener Products and Manufacturing Processes  

E-Print Network [OSTI]

in Indiana (IN), USA electricity is mostly generated byUSA, where gas, nuclear and hydro are the main sources of electricity.

Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

2012-01-01T23:59:59.000Z

297

Manufacturing/Production Steering Committee Meeting  

SciTech Connect (OSTI)

This presentation discusses the following: (1) Nuclear Material Science - 22/1: Uranium Metallography and Metallurgy, 22/7: Plutonium Metallurgy, 22/8: Plutonium Corrosion; (2) Nuclear Materials Chemistry - 22/2: Actinide Chemistry, 22/7: Analytical Chemistry; (3) Tritium Science & Technology - 22/4: Tritium Science and Technology; and (4) Nuclear Materials Management - 22/5: Nuclear Materials Management, 22/9: Packaging, Storage and Transportation.

Castro, Richard G. [Los Alamos National Laboratory

2012-08-09T23:59:59.000Z

298

Sustainable Manufacturing Greening Processes, Systems and Products  

E-Print Network [OSTI]

University, Germany Edited by Prof. Dr. -lng. habil. Prof.E. h. Dr. -lng. E. h. Dr. h.c. Reimund Neugebauer Prof. T.

Dornfeld, David

2010-01-01T23:59:59.000Z

299

Energy Impacts of Productivity Improvements in Manufacturing  

E-Print Network [OSTI]

The complexity of industrial processes and the need to consider the interaction of various systems has led in many cases to the maturing of the energy audit in to a more sophisticated industrial assessment. The assessment team typically looks...

Mitrovic, B.; Muller, M. R.

300

Washington: Battery Manufacturer Brings Material Production Home |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30,WP-073.99 4.22 3.96Department of

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced Manufacturing Initiative Improves Turbine Blade Productivity |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE2011 DOE Hydrogen and1 DOESystem at

302

Leveraging Manufacturing for a Sustainable Future  

E-Print Network [OSTI]

for Implementing Green Manufacturing, NAMRI Trans. , 35,Strategies for Green Manufacturing, Proc. 4th CIRPAnd, in specific green manufacturing? This will depend on

Dornfeld, David

2011-01-01T23:59:59.000Z

303

Innovative Manufacturing Initiative Recognition Day, Advanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry...

304

Precision and Energy Usage for Additive Manufacturing  

E-Print Network [OSTI]

Sustainability of additive manufacturing: measuring theCommittee F42 on Additive Manufacturing Technologies," TheASTM Committee F42 on Additive Manufacturing Technologies. -

Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

2013-01-01T23:59:59.000Z

305

Transition Metal Switchable Mirror  

ScienceCinema (OSTI)

The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

None

2013-05-29T23:59:59.000Z

306

Transition Metal Switchable Mirror  

ScienceCinema (OSTI)

The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

None

2010-01-08T23:59:59.000Z

307

Table 29. Average Price of U.S. Coal Receipts at Manufacturing...  

Gasoline and Diesel Fuel Update (EIA)

Mills 110.39 109.81 115.95 110.07 117.40 -6.2 315 Apparel Manufacturing w w w w w w 321 Wood Product Manufacturing w - w w w w 322 Paper Manufacturing 87.55 88.68 86.87 88.14...

308

Manufacture of a heat-resistant alloy with modified specifications for HTGR structural applications  

SciTech Connect (OSTI)

A method of manufacturing a nuclear grade nickel-base heat-resistant alloy in application to heliumcooled reactor primary circuit components has been developed. The Hastelloy-XR alloy, a version of Hastelloy-X, was made available by combining the basic studies of the oxidation behavior of Hastelloy-X and the improvement of manufacturing techniques. In the primary and remelting steps, the choice of appropriate processes was made by performing numerical analyses of the statistical deviation of both chemical composition and the products' mechanical properties. The feasibility of making larger electroslag remelting ingots with reasonable control of macrosegregation was examined by the calculation of a molten metal pool shape during melting. The hot workability of Hastelloy-XR was confirmed to be equivalent to that of Hastelloy-X and the importance of controlling the thermal and mechanical processes more closely was stressed in obtaining a higher level of quality assurance for the nuclear applications. The possibility of enhancing the high-temperature mechanical performance of Hastelloy-XR was suggested based on the preliminary test results with the heats manufactured with controlled boron content.

Sahira, K.; Kondo, T.; Takeiri, T.

1984-07-01T23:59:59.000Z

309

Recycling of cadmium and selenium from photovoltaic modules and manufacturing wastes  

SciTech Connect (OSTI)

Since the development of the first silicon based photovoltaic cell in the 1950's, large advances have been made in photovoltaic material and processing options. At present there is growing interest in the commercial potential of cadmium telluride (CdTe) and copper indium diselenide (CIS) photovoltaic modules. As the commercial potential of these technologies becomes more apparent, interest in the environmental, health and safety issues associated with their production, use and disposal has also increased because of the continuing regulatory focus on cadmium and selenium. In future, recycling of spent or broken CdTe and CIS modules and manufacturing wastes may be needed for environmental, economic or political reasons. To assist industry to identify recycling options early in the commercialization process, a Workshop was convened. At this Workshop, representatives from the photovoltaic, electric utility, and nonferrous metals industries met to explore technical and institutional options for the recycling of spent CdTe and CIS modules and manufacturing wastes. This report summarizes the results of the Workshop. This report includes: (1) A discussion of the Resource Conservation and Recovery Act regulations and their potential implications to the photovoltaic industry; (2) an assessment of the needs of the photovoltaic industry from the perspective of module manufacturers and consumers; (3) an overview of recycling technologies now employed by other industries for similar types of materials; and, (4) a list of recommendation.

Moskowitz, P.D.; Zweibel, K. (eds.)

1992-01-01T23:59:59.000Z

310

Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

Not Available

2012-03-01T23:59:59.000Z

311

A Unique Ductless H and V System for Manufacturing Plants  

E-Print Network [OSTI]

The 33 year-old Ford plant at Sandusky, Ohio, had been expanded many times over the years and presently manufactures a variety of metal and plastic automotive parts such as plastic heater housings. As more plastic extruders were added, the plant...

McReynolds, C.J.

312

Critical materials research needed to secure U.S. manufacturing, officials say  

Broader source: Energy.gov [DOE]

Energy Department officials said yesterday that developing alternatives to critical materials, like rare earth metals used in solar panels and wind turbines, is crucial to American manufacturing stability and can help the United States circumvent global market pressures.

313

Engineering and manufacturing of ITER first mirror mock-ups  

SciTech Connect (OSTI)

Most of the ITER optical diagnostics aiming at viewing and monitoring plasma facing components will use in-vessel metallic mirrors. These mirrors will be exposed to a severe plasma environment and lead to an important tradeoff on their design and manufacturing. As a consequence, investigations are carried out on diagnostic mirrors toward the development of optimal and reliable solutions. The goals are to assess the manufacturing feasibility of the mirror coatings, evaluate the manufacturing capability and associated performances for the mirrors cooling and polishing, and finally determine the costs and delivery time of the first prototypes with a diameter of 200 and 500 mm. Three kinds of ITER candidate mock-ups are being designed and manufactured: rhodium films on stainless steel substrate, molybdenum on TZM substrate, and silver films on stainless steel substrate. The status of the project is presented in this paper.

Joanny, M.; Travere, J. M.; Salasca, S.; Corre, Y. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Marot, L. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Thellier, C.; Gallay, G.; Cammarata, C.; Passier, B.; Ferme, J. J. [SESO, 305 Rue Louis Armand CS 30504, 13593 Aix-en-Provence Cedex 3 (France)

2010-10-15T23:59:59.000Z

314

AMO's New Institute for Advanced Composites Manufacturing Innovation...  

Energy Savers [EERE]

as strong and twice as light as the lightest metals. These advanced materials have the potential to transform products ranging from wind turbines to automobiles. This new...

315

Hollings Manufacturing Extension Partnership: A Commercialization Collaborator  

E-Print Network [OSTI]

to process improvements to green manufacturing. MEP also works with partners at the state and federal levelsHollings Manufacturing Extension Partnership: A Commercialization Collaborator MEP · MANUFACTURING to successfully commercialize federal technologies #12;The Manufacturing Extension Partnership

Perkins, Richard A.

316

Seminar Title: Additive Manufacturing Advanced Manufacturing of Polymer and Composite Components  

E-Print Network [OSTI]

Seminar Title: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Functionally Integrated Composite Structures, Augsburg, Germany ME Faculty Candidate Abstract: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Additive manufacturing technologies

Wisconsin at Madison, University of

317

Manufacturing Demonstration Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministrationManufacturing - GE Appliances, ORNL

318

Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, September 1995--December 1995  

SciTech Connect (OSTI)

This fifth quarterly report describes work done during the fifth three-month period of the University of Pittsburgh`s project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with the university on this project is Mill Service, Inc. This report describes the activities of the project team during the reporting period. The principal work has focussed upon completing laboratory evaluation of samples produced during Phase 1, preparing reports and presentations, and seeking environmental approvals and variances to permits that will allow the field work to proceed. The compressive strength of prepared concretes is described.

NONE

1996-03-01T23:59:59.000Z

319

Lithium metal reduction of plutonium oxide to produce plutonium metal  

DOE Patents [OSTI]

A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

Coops, Melvin S. (Livermore, CA)

1992-01-01T23:59:59.000Z

320

Production  

Broader source: Energy.gov [DOE]

Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of...

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Manufacturing consumption of energy 1991  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

Not Available

1994-12-01T23:59:59.000Z

322

ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...  

Energy Savers [EERE]

More Documents & Publications Sustainable Nanomaterials Workshop Advanced Manufacturing Office, U.S. Department of Energy Nanocomposite Materials for Lithium-Ion Batteries...

323

Manufacturing Spotlight: Boosting American Competitiveness  

Office of Energy Efficiency and Renewable Energy (EERE)

Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient.

324

Innovation enabling manufacturing processes  

E-Print Network [OSTI]

Global operations for multinational companies today pose a particularly challenging environment for maintaining fluid knowledge transfer and effective communication methodologies. In a continuous drive for product innovation, ...

Lu, Ilyssa Jing

2008-01-01T23:59:59.000Z

325

Structure for HTS composite conductors and the manufacture of same  

DOE Patents [OSTI]

A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (1) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (2) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer. 10 figs.

Cotton, J.D.; Riley, G.N. Jr.

1999-06-01T23:59:59.000Z

326

Structure for hts composite conductors and the manufacture of same  

DOE Patents [OSTI]

A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (i) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (ii) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer.

Cotton, James D. (Seattle, WA); Riley, Jr., Gilbert Neal (Marlborough, MA)

1999-01-01T23:59:59.000Z

327

KLA-Tencor's Inspection Tool Reduces LED Manufacturing Costs  

Broader source: Energy.gov [DOE]

With the help of DOE funding, KLA-Tencor is developing an improved inspection tool for LED manufacturing that promises to significantly increase overall process yields and minimize expensive waste. The power of the inspection tool lies in optical detection techniques coupled with defect source analysis software to statistically correlate front-end geometric anomalies in the substrate to killer defects on the back end of the manufacturing line, which give rise to an undesirable or unusable end product.

