National Library of Energy BETA

Sample records for metal oxygen separation

  1. Nitrogen/oxygen separations in metal-organic frameworks for clean fossil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel combustion | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Nitrogen/oxygen separations in metal-organic frameworks for clean fossil fuel combustion

  2. Methods for separating oxygen from oxygen-containing gases

    DOE Patents [OSTI]

    Mackay, Richard; Schwartz, Michael; Sammells, Anthony F.

    2000-01-01

    This invention provides mixed conducting metal oxides particularly useful for the manufacture of catalytic membranes for gas-phase oxygen separation processes. The materials of this invention have the general formula: A.sub.x A'.sub.x A".sub.2-(x+x') B.sub.y B'.sub.y B".sub.2-(y+y') O.sub.5+z ; where x and x' are greater than 0; y and y' are greater than 0; x+x' is less than or equal to 2; y+y' is less than or equal to 2; z is a number that makes the metal oxide charge neutral; A is an element selected from the f block lanthanide elements; A' is an element selected from Be, Mg, Ca, Sr, Ba and Ra; A" is an element selected from the f block lanthanides or Be, Mg, Ca, Sr, Ba and Ra; B is an element selected from the group consisting of Al, Ga, In or mixtures thereof; and B' and B" are different elements and are independently selected from the group of elements Mg or the d-block transition elements. The invention also provides methods for oxygen separation and oxygen enrichment of oxygen deficient gases which employ mixed conducting metal oxides of the above formula. Examples of the materials used for the preparation of the membrane include A.sub.x Sr.sub.x' B.sub.y Fe.sub.y' Co.sub.2-(y+y') O.sub.5+z, where x is about 0.3 to about 0.5, x' is about 1.5 to about 1.7, y is 0.6, y' is between about 1.0 and 1.4 and B is Ga or Al.

  3. Device and method for separating oxygen isotopes

    DOE Patents [OSTI]

    Rockwood, Stephen D.; Sander, Robert K.

    1984-01-01

    A device and method for separating oxygen isotopes with an ArF laser which produces coherent radiation at approximately 193 nm. The output of the ArF laser is filtered in natural air and applied to an irradiation cell where it preferentially photodissociates molecules of oxygen gas containing .sup.17 O or .sup.18 O oxygen nuclides. A scavenger such as O.sub.2, CO or ethylene is used to collect the preferentially dissociated oxygen atoms and recycled to produce isotopically enriched molecular oxygen gas. Other embodiments utilize an ArF laser which is narrowly tuned with a prism or diffraction grating to preferentially photodissociate desired isotopes. Similarly, desired mixtures of isotopic gas can be used as a filter to photodissociate enriched preselected isotopes of oxygen.

  4. Materials and methods for the separation of oxygen from air

    DOE Patents [OSTI]

    MacKay, Richard; Schwartz, Michael; Sammells, Anthony F.

    2003-07-15

    Metal oxides particularly useful for the manufacture of catalytic membranes for gas-phase oxygen separation processes having the formula: O.sub.5+z where: x and x' are greater than 0; y and y' are greater than 0; x+x' is equal to 2; y+y' is less than or equal to 2; z is a number that makes the metal oxide charge neutral; A is an element selected from the lanthanide elements; A' is an element selected from Be, Mg, Ca, Sr, Ba and Ra; A" is an element selected from the f block lanthanides, Be, Mg, Ca, Sr, Ba and Ra; B is an element selected from the group consisting of Al, Ga, In or mixtures thereof and B" is Co or Mg, with the exception that when B" is Mg, A' and A" are not Mg. The metal oxides are useful for preparation of dense membranes which may be formed from dense thin films of the mixed metal oxide on a porous metal oxide element. The invention also provides methods and catalytic reactors for oxygen separation and oxygen enrichment of oxygen deficient gases which employ mixed conducting metal oxides of the above formula.

  5. Metal-Organic Frameworks for the Separation of O2 from Air -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal-Organic Frameworks for the Separation of O2 from Air Sandia National Laboratories ... Industrial-scale oxygen separation is conventionally carried out by cryogenic air ...

  6. Ammonia producing engine utilizing oxygen separation

    DOE Patents [OSTI]

    Easley, Jr., William Lanier; Coleman, Gerald Nelson; Robel, Wade James

    2008-12-16

    A power system is provided having a power source, a first power source section with a first intake passage and a first exhaust passage, a second power source section with a second intake passage and a second exhaust passage, and an oxygen separator. The second intake passage may be fluidly isolated from the first intake passage.

  7. SUPPORTED DENSE CERAMIC MEMBRANES FOR OXYGEN SEPARATION

    SciTech Connect (OSTI)

    Timothy L. Ward

    2002-07-01

    Mixed-conducting ceramics have the ability to conduct oxygen with perfect selectivity at elevated temperatures, making them extremely attractive as membrane materials for oxygen separation and membrane reactor applications. While the conductivity of these materials can be quite high at elevated temperatures (typically 800-1000 C), much higher oxygen fluxes, or, alternatively, equivalent fluxes at lower temperatures, could be provided by supported thin or thick film membrane layers. Based on that motivation, the objective of this project was to explore the use of ultrafine aerosol-derived powder of a mixed-conducting ceramic material for fabrication of supported thick-film dense membranes. The project focused on the mixed-conducting ceramic composition SrCo{sub 0.5}FeO{sub x} (SCFO) because of the desirable permeability and stability of that material, as reported in the literature. Appropriate conditions to produce the submicron SrCo{sub 0.5}FeO{sub x} powder using aerosol pyrolysis were determined. Porous supports of the same composition were produced by partial sintering of a commercially obtained powder that possessed significantly larger particle size than the aerosol-derived powder. The effects of sintering conditions (temperature, atmosphere) on the porosity and microstructure of the porous discs were studied, and a standard support fabrication procedure was adopted. Subsequently, a variety of paste and slurry formulations were explored utilizing the aerosol-derived SCFO powder. These formulations were applied to the porous SCFO support by a doctor blade or spin coating procedure. Sintering of the supported membrane layer was then conducted, and additional layers were deposited and sintered in some cases. The primary characterization methods were X-ray diffraction and scanning electron microscopy, and room-temperature nitrogen permeation was used to assess defect status of the membranes.We found that non-aqueous paste/slurry formulations incorporating dispersant, plasticizer and binder provided superior cracking resistance compared to simple water, alcohol, or polyethylene glycol (PEG) based formulations. With a formulation employing castor oil as dispersant, isopropyl alcohol/mineral spirits as solvent, polyvinyl butyral as binder, and dibutyl phthalate/PEG as plasticizer, sintered SCFO membrane layers approximately 5 {micro}m thick with no apparent cracks were prepared using spin coating with several coats and sintering cycles. A similar but more viscous formulation applied by doctor blade gave a {approx} 10 {micro}m thick membrane layer in one coat, but with some apparent cracking. We demonstrated that the membrane layer could be densified while retaining porosity in the chemically identical support. This was accomplished by pre-sintering the support in air (1050 C), which coarsened the grain size and provided a relatively stable plate-shaped granular microstructure, followed by membrane layer fabrication with the highly-sinterable aerosol powder. Final densification was conducted by sintering in nitrogen ({approx}1100 C), which provided accelerated sintering rates and led to the desired layered perovskite phase content. In spite of these successes, low-temperature pressure-driven permeation testing with N2 showed that even the best membranes were not sufficiently defect free for high-temperature oxygen permeation testing. The source of these defects were not readily apparent from scanning electron microscopy, though incomplete or nonuniform membrane layer coverage from edge to edge of the support was probably one important factor.

  8. Hybrid System for Separating Oxygen from Air - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate...

  9. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOE Patents [OSTI]

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  10. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOE Patents [OSTI]

    Cassano, A.A.

    1985-07-02

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

  11. Separation of metal ions from aqueous solutions

    DOE Patents [OSTI]

    Almon, Amy C.

    1994-01-01

    A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.

  12. Separations of actinides, lanthanides and other metals

    DOE Patents [OSTI]

    Smith, Barbara F.; Jarvinen, Gordon D.; Ensor, Dale D.

    1995-01-01

    An organic extracting solution comprised of a bis(acylpyrazolone or a substituted bis(acylpyrazolone) and an extraction method useful for separating certain elements of the actinide series of the periodic table having a valence of four from one other, and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also useful for separating hexavalent actinides from one or more of the substances in a group consisting of trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals.

  13. ADSORPTION METHOD FOR SEPARATING METAL CATIONS

    DOE Patents [OSTI]

    Khym, J.X.

    1959-03-10

    The chromatographic separation of fission product cations is discussed. By use of this method a mixture of metal cations containing Zr, Cb, Ce, Y, Ba, and Sr may be separated from one another. Mentioned as preferred exchange adsorbents are resins containing free sulfonic acid groups. Various eluants, such as tartaric acid, HCl, and citric acid, used at various acidities, are employed to effect the selective elution and separation of the various fission product cations.

  14. SEPARATION OF METAL SALTS BY ADSORPTION

    DOE Patents [OSTI]

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  15. Novel Metallic Membranes for Hydrogen Separation

    SciTech Connect (OSTI)

    Dogan, Omer

    2011-02-27

    To reduce dependence on oil and emission of greenhouse gases, hydrogen is favored as an energy carrier for the near future. Hydrogen can be converted to electrical energy utilizing fuel cells and turbines. One way to produce hydrogen is to gasify coal which is abundant in the U.S. The coal gasification produces syngas from which hydrogen is then separated. Designing metallic alloys for hydrogen separation membranes which will work in a syngas environment poses significant challenges. In this presentation, a review of technical targets, metallic membrane development activities at NETL and challenges that are facing the development of new technologies will be given.

  16. Hybrid membrane--PSA system for separating oxygen from air

    DOE Patents [OSTI]

    Staiger, Chad L.; Vaughn, Mark R.; Miller, A. Keith; Cornelius, Christopher J.

    2011-01-25

    A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.

  17. CRADA Final Report: Ionically Conductive Membranes Oxygen Separation

    SciTech Connect (OSTI)

    Visco, Steven J.

    2001-10-29

    Scientists at the Lawrence Berkeley National Laboratory (LBNL) in a collaborative effort with Praxair Corporation developed a bench-top oxygen separation unit capable of producing ultra-high purity oxygen from air. The device is based on thin-film electrolyte technology developed at LBNL as part of a solid oxide fuel cell program. The two teams first demonstrated the concept using planar ceramic disks followed by the development of tubular ceramic structures for the bench-top unit. The highly successful CRADA met all technical milestones on time and on budget. Due to the success of this program the industrial partner and the team at LBNL submitted a grant proposal for further development of the unit to the Advanced Technology Program administered by the National Institute of Standar~s. This proposal was selected for funding, and now the two teams are developing a precommercial oxygen separation unit under a 3-year, $6 million dollar program.

  18. Oxygen-permeable ceramic membranes for gas separation

    SciTech Connect (OSTI)

    Balachandran, U.; Ma, B.; Maiya, P.S.; Dusek, J.T.; Mieville, R.L.; Picciolo, J.J.

    1998-02-01

    Mixed-conducting oxides have a wide range of applications, including fuel cells, gas separation systems, sensors, and electrocatalytic equipment. Dense ceramic membranes made of mixed-conducting oxides are particularly attractive for gas separation and methane conversion processes. Membranes made of Sr-Fe-Co oxide, which exhibits high combined electronic and oxygen ionic conductivities, can be used to selectively transport oxygen during the partial oxidation of methane to synthesis gas (syngas, i.e., CO + H{sub 2}). The authors have fabricated tubular Sr{sub 2}Fe{sub 2}CoO{sub 6+{delta}} membranes and tested them (some for more than 1,000 h) in a methane conversion reactor that was operating at 850--950 C. An oxygen permeation flux of {approx} 10 scc/cm{sup 2} {center_dot} min was obtained at 900 C in a tubular membrane with a wall thickness of 0.75 mm. Using a gas-tight electrochemical cell, the authors have also measured the steady-state oxygen permeability of flat Sr{sub 2}Fe{sub 2}CoO{sub 6+{delta}} membranes as a function of temperature and oxygen partial pressure(pO{sub 2}). Steady-state oxygen permeability increases with increasing temperature and with the difference in pO{sub 2} on the two sides of the membrane. At 900 C, an oxygen permeability of {approx} 2.5 scc/cm{sup 2} {center_dot} min was obtained in a 2.9-mm-thick membrane. This value agrees with that obtained in methane conversion reactor experiments. Current-voltage (I-V) characteristics determined in the gas-tight cell indicate that bulk effect, rather than surface exchange effect, is the main limiting factor for oxygen permeation of {approx} 1-mm-thick Sr{sub 2}Fe{sub 2}CoO{sub 6+{delta}} membranes at elevated temperatures (> 650 C).

  19. SEPARATION OF METAL VALUES FROM NUCLEAR REACTOR

    DOE Patents [OSTI]

    Campbell, D.O.; Cathers, G.I.

    1962-06-19

    A method is given for separating beryllium fluoride and an alkali metal fluoride from a mixture containing same and rare earth fluorides. The method comprises contacting said mixture with a liquid hydrogen fluoride solvent containing no more than about 30 per cent water by weight and saturated with a fluoride salt characterized by its solubility in anhydrous hydrogen fluoride for a period of time sufficient to dissolve said beryllium fluoride in said solvent. (AEC)

  20. Cathode architectures for alkali metal / oxygen batteries

    DOE Patents [OSTI]

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  1. Anion separation with metal-organic frameworks

    SciTech Connect (OSTI)

    Custelcean, Radu; Moyer, Bruce A

    2007-01-01

    The application of metal-organic frameworks (MOFs) to anion separations with a special emphasis on anion selectivity is reviewed. The coordination frameworks are classified on the basis of the main interactions to the included anion, from weak and non-specific van der Waals forces to more specific interactions such as coordination to Lewis acid metal centers or hydrogen bonding. The importance of anion solvation phenomena to the observed anion selectivities is highlighted, and strategies for reversing the Hofmeister bias that favors large, less hydrophilic anions, and for obtaining peak selectivities based on shape recognition are delineated. Functionalization of the anion-binding sites in MOFs with strong and directional hydrogen-bonding groups that are complementary to the included anion, combined with organizational rigidity of the coordination framework, appears to be the most promising approach for achieving non-Hofmeister selectivity.

  2. SEPARATION OF URANIUM FROM OTHER METALS

    DOE Patents [OSTI]

    Hyman, H.H.

    1959-07-01

    The separation of uranium from other elements, such as ruthenium, zirconium, niobium, cerium, and other rare earth metals is described. According to the invention, this is accomplished by adding hydrazine to an acid aqueous solution containing salts of uranium, preferably hexavalent uranium, and then treating the mixture with a substantially water immiscible ketone, such as hexone. A reaction takes place between the ketone and the hydrazine whereby a complex, a ketazine, is formed; this complex has a greater power of extraction for uranium than the ketone by itself. When contaminating elements are present, they substantially remain in ihe aqueous solution.

  3. Metal oxide membranes for gas separation

    DOE Patents [OSTI]

    Anderson, M.A.; Webster, E.T.; Xu, Q.

    1994-08-30

    A method for formation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation. 4 figs.

  4. Metal oxide membranes for gas separation

    DOE Patents [OSTI]

    Anderson, Marc A.; Webster, Elizabeth T.; Xu, Qunyin

    1994-01-01

    A method for permformation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation.

  5. Supported Molten Metal Membranes for Hydrogen Separation

    SciTech Connect (OSTI)

    Datta, Ravindra; Ma, Yi Hua; Yen, Pei-Shan; Deveau, Nicholas; Fishtik, Ilie; Mardilovich, Ivan

    2013-09-30

    We describe here our results on the feasibility of a novel dense metal membrane for hydrogen separation: Supported Molten Metal Membrane, or SMMM.1 The goal in this work was to develop these new membranes based on supporting thin films of low-melting, non- precious group metals, e.g., tin (Sn), indium (In), gallium (Ga), or their alloys, to provide a flux and selectivity of hydrogen that rivals the conventional but substantially more expensive palladium (Pd) or Pd alloy membranes, which are susceptible to poisoning by the many species in the coal-derived syngas, and further possess inadequate stability and limited operating temperature range. The novelty of the technology presented numerous challenges during the course of this project, however, mainly in the selection of appropriate supports, and in the fabrication of a stable membrane. While the wetting instability of the SMMM remains an issue, we did develop an adequate understanding of the interaction between molten metal films with porous supports that we were able to find appropriate supports. Thus, our preliminary results indicate that the Ga/SiC SMMM at 550 ºC has a permeance that is an order of magnitude higher than that of Pd, and exceeds the 2015 DOE target. To make practical SMM membranes, however, further improving the stability of the molten metal membrane is the next goal. For this, it is important to better understand the change in molten metal surface tension and contact angle as a function of temperature and gas-phase composition. A thermodynamic theory was, thus, developed, that is not only able to explain this change in the liquid-gas surface tension, but also the change in the solid-liquid surface tension as well as the contact angle. This fundamental understanding has allowed us to determine design characteristics to maintain stability in the face of changing gas composition. These designs are being developed. For further progress, it is also important to understand the nature of solution and permeation process in these molten metal membranes. For this, a comprehensive microkinetic model was developed for hydrogen permeation in dense metal membranes, and tested against data for Pd membrane over a broad range of temperatures.3 It is planned to obtain theoretical and experimental estimates of the parameters to corroborate the model against mental results for SMMM.

  6. Composite metal membranes for hydrogen separation applications

    SciTech Connect (OSTI)

    Moss, T.S.; Dye, R.C.

    1997-06-01

    A novel multilayer metal membrane has been developed that can be used for the separation of hydrogen from feed streams with near perfect selectivity. The membrane is comprised of very thin layers of fully dense palladium film deposited on both sides of a thin Group V metal foil, ion-milled prior to sputtering of the palladium. Palladium loading are kept low using the thin film deposition technology: 0.0012 grams of palladium per square centimeter of membrane is typically used, although thinner coatings have been employed. This membrane operates at temperatures on the order of 300 C and is capable of high rates of hydrogen flow. Flows are dependent on the pressure differential applied to the membrane, but flows of 105 sccm/cm{sup 2} and higher are regularly observed with differentials below one atmosphere. Long term testing of the membrane for a period in excess of 775 hours under constant conditions showed stable flows and an 85% hydrogen recovery efficiency. A system has been successfully applied to the hydrogen handling system of a proton exchange membrane fuel cell and was tested using a pseudo-reformate feed stream without any degradation in performance.

  7. In silico screening of metal-organic frameworks in separation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    frameworks in separation applications Abstract: Porous materials such as metal-organic frameworks (MOFs) and zeolitic imidazolate frameworks (ZIFs) offer considerable...

  8. In-situ generation of oxygen-releasing metal peroxides

    DOE Patents [OSTI]

    Looney, Brian B.; Denham, Miles E.

    2007-01-09

    A method for remediation of contaminants in soil and groundwater is disclosed. The method generates oxygen releasing solids in groundwater or soil by injecting an aqueous energetic oxidant solution containing free radicals, oxidative conditions can be created within or ahead of a contaminant plume. Some contaminants may be remediated directly by reaction with the free radicals. Additionally and more importantly, the free radicals create an oxidative condition whereby native or injected materials, especially metals, are converted to peroxides. These peroxides provide a long-term oxygen reservoir, releasing oxygen relatively slowly over time. The oxygen can enhance microbial metabolism to remediate contaminants, can react with contaminant metals either to form immobile precipitants or to mobilize other metals to permit remediation through leaching techniques. Various injection strategies for injecting the energetic oxidant solution are also disclosed.

  9. Hydrocarbon Separations in Metal-Organic Frameworks | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Hydrocarbon Separations in Metal-Organic Frameworks Previous Next List Zoey R. Herm, Eric D. Bloch, and Jeffrey R. Long, Chem. Mater., 26 (1), pp 323-338 (2014) DOI: 10.1021/cm402897c Abstract Image Abstract: New materials capable of separating mixtures of saturated, unsaturated, and aromatic hydrocarbons can enable more efficient industrial processes and cleaner energy. Outstanding challenges in hydrocarbon separations stem

  10. Separation of metals by supported liquid membrane

    DOE Patents [OSTI]

    Takigawa, Doreen Y. (Los Alamos, NM)

    1992-01-01

    A supported liquid membrane system for the separation of a preselected chemical species within a feedstream, preferably an aqueous feedstream, includes a feed compartment containing a feed solution having at least one preselected chemical species therein, a stripping compartment containing a stripping solution therein, and a microporous polybenzimidazole membrane situated between the compartments, the microporous polybenzimidazole membrane containing an extractant mixture selective for the preselected chemical species within the membrane pores is disclosed along with a method of separating preselected chemical species from a feedstream with such a system, and a supported liquid membrane for use in such a system.

  11. PROCESS FOR THE SEPARATION OF HEAVY METALS

    DOE Patents [OSTI]

    Gofman, J.W.; Connick, R.E.; Wahl, A.C.

    1959-01-27

    A method is presented for thc separation of plutonium from uranium and the fission products with which it is associated. The method is based on the fact that hexavalent plutonium forms an insoluble complex precipitate with sodium acetate, as does the uranyl ion, while reduced plutonium is not precipitated by sodium acetate. Several embodiments are shown, e.g., a solution containing plutonium and uranium in the hexavalent state may be contacted with sodium acetate causing the formation of a sodium uranyl acetate precipitate which carries the plutonium values while the fission products remain in solution. If the original solution is treated with a reducing agent, so that the plutonium is reduced while the uranium remains in the hexavalent state, and sodium and acetate ions are added, the uranium will precipitutc while the plutonium remains in solution effecting separation of the Pu from urarium.

  12. Metal-Organic Frameworks for Separations | Center for GasSeparationsR...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal-Organic Frameworks for Separations Previous Next List Jian-Rong Li , Julian Sculley , and Hong-Cai Zhou, Chem. Rev., 2012, 112 (2), pp 869-932 DOI: 10.1021cr200190s Journal...

  13. Cascades for hydrogen isotope separation using metal hydrides

    SciTech Connect (OSTI)

    Hill, F.B.; Grzetic, V.

    1982-01-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes.

  14. ABSORPTION METHOD FOR SEPARATING METAL CATIONS

    DOE Patents [OSTI]

    Tompkins, E.R.; Parker, G.W.

    1959-03-10

    An improved method is presented for the chromatographic separation of fission products wherein a substantial reduction in liquid volume is obtained. The process consists in contacting a solution containing fission products with a body of ion-exchange adsorbent to effect adsorption of fission product cations. The loaded exchange resin is then contacted with a small volume of a carboxylic acid eluant, thereby recovering the fission products. The fission product carrying eluate is acidified without increasing its volume to the volume of the original solution, and the acidified eluate is then used as a feed solution for a smaller body of ion-exchange resin effecting readsorption of the fission product cations.

  15. Liquid phase thermal swing chemical air separation

    DOE Patents [OSTI]

    Erickson, D.C.

    1988-05-24

    A temperature swing absorption separation of oxygen from air is performed with an oxygen acceptor of alkali metal nitrate and nitrite. 2 figs.

  16. Liquid phase thermal swing chemical air separation

    DOE Patents [OSTI]

    Erickson, Donald C.

    1988-01-01

    A temperature swing absorption separation of oxygen from air is performed with an oxygen acceptor of alkali metal nitrate and nitrite.

  17. Low energy consumption method for separating gaseous mixtures and in particular for medium purity oxygen production

    DOE Patents [OSTI]

    Jujasz, Albert J.; Burkhart, James A.; Greenberg, Ralph

    1988-01-01

    A method for the separation of gaseous mixtures such as air and for producing medium purity oxygen, comprising compressing the gaseous mixture in a first compressor to about 3.9-4.1 atmospheres pressure, passing said compressed gaseous mixture in heat exchange relationship with sub-ambient temperature gaseous nitrogen, dividing the cooled, pressurized gaseous mixture into first and second streams, introducing the first stream into the high pressure chamber of a double rectification column, separating the gaseous mixture in the rectification column into a liquid oxygen-enriched stream and a gaseous nitrogen stream and supplying the gaseous nitrogen stream for cooling the compressed gaseous mixture, removing the liquid oxygen-enriched stream from the low pressure chamber of the rectification column and pumping the liquid, oxygen-enriched steam to a predetermined pressure, cooling the second stream, condensing the cooled second stream and evaporating the oxygen-enriched stream in an evaporator-condenser, delivering the condensed second stream to the high pressure chamber of the rectification column, and heating the oxygen-enriched stream and blending the oxygen-enriched stream with a compressed blend-air stream to the desired oxygen concentration.

  18. Effect of metal in M3(btc)2 and M2(dobdc) MOFs for O2/N2 separations: A combined density functional theory and experimental study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Parkes, Marie V.; Sava Gallis, Dorina F.; Greathouse, Jeffery A.; Nenoff, Tina M.

    2015-03-02

    Computational screening of metal-organic framework (MOF) materials for selective oxygen adsorption from air could lead to new sorbents for the oxyfuel combustion process feedstock streams. A comprehensive study on the effect of MOF metal chemistry on gas binding energies in two common but structurally disparate metal-organic frameworks has been undertaken. Dispersion-corrected density functional theory methods were used to calculate the oxygen and nitrogen binding energies with each of fourteen metals, respectively, substituted into two MOF series, M2(dobdc) and M3(btc)2. The accuracy of DFT methods was validated by comparing trends in binding energy with experimental gas sorption measurements. A periodic trendmore » in oxygen binding energies was found, with greater oxygen binding energies for early transition-metal-substituted MOFs compared to late transition metal MOFs; this was independent of MOF structural type. The larger binding energies were associated with oxygen binding in a side-on configuration to the metal, with concomitant lengthening of the O-O bond. In contrast, nitrogen binding energies were similar across the transition metal series, regardless of both MOF structural type and metal identity. Altogether, these findings suggest that early transition metal MOFs are best suited to separating oxygen from nitrogen, and that the MOF structural type is less important than the metal identity.« less

  19. ANION EXCHANGE METHOD FOR SEPARATION OF METAL VALUES

    DOE Patents [OSTI]

    Hyde, E.K.; Raby, B.A.

    1959-02-10

    A method is described for selectively separating radium, bismuth, poloniums and lead values from a metallic mixture of thc same. The mixture is dissolved in aqueous hydrochloric acid and the acidity is adjusted to between 1 to 2M in hydrochloric acid to form the anionic polychloro complexes of polonium and bismuth. The solution is contacted with a first anion exchange resin such as strong base quaternary ammonia type to selectively absorb the polonium and bismuth leaving the radium and lead in the effluent. The effluent, after treatment in hydrochloric acid to increase the hydrochloric acid concentration to 6M is contacted with a second anion exchange iesin of the same type as the above to selectively adsorb the lead leaving the radium in the effluent. Radium is separately recovered from the effluent from the second exchange column. Lead is stripped from the loaded resin of the second column by treatment with 3M hydrochloric acid solution. The loaded resin of the first column is washed with 8M hydrochloric acid solution to recover bismuth and then treated with strong nitric acid solution to recover polonium.

  20. Separation of heavy metals: Removal from industrial wastewaters...

    Office of Scientific and Technical Information (OSTI)

    WASTES; ION EXCHANGE; MEMBRANES; PRECIPITATION; VITRIFICATION; COMPLEXES; ELEMENTS; HYDROGEN COMPOUNDS; KINETICS; LIQUID WASTES; OXYGEN COMPOUNDS; REACTION KINETICS;...

  1. New Proton-Ionizable, Calixarene-Based Ligands for Selective Metal Ion Separations

    SciTech Connect (OSTI)

    Bartsch, Richard A.