328

EFFECTS ON CHP PLANT EFFICIENCY OF H2 PRODUCTION THROUGH PARTIAL OXYDATION OF NATURAL GAS OVER TWO GROUP VIII METAL  

E-Print Network [OSTI]

EFFECTS ON CHP PLANT EFFICIENCY OF H2 PRODUCTION THROUGH PARTIAL OXYDATION OF NATURAL GAS OVER TWO with natural gas in spark ignition engines can increase for electric efficiency. In-situ H23 production for spark ignition engines fuelled by natural gas has therefore been investigated recently, and4 reformed

Paris-Sud XI, Université de

329

Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, November 1994--February 1995  

SciTech Connect (OSTI)

This second quarterly report describes work during the second three months of the University of Pittsburgh`s (Pitt`s) project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with Pitt on this project are Dravo Lime Company (DLC), Mill Service, Inc. (MSI) and the Center for Hazardous Materials Research (CHMR). The report describes the activities of the project team during the reporting period. The principal work has focussed upon the acquisition of by-product samples and their initial analysis. Other efforts during the second quarter have been directed toward identifying the first hazardous waste samples and preparing for their treatment and analysis. Relatively little data has yet been collected. Major presentation of technical details and data will appear for the first time in the third quarterly report. The activity on the project during the second quarter of Phase One, as presented in the following sections, has fallen into seven areas: (1) Acquiring by-products, (2) Analyzing by-products, (3) Identifying, analyzing and treating suitable hazardous wastes, (4) Carrying out the quality assurance/quality control program, (5) Developing background, and (6) Initiating public relations

NONE

1995-03-01T23:59:59.000Z

330

Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, May 1995--August 1995  

SciTech Connect (OSTI)

This fourth quarterly report describes work done during the fourth three-month period of the University of Pittsburgh`s project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quote} Participating with the university on this project are Dravo Lime Company, Mill Service, Inc., and the Center for Hazardous Materials Research. This report describes the activities of the project team during the reporting period. The principal work has focussed upon the production of six sets of samples with high water content for solidification testing and the mixing of five dry samples for solidification testing by the Proctor method. Twenty-eight day compressive strengths are reported for five of the six sets of samples with high water content. The report also discusses completion of the format of the database and the inclusion in it of all data collected to date. Special reports presented during the quarter include the Continuation Application, a News Release, and modification to the Test Plan. Work is progressing on the NEPA report and the Topical Report. The activity on the project during the fourth quarter of Phase one, as presented in the following sections, has fallen into six major areas: (1) Completion of by-product evaluations, (2) Completion of analyses of six wastes, (3) Initiation of eleven solidification tests, (4) Continued extraction and extract analysis of solidified samples, (5) Development of the database, and (6) Production of reports.

NONE

1995-11-01T23:59:59.000Z

331

1 Copyright 2014 by ASME Proceedings of the ASME 2014 International Manufacturing Science and Engineering Conference  

E-Print Network [OSTI]

to "a crowdsourcing-based design model that leverages cloud computing, service-oriented architecture and manufacturing (CBDM) refers to "a service-oriented product development model in which service consumers are able to configure products or services as well as reconfigure manufacturing systems through Infrastructure-as-a-Service

332

Coated metal fiber coalescing cell  

SciTech Connect (OSTI)

A cell is described for coalescing oil droplets dispersed in a water emulsion including an elongated perforated tube core into which the emulsion is injected, layers of oleophilic plastic covered metal mat wound about the core through which the emulsion is forced to pass, the fibers of the metal mat being covered by oleophilic plastic such as vinyl, acrylic, polypropylene, polyethylene, polyvinyl chloride, the metal being in the form of layers of expanded metal or metal fibers, either aluminum or stainless steel. In manufacturing the cell a helix wound wire is formed around the cylindrical plastic coated metal to retain it in place and resist pressure drop of fluid flowing through the metal fibers. In addition, the preferred arrangement includes the use of an outer sleeve formed of a mat of fibrous material such as polyester fibers, acrylic fibers, modacrylic fibers and mixtures thereof.

Rutz, W.D.; Swain, R.J.

1980-12-23T23:59:59.000Z

333

Design for manufacturability Design verification  

E-Print Network [OSTI]

ITRS Design #12;Design · Design for manufacturability · Design verification #12;Design for Manufacturability · Architecture challenges · Logic and circuit challenges · Layout and physical design challenges · Expected to be the source of multiple DFM challenges · Invest in variability reduction or design

Patel, Chintan

334

Production  

Broader source: Energy.gov [DOE]

Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

335

Lean manufacturing in a mass customization plant : inventory correction and shortage measurement  

E-Print Network [OSTI]

This thesis documents the application of the principles of lean manufacturing and supply chain planning at Varian Semiconductor Equipment Associates. The company's products are highly customizable, and the production ...

Raykar, Sumant (Sumant Shreechandra)

2011-01-01T23:59:59.000Z

336

Model for inventory management in valve manufacturing cell at Waters Corporation  

E-Print Network [OSTI]

This thesis addresses the challenges of improving the on-time delivery performance of a high-volume critical part type in a high-product-mix manufacturing facility of valves. Preliminary analysis on the push-type production ...

Yao, Bingxin

2013-01-01T23:59:59.000Z

337

Computer-Aided Design & Applications, Vol. 4, No. 6, 2007, pp 761-771 3D Texture Mapping for Rapid Manufacturing  

E-Print Network [OSTI]

, and product design [6]. Layer manufacturing: Layer-based additive manufacturing processes Manufacturing Yong Chen University of Southern California, yongchen@usc.edu ABSTRACT Inspired by the developments of biomimetic design and layer manufacturing, we present a microstructure design method which uses

Chen, Yong

338

Freese-casting as a Novel Manufacturing Process for Fast Reactor Fuels  

SciTech Connect (OSTI)

Advanced burner reactors are designed to reduce the amount of long-lived radioactive isotopes that need to be disposed of as waste. The input feedstock for creating advanced fuel forms comes from either recycle of used light water reactor fuel or recycle of fuel from a fast burner reactor. Fuel for burner reqctors requires novel fuel types based on new materials and designs that can acieve higher performance requirements (higher burn up, higher power, and greator margins to fuel melting) then yet achieved. One promising strategy to improved fuel performance is the manufacture of metal or ceramic scaffolds which are designed to allow for a welldefined placement of the fuel into the host, and this in a manner that permits greater control than that possible in the production of typical CERMET fuels.

Wegst, Ulrike G.K.; Allen, Todd; Sridharan, Kumar

2014-04-07T23:59:59.000Z

339

ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton GIT 2011  

E-Print Network [OSTI]

and Engineering Prof. J.S. Colton © GIT 2011 3 Ultrasonic Welding Plastic Metal Anvil Horn Materials being welded and Engineering Prof. J.S. Colton © GIT 2011 27 Brazing Uses · Join dissimilar materials ­ repairing metal parts;ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton © GIT 2011 2 Overview · Welding

Colton, Jonathan S.

340

Hollings Manufacturing Extension Partnership: A Commercialization Collaborator  

E-Print Network [OSTI]

of services, from innovation strategies to process improvements to green manufacturing. MEP also worksHollings Manufacturing Extension Partnership: A Commercialization Collaborator MEP · MANUFACTURING Manufacturing Extension Partnership (MEP) works with small and mid-sized U.S. manufacturers to help them create

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Upgrading platform using alkali metals  

DOE Patents [OSTI]

A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

Gordon, John Howard

2014-09-09T23:59:59.000Z

342

Overview of the Photovoltaic Manufacturing Technology (PVMaT) project  

SciTech Connect (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) project is a historic government/industry photovoltaic (PV) manufacturing R&D partnership composed of joint efforts between the federal government (through the US Department of Energy) and members of the US PV industry. The project`s ultimate goal is to ensure that the US industry retains and extends its world leadership role in the manufacture and commercial development of PV components and systems. PVMaT is designed to do this by helping the US PV industry improve manufacturing processes, accelerate manufacturing cost reductions for PV modules, improve commercial product performance, and lay the groundwork for a substantial scale-up of US-based PV manufacturing capacities. Phase 1 of the project, the problem identification phase, was completed in early 1991. Phase 2, the problem solution phase, which addresses process-specific problems of specific manufacturers, is now underway with an expected duration of 5 years. Phase 3 addresses R&D problems that are relatively common to a number of PV companies or the PV industry as a whole. These ``generic`` problem areas are being addressed through a teamed research approach.

Witt, C.E.; Mitchell, R.L.; Mooney, G.D.

1993-08-01T23:59:59.000Z

343

Manufacture of refrigeration oils  

SciTech Connect (OSTI)

Lubricating oils suitable for use in refrigeration equipment in admixture with fluorinated hydrocarbon refrigerants are produced by solvent extraction of naphthenic lubricating oil base stocks, cooling the resulting extract mixture, optionally with the addition of a solvent modifier, to form a secondary raffinate and a secondary extract, and recovering a dewaxed oil fraction of lowered pour point from the secondary raffinate as a refrigeration oil product. The process of the invention obviates the need for a separate dewaxing operation, such as dewaxing with urea, as conventionally employed for the production of refrigeration oils.

Chesluk, R.P.; Platte, H.J.; Sequeira, A.J.

1981-12-08T23:59:59.000Z

344

Advanced technologies for decontamination and conversion of scrap metals  

SciTech Connect (OSTI)

Recycle of radioactive scrap metals (RSM) from decommissioning of DOE uranium enrichment and nuclear weapons manufacturing facilities is mandatory to recapture the value of these metals and avoid the high cost of disposal by burial. The scrap metals conversion project detailed below focuses on the contaminated nickel associated with the gaseous diffusion plants. Stainless steel can be produced in MSC`s vacuum induction melting process (VIM) to the S30400 specification using nickel as an alloy constituent. Further the case alloy can be rolled in MSC`s rolling mill to the mechanical property specification for S30400 demonstrating the capability to manufacture the contaminated nickel into valuable end products at a facility licensed to handle radioactive materials. Bulk removal of Technetium from scrap nickel is theoretically possible in a reasonable length of time with the high calcium fluoride flux, however the need for the high temperature creates a practical problem due to flux volatility. Bulk decontamination is possible and perhaps more desirable if nickel is alloyed with copper to lower the melting point of the alloy allowing the use of the high calcium fluoride flux. Slag decontamination processes have been suggested which have been proven technically viable at the Colorado School of Mines.

Muth, T.R. [Manufacturing Sciences Corp., Oak Ridge, TN (United States); Moore, J.; Olson, D.; Mishra, B. [Colorado School of Mines, Golden, CO (United States)

1994-12-31T23:59:59.000Z

345

Pollution prevention and water conservation in metals finishing operations  

SciTech Connect (OSTI)

Attleboro, Massachusetts is the headquarters of the Materials and Controls Group of Texas Instruments Incorporated (Texas Instruments). In support of their activities, Texas Instruments operates a number of metal finishing and electroplating processes. The water supply and the wastewater treatment requirements are supplied throughout the facility from a central location. Water supply quality requirements varies with each manufacturing operation. As a result, manufacturing operations are classified as either high level or a lower water quality. The facility has two methods of wastewater treatment and disposal. The first method involves hydroxide and sulfide metals precipitation prior to discharge to a surface water. The second method involves metals precipitation, filtration, and discharge via sewer to the Attleboro WTF. The facility is limited to a maximum wastewater discharge of 460,000 gallons per day to surface water under the existing National Pollution Discharge Elimination System (NPDES) permit. There is also a hydraulic flow restriction on pretreated wastewater that is discharged to the Attleboro WTF. Both of these restrictions combined with increased production could cause the facility to reach the treatment capacity. The net effect is that wastewater discharge problems are becoming restrictive to the company`s growth. This paper reviews Texas Instruments efforts to overcome these restrictions through pollution prevention and reuse practices rather than expansion of end of pipe treatment methods.

O`Shaughnessy, J.; Clark, W. [Worcester Polytechnic Inst., MA (United States); Lizotte, R.P. Jr.; Mikutel, D. [Texas Instruments Inc., Attleboro, MA (United States)

1996-11-01T23:59:59.000Z

346

MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS  

E-Print Network [OSTI]

MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS ADVANCES INTO MANUFACTURING PROCESSES NATIONAL NEED The proposed topic "Accelerating the Incorporation of Materials Advances into Manufacturing organizations, leading researchers from academic institutions, and others. Materials performance is often

Magee, Joseph W.

347

Air cathode structure manufacture  

DOE Patents [OSTI]

An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

Momyer, William R. (Palo Alto, CA); Littauer, Ernest L. (Los Altos Hills, CA)

1985-01-01T23:59:59.000Z

348

Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quartery report, August 1994--November 1994  

SciTech Connect (OSTI)

This first quarterly report describes work during the first three months of the University of Pittsburgh`s (Pitt`s) project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with Pitt on this project are Dravo Lime Company (DLC), Mill Service, Inc. (MSO and the Center for Hazardous Materials Research (CHMR)). The report states the goals of the project - both general and specific - and then describes the activities of the project team during the reporting period. All of this work has been organizational and developmental in nature. No data has yet been collected. Technical details and data will appear for the first time in the second quarterly report and be the major topic of subsequent reports.

NONE

1994-12-01T23:59:59.000Z

349

Manufacturing of SiCp Reinforced Magnesium Composite Tubes by Hot Extrusion Processes  

SciTech Connect (OSTI)

Magnesium alloys have higher specific strength compared with other metals, such as aluminum, copper and steel. Nevertheless, their ductility is still not good for further metal forming and their strength is not large enough for real structure applications. The aim of this paper is to develop magnesium alloy composite tubes reinforced with SiC particulates by the stir-casting method and hot extrusion processes. At first, AZ61/SiCp composite ingots reinforced with 5 wt% SiC particulates are fabricated by the melt-stirring technique. Then, finite element simulations are conducted to analyze the plastic flow of magnesium alloy AZ61 within the die and the temperature distribution of the products. AZ61/SiCp composite tubes are manufactured by hot extrusion using a specially designed die-set for obtaining uniform thickness distribution tubes. Finally, the mechanical properties of the reinforced AZ61/SiCp composite and Mg alloy AZ61 tubes are compared with those of the billets to manifest the advantages of extrusion processes and reinforcement of SiC particulates. The microstructures of the billet and extruded tubes are also observed. Through the improvement of the strength of the tube product, its life cycle can be extended and the energy consumption can be reduced, and eventually the environmental sustainability is achieved.

Hwang, Yeong-Maw [National Sun Yat-Sen University-Department of Mechanical and Electro-mechanical Engineering, No.70, Lien-Hai Rd., Kaohsiung, Taiwan (China); Huang, Song-Jeng; Huang, Yu-San [National Chung Cheng University-Department of Mechanical Engineering, 168 University Rd. Ming-Hsiung, ChiaYi, Taiwan (China)

2011-05-04T23:59:59.000Z

350

Scintillator manufacture at Fermilab  

SciTech Connect (OSTI)

A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

Mellott, K.; Bross, A.; Pla-Dalmau, A. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)

1998-11-09T23:59:59.000Z

351

Scintillator manufacture at Fermilab  

SciTech Connect (OSTI)

A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

Mellott, K.; Bross, A.; Pla-Dalmau, A.

1998-08-01T23:59:59.000Z

352

AdditiveManufacturing Sustainable  

E-Print Network [OSTI]

fabrication techniques (e.g., 3D printing) into viable platforms for the realization of end-use products · VIRGINIA TECH · www.ictas.vt.edu Above: printed result of a 3D print- er. Below: researcher Amy Elliott should contact the Office for Equity and Inclusion. Key Personnel Current Activities · 3D Printing

Beex, A. A. "Louis"

353

FROM PLANT AND LOGISTICS CONTROL TO MULTI-ENTERPRISE COLLABORATION: Milestone report of the Manufacturing & Logistics Systems Coordinating Committee  

E-Print Network [OSTI]

, product life cycles shrink, and profit margins decrease. In addition, the capital costs of manufacturing of the Manufacturing & Logistics Systems Coordinating Committee S.Y. Nofa* , G. Morelb , L. Monostoric , A. Molinad , F-765-494-1299 Abstract: Current and emerging manufacturing and logistics systems are posing new challenges

Boyer, Edmond

354

Metal articles having ultrafine particles dispersed therein  

SciTech Connect (OSTI)

This patent describes a metal article of manufacture. It comprises: a metal selected from the group consisting of copper, silver, gold, lead, tin, nickel, zinc, cobalt, antimony, bismuth, iron, cadmium, chromium, germanium, gallium, selenium, tellurium, mercury, tungsten arsenic, manganese, iridium, indium, ruthenium, rhenium, rhodium, molybdenum, palladium, osmium and platinum; and a plurality of ultrafine particles.

Alexander, G.B.; Nadkarni, R.A.

1992-07-28T23:59:59.000Z

355

Opportunities and Challenges to Sustainable Manufacturing and CMP  

E-Print Network [OSTI]

for Implementing Green Manufacturing, Trans. North AmericanBoyd, S. , LMAS Green Manufacturing Research Presentation,MANUFACTURING AND GREEN MANUFACTURING Sustainability is

Dornfeld, David

2009-01-01T23:59:59.000Z

356

Method for manufacture of neutron absorbing articles  

SciTech Connect (OSTI)

A one-step curing method for the manufacture of a neutron absorbing article which comprises irreversibly curing, in desired article form, a form-retaining mixture of boron carbide particles, curable phenolic resin in solid state and in particula te form and a minor proportion of a liquid medium, which boils at a temperature below 200*c., at an elevated temperature so as to obtain bonding of the irreversibly cured phenolic polymer resulting to the boron carbide particles and production of the neutron absorbing article in desired form.

Owens, D.

1980-07-22T23:59:59.000Z

357

Method for manufacturing whisker preforms and composites  

DOE Patents [OSTI]

A process is disclosed for manufacturing Si{sub 3}N{sub 4}/SiAlON whiskers by mixing silicon carbide powder with aluminum nitride powder, adding impurities such as calcium oxide or potassium chloride to control whisker characteristics, forming the mixture in a boron nitrogen mold of desired shaped and hot isostatically pressing the formed mixture in a nitrogen environment to produce whiskers comprised substantially of SiAlON at the nucleating end of the whisker and Si{sub 3}N{sub 4} at the other end of the whisker. In one embodiment, reinforced composites are formed by impregnating the Si{sub 3}N{sub 4}/SiAlON whisker preform with a matrix material such as resin binders, liquid metals, intermetallics or ceramic materials.

Lessing, P.A.

1995-11-07T23:59:59.000Z

358

Method for manufacturing whisker preforms and composites  

DOE Patents [OSTI]

A process for manufacturing Si.sub.3 N.sub.4 /SiAlON whiskers by mixing silicon carbide powder with aluminum nitride powder, adding impurities such as calcium oxide or potassium chloride to control whisker characteristics, forming the mixture in a boron nitrogen mold of desired shaped and hot isostatically pressing the formed mixture in a nitrogen environment to produce whiskers comprised substantially of SiAlON at the nucleating end of the whisker and Si.sub.3 N.sub.4 at the other end of the whisker. In one embodiment, reinforced composites are formed by impregnating the Si.sub.3 N.sub.4 /SiAlON whisker preform with a matrix material such as resin binders, liquid metals, intermetallics or ceramic materials.

Lessing, Paul A. (Idaho Falls, ID)

1995-01-01T23:59:59.000Z

359

Additive Manufacturing Opportunities for Transportation | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Additive Manufacturing Opportunities for Transportation Mar 13 2015 10:00 AM - 11:00 AM Lonnie Love, Manufacturing Systems Research Group Transportation Science Seminar Series...

360

Clean Energy Manufacturing Initiative: Increasing American Competitive...  

Broader source: Energy.gov (indexed) [DOE]

for a Clean Energy Manufacturing Innovation Institute related to composite materials and structures. The Manufacturing Demonstration Facility at Oak Ridge National...

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A Management Strategy for Additive Manufacturing:.  

E-Print Network [OSTI]

??The thesis is about a Management Strategy for Additive Manufacturing - how engineering change influences the NPD process through the adoption of new manufacturing technology. (more)

Zahn, N.Z.

2014-01-01T23:59:59.000Z

362

National Electrical Manufacturers Association (NEMA) Response...  

Broader source: Energy.gov (indexed) [DOE]

Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI National Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI The National Electrical...

363

Additive Manufacturing Cluster Strategy | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Additive Manufacturing Cluster Strategy SHARE Additive Manufacturing Cluster Strategy As the nation's premier research laboratory, ORNL is one of the world's most capable resources...

364

Welcome and Advanced Manufacturing Partnership (Text Version...  

Broader source: Energy.gov (indexed) [DOE]

200 school aged students go into this manufacturing demonstration facility and make 3D printing or other manufacturing parts. Design and make parts for their robots. For their...

365

Mechanical and Manufacturing Engineering Mechatronics Engineering Minor  

E-Print Network [OSTI]

Mechanical and Manufacturing Engineering Mechatronics Engineering Minor Students pursuing a BSc in mechanical or manufacturing engineering have experience and entrepreneurship. Mechatronics is the synergistic combination of mechanical

Calgary, University of

366

Advanced Technology Vehicles Manufacturing Incentive Program...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

367

Process systems engineering of continuous pharmaceutical manufacturing  

E-Print Network [OSTI]

Continuous manufacturing offers a number of operational and financial benefits to pharmaceutical companies. This research examines the critical blending step for continuous pharmaceutical manufacturing and the characteristics ...

Abel, Matthew J

2010-01-01T23:59:59.000Z

368

Understanding Manufacturing Energy and Carbon Footprints, October...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis U.S....

369

Manufacturing development of low activation vanadium alloys  

SciTech Connect (OSTI)

General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported.

Smith, J.P.; Johnson, W.R.; Baxi, C.B.

1996-10-01T23:59:59.000Z

370

Manufacturing System Design Framework Manual  

E-Print Network [OSTI]

Previous Lean Aerospace Initiative research in factory operations had indicated that the greatest performance gains are realized when the manufacturing system is designed from the top down and from supplier to the customer. ...

Vaughn, Amanda

2002-01-01T23:59:59.000Z

371

Wind Energy Manufacturing Tax Incentive  

Broader source: Energy.gov [DOE]

With the passage of [http://www.arkansasenergy.org/media/261385/act736.pdf HB 2230 (2009)] in April 2009, the Arkansas Legislature expanded a tax incentive for manufacturers of windmill blades or...

372

Stabilization of Electrocatalytic Metal Nanoparticles at Metal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points. Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene...

373

Scintillator manufacture at Fermilab  

SciTech Connect (OSTI)

A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested. {copyright} {ital 1998 American Institute of Physics.}

Mellott, K.; Bross, A.; Pla-Dalmau, A. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)

1998-11-01T23:59:59.000Z

374

Manufacture of gradient micro-structures of magnesium alloys using two stage extrusion dies  

SciTech Connect (OSTI)

This paper aims to manufacture magnesium alloy metals with gradient micro-structures using hot extrusion process. The extrusion die was designed to have a straight channel part combined with a conical part. Materials pushed through this specially-designed die generate a non-uniform velocity distribution at cross sections inside the die and result in different strain and strain rate distributions. Accordingly, a gradient microstructure product can be obtained. Using the finite element analysis, the forming temperature, effective strain, and effective strain rate distributions at the die exit were firstly discussed for various inclination angles in the conical die. Then, hot extrusion experiments with a two stage die were conducted to obtain magnesium alloy products with gradient micro-structures. The effects of the inclination angle on the grain size distribution at cross sections of the products were also discussed. Using a die of an inclination angle of 15, gradient micro-structures of the grain size decreasing gradually from 17 ?m at the center to 4 ?m at the edge of product were achieved.

Hwang, Yeong-Maw; Huang, Tze-Hui [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, No. 70, Lien-Hai Rd., Kaohsiung, 804, Taiwan (China); Alexandrov, Sergei [Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow (Russian Federation); Naimark, Oleg Borisovich [Institute of Continuous Media Mechanics, Russian Academy of Sciences, Perm (Russian Federation); Jeng, Yeau-Ren [Department of Mechanical Engineering and Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan (China)

2013-12-16T23:59:59.000Z

375

Processing electric arc furnace dust into saleable chemical products  

SciTech Connect (OSTI)

The modern steel industry uses electric arc furnace (EAF) technology to manufacture steel. A major drawback of this technology is the production of EAF dust, which is listed by the U.S. Environmental Protection Agency as a hazardous waste under the Resource Conservation and Recovery Act. The annual disposal of approximately 0.65 million tons of EAF dust in the United States and Canada is an expensive, unresolved problem for the steel industry. EAF dust byproducts are generated during the manufacturing process by a variety of mechanisms. The dust consists of various metals (e.g., zinc, lead, cadmium) that occur as vapors at 1,600{degrees}C (EAF hearth temperature); these vapors are condensed and collected in a baghouse. The production of one ton of steel will generate approximately 25 pounds of EAF dust as a byproduct, which is currently disposed of in landfills.

NONE

1998-04-01T23:59:59.000Z

376

Manufacturing Demonstration Facility  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-Cost ProductionManagementSites |Nuclear

377

Method of producing adherent metal oxide coatings on metallic surfaces  

DOE Patents [OSTI]

Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

Lane, Michael H. (Clifton Park, NY); Varrin, Jr., Robert D. (McLean, VA)

2001-01-01T23:59:59.000Z

378

Mesoporous Silica-Supported Metal Oxide-Promoted Rh Nanocatalyst for Selective Production of Ethanol from Syngas  

SciTech Connect (OSTI)

The objective is to develop a process that will convert synthesis gas from coal into ethanol and then transform the ethanol into hydrogen. Principal investigators from Iowa State University include Dr. George Kraus, Dr. Victor Lin, Marek Pruski, and Dr. Robert Brown. Task 1 involves catalyst development and catalyst scale up. Mesoporous manganese silicate mixed oxide materials will be synthesized, characterized and evaluated. The first-and secondgeneration catalysts have been prepared and scaled up for use in Task 2. The construction of a high-pressure reactor system for producing synthetic liquid fuel from simulated synthesis gas stream has been completed as the first step in Task 2. Using the first- and second generation catalysts, the reactor has demonstrated the production of synthetic liquid fuel from a simulated synthesis gas stream.