    2012-06-04

    The project objective was the discovery of new ligands for performing metal ion separations. The research effort entailed the preparation of new metal ion complexing agents and polymers and their evaluation in metal ion separation processes of solvent extraction, synthetic liquid membrane transport, and sorption. Structural variations in acyclic, cyclic, and bicyclic organic ligands were used to probe their influence upon the efficiency and selectivity with which metal ion separations can be performed. A unifying feature of the ligand structures is the presence of one (or more) side arm with a pendent acidic function. When a metal ion is complexed within the central cavity of the ligand, ionization of the side arm(s) produces the requisite anion(s) for formation of an overall electroneutral complex. This markedly enhances extraction/transport efficiency for separations in which movement of aqueous phase anions of chloride, nitrate, or sulfate into an organic medium would be required. Through systematic structural variations, new ligands have been developed for efficient and selective separations of monovalent metal ions (e.g., alkali metal, silver, and thallium cations) and of divalent metal ion species (e.g., alkaline earth metal, lead, and mercury cations). Research results obtained in these fundamental investigations provide important insight for the design and development of ligands suitable for practical metal ion separation applications.

  2. Fuel and oxygen addition for metal smelting or refining process

    DOE Patents [OSTI]

    Schlichting, Mark R. (Chesterton, IN)

    1994-01-01

    A furnace 10 for smelting iron ore and/or refining molten iron 20 is equipped with an overhead pneumatic lance 40, through which a center stream of particulate coal 53 is ejected at high velocity into a slag layer 30. An annular stream of nitrogen or argon 51 enshrouds the coal stream. Oxygen 52 is simultaneously ejected in an annular stream encircling the inert gas stream 51. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus 84 to react with carbon monoxide gas rising from slag layer 30, thereby adding still more heat to the furnace.

  3. Fuel and oxygen addition for metal smelting or refining process

    DOE Patents [OSTI]

    Schlichting, M.R.

    1994-11-22

    A furnace for smelting iron ore and/or refining molten iron is equipped with an overhead pneumatic lance, through which a center stream of particulate coal is ejected at high velocity into a slag layer. An annular stream of nitrogen or argon enshrouds the coal stream. Oxygen is simultaneously ejected in an annular stream encircling the inert gas stream. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus to react with carbon monoxide gas rising from slag layer, thereby adding still more heat to the furnace. 7 figs.

  4. Hydrocarbon Separations in a Metal-Organic Framework with Open...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science 335 (6076), 1606 (2012) DOI: 10.1126science.1217544 Fig. 1 Abstract: The energy costs associated with large-scale industrial separation of light hydrocarbons by cryogenic...

  5. Method of producing metallized chloroplasts and use thereof in the photochemical production of hydrogen and oxygen

    DOE Patents [OSTI]

    Greenbaum, Elias

    1987-01-01

    The invention is primarily a metallized chloroplast composition for use in a photosynthetic reaction. A catalytic metal is precipitated on a chloroplast membrane at the location where a catalyzed reduction reaction occurs. This metallized chloroplast is stabilized by depositing it on a support medium such as fiber so that it can be easily handled. A possible application of this invention is the splitting of water to form hydrogen and oxygen that can be used as a renewable energy source.

  6. Regenerable MgO promoted metal oxide oxygen carriers for chemical looping combustion

    DOE Patents [OSTI]

    Siriwardane, Ranjani V.; Miller, Duane D.

    2014-08-19

    The disclosure provides an oxygen carrier comprised of a plurality of metal oxide particles in contact with a plurality of MgO promoter particles. The MgO promoter particles increase the reaction rate and oxygen utilization of the metal oxide when contacting with a gaseous hydrocarbon at a temperature greater than about 725.degree. C. The promoted oxide solid is generally comprised of less than about 25 wt. % MgO, and may be prepared by physical mixing, incipient wetness impregnation, or other methods known in the art. The oxygen carrier exhibits a crystalline structure of the metal oxide and a crystalline structure of MgO under XRD crystallography, and retains these crystalline structures over subsequent redox cycles. In an embodiment, the metal oxide is Fe.sub.2O.sub.3, and the gaseous hydrocarbon is comprised of methane.

  7. Covalency in Metal-Oxygen Multiple Bonds Evaluated Using Oxygen K-edge Spectroscopy and Electronic Structure Theory

    SciTech Connect (OSTI)

    Minasian, Stefan G.; Keith, Jason M.; Batista, Enrique R.; Boland, Kevin S.; Bradley, Joseph A.; Daly, Scott R.; Kozimor, Stosh A.; Lukens, Wayne W.; Martin, Richard L.; Nordlund, Dennis; Seidler, Gerald T.; Shuh, David K.; Sokaras, Dimosthenis; Tyliszczak, Tolek; Wagner, Gregory L.; Weng, Tsu-Chein; Yang, Ping

    2014-01-01

    Advancing theories of how metal oxygen bonding influences metal oxo properties can expose new avenues for innovation in materials science, catalysis, and biochemistry. Historically, spectroscopic analyses of the transition metal peroxyanions, MO4x-, have formed the basis for new M O bonding theories. Herein, relative changes in M O orbital mixing in MO42- (M = Cr, Mo, W) and MO41- (M = Mn, Tc, Re) are evaluated for the first time by non-resonant inelastic X-ray scattering, X-ray absorption spectroscopy using fluorescence and transmission (via a scanning transmission X-ray microscope), and linear-response density functional theory. The results suggest that moving from Group 6 to Group 7 or down the triads increases M O e () mixing. Meanwhile, t2 mixing ( + ) remains relatively constant within the same Group. These unexpected changes in frontier orbital energy and composition are evaluated in terms of periodic trends in d orbital energy and radial extension.

  8. Separation of polar compounds using a flexible metal-organic framework

    SciTech Connect (OSTI)

    Motkuri, Radha K.; Thallapally, Praveen K.; Annapureddy, Harsha V.; Dang, Liem X.; Krishna, Rajamani; Nune, Satish K.; Fernandez, Carlos A.; Liu, Jian; McGrail, B. Peter

    2015-01-01

    A flexible metal-organic framework constructed from a flexible linker is shown to possess the capability of separating mixtures of polar compounds by exploiting the differences in the saturation capacities of the constituents. The separation possibilities with the flexible MOF include mixtures of propanol isomers, and various azeotropes. Transient breakthrough simulations show that these sorption-based separations are in favor of the component with higher saturation capacity.

  9. Metal-organic frameworks for Xe/Kr separation

    DOE Patents [OSTI]

    Ryan, Patrick J.; Farha, Omar K.; Broadbelt, Linda J.; Snurr, Randall Q.; Bae, Youn-Sang

    2014-07-22

    Metal-organic framework (MOF) materials are provided and are selectively adsorbent to xenon (Xe) over another noble gas such as krypton (Kr) and/or argon (Ar) as a result of having framework voids (pores) sized to this end. MOF materials having pores that are capable of accommodating a Xe atom but have a small enough pore size to receive no more than one Xe atom are desired to preferentially adsorb Xe over Kr in a multi-component (Xe--Kr mixture) adsorption method. The MOF material has 20% or more, preferably 40% or more, of the total pore volume in a pore size range of 0.45-0.75 nm which can selectively adsorb Xe over Kr in a multi-component Xe--Kr mixture over a pressure range of 0.01 to 1.0 MPa.

  10. Metal-organic frameworks for Xe/Kr separation

    DOE Patents [OSTI]

    Ryan, Patrick J.; Farha, Omar K.; Broadbelt, Linda J.; Snurr, Randall Q.; Bae, Youn-Sang

    2013-08-27

    Metal-organic framework (MOF) materials are provided and are selectively adsorbent to xenon (Xe) over another noble gas such as krypton (Kr) and/or argon (Ar) as a result of having framework voids (pores) sized to this end. MOF materials having pores that are capable of accommodating a Xe atom but have a small enough pore size to receive no more than one Xe atom are desired to preferentially adsorb Xe over Kr in a multi-component (Xe--Kr mixture) adsorption method. The MOF material has 20% or more, preferably 40% or more, of the total pore volume in a pore size range of 0.45-0.75 nm which can selectively adsorb Xe over Kr in a multi-component Xe--Kr mixture over a pressure range of 0.01 to 1.0 MPa.

  11. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOE Patents [OSTI]

    Lilga, Michael A.; Hallen, Richard T.

    1990-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.

  12. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOE Patents [OSTI]

    Lilga, M.A.; Hallen, R.T.

    1990-08-28

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the producer gas from coal gasification processes. 3 figs.

  13. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOE Patents [OSTI]

    Lilga, M.A.; Hallen, R.T.

    1991-10-15

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.

  14. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOE Patents [OSTI]

    Lilga, Michael A.; Hallen, Richard T.

    1991-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.

  15. Metallic filament formation by aligned oxygen vacancies in ZnO-based resistive switches

    SciTech Connect (OSTI)

    Gu, Tingkun

    2014-05-28

    The electronic structure of ZnO with defects of oxygen vacancies were investigated by using first-principles methods. Some structure models were constructed in order to investigate the effects of the distribution of oxygen vacancies on the electronic properties of ZnO. By analyzing the calculated results, we found that only the aligned oxygen vacancies can form the conducting channel in ZnO, and the transformation of the oxygen vacancy from charged state to neutral state is consistent with the energetics rule of the forming aligned oxygen vacancies. As for the heterojunction of Pt/ZnO/Pt, the oxygen vacancies near the interface of Pt/ZnO depress the local Schottky barrier effectively, and the aligned oxygen vacancies in ZnO form a conducting filament connecting two Pt electrodes. The metallic filament formation in Pt/ZnO/Pt resistive switching cells should be closely related to the carrier injection from Pt electrode into ZnO and the arrangement of oxygen vacancies in ZnO slab.

  16. Separation of C2 Hydrocarbons by Porous Materials: Metal Organic Frameworks as Platform

    SciTech Connect (OSTI)

    Banerjee, Debasis; Liu, Jun; Thallapally, Praveen K.

    2014-12-22

    The effective separation of small hydrocarbon molecules (C1 C4) is an important process for petroleum industry, determining the end price of many essential commodities in our daily lives. Current technologies for separation of these molecules rely on energy intensive fractional distillation processes at cryogenic temperature, which is particularly difficult because of their similar volatility. In retrospect, adsorptive separation using solid state adsorbents might be a cost effective alternative. Several types of solid state adsorbents (e.g. zeolite molecular sieves) were tested for separation of small hydrocarbon molecules as a function of pressure, temperature or vacuum. Among different types of plausible adsorbents, metal organic frameworks (MOFs), a class of porous, crystalline, inorganic-organic hybrid materials, is particularly promising. In this brief comment article, we discuss the separation properties of different types of solid state adsorbents, with a particular emphasis on MOF based adsorbents for separation of C2 hydrocarbon molecules.

  17. Separation of Hexane Isomers in a Metal-Organic Framework with Triangular

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Channels | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Separation of Hexane Isomers in a Metal-Organic Framework with Triangular Channels Previous Next List Zoey R. Herm, Brian M. Wiers, Jarad A. Mason, Jasper M. van Baten, Matthew R. Hudson, Pawel Zajdel, Craig M. Brown, Norberto Masciocchi, Rajamani Krishna, Jeffrey R. Long, Science, 340, 960-964 (2013) DOI: 10.1126/science.1234071 F1.large.jpg Abstract: Metal-organic frameworks can offer pore

  18. Mechanical Deformation of a Lithium-Metal Anode Due to a Very Stiff Separator

    SciTech Connect (OSTI)

    Ferrese, A; Newman, J

    2014-05-21

    This work builds on the two-dimensional model presented by Ferrese et al. [J. Electrochem. Soc., 159, A1615 (2012)1, which captures the movement of lithium metal at the negative electrode during cycling in a Li-metal/LiCoO2 cell. In this paper, the separator is modeled as a dendrite-inhibiting polymer separator with an elastic modulus of 16 GPa. The separator resists the movement of lithium through the generation of stresses in the cell. These stresses affect the negative electrode through two mechanisms altering the thermodynamics of the negative electrode and deforming the negative electrode mechanically. From this analysis, we find that the dendrite-inhibiting separator causes plastic and elastic deformation of the lithium at the negative electrode which flattens the electrode considerably when compared to the liquid-electrolyte case. This flattening of the negative electrode causes only very slight differences in the local state of charge in the positive electrode. When comparing the magnitude of the effects flattening the negative electrode, we find that the plastic deformation plays a much larger role than either the pressure-modified reaction kinetics or elastic deformation. This is due to the low yield strength of the lithium metal, which limits the stresses such that they have only a small effect on the reaction kinetics. (C) 2014 The Electrochemical Society. All rights reserved.

  19. Investigation of Zr-doped BSCF perovskite membrane for oxygen separation in the intermediate temperature range

    SciTech Connect (OSTI)

    Ravkina, Olga; Klande, Tobias; Feldhoff, Armin

    2013-05-01

    The series of (Ba?.?Sr?.?)(Co?.?Fe?.?){sub 1z}Zr{sub z}O{sub 3?} (z=0, 0.01, 0.03, 0.05, 0.07, and 0.09) was synthesized by a solgel method. The materials with a zirconium content up to 3 mol% were found to be single phase. Further increase results in formation of a mixed (Ba,Sr)ZrO? by-phase, which was found along the grain boundaries and in the grains. With increasing zirconium content the oxygen permeation flux decreases considerably. The effect of the zirconium substitution on the long-term phase stability was investigated by long-term oxygen permeation experiments and X-ray diffraction. A slight stabilization of the oxygen flux of (Ba?.?Sr{sub 0.5})(Co?.?Fe?.?)?.??Zr?.??O{sub 3?} was found after 180 h at 1023 K. However, all compositions show a decrease in permeation flux with time, but the pure BSCF membrane exhibited the strongest drop after 180 h of operation. The decomposition products of the cubic perovskite phase were found to be a hexagonal Ba{sub 0.5x}Sr{sub 0.5x}CoO? and a rhombohedral Ba{sub 1x}Sr{sub x}Co{sub 2y}Fe{sub y}O{sub 5?}. - Graphical abstract: Backscattered-electron channeling contrast image of BSCF membrane cross-section after long-term oxygen permeation at 1023 K showing different phases in different colors. Highlights: Ba?.?Sr?.?Co?.?Fe?.?O{sub 3?} systematically doped with increasing amount of zirconium. Cubic single-phase materials up to 3 wt% zirconium. Mixed (Ba,Sr)ZrO? by-phase formed mainly in the grain boundaries. Jnecke prism was proposed by XRD and EDXS data. (Ba?.?Sr?.?)(Co?.?Fe?.?)?.??Zr?.??O{sub 3?} showed a slight stabilization of oxygen flux as compared to pure Ba?.?Sr?.?Co?.?Fe?.?O{sub 3?}.

  20. Method for separating metal chelates from other materials based on solubilities in supercritical fluids

    DOE Patents [OSTI]

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    2001-01-01

    A method for separating a desired metal or metalloi from impurities using a supercritical extraction process based on solubility differences between the components, as well as the ability to vary the solvent power of the supercritical fluid, is described. The use of adduct-forming agents, such as phosphorous-containing ligands, to separate metal or metalloid chelates in such processes is further disclosed. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones; phosphine oxides, such as trialkylphosphine oxides, triarylphosphine oxides and alkylarylphosphine oxides; phosphinic acids; carboxylic acids; phosphates, such as trialkylphosphates, triarylphosphates and alkylarylphosphates; crown ethers; dithiocarbamates; phosphine sulfides; phosphorothioic acids; thiophosphinic acids; halogenated analogs of these chelating agents; and mixtures of these chelating agents. In especially preferred embodiments, at least one of the chelating agents is fluorinated.

  1. Vapor-Particle Separation Using Microporous Metallic Membrane in Crossflow Filtration

    SciTech Connect (OSTI)

    Cheng, Mengdawn

    2013-01-01

    Simultaneous separation of vapor and particles in industrial processes could be a key step toward manufacturing of high-quality goods. The separation is critical for successful measurement of volatile or semi-volatile aerosol particles, which no reliable technique exists. We have developed a technique for separation of vapor and particles simultaneously using a specialty microporous metallic membrane. The separator allows the thermally denuded particles traverse straight through the membrane tube, while the vapor molecules permeate through the membrane, separate from the particles and are removed subsequently. The separation technique virtually eliminates the possibility of contamination by vapor re- condensation. We tested the prototype of the vapor-particle separator (VPS) using aerosols prepared from sodium chloride to represent non-volatile aerosols. Chemical like dioctyl phthalate was chosen to represent volatile particles. The test aerosol particles were generated by an atomizer followed by a tandem differential mobility analyser to produce a stream of monodisperse particles in the size range of 10 to 100 nm. In real world particles, we tested the VPS using diesel engine particles that is a mixture of complex chemical composition. Number concentration of the nonvolatile particles reduced as the temperature increased, but the mode diameter of the aerosol population remained unchanged. Number concentration of the volatile particles was also reduced as the temperature increased, but their mode diameters became smaller as particles shrunk in diameter. Differences in the thermal behaviour of the particles were attributed to its transition energy barrier and evaporation rate. Mass balance analysis suggests the separation of vapor and test particles was reasonably complete. Thus, we conclude the VPS could provide an effective means for quantitative characterization of aerosol volatility and separation of vapors from particles.

  2. Design of a formaldehyde photodissociation process for carbon and oxygen isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Scheibner, K.F.

    1993-01-20

    The current shortage of {sup 18}O has revived interest in using one step UV photodissociation of formaldehyde to enrich {sup 13}C, {sup 17}O and {sup 18}O. The frequency doubled output of the copper laser pumped dye laser system currently in operation at LLNL can be used to drive this dissociation. The authors use a simple kinetics model and their experience with Atomic Vapor Laser Isotope Separation (AVLIS) process design to examine the relative merits of different designs for a formaldehyde photodissociation process. Given values for the molecular photoabsorption cross section, partition function, spectroscopic selectivity, collisional exchange and quenching cross sections (all as parameters), they perform a partial optimization in the space of illuminated area, formaldehyde pressure in each stage, and formaldehyde residence time in each stage. They examine the effect of cascade design (heads and tails staging) on molecule and photon utilization for each of the three isotope separation missions, and look in one case at the system`s response to different ratios of laser to formaldehyde costs. Finally, they examine the relative cost of enrichment as a function of isotope and product assay. Emphasis is as much on the process design methodology, which is general, as on the specific application to formaldehyde.

  3. WETTING AND REACTIVE AIR BRAZING OF BSCF FOR OXYGEN SEPARATION DEVICES

    SciTech Connect (OSTI)

    LaDouceur, Richard M.; Meier, Alan; Joshi, Vineet V.

    2014-10-13

    Reactive air brazes Ag-CuO and Ag-V2O5 were evaluated for brazing Ba0.5Sr0.5Co0.8Fe0.2O(3-δ) (BSCF). BSCF has been determined in previous work to have the highest potential mixed ionic/electronic conducting (MIEC) ceramic material based on the design and oxygen flux requirements of an oxy-fuel plant such as an integrated gasification combined cycle (IGCC) used to facilitate high-efficiency carbon capture. Apparent contact angles were observed for Ag-CuO and Ag-V2O5 mixtures at 1000 °C for isothermal hold times of 0, 10, 30, and 60 minutes. Wetting apparent contact angles (θ<90°) were obtained for 1%, 2%, and 5% Ag-CuO and Ag-V2O5 mixtures, with the apparent contact angles between 74° and 78° for all compositions and furnace dwell times. Preliminary microstructural analysis indicates that two different interfacial reactions are occurring: Ag-CuO interfacial microstructures revealed the same dissolution of copper oxide into the BSCF matrix to form copper-cobalt-oxygen rich dissolution products along the BSCF grain boundaries and Ag-V2O5 interfacial microstructures revealed the infiltration and replacement of cobalt and iron with vanadium and silver filling pores in the BSCF microstructure. The Ag-V2O5 interfacial reaction product layer was measured to be significantly thinner than the Ag-CuO reaction product layer. Using a fully articulated four point flexural bend test fixture, the flexural fracture strength for BSCF was determined to be 95 ± 33 MPa. The fracture strength will be used to ascertain the success of the reactive air braze alloys. Based on these results, brazes were fabricated and mechanically tested to begin to optimize the brazing parameters for this system. Ag-2.5% CuO braze alloy with a 2.5 minute thermal cycle achieved a hermetic seal with a joint flexural strength of 34 ± 15 MPa and Ag-1% V2O5 with a 30 minute thermal cycle had a joint flexural strength of 20 ± 15 MPa.

  4. Effect of metal in M3(btc)2 and M2(dobdc) MOFs for O2/N2 separations: A combined density functional theory and experimental study

    SciTech Connect (OSTI)

    Parkes, Marie V.; Sava Gallis, Dorina F.; Greathouse, Jeffery A.; Nenoff, Tina M.

    2015-03-02

    Computational screening of metal-organic framework (MOF) materials for selective oxygen adsorption from air could lead to new sorbents for the oxyfuel combustion process feedstock streams. A comprehensive study on the effect of MOF metal chemistry on gas binding energies in two common but structurally disparate metal-organic frameworks has been undertaken. Dispersion-corrected density functional theory methods were used to calculate the oxygen and nitrogen binding energies with each of fourteen metals, respectively, substituted into two MOF series, M2(dobdc) and M3(btc)2. The accuracy of DFT methods was validated by comparing trends in binding energy with experimental gas sorption measurements. A periodic trend in oxygen binding energies was found, with greater oxygen binding energies for early transition-metal-substituted MOFs compared to late transition metal MOFs; this was independent of MOF structural type. The larger binding energies were associated with oxygen binding in a side-on configuration to the metal, with concomitant lengthening of the O-O bond. In contrast, nitrogen binding energies were similar across the transition metal series, regardless of both MOF structural type and metal identity. Altogether, these findings suggest that early transition metal MOFs are best suited to separating oxygen from nitrogen, and that the MOF structural type is less important than the metal identity.

  5. Electrocatalytic Activity of Transition Metal Oxide-Carbon Composites for Oxygen Reduction in Alkaline Batteries and Fuel Cells

    SciTech Connect (OSTI)

    Malkhandi, S; Trinh, P; Manohar, AK; Jayachandrababu, KC; Kindler, A; Prakash, GKS; Narayanan, SR

    2013-06-07

    Conductive transition metal oxides (perovskites, spinels and pyrochlores) are attractive as catalysts for the air electrode in alkaline rechargeable metal-air batteries and fuel cells. We have found that conductive carbon materials when added to transition metal oxides such as calcium-doped lanthanum cobalt oxide, nickel cobalt oxide and calcium-doped lanthanum manganese cobalt oxide increase the electrocatalytic activity of the oxide for oxygen reduction by a factor of five to ten. We have studied rotating ring-disk electrodes coated with (a) various mass ratios of carbon and transition metal oxide, (b) different types of carbon additives and (c) different types of transition metal oxides. Our experiments and analysis establish that in such composite catalysts, carbon is the primary electro- catalyst for the two-electron electro-reduction of oxygen to hydroperoxide while the transition metal oxide decomposes the hydroperoxide to generate additional oxygen that enhances the observed current resulting in an apparent four-electron process. These findings are significant in that they change the way we interpret previous reports in the scientific literature on the electrocatalytic activity of various transition metal oxide- carbon composites for oxygen reduction, especially where carbon is assumed to be an additive that just enhances the electronic conductivity of the oxide catalyst. (C) 2013 The Electrochemical Society. All rights reserved.

  6. Spectral light separator based on deep-subwavelength resonant apertures in a metallic film

    SciTech Connect (OSTI)

    Bykalp, Yasin; Catrysse, Peter B. Shin, Wonseok; Fan, Shanhui

    2014-07-07

    We propose to funnel, select, and collect light spectrally by exploiting the unique properties of deep-subwavelength resonant apertures in a metallic film. In our approach, each aperture has an electromagnetic cross section that is much larger than its physical size while the frequency of the collected light is controlled by its height through the Fabry-Prot resonance mechanism. The electromagnetic crosstalk between apertures remains low despite physical separations in the deep-subwavelength range. The resulting device enables an extremely efficient, subwavelength way to decompose light into its spectral components without the loss of photons and spatial coregistration errors. As a specific example, we show a subwavelength-size structure with three deep-subwavelength slits in a metallic film designed to operate in the mid-wave infrared range between 3 and 5.5??m.

  7. Separation of heavy metals: Removal from industrial wastewaters and contaminated soil

    SciTech Connect (OSTI)

    Peters, R.W.; Shem, L.

    1993-03-01

    This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

  8. CONTINUOUS CHELATION-EXTRACTION PROCESS FOR THE SEPARATION AND PURIFICATION OF METALS

    DOE Patents [OSTI]

    Thomas, J.R.; Hicks, T.E.; Rubin, B.; Crandall, H.W.

    1959-12-01

    A continuous process is presented for separating metal values and groups of metal values from each other. A complex mixture. e.g., neutron-irradiated uranium, can be resolved into component parts. In the present process the values are dissolved in an acidic solution and adjusted to the proper oxidation state. Thenceforth the solution is contacted with an extractant phase comprising a fluorinated beta -diketone in an organic solvent under centain pH conditions whereupon plutonium and zirconium are extracted. Plutonium is extracted from the foregoing extract with reducing aqueous solutions or under specified acidic conditions and can be recovered from the aqueous solution. Zirconium is then removed with an oxalic acid aqueous phase. The uranium is recovered from the residual original solution using hexone and hexone-diketone extractants leaving residual fission products in the original solution. The uranium is extracted from the hexone solution with dilute nitric acid. Improved separations and purifications are achieved using recycled scrub solutions and the "self-salting" effect of uranyl ions.

  9. Mobilization of Metals from Eau Claire Siltstone and the Impact of Oxygen under Geological Carbon Dioxide Sequestration Conditions

    SciTech Connect (OSTI)

    Shao, Hongbo; Kukkadapu, Ravi K.; Krogstad, Eirik J.; Newburn, Matthew K.; Cantrell, Kirk J.

    2014-09-01

    Geologic CO2 sequestration (GCS) has been proposed as a viable strategy to reduce anthropogenic CO2 emission; however, the increased cost that will be incurred by fossil energy production facilities is a deterrent to implementation of this technology. Allowing impurities in the effluent CO2 stream could result in significant financial and energy savings for CO2 capture and separation. However, impurities such as O2 have the potential to influence the redox state and alter the geochemical interactions that occur within GCS reservoirs, which increases the concern for CO2 and brine leakage from the storage reservoir as well as the overlying groundwater contamination. In this work, to investigate the impact of O2 co-injected with CO2 on the geochemical interactions, especially the trace metal mobilization from a GCS reservoir rock, batch studies were conducted with Eau Claire siltstone collected from CO2 sequestration sites. The rock was reacted with synthetic brines in contact with either 100% CO2 or a mixture of 95 mole% CO2-5 mole% O2 at 10.1 MPa and 75 C. Both microscopic and spectroscopic measurements, including 57Fe-Mssbauer spectroscopy, Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry, powder X-ray diffraction, scanning electron microscopy-energy dispersive x-ray spectroscopy, and chemical extraction were combined in this study to investigate reaction mechanisms. The Eau Claire siltstone contains quartz (52 wt%), fluorapatite (40%), and aluminosilicate (5%) as major components, and dolomite (2%), pyrite (1%), and small-particle-/poorly-crystalline Fe-oxides as minor components. With the introduction of CO2 into the reaction vessel containing rock and brine, the leaching of small amounts of fluorapatite, aluminosilicate, and dolomite occurred. Trace metals of environmental concern, including Pb, As, Cd, and Cu were detected in the leachate with concentrations up to 400 ppb in the CO2-brine-rock reaction system within 30 days. In the presence of O2, the mobilization of Pb, Cd, and Cu was significantly enhanced, whereas As concentrations decreased, compared with the reaction system without oxygen. The presence of oxygen resulted in the formation of secondary Fe-oxides which appear to be Fe(II)-substituted P-containing ferrihydrite. Although the rock contained only 1.04 wt% total Fe, oxidative dissolution of pyrite, leaching and oxidation of structural Fe(II) in fluorapatite, and precipitation of Fe-oxides significantly decreased the pH in brine with oxygen(pH 3.3-3.7), compared with the reaction system without oxygen (pH 4.2-4.4). In the CO2-rock-brine system without O2, the majority of As remained in the rock, with about 1.1% of the total As being released from intrinsic Fe-oxides to the aqueous phase. The release behavior of As to solution was consistent with competitive adsorption between phosphate/fluoride and As on Fe-oxide surfaces. In the presence of O2 the mobility of As was reduced due to enhanced adsorption onto both intrinsic and secondary Fe-oxide surfaces.When O2 was present, the dominant species in solution was the less toxic As(V). This work will advance our understanding of the geochemical reaction mechanisms that occur under GCS conditions and help to evaluate the risks associated with geological CO2 sequestration.

  10. Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air

    SciTech Connect (OSTI)

    Bland, Robert J.; Horazak, Dennis A.

    2012-03-06

    A gas turbine engine is provided comprising an outer shell, a compressor assembly, at least one combustor assembly, a turbine assembly and duct structure. The outer shell includes a compressor section, a combustor section, an intermediate section and a turbine section. The intermediate section includes at least one first opening and at least one second opening. The compressor assembly is located in the compressor section to define with the compressor section a compressor apparatus to compress air. The at least one combustor assembly is coupled to the combustor section to define with the combustor section a combustor apparatus. The turbine assembly is located in the turbine section to define with the turbine section a turbine apparatus. The duct structure is coupled to the intermediate section to receive at least a portion of the compressed air from the compressor apparatus through the at least one first opening in the intermediate section, pass the compressed air to an apparatus for separating a portion of oxygen from the compressed air to produced vitiated compressed air and return the vitiated compressed air to the intermediate section via the at least one second opening in the intermediate section.

  11. Separation and Recovery of Uranium Metal from Spent Light Water Reactor Fuel via Electrolytic Reduction and Electrorefining

    SciTech Connect (OSTI)

    S. D. Herrmann; S. X. Li

    2010-09-01

    A series of bench-scale experiments was performed in a hot cell at Idaho National Laboratory to demonstrate the separation and recovery of uranium metal from spent light water reactor (LWR) oxide fuel. The experiments involved crushing spent LWR fuel to particulate and separating it from its cladding. Oxide fuel particulate was then converted to metal in a series of six electrolytic reduction runs that were performed in succession with a single salt loading of molten LiCl 1 wt% Li2O at 650 C. Analysis of salt samples following the series of electrolytic reduction runs identified the diffusion of select fission products from the spent fuel to the molten salt electrolyte. The extents of metal oxide conversion in the post-test fuel were also quantified, including a nominal 99.7% conversion of uranium oxide to metal. Uranium metal was then separated from the reduced LWR fuel in a series of six electrorefining runs that were performed in succession with a single salt loading of molten LiCl-KCl-UCl3 at 500 C. Analysis of salt samples following the series of electrorefining runs identified additional partitioning of fission products into the molten salt electrolyte. Analyses of the separated uranium metal were performed, and its decontamination factors were determined.

  12. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    SciTech Connect (OSTI)

    Way, J.; Wolden, Colin

    2013-09-30

    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo{sub 2}C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo{sub 2}C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft{sup 2} at a feed pressure of only 20 psig. The highest H{sub 2}/N{sub 2} selectivity obtained with this approach was 4.9. A transport model using dusty gas theory was derived to describe the hydrogen transport in the Mo{sub 2}C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo{sub 2}C catalyst layers. We have fabricated a Mo{sub 2}C/V composite membrane that in pure gas testing delivered a H{sub 2} flux of 238 SCFH/ft{sup 2} at 600 C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ?99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft{sup 2}.psi. However, during testing of a Mo{sub 2}C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft{sup 2}.psi was obtained which was stable during the entire test, meeting the permeance associated with the 2010 DOE target flux. Lastly, the Mo{sub 2}C/V composite membranes were shown to be stable for at least 168 hours = one week, including cycling at high temperature and alternating He/H{sub 2} exposure.

  13. Controlled temperature expansion in oxygen production by molten alkali metal salts

    DOE Patents [OSTI]

    Erickson, Donald C.

    1985-06-04

    A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power.

  14. Oxygen ion-conducting dense ceramic

    DOE Patents [OSTI]

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1997-01-01

    Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

  15. Oxygen ion-conducting dense ceramic

    DOE Patents [OSTI]

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1996-01-01

    Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

  16. Oxygen ion-conducting dense ceramic

    DOE Patents [OSTI]

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1998-01-01

    Preparation, structure, and properties of mixed metal oxide compositions and their uses are described. Mixed metal oxide compositions of the invention have stratified crystalline structure identifiable by means of powder X-ray diffraction patterns. In the form of dense ceramic membranes, the present compositions demonstrate an ability to separate oxygen selectively from a gaseous mixture containing oxygen and one or more other volatile components by means of ionic conductivities.

  17. Controlled temperature expansion in oxygen production by molten alkali metal salts

    DOE Patents [OSTI]

    Erickson, D.C.

    1985-06-04

    A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power. 1 fig.

  18. Separation of metallic residues from the dissolution of a high-burnup BWR fuel using nitrogen trifluoride

    SciTech Connect (OSTI)

    McNamara, Bruce K.; Buck, Edgar C.; Soderquist, Chuck Z.; Smith, Frances N.; Mausolf, Edward J.; Scheele, Randall D.

    2014-02-10

    Nitrogen trifluoride (NF3) was used to fluorinate the metallic residue from the dissolution of a high burnup, boiling water reactor fuel (?70 MWd/kgU). The metallic residue included the noble metal phase (containing ruthenium, rhodium, palladium, technetium, and molybdenum), and smaller amounts of zirconium, selenium, tellurium, and silver. Exposing the noble metal phase to 10% NF3 in argon between 400 and 550?C, removed molybdenum and technetium near 400?C as their volatile fluorides, and ruthenium near 500?C as its volatile fluoride. The events were thermally and temporally distinct and the conditions specified are a recipe to separate these transition metals from each other and from the noble metal phase nonvolatile residue. Depletion of the volatile fluorides resulted in substantial exothermicity. Thermal excursion behavior was recorded under non-adiabatic, isothermal conditions that typically minimize heat release. Physical characterization of the metallic noble phase and its thermal behavior are consistent with high kinetic velocity reactions encouraged by the nanoparticulate phase or perhaps catalytic influences of the mixed platinum metals with nearly pure phase structure. Post-fluorination, only two phases were present in the residual nonvolatile fraction. These were identified as a nano-crystalline, metallic palladium cubic phase and a hexagonal rhodium trifluoride (RhF3) phase. The two phases were distinct as the sub-m crystallites of metallic palladium were in contrast to the RhF3 phase, which grew from the parent nano-crystalline noble-metal phase during fluorination, to acicular crystals exceeding 20-m in length.

  19. Structural evolution across the insulator-metal transition in oxygen-deficient BaTiO3-δ studied using neutron total scattering and Rietveld analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jeong, I.-K.; Lee, Seunghun; Jeong, Se-Young; Won, C. J.; Hur, N.; Llobet, A.

    2011-08-29

    Oxygen-deficient BaTiO3-δ exhibits an insulator-metal transition with increasing δ. We performed neutron total scattering measurements to study structural evolution across an insulator-metal transition in BaTiO3-δ. Despite its significant impact on resistivity, slight oxygen reduction (δ=0.09) caused only a small disturbance on the local doublet splitting of Ti-O bond. This finding implies that local polarization is well preserved under marginal electric conduction. In the highly oxygen-deficient metallic state (δ=0.25), however, doublet splitting of the Ti-O bond became smeared. The smearing of the local Ti-O doublet is complemented with long-range structural analysis and demonstrates that the metallic conduction in the highly oxygen-reducedmore » BaTiO3-δ is due to the appearance of nonferroelectric cubic lattice.« less

  20. THE OXYGEN ABUNDANCE OF THE ULTRA-METAL-POOR STAR HE 0557-4840

    SciTech Connect (OSTI)

    Norris, John E.; Bessell, M. S.; Asplund, M.; Christlieb, N.; Eriksson, K.; Korn, A. J.

    2012-07-10

    We present a high-resolution ultraviolet (UV) spectrum of the ultra-metal-poor (UMP) carbon-enhanced red giant HE 0557-4840 (T{sub eff}/log g/[Fe/H] = 4900/2.2/-4.8). Combining these data with earlier observations, the radial velocity is 212.0 {+-} 0.4 km s{sup -1}, with no evidence of variability during 2006 February to 2007 December. One-dimensional (1D) LTE model-atmosphere analysis of UV Fe and CH lines confirms the iron and carbon abundances obtained previously ([Fe/H] = -4.8 and [C/Fe]{sub 1D} = +1.7), and places a more stringent limit on nitrogen abundance of [N/Fe]{sub 1D} < +1.0. Analysis of the UV OH lines yields [O/Fe]{sub 1D} = +2.3 {+-} 0.4. When corrections are made for three-dimensional (3D) effects we obtain [C/Fe]{sub 3D} = +1.1, [N/Fe]{sub 3D} < +0.1, and [O/Fe]{sub 3D} +1.4. Comparison of the abundances of HE 0557-4840 with those of supernova models of Nomoto et al. and Joggerst et al. suggests that none is able to explain fully the observed abundance pattern. For HE 0557-4840, the Frebel et al. transition discriminant D{sub trans}(log(10{sup [C/H]} + 0.3 Multiplication-Sign 10{sup [O/H]}) = -3.4 {+-} 0.2, consistent with fine-structure transitions of C II and O I being a major cooling mechanism of star-forming regions at the earliest times. Of the four stars known to have [Fe/H] {approx}< -4.3, three are strongly carbon and oxygen enhanced. If the suggestion by Caffau et al. that SDSS J102915+172927 ([Fe/H] = -4.7) does not belong to the class of C-rich, O-rich, UMP stars is supported by future similar discoveries, one will need to consider multiple channels for the production of stars having [Fe/H] {approx}< -4.3.

  1. Preparation of low oxygen-to-metal mixed oxide fuels for the advanced fast reactor

    SciTech Connect (OSTI)

    Kato, Masato; Nakamichi, Shinya; Takano, Tatsuo

    2007-07-01

    The preparation process for homogeneous mixed oxide pellets with a precise O/M ratio was established. The process was used to prepare pellets for heat treatments in two stages which consisted of the sintering process at high oxygen potential and the annealing process done in the atmosphere of controlled oxygen partial pressure. In the annealing process, it was found that abnormal growth of pores and occurrence of cracks were caused inside the pellet, and it was necessary for prevention of the microstructure change to control the oxygen potential of the atmosphere. Mixed oxide pellets with minor actinides were fabricated by the process and were provided to irradiation tests. (authors)

  2. Novel Metal-Organic Frameworks | Center for Gas SeparationsRelevant...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel Metal-Organic Frameworks Previous Next List Close Jeffrey Long Omar Yaghi Omar Yaghi Hongcai (Joe) Zhou Hong-Cai (Joe) Zhou...

  3. Metal hydrides as electrode/catalyst materials for oxygen evolution/reduction in electrochemical devices

    DOE Patents [OSTI]

    Bugga, Ratnakumar V.; Halpert, Gerald; Fultz, Brent; Witham, Charles K.; Bowman, Robert C.; Hightower, Adrian

    1997-01-01

    An at least ternary metal alloy of the formula, AB.sub.(5-Y)X(.sub.y), is claimed. In this formula, A is selected from the rare earth elements, B is selected from the elements of groups 8, 9, and 10 of the periodic table of the elements, and X includes at least one of the following: antimony, arsenic, and bismuth. Ternary or higher-order substitutions, to the base AB.sub.5 alloys, that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

  4. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  5. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

  6. Biomimicry in metal-organic materials | Center for GasSeparationsRele...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimicry in metal-organic materials Previous Next List Muwei Zhang, Zhi-Yuan Gu, Mathieu Bosch, Zachary Perry, Hong-Cai Zhou, Coordination Chemistry Reviews, (2014) DOI: 10.1016...

  7. Method for separating contaminants from solution employing an organic-stabilized metal-hydroxy gel

    DOE Patents [OSTI]

    Alexander, Donald H.

    1996-01-01

    Metals and organics are extracted from solution by co-precipitating them with a gel comprising aluminum hydroxide and a complexing agent such as EDTA. After the gel is processed to remove the metals and organics, it can be recycled for further use by dissolving it in a high-pH solution, leaving no secondary waste stream. A number of alternative complexing agents perform better than EDTA.

  8. Sulfate Separation by Selective Crystallization of a Urea-Functionalized Metal-Organic Framework

    SciTech Connect (OSTI)

    Custelcean, Radu; Sellin, Vincent; Moyer, Bruce A

    2007-01-01

    Encapsulation of SO{sub 4}{sup 2-} into a Ni coordination framework functionalized with urea anion-binding groups allows selective separation of this strongly hydrophilic anion from a highly competitive aqueous environment.

  9. Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene

    SciTech Connect (OSTI)

    Xiang, Sheng-Chang; Zhang, Zhangjing; Zhao, Cong-Gui; Hong, Kunlun; Zhao, Xuebo; Ding, De-Rong; Xie, Ming-Hua; Wu, Chuan-De; Madhab, Das; Gill, Rachel; Thomas, K Mark; Chen, Banglin

    2011-01-01

    Separation of acetylene and ethylene is an important industrial process because both compounds are essential reagents for a range of chemical products and materials. Current separation approaches include the partial hydrogenation of acetylene into ethylene over a supported Pd catalyst, and the extraction of cracked olefins using an organic solvent; both routes are costly and energy consuming. Adsorption technologies may allow separation, but microporous materials exhibiting highly selective adsorption of C{sub 2}H{sub 2}/C{sub 2}H{sub 4} have not been realized to date. Here, we report the development of tunable microporous enantiopure mixed-metal-organic framework (M'MOF) materials for highly selective separation of C{sub 2}H{sub 2} and C{sub 2}H{sub 4}. The high selectivities achieved suggest the potential application of microporous M'MOFs for practical adsorption-based separation of C{sub 2}H{sub 2}/C{sub 2}H{sub 4}.

  10. Magnetism and Metal-Insulator Transition in Oxygen Deficient SrTiO3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lopez-Bezanilla, Alejandro; Ganesh, Panchapakesan; Littlewood, Peter B.

    2015-09-08

    First-principles calculations to study the electronic and magnetic properties of bulk, oxygen-deficient SrTiO3 (STO) under different doping conditions and densities have been conducted. The appearance of magnetism in oxygen-deficient STO is not determined solely by the presence of a single oxygen vacancy but by the density of free carriers and the relative proximity of the vacant sites. We find that while an isolated vacancy behaves as a nonmagnetic double donor, manipulation of the doping conditions allows the stability of a single-donor state, with emergent local moments coupled ferromagnetically by carriers in the conduction band. Strong local lattice distortions enhance themore » binding of this state. The energy of the in-gap local moment can be further tuned by orthorhombic strain. Consequently we find that the free-carrier density and strain are fundamental components to obtaining trapped spin-polarized electrons in oxygen-deficient STO, which may have important implications in the design of optical devices.« less

  11. Thin-layer chromatography of metal ions complexed with anils. V. Detection, separation, and determination

    SciTech Connect (OSTI)

    Upadhyay, R.K.; Tewari, A.P.

    1980-01-01

    p-Diethylaminoanil of phenylglyoxal, a bidentate ligand, was used for complexation with Hg(II), UO/sub 2/(II), Au(III), Pt(IV), Mg(II), Bi(II), Sb(III), and Be(II) ions. The chelates were characterized by their analysis, molar conductance, and infrared spectra. TLC detection, separation, and determination of these complexes on starch-bound silica gel layers were studied. Long persisting dark colors of the complexes rendered the spots self-descernible and no locating agent was required. A minimum of four complexes could be resolved and identified. Errors in the determinations and maximum separation limits were also deduced. 3 tables.

  12. Separation of technetium and rare earth metals for co-decontamination process

    SciTech Connect (OSTI)

    Riddle, Catherine; Martin, Leigh

    2015-05-01

    Poster. In the US there are several technologies under consideration for the separation of the useful components in used nuclear fuel. One such process is the co-decontamination process to separate U, Np and Pu in a single step and produce a Np/ Pu and a U product stream. Although the behavior of the actinide elements is reasonably well defined in this system, the same is not true for the fission products, mainly Zr, Mo, Ru and Tc. As these elements are cationic and anionic they may interact with each other to extract in a manner not predicted by empirical models such as AMUSE. This poster presentation will discuss the initial results of batch contact testing under flowsheet conditions and as a function of varying acidity and flowsheet conditions to optimize recovery of Tc and minimize extraction of Mo, Zr and Ru with the goal of developing a better understanding of the behavior of these elements in the co-decontamination process.

  13. SEPARATION OF PLUTONIUM VALUES FROM OTHER METAL VALUES IN AQUEOUS SOLUTIONS BY SELECTIVE COMPLEXING AND ADSORPTION

    DOE Patents [OSTI]

    Beaton, R.H.

    1960-06-28

    A process is given for separating tri- or tetravalent plutonium from fission products in an aqueous solution by complexing the fission products with oxalate, tannate, citrate, or tartrate anions at a pH value of at least 2.4 (preferably between 2.4 and 4), and contacting a cation exchange resin with the solution whereby the plutonium is adsorbed while the complexed fission products remain in solution.

  14. Integrated chemical/biological treatment of paint stripper mixed waste: Metals toxicity and separation

    SciTech Connect (OSTI)

    Vanderberg-Twary, L.; Grumbine, R.K.; Foreman, T.; Hanners, J.L.; Brainard, J.R.; Sauer, N.N.; Unkefer, P.J.

    1995-05-01

    The DOE complex has generated vast quantities of complex heterogeneous mixed wastes. Paint stripper waste (PSW) is a complex waste that arose from decontamination and decommissioning activities. It contains paint stripper, cheesecloth, cellulose-based paints with Pb and Cr, and suspect Pu. Los Alamos National Laboratory has 150--200 barrels of PSW and other national laboratories such as Rocky Flats Plant have many more barrels of heterogeneous waste. Few technologies exist that can treat this complex waste. Our approach to solving this problem is the integration of two established technologies: biodegradation and metals chelation.

  15. Metal-Organic Framework Derived Hierarchically Porous Nitrogen-Doped Carbon Nanostructures as Novel Electrocatalyst for Oxygen Reduction Reaction

    SciTech Connect (OSTI)

    Fu, Shaofang; Zhu, Chengzhou; Zhou, Yazhou; Yang, Guohai; Jeon, Ju Won; Lemmon, John P.; Du, Dan; Nune, Satish K.; Lin, Yuehe

    2015-10-01

    The hierarchically porous nitrogen-doped carbon materials, derived from nitrogen-containing isoreticular metal-organic framework-3 (IRMOF-3) through direct carbonization, exhibited excellent electrocatalytic activity in alkaline solution for oxygen reduction reaction (ORR). This high activity is attributed to the 10 presence of high percentage of quaternary and pyridinic nitrogen, the high surface area as well as good conductivity. When IRMOF-3 was carbonized at 950 C (CIRMOF-3-950), it showed four-electron reduction pathway for ORR and exhibited better stability (about 78.5% current density was maintained) than platinum/carbon (Pt/C) in the current durability test. In addition, CIRMOF-3-950 presented high selectivity to cathode reactions compared to commercial Pt/C.

  16. Sulfate Separation from Aqueous Alkaline Solutions by Selective Crystallization of Alkali Metal Coordination Capsules

    SciTech Connect (OSTI)

    Rajbanshi, Arbin; Moyer, Bruce A; Custelcean, Radu

    2011-01-01

    Self-assembly of a tris(urea) anion receptor with Na{sub 2}SO{sub 4} or K{sub 2}SO{sub 4} yields crystalline capsules held together by coordinating Na{sup +} or K{sup +} cations and hydrogen-bonding water bridges, with the sulfate anions encapsulated inside urea-lined cavities. The sodium-based capsules can be selectively crystallized in excellent yield from highly competitive aqueous alkaline solutions ({approx}6 M Na{sup +}, pH 14), thereby providing for the first time a viable approach to sulfate separation from nuclear wastes.

  17. Transition metal carbides, nitrides and borides, and their oxygen containing analogs useful as water gas shift catalysts

    DOE Patents [OSTI]

    Thompson, Levi T.; Patt, Jeremy; Moon, Dong Ju; Phillips, Cory

    2003-09-23

    Mono- and bimetallic transition metal carbides, nitrides and borides, and their oxygen containing analogs (e.g. oxycarbides) for use as water gas shift catalysts are described. In a preferred embodiment, the catalysts have the general formula of M1.sub.A M2.sub.B Z.sub.C O.sub.D, wherein M1 is selected from the group consisting of Mo, W, and combinations thereof; M2 is selected from the group consisting of Fe, Ni, Cu, Co, and combinations thereof; Z is selected from the group consisting of carbon, nitrogen, boron, and combinations thereof; A is an integer; B is 0 or an integer greater than 0; C is an integer; O is oxygen; and D is 0 or an integer greater than 0. The catalysts exhibit good reactivity, stability, and sulfur tolerance, as compared to conventional water shift gas catalysts. These catalysts hold promise for use in conjunction with proton exchange membrane fuel cell powered systems.

  18. Report of Separate Effects Testing for Modeling of Metallic Fuel Casting Process

    SciTech Connect (OSTI)

    Crapps, Justin M.; Galloway, Jack D.; Decroix, David S.; Korzekwa, David A.; Aikin, Robert M. Jr.; Unal, Cetin; Fielding, R.; Kennedy, R

    2012-06-29

    In order to give guidance regarding the best investment of time and effort in experimental determination of parameters defining the casting process, a Flow-3D model of the casting process was used to investigate the most influential parameters regarding void fraction of the solidified rods and solidification speed for fluid flow parameters, liquid heat transfer parameters, and solid heat transfer parameters. Table 1 summarizes the most significant variables for each of the situations studied. A primary, secondary, and tertiary effect is provided for fluid flow parameters (impacts void fraction) and liquid heat transfer parameters (impacts solidification). In Table 1, the wetting angle represents the angle between the liquid and mold surface as pictured in Figure 1. The viscosity is the dynamic viscosity of the liquid and the surface tension is the property of the surface of a liquid that allows it to resist an external force. When only considering solid heat transfer properties, the variations from case to case were very small. Details on this conclusion are provided in the section considering solid heat transfer properties. The primary recommendation of the study is to measure the fluid flow parameters, specifically the wetting angle, surface tension, and dynamic viscosity, in order of importance, as well as the heat transfer parameters latent heat and specific heat of the liquid alloy. The wetting angle and surface tension can be measured simultaneously using the sessile drop method. It is unclear whether there is a temperature dependency in these properties. Thus measurements for all three parameters are requested at 1340, 1420, and 1500 degrees Celsius, which correspond to the minimum, middle, and maximum temperatures of the liquid alloy during the process. In addition, the heat transfer coefficient between the mold and liquid metal, the latent heat of transformation, and the specific heat of the liquid metal all have strong influences on solidification. These parameters should be measured to achieve better simulation fidelity. Information on all the mentioned parameters is virtually nonexistent. Presently, all the parameters within the casting model are estimates based on pure U, or another alloy such as U-Ni.

  19. Nanoscale Phase Separation, Cation Ordering, and Surface Oxygen Chemistry in Pristine Li1.2Ni0.2Mn0.6O2 for Li-Ion Batteries

    SciTech Connect (OSTI)

    Gu, Meng; Genc, Arda; Belharouak, Ilias; Wang, Dapeng; Amine, Khalil; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Jiguang; Browning, Nigel D.; Liu, Jun; Wang, Chong M.

    2013-05-14

    Li-rich layered material Li1.2Ni0.2Mn0.6O2 possesses high voltage and high specific capacity, which makes it an attractive candidate for the transportation industry and sustainable energy storage systems. The rechargeable capacity of the Li-ion battery is linked largely to the structural stability of the cathode materials during the charge-discharge cycles. However, the structure and cation distribution in pristine (un-cycled) Li1.2Ni0.2Mn0.6O2 have not yet been fully characterized. Using a combination of aberration-corrected scanning/transmission electron microscopy, X-ray dispersive energy spectroscopy (XEDS), electron energy loss spectroscopy (EELS), and complementary multislice image simulation, we have probed the crystal structure, cation/anion distribution, and electronic structure of Li1.2Ni0.2Mn0.6O2 nanoparticle. We discovered that the electronic structure and valence state of transition metal ions show significant variations, which have been identified to be attributed to the oxygen deficiency near the particle surfaces. Characterization of the nanoscale phase separation and cation ordering in the pristine material are critical for understanding the capacity and voltage fading of this material for battery application.

  20. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

  1. Integrated turbomachine oxygen plant

    SciTech Connect (OSTI)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  2. Structure having spatially separated photo-excitable electron-hole pairs and method of manufacturing same

    DOE Patents [OSTI]

    Liang, Yong; Daschbach, John L.; Su, Yali; Chambers, Scott A.

    2006-08-22

    A method for producing quantum dots. The method includes cleaning an oxide substrate and separately cleaning a metal source. The substrate is then heated and exposed to the source in an oxygen environment. This causes metal oxide quantum dots to form on the surface of the substrate.

  3. Structure having spatially separated photo-excitable electron-hole pairs and method of manufacturing same

    DOE Patents [OSTI]

    Liang, Yong [Richland, WA; Daschbach, John L [Richland, WA; Su, Yali [Richland, WA; Chambers, Scott A [Kennewick, WA

    2003-03-18

    A method for producing quantum dots. The method includes cleaning an oxide substrate and separately cleaning a metal source. The substrate is then heated and exposed to the source in an oxygen environment. This causes metal oxide quantum dots to form on the surface of the substrate.

  4. Interaction of iron-copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal

    SciTech Connect (OSTI)

    Siriwardane, Ranjani V.; Ksepko, Ewelina; Tian, Hanging

    2013-01-01

    The objective of this work was to prepare supported bimetallic FeCu oxygen carriers and to evaluate their performance for the chemical-looping combustion (CLC) process with simulated synthesis gas derived from steam gasification of coal/air. Ten-cycle CLC tests were conducted with FeCu oxygen carriers in an atmospheric thermogravimetric analyzer utilizing simulated synthesis gas derived from the steam gasification of Polish Janina coal and Illinois #6 coal as fuel. The effect of temperature on reaction rates, chemical stability, and oxygen transport capacity were determined. Fractional reduction, fractional oxidation, and global rates of reactions were calculated from the thermogravimetric analysis (TGA) data. The supports greatly affected reaction performance. Data showed that reaction rates and oxygen capacities were stable during the 10-cycle TGA tests for most FeCu/support oxygen carriers. Bimetallic FeCu/support oxygen carriers showed higher reduction rates than Fe-support oxygen carriers. The carriers containing higher Cu content showed better stabilities and better reduction rates. An increase in temperature from 800 C to 900 C did not have a significant effect on either the oxygen capacity or the reduction rates with synthesis gas derived from Janina coal. Oxidation reaction was significantly faster than reduction reaction for all supported FeCu oxygen carriers. Carriers with higher Cu content had lower oxidation rates. Ten-cycle TGA data indicated that these oxygen carriers had stable performances at 800900 C and might be successfully used up to 900 C for coal CLC reaction in the presence of steam.

  5. Anomalous C-V response correlated to relaxation processes in TiO{sub 2} thin film based-metal-insulator-metal capacitor: Effect of titanium and oxygen defects

    SciTech Connect (OSTI)

    Kahouli, A.; Marichy, C.; Pinna, N.