George Kraus

2010-09-30T23:59:59.000Z

379

PCB origami : folding circuit boards into electronic products  

E-Print Network [OSTI]

PCB origami is a concept for an alternative manufacturing process of electronic products, in which the electronic material will be manufactured flat and folded into functional 3D graspable products by the user. PCBs will ...

Sterman, Yoav

2013-01-01T23:59:59.000Z

380

Nitrided Metallic Bipolar Plates  

SciTech Connect (OSTI)

The objectives are: (1) Develop and optimize stainless steel alloys amenable to formation of a protective Cr-nitride surface by gas nitridation, at a sufficiently low cost to meet DOE targets and with sufficient ductility to permit manufacture by stamping. (2) Demonstrate capability of nitridation to yield high-quality stainless steel bipolar plates from thin stamped alloy foils (no significant stamped foil warping or embrittlement). (3) Demonstrate single-cell fuel cell performance of stamped and nitrided alloy foils equivalent to that of machined graphite plates of the same flow-field design ({approx}750-1,000 h, cyclic conditions, to include quantification of metal ion contamination of the membrane electrode assembly [MEA] and contact resistance increase attributable to the bipolar plates). (4) Demonstrate potential for adoption in automotive fuel cell stacks. Thin stamped metallic bipolar plates offer the potential for (1) significantly lower cost than currently-used machined graphite bipolar plates, (2) reduced weight/volume, and (3) better performance and amenability to high volume manufacture than developmental polymer/carbon fiber and graphite composite bipolar plates. However, most metals exhibit inadequate corrosion resistance in proton exchange membrane fuel cell (PEMFC) environments. This behavior leads to high electrical resistance due to the formation of surface oxides and/or contamination of the MEA by metallic ions, both of which can significantly degrade fuel cell performance. Metal nitrides offer electrical conductivities up to an order of magnitude greater than that of graphite and are highly corrosion resistant. Unfortunately, most conventional coating methods (for metal nitrides) are too expensive for PEMFC stack commercialization or tend to leave pinhole defects, which result in accelerated local corrosion and unacceptable performance.

Brady, Michael P [ORNL; Tortorelli, Peter F [ORNL; Pihl, Josh A [ORNL; Toops, Todd J [ORNL; More, Karren Leslie [ORNL; Meyer III, Harry M [ORNL; Vitek, John Michael [ORNL; Wang, Heli [National Renewable Energy Laboratory (NREL); Turner, John [National Renewable Energy Laboratory (NREL); Wilson, Mahlon [Los Alamos National Laboratory (LANL); Garzon, Fernando [Los Alamos National Laboratory (LANL); Rockward, Tommy [Los Alamos National Laboratory (LANL); Connors, Dan [GenCell Corp; Rakowski, Jim [Allegheny Ludlum; Gervasio, Don [Arizona State University

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Designing a National Network for Manufacturing Innovation  

E-Print Network [OSTI]

Designing a National Network for Manufacturing Innovation NNMI and The Additive Manufacturing Pilot Introduction NNMI principles Public NMMI Design Pilot Institute on Additive Manufacturing #12;IMI Mission Process, such as Additive Manufacturing An Advanced Material e.g. lightweight, low cost carbon fiber

382

Carbon fiber manufacturing via plasma technology  

DOE Patents [OSTI]

The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

Paulauskas, Felix L. (Knoxville, TN); Yarborough, Kenneth D. (Oak Ridge, TN); Meek, Thomas T. (Knoxville, TN)

2002-01-01T23:59:59.000Z

383

Improvements in manufacture of iridium alloy materials  

SciTech Connect (OSTI)

Iridium alloys are used as fuel-cladding material in radioisotope thermoelectric generators (RTGs). Hardware produced at the Oak Ridge National Laboratory (ORNL) has been used in Voyager 1 and 2, Galileo, and Ulysses spacecrafts. This hardware was fabricated from small, 500-g drop-cast ingots. Porosity in these ingots and the resulting defects in the rolled sheets caused rejection of about 30% of the product. An improved manufacturing process was developed with the goal of substantially reducing the level of defects in the rolled sheets. The ingot size is increased to 10 kg and is produced by vacuum arc remelting. In addition, the ingot is hot extruded prior to rolling. Since implementation of the process in 1989, the average rate of rejection of the product has been reduced to below 10%.

Ohriner, E.K. (Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6083 (United States))

1993-01-15T23:59:59.000Z

384

Actinide metal processing  

DOE Patents [OSTI]

A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

Sauer, Nancy N. (Los Alamos, NM); Watkin, John G. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

385

Actinide metal processing  

DOE Patents [OSTI]

A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

Sauer, N.N.; Watkin, J.G.

1992-03-24T23:59:59.000Z

386

Energy Manufacturing: Principles and Recent June 28 July 1, 2011  

E-Print Network [OSTI]

) June 29, 2011 Wednesday (Solar Panels) 8:30 ­ 9:00 Introduction of Solar Energy - Steven Danyluk in algae biofuel production, overview of various photovoltaic solar cell technologies and manufacturing:30 ­ 17:30 Design of Advanced Heat-transfer fluids for Concentrated Solar Power - Amy Sun, Sandia (SNL

MacIver, Malcolm A.

387

CLOUD MANUFACTURING: CURRENT STATUS AND FUTURE TRENDS INTRODUCTION  

E-Print Network [OSTI]

and integrating inter-organizational and heterogeneous services in CM environments. · Business Model: For CM to be embraced by service consumers and providers, current business models incorporate the concepts manufacturing resources to form temporary, reconfigurable production lines which enhance efficiency, reduce

388

1989 U. S. A. oilfield service, supply and manufacturers directory  

SciTech Connect (OSTI)

This book lists and describes principal activities of more than 3,600 companies providing oil-field services, wholesale and retail products, and companies involved in the design, manufacture and construction of oilfield equipment. It gives company address and phone; principal officers; telex, cable, and facsimile numbers; branch offices; and subsidiaries.

Not Available

1989-01-01T23:59:59.000Z

389

Development of Functionally Graded Materials for Manufacturing Tools and Dies and Industrial Processing Equipment  

SciTech Connect (OSTI)

Hot forming processes such as forging, die casting and glass forming require tooling that is subjected to high temperatures during the manufacturing of components. Current tooling is adversely affected by prolonged exposure at high temperatures. Initial studies were conducted to determine the root cause of tool failures in a number of applications. Results show that tool failures vary and depend on the operating environment under which they are used. Major root cause failures include (1) thermal softening, (2) fatigue and (3) tool erosion, all of which are affected by process boundary conditions such as lubrication, cooling, process speed, etc. While thermal management is a key to addressing tooling failures, it was clear that new tooling materials with superior high temperature strength could provide improved manufacturing efficiencies. These efficiencies are based on the use of functionally graded materials (FGM), a new subset of hybrid tools with customizable properties that can be fabricated using advanced powder metallurgy manufacturing technologies. Modeling studies of the various hot forming processes helped identify the effect of key variables such as stress, temperature and cooling rate and aid in the selection of tooling materials for specific applications. To address the problem of high temperature strength, several advanced powder metallurgy nickel and cobalt based alloys were selected for evaluation. These materials were manufactured into tooling using two relatively new consolidation processes. One process involved laser powder deposition (LPD) and the second involved a solid state dynamic powder consolidation (SSDPC) process. These processes made possible functionally graded materials (FGM) that resulted in shaped tooling that was monolithic, bi-metallic or substrate coated. Manufacturing of tooling with these processes was determined to be robust and consistent for a variety of materials. Prototype and production testing of FGM tooling showed the benefits of the nickel and cobalt based powder metallurgy alloys in a number of applications evaluated. Improvements in tool life ranged from three (3) to twenty (20) or more times than currently used tooling. Improvements were most dramatic where tool softening and deformation were the major cause of tool failures in hot/warm forging applications. Significant improvement was also noted in erosion of aluminum die casting tooling. Cost and energy savings can be realized as a result of increased tooling life, increased productivity and a reduction in scrap because of improved dimensional controls. Although LPD and SSDPC tooling usually have higher acquisition costs, net tooling costs per component produced drops dramatically with superior tool performance. Less energy is used to manufacture the tooling because fewer tools are required and less recycling of used tools are needed for the hot forming process. Energy is saved during the component manufacturing cycle because more parts can be produced in shorter periods of time. Energy is also saved by minimizing heating furnace idling time because of less downtime for tooling changes.

Lherbier, Louis, W.; Novotnak, David, J.; Herling, Darrell, R.; Sears, James, W.

2009-03-23T23:59:59.000Z

390

New Manufacturing Method for Paper filler and Fiber Material  

SciTech Connect (OSTI)

The study compares commercial available filler products with a new developed ??Hybrid Fiber Filler Composite Material? and how main structural, optical and strength properties are affected by increasing the filler content of at least 5% over commercial values. The study consists of: (i) an overview of paper filler materials used in the paper production process, (ii) discusses the manufacturing technology of lime based filler materials for paper applications, (iii) gives an overview of new emerging paper filler technologies, (iv) discusses a filler evaluation of commercial available digital printing paper products, (v) reports from a detailed handsheet study and 12? pilot plant paper machine trial runs with the new Hybrid Fiber Filler Composite Material, and (vi) evaluates and compares commercial filler products and the new Hybrid Fiber Filler Composite Material with a life cycle analyses that explains manufacturing, economic and environmental benefits as they are applied to uncoated digital printing papers.

Doelle, Klaus

2011-11-22T23:59:59.000Z

391

Manufacturing Energy and Carbon Footprints (2006 MECS)  

Broader source: Energy.gov [DOE]

Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lostand where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

392

Advanced Battery Manufacturing (VA)  

SciTech Connect (OSTI)

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATTs products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATTs work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

393

int. j. prod. res., 2001, vol. 39, no. 16, 35613600 A review of agile manufacturing systems  

E-Print Network [OSTI]

literature on agile manufacturing. About 73 papers from premier scien- ti®c journals and conferences have Manufacturing International Journal of Production Research ISSN 0020±7543 print/ISSN 1366±588X online # 2001 Taylor & Francis Ltd http://www.tandf.co.uk/journals DOI: 10.1080/00207540110068790 Revision received

Nagi, Rakesh

394

The Impact of Dr.Shigeo Shingo on Modern Manufacturing Practices  

E-Print Network [OSTI]

1 The Impact of Dr.Shigeo Shingo on Modern Manufacturing Practices IE 361 Dr. Stephen B. Vardem manufacturing fundamentals. Biography Dr. Shigeo's expertise was a result of his vast experience and knowledge. In addition, by focusing on production rather than management alone, he was able to establish himself

Vardeman, Stephen B.

395

CONTINUOUS ROLL-TO-ROLL SERPENTINE DEPOSITION FOR HIGH THROUGHPUT a-Si PV MANUFACTURING  

E-Print Network [OSTI]

a number of advantages in a fully automated high throughput PV module production plant [l-18--a significant problem in many glass substrate amorphous silicon alloy PV module manufacturing plants. ECDCONTINUOUS ROLL-TO-ROLL SERPENTINE DEPOSITION FOR HIGH THROUGHPUT a-Si PV MANUFACTURING M. Izu, H

Deng, Xunming

396

Process oil manufacturing process  

SciTech Connect (OSTI)

A method is described for producing a naphthenic process oil having reduced sulfur, nitrogen and polynuclear aromatics contents from a naphthenic feed containing same and having an atmospheric boiling range of about 650/sup 0/ to about 1200/sup 0/F. comprising: A. passing the feed into a first hydrotreating stage having a hydrotreating catalyst therein, the stage maintained at a temperature of about 600/sup 0/ to about 750/sup 0/F. and at a hydrogen partial pressure of about 400 to about 1500 psig, to convert at least a portion of the sulfur to hydrogen sulfide and the nitrogen to ammonia; B. passing the hydrotreated feed from the first hydrotreating stage in an intermediate stripping stage wherein hydrogen sulfide, ammonia, or both is removed; C. passing the hydrotreated feed from the intermediate stage into a second hydrotreating stage having therein a hydrotreating catalyst selected from the group consisting of nickel-molybdenum, cobalt-molybdenum, nickel-tungsten and mixtures thereof, the second hydrotreating stage maintained at a temperature lower than that of the first hydrotreating stage and at a hydrogen partial pressure ranging between about 400 and about 1,500 psig; D. monitoring the polynuclear aromatics content, the degree of saturation, or both of the product exiting the second hydrotreating stage; and, E. adjusting the temperature in the second hydrotreating stage to keep the polynuclear aromatics content, the degree of saturation, or both below a limit suitable for process oil.