    2015-04-21

    Capacitance-voltage (C–V) and capacitance-frequency (C–f) measurements are performed on atomic layer deposited TiO{sub 2} thin films with top and bottom Au and Pt electrodes, respectively, over a large temperature and frequency range. A sharp capacitance peak/discontinuity (C–V anomalous) is observed in the C–V characteristics at various temperatures and voltages. It is demonstrated that this phenomenon is directly associated with oxygen vacancies. The C–V peak irreversibility and dissymmetry at the reversal dc voltage are attributed to difference between the Schottky contacts at the metal/TiO{sub 2} interfaces. Dielectric analyses reveal two relaxation processes with degeneration of the activation energy. The low trap level of 0.60–0.65 eV is associated with the first ionized oxygen vacancy at low temperature, while the deep trap level of 1.05 eV is associated to the second ionized oxygen vacancy at high temperature. The DC conductivity of the films exhibits a transition temperature at 200 °C, suggesting a transition from a conduction regime governed by ionized oxygen vacancies to one governed by interstitial Ti{sup 3+} ions. Both the C–V anomalous and relaxation processes in TiO{sub 2} arise from oxygen vacancies, while the conduction mechanism at high temperature is governed by interstitial titanium ions.

  6. Energy and materials flows in the production of liquid and gaseous oxygen

    SciTech Connect (OSTI)

    Shen, S.; Wolsky, A.M.

    1980-08-01

    Liquid and gaseous oxygen is produced in an energy-intensive air separation processo that also generates nitrogen. More than 65% of the cost of oxygen is attributable to energy costs. Energy use and materials flows are analyzed for various air separation methods. Effective approaches to energy and material conservation in air separation plants include efficient removal of contaminants (carbon dioxide and water), centralization of air products user-industries so that large air separation plants are cost-effective and the energy use in transportation is minimized, and increased production of nitrogen. Air separation plants can produce more than three times more nitrogen than oxygen, but present markets demand, at most, only 1.5 times more. Full utlization of liquid and gaseous nitrogen should be encouraged, so that the wasted separation energy is minimized. There are potential markets for nitrogen in, for example, cryogenic separation of metallic and plastic wastes, cryogenic particle size reduction, and production of ammonia for fertilizer.

  7. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, Fernando H.; Brosha, Eric L.

    1997-01-01

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.

  8. De novo design of ligands for metal separation. Annual progress report, September 15, 1996--September 14, 1997

    SciTech Connect (OSTI)

    1997-01-01

    'The specific aim of this report is to parameterize force field to reproduce geometries and relative energetics of metal-ligand complexes for cesium, strontium, plutonium, uranium, americium and other relevent alkali, transition, lanthanide and actinide metals. As an initial attempt to examine parametrization, Dr. Yasuo Takeuchi has examined parameters for iron in combination with the molecular mechanics force field. The authors realize that most of the current ad hoc methodogies used to model metal interactions in the past do not have a firm theoretical foundation for modeling the d and f orbitals. They have, therefore, started a collaboration with Prof. Anders Carlsson of the Department of Physics to provide a theoretically correct functional form for the metal force field. Prof. Carlsson has an extensive track record in the derivation of the form of angular force fields from analysis of the quantum-mechanical electronic structure. His most important related works have treated the angular forces around transition-metal (TM) atoms in an aluminum host, the angular forces in elemental bcc transition metals, and the origins of angular and torsional forces in well-bonded s-p systems. They propose to apply the basic ideas of these calculations to developing force laws for transition metal ions in biomolecules. Of particular relevance to the proposed work is his study analyzing angular forces around transition metal (TM) atoms embedded in an aluminum host. Such TM atoms have a profound effect on the host structure, often entirely reassembling the host structure in order to satisfy the angular bonding constraints around the TM atoms. For example, at a concentration of only 1 {approximately} TM to 12 {approximately} Al, the transition metals Mn, Mo, Tc, W, and Re form the Al{sup 12}W structure, in which the underlying fcc aluminum lattice is disassembled and reassembled into icosahedra which surround the transition-metal atoms. The Al{sup 12}W structure is a body-centered cubic arrangement of such icosahedra. This behavior is analogous to that of several transition metals in proteins and other potential hosts, for example the formation of square-planar or Jahn-teller distorted octahedral structure by Cu{sup 2+} ions in many proteins. In both cases, the transition metal atom or ion has strong preferences regarding its angular environment. Of course, other effects, such as steric constraints on the ligands, are also important and dominate in some cases.'

  9. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Holby, Edward F.; Taylor, Christopher D.

    2015-03-19

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O₂ bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H₂O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH boundmore »structures have the highest calculated activity to date.« less

  10. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    SciTech Connect (OSTI)

    Holby, Edward F.; Taylor, Christopher D.

    2015-03-19

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O? bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H?O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH bound structures have the highest calculated activity to date.

  11. Steam reforming of fast pyrolysis-derived aqueous phase oxygenates over Co, Ni, and Rh metals supported on MgAl2O4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xing, Rong; Dagle, Vanessa Lebarbier; Flake, Matthew; Kovarik, Libor; Albrecht, Karl O.; Deshmane, Chinmay; Dagle, Robert A.

    2016-02-03

    In this paper we examine the feasibility of steam reforming the mixed oxygenate aqueous fraction derived from fast pyrolysis bio-oils. Catalysts selective towards hydrogen formation and resistant to carbon formation utilizing feeds with relatively low steam-to-carbon (S/C) ratios are desired. Rh (5 wt%), Pt (5 wt%), Ru (5 wt%), Ir (5 wt%), Ni (15 wt%), and Co (15 wt%) metals supported on MgAl2O4 were evaluated for catalytic performance at 500 °C and 1 atm using a complex feed mixture comprising acids, polyols, cycloalkanes, and phenolic compounds. The Rh catalyst was found to be the most active and resistant to carbonmore » formation. The Ni and Co catalysts were found to be more active than the other noble metal catalysts investigated (Pt, Ru, and Ir).« less

  12. Photochromic Metal-Organic Frameworks: Reversible Control of Singlet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxygen Generation | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Photochromic Metal-Organic Frameworks: Reversible Control of Singlet Oxygen Generation Previous Next List Jihye Park, Dawei Feng, Shuai Yuan and Hong-Cai Zhou, Angew. Chem. Int. Ed. 54, 430-435 (2014) DOI: 10.1002/anie.201408862 Abstract: The controlled generation of singlet oxygen is of great interest owing to its potential applications including industrial wastewater treatment,

  13. Chalcogels : porous metal-chalcogenide networks from main-group metal ions. Effect of surface polarizability on selectivity in gas separation.

    SciTech Connect (OSTI)

    Bag, S.; Kanatzidis, M. G.; Materials Science Division; Northwestern Univ.

    2010-10-06

    We report the synthesis of metal-chalcogenide gels and aerogels from anionic chalcogenide clusters and linking metal ions. Metal ions such as Sb{sup 3+} and Sn{sup 2+}, respectively chelated with tartrate and acetate ligands, react in solution with the chalcogenide clusters to form extended polymeric networks that exhibit gelation phenomena. Chalcogenide cluster anions with different charge densities, such as [Sn{sub 2}S{sub 6}]{sup 4-} and [SnS{sub 4}]{sup 4-}, were employed. In situ rheological measurements during gelation showed that a higher charge density on the chalcogenide cluster favors formation of a rigid gel network. Aerogels obtained from the gels after supercritical drying have BET surface areas from 114 to 368 m{sup 2}/g. Electron microscopy images coupled with nitrogen adsorption measurements showed the pores are micro (below 2 nm), meso (2-50 nm), and macro (above 50 nm) regions. These chalcogels possess band gaps in the range of 1.00-2.00 eV and selectively adsorb polarizable gases. A 2-fold increase in selectivity toward CO{sub 2}/C{sub 2}H{sub 6} over H{sub 2} was observed for the Pt/Sb/Ge{sub 4}Se{sub 10}-containing aerogel compared to aerogel containing Pt{sub 2}Ge{sub 4}S{sub 10}. The experimental results suggest that high selectivity in gas adsorption is achievable with high-surface-area chalcogenide materials containing heavy polarizable elements.

  14. Immobilized fluid membranes for gas separation

    DOE Patents [OSTI]

    Liu, Wei; Canfield, Nathan L; Zhang, Jian; Li, Xiaohong Shari; Zhang, Jiguang

    2014-03-18

    Provided herein are immobilized liquid membranes for gas separation, methods of preparing such membranes and uses thereof. In one example, the immobilized membrane includes a porous metallic host matrix and an immobilized liquid fluid (such as a silicone oil) that is immobilized within one or more pores included within the porous metallic host matrix. The immobilized liquid membrane is capable of selective permeation of one type of molecule (such as oxygen) over another type of molecule (such as water). In some examples, the selective membrane is incorporated into a device to supply oxygen from ambient air to the device for electrochemical reactions, and at the same time, to block water penetration and electrolyte loss from the device.

  15. Gas adsorption/separation properties of metal directed self-assembly of two coordination polymers with 5-nitroisophthalate

    SciTech Connect (OSTI)

    Ar?c?, Mrsel; Ye?ilel, Okan Zafer; Keskin, Seda; ?ahin, Onur

    2014-02-15

    Two new coordination polymers, namely, [Co(-nip)(-bpe)]{sub n} (1) and [Zn(-nip)(-bpe)]{sub n} (2) (nip: 5-nitroisophthalate, bpe: 1,2-bis(4-pyridyl)ethane) were hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis and thermal analysis. Moreover, atomically detailed simulation studies of complex 2 for CO{sub 2}/CH{sub 4} adsorption and separation were performed. Complex 1 consists of two dimensional (2D) (4,4) grid networks with the point symbol of 4{sup 4}.6{sup 2}. Complex 2 exhibits a 3-fold interpenetrating 3D framework with 6{sup 5}.8-dmp topology. Thermal properties of the complexes showed that both complexes were stable over 320 C. Simulation studies demonstrated that complex 2 can separate CO{sub 2} from CH{sub 4} at low pressures at 273 K. - Graphical abstract: In this study, two new coordination polymers, namely, [Co(-nip)(-bpe)]{sub n} (1) and [Zn(-nip)(-bpe)]{sub n} (2) (nip: 5-nitroisophthalate, bpe: 1,2-bis(4-pyridyl)ethane) were hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis and thermal analysis. Moreover, atomically detailed simulation studies of complex 2 for CO{sub 2}/CH{sub 4} adsorption and separation were performed. Complex 1 consists of two dimensional (2D) (4,4) grid networks with the point symbol of 4{sup 4}.6{sup 2}. Complex 2 exhibits a 3-fold interpenetrating 3D framework with 6{sup 5}.8-dmp topology. Simulation studies demonstrated that complex 2 can separate CO{sub 2} from CH{sub 4} at low pressures at 273 K. Display Omitted - Highlights: Two new coordination polymers with 5-nitroisophthalate and 1,2-bis(4-pyridyl)ethane. Atomically detailed simulation studies of the complexes. Complex 2 can be proposed as molecular sieve to separate CO{sub 2} from CH{sub 4} at low pressures.

  16. Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream

    DOE Patents [OSTI]

    Kansa, Edward J.; Anderson, Brian L.; Wijesinghe, Ananda M.; Viani, Brian E.

    1999-01-01

    This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced.

  17. Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream

    DOE Patents [OSTI]

    Kansa, E.J.; Anderson, B.L.; Wijesinghe, A.M.; Viani, B.E.

    1999-05-25

    This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced. 3 figs.

  18. Literature search for the non-aqueous separation of zinc from fuel rod cladding. [After dissolution in liquid metal

    SciTech Connect (OSTI)

    Sandvig, R. L.; Dyer, S. J.; Lambert, G. A.; Baldwin, C. E.

    1980-06-21

    This report reviews the literature of processes for the nonaqueous separation of zinc from dissolved fuel assembly cladding. The processes considered were distillation, pyrochemical processing, and electrorefining. The last two techniques were only qualitatively surveyed while the first, distillation, was surveyed in detail. A survey of available literature from 1908 through 1978 on the distillation of zinc was performed. The literature search indicated that a zinc recovery rate in excess of 95% is possible; however, technical problems exist because of the high temperatures required and the corrosive nature of liquid zinc. The report includes a bibliography of the surveyed literature and a computer simulation of vapor pressures in binary systems. 129 references.

  19. Effect of oxygen vacancy on half metallicity in Ni-doped CeO{sub 2} diluted magnetic semiconductor

    SciTech Connect (OSTI)

    Saini, Hardev S. Saini, G. S. S.; Singh, Mukhtiyar; Kashyap, Manish K.

    2015-05-15

    The electronic and magnetic properties of Ni-doped CeO{sub 2} diluted amgentic semiconductor (DMS) including the effect of oxygen vacancy (V{sub o}) with doping concentration, x = 0.125 have been calculated using FPLAPW method based on Density Functional Theory (DFT) as implemented in WIEN2k. In the present supercell approach, the XC potential was constructed using GGA+U formalism in which Coulomb correction is applied to standard GGA functional within the parameterization of Perdew-Burke-Ernzerhof (PBE). We have found that the ground state properties of bulk CeO{sub 2} compound have been modified significantly due to the substitution of Ni-dopant at the cation (Ce) site with/without V{sub O} and realized that the ferromagnetism in CeO{sub 2} remarkably depends on the V{sub o} concentrations. The presence of V{sub o}, in Ni-doped CeO{sub 2}, can leads to strong ferromagnetic coupling between the nearest neighboring Ni-ions and induces a HMF in this compound. Such ferromagnetic exchange coupling is mainly attributed to spin splitting of Ni-d states, via electrons trapped in V{sub o}. The HMF characteristics of Ni-doped CeO{sub 2} including V{sub o} makes it an ideal material for spintronic devices.

  20. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, F.H.; Brosha, E.L.

    1997-12-09

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.

  1. Multiscale atomistic simulation of metal-oxygen surface interactions: methodological development, theoretical investigation, and correlation with experiment

    SciTech Connect (OSTI)

    Yang, Judith C.

    2015-01-09

    The purpose of this grant is to develop the multi-scale theoretical methods to describe the nanoscale oxidation of metal thin films, as the PI (Yang) extensive previous experience in the experimental elucidation of the initial stages of Cu oxidation by primarily in situ transmission electron microscopy methods. Through the use and development of computational tools at varying length (and time) scales, from atomistic quantum mechanical calculation, force field mesoscale simulations, to large scale Kinetic Monte Carlo (KMC) modeling, the fundamental underpinings of the initial stages of Cu oxidation have been elucidated. The development of computational modeling tools allows for accelerated materials discovery. The theoretical tools developed from this program impact a wide range of technologies that depend on surface reactions, including corrosion, catalysis, and nanomaterials fabrication.

  2. Oxygen-producing inert anodes for SOM process

    SciTech Connect (OSTI)

    Pal, Uday B

    2014-02-25

    An electrolysis system for generating a metal and molecular oxygen includes a container for receiving a metal oxide containing a metallic species to be extracted, a cathode positioned to contact a metal oxide housed within the container; an oxygen-ion-conducting membrane positioned to contact a metal oxide housed within the container; an anode in contact with the oxygen-ion-conducting membrane and spaced apart from a metal oxide housed within the container, said anode selected from the group consisting of liquid metal silver, oxygen stable electronic oxides, oxygen stable crucible cermets, and stabilized zirconia composites with oxygen stable electronic oxides.

  3. Adsorption and Separation of Light Gases on an Amino-Functionalized MetalOrganic Framework: An Adsorption and In Situ XRD Study

    SciTech Connect (OSTI)

    Couck S.; Stavitski E.; Gobehiya, E.; Kirschhock, C.E.A.; Serra-Crespo, P.; Juan-Alcaniz, J.; Martinez Joaristi, A.; Gascon, J.; Kapteijn, F.; Baron, G. V.; Denayer J.F.M.

    2012-02-29

    The NH{sub 2}-MIL-53(Al) metal-organic framework was studied for its use in the separation of CO{sub 2} from CH{sub 4}, H{sub 2}, N{sub 2} C{sub 2}H{sub 6} and C{sub 3}H{sub 8} mixtures. Isotherms of methane, ethane, propane, hydrogen, nitrogen, and CO{sub 2} were measured. The atypical shape of these isotherms is attributed to the breathing properties of the material, in which a transition from a very narrow pore form to a narrow pore form and from a narrow pore form to a large pore form occurs, depending on the total pressure and the nature of the adsorbate, as demonstrated by in-situ XRD patterns measured during adsorption. Apart from CO{sub 2}, all tested gases interacted weakly with the adsorbent. As a result, they are excluded from adsorption in the narrow pore form of the material at low pressure. CO{sub 2} interacted much more strongly and was adsorbed in significant amounts at low pressure. This gives the material excellent properties to separate CO{sub 2} from other gases. The separation of CO{sub 2} from methane, nitrogen, hydrogen, or a combination of these gases has been demonstrated by breakthrough experiments using pellets of NH{sub 2}-MIL-53(Al). The effect of total pressure (1-30 bar), gas composition, temperature (303-403 K) and contact time has been examined. In all cases, CO{sub 2} was selectively adsorbed, whereas methane, nitrogen, and hydrogen nearly did not adsorb at all. Regeneration of the adsorbent by thermal treatment, inert purge gas stripping, and pressure swing has been demonstrated. The NH{sub 2}-MIL-53(Al) pellets retained their selectivity and capacity for more than two years.

  4. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  5. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  6. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  7. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    SciTech Connect (OSTI)

    Sallis, S.; Williams, D. S.; Butler, K. T.; Walsh, A.; Quackenbush, N. F.; Junda, M.; Podraza, N. J.; Fischer, D. A.; Woicik, J. C.; White, B. E.; Piper, L. F. J.

    2014-06-09

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  8. I-NERI ANNUAL TECHNICAL PROGRESS REPORT: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels

    SciTech Connect (OSTI)

    S. Frank

    2009-09-01

    An attractive alternative to the once-through disposal of electrorefiner salt is to selectively remove the active fission products from the salt and recycle the salt back to the electrorefiner (ER). This would allow salt reuse for some number of cycles before ultimate disposal of the salt in a ceramic waste form. Reuse of ER salt would, thus, greatly reduce the volume of ceramic waste produced during the pyroprocessing of spent nuclear fuel. This final portion of the joint I-NERI research project is to demonstrate the separation of fission products from molten ER salt by two methods previously selected during phase two (FY-08) of this project. The two methods selected were salt/zeolite contacting and rare-earth fission product precipitation by oxygen bubbling. The ER salt used in these tests came from the Mark-IV electrorefiner used to anodically dissolved driver fuel from the EBR-II reactor on the INL site. The tests were performed using the Hot Fuel Dissolution Apparatus (HFDA) located in the main cell of the Hot Fuels Examination Facility (HFEF) at the Materials and Fuels complex on the INL site. Results from these tests were evaluated during a joint meeting of KAERI and INL investigators to provide recommendations as to the future direction of fission product removal from electrorefiner salt that accumulate during spent fuel treatment. Additionally, work continued on kinetic measurements of surrogate quaternary salt systems to provide fundamental kinetics on the ion exchange system and to expand the equilibrium model system developed during the first two phases of this project. The specific objectives of the FY09 I-NERI research activities at the INL include the following: Perform demonstration tests of the selected KAERI precipitation and INL salt/zeolite contacting processes for fission product removal using radioactive, fission product loaded ER salt Continue kinetic studies of the quaternary Cs/Sr-LiCl-KCl system to determine the rate of ion exchange during the salt/zeolite contacting process Compare the adsorption models to experimentally obtained, ER salt results Evaluate results obtained from the oxygen precipitation and salt/zeolite ion exchange studies to determine the best processes for selective fission-product removal from electrorefiner salt.

  9. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    DOE Patents [OSTI]

    Schwartz, Michael; White, James H.; Sammels, Anthony F.

    2000-01-01

    This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.

  10. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    DOE Patents [OSTI]

    Schwartz, Michael; White, James H.; Sammells, Anthony F.

    2005-09-27

    This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.

  11. Mixed-Matric Membranes for CO2 and H2 Gas Separations Using Metal-Organic Framework and Mesoporus Hybrid Silicas

    SciTech Connect (OSTI)

    Inga Musselman; Kenneth Balkus, Jr.; John Ferraris

    2009-01-07

    In this work, we have investigated the separation performance of polymer-based mixed-matrix membranes containing metal-organic frameworks and mesoporous hybrid silicas. The MOF/Matrimid{reg_sign} and MOP-18/Matrimid{reg_sign} membranes exhibited improved dispersion and mechanical strength that allowed high additive loadings with reduced aggregation, as is the case of the 80 wt% MOP-18/Matrimid{reg_sign} and the 80% (w/w) Cu-MOF/Matrimid{reg_sign} membranes. Membranes with up to 60% (w/w) ZIF-8 content exhibited similar mechanical strength and improved dispersion. The H{sub 2}/CO{sub 2} separation properties of MOF/Matrimid{reg_sign} mixed-matrix membranes was improved by either keeping the selectivity constant and increasing the permeability (MOF-5, Cu-MOF) or by improving both selectivity and permeability (ZIF-8). In the case of MOF-5/Matrimid{reg_sign} mixed-matrix membranes, the H{sub 2}/CO{sub 2} selectivity was kept at 2.6 and the H{sub 2} permeability increased from 24.4 to 53.8 Barrers. For the Cu-MOF/Matrimid{reg_sign} mixed-matrix membranes, the H{sub 2}/CO{sub 2} selectivity was kept at 2.05 and the H{sub 2} permeability increased from 17.1 to 158 Barrers. These two materials introduced porosity and uniform paths that enhanced the gas transport in the membranes. When ZIF-8/Matrimid{reg_sign} mixed-matrix membranes were studied, the H{sub 2}/CO{sub 2} selectivity increased from 2.9 to 4.4 and the permeability of H{sub 2} increased from 26.5 to 35.8 Barrers. The increased H{sub 2}/CO{sub 2} selectivity in ZIF-8/Matrimid{reg_sign} membranes was explained by the sieving effect introduced by the ZIF-8 crystals (pore window 0.34 nm) that restricted the transport of molecules larger than H{sub 2}. Materials with microporous and/or mesoporous cavities like carbon aerogel composites with zeolite A and zeolite Y, and membranes containing mesoporous ZSM-5 showed sieving effects for small molecules (e.g. H{sub 2} and CO{sub 2}), however, the membranes were most selective for CO{sub 2} due to the strong interaction of the zeolites with CO{sub 2}. For example, at 30 wt% ZSM-5 loading, the CO{sub 2}/CH{sub 4} selectivity increased from 34.7 (Matrimid{reg_sign}) to 56.4. The large increase in selectivity was the result of the increase in CO{sub 2} permeability from 7.3 (Matrimid{reg_sign}) to 14.6 Barrers. At 30 wt% ZSM-5 loading, the H{sub 2}/CH{sub 4} separation was also improved from 83.3 (Matrimid{reg_sign}) to 136.7 with an increase in H{sub 2} permeability from 17.5 (Matrimid{reg_sign}) to 35.3 Barrers. The 10% carbon aerogel-zeolite A and -zeolite Y composite/Matrimid{reg_sign} membranes exhibited an increase in the CO{sub 2}/CH{sub 4} separation from 34.7 to 71.5 (zeolite A composite) and to 57.4 (zeolite Y composite); in addition, the membrane exhibited an increase in the CO{sub 2}/N{sub 2} separation from 33.1 to 50 (zeolite A composite) and to 49.4 (zeolite Y composite), indicating that these type of materials have affinity for CO{sub 2}. The inclusion of mesoporosity enhanced the dispersion of the additive allowing loadings of up to 30% (w/w) without the formation of non-selective voids.

  12. Process for removing metals from water

    DOE Patents [OSTI]

    Napier, John M.; Hancher, Charles M.; Hackett, Gail D.

    1989-01-01

    A process for removing metals from water including the steps of prefiltering solids from the water, adjusting the pH to between about 2 and 3, reducing the amount of dissolved oxygen in the water, increasing the pH to between about 6 and 8, adding water-soluble sulfide to precipitate insoluble sulfide- and hydroxide-forming metals, adding a flocculating agent, separating precipitate-containing floc, and postfiltering the resultant solution. The postfiltered solution may optionally be eluted through an ion exchange resin to remove residual metal ions.

  13. Fuel cell oxygen electrode

    DOE Patents [OSTI]

    Shanks, H.R.; Bevolo, A.J.; Danielson, G.C.; Weber, M.F.

    An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A/sub x/WO/sub 3/ where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt/sub y/WO/sub 3/ where y is at least 0.8.

  14. Fuel cell oxygen electrode

    DOE Patents [OSTI]

    Shanks, Howard R. (Ames, IA); Bevolo, Albert J. (Ames, IA); Danielson, Gordon C. (Ames, IA); Weber, Michael F. (Wichita, KS)

    1980-11-04

    An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A.sub.x WO.sub.3 where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt.sub.y WO.sub.3 where y is at least 0.8.

  15. Oxygen analyzer

    DOE Patents [OSTI]

    Benner, William H.

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  16. Method for the safe disposal of alkali metal

    DOE Patents [OSTI]

    Johnson, Terry R.

    1977-01-01

    Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam-CO.sub.2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps.

  17. Oxygen-reducing catalyst layer

    DOE Patents [OSTI]

    O'Brien, Dennis P.; Schmoeckel, Alison K.; Vernstrom, George D.; Atanasoski, Radoslav; Wood, Thomas E.; Yang, Ruizhi; Easton, E. Bradley; Dahn, Jeffrey R.; O'Neill, David G.

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  18. Ultracapacitor separator

    DOE Patents [OSTI]

    Wei, Chang; Jerabek, Elihu Calvin; LeBlanc, Jr., Oliver Harris

    2001-03-06

    An ultracapacitor includes two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. The electrolyte is a polar aprotic organic solvent and a salt. The porous separator comprises a wet laid cellulosic material.

  19. Oxygen analyzer

    DOE Patents [OSTI]

    Benner, W.H.

    1984-05-08

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  20. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Trending: Metal Oxo Bonds Print Wednesday, 29 May 2013 00:00 Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides

  1. Device for hydrogen separation and method

    DOE Patents [OSTI]

    Paglieri, Stephen N.; Anderson, Iver E.; Terpstra, Robert L.

    2009-11-03

    A device for hydrogen separation has a porous support and hydrogen separation material on the support. The support is prepared by heat treatment of metal microparticles, preferably of iron-based or nickel-based alloys that also include aluminum and/or yttrium. The hydrogen separation material is then deposited on the support. Preferred hydrogen separation materials include metals such as palladium, alloys, platinum, refractory metals, and alloys.

  2. Development of ITM oxygen technology for integration in IGCC and other advanced power generation

    SciTech Connect (OSTI)

    Armstrong, Phillip A.

    2015-03-31

    Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under this five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state-of-the-art cryogenic air separation technology in energy-intensive applications such as IGCC with and without carbon capture.

  3. Sodium compatibility of refractory metal alloy/304L braze joints

    SciTech Connect (OSTI)

    Hosking, F.M.

    1984-05-01

    Vacuum induction brazing of Mo, Re, Ta, and W aloys to 304L stainless steel with AWS BNi filler metals was investigated. Metal powder (BNi-5 and BNi-7) and metallic glass (BNi-3 and modified BNi-5) brazing alloys were evaluated. Excellent braze joints were obtained with the BNi-3 and modified BNi-5 metallic glass foils. Cracks and porosity were observed in the metal powder BNi-5 and BNi-7 brazes. The as-brazed, refractory metal/304L samples were also qualified in a sodium environment of 1073/sup 0/K (1472/sup 0/F)/130 hours/2 and 100 ppM oxygen concentration. There was no significant chemical corrosive attack observed on any of the sodium samples and weight changes were generally negligible. Braze separation along the refractory metal interface and crack growth in the filler metal, however, were observed in the metal powder brazes after the sodium exposures. As a result, the metal powder fillers were not recommended. A band of discontinuous voids in the metallic glass brazes near the refractory metal interface was also detected. Metallographic, thermal and microprobe analyses revealed that these voids were caused by a diffusion mechanism called Kirkendall porosity. Since the voids were not connected and would not provide a leak path, the metallic glass filler metals were recommended for brazing refractory metal alloys to 304L and for subsequent sodium exposures.