Corman, B.G.; Korbach, P.F.; Webber, K.M.

1989-01-31T23:59:59.000Z

397

The International Journal of Flexible Manufacturing Systems, 16, 1144, 2004 c 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.  

E-Print Network [OSTI]

multistage assembly processes (MAP) such as the automotive, aerospace, appliance, and electronics industries a characteristic feature of modern manufacturing and new product development in automotive, aerospace, and other-based-competition--New paradigm and challenges The US automotive industry has dominated world auto markets for years. The mass

Zhou, Shiyu

398

Manufacturing for the Hydrogen Economy Manufacturing Research & Development  

E-Print Network [OSTI]

to coordinate and leverage the current federal efforts focused on manufacturability issues such as low-cost of the hydrogen and fuel cell technologies needed to move the United States toward a future hydrogen economy of a hydrogen energy economy, moving from today's laboratory-scale fabrication technologies to high

399

Manufacturing Innovation in the DOE  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007Naval Reactors' Cyber SecurityManufacturingManufacturing

400

Re-sourcing manufacturing processes in metal forming operations  

E-Print Network [OSTI]

Deciding which activities to conduct in-house and which to outsource has become increasingly important due to its implications on a company's supply chain and overall business model. A number of factors can lead a company ...

Holtz, Heath M. (Heath Mikal)

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Manufacture of Advanced Battery Metal Containers & Components | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergy Maine09 BalanceStorageReview ofPantexof

402

Manufacture of Advanced Battery Metal Containers & Components | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergy Maine09 BalanceStorageReview ofPantexofof

403

Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps More Documents &Small2011 DOETheNationalWeMessage fromin Process

404

Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design, April 2013  

Broader source: Energy.gov [DOE]

Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design

405

Electroless metal plating of plastics  

DOE Patents [OSTI]

Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

Krause, Lawrence J. (Chicago, IL)

1986-01-01T23:59:59.000Z

406

Electroless metal plating of plastics  

DOE Patents [OSTI]

Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

Krause, L.J.

1982-09-20T23:59:59.000Z

407

Electroless metal plating of plastics  

DOE Patents [OSTI]

Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

Krause, Lawrence J. (Chicago, IL)

1984-01-01T23:59:59.000Z

408

Process for manufacturing a lithium alloy electrochemical cell  

DOE Patents [OSTI]

A process for manufacturing a lithium alloy, metal sulfide cell tape casts slurried alloy powders in an organic solvent containing a dissolved thermoplastic organic binder onto casting surfaces. The organic solvent is then evaporated to produce a flexible tape removable adhering to the casting surface. The tape is densified to increase its green strength and then peeled from the casting surface. The tape is laminated with a separator containing a lithium salt electrolyte and a metal sulfide electrode to form a green cell. The binder is evaporated from the green cell at a temperature lower than the melting temperature of the lithium salt electrolyte. Lithium alloy, metal sulfide and separator powders may be tape cast.

Bennett, William R. (North Olmstead, OH)

1992-10-13T23:59:59.000Z

409

Infrared imaging: A versatile NDT method for manufacturing  

SciTech Connect (OSTI)

The non-contact, non-invasive, highly adaptable nature of infrared technology offers many advantages over traditional non-destructive testing methods such as x-ray and ultrasound. Recent performance improvements accompanied by cost reductions are enabling broader implementation across a wide variety of industries. Most promising for future growth are application specific configurations packaged as integrated modules. Among the many industries that benefit from infrared technology, manufacturing has experienced the greatest gain. Environments including both continuous and batch manufacturing involve many critical thermal processes. Through the use of infrared imaging equipment, these processes can be easily monitored and optimized to ensure product quality and process efficiency.

West, L.M. [FLIR Systems, Inc., Portland, OR (United States)

1995-12-31T23:59:59.000Z

410

Method of coating metal surfaces to form protective metal coating thereon  

DOE Patents [OSTI]

A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof. 1 figure.

Krikorian, O.H.; Curtis, P.G.

1992-03-31T23:59:59.000Z

411

From Manufacturing Green Office Furniture to providing Sustainable Workplace Services: A necessary change in practices, tools and  

E-Print Network [OSTI]

1 From Manufacturing Green Office Furniture to providing Sustainable Workplace Services company in office furniture like Steelcase is moving its business from manufacturing physical products. After this statement, we stress the issues raised by the shift from a current state of green product

Boyer, Edmond

412

Manufacturing Energy and Carbon Footprints  

E-Print Network [OSTI]

Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much...

Brueske, S.; Lorenz, T.

2012-01-01T23:59:59.000Z

413

Additive manufacturing method of producing  

E-Print Network [OSTI]

Additive manufacturing method of producing silver or copper tracks on polyimide film Problem/stripping) using an additive process support by a novel bio- degradable photo-initiator package. technology. Building on previous work by Hoyd- Gigg Ng et al. [1,2], Heriot-Watt has developed an additive film

Painter, Kevin

414

Heat treating of manufactured components  

DOE Patents [OSTI]

An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material is disclosed. The system typically includes an insulating vessel placed within a microwave applicator chamber. A moderating material is positioned inside the insulating vessel so that a substantial portion of the exterior surface of each component for heat treating is in contact with the moderating material.

Ripley, Edward B. (Knoxville, TN)

2012-05-22T23:59:59.000Z

415

Systems, Inc. Manufacturing Program Manager  

E-Print Network [OSTI]

70819 #12;Advanced Energy Systems, Inc. Outline ·Introduction ·Accomplishments Phase I ·Technical Approach - Second Year ·Manufacturing Schedule Assessment -Top Level Phase II #12;Advanced Energy Systems Design and FEA of 5 cell RF Cavity, He Vessel, Power Coupler, & Cryostat -Interfaces to external piping

416

Enabling effective product launch decisions  

E-Print Network [OSTI]

The present work looks into the question of optimizing the performance of product launch decisions-in particular, the decisions of product development duration and manufacturing ramp-up. It presents an innovative model for ...

Akamphon, Sappinandana

2008-01-01T23:59:59.000Z

417

Encoding, application and association of radio frequency identification tags on high speed manufacturing lines  

E-Print Network [OSTI]

One of the entry points of radio frequency identification technology in supply chain applications is at the manufacturing line, after production, as packaged goods leave for the next link of the network of suppliers, ...

Fonseca, Herbert Moreti, 1973-

2004-01-01T23:59:59.000Z

418

Development of a manufacturing Applet's user interface to enhance its properties as a teaching tool  

E-Print Network [OSTI]

A manufacturing system's design and operation plays a critical part is the cost, rate and quality of any product. As a result optimization techniques and cost benefit analysis are common practices in any industry involving ...

Dobson, Michael, S.B. (Michael J.). Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

419

High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources  

SciTech Connect (OSTI)

This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

Laxson, A.; Hand, M. M.; Blair, N.

2006-10-01T23:59:59.000Z

420

Design and implementation of a continuous improvement framework for an organic photovoltaic panels manufacturer  

E-Print Network [OSTI]

The MIT MEng Team worked at Konarka Technologies, the world leader organic photovoltaic panels (OPV) manufacturer, on several improvement projects. The concentration was on operations improvement as well as production ...

Colaci, Gregorio

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The Technical and Economic Potential for Electricity Energy Efficiency in a Semiconductor Manufacturing Plant  

E-Print Network [OSTI]

In recent years, there has been renewed interest in energy efficiency in the semiconductor industry. The declining prices for semiconductor products has prompted semiconductor manufacturing plants to control costs so as to maintain profitability...

Lee, A. H. W.; Golden, J. W.; Zarnikau, J. W.

422

Heliostat Manufacturing for Near-Term Markets: Phase II Final Report  

SciTech Connect (OSTI)

This report describes a project by Science Applications International Corporation and its subcontractors Boeing/Rocketdyne and Bechtel Corp. to develop manufacturing technology for production of SAIC stretched membrane heliostats. The project consists of three phases, of which two are complete. This first phase had as its goals to identify and complete a detailed evaluation of manufacturing technology, process changes, and design enhancements to be pursued for near-term heliostat markets. In the second phase, the design of the SAIC stretched membrane heliostat was refined, manufacturing tooling for mirror facet and structural component fabrication was implemented, and four proof-of-concept/test heliostats were produced and installed in three locations. The proposed plan for Phase III calls for improvements in production tooling to enhance product quality and prepare increased production capacity. This project is part of the U.S. Department of Energy's Solar Manufacturing Technology Program (SolMaT).

Energy Products Division: Science Applications International Corporation: Golden, Colorado

1998-12-21T23:59:59.000Z

423

The Case for Casein Fiber: Local Design Solutions for Sustainability in Manufacturing  

E-Print Network [OSTI]

and apparel manufacturing, this paper examines the problem of environmental harm caused by the creation, use, and disposal of garments inherent in the current global system. Localizing the production of textiles using casein fiber sourced from waste milk...

McKenna, Kimberly Fisher

2012-05-31T23:59:59.000Z

424

3D PRINTING FOR INTELLIGENT METALLIC STRUCTURES M. Strantza1  

E-Print Network [OSTI]

3D PRINTING FOR INTELLIGENT METALLIC STRUCTURES M. Strantza1 , D. De Baere2 , M. Rombouts3 , SSHM system is produced by 3D printing or additive manufacturing. Additive Manufacturing (AM) is a "process to enable its implementation. This work demonstrates the feasibility study of eSHM systems produced by 3D

Boyer, Edmond

425

The photovoltaic manufacturing technology project: A government/industry partnership  

SciTech Connect (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R&D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R&D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

1991-12-01T23:59:59.000Z

426

The Photovoltaic Manufacturing Technology Project: Phase 1 subcontractors  

SciTech Connect (OSTI)

The Phase I portion of the Photovoltaic Manufacturing Technology (PVMaT) Project, the problem identification phase, was completed in mid-1991. This work involved competitive bidding that was open to any US firm with existing manufacturing capabilities, regardless of material or module design. In early 1991, subcontracts were awarded to 22 of approximately 40 bidders. Each subcontract was funded at a level of up to $50,000 and a duration of three months. The problems identified by the research in this phase of the program represent opportunities for industrial participants to improve their manufacturing processes, reduce manufacturing costs, increase product performance, or develop a foundation for scaling up US-based manufacturing plant capacities. Many of these opportunities have since been detailed in the approaches that these organizations suggested for Phase 2 (the problem solution phase) research and development (R&D). It is not. anticipated that any additional Phase I solicitation will be issued because Phase I was intended to help the US Department of Energy (DOE) characterize the status and needs of the US photovoltaic (PV) industry and encourage the industry to examine and prioritize required manufacturing line improvements. Phase I subcontracted research included five subcontractors working on flat-plate crystalline silicon technology, eleven working on flat-plate thin-film modules (one in thin-film crystalline silicon, six in amorphous silicon. and four in polycrystalline thin films), six working on concentrator systems, and two working on general equipment/production options. (Two of the participants each worked in two areas).

Not Available

1992-07-01T23:59:59.000Z

427

The Photovoltaic Manufacturing Technology Project: Phase 1 subcontractors  

SciTech Connect (OSTI)

The Phase I portion of the Photovoltaic Manufacturing Technology (PVMaT) Project, the problem identification phase, was completed in mid-1991. This work involved competitive bidding that was open to any US firm with existing manufacturing capabilities, regardless of material or module design. In early 1991, subcontracts were awarded to 22 of approximately 40 bidders. Each subcontract was funded at a level of up to $50,000 and a duration of three months. The problems identified by the research in this phase of the program represent opportunities for industrial participants to improve their manufacturing processes, reduce manufacturing costs, increase product performance, or develop a foundation for scaling up US-based manufacturing plant capacities. Many of these opportunities have since been detailed in the approaches that these organizations suggested for Phase 2 (the problem solution phase) research and development (R D). It is not. anticipated that any additional Phase I solicitation will be issued because Phase I was intended to help the US Department of Energy (DOE) characterize the status and needs of the US photovoltaic (PV) industry and encourage the industry to examine and prioritize required manufacturing line improvements. Phase I subcontracted research included five subcontractors working on flat-plate crystalline silicon technology, eleven working on flat-plate thin-film modules (one in thin-film crystalline silicon, six in amorphous silicon. and four in polycrystalline thin films), six working on concentrator systems, and two working on general equipment/production options. (Two of the participants each worked in two areas).

Not Available

1992-07-01T23:59:59.000Z

428

Development of a metal hydride electrode waste treatment process  

SciTech Connect (OSTI)

Manufacturing residues of metal hydride electrodes for nickel - metal hydride batteries were chemically processed to recover the metal part and heat treated for the organic part. Chemical recovery yielded Ni-Co alloy after electrolysis of the solution and hydroxides of other metal, mainly rare earths. The organic part, pyrolyzed at 700 C, led to separation between carbon and fluorinated matter. Infrared coupling at the output of the pyrolysis furnace was used to identify the pyrolysis gases.

Bianco, J.C.; Martin, D.; Ansart, F.; Castillo, S.

1999-12-01T23:59:59.000Z

429

Integration of rapid prototyping into design and manufacturing  

SciTech Connect (OSTI)

The introduction of rapid prototyping machines into the marketplace promises to revolutionize the process of producing prototype parts with production-like quality. In the age of concurrent engineering and agile manufacturing, it is necessary to exploit applicable new technologies as soon as they become available. The driving force behind integrating these evolutionary processes into the design and manufacture of prototype parts is the need to reduce lead times and fabrication costs, improve efficiency, and increase flexibility without sacrificing quality. Sandia utilizes Stereolithography (SL) and Selective Laser Sintering (SLS) capabilities to support internal design and manufacturing efforts. SL is used in the design iteration process to produce proof-of-concept models, hands-on models for design reviews, fit-check models, visual aids for manufacturing, and functional parts in assemblies. SLS is used to produce wax patterns for the lost wax process of investment casting in support of an internal Sandia National Laboratories program called FASTCAST which integrates experimental and computational technologies into the investment casting process. This presentation will provide a brief overview of the SL and SLS processes and address our experiences with these technologies from the standpoints of application, accuracy, surface finish, and feature definition. Also presented will be several examples of prototype parts manufactured by the Stereolithography and Selective Laser Sintering rapid prototyping machines.

Atwood, C.L.; McCarty, G.D.; Pardo, B.T.; Bryce, E.A.

1993-10-01T23:59:59.000Z

430

Method of manufacturing nuclear fuel bundle spacers  

SciTech Connect (OSTI)

This patent describes a method of manufacturing nuclear fuel bundle spacers on an automated production line basis. It comprises: cutting elongated tubing stock into shorter tubular ferrules; checking the length of each ferrule and rejecting those ferrules of unacceptable lengths; cutting predetermined features in the sidewall of each ferrule; forming the sidewall of each ferrule to impart predetermined surface formations thereto; checking a critical dimension of each sidewall surface formation of each ferrule and rejecting those of unacceptable dimensions; assembling successive pairs of ferrules into subassemblies; assembling successive subassemblies into a spacer assembly fixture; assembling a peripheral band in the spacer assembly fixture; conjoining the ferrules to each other and to the peripheral band to create a structurally rigid, finished spacer; and providing a separate controller for automatically controlling and monitoring the performances of these steps.

White, D.W.; Muncy, D.G.; Schoenig, F.C. Jr.

1989-09-26T23:59:59.000Z

431

Innovations in the Use of Nuclear Energy for Sustainable Manufacturing  

SciTech Connect (OSTI)

Abstract Over the next 50 years, nuclear energy will become increasingly important in providing the electricity and heat needed both by the presently industrialized countries and by those countries which are now developing their manufacturing industries. The twin concerns of global climate change and of the vulnerability of energy supplies caused by increasing international competition will lead to a greater reliance on nuclear energy for both electricity and process heat. Conservative estimates of new nuclear construction indicate a 50% increase in capacity by 2030. Other estimates predict a tripling of present capacity. Required machine tool technologies will include the improvements in the manufacture of standard LWR components, such as pressure vessels and pumps. Further in the future, technologies for working high temperature metals and ceramics will be needed and will require new machining capabilities.

J. Stephen Herring

2010-10-01T23:59:59.000Z

432

TX-100 manufacturing final project report.  

SciTech Connect (OSTI)

This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and Twist-Coupled Prototype project. The TX-100 blade is a 9 meter prototype blade designed with bend-twist coupling to augment the mitigation of peak loads during normal turbine operation. This structural coupling was achieved by locating off axis carbon fiber in the outboard portion of the blade skins. The report will present the tooling selection, blade production, blade instrumentation, blade shipping and adapter plate design and fabrication. The baseline blade used for this project was the ERS-100 (Revision D) wind turbine blade. The molds used for the production of the TX-100 were originally built for the production of the CX-100 blade. The same high pressure and low pressure skin molds were used to manufacture the TX-100 skins. In order to compensate for the difference in skin thickness between the CX-100 and the TX-100, however, a new TX-100 shear web plug and mold were required. Both the blade assembly fixture and the root stud insertion fixture used for the CX-100 blades could be utilized for the TX-100 blades. A production run of seven TX-100 prototype blades was undertaken at TPI Composites during the month of October, 2004. Of those seven blades, four were instrumented with strain gauges before final assembly. After production at the TPI Composites facility in Rhode Island, the blades were shipped to various test sites: two blades to the National Wind Technology Center at the National Renewable Energy Laboratory in Boulder, Colorado, two blades to Sandia National Laboratory in Albuquerque, New Mexico and three blades to the United States Department of Agriculture turbine field test facility in Bushland, Texas. An adapter plate was designed to allow the TX-100 blades to be installed on existing Micon 65/13M turbines at the USDA site. The conclusion of this program is the kick-off of the TX-100 blade testing at the three testing facilities.

Ashwill, Thomas D.; Berry, Derek S. (TPI Composites, Inc., Warren, RI)

2007-11-01T23:59:59.000Z

433

Artisan Manufacturing: Order (2010-CW-0712)  

Broader source: Energy.gov [DOE]

DOE ordered Artisan Manufacturing Company, Inc., to pay a $5,000 civil penalty after finding Artisan Manufacturing had failed to certify that certain models of faucets comply with the applicable water conservation standard.

434

Goodman Manufacturing: Order (2012-CE-1509)  

Broader source: Energy.gov [DOE]

DOE ordered Goodman Manufacturing Company L.P. to pay an $8,000 civil penalty after finding Goodman Manufacturing had failed to certify that certain room air conditioners comply with the applicable energy conservation standard.

435

Goodman Manufacturing: Proposed Penalty (2011-SE-4301)  

Broader source: Energy.gov [DOE]

DOE alleged in a Notice of Proposed Civil Penalty that Goodman Manufacturing manufactured and distributed noncompliant basic model CPC180* commercial package air conditioners in the U.S.

436

Mechanics and Design, Manufacturing Professor Hani Naguib  

E-Print Network [OSTI]

Mechanical and Industrial Engineering Manufacturing What is Manufacturing? The transformation of materials. Apple Canada(Se12), Revenue: $5,067,109 9. CGI Group(Se12), Revenue: $4,786,857 10. Siemens Canada(Se12

437

Faculty Position in Mechanical Engineering Additive Manufacturing  

E-Print Network [OSTI]

using additive manufacturing in applications such as, but not limited to the net shape manufacture of) Promoting Well-Being, Finding Cures; (3) Building Communities, Expanding Opportunities; and (4) Harnessing

438

Montana Manufacturing Center www.mtmanufacturingcenter.com  

E-Print Network [OSTI]

Montana Manufacturing Center www.mtmanufacturingcenter.com University Technical Assistance Program and wellness industry. Commenting on the strategy, Chief Opera- tions Officer and Six Sigma Green Belt Brad achieve that. NLI offers premier manufacturing and laboratories services (www

Dyer, Bill

439

Objective assessment of manufacturing technology investments  

E-Print Network [OSTI]

Amgen is a biotechnology company with manufacturing plants throughout the world. New manufacturing technologies are constantly being developed and implemented in order to address cost, quality, regulation, and competitive ...

Rothman, Craig Jeremy

2012-01-01T23:59:59.000Z

440

Building Blocks for the Future of Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the Future of Manufacturing Building Blocks for the Future of Manufacturing Scott Smith 2011.05.04 Even though we grew up on opposite sides of the world, my colleague...

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Mechanical and Manufacturing Engineering Petroleum Engineering Minor  

E-Print Network [OSTI]

of Chemical and Petroleum Engineering for their petroleum engineering minor. As well, mechanical engineeringMechanical and Manufacturing Engineering Petroleum Engineering Minor The Department of Mechanical and Manufacturing Engineering offers a minor in petroleum engineering within the mechanical engineering major

Calgary, University of

442

USA Manufacturing: Order (2013-CE-5336)  

Broader source: Energy.gov [DOE]

DOE ordered USA Manufacturing to pay a $8,000 civil penalty after finding USA Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

443

Benefits and Barriers of Smart Manufacturing  

E-Print Network [OSTI]

Decision makers in the industrial sector have only recently started to realize the potential of smart manufacturing to transform manufacturing. The potential gains in efficiency at the process and supply-chain level are still largely unknown...

Trombley, D.; Rogers, E.

2014-01-01T23:59:59.000Z

444

Refrigerator Manufacturers: Order (2013-CE-5341)  

Broader source: Energy.gov [DOE]

DOE ordered Refrigerator Manufacturers, LLC to pay a $8,000 civil penalty after finding Refrigerator Manufacturers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

445

FLUIDIC: Metal Air Recharged  

ScienceCinema (OSTI)

Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

Friesen, Cody

2014-04-02T23:59:59.000Z

446

FLUIDIC: Metal Air Recharged  

SciTech Connect (OSTI)

Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

Friesen, Cody

2014-03-07T23:59:59.000Z

447

A preliminary study of zinc-catalyzed polycarbonate production  

E-Print Network [OSTI]

Company. Adipic acid was pruchased fron MCB Manufacturing Chemists, Inc. 12 2. Synthesized Reagents a. Zinc Adipate from Zinc metal lb. 4 g (0. 251 mol) of zinc filings were dissolved in 50 mL of concentrated hydrochloric acid, generating a solution... Figure 12. Two identical catalytic runs using the same batch of Strem catalyst A comparison between the zinc glutarate and zinc adipate catalyst was then made by comparing the rates of production of the polymer and the cyclic carbonate. The rates...

Griffith, Amy Elizabeth

1992-01-01T23:59:59.000Z

448

Webinar: Additive Manufacturing for Fuel Cells  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled "Additive Manufacturing for Fuel Cells," originally presented on February 11, 2014.

449

Production Scheduling with Energy Efficiency Constraints  

E-Print Network [OSTI]

This research is motivated by a real world production scheduling problem in a continuous manufacturing system involving multiple objectives, multiple products and multiple processing lines with various inventory, production and energy efficiency...

Lee, J.; Kozman, T. A.; Wang, X.

2007-01-01T23:59:59.000Z

450

(Data in thousand metric tons of silicon content unless otherwise noted) Domestic Production and Use: Estimated value of silicon metal and alloys (excluding semiconductor-grade silicon)  

E-Print Network [OSTI]

%; China, 16%; South Africa, 13%; Canada, 12%; and other, 39%. Tariff: Item Number Normal Trade Relations metal: Brazil, 37%; South Africa, 25%; Canada, 14%; Norway, 6%; and other, 18%. Total: Brazil, 20 energy costs. Demand for silicon metal comes primarily from the aluminum and chemical industries

451

Manufacturing of Plutonium Tensile Specimens  

SciTech Connect (OSTI)

Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

Knapp, Cameron M [Los Alamos National Laboratory

2012-08-01T23:59:59.000Z

452

Advanced Manufacturing | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergyAdvanced Manufacturing

453

Manufacturing Perspective | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll ManufacturingFoodOctobertoPerspective

454

Sustainable Manufacturing via Multi-Scale, Physics-Based Process...  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design, April 2013 Sustainable Manufacturing via Multi-Scale, Physics-Based Process...