  4. Chromatographic hydrogen isotope separation

    DOE Patents [OSTI]

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  5. Chromatographic hydrogen isotope separation

    DOE Patents [OSTI]

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  6. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  7. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, Nathaniel M.; Dye, Robert C.; Snow, Ronny C.; Birdsell, Stephan A.

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  8. SEPARATION OF TIN FROM ALLOYS

    DOE Patents [OSTI]

    Kattner, W.T.

    1959-08-11

    A process is described for recovering tin from bronze comprising melting the bronze; slowly cooling the melted metal to from 280 to 240 deg C whereby eta- phase bronze crystallizes; separating the eta-bronze crystals from the liquid metal by mechanical means; melting the separated crystals; slowly cooling the melted eta-crystals to a temperature from 520 to 420 deg C whereby crystals of epsilonbronze precipitate; removing said epsilon-crystals from the remaining molten metal; and reintroducing the remaining molten metal into the process for eta-crystallization.

  9. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide

  10. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide

  11. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide

  12. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide

  13. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide

  14. The Fundamental Role of Nano-Scale Oxide Films in the Oxidation of Hydrogen and the Reduction of Oxygen on Noble Metal Electrocatalysts

    SciTech Connect (OSTI)

    Digby Macdonald

    2005-04-15

    The derivation of successful fuel cell technologies requires the development of more effective, cheaper, and poison-resistant electrocatalysts for both the anode (H{sub 2} oxidation in the presence of small amounts of CO from the reforming of carbonaceous fuels) and the cathode (reduction of oxygen in the presence of carried-over fuel). The proposed work is tightly focused on one specific aspect of electrocatalysis; the fundamental role(s) played by nanoscale (1-2 nm thick) oxide (''passive'') films that form on the electrocatalyst surfaces above substrate-dependent, critical potentials, on charge transfer reactions, particularly at elevated temperatures (25 C < T < 200 C). Once the role(s) of these films is (are) adequately understood, we will then use this information to specify, at the molecular level, optimal properties of the passive layer for the efficient electrocatalysis of the oxygen reduction reaction.

  15. Interplay of Metalloligand and Organic Ligand to Tune Micropores within Isostructural Mixed-Metal Organic Frameworks (M MOFs) for Their Highly Selective Separation of Chiral and Achiral Small Molecules

    SciTech Connect (OSTI)

    Madhab, Das; He, Yabing; Kim, Jaheon; Guo, Qunsheng; Zhao, Cong-Gui; Hong, Kunlun; Xiang, Sheng-Chang; Zhang, Zhangjing; Thomas, K Mark; Krishna, Rajamani; Chen, Banglin

    2012-01-01

    Four porous isostructural mixed-metal-organic frameworks (M'MOFs) have been synthesized and structurally characterized. The pores within these M'MOFs are systematically tuned by the interplay of both the metalloligands and organic ligands which have enabled us not only to direct their highly selective separation of chiral alcohols 1-phenylethanol (PEA), 2-butanol (BUT), and 2-pentanol (2-PEN) with the highest ee up to 82.4% but also to lead highly selective separation of achiral C{sub 2}H{sub 2}/C{sub 2}H{sub 4} separation. The potential application of these M'MOFs for the fixed bed pressure swing adsorption (PSA) separation of C{sub 2}H{sub 2}/C{sub 2}H{sub 4} has been further examined and compared by the transient breakthrough simulations in which the purity requirement of 40 ppm in the outlet gas can be readily fulfilled by the fixed bed M'MOF-4a adsorber at ambient conditions.

  16. Nuclear Separations Technologies Workshop Report 2011

    Energy Savers [EERE]

    ... backbone of the pharmaceutical, chemical, metal production, and fossil fuel industries. ... physical and chemical properties of given materials is the basis for all separations. ...

  17. A lithium oxygen secondary battery

    SciTech Connect (OSTI)

    Semkow, K.W.; Sammells, A.F.

    1987-08-01

    In principle the lithium-oxygen couple should provide one of the highest energy densities yet investigated for advanced battery systems. The problem to this time has been one of identifying strategies for achieving high electrochemical reversibilities at each electrode under conditions where one might anticipate to also achieve long materials lifetimes. This has been addressed in recent work by us via the application of stabilized zirconia oxygen vacancy conducting solid electrolytes, for the effective separation of respective half-cell reactions.

  18. THE METALLICITY EVOLUTION OF INTERACTING GALAXIES

    SciTech Connect (OSTI)

    Torrey, Paul; Hernquist, Lars; Cox, T. J.; Kewley, Lisa

    2012-02-10

    Nuclear inflows of metal-poor interstellar gas triggered by galaxy interactions can account for the systematically lower central oxygen abundances observed in local interacting galaxies. Here, we investigate the metallicity evolution of a large set of simulations of colliding galaxies. Our models include cooling, star formation, feedback, and a new stochastic method for tracking the mass recycled back to the interstellar medium from stellar winds and supernovae. We study the influence of merger-induced inflows, enrichment, gas consumption, and galactic winds in determining the nuclear metallicity. The central metallicity is primarily a competition between the inflow of low-metallicity gas and enrichment from star formation. An average depression in the nuclear metallicity of {approx}0.07 is found for gas-poor disk-disk interactions. Gas-rich disk-disk interactions, on the other hand, typically have an enhancement in the central metallicity that is positively correlated with the gas content. The simulations fare reasonably well when compared to the observed mass-metallicity and separation-metallicity relationships, but further study is warranted.

  19. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

    2003-11-01

    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared with the results from the previous batch.

  20. Product separator

    DOE Patents [OSTI]

    Welsh, Robert A.; Deurbrouck, Albert W.

    1976-01-20

    A secondary light sensitive photoelectric product separator for use with a primary product separator that concentrates a material so that it is visually distinguishable from adjacent materials. The concentrate separation is accomplished first by feeding the material onto a vibratory inclined surface with a liquid flow, such as a wet concentrating table. Vibrations generally perpendicular to the stream direction of flow cause the concentrate to separate from its mixture according to its color. When the concentrate and its surrounding stream reach the recovery end of the table, a detecting device notes the line of color demarcation and triggers a signal if it differs from a normal condition. If no difference is noted nothing moves on the second separator. However, if a difference is detected in the constant monitoring of the color line's location, a product splitter and recovery unit normally positioned near the color line at the recovery end, moves to a new position. In this manner the selected separated concentrate is recovered at a maximum rate regardless of variations in the flow stream or other conditions present.

  1. Demonstration of physical separation/leaching methods for the remediation of heavy metals contaminated soils at small arms ranges. Final report, November 1995--September 1997

    SciTech Connect (OSTI)

    1997-09-01

    The US Army Environmental Center in partnership with the Naval Facilities Engineering Services Center and the US Army Engineer Waterways Experiment Station demonstrated Physical Separation/Leaching methods for the remediation of small arms range soils. The demonstration occurred at Fort Polk, Louisiana. The primary objective was to demonstrate and evaluate the technical capability and document the cost effectiveness of the physical separation/leaching family of technologies. The secondary objective was to identify technology sources, provide implementation guidance and transfer the technology to the user. After conducting a world-wide search, two vendors were selected to demonstrate two variations of the physical separation/leaching technologies. The first used a process based on acetic (weak) acid chemistry and the second based on hydrochloric (strong) acid chemistry. Following completion of the bench treatability studies, each vendor performed a full scale (5--10 tons per hour, 1000 tons total) demonstration of their respective technologies. This report documents the demonstration including site planning, lessons learned and recommendations for additional developmental work.

  2. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  3. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  4. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  5. Isotope separation

    DOE Patents [OSTI]

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  6. ISOTOPE SEPARATORS

    DOE Patents [OSTI]

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  7. URANIUM SEPARATION PROCESS

    DOE Patents [OSTI]

    Hyde, E.K.; Katzin, L.I.; Wolf, M.J.

    1959-07-14

    The separation of uranium from a mixture of uranium and thorium by organic solvent extraction from an aqueous solution is described. The uranium is separrted from an aqueous mixture of uranium and thorium nitrates 3 N in nitric acid and containing salting out agents such as ammonium nitrate, so as to bring ihe total nitrate ion concentration to a maximum of about 8 N by contacting the mixture with an immiscible aliphatic oxygen containing organic solvent such as diethyl carbinol, hexone, n-amyl acetate and the like. The uranium values may be recovered from the organic phase by back extraction with water.

  8. Demonstration of physical separation/leaching methods for the remediation of heavy metals contaminated soils at small arms ranges (acid leaching demo). Technology Demonstration, November 1995-September 1997

    SciTech Connect (OSTI)

    1997-02-07

    The U.S. Army Environmental C%`enter in partnership with the Naval Facilities Engineering Services Center and the U.S. Army Engineer Waterways Experiment Station demonstrated Physical Separation/Leaching methods for the remediation of small arms range soils. The demonstration occurred at Fort Polk, Louisiana. After conducting a world-wide search, two vendors were selected to demonstrate two variations of the physical separation/leaching technologies. The first using a process based on acetic (weak) acid chemistry and the second based on hydrochloric (strong) acid chemistry. Following completion of the bench treatability studies, each vendor performed a full scale (5-10 tons per hour, 1000 tons total) demonstration of their respective technologies. This report documents the worldwide search that was performed to identify vendors of soil remediation equipment and/or contractors who have successfully completed similar remediation projects. A number of information sources, including experts at government and RD institutions, libraries, professional journals, on-line services, academia and industry contacts were used to complete this report. Should the reader be interested in other environmental problems or other technologies not considered for this report, a listing of Internet sites searched during the effort is included and provides ample coverage of the remediation technologies available. The mention of trade names or commercial products in this report should not be constituted as endorsement or recommendation for use.

  9. Flue gas desulfurization/denitrification using metal-chelate additives

    DOE Patents [OSTI]

    Harkness, J.B.L.; Doctor, R.D.; Wingender, R.J.

    1985-08-05

    A method of simultaneously removing SO/sub 2/ and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO/sub 2/ and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled. 3 figs.

  10. Flue gas desulfurization/denitrification using metal-chelate additives

    DOE Patents [OSTI]

    Harkness, John B. L.; Doctor, Richard D.; Wingender, Ronald J.

    1986-01-01

    A method of simultaneously removing SO.sub.2 and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO.sub.2 and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled.

  11. Composite oxygen transport membrane

    SciTech Connect (OSTI)

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  12. Rare earth-transition metal scrap treatment method

    DOE Patents [OSTI]

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.; Lincoln, L.P.

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. 3 figs.

  13. Rare earth-transition metal scrap treatment method

    DOE Patents [OSTI]

    Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.; Jones, Lawrence L.; Lincoln, Lanny P.

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets.

  14. Modelling Hydrogen Reduction and Hydrodeoxygenation of Oxygenates

    SciTech Connect (OSTI)

    Zhao, Y.; Xu, Q.; Cheah, S.

    2013-01-01

    Based on Density Functional Theory (DFT) simulations, we have studied the reduction of nickel oxide and biomass derived oxygenates (catechol, guaiacol, etc.) in hydrogen. Both the kinetic barrier and thermodynamic favorability are calculated with respect to the modeled reaction pathways. In early-stage reduction of the NiO(100) surface by hydrogen, the pull-off of the surface oxygen atom and simultaneous activation of the nearby Ni atoms coordinately dissociate the hydrogen molecules so that a water molecule can be formed, leaving an oxygen vacancy on the surface. In hydrogen reaction with oxygenates catalyzed by transition metals, hydrogenation of the aromatic carbon ring normally dominates. However, selective deoxygenation is of particular interest for practical application such as biofuel conversion. Our modeling shows that doping of the transition metal catalysts can change the orientation of oxygenates adsorbed on metal surfaces. The correlation between the selectivity of reaction and the orientation of adsorption are discussed.

  15. Electrocatalyst for Oxygen Reduction with Reduced Platinum Oxidation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates The invention relates to platinum-metal oxide composite particles and their use as...

  16. The Electronic Structure of Oxygen Atom Vacancy and Hydroxyl...

    Office of Scientific and Technical Information (OSTI)

    Title: The Electronic Structure of Oxygen Atom Vacancy and Hydroxyl Impurity Defects on Titanium Dioxide (110) Surface Introducing a charge into a solid such as a metal oxide ...

  17. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  18. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  19. Separation system

    DOE Patents [OSTI]

    Rubin, Leslie S.

    1986-01-01

    A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. Separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. Inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by second valve structure that is centrifugally actuated to open the discharge ports. The container also includes coupling structure for releasable engagement with the centrifugal drive structure. Centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized.

  20. Separation science and technology

    SciTech Connect (OSTI)

    Smith, B.F.; Sauer, N.; Chamberlin, R.M.; Gottesfeld, S.; Mattes, B.R.; Li, D.Q.; Swanson, B.

    1998-12-31

    The focus of this project is the demonstration and advancement of membrane-based separation and destruction technologies. The authors are exploring development of membrane systems for gas separations, selective metal ion recovery, and for separation or destruction of hazardous organics. They evaluated existing polymers and polymer formulations for recovery of toxic oxyanionic metals such as chromate and arsenate from selected waste streams and developed second-generation water-soluble polymeric systems for highly selective oxyanion removal and recovery. They optimized the simultaneous removal of radioactive strontium and cesium from aqueous solutions using the new nonhazardous separations agents, and developed recyclable, redox-active extractants that permitted recovery of the radioactive ions into a minimal waste volume. They produced hollow fibers and fabricated prototype hollow-fiber membrane modules for applications to gas separations and the liquid-liquid extraction and recovery of actinides and nuclear materials from process streams. They developed and fabricated cyclodextrin-based microporous materials that selectively absorb organic compounds in an aqueous environment; the resultant products gave pure water with organics at less than 0.05 parts per billion. They developed new, more efficient, membrane-based electrochemical reactors for use in organic destruction in process waste treatment. They addressed the need for advanced oxidation technologies based on molecular-level materials designs that selectively remove or destroy target species. They prepared and characterized surface-modified TiO{sub 2} thin films using different linking approaches to attach ruthenium photosensitizers, and they started the measurement of the photo-degradation products generated using surface modified TiO{sub 2} films in reaction with chlorophenol.

  1. Composite oxygen ion transport element

    DOE Patents [OSTI]

    Chen, Jack C.; Besecker, Charles J.; Chen, Hancun; Robinson, Earil T.

    2007-06-12

    A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

  2. Separable fastening device

    DOE Patents [OSTI]

    Harvey, Andrew C.; Ribich, William A.; Marinaccio, Paul J.; Sawaf, Bernard E.

    1987-12-01

    A separable fastener system has a first separable member that includes a series of metal hook sheets disposed in stacked relation that defines an array of hook elements on its broad surface. Each hook sheet is a planar metal member of uniform thickness and has a body portion with a series of hook elements formed along one edge of the body. Each hook element includes a stem portion, a deflecting surface portion, and a latch portion. Metal spacer sheets are disposed between the hook sheets and may be varied in thickness and in number to control the density of the hook elements on the broad surface of the first fastener member. The hook and spacer sheets are secured together in stacked relation. A second fastener member has a surface of complementary engaging elements extending along its broad surface which are releasably interengageable with the hook elements of the first fastener member, the deflecting surfaces of the hook elements of the first fastener member tending to deflect hook engaging portions of the second fastener member and the latch portions of the hook elements of the first fastener member engaging portions of the second fastener member in fastening relation.

  3. Composite hydrogen separation element and module

    DOE Patents [OSTI]

    Edlund, David J. (Redmond, OR)

    1996-03-12

    There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of a flexible porous intermediate layer between a support layer and a nonporous hydrogen-permeable coating metal layer, and the provision of a textured coating metal layer.

  4. Composite hydrogen separation element and module

    DOE Patents [OSTI]

    Edlund, D.J.

    1996-03-12

    There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of a flexible porous intermediate layer between a support layer and a nonporous hydrogen-permeable coating metal layer, and the provision of a textured coating metal layer. 15 figs.

  5. Gas separating

    DOE Patents [OSTI]

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  6. Gas separating

    DOE Patents [OSTI]

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  7. Polymeric battery separators

    SciTech Connect (OSTI)

    Minchak, R. J.; Schenk, W. N.

    1985-06-11

    Configurations of cross-linked or vulcanized amphophilic or quaternized block copolymer of haloalkyl epoxides and hydroxyl terminated alkadiene polymers are useful as battery separators in both primary and secondary batteries, particularly nickel-zinc batteries. The quaternized block copolymers are prepared by polymerizing a haloalkyl epoxide in the presence of a hydroxyl terminated 1,3-alkadiene to form a block copolymer that is then reacted with an amine to form the quaternized or amphophilic block copolymer that is then cured or cross-linked with sulfur, polyamines, metal oxides, organic peroxides and the like.

  8. Recent Development of SOFC Metallic Interconnect

    SciTech Connect (OSTI)

    Wu JW, Liu XB

    2010-04-01

    Interest in solid oxide fuel cells (SOFC) stems from their higher eciencies and lower levels of emitted pollu- tants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i:e:, to maintain high elec- trical conductivity, good stability in both reducing and oxidizing atmospheres, and close coecient of thermal expansion (CTE) match and good compatibility with other SOFC ceramic components. The paper reviewed the interconnect materials, and coatings for metallic interconnect materials.

  9. Innovative Separations Technologies

    SciTech Connect (OSTI)

    J. Tripp; N. Soelberg; R. Wigeland

    2011-05-01

    Reprocessing used nuclear fuel (UNF) is a multi-faceted problem involving chemistry, material properties, and engineering. Technology options are available to meet a variety of processing goals. A decision about which reprocessing method is best depends significantly on the process attributes considered to be a priority. New methods of reprocessing that could provide advantages over the aqueous Plutonium Uranium Reduction Extraction (PUREX) and Uranium Extraction + (UREX+) processes, electrochemical, and other approaches are under investigation in the Fuel Cycle Research and Development (FCR&D) Separations Campaign. In an attempt to develop a revolutionary approach to UNF recycle that may have more favorable characteristics than existing technologies, five innovative separations projects have been initiated. These include: (1) Nitrogen Trifluoride for UNF Processing; (2) Reactive Fluoride Gas (SF6) for UNF Processing; (3) Dry Head-end Nitration Processing; (4) Chlorination Processing of UNF; and (5) Enhanced Oxidation/Chlorination Processing of UNF. This report provides a description of the proposed processes, explores how they fit into the Modified Open Cycle (MOC) and Full Recycle (FR) fuel cycles, and identifies performance differences when compared to 'reference' advanced aqueous and fluoride volatility separations cases. To be able to highlight the key changes to the reference case, general background on advanced aqueous solvent extraction, advanced oxidative processes (e.g., volumetric oxidation, or 'voloxidation,' which is high temperature reaction of oxide UNF with oxygen, or modified using other oxidizing and reducing gases), and fluorination and chlorination processes is provided.

  10. Particle separator

    DOE Patents [OSTI]

    Hendricks, Charles D. (Livermore, CA)

    1990-01-01

    Method and apparatus (10) are provided for separating and classifying particles (48,50,56) by dispersing the particles within a fluid (52) that is upwardly flowing within a cone-shaped pipe (12) that has its large end (20) above its small end (18). Particles of similar size and shape (48,50) migrate to individual levels (A,B) within the flowing fluid. As the fluid is deflected by a plate (42) at the top end of the pipe (12), the smallest particles are collected on a shelf-like flange (40). Ever larger particles are collected as the flow rate of the fluid is increased. To prevent particle sticking on the walls (14) of the pipe (12), additional fluid is caused to flow into the pipe (12) through holes (68) that are specifically provided for that purpose. Sticking is further prevented by high frequency vibrators (70) that are positioned on the apparatus (10).

  11. Particle separation

    DOE Patents [OSTI]

    Moosmuller, Hans; Chakrabarty, Rajan K.; Arnott, W. Patrick

    2011-04-26

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  12. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped Ti-substituted perovskites, La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Ti{sub x}O{sub 3}, with 0 {le} x {le} 0.20, were investigated by neutron diffraction, magnetization, electric resistivity, and magnetoresistance (MR) measurements. All samples show a rhombohedral structure (space group R3C) from 10 K to room temperature. At room temperature, the cell parameters a, c and the unit cell volume increase with increasing Ti content. However, at 10 K, the cell parameter a has a maximum value for x = 0.10, and decreases for x > 0.10, while the unit cell volume remains nearly constant for x > 0.10. The average (Mn,Ti)-O bond length increases up to x = 0.15, and the (Mn,Ti)-O-(Mn,Ti) bond angle decreases with increasing Ti content to its minimum value at x = 0.15 at room temperature. Below the Curie temperature TC, the resistance exhibits metallic behavior for the x {le} 0.05 samples. A metal (semiconductor) to insulator transition is observed for the x {ge} 0.10 samples. A peak in resistivity appears below TC for all samples, and shifts to a lower temperature as x increases. The substitution of Mn by Ti decreases the 2p-3d hybridization between O and Mn ions, reduces the bandwidth W, and increases the electron-phonon coupling. Therefore, the TC shifts to a lower temperature and the resistivity increases with increasing Ti content. A field-induced shift of the resistivity maximum occurs at x {le} 0.10 compounds. The maximum MR effect is about 70% for La{sub 0.7}Sr{sub 0.3}Mn{sub 0.8}Ti{sub 0.2}O{sub 3}. The separation of TC and the resistivity maximum temperature T{sub {rho},max} enhances the MR effect in these compounds due to the weak coupling between the magnetic ordering and the resistivity as compared with La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. The bulk densities of the membranes were determined using the Archimedes method. The bulk density was 5.029 and 5.57 g/cc for LSFT and dual phase membranes, respectively. The microstructure of the dual phase membrane was analyzed using SEM. It is evident from the micrograph that the microstructure is composed of dual phases. The dense circular regions are enclosed by the less dense, continuous phase which accommodates most of the pores. The pores are normally aggregated and found clustered along the dense regions where as the dense regions do not have pores. Upon closer observation of the micrograph it is revealed that the dense region has a clear circular cleavage or crack as their boundary. The circular cleavage clearly encompasses a dense region and which consists of no pore or any flaw that is visible. The size distribution of the dense, discontinuous regions is varying from 5 to 20 {micro}m with a D{sub 50} of 15 {micro}m. The grain size distribution was estimated from the micrographs using image analysis and a unimodal distribution of grains was observed with an average grain size of 1.99 {micro}m. The chemical compositions of the membranes were analyzed using EDS analysis and no other impurities were observed. The XRD analysis was carried out for the membranes and the phase purity was confirmed. The fracture toughness of LSFT membranes at room temperature has to be calculated using the Vickers indentation method. An electrochemical cell has been designed and built for measurements of the ionic conductivity by the use of blocking electrodes. Preliminary measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Modifications to the apparatus to improve the data quality have been completed. Electron microscopy studies of the origin of the slow kinetics on reduction of ferrites have been initiated. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  13. DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE

    DOE Patents [OSTI]

    Bradner, H.; Gordon, H.S.

    1957-12-24

    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  14. Method for preparing metal powder, device for preparing metal powder, method for processing spent nuclear fuel

    DOE Patents [OSTI]

    Park, Jong-Hee (Clarendon Hills, IL)

    2011-11-29

    A method for producing metal powder is provided the comprising supplying a molten bath containing a reducing agent, contacting a metal oxide with the molten bath for a time and at a temperature sufficient to reduce the metal in the metal oxide to elemental metal and produce free oxygen; and isolating the elemental metal from the molten bath.

  15. Oxygen Transport Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (<10{sup -5} atm). The anomalies are due to non-equilibrium effects and can be avoided by using very strict criteria for the attainment of equilibrium. The slowness of the oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume dominated the fracture origins and the overall fracture was purely transgranular. The dual phase membranes have been evaluated for structural properties. An increasing crack growth resistance was observed for the membranes heat-treated at 1000 C in air and N{sub 2} with increasing crack length. The combined effect of thermal and elastic mismatch stresses on the crack path was studied and the fracture behavior of the dual phase composite at the test conditions was analyzed. Ceramic/metal (C/M) seals are needed to form a leak-tight interface between the OTM and a nickel-base super alloy. It was concluded that Ni-based brazing alloys provided the best option in terms of brazing temperature and final operating conditions after analyzing several possible brazing systems. A mechanical testing procedure has been developed. This model was tested with model ceramic/metal systems but it is expected to be useful for testing concentric perovskite/metal seals.

  16. Extraction process for removing metallic impurities from alkalide metals

    DOE Patents [OSTI]

    Royer, L.T.

    1987-03-20

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  17. SEPARATION OF PLUTONIUM FROM URANIUM

    DOE Patents [OSTI]

    Feder, H.M.; Nuttall, R.L.

    1959-12-15

    A process is described for extracting plutonium from powdered neutron- irradiated urarium metal by contacting the latter, while maintaining it in the solid form, with molten magnesium which takes up the plutonium and separating the molten magnesium from the solid uranium.

  18. Laser separation of uranium chosen for scaleup. [Atomic vapor laser isotope separation, molecular laser isotope separation, and plasma separation process

    SciTech Connect (OSTI)

    Rawls, R.L.

    1982-05-17

    Atomic vapor laser isotope separation (AVLIS) has been selected by the Department of Energy to go into large-scale engineering development and demonstration over two other advanced technologies, molecular laser isotope separation and plasma separation. DOE will continue to support development of another uranium enrichment technology, gas centrifugation. By or around 1990, the most promising gas centrifuge technique will be compared to the further developed AVLIS process, and a selection will be made between the two to replace the current technology, gaseous diffusion. The AVLIS process, plasma separation, and molecular laser isotope separation use the elective absorption of radiation of a particular energy level by the /sup 235/U isotope. The plasma separation process selectively energizes /sup 235/U by ion cyclotron resonance. The AVLIS and molecular laser isotope separation processes both use a carefully tuned laser to excite /sup 235/U isotope selectively. In the AVLIS process, uranium metal feed material is melted and vaporized to form an atomic uranium vapor stream. When this vapor stream passes through the beam of copper vapor lasers, the /sup 235/U atoms absorb the light and become ionized. These ionized atoms are collected by electromagnetic fields while the neutral /sup 238/U atoms pass through the magnetic field and are collected as tailings. The AVLIS process has the potential for significantly reducing the cost of enriching uranium. The status of dvelopment, cost, advantages and drawbacks of the five processes, (gaseous diffusion, gas centrifugation, AVLIS, molecular laser separation, plasma separation) are discussed. (ATT)

  19. Laser separation of uranium chosen for scaleup. [Atomic vapor laser isotope separation, molecular laser isotope separation plasma separation process

    SciTech Connect (OSTI)

    Rawls, R.L.

    1982-05-17

    Atomic vapor laser isotope separation (AVLIS) has been selected by the Department of Energy to go into large-scale engineering development and demonstration over two other advanced technologies, molecular laser isotope separation and plasma separation. DOE will continue to support development of another uranium enrichment technology, gas centrifugation. By or around 1990, the most promising gas centrifuge technique will be compared to the further developed AVLIS process, and a selection will be made between the two to replace the current technology, gaseous diffusion. The AVLIS process, plasma separation, and molecular laser isotope separation use the selective absorption of radiation of a particular energy level by the /sup 235/U isotope. The plasma separation process selectively energizes /sup 235/U by ion cyclotron resonance. The AVLIS and molecular laser isotope separation processes both use a carefully tuned laser to excite /sup 235/U isotope selectively. In the AVLIS process, uranium metal feed material is melted and vaporized to from an atomic uranium vapor stream. When this vapor stream passes through the beam of copper vapor lasers, the /sup 235/U atoms absorb the light and become ionized. These ionized atoms are collected by electromagnetic fields while the neutral /sup 238/U atoms pass through the magnetic field and are collected as tailings. The AVLIS process has the potential for significantly reducing the cost of enriching uranium. The status of development, cost, advantages and drawbacks of the five processes (gaseous diffusion, gas centrifugation, AVLIS, molecular laser separation, plasma separation) are discussed. (ATT)

  20. Low NOx combustion using cogenerated oxygen and nitrogen streams

    DOE Patents [OSTI]

    Kobayashi, Hisashi; Bool, Lawrence E.; Snyder, William J.

    2009-02-03

    Combustion of hydrocarbon fuel is achieved with less formation of NOx by feeding the fuel into a slightly oxygen-enriched atmosphere, and separating air into oxygen-rich and nitrogen-rich streams which are fed separately into the combustion device.

  1. Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers National Energy Technology Laboratory Contact NETL About This Technology Publications: PDF Document Publication 13159553.pdf (405 KB) Technology Marketing Summary This patent-pending technology, "Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process," provides a metal-oxide oxygen

  2. Separators - Technology review: Ceramic based separators for secondary batteries

    SciTech Connect (OSTI)

    Nestler, Tina; Schmid, Robert; Mnchgesang, Wolfram; Bazhenov, Vasilii; Meyer, Dirk C.; Schilm, Jochen; Leisegang, Tilmann

    2014-06-16

    Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ('Energiewende') was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators. Two prominent examples, the lithium-ion and sodium-sulfur battery, are described to show the current stage of development. New routes are presented as promising technologies for safe and long-life electrochemical storage cells.

  3. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  4. Probing CO2 Adsorption in Metal-Organic Frameworks with Open Metal Sites |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Probing CO2 Adsorption in Metal-Organic Frameworks with Open Metal Sites

  5. CO2 Dynamics in a Metal-Organic Framework with Open Metal Sites | Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome CO2 Dynamics in a Metal-Organic Framework with Open Metal Sites

  6. Phosphazene membranes for gas separations

    DOE Patents [OSTI]

    Stewart, Frederick F.; Harrup, Mason K.; Orme, Christopher J.; Luther, Thomas A.

    2006-07-11

    A polyphosphazene having a glass transition temperature ("T.sub.g") of approximately -20.degree. C. or less. The polyphosphazene has at least one pendant group attached to a backbone of the polyphosphazene, wherein the pendant group has no halogen atoms. In addition, no aromatic groups are attached to an oxygen atom that is bound to a phosphorus atom of the backbone. The polyphosphazene may have a T.sub.g ranging from approximately -100.degree. C. to approximately -20.degree. C. The polyphosphazene may be selected from the group consisting of poly[bis-3-phenyl-1-propoxy)phosphazene], poly[bis-(2-phenyl-1-ethoxy)phosphazene], poly[bis-(dodecanoxypolyethoxy)-phosphazene], and poly[bis-(2-(2-(2-.omega.-undecylenyloxyethoxy)ethoxy)ethoxy)phosphazene]- . The polyphosphazene may be used in a separation membrane to selectively separate individual gases from a gas mixture, such as to separate polar gases from nonpolar gases in the gas mixture.

  7. Alkali metal nitrate purification

    DOE Patents [OSTI]

    Fiorucci, Louis C. (Hamden, CT); Morgan, Michael J. (Guilford, CT)

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  8. DRY FLUORINE SEPARATION METHOD

    DOE Patents [OSTI]

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1959-05-19

    Preparation and separation of U/sup 233/ by irradiation of ThF/sub 4/ is described. During the neutron irradiation to produce Pa/sup 233/ a fluorinating agent such as HF, F/sub 2/, or HF + F/sub 2/ is passed through the ThF/sub 4/ powder to produce PaF/sub 5/. The PaF/sub 5/, being more volatile, is removed as a gas and allowed to decay radioactively to U/sup 233/ fluoride. A batch procedure in which ThO/sub 2/ or Th metal is irradiated and fluorinated is suggested. Some Pa and U fluoride volatilizes away. Then the remainder is fluorinated with F/sub 2/ to produce very volatile UF/sub 6/ which is recovered. (T.R.H.)

  9. Absorption process for producing oxygen and nitrogen and solution therefor

    DOE Patents [OSTI]

    Roman, I.C.; Baker, R.W.

    1990-09-25

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible. 1 figure

  10. Absorption process for producing oxygen and nitrogen and solution therefor

    DOE Patents [OSTI]

    Roman, Ian C. [Wilmington, DE; Baker, Richard W. [Palo Alto, CA

    1990-09-25

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible.

  11. Absorption process for producing oxygen and nitrogen and solution therefor

    DOE Patents [OSTI]

    Roman, Ian C.

    1984-01-01

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible.

  12. Composite hydrogen separation element and module

    DOE Patents [OSTI]

    Edlund, David J. (Redmond, OR); Newbold, David D. (Bend, OR); Frost, Chester B. (Bend, OR)

    1997-01-01

    There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of at least one common-axis hole through all components of the composite membrane and the provision of a gas-tight seal around the periphery of the hole or holes through a coating metal layer of the membrane.

  13. Composite hydrogen separation element and module

    DOE Patents [OSTI]

    Edlund, D.J.; Newbold, D.D.; Frost, C.B.

    1997-07-08

    There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of at least one common-axis hole through all components of the composite membrane and the provision of a gas-tight seal around the periphery of the hole or holes through a coating metal layer of the membrane. 11 figs.

  14. Julian Sculley | Center for Gas SeparationsRelevant to Clean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute EFRC research: My research focuses on the design and synthesis of metal-organic frameworks (MOF) and porous polymer networks (PPN) for gas storage and separation. By...

  15. Artificial oxygen transport protein

    DOE Patents [OSTI]

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  16. Supported liquid membrane electrochemical separators

    DOE Patents [OSTI]

    Pemsler, J. Paul; Dempsey, Michael D.

    1986-01-01

    Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.

  17. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report, measurements of the chemical and thermal expansion as a function of temperature and p{sub O2} are described.

  18. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, Fernando H. (Sante Fe, NM); Chung, Brandon W. (Los Alamos, NM); Raistrick, Ian D. (Los Alamos, NM); Brosha, Eric L. (Los Alamos, NM)

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  19. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  20. Electrostatic Cooperativity of Hydroxyl Groups at Metal Oxide Surfaces

    SciTech Connect (OSTI)

    Boily, Jean F.; Lins, Roberto D.

    2009-09-24

    The O-H bond distribution of hydroxyl groups at the {110} goethite (R-FeOOH) surface was investigated by molecular dynamics. This distribution was strongly affected by electrostatic interactions with neighboring oxo and hydroxo groups. The effects of proton surface loading, simulated by emplacing two protons at different distances of separation, were diverse and generated several sets of O-H bond distributions. DFT calculations of a representative molecular cluster were also carried out to demonstrate the impact of these effects on the orientation of oxygen lone pairs in neighboring oxo groups. These effects should have strong repercussions on O-H stretching vibrations of metal oxide surfaces.h

  1. PRODUCTION OF PLUTONIUM METAL

    DOE Patents [OSTI]

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  2. Homogeneously dispersed, multimetal oxygen-evolving catalysts (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Homogeneously dispersed, multimetal oxygen-evolving catalysts Citation Details In-Document Search This content will become publicly available on March 24, 2017 Title: Homogeneously dispersed, multimetal oxygen-evolving catalysts Earth-abundant first-row (3d) transition-metal-based catalysts have been developed for the oxygen-evolution reaction (OER); however, they operate at overpotentials significantly above thermodynamic requirements. Density functional theory

  3. Oxygen partial pressure sensor

    DOE Patents [OSTI]

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  4. Oxygen partial pressure sensor

    DOE Patents [OSTI]

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  5. Application of ion exchange and extraction chromatography to the separation

    Office of Scientific and Technical Information (OSTI)

    of actinium from proton-irradiated thorium metal for analytical purposes (Journal Article) | DOE PAGES Publisher's Accepted Manuscript: Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes This content will become publicly available on March 17, 2017 Title: Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical

  6. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-10-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  7. Voluntary Separation Programs

    Energy Savers [EERE]

    I. Use of Waivers and Releases of Claims with Incentivized Voluntary Separation Programs Where the Department has conducted incentivized voluntary separation programs, it has consistently been the Department's policy to require waivers and releases of claims from employees separating. A voluntary separation program is considered to be incentivized if severance above that provided to involuntarily separated employees is offered. The Department developed a sample waiver and release of claims for

  8. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2004-04-01

    Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this concept offers substantial savings over SCR and is an economically attractive alternative to purchasing NOx credits or installing other conventional technologies. In conjunction with the development of oxygen based low NOx technology, Praxair also worked on developing the economically enhancing oxygen transport membrane (OTM) technology which is ideally suited for integration with combustion systems to achieve further significant cost reductions and efficiency improvements. This OTM oxygen production technology is based on ceramic mixed conductor membranes that operate at high temperatures and can be operated in a pressure driven mode to separate oxygen with infinite selectivity and high flux. An OTM material was selected and characterized. OTM elements were successfully fabricated. A single tube OTM reactor was designed and assembled. Testing of dense OTM elements was conducted with promising oxygen flux results of 100% of target flux. However, based on current natural gas prices and stand-alone air separation processes, ceramic membranes do not offer an economic advantage for this application. Under a different DOE-NETL Cooperative Agreement, Praxair is continuing to develop oxygen transport membranes for the Advanced Boiler where the economics appear more attractive.

  9. SEPARATION OF PLUTONIUM HYDROXIDE FROM BISMUTH HYDROXIDE

    DOE Patents [OSTI]

    Watt, G.W.

    1958-08-19

    An tmproved method is described for separating plutonium hydroxide from bismuth hydroxide. The end product of the bismuth phosphate processes for the separation amd concentration of plutonium is a inixture of bismuth hydroxide amd plutonium hydroxide. It has been found that these compounds can be advantageously separated by treatment with a reducing agent having a potential sufficient to reduce bismuth hydroxide to metalltc bisinuth but not sufficient to reduce the plutonium present. The resulting mixture of metallic bismuth and plutonium hydroxide can then be separated by treatment with a material which will dissolve plutonium hydroxide but not metallic bismuth. Sodiunn stannite is mentioned as a preferred reducing agent, and dilute nitric acid may be used as the separatory solvent.

  10. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana

    2003-08-07

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  11. Degenerate doping of metallic anodes

    SciTech Connect (OSTI)

    Friesen, Cody A; Zeller, Robert A; Johnson, Paul B; Switzer, Elise E

    2015-05-12

    Embodiments of the invention relate to an electrochemical cell comprising: (i) a fuel electrode comprising a metal fuel, (ii) a positive electrode, (iii) an ionically conductive medium, and (iv) a dopant; the electrodes being operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode and the dopant increases the conductivity of the metal fuel oxidation product. In an embodiment, the oxidation product comprises an oxide of the metal fuel which is doped degenerately. In an embodiment, the positive electrode is an air electrode that absorbs gaseous oxygen, wherein during discharge mode, oxygen is reduced at the air electrode. Embodiments of the invention also relate to methods of producing an electrode comprising a metal and a doped metal oxidation product.

  12. SEPARATION OF INORGANIC SALTS FROM ORGANIC SOLUTIONS

    DOE Patents [OSTI]

    Katzin, L.I.; Sullivan, J.C.

    1958-06-24

    A process is described for recovering the nitrates of uranium and plutonium from solution in oxygen-containing organic solvents such as ketones or ethers. The solution of such salts dissolved in an oxygen-containing organic compound is contacted with an ion exchange resin whereby sorption of the entire salt on the resin takes place and then the salt-depleted liquid and the resin are separated from each other. The reaction seems to be based on an anion formation of the entire salt by complexing with the anion of the resin. Strong base or quaternary ammonium type resins can be used successfully in this process.

  13. Oxygen-Enriched Combustion

    Broader source: Energy.gov [DOE]

    This tip sheet discusses how an increase in oxygen in combustion air can reduce the energy loss in the exhaust gases and increase process heating system efficiency.

  14. Advanced Sorbents as a Versatile Platform for Gas Separation

    SciTech Connect (OSTI)

    Neil Stephenson

    2003-09-30

    The program objective was to develop materials and processes for industrial gas separations to reduce energy use and enable waste reduction. The approach chosen combined novel oxygen selective adsorbents and pressure swing adsorption (PSA) processes. Preliminary materials development and process simulation results indicated that oxygen selective adsorbents could provide a versatile platform for industrial gas separations. If fully successful, this new technology offered the potential for reducing the cost of producing nitrogen/oxygen co-products, high purity nitrogen, argon, and possibly oxygen. The potential energy savings for the gas separations are appreciable, but the end users are the main beneficiaries. Lowering the cost of industrial gases expands their use in applications that can employ them for reducing energy consumption and emissions.

  15. Redox chemistry and metal-insulator transitions intertwined | Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Redox chemistry and metal-insulator transitions intertwined

  16. Water Adsorption in Metal-Organic Frameworks | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Water Adsorption in Metal-Organic Frameworks

  17. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    DOE Patents [OSTI]

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  18. Direct electrochemical reduction of metal-oxides

    DOE Patents [OSTI]

    Redey, Laszlo I.; Gourishankar, Karthick

    2003-01-01

    A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

  19. Upgrading platform using alkali metals

    SciTech Connect (OSTI)

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  20. Magnetic separation of algae

    DOE Patents [OSTI]

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  1. Meniscus membranes for separations

    DOE Patents [OSTI]

    Dye, Robert C. (Irvine, CA); Jorgensen, Betty (Jemez Springs, NM); Pesiri, David R. (Aliso Viejo, CA)

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  2. Meniscus Membranes For Separation

    DOE Patents [OSTI]

    Dye, Robert C. (Irvine, CA); Jorgensen, Betty (Jemez Springs, NM); Pesiri, David R. (Aliso Viejo, CA)

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  3. Strain control of oxygen vacancies in epitaxial strontium cobaltite films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jeen, Hyoung Jeen; Choi, Woo Seok; Reboredo, Fernando A.; Freeland, John W.; Eres, Gyula; Lee, Ho Nyung; Petrie, Jonathan R.; Mitra, Chandrima; Meyer, Tricia L.

    2016-01-25

    In this study, the ability to manipulate oxygen anion defects rather than metal cations in complex oxides can facilitate creating new functionalities critical for emerging energy and device technologies. However, the difficulty in activating oxygen at reduced temperatures hinders the deliberate control of important defects, oxygen vacancies. Here, strontium cobaltite (SrCoOx) is used to demonstrate that epitaxial strain is a powerful tool for manipulating the oxygen vacancy concentration even under highly oxidizing environments and at annealing temperatures as low as 300 °C. By applying a small biaxial tensile strain (2%), the oxygen activation energy barrier decreases by ≈30%, resulting inmore » a tunable oxygen deficient steady-state under conditions that would normally fully oxidize unstrained cobaltite. These strain-induced changes in oxygen stoichiometry drive the cobaltite from a ferromagnetic metal towards an antiferromagnetic insulator. The ability to decouple the oxygen vacancy concentration from its typical dependence on the operational environment is useful for effectively designing oxides materials with a specific oxygen stoichiometry.« less

  4. Light metal production

    DOE Patents [OSTI]

    Fan, Qinbai

    2016-04-19

    An electrochemical process for the production of light metals, particularly aluminum. Such a process involves contacting a light metal source material with an inorganic acid to form a solution containing the light metal ions in high concentration. The solution is fed to an electrochemical reactor assembly having an anode side containing an anode and a cathode side containing a cathode, with anode side and the cathode side separated by a bipolar membrane, with the solution being fed to the anode side. Light metal ions are electrochemically transferred through the bipolar membrane to the cathode side. The process further involves reducing the light metal ions to light metal powder. An associated processing system is also provided.

  5. Safety shutdown separators

    DOE Patents [OSTI]

    Carlson, Steven Allen; Anakor, Ifenna Kingsley; Farrell, Greg Robert

    2015-06-30

    The present invention pertains to electrochemical cells which comprise (a) an anode; (b) a cathode; (c) a solid porous separator, such as a polyolefin, xerogel, or inorganic oxide separator; and (d) a nonaqueous electrolyte, wherein the separator comprises a porous membrane having a microporous coating comprising polymer particles which have not coalesced to form a continuous film. This microporous coating on the separator acts as a safety shutdown layer that rapidly increases the internal resistivity and shuts the cell down upon heating to an elevated temperature, such as 110.degree. C. Also provided are methods for increasing the safety of an electrochemical cell by utilizing such separators with a safety shutdown layer.

  6. Metal sulfide initiators for metal oxide sorbent regeneration

    DOE Patents [OSTI]

    Turk, Brian S.; Gupta, Raghubir P.

    2001-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  7. Metal sulfide initiators for metal oxide sorbent regeneration

    DOE Patents [OSTI]

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  8. Metal sulfide initiators for metal oxide sorbent regeneration

    DOE Patents [OSTI]

    Turk, Brian S.; Gupta, Raghubir P.

    1999-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  9. METAL RESISTIVITY MEASURING DEVICE

    DOE Patents [OSTI]

    Renken, J. Jr.; Myers, R.G.

    1960-12-20

    An eddy current device is offered for detecting discontinuities in metal samples. Alternate short and long duration pulses are inductively applied to a metal sample via the outer coil of a probe. The long pulses give a resultant signal from the metal sample responsive to probe-tosample spacing and discontinuities within the sample and the shont pulses give a resultant signal responsive only to probe -to-sample spacing. The inner coil of the probe detects the two resultant signals and transmits them to a separation network where the two signals are separated. The two separated signals are then transmitted to a compensation network where the detected signals due to the short pulses are used to compensate for variations due to probe-to-sample spacing contained in the detected signals from the long pulses. Thus, a resultant signal is obtained responsive to discontinuities within the sample and independent of probe-to- sample spacing.

  10. Preparation of metal-catecholate frameworks

    SciTech Connect (OSTI)

    Yaghi, Omar M.; Gandara-Barragan, Felipe; Lu, Zheng; Wan, Shun

    2014-06-03

    The disclosure provides for metal catecholate frameworks, and methods of use thereof, including gas separation, gas storage, catalysis, tunable conductors, supercapacitors, and sensors.

  11. Laser separation of medical isotopes

    SciTech Connect (OSTI)

    Eerkens, J.W.; Puglishi, D.A.; Miller, W.H.

    1996-12-31

    There is an increasing demand for different separated isotopes as feed material for reactor and cyclotron-produced radioisotopes used by a fast-growing radiopharmaceutical industry. One new technology that may meet future demands for medical isotopes is molecular laser isotope separation (MLIS). This method was investigated for the enrichment of uranium in the 1970`s and 1980s by Los Alamos National Laboratory, Isotope Technologies, and others around the world. While South Africa and Japan have continued the development of MLIS for uranium and are testing pilot units, around 1985 the United States dropped the LANL MLIS program in favor of AVLIS (atomic vapor LIS), which uses electron-beam-heated uranium metal vapor. AVLIS appears difficult and expensive to apply to most isotopes of medical interest, however, whereas MLIS technology, which is based on cooled hexafluorides or other gaseous molecules, can be adapted more readily. The attraction of MLIS for radiopharmaceutical firms is that it allows them to operate their own dedicated separators for small-quantity productions of critical medical isotopes, rather than having to depend on large enrichment complexes run by governments, which are only optimal for large-quantity productions. At the University of Missouri, the authors are investigating LIS of molybdenum isotopes using MoF{sub 6}, which behaves in a way similar to UF{sub 6}, studied in the past.

  12. SEPARATION OF RADIOACTIVE COLUMBIUM TRACER

    DOE Patents [OSTI]

    Glendenin, L.E.; Gest, H.

    1958-08-26

    A process is presented for the recovery of radioactive columbium from solutions containing such columbium together with radioactive tellurium. The columbium and tellurium values are separated from such solutions by means of an inorganic oxide carrier precipitate, such as MnO/sub 2/. This oxide carrier precipitate and its associated columbium and telluriuan values are then dissolved in an aqueous acidic solution and nonradioactive tellurium, in an ionic form, is then introduced into such solution, for example in the form of H/sub 2/TeO/sub 3/. The tellurium present in the solution is then reduced to the elemental state and precipitates, and is then separated from the supernataat solution. A basic acetate precipitate is formed in the supernatant and carries the remaining columblum values therefrom. After separation, this basic ferric acetate precipitate is dissolved, and the ferric ions are removed by means of an organic solvent extraction process utilizing ether. The remaining solution contains carrier-free columbium as its only metal ion.

  13. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    SciTech Connect (OSTI)

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.

  14. Electrolytic production of metals using a resistant anode

    DOE Patents [OSTI]

    Tarcy, G.P.; Gavasto, T.M.; Ray, S.P.

    1986-11-04

    An electrolytic process is described comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO[sub 2] and/or Cu[sub 2]O. 2 figs.

  15. Nanoparticulate-catalyzed oxygen transfer processes

    DOE Patents [OSTI]

    Hunt, Andrew T.; Breitkopf, Richard C.

    2009-12-01

    Nanoparticulates of oxygen transfer materials that are oxides of rare earth metals, combinations of rare earth metals, and combinations of transition metals and rare earth metals are used as catalysts in a variety of processes. Unexpectedly large thermal efficiencies are achieved relative to micron sized particulates. Processes that use these catalysts are exemplified in a multistage reactor. The exemplified reactor cracks C6 to C20 hydrocarbons, desulfurizes the hydrocarbon stream and reforms the hydrocarbons in the stream to produce hydrogen. In a first reactor stage the steam and hydrocarbon are passed through particulate mixed rare earth metal oxide to crack larger hydrocarbon molecules. In a second stage, the steam and hydrocarbon are passed through particulate material that desulfurizes the hydrocarbon. In a third stage, the hydrocarbon and steam are passed through a heated, mixed transition metal/rare earth metal oxide to reform the lower hydrocarbons and thereby produce hydrogen. Stages can be alone or combined. Parallel reactors can provide continuous reactant flow. Each of the processes can be carried out individually.

  16. Solid Oxide Fuel Cell Cathodes. Unraveling the Relationship Between Structure, Surface Chemistry and Oxygen Reduction

    SciTech Connect (OSTI)

    Gopalan, Srikanth

    2013-03-31

    In this work we have considered oxygen reduction reaction on LSM and LSCF cathode materials. In particular we have used various spectroscopic techniques to explore the surface composition, transition metal oxidation state, and the bonding environment of oxygen to understand the changes that occur to the surface during the oxygen reduction process. In a parallel study we have employed patterned cathodes of both LSM and LSCF cathodes to extract transport and kinetic parameters associated with the oxygen reduction process.

  17. High Selectivity Oxygen Delignification

    SciTech Connect (OSTI)

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  18. Liquid absorbent solutions for separating nitrogen from natural gas

    DOE Patents [OSTI]

    Friesen, Dwayne T.; Babcock, Walter C.; Edlund, David J.; Lyon, David K.; Miller, Warren K.

    2000-01-01

    Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  19. Carbon dioxide capture-related gas adsorption and separation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks Previous Next List Jian-Rong Li, Yuguang Ma, M. Colin McCarthy, Julian Sculley, Jiamei Yu,...

  20. Method for plating with metal oxides

    DOE Patents [OSTI]

    Silver, Gary L. (Centerville, OH); Martin, Frank S. (Farmersville, OH)

    1994-08-23

    A method of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate.

  1. Method for plating with metal oxides

    DOE Patents [OSTI]

    Silver, G.L.; Martin, F.S.

    1994-08-23

    A method is disclosed of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate. 1 fig.

  2. PROCESS FOR PREPARING URANIUM METAL

    DOE Patents [OSTI]

    Prescott, C.H. Jr.; Reynolds, F.L.

    1959-01-13

    A process is presented for producing oxygen-free uranium metal comprising contacting iodine vapor with crude uranium in a reaction zone maintained at 400 to 800 C to produce a vaporous mixture of UI/sub 4/ and iodine. Also disposed within the maction zone is a tungsten filament which is heated to about 1600 C. The UI/sub 4/, upon contacting the hot filament, is decomposed to molten uranium substantially free of oxygen.

  3. URANIUM SEPARATION PROCESS

    DOE Patents [OSTI]

    McVey, W.H.; Reas, W.H.

    1959-03-10

    The separation of uranium from an aqueous solution containing a water soluble uranyl salt is described. The process involves adding an alkali thiocyanate to the aqueous solution, contacting the resulting solution with methyl isobutyl ketons and separating the resulting aqueous and organic phase. The uranium is extracted in the organic phase as UO/sub 2/(SCN)/sub/.

  4. Method for separating isotopes

    DOE Patents [OSTI]

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  5. Metal binding in an aluminum based metal-organic framework for carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dioxide capture | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Metal binding in an aluminum based metal-organic framework for carbon dioxide capture

  6. Substituted polyacetylene separation membrane

    DOE Patents [OSTI]

    Pinnau, I.; Morisato, Atsushi

    1998-01-13

    A separation membrane is described which is useful for gas separation, particularly separation of C{sub 2+} hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula shown in the accompanying diagram, wherein R{sub 1} is chosen from the group consisting of C{sub 1}-C{sub 4} alkyl and phenyl, and wherein R{sub 2} is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) [PMP]. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations. 4 figs.

  7. Substituted polyacetylene separation membrane

    DOE Patents [OSTI]

    Pinnau, Ingo; Morisato, Atsushi

    1998-01-13

    A separation membrane useful for gas separation, particularly separation of C.sub.2+ hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula: ##STR1## wherein R.sub.1 is chosen from the group consisting of C.sub.1 -C.sub.4 alkyl and phenyl, and wherein R.sub.2 is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) ›PMP!. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations.

  8. Substituted polyacetylene separation membrane

    DOE Patents [OSTI]

    Pinnau, Ingo (Palo Alto, CA); Morisato, Atsushi (Tokyo, JP)

    1998-01-13

    A separation membrane useful for gas separation, particularly separation of C.sub.2+ hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula: ##STR1## wherein R.sub.1 is chosen from the group consisting of C.sub.1 -C.sub.4 alkyl and phenyl, and wherein R.sub.2 is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) PMP!. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations.

  9. Separators for flywheel rotors

    DOE Patents [OSTI]

    Bender, D.A.; Kuklo, T.C.

    1998-07-07

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors. 10 figs.

  10. Separators for flywheel rotors

    DOE Patents [OSTI]

    Bender, Donald A.; Kuklo, Thomas C.

    1998-01-01

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors.

  11. Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method of making the same

    DOE Patents [OSTI]

    Gerald, II; Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL)

    2011-02-15

    The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. The invented electrochemical cell generally comprising: a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. The novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.

  12. Gas adsorption and gas mixture separations using mixed-ligand MOF material

    DOE Patents [OSTI]

    Hupp, Joseph T.; Mulfort, Karen L.; Snurr, Randall Q.; Bae, Youn-Sang

    2011-01-04

    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  13. Method for making oxygen-reducing catalyst layers

    DOE Patents [OSTI]

    O'Brien, Dennis P.; Schmoeckel, Alison K.; Vernstrom, George D.; Atanasoski, Radoslav; Wood, Thomas E.; O'Neill, David G.