455

Machine Tool Design and Operation Strategies for Green Manufacturing  

E-Print Network [OSTI]

Operation Strategies for Green Manufacturing Nancy DIAZ 1 ,to implement green manufacturing in machining includingopportunities to green manufacturing exist at all levels of

2010-01-01T23:59:59.000Z

456

A Review of Engineering Research in Sustainable Manufacturing  

E-Print Network [OSTI]

SWOT Anal- ysis for Green Manufacturing Strategy Selection,Yung, K. L. , 2010, Green Manufacturing Using IntegratedDornfeld, D. , 2013, Green Manufacturing: Fundamentals and

2013-01-01T23:59:59.000Z

457

Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions  

E-Print Network [OSTI]

how to think about green manufacturing and sustainability.for sustainable or green manufacturing is that it is not anthe implementation of green manufacturing, where a wedge

Reich-Weiser, Corinne

2010-01-01T23:59:59.000Z

458

U.S. Advanced Manufacturing and Clean Energy Technology Challenges  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer Review Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov This presentation...

459

Additive Manufacturing in China: Aviation and Aerospace Applications (Part 2)  

E-Print Network [OSTI]

Analysis May 2013 Additive Manufacturing in China: Aviationan overview of Chinas additive manufacturing industry wasmilitary achievements in additive manufacturing. 2 Initial

ANDERSON, Eric

2013-01-01T23:59:59.000Z

460

Contact Manufacturing Demonstration Facility Craig Blue, Ph.D...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Demonstration Facility Craig Blue, Ph.D. Director, Manufacturing Demonstration Facility (865) 574-4351 blueca@ornl.gov INNOVATIONS IN MANUFACTURING www.ornl.gov...

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Low Temperature PEM Fuel Cell Manufacturing Needs  

E-Print Network [OSTI]

Low Temperature PEM Fuel Cell Manufacturing Needs Presented by Duarte Sousa, PE Manufacturing Fuel Cell Manhattan Project #12; Cost drivers were identified for the following: · MEA · Plates · Balance of Plant (BOP) · Fuel Processing Manufacturing Fuel Cell Project ­ Phase 1 Note that this presentation

462

Energy Manufacturing Matthew Realff and Steven Danyluk  

E-Print Network [OSTI]

Energy Manufacturing Matthew Realff and Steven Danyluk Georgia Institute of Technology This white Foundation and held in Arlington VA, on March 24-25, 2009 on Energy Manufacturing. The workshop attendees participated in discussions and presented their views on energy manufacturing and the presentations

Das, Suman

463

8th Global Conference on Sustainable Manufacturing  

E-Print Network [OSTI]

manufacturing in the UAE · Potentials of renewables · Education for sustainability engineering · Green supply8th Global Conference on Sustainable Manufacturing Architecture for Sustainable Engineering for research institutes and industrial partners related to the area of sustainable manufacturing. It enables

Berlin,Technische Universität

464

e! Science News Semiconductor manufacturing technique holds  

E-Print Network [OSTI]

arsenide chips manufactured in multilayer stacks: light sensors, high-speed transistors and solar cellse! Science News Semiconductor manufacturing technique holds promise for solar energy Published semiconductor manufacturing method pioneered at the University of Illinois, the future of solar energy just got

Rogers, John A.

465

ICME & MGI Big Area Additive Manufacturing  

E-Print Network [OSTI]

ICME & MGI Big Area Additive Manufacturing Neutron Characterization for AM Materials problems in additive manu- facturing (AM). Additive manufacturing, or three-dimensional (3-D) printing of the world's most advanced neu- tron facilities, the HFIR and SNS, to characterize additive manufactured

466

Manufacturing Research & Development for Systems that will  

E-Print Network [OSTI]

focused on manufacturability issues such as low-cost, high-volume manufacturing systems, advanced to move the United States toward a future hydrogen economy. While many scientific, technical's laboratory-scale fabrication technologies to high-volume commercial manufacturing has been identified as one

467

EFFECTIVE STRUCTURAL HEALTH MONITORING WITH ADDITIVE MANUFACTURING  

E-Print Network [OSTI]

will be presented for components that can be processed by additive manufacturing (AM) or 3D printing. The origin structures. KEYWORDS : structural health monitoring methodology, 3D printing, additive manufacturing, fatigue, intelligent structure INTRODUCTION Additive manufacturing (AM), also known as 3D Printing or Rapid

Boyer, Edmond

468

Manufacture of annular cermet articles  

DOE Patents [OSTI]

A method to produce annular-shaped, metal-clad cermet components directly produces the form and avoids multiple fabrication steps such as rolling and welding. The method includes the steps of: providing an annular hollow form with inner and outer side walls; filling the form with a particulate mixture of ceramic and metal; closing, evacuating, and hermetically sealing the form; heating the form to an appropriate temperature; and applying force to consolidate the particulate mixture into solid cermet.

Forsberg, Charles W.; Sikka, Vinod K.

2004-11-02T23:59:59.000Z

469

Manufacturing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergy Maine09 BalanceStorageReviewFlow of

470

NREL Manufacturing R&D Workshop NREL H2/FC Manufacturing R&D Workshop  

E-Print Network [OSTI]

&D Workshop Fuel Cell Proton Exchange Membrane (PEM) and Solid Oxide Fuel Cell (SOFC) Manufacturing Lines and driving down the cost of fuel cell manufacturing through automation. What are the key technical Membrane Electrode Assembly Manufacturing Hypothetical Fuel Cell Manufacturing Platforms August 11, 2011

471

Spray casting of metallic preforms  

DOE Patents [OSTI]

A metal alloy is melted in a crucible and ejected from the bottom of the crucible as a descending stream of molten metal. The descending stream is impacted with a plurality of primary inert gas jets surrounding the molten metal stream to produce a plume of atomized molten metal droplets. An inert gas is blown onto a lower portion of the plume with a plurality of auxiliary inert gas jets to deflect the plume into a more restricted pattern of high droplet density, thereby substantially eliminating unwanted overspray and resulting wasted material. The plume is projected onto a moving substrate to form a monolithic metallic product having generally parallel sides.

Flinn, John E. (Idaho Falls, ID); Burch, Joseph V. (Shelley, ID); Sears, James W. (Niskayuna, NY)

2000-01-01T23:59:59.000Z

472

Toda Material/Component Production Facilities  

Broader source: Energy.gov (indexed) [DOE]

for battery customers worldwide 7 Toda Background * World's leading manufacturer of Solid State Chemistry Particles with 186 year history * Broad product breadth of all key...

473

Toda Material/Component Production Facilities  

Broader source: Energy.gov (indexed) [DOE]

confidential and restricted circulation 6 * World's leading manufacturer of Solid State Chemistry Particles with 186 year history * Broad product breadth of all key cathode...

474

Pinellas Plant facts. [Products, processes, laboratory facilities  

SciTech Connect (OSTI)

This plant was built in 1956 in response to a need for the manufacture of neutron generators, a principal component in nuclear weapons. The neutron generators consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology: hermetic seals between glass, ceramic, glass-ceramic, and metal materials: plus high voltage generation and measurement technology. The existence of these capabilities at the Pinellas Plant has led directly to the assignment of the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Active and reserve batteries and the radioisotopically-powered thermoelectric generator draw on the materials measurement and controls technologies which are required to ensure neutron generator life. A product development and production capability in alumina ceramics, cermet (electrical) feedthroughs, and glass ceramics has become a specialty of the plant; the laboratories monitor the materials and processes used by the plant's commercial suppliers of ferroelectric ceramics. In addition to the manufacturing facility, a production development capability is maintained at the Pinellas Plant.

Not Available

1986-09-01T23:59:59.000Z

475

Research on advanced photovoltaic manufacturing technology  

SciTech Connect (OSTI)

This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

Jester, T.; Eberspacher, C. (Siemens Solar Industries, Camarillo, CA (United States))

1991-11-01T23:59:59.000Z

476

Manufacturing Demonstration Facility Technology Collaborations for US Manufacturers in Advanced  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministrationManufacturing - GE Appliances, ORNL Low-Cost

477

Metal inks  

DOE Patents [OSTI]

Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

2014-02-04T23:59:59.000Z

478

Manufacturing Cost Analysis Relevant to Single-and Dual-Junction Photovoltaic Cells Fabricated with III-Vs and III-Vs Grown on Czochralski Silicon (Presentation)  

SciTech Connect (OSTI)

In this analysis we examine the current, mid-term, and long-term manufacturing costs for III-Vs deposited by traditional Metal Organic Vapor Phase Epitaxy (MOVPE).

Woodhouse, M.; Goodrich, A.

2014-05-01T23:59:59.000Z

479

THE MASTER OF ENGINEERING IN MANUFACTURING ENGINEERING PROGRAM PLANNING SHEET  

E-Print Network [OSTI]

for Manufacturing ME 526 Simulation of Physical Processes ME 535 Green Manufacturing METHE MASTER OF ENGINEERING IN MANUFACTURING ENGINEERING PROGRAM PLANNING SHEET be at the 500 level or above. 1. Core Manufacturing Requirement ­ 24 credits

480

Development of Inorganic Precursors for Manufacturing of Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-08-308  

SciTech Connect (OSTI)

Both NREL and Rohm and Haas Electronic Materials are interested in the development of solution phase metal and semiconductive precursors for the manufacturing of photovoltaic devices. In particular, we intend to develop material sets for atmospheric deposition processes. The cooperation between these two parties will enable high value materials and processing solutions for the manufacturing of low cost, roll-to-roll photovoltaics.

van Hest, M.; Ginley, D.

2013-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal product manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Metal Product Manufacturing 245 270 311 333 Machinery Manufacturing 276 292 321 334 Computer and Electronic Product Manufacturing 444 454 398 335 Electrical Equipment, Appliance,...

482

file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

Metal Product Manufacturing 258 244 267 333 Machinery Manufacturing 286 244 295 334 Computer and Electronic Product Manufacturing 352 425 612 335 Electrical Equipment, Appliance,...

483

High Activity of Ce1-xNixO2-y for H2 Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal-Oxide Interactions  

SciTech Connect (OSTI)

The importance of the oxide: Ce{sub 0.8}Ni{sub 0.2}O{sub 2-y} is an excellent catalyst for ethanol steam reforming. Metal-oxide interactions perturb the electronic properties of the small particles of metallic nickel present in the catalyst under the reaction conditions and thus suppress any methanation activity. The nickel embedded in ceria induces the formation of O vacancies, which facilitate cleavage of the OH bonds in ethanol and water.

G Zhou; L Barrio; S Agnoli; S Senanayake; J Evans; A Kubacka; M Estrella; J Hanson; A Martinez-Arias; et al.

2011-12-31T23:59:59.000Z

484

Manufacturing method of photonic crystal  

DOE Patents [OSTI]

A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

2013-01-29T23:59:59.000Z

485

Manufacturing Fuel Cell Manhattan Project  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergyAll ManufacturingFoodOctoberto DOE Fuel

486

Manufacturing Initiative | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund Las ConchasTrail5,722,326ManhattanEnergyManufacturing

487

Electrolyzer Manufacturing Progress and Challenges  

E-Print Network [OSTI]

Onsite in April 2011 to reflect product expansion. · ISO 9001:2008 registered · Over 1,500 systems

488

Direct Solid-State Conversion of Recyclable Metals and Alloys  

SciTech Connect (OSTI)

Friction Stir Extrusion (FSE) is a novel energy-efficient solid-state material synthesis and recycling technology capable of producing large quantity of bulk nano-engineered materials with tailored, mechanical, and physical properties. The novelty of FSE is that it utilizes the frictional heating and extensive plastic deformation inherent to the process to stir, consolidate, mechanically alloy, and convert the powders, chips, and other recyclable feedstock materials directly into useable product forms of highly engineered materials in a single step (see Figure 1). Fundamentally, FSE shares the same deformation and metallurgical bonding principles as in the revolutionary friction stir welding process. Being a solid-state process, FSE eliminates the energy intensive melting and solidification steps, which are necessary in the conventional metal synthesis processes. Therefore, FSE is highly energy-efficient, practically zero emissions, and economically competitive. It represents a potentially transformational and pervasive sustainable manufacturing technology for metal recycling and synthesis. The goal of this project was to develop the technological basis and demonstrate the commercial viability of FSE technology to produce the next generation highly functional electric cables for electricity delivery infrastructure (a multi-billion dollar market). Specific focus of this project was to (1) establish the process and material parameters to synthesize novel alloys such as nano-engineered materials with enhanced mechanical, physical, and/or functional properties through the unique mechanical alloying capability of FSE, (2) verifying the expected major energy, environmental, and economic benefits of FSE technology for both the early stage 'showcase' electric cable market and the anticipated pervasive future multi-market applications across several industry sectors and material systems for metal recycling and sustainable manufacturing.