    2010-06-22

    Methods are provided for making oxygen-reducing catalyst layers, which include simultaneous or sequential stops of physical vapor depositing an oxygen-reducing catalytic material onto a substrate, the catalytic material comprising a transition metal that is substantially free of platinum; and thermally treating the catalytic material. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  14. Methods for fluid separations, and devices capable of separating fluids

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E [Kennewick, WA; Stenkamp, Victoria S [Richland, WA

    2006-05-30

    Wick-Containing apparatus capable of separating fluids and methods of separating fluids using wicks are disclosed.

  15. Methods for fluid separations, and devices capable of separating fluids

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E.; Stenkamp, Victoria S.

    2007-09-25

    Wick-Containing apparatus capable of separating fluids and methods of separating fluids using wicks are disclosed.

  16. Engineering materials for hydrogen separation

    SciTech Connect (OSTI)

    Moss, T.S.; Dye, R.C.

    1997-02-01

    To address the need for enhanced hydrogen separation techniques using metal membranes, a different fabrication technique was utilized that would overcome these concerns. The objectives for the fabrication were: obtaining a highly clean surface on the refractory foil, forming a palladium coating without subsequent surface contamination, and providing a high degree of purity, crystallinity, and crystallographic orientation. To achieve these objectives, the process of physical vapor deposition was used. Within a high vacuum chamber, both sides of a tantalum or vanadium foil were ion milled to remove the surface oxide and, without ever breaking the vacuum, both sides of the cleaned foil were coated with thin palladium layers. The palladium was deposited using either e-beam evaporation or sputtering. Foils produced by this technique have yielded exceptionally high hydrogen flow rates.

  17. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-02-01

    This is the fifth quarterly report on a new study to develop a ceramic membrane/metal joint. Results of wetting experiments on commercially available Nickel based brazing alloys on perovskite surfaces are described. Additionally, experimental and numerical investigations on the strength of concentric ceramic/metal joints are presented.

  18. Optical oxygen concentration monitor

    DOE Patents [OSTI]

    Kebabian, P.

    1997-07-22

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen`s A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2,000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest. 4 figs.

  19. Metal halogen electrochemical cell

    DOE Patents [OSTI]

    Bellows, Richard J. (Hampton, NJ); Kantner, Edward (E. Brunswick, NJ)

    1988-08-23

    It has now been discovered that reduction in the coulombic efficiency of metal halogen cells can be minimized if the microporous separator employed in such cells is selected from one which is preferably wet by the aqueous electrolyte and is not wet substantially by the cathodic halogen.

  20. Process for phase separation

    DOE Patents [OSTI]

    Comolli, Alfred G.

    1979-01-01

    This invention provides a continuous process for separating a gaseous phase from a hydrocarbon liquid containing carbonaceous particulates and gases. The liquid is fed to a cylindrical separator, with the gaseous phase being removed therefrom as an overhead product, whereas the hydrocarbon liquid and the particulates are withdrawn as a bottoms product. By feeding the liquid tangentially to the separator and maintaining a particulate-liquid slurry downward velocity of from about 0.01 to about 0.25 fps in the separator, a total solids weight percent in the slurry of from about 0.1 to about 30%, a slurry temperature of from about 550.degree. to about 900.degree. F., a slurry residence time in the separator of from about 30 to about 360 seconds, and a length/diameter ratio for the separator of from about 20/1 to about 50/1, so that the characterization factor, .alpha., defined as ##STR1## DOES NOT EXCEED ABOUT 48 (.degree.R sec.sup.2)/ft, the deposit of carbonaceous materials on the interior surface of the separator may be substantially eliminated.

  1. Purification of alkali metal nitrates

    DOE Patents [OSTI]

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  2. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C in N{sub 2}. Space group of R3c was found to result in a better refinement and is used in this study. The difference for crystal structure, lattice parameters and local crystal chemistry for LSFT nearly unchanged when gas environment switched from air to N{sub 2}. Stable crack growth studies on Dense OTM bars provided by Praxair were done at room temperature in air. A bridge-compression fixture was fabricated to achieve stable pre-cracks from Vickers indents. Post fracture evaluation indicated stable crack growth from the indent and a regime of fast fracture. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. The thermal and chemical expansion of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were studied at 800 {le} T {le} 1000 C and at {approx} 1 x 10{sup -15} {le} pO{sub 2} {le} 0.21 atm. The thermal expansion coefficient of the sample was calculated from the dilatometric analysis in the temperature range between room temperature and 1200 C in air. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  3. Method for the rapid synthesis of large quantities of metal oxide nanowires at low temperatures

    DOE Patents [OSTI]

    Sunkara, Mahendra Kumar; Vaddiraju, Sreeram; Mozetic, Miran; Cvelbar, Uros

    2009-09-22

    A process for the rapid synthesis of metal oxide nanoparticles at low temperatures and methods which facilitate the fabrication of long metal oxide nanowires. The method is based on treatment of metals with oxygen plasma. Using oxygen plasma at low temperatures allows for rapid growth unlike other synthesis methods where nanomaterials take a long time to grow. Density of neutral oxygen atoms in plasma is a controlling factor for the yield of nanowires. The oxygen atom density window differs for different materials. By selecting the optimal oxygen atom density for various materials the yield can be maximized for nanowire synthesis of the metal.

  4. November 30, 2011 | Center for Gas SeparationsRelevant to Clean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rating of Post-combustion Gas Permeation Carbon Capture Systems Eric Bloch (Dept. of Chemistry, UC Berkeley) Gas Separations with Redox-Active Metal-Organic Frameworks...

  5. October 24, 2012 | Center for Gas SeparationsRelevant to Clean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foundry, LBNL) Structure and Properties of Gas Adsorbed Metal-Organic Frameworks Stephen Geier (Department of Chemistry, UC Berkeley) Adsorption and Separation of Small...

  6. Gokhan Barin | Center for Gas SeparationsRelevant to Clean Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Such features become particularly useful in challenging applications such as toxic gas (ammonia) removal from air and metal ion separations in aqueous media. My research...

  7. David Zee | Center for Gas SeparationsRelevant to Clean Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy savings by supplanting current separation technologies such as cryogenic distillation. I am also interested in exploring the reactivity of the open metal sites of such...

  8. Environmental assessment: special isotope separation process selection

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    This Environmental Assessment (EA) evaluates the differences in potential environmental impacts between two plutonium Special Isotope Separation (SIS) technologies: Atomic Vapor Laser Isotope Separation (AVLIS) and Molecular Laser Isotope Separation (MLIS). Both SIS technologies use PuO/sub 2/ as feed; AVLIS converts feed to plutonium metal and MLIS converts feed to PuF/sub 6/. The AVLIS process uses laser energy to selectively photoionize and electrostatically separate plutonium isotopes from an atomic vapor stream. The MLIS process uses laser energy to selectively disassociate specific isotopes of plutonium in the form of PuF/sub 6/ molecules to create PuF/sub 5/ for collection and further processing. Both processes produce plutonium metal as their product. An evaluation of differences in potential environmental impacts attributed to the construction of an SIS facility, based on either technology, included a comparison of construction materials, land areas required, and the size of the design and construction workforce. The differences in potential environmental impacts from operating an SIS facility were also compared. No large differences in potential environmental impacts would be expected from the use of process chemicals. An AVLIS or an MLIS facility would produce operating effluents that would meet all applicable radiation, chemical, and hazardous waste standards and would be constructed to protect workers, the public and the environment. This EA has not revealed any significant differences in the potential environmental impacts that could occur as a result of deploying either the AVLIS or the MLIS Special Isotope Separation technology.

  9. Membrane separation of hydrocarbons using cycloparaffinic solvents

    DOE Patents [OSTI]

    Kulkarni, Sudhir S.; Chang, Y. Alice; Gatsis, John G.; Funk, Edward W.

    1988-01-01

    Heavy crude oils which contain metal contaminants such as nickel, vanadium and iron may be separated from light hydrocarbon oils by passing a solution of the crude oil dissolved in a cycloparaffinic hydrocarbon solvent containing from about 5 to about 8 carbon atoms by passing through a polymeric membrane which is capable of maintaining its integrity in the presence of hydrocarbon compounds. The light hydrocarbon oils which possess relatively low molecular weights will be recovered as the permeate while the heavy oils which possess relatively high molecular weights as well as the metal contaminants will be recovered as the retentate.

  10. Membrane separation of hydrocarbons using cycloparaffinic solvents

    DOE Patents [OSTI]

    Kulkarni, S.S.; Chang, Y.A.; Gatsis, J.G.; Funk, E.W.

    1988-06-14

    Heavy crude oils which contain metal contaminants such as nickel, vanadium and iron may be separated from light hydrocarbon oils by passing a solution of the crude oil dissolved in a cycloparaffinic hydrocarbon solvent containing from about 5 to about 8 carbon atoms by passing through a polymeric membrane which is capable of maintaining its integrity in the presence of hydrocarbon compounds. The light hydrocarbon oils which possess relatively low molecular weights will be recovered as the permeate while the heavy oils which possess relatively high molecular weights as well as the metal contaminants will be recovered as the retentate.

  11. Bacterio-electric leaching of metals

    DOE Patents [OSTI]

    Lazaroff, Norman; Dugan, Patrick R.

    1992-07-07

    The separation of cationic materials from an ore body is assisted by the application of an electric potential, and resulting current, to the ore body, in association with iron or sulphur oxidizing bacteria. The combined process induces migration of cationic metals to a cathode suspended within the ore body so that the cationic metal can be preferentially separated from the ore body.

  12. Bacterio-electric leaching of metals

    DOE Patents [OSTI]

    Lazaroff, Norman; Dugan, Patrick R.

    1992-01-01

    The separation of cationic materials from an ore body is assisted by the application of an electric potential, and resulting current, to the ore body, in association with iron or sulphur oxidizing bacteria. The combined process induces migration of cationic metals to a cathode suspended within the ore body so that the cationic metal can be preferentially separated from the ore body.

  13. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    Lawrence E. Bool; Jack C. Chen; David R. Thompson

    2000-07-01

    Increased environmental regulations will require utility boilers to reduce NO{sub x} emissions to less than 0.15lb/MMBtu in the near term. Conventional technologies such as Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) are unable to achieve these lowered emission levels without substantially higher costs and major operating problems. Oxygen enhanced combustion is a novel technology that allows utilities to meet the NO{sub x} emission requirements without the operational problems that occur with SCR and SNCR. Furthermore, oxygen enhanced combustion can achieve these NO{sub x} limits at costs lower than conventional technologies. The objective of this program is to demonstrate the use of oxygen enhanced combustion as a technical and economical method of meeting the EPA State Implementation Plan for NO{sub x} reduction to less than 0.15lb/MMBtu for a wide range of boilers and coal. The oxygen enhanced coal combustion program (Task 1) focused this quarter on the specific objective of exploration of the impact of oxygen enrichment on NO{sub x} formation utilizing small-scale combustors for parametric testing. Research efforts toward understanding any limitations to the applicability of the technology to different burners and fuels such as different types of coal are underway. The objective of the oxygen transport membrane (OTM) materials development program (Task 2.1) is to ascertain a suitable material composition that can be fabricated into dense tubes capable of producing the target oxygen flux under the operating conditions. This requires that the material have sufficient oxygen permeation resulting from high oxygen ion conductivity, high electronic conductivity and high oxygen surface exchange rate. The OTM element development program (Task 2.2) objective is to develop, fabricate and characterize OTM elements for laboratory and pilot reactors utilizing quality control parameters to ensure reproducibility and superior performance. A specific goal is to achieve a material that will sinter to desired density without compromising other variables such as reaction to binder systems or phase purity. Oxygen-enhanced combustion requires a facility which is capable of supplying high purity oxygen (>99.5%) at low costs. This goal can be achieved through the thermal integration of high temperature air separation with ceramic OTM. The objective of the OTM process development program (Task 2.3) is to demonstrate successfully the program objectives on a lab-scale single OTM tube reactor under process conditions comparable to those of an optimum large-scale oxygen facility. This quarterly technical progress report will summarize work accomplished for the Program through the first quarter April--June 2000 in the following task areas: Task 1 Oxygen Enhanced Coal Combustion; Task 2 Oxygen Transport Membranes; and Task 4 Program Management.

  14. Monolithic solid electrolyte oxygen pump

    DOE Patents [OSTI]

    Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.

    1989-01-01

    A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.

  15. Plasma isotope separation methods

    SciTech Connect (OSTI)

    Grossman, M.W. ); Shepp, T.A. )

    1991-12-01

    Isotope separation has many important industrial, medical, and research applications. Large-scale processes have typically utilized complex cascade systems; for example, the gas centrifuge. Alternatively, high single-stage enrichment processes (as in the case of the calutron) are very energy intensive. Plasma-based methods being developed for the past 15 to 20 years have attempted to overcome these two drawbacks. In this review, six major types of isotope separation methods which involve plasma phenomena are discussed. These methods are: plasma centrifuge, AVLIS (atomic vapor laser isotope separation), ion wave, ICR (ion-cyclotron resonance), calutron, and gas discharge. The emphasis of this paper is to describe the plasma phenomena in these major categories. An attempt was made to include enough references so that more detailed study or evaluation of a particular method could readily be pursued. A brief discussion of isotope separation using mass balance concepts is also carried out.

  16. Voluntary Separation Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... III. Use of Waivers and Releases of Claims with Involuntary Separation Programs Where the ... IN EXCHANGE FOR THE PROMISES SET FORTH BELOW, THE PARTIES AGREE AS FOLLOWS: 1. Voluntary ...

  17. Gas-separation process

    DOE Patents [OSTI]

    Toy, Lora G.; Pinnau, Ingo; Baker, Richard W.

    1994-01-01

    A process for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material.

  18. Microsystem capillary separations

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E [Kennewick, WA; Wegeng, Robert S [Richland, WA; Whyatt, Greg A [West Richland, WA; Stenkamp, Victoria S [Richland, WA; Gauglitz, Phillip A [Richland, WA

    2003-12-23

    Laminated, multiphase separators and contactors having wicking structures and gas flow channels are described. Some preferred embodiments are combined with microchannel heat exchange. Integrated systems containing these components are also part of the present invention.

  19. Low oxygen biomass-derived pyrolysis oils and methods for producing the same

    DOE Patents [OSTI]

    Marinangeli, Richard; Brandvold, Timothy A; Kocal, Joseph A

    2013-08-27

    Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.

  20. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miner, Elise M.; Fukushima, Tomohiro; Sheberla, Dennis; Sun, Lei; Surendranath, Yogesh; Dinca, Mircea

    2016-03-08

    Control over the architectural and electronic properties of heterogeneous catalysts poses a major obstacle in the targeted design of active and stable non-platinum group metal electrocatalysts for the oxygen reduction reaction. Here we introduce Ni3(HITP)2 (HITP=2, 3, 6, 7, 10, 11-hexaiminotriphenylene) as an intrinsically conductive metal-organic framework which functions as a well-defined, tunable oxygen reduction electrocatalyst in alkaline solution. Ni3(HITP)2 exhibits oxygen reduction activity competitive with the most active non-platinum group metal electrocatalysts and stability during extended polarization. The square planar Ni-N4 sites are structurally reminiscent of the highly active and widely studied non-platinum group metal electrocatalysts containing M-N4 units.more » Ni3(HITP)2 and analogues thereof combine the high crystallinity of metal-organic frameworks, the physical durability and electrical conductivity of graphitic materials, and the diverse yet well-controlled synthetic accessibility of molecular species. As a result, such properties may enable the targeted synthesis and systematic optimization of oxygen reduction electrocatalysts as components of fuel cells and electrolysers for renewable energy applications.« less

  1. Hydrogen separation process

    DOE Patents [OSTI]

    Mundschau, Michael; Xie, Xiaobing; Evenson, IV, Carl; Grimmer, Paul; Wright, Harold

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  2. SEPARATIONS BY ELECTRODIALYSIS

    DOE Patents [OSTI]

    Webb, W.H.; Vie, J.D.

    1962-06-12

    A method is given for separating cesium, cerium, zirconium, and uranyl ions frora a common solution by electrodialysis. An anion exchange membrane and a cation exchange membrane are placed on either side of the feed solution compartment; the former is in electrolytic contact with an anode and the latter with cathode. On acidification of the feed solution to a critical value of 0.5 N and passage of a current from the anode to the cathode, the desired separations tske place. (AEC)

  3. Method for reprocessing and separating spent nuclear fuels

    DOE Patents [OSTI]

    Krikorian, Oscar H. (Danville, CA); Grens, John Z. (Livermore, CA); Parrish, Sr., William H. (Walnut Creek, CA)

    1983-01-01

    Spent nuclear fuels, including actinide fuels, volatile and non-volatile fission products, are reprocessed and separated in a molten metal solvent housed in a separation vessel made of a carbon-containing material. A first catalyst, which promotes the solubility and permeability of carbon in the metal solvent, is included. By increasing the solubility and permeability of the carbon in the solvent, the rate at which actinide oxides are reduced (carbothermic reduction) is greatly increased. A second catalyst, included to increase the affinity for nitrogen in the metal solvent, is added to increase the rate at which actinide nitrides form after carbothermic reduction is complete.

  4. Method for reprocessing and separating spent nuclear fuels. [Patent application

    DOE Patents [OSTI]

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H. Sr.

    1982-01-19

    Spent nuclear fuels, including actinide fuels, volatile and nonvolatile fission products, are reprocessed and separated in a molten metal solvent housed in a separation vessel made of a carbon-containing material. A first catalyst, which promotes the solubility and permeability of carbon in the metal solvent, is included. By increasing the solubility and permeability of the carbon in the solvent, the rate at which actinide oxides are reduced (carbothermic reduction) is greatly increased. A second catalyst, included to increase the affinity for nitrogen in the metal solvent, is added to increase the rate at which actinide nitrides form after carbothermic reduction is complete.

  5. Hydrogen Production Using Hydrogenase-Containing Oxygenic Photosynthetic Organisms

    DOE Patents [OSTI]

    Melis, A.; Zhang, L.; Benemann, J. R.; Forestier, M.; Ghirardi, M.; Seibert, M.

    2006-01-24

    A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

  6. Hydrogen production using hydrogenase-containing oxygenic photosynthetic organisms

    DOE Patents [OSTI]

    Melis, Anastasios; Zhang, Liping; Benemann, John R.; Forestier, Marc; Ghirardi, Maria; Seibert, Michael

    2006-01-24

    A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

  7. Dissolution and Separation of Aluminum and Aluminosilicates

    SciTech Connect (OSTI)

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; Felker, Leslie Kevin; Mattus, Catherine H.

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  8. Dissolution and Separation of Aluminum and Aluminosilicates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; Felker, Leslie Kevin; Mattus, Catherine H.

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as amore » function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.« less

  9. Production plant separator system conceptual design

    SciTech Connect (OSTI)

    Ng, E.; Kan, T.

    1994-12-31

    A full conceptual design has been completed for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant capable of producing {approximately}1700 metric tons of enriched uranium per year (MTU/y). This plant is the first step in the deployment of AVLIS enrichment technology, which will provide inexpensive, dependable, and environmentally safe uranium enrichment services to utility customers. Previous issues of the ISAM Semiannual Report describe other major systems in the plant, namely the laser, feed and product systems. This article describes the design of the separator system. The separator system is a a key component in the plant. After the feed conversion system converts uranium trioxide (UO{sub 3}) to a uranium-iron alloy, the alloy enters the separator system. In the separator, and intense electron beam vaporizes uranium metal in a vacuum chamber. In the laser system, fixed-frequency copper-vapor lasers pump tunable dye lasers. These precisely tuned dye lasers then selectively excite and ionize uranium-235 atoms in the vapor stream, leaving the uranium-238 atoms untouched. The photo-ions of uranium-235 are then drawn to an electrically biased collector, producing the enriched product stream. The remaining vapor flows through, producing the depleted tails stream. Both product and tails streams are continuously removed from the separator pod as flowing liquid uranium metal. Withdrawal containers are used to collect separately the enriched and depleted uranium. The enriched product will be converted by fuel fabricators to uranium dioxide (UO{sub 2}) and used to fabricate reactor fuel assemblies for utility customers.

  10. Metal aminoboranes

    DOE Patents [OSTI]

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya Kaviraj; Shrestha, Roshan P.

    2010-05-11

    Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  11. Optical oxygen concentration monitor

    DOE Patents [OSTI]

    Kebabian, Paul

    1997-01-01

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen's A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest.

  12. Metal Hydrides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Hydrides Theodore Motyka Savannah River National Laboratory Metal Hydride System Architect Jose-Miguel Pasini, & Bart van Hassel UTRC Claudio Corgnale & Bruce Hardy SRNL ...

  13. Observing Oxygen Atoms Move during Information Storage in Tantalum Oxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Memristors | Stanford Synchrotron Radiation Lightsource Observing Oxygen Atoms Move during Information Storage in Tantalum Oxide Memristors Saturday, April 30, 2016 Memristor technology, or resistive random access memory (RRAM), is a frontrunner for next generation computer memory, owing to the promise of long endurance, low power, nanoscale device size and fast operation.1 Memristor devices are typically made of a transition metal oxide sandwiched between two metallic electrodes, and

  14. PROCESS OF SEPARATING PLUTONIUM VALUES BY ELECTRODEPOSITION

    DOE Patents [OSTI]

    Whal, A.C.

    1958-04-15

    A process is described of separating plutonium values from an aqueous solution by electrodeposition. The process consists of subjecting an aqueous 0.1 to 1.0 N nitric acid solution containing plutonium ions to electrolysis between inert metallic electrodes. A current density of one milliampere io one ampere per square centimeter of cathode surface and a temperature between 10 and 60 d C are maintained. Plutonium is electrodeposited on the cathode surface and recovered.

  15. Organic Separation Test Results

    SciTech Connect (OSTI)

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-09-22

    Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations, could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.

  16. Novel Membranes and Processes for Oxygen Enrichment

    SciTech Connect (OSTI)

    Lin, Haiqing

    2011-11-15

    The overall goal of this project is to develop a membrane process that produces air containing 25-35% oxygen, at a cost of $25-40/ton of equivalent pure oxygen (EPO2). Oxygen-enriched air at such a low cost will allow existing air-fueled furnaces to be converted economically to oxygen-enriched furnaces, which in turn will improve the economic and energy efficiency of combustion processes significantly, and reduce the cost of CO{sub 2} capture and sequestration from flue gases throughout the U.S. manufacturing industries. During the 12-month Concept Definition project: We identified a series of perfluoropolymers (PFPs) with promising oxygen/nitrogen separation properties, which were successfully made into thin film composite membranes. The membranes showed oxygen permeance as high as 1,200 gpu and oxygen/nitrogen selectivity of 3.0, and the permeance and selectivity were stable over the time period tested (60 days). We successfully scaled up the production of high-flux PFP-based membranes, using MTR's commercial coaters. Two bench-scale spiral-wound modules with countercurrent designs were made and parametric tests were performed to understand the effect of feed flow rate and pressure, permeate pressure and sweep flow rate on the membrane module separation properties. At various operating conditions that modeled potential industrial operating conditions, the module separation properties were similar to the pure-gas separation properties in the membrane stamps. We also identified and synthesized new polymers [including polymers of intrinsic microporosity (PIMs) and polyimides] with higher oxygen/nitrogen selectivity (3.5-5.0) than the PFPs, and made these polymers into thin film composite membranes. However, these membranes were susceptible to severe aging; pure-gas permeance decreased nearly six-fold within two weeks, making them impractical for industrial applications of oxygen enrichment. We tested the effect of oxygen-enriched air on NO{sub x} emissions using a Bloom baffle burner at GTI. The results are positive and confirm that oxygen-enriched combustion can be carried out without producing higher levels of NOx than normal air firing, if lancing of combustion air is used and the excess air levels are controlled. A simple economic study shows that the membrane processes can produce O{sub 2} at less than $40/ton EPO{sub 2} and an energy cost of 1.1-1.5 MMBtu/ton EPO{sub 2}, which are very favorable compared with conventional technologies such as cryogenics and vacuum pressure swing adsorption processes. The benefits of integrated membrane processes/combustion process trains have been evaluated, and show good savings in process costs and energy consumption, as well as reduced CO{sub 2} emissions. For example, if air containing 30% oxygen is used in natural gas furnaces, the net natural gas savings are an estimated 18% at a burner temperature of 2,500 F, and 32% at a burner temperature of 3,000 F. With a 20% market penetration of membrane-based oxygen-enriched combustion in all combustion processes by 2020, the energy savings would be 414-736 TBtu/y in the U.S. The comparable net cost savings are estimated at $1.2-2.1 billion per year by 2020, calculated as the value of fuel savings subtracted from the cost of oxygen production. The fuel savings of 18%-32% by the membrane/oxygen-enriched combustion corresponds to an 18%-32% reduction in CO{sub 2} emissions, or 23-40 MM ton/y less CO{sub 2} from natural gas-fired furnaces by 2020. In summary, results from this project (Concept Definition phase) are highly promising and clearly demonstrate that membrane processes can produce oxygen-enriched air in a low cost manner that will lower operating costs and energy consumption in industrial combustion processes. Future work will focus on proof-of-concept bench-scale demonstration in the laboratory.

  17. Method of separating and purifying gadolinium-153

    DOE Patents [OSTI]

    Bray, Lane A. (Richland, WA) [Richland, WA; Corneillie, Todd M. (Davis, CA) [Davis, CA

    2001-01-01

    The present invention is an improvement to the method of separating and purifying gadolinium from a mixture of gadolinium and europium having the steps of (a) dissolving the mixture in an acid; (b) reducing europium+3 to europium+2; and (c) precipitating the europium+2 with a sulfate ion in a superstoichiometric amount; wherein the improvement is achieved by using one or more of the following: (i) the acid is an anoic acid; (ii) the reducing is with zinc metal in the absence of a second metal or with an amount of the second metal that is ineffective in the reducing; (iii) adding a group IIA element after step (c) for precipitating the excess sulfate prior to repeating step (c); (iv) the sulfate is a sulfate salt with a monovalent cation; (v) adding cold europium+3 prior to repeating step (c).

  18. Failure Mechanism of Fast-Charged Lithium Metal Batteries in Liquid Electrolyte

    SciTech Connect (OSTI)

    Lu, Dongping; Shao, Yuyan; Lozano, Terence J.; Bennett, Wendy D.; Graff, Gordon L.; Polzin, Bryant; Zhang, Jiguang; Engelhard, Mark H.; Saenz, Natalio T.; Henderson, Wesley A.; Bhattacharya, Priyanka; Liu, Jun; Xiao, Jie

    2015-02-01

    In recent years, lithium anode has re-attracted broad interest because of the necessity of employing lithium metal in the next-generation battery technologies such as lithium sulfur (Li-S) and lithium oxygen (Li-O2) batteries. Fast capacity degradation and safety issue associated with rechargeable lithium metal batteries have been reported, although the fundamental understanding on the failure mechanism of lithium metal at high charge rate is still under debate due to the complicated interfacial chemistry between lithium metal and electrolyte. Herein, we demonstrate that, at high current density, the quick growth of porous solid electrolyte interphase towards bulk lithium, instead of towards the separator, dramatically builds up the cell impedance that directly leads to the cell failure. Understanding the lithium metal failure mechanism is very critical to gauge the various approaches used to address the stability and safety issues associated with lithium metal anode. Otherwise, all cells will fail quickly at high rates before the observation of any positive effects that might be brought from adopting the new strategies to protect lithium.

  19. Membrane separation of hydrocarbons

    DOE Patents [OSTI]

    Chang, Y. Alice; Kulkarni, Sudhir S.; Funk, Edward W.

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture through a polymeric membrane. The membrane which is utilized to effect the separation comprises a polymer which is capable of maintaining its integrity in the presence of hydrocarbon compounds and which has been modified by being subjected to the action of a sulfonating agent. Sulfonating agents which may be employed will include fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, etc., the surface or bulk modified polymer will contain a degree of sulfonation ranging from about 15 to about 50%. The separation process is effected at temperatures ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psig.