Kiran Manchiraju

2012-03-27T23:59:59.000Z

489

Silicone metalization  

DOE Patents [OSTI]

A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

2008-12-09T23:59:59.000Z

490

Silicone metalization  

DOE Patents [OSTI]

A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

2006-12-05T23:59:59.000Z

491

Department of Energy Support of Energy Intensive Manufacturing Related to Refractory Research  

SciTech Connect (OSTI)

For many years, the United States Department of Energy (DOE) richly supported refractory related research to enable greater energy efficiency processes in energy intensive manufacturing industries such as iron and steel, glass, aluminum and other non-ferrous metal production, petrochemical, and pulp and paper. Much of this support came through research projects funded by the former DOE Energy Efficiency and Renewable Energy (EERE) Office of Industrial Technologies (OIT) under programs such as Advanced Industrial Materials (AIM), Industrial Materials of the Future (IMF), and the Industrial Technologies Program (ITP). Under such initiatives, work was funded at government national laboratories such as Oak Ridge National Laboratory (ORNL), at universities such as West Virginia University (WVU) and the Missouri University of Science and Technology (MS&T) which was formerly the University of Missouri Rolla, and at private companies engaged in these manufacturing areas once labeled industries of the future by DOE due to their strategic and economic importance to American industry. Examples of such projects are summarized below with information on the scope, funding level, duration, and impact. This is only a sampling of representative efforts funded by the DOE in which ORNL was involved over the period extending from 1996 to 2011. Other efforts were also funded during this time at various other national laboratories, universities and private companies under the various programs mentioned above. Discussion of the projects below was chosen because I was an active participant in them and it is meant to give a sampling of the magnitude and scope of investments made by DOE in refractory related research over this time period.

Hemrick, James Gordon [ORNL

2013-01-01T23:59:59.000Z

492

Chicago's Artisan Baker TM Job Title: Sr. Production Manager Department: Production  

E-Print Network [OSTI]

objectives, continuous improvement and on-time product delivery. Essential Job Functions: Facilitates management experience in all areas of production in a food manufacturing environment, preferably baking production costs. Strong leadership and coaching skills. Able to enforce company personnel, operational

Heller, Barbara

493

New demands on manufacturing of composite materials  

SciTech Connect (OSTI)

Traditionally the field of advanced composites has been dominated by the needs of the aerospace industry. This has strongly influenced the materials and processes developed. However, during the last few years, a shift of emphasis into other engineering areas has been obvious. Branches such as the mechanical industry, ground transportation, the building industry and the leisure industry are today defining many of the new areas of application for these materials. In these applications fiber-reinforced composites are not just used in large structures but also in crucial small complex-shaped elements of larger machinery in order to improve overall performance. To satisfy these new demands, it is essential to develop innovative material systems and processing techniques which enable the production of composite parts with complex geometries at reasonable cost and with high precision. Most likely the solution to this task lies in the closely integrated development of the material system and the manufacturing method. Several different approaches are today taken in order to reach this goal for composite materials. Furthermore, it is nowadays important that the introduction of any new material or application, especially for high volume production, be accompanied by a thorough life-cycle and environmental plan.

Manson, J.A.E. [Ecole Polytechnique Federale de Lausanne (Switzerland). Lab. de Technologie des Composites et Polymeres

1994-12-31T23:59:59.000Z

494

Multiple oligo nucleotide arrays: Methods to reduce manufacture time and cost  

E-Print Network [OSTI]

The customized multiple arrays are becoming vastly used in microarray experiments for varies purposes, mainly for its ability to handle a large quantity of data and output high quality results. However, experimenters who use customized multiple arrays still face many problems, such as the cost and time to manufacture the masks, and the cost for production of the multiple arrays by costly machines. Although there is some research on the multiple arrays, there is little concern on the manufacture time and cost, which is actually important to experimenters. In this paper, we have proposed methods to reduce the time and cost for the manufacture of the customized multiple arrays. We have first introduced a heuristic algorithm for the mask decomposition problem for multiple arrays. Then a streamline method is proposed for the integration of different steps of manufacture on a higher level. Experiments show that our methods are very effective in reduction of the time and cost of manufacture of multiple arrays.

Ning, Kang

2010-01-01T23:59:59.000Z

495

Investigation of historical metal objects using Laser Induced Breakdown Spectroscopy (LIBS) technique  

SciTech Connect (OSTI)

Analysis of metal objects is a necessary step for establishing an appropriate conservation treatment of an object or to follow up the application's result of the suggested treatments. The main considerations on selecting a method that can be used in investigation and analysis of metal objects are based on the diagnostic power, representative sampling, reproducibility, destructive nature/invasiveness of analysis and accessibility to the appropriate instrument. This study aims at evaluating the usefulness of the use of Laser Induced Breakdown Spectroscopy (LIBS) Technique for analysis of historical metal objects. In this study various historical metal objects collected from different museums and excavations in Egypt were investigated using (LIBS) technique. For evaluating usefulness of the suggested analytical protocol of this technique, the same investigated metal objects were investigated by other methods such as Scanning Electron Microscope with energy-dispersive x-ray analyzer (SEM-EDX) and X-ray Diffraction (XRD). This study confirms that Laser Induced Breakdown Spectroscopy (LIBS) Technique is considered very useful technique that can be used safely for investigating historical metal objects. LIBS analysis can quickly provide information on the qualitative and semi-quantitative elemental content of different metal objects and their characterization and classification. It is practically non-destructive technique with the critical advantage of being applicable in situ, thereby avoiding sampling and sample preparations. It is can be dependable, satisfactory and effective method for low cost study of archaeological and historical metals. But we have to take into consideration that the corrosion of metal leads to material alteration and possible loss of certain metals in the form of soluble salts. Certain corrosion products are known to leach out of the object and therefore, their low content does not necessarily reflect the composition of the metal at the time of the object manufacture. Another point should be taken into consideration that the heterogeneity of a metal alloy object that often result from poor mixing of the different metal alloy composition.There is a necessity to carry out further research to investigate and determine the most appropriate and effective approaches and methods for conservation of these metal objects.

Abdel-Kareem, O. [Conservation Department, Faculty of Archaeology, Cairo University (Egypt); Ghoneim, M. [Conservation Department, Faculty of Fine Arts, Minia University (Egypt); Harith, M. A. [National Institute of Laser Enhanced Science, Cairo University (Egypt)

2011-09-22T23:59:59.000Z

496

Metrology Challenges for High Energy Density Science Target Manufacture  

SciTech Connect (OSTI)

Currently, High Energy Density Science (HEDS) experiments are used to support and qualify predictive physics models. These models assume ideal conditions such as energy (input) and device (target) geometry. The experiments rely on precision targets constructed from components with dimensions in the millimeter range, while having micrometer-scale, functional features, including planar steps, sine waves, and step-joint geometry on hemispherical targets. Future target designs will likely have features and forms that rival or surpass current manufacturing and characterization capability. The dimensional metrology of these features is important for a number of reasons, including qualification of sub-components prior to assembly, quantification of critical features on the as-built assemblies and as a feedback mechanism for fabrication process development. Variations in geometry from part to part can lead to functional limitations, such as unpredictable instabilities during an experiment and the inability to assemble a target from poorly matched sub-components. Adding to the complexity are the large number and variety of materials, components, and shapes that render any single metrology technique difficult to use with low uncertainty. Common materials include metal and glass foams, doped transparent and opaque plastics and a variety of deposited and wrought metals. A suite of metrology tools and techniques developed to address the many critical issues relevant to the manufacture of HEDS targets including interferometry, x-ray radiography and contact metrology are presented including two sided interferometry for absolute thickness metrology and low force probe technology for micrometer feature coordinate metrology.

Seugling, R M; Bono, M J; Davis, P

2009-02-19T23:59:59.000Z

497

U.S. Wind Energy Manufacturing and Supply Chain: A Competitiveness Analysis  

SciTech Connect (OSTI)

The goal of the project was to develop a greater understanding of the key factors determining wind energy component manufacturing costs and pricing on a global basis in order to enhance the competitiveness of U.S. manufacturers, and to reduce installed systems cost. Multiple stakeholders including DOE, turbine OEMs, and large component manufactures will all benefit by better understanding the factors determining domestic competitiveness in the emerging offshore and next generation land-based wind industries. Major objectives of this project were to: 1. Carry out global cost and process comparisons for 5MW jacket foundations, blades, towers, and permanent magnet generators; 2. Assess U.S. manufacturers competitiveness and potential for cost reduction; 3. Facilitate informed decision-making on investments in U.S. manufacturing; 4. Develop an industry scorecard representing the readiness of the U.S. manufacturers to produce components for the next generations of wind turbines, nominally 3MW land-based and 5MW offshore; 5. Disseminate results through the GLWN Wind Supply Chain GIS Map, a free website that is the most comprehensive public database of U.S. wind energy suppliers; 6. Identify areas and develop recommendations to DOE on potential R&D areas to target for increasing domestic manufacturing competitiveness, per DOEs Clean Energy Manufacturing Initiative (CEMI). Lists of Deliverables 1. Cost Breakdown Competitive Analyses of four product categories: tower, jacket foundation, blade, and permanent magnet (PM) generator. The cost breakdown for each component includes a complete Bill of Materials with net weights; general process steps for labor; and burden adjusted by each manufacturer for their process categories of SGA (sales general and administrative), engineering, logistics cost to a common U.S. port, and profit. 2. Value Stream Map Competitiveness Analysis: A tool that illustrates both information and material flow from the point of getting a customer order at the manufacturing plant; to the orders being forwarded by the manufacturing plant to the material suppliers; to the material being received at the manufacturing plant and processed through the system; to the final product being shipped to the Customer. 3. Competitiveness Scorecard: GLWN developed a Wind Industry Supply Chain Scorecard that reflects U.S. component manufacturers readiness to supply the next generation wind turbines, 3MW and 5MW, for land-based and offshore applications. 4. Wind Supply Chain Database & Map: Expand the current GLWN GIS Wind Supply Chain Map to include offshore elements. This is an on-line, free access, wind supply chain map that provides a platform for identifying active and emerging suppliers for the land-based and offshore wind industry, including turbine component manufacturers and wind farm construction service suppliers.

Fullenkamp, Patrick H; Holody, Diane S

2014-06-15T23:59:59.000Z

498

Concentrating-collector mass-production feasibility. Volume I. Final report  

SciTech Connect (OSTI)

The Performance Prototype Trough (PPT) Concentrating Collector consists of four 80-foot modules in a 320-foot row. The collector was analyzed, including cost estimates and manufacturing processes to produce collectors in volumes from 100 to 100,000 modules per year. The four different reflector concepts considered were the sandwich reflector structure, sheet metal reflector structure, molded reflector structure, and glass laminate structure. The sheet metal and glass laminate structures are emphasized with their related structure concepts. A preliminary manufacturing plan is offered that includes: documentation of the manufacturing process with production flow diagrams; labor and material costs at various production levels; machinery and equipment requirements including preliminary design specifications; and capital investment costs for a new plant. Of five reflector designs considered, the two judged best and considered at length are thin annealed glass and steel laminate on steel frame panel and thermally sagged glass. Also discussed are market considerations, costing and selling price estimates, design cost analysis and make/buy analysis. (LEW)

Not Available

1981-11-02T23:59:59.000Z

499

Manufacturing Technical Assistance Program Guidelines The University of Connecticut (UConn), a public research university with an academic health center, and  

E-Print Network [OSTI]

's manufacturing problems or will support a company's ability to begin the manufacturing of new products for technology transition when applicable. Specific project areas will include: Machining process improvements (MTA) award from UConn and/or CCAT. Ideal projects will utilize technology solutions to solve a company

Alpay, S. Pamir

500

Industrial Scale Demonstration of Smart Manufacturing Achieving...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

TX National Center for Manufacturing Sciences Ann Arbor, MI Nimbis Services McLean, VA Praxair Tonawanda, NY Rockwell Automation Milwaukee, WI For additional information, please...