  20. Direct Observation of the Oxygenated Species during Oxygen Reduction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Observation of the Oxygenated Species during Oxygen Reduction on a Platinum Fuel Cell Cathode Friday, December 20, 2013 Fuel Cell Figure 1 Figure 1. In situ x-ray ...

  1. Gas separation membranes

    DOE Patents [OSTI]

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  2. WET FLUORIDE SEPARATION METHOD

    DOE Patents [OSTI]

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1958-11-25

    The separation of U/sup 233/ from thorium, protactinium, and fission products present in neutron-irradiated thorium is accomplished by dissolving the irradiated materials in aqueous nitric acid, adding either a soluble fluoride, iodate, phosphate, or oxalate to precipltate the thorium, separating the precipltate from the solution, and then precipitating uranlum and protactinium by alkalizing the solution. The uranium and protactinium precipitate is removcd from the solution and dissolved in nitric acid. The uranyl nitrate may then be extracted from the acid solution by means of ether, and the protactinium recovered from the aqueous phase.

  3. Separators for electrochemical cells

    DOE Patents [OSTI]

    Carlson, Steven Allen; Anakor, Ifenna Kingsley

    2014-11-11

    Provided are separators for use in an electrochemical cell comprising (a) an inorganic oxide and (b) an organic polymer, wherein the inorganic oxide comprises organic substituents. Preferably, the inorganic oxide comprises an hydrated aluminum oxide of the formula Al.sub.2O.sub.3.xH.sub.2O, wherein x is less than 1.0, and wherein the hydrated aluminum oxide comprises organic substituents, preferably comprising a reaction product of a multifunctional monomer and/or organic carbonate with an aluminum oxide, such as pseudo-boehmite and an aluminum oxide. Also provided are electrochemical cells comprising such separators.

  4. SEPARATION PROCESS FOR ZIRCONIUM AND COMPOUNDS THEREOF

    DOE Patents [OSTI]

    Crandall, H.W.; Thomas, J.R.

    1959-06-30

    The separation of zirconium from columbium, rare earths, yttrium and the alkaline earth metals, such mixtures of elements occurring in zirconium ores or neutron irradiated uranium is described. According to the invention a suitable separation of zirconium from a one normal acidic aqueous solution containing salts, nitrates for example, of tetravalent zirconium, pentavalent columbium, yttrium, rare earths in the trivalent state and alkaline earths can be obtained by contacting the aqueous solution with a fluorinated beta diketonc alone or in an organic solvent solution, such as benzene, to form a zirconium chelate compound. When the organic solvent is present the zirconium chelate compound is directly extracted; otherwise it is separated by filtration. The zirconium may be recovered from contacting the organic solvent solution containing the chelated compound by back extraction with either an aqueous hydrofluoric acid or an oxalic acid solution.

  5. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  6. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

  7. Battery separator assembly

    SciTech Connect (OSTI)

    Faust, M.A.; Suchanski, M.R.; Osterhoudt, H.W.

    1988-05-03

    A separator assembly for use in batteries is described comprising a film bearing a thermal fuse in the form of a layer of wax coated fibers; wherein the assembly is sufficiently porous to allow continuous flow of ions in the battery.

  8. Polymide gas separation membranes

    DOE Patents [OSTI]

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz

    2004-09-14

    Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.

  9. SEPARATION BY ADSORPTION

    DOE Patents [OSTI]

    Lowe, C.S.

    1959-06-16

    Separation of Pu from fission products by adsorption on hydrous aluminum silicate is described. The Pu in a HNO/sub 3/ solution is oxidized to the hexavalent state and contacted with the silicate which adsorbs fission products. (T.R.H.)

  10. Hydrogen isotope separation

    DOE Patents [OSTI]

    Bartlit, John R.; Denton, William H.; Sherman, Robert H.

    1982-01-01

    A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

  11. Hydrogen isotope separation

    DOE Patents [OSTI]

    Bartlit, J.R.; Denton, W.H.; Sherman, R.H.

    Disclosed is a system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D/sub 2/, DT, T/sub 2/, and a tritium-free stream of HD for waste disposal.

  12. Molten salt electrolyte separator

    DOE Patents [OSTI]

    Kaun, T.D.

    1996-07-09

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  13. Gas-separation process

    DOE Patents [OSTI]

    Toy, L.G.; Pinnau, I.; Baker, R.W.

    1994-01-25

    A process is described for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material. 6 figures.

  14. High-temperature potentiometric oxygen sensor with internal reference

    DOE Patents [OSTI]

    Routbort, Jules L.; Singh, Dileep; Dutta, Prabir K.; Ramasamy, Ramamoorthy; Spirig, John V.; Akbar, Sheikh

    2011-11-15

    A compact oxygen sensor is provided, comprising a mixture of metal and metal oxide an enclosure containing said mixture, said enclosure capable of isolating said mixture from an environment external of said enclosure, and a first wire having a first end residing within the enclosure and having a second end exposed to the environment. Also provided is a method for the fabrication of an oxygen sensor, the method comprising confining a metal-metal oxide solid mixture to a container which consists of a single material permeable to oxygen ions, supplying an electrical conductor having a first end and a second end, whereby the first end resides inside the container as a reference (PO.sub.2).sup.ref, and the second end resides outside the container in the atmosphere where oxygen partial pressure (PO.sub.2).sup.ext is to be measured, and sealing the container with additional single material such that grain boundary sliding occurs between grains of the single material and grains of the additional single material.

  15. Three-Electrode Metal Oxide Reduction Cell

    DOE Patents [OSTI]

    Dees, Dennis W.; Ackerman, John P.

    2005-06-28

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  16. Three-electrode metal oxide reduction cell

    DOE Patents [OSTI]

    Dees, Dennis W.; Ackerman, John P.

    2008-08-12

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  17. Reversible CO Binding in Metal-Organic Frameworks | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Reversible CO Binding in Metal-Organic Frameworks

  18. Stimulus CO2 adsorption in Metal-Organic Frameworks | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Stimulus CO2 adsorption in Metal-Organic Frameworks

  19. The Chemistry and Applications of Metal-Organic Frameworks | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome The Chemistry and Applications of Metal-Organic Frameworks

  20. Ultrastable Metal-Organic Frameworks with Large Channels | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Ultrastable Metal-Organic Frameworks with Large Channels

  1. Enhanced CO2 Capture in Metal-Organic Frameworks | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Enhanced CO2 Capture in Metal-Organic Frameworks

  2. Mail-Order Metal-Organic Frameworks (MOFs) | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Mail-Order Metal-Organic Frameworks (MOFs)

  3. Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates

    DOE Patents [OSTI]

    Adzic, Radoslav; Zhang, Junliang; Vukmirovic, Miomir

    2012-11-13

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen.

  4. Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates

    DOE Patents [OSTI]

    Adzic, Radoslav; Zhang, Junliang; Vukmirovic, Miomir

    2011-11-22

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen.

  5. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOE Patents [OSTI]

    Ellis, T.W.; Schmidt, F.A.

    1995-08-01

    A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.

  6. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOE Patents [OSTI]

    Ellis, Timothy W.; Schmidt, Frederick A.

    1995-08-01

    Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.

  7. Apparatus and method for reprocessing and separating spent nuclear fuels. [Patent application

    DOE Patents [OSTI]

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H. Sr.; Coops, M.S.

    1982-01-19

    A method and apparatus for separating and reprocessing spent nuclear fuels includes a separation vessel housing a molten metal solvent in a reaction region, a reflux region positioned above and adjacent to the reaction region, and a porous filter member defining the bottom of the separation vessel in a supporting relationship with the metal solvent. Spent fuels are added to the metal solvent. A nonoxidizing nitrogen-containing gas is introduced into the separation vessel, forming solid actinide nitrides in the metal solvent from actinide fuels, while leaving other fission products in solution. A pressure of about 1.1 to 1.2 atm is applied in the reflux region, forcing the molten metal solvent and soluble fission products out of the vessel, while leaving the solid actinide nitrides in the separation vessel.

  8. Photochemical isotope separation

    DOE Patents [OSTI]

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  9. Steam separator latch assembly

    DOE Patents [OSTI]

    Challberg, Roy C.; Kobsa, Irvin R.

    1994-01-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

  10. Steam separator latch assembly

    DOE Patents [OSTI]

    Challberg, R.C.; Kobsa, I.R.

    1994-02-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.

  11. Advanced Separation Consortium

    SciTech Connect (OSTI)

    2006-01-01

    The Center for Advanced Separation Technologies (CAST) was formed in 2001 under the sponsorship of the US Department of Energy to conduct fundamental research in advanced separation and to develop technologies that can be used to produce coal and minerals in an efficient and environmentally acceptable manner. The CAST consortium consists of seven universities - Virginia Tech, West Virginia University, University of Kentucky, Montana Tech, University of Utah, University of Nevada-Reno, and New Mexico Tech. The consortium brings together a broad range of expertise to solve problems facing the US coal industry and the mining sector in general. At present, a total of 60 research projects are under way. The article outlines some of these, on topics including innovative dewatering technologies, removal of mercury and other impurities, and modelling of the flotation process. 1 photo.

  12. Photochemical isotope separation

    DOE Patents [OSTI]

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  13. Laser isotope separation

    DOE Patents [OSTI]

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  14. Laser isotope separation

    DOE Patents [OSTI]

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  15. Homogeneously dispersed, multimetal oxygen-evolving catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Bo; Zheng, Xueli; Voznyy, Oleksandr; Comin, Riccardo; Bajdich, Michal; Garcia-Melchor, Max; Han, Lili; Xu, Jixian; Liu, Min; Zheng, Lirong; et al

    2016-03-24

    Earth-abundant first-row (3d) transition-metal-based catalysts have been developed for the oxygen-evolution reaction (OER); however, they operate at overpotentials significantly above thermodynamic requirements. Density functional theory suggested that non-3d high-valency metals such as tungsten can modulate 3d metal oxides, providing near-optimal adsorption energies for OER intermediates. We developed a room-temperature synthesis to produce gelled oxy-hydroxide materials with an atomically homogeneous metal distribution. These gelled FeCoW oxy-hydroxide exhibits the lowest overpotential (191 mV) reported at 10 mA per square centimeter in alkaline electrolyte. Here, the catalyst shows no evidence of degradation following more than 500 hours of operation. X-ray absorption and computationalmore » studies reveal a synergistic interplay between W, Fe and Co in producing a favorable local coordination environment and electronic structure that enhance the energetics for OER.« less

  16. ISOTOPE SEPARATING APPARATUS CONTROL

    DOE Patents [OSTI]

    Barnes, S.W.

    1959-08-25

    An improved isotope separating apparatus of the electromagnetic type, commonly referred to as a calutron, is described. Improvements in detecting and maintaining optimum position and focus of the ion beam are given. The calutron collector is provided with an additional electrode insulated from and positioned between the collecting pockets. The ion beams are properly positioned and focused until the deionizing current which flows from ground to this additional electrode ts a minimum.

  17. METHOD OF SEPARATING PLUTONIUM

    DOE Patents [OSTI]

    Heal, H.G.

    1960-02-16

    BS>A method of separating plutonium from aqueous nitrate solutions of plutonium, uranium. and high beta activity fission products is given. The pH of the aqueous solution is adjusted between 3.0 to 6.0 with ammonium acetate, ferric nitrate is added, and the solution is heated to 80 to 100 deg C to selectively form a basic ferric plutonium-carrying precipitate.

  18. Membrane separation of hydrocarbons

    DOE Patents [OSTI]

    Funk, Edward W.; Kulkarni, Sudhir S.; Chang, Y. Alice

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture over a polymeric membrane which comprises a polymer capable of maintaining its integrity in the presence of hydrocarbon compounds at temperature ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psi. The membranes which possess pore sizes ranging from about 10 to about 500 Angstroms are cast from a solvent solution and recovered.

  19. Metal inks

    DOE Patents [OSTI]

    Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

    2014-02-04

    Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

  20. Theoretical Prediction of Am(III)/Eu(III) Selectivity to Aid the Design of Actinide-Lanthanide Separation Agents

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bryantsev, Vyacheslav S.; Hay, Benjamin P.

    2015-03-20

    Selective extraction of minor actinides from lanthanides is a critical step in the reduction of radiotoxicity of spent nuclear fuels. However, the design of suitable ligands for separating chemically similar 4f- and 5f-block trivalent metal ions poses a significant challenge. Furthermore, first-principles calculations should play an important role in the design of new separation agents, but their ability to predict metal ion selectivity has not been systematically evaluated. We examine the ability of several density functional theory methods to predict selectivity of Am(III) and Eu(III) with oxygen, mixed oxygen–nitrogen, and sulfur donor ligands. The results establish a computational method capablemore » of predicting the correct order of selectivities obtained from liquid–liquid extraction and aqueous phase complexation studies. To allow reasonably accurate predictions, it was critical to employ sufficiently flexible basis sets and provide proper account of solvation effects. The approach is utilized to estimate the selectivity of novel amide-functionalized diazine and 1,2,3-triazole ligands.« less

  1. Separation of sulfur isotopes

    DOE Patents [OSTI]

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  2. Apparatus for electrophoresis separation

    DOE Patents [OSTI]

    Anderson, Norman L.

    1978-01-01

    An apparatus is disclosed for simultaneously performing electrophoresis separations on a plurality of slab gels containing samples of protein, protein subunits or nucleic acids. A reservoir of buffer solution is divided into three compartments by two parallel partitions having vertical slots spaced along their length. A sheet of flexible, electrically insulative material is attached to each partition and is provided with vertical slits aligned with the slots. Slab-gel holders are received within the slots with the flexible material folded outwardly as flaps from the slits to overlay portions of the holder surfaces and thereby act as electrical and liquid seals. An elongated, spaghetti-like gel containing a sample of specimen that was previously separated by isoelectric focusing techniques is vertically positioned along a marginal edge portion of the slab gel. On application of an electrical potential between the two outer chambers of buffer solution, a second dimensional electrophoresis separation in accordance with molecular weight occurs as the specimen molecules migrate across the slab gel.

  3. Reclaiming metallic material from an article comprising a non-metallic friable substrate

    DOE Patents [OSTI]

    Bohland, John Raphael (Oregon, OH); Anisimov, Igor Ivanovich (Whitehouse, OH); Dapkus, Todd James (Toledo, OH); Sasala, Richard Anthony (Toledo, OH); Smigielski, Ken Alan (Toledo, OH); Kamm, Kristin Danielle (Swanton, OH)

    2000-01-01

    A method for reclaiming a metallic material from a article including a non-metallic friable substrate. The method comprising crushing the article into a plurality of pieces. An acidic solution capable of dissolving the metallic material is provided dissolving the metallic material in the acidic material to form an etchant effluent. The etchant effluent is separated from the friable substrate. A precipitation agent, capable of precipitating the metallic material, is added to the etchant effluent to precipitate out the metallic material from the etchant effluent. The metallic material is then recovered.

  4. Hydrothermal alkali metal recovery process

    DOE Patents [OSTI]

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  5. Displacement method and apparatus for reducing passivated metal powders and metal oxides

    DOE Patents [OSTI]

    Morrell; Jonathan S. , Ripley; Edward B.

    2009-05-05

    A method of reducing target metal oxides and passivated metals to their metallic state. A reduction reaction is used, often combined with a flux agent to enhance separation of the reaction products. Thermal energy in the form of conventional furnace, infrared, or microwave heating may be applied in combination with the reduction reaction.

  6. Process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal sulfide sorbents

    DOE Patents [OSTI]

    Ayala, Raul E.; Gal, Eli

    1995-01-01

    A process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal-sulfur compound. Spent metal-sulfur compound is regenerated to re-usable metal oxide by moving a bed of spent metal-sulfur compound progressively through a single regeneration vessel having a first and second regeneration stage and a third cooling and purging stage. The regeneration is carried out and elemental sulfur is generated in the first stage by introducing a first gas of sulfur dioxide which contains oxygen at a concentration less than the stoichiometric amount required for complete oxidation of the spent metal-sulfur compound. A second gas containing sulfur dioxide and excess oxygen at a concentration sufficient for complete oxidation of the partially spent metal-sulfur compound, is introduced into the second regeneration stage. Gaseous sulfur formed in the first regeneration stage is removed prior to introducing the second gas into the second regeneration stage. An oxygen-containing gas is introduced into the third cooling and purging stage. Except for the gaseous sulfur removed from the first stage, the combined gases derived from the regeneration stages which are generally rich in sulfur dioxide and lean in oxygen, are removed from the regenerator as an off-gas and recycled as the first and second gas into the regenerator. Oxygen concentration is controlled by adding air, oxygen-enriched air or pure oxygen to the recycled off-gas.

  7. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1986-08-15

    The atomic vapor laser isotope separation (AVLIS) process for the enrichment of uranium is evaluated. (AIP)

  8. Method and apparatus for producing oxygen and nitrogen and membrane therefor

    DOE Patents [OSTI]

    Roman, I.C.; Baker, R.W.

    1985-09-17

    Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O[sub 2]/N[sub 2] selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15 [times] 10[sup [minus]8] cm[sup 3]-cm/cm[sup 2]-sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible. 2 figs.

  9. Method and apparatus for producing oxygen and nitrogen and membrane therefor

    DOE Patents [OSTI]

    Roman, Ian C.; Baker, Richard W.

    1985-01-01

    Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O.sub.2 /N.sub.2 selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15.times.10.sup.-8 cm.sup.3 -cm/cm.sup.2 -sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible.

  10. High Selectivity Oxygen Delignification

    SciTech Connect (OSTI)

    Arthur J. Ragauskas Lucian A. Lucia Hasan Jameel

    2005-09-30

    The overall objective of this program was to develop improved extended oxygen delignification (EOD) technologies for current U.S. pulp mill operations. This was accomplished by: (1) Identifying pulping conditions that optimize O and OO performance; (2) Identifying structural features of lignin that enhance reactivity towards EOD of high kappa pulps; (3) Identifying factors minimizing carbohydrate degradation and improve pulp strength of EOD high kappa pulps; (4) Developing a simple, reproducible method of quantifying yield gains from EOD; and (5) Developing process conditions that significantly reduce the capital requirements of EOD while optimizing the yield benefits. Key research outcomes included, demonstrating the use of a mini-O sequence such as (E+O)Dkf:0.05(E+O) or Dkf:0.05(E+O)(E+O) without interstage washing could capture approximately 60% of the delignification efficiency of a conventional O-stage without the major capital requirements associated with an O-stage for conventional SW kraft pulps. The rate of formation and loss of fiber charge during an O-stage stage can be employed to maximize net fiber charge. Optimal fiber charge development and delignification are two independent parameters and do not parallel each other. It is possible to utilize an O-stage to enhance overall cellulosic fiber charge of low and high kappa SW kraft pulps which is beneficial for physical strength properties. The application of NIR and multi-variant analysis was developed into a rapid and simple method of determining the yield of pulp from an oxygen delignification stage that has real-world mill applications. A focus point of this program was the demonstration that Kraft pulping conditions and oxygen delignification of high and low-kappa SW and HW pulps are intimately related. Improved physical pulp properties and yield can be delivered by controlling the H-factor and active alkali charge. Low AA softwood kraft pulp with a kappa number 30 has an average improvement of 2% in yield and 4 cP in viscosity in comparison to high AA pulp for the oxygen delignification. This difference is also seen for high-kappa SW kraft pulps with an average improvement of {approx}3% in yield and 3 cP in viscosity for low AA high kappa number 50 pulp. Low AA hardwood kappa number 20 pulp had an average improvement of {approx}4% in yield and 6-12 cP in viscosity as compared to high AA pulp. Lower kraft cooking temperature (160 vs. 170 C) in combination with the medium AA provides a practical approach for integrating high kappa pulping of hardwoods (i.e., low rejects) with an advanced extended oxygen delignification stage. ECF pulp bleaching of low and high kappa kraft SW and HW pulps exhibit comparable optical and physical strength properties when bleached D(EPO)D.

  11. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-07-01

    This is the fourth quarterly report on a new study to develop a ceramic membrane/metal joint. The first experiments using the La-Sr-Fe-O ceramic are reported. Some of the analysis performed on the samples obtained are commented upon. A set of experiments to characterize the mechanical strength and thermal fatigue properties of the joints has been designed and begun. Finite element models of joints used to model residual stresses are described.

  12. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  13. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  14. SEPARATION OF PLUTONIUM

    DOE Patents [OSTI]

    Maddock, A.G.; Smith, F.

    1959-08-25

    A method is described for separating plutonium from uranium and fission products by treating a nitrate solution of fission products, uranium, and hexavalent plutonium with a relatively water-insoluble fluoride to adsorb fission products on the fluoride, treating the residual solution with a reducing agent for plutonium to reduce its valence to four and less, treating the reduced plutonium solution with a relatively insoluble fluoride to adsorb the plutonium on the fluoride, removing the solution, and subsequently treating the fluoride with its adsorbed plutonium with a concentrated aqueous solution of at least one of a group consisting of aluminum nitrate, ferric nitrate, and manganous nitrate to remove the plutonium from the fluoride.

  15. Cyclic membrane separation process

    DOE Patents [OSTI]

    Bowser, John

    2004-04-13

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In one of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the other part, the membrane is inoperative while gas pressure rises in the ullage. Ambient air is charged to the membrane separation unit during the latter part of the cycle.

  16. POLONIUM SEPARATION PROCESS

    DOE Patents [OSTI]

    Karraker, D.G.

    1959-07-14

    A liquid-liquid extraction process is presented for the recovery of polonium from lead and bismuth. According to the invention an acidic aqueous chloride phase containing the polonium, lead, and bismuth values is contacted with a tributyl phosphate ether phase. The polonium preferentially enters the organic phase which is then separated and washed with an aqueous hydrochloric solution to remove any lead or bismuth which may also have been extracted. The now highly purified polonium in the organic phase may be transferred to an aqueous solution by extraction with aqueous nitric acid.

  17. Cyclic membrane separation process

    DOE Patents [OSTI]

    Nemser, Stuart M.

    2005-05-03

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In the first part of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the second part, the membrane is inoperative while gas pressure rises in the ullage. In one aspect of this invention, a vacuum is drawn in the membrane separation unit thus reducing overall VOC emissions.

  18. Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on...

  19. Separation of ions in acidic solution by capillary electrophoresis

    SciTech Connect (OSTI)

    Thornton, M.

    1997-10-08

    Capillary electrophoresis (CE) is an effective method for separating ionic species according to differences in their electrophoretic mobilities. CE separations of amino acids by direct detection are difficult due to their similar electrophoretic mobilities and low absorbances. However, native amino acids can be separated by CE as cations at a low pH by adding an alkanesulfonic acid to the electrolyte carrier which imparts selectivity to the system. Derivatization is unnecessary when direct UV detection is used at 185 nm. Simultaneous speciation of metal cations such as vanadium (IV) and vanadium (V) can easily be performed without complexation prior to analysis. An indirect UV detection scheme for acidic conditions was also developed using guanidine as the background carrier electrolyte (BCE) for the indirect detection of metal cations. Three chapters have been removed for separate processing. This report contains introductory material, references, and general conclusions. 80 refs.

  20. Researchers Directly Observe Oxygen Signature in the Oxygen-evolving

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex of Photosynthesis Researchers Directly Observe Oxygen Signature in the Oxygen-evolving Complex of Photosynthesis Arguably the most important chemical reaction on earth is the photosynthetic splitting of water to molecular oxygen by the Mn-containing oxygen-evolving complex (Mn-OEC) in the protein known as photosystem II (PSII). It is this reaction which has, over the course of some 3.8 billion years, gradually filled our atmosphere with O2 and consequently enabled and sustained the

  1. Synthesis of metal-metal oxide catalysts and electrocatalysts using a metal cation adsorption/reduction and adatom replacement by more noble ones

    DOE Patents [OSTI]

    Adzic, Radoslav; Vukmirovic, Miomir; Sasaki, Kotaro

    2010-04-27

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen. The invention also relates to methods of making the metal-metal oxide composites.

  2. Enhanced membrane gas separations

    SciTech Connect (OSTI)

    Prasad, R.

    1993-07-13

    An improved membrane gas separation process is described comprising: (a) passing a feed gas stream to the non-permeate side of a membrane system adapted for the passage of purge gas on the permeate side thereof, and for the passage of the feed gas stream in a counter current flow pattern relative to the flow of purge gas on the permeate side thereof, said membrane system being capable of selectively permeating a fast permeating component from said feed gas, at a feed gas pressure at or above atmospheric pressure; (b) passing purge gas to the permeate side of the membrane system in counter current flow to the flow of said feed gas stream in order to facilitate carrying away of said fast permeating component from the surface of the membrane and maintaining the driving force for removal of the fast permeating component through the membrane from the feed gas stream, said permeate side of the membrane being maintained at a subatmospheric pressure within the range of from about 0.1 to about 5 psia by vacuum pump means; (c) recovering a product gas stream from the non-permeate side of the membrane; and (d) discharging purge gas and the fast permeating component that has permeated the membrane from the permeate side of the membrane, whereby the vacuum conditions maintained on the permeate side of the membrane by said vacuum pump means enhance the efficiency of the gas separation operation, thereby reducing the overall energy requirements thereof.

  3. Low pressure hydrocyclone separator

    SciTech Connect (OSTI)

    Flanigan, D.A.; Stolhand, J.E.

    1989-07-04

    This patent describes a method of separating a dispersed phase liquid from a bulk phase liquid of a liquid-liquid mixture, the dispersed phase and bulk phase liquids having different densities. The method comprises the steps of: providing a supply of the liquid-liquid mixture at a first pressure; providing a pump means including means for minimizing degradation of the volumetric means size of droplets of the dispersed phase further including a pump size for maintaining the pump means at substantially near maximum flow rate capacity; pumping the liquid-liquid mixture with at least one pump means to a second pressure such that a differential between the first and second pressures is not substantially greater than a differential pressure at which the pump means begins to substantially degrade the volumetric mean size of droplets of the dispersed phase liquid passing therethrough, the pumping without substantial droplet degradation being achieved by operating the pump means at relatively near its maximum flow rate capacity to substantially reduce on a percentage basis the effect of fluid slippage within the pump means; directing the liquid-liquid mixture from the pump means to a hydrocyclone; and separating a substantial portion of the dispersed phase liquid from the liquid-liquid mixture in the hydrocyclone.

  4. Explosively separable casing

    DOE Patents [OSTI]

    Jacobson, Albin K. (Albuquerque, NM); Rychnovsky, Raymond E. (Livermore, CA); Visbeck, Cornelius N. (Livermore, CA)

    1985-01-01

    An explosively separable casing including a cylindrical afterbody and a circular cover for one end of the afterbody is disclosed. The afterbody has a cylindrical tongue extending longitudinally from one end which is matingly received in a corresponding groove in the cover. The groove is sized to provide a pocket between the end of the tongue and the remainder of the groove so that an explosive can be located therein. A seal is also provided between the tongue and the groove for sealing the pocket from the atmosphere. A frangible holding device is utilized to hold the cover to the afterbody. When the explosive is ignited, the increase in pressure in the pocket causes the cover to be accelerated away from the afterbody. Preferably, the inner wall of the afterbody is in the same plane as the inner wall of the tongue to provide a maximum space for storage in the afterbody and the side wall of the cover is thicker than the side wall of the afterbody so as to provide a sufficiently strong surrounding portion for the pocket in which the explosion takes place. The detonator for the explosive is also located on the cover and is carried away with the cover during separation. The seal is preferably located at the longitudinal end of the tongue and has a chevron cross section.

  5. Apparatus for diffusion separation

    DOE Patents [OSTI]

    Nierenberg, William A.

    1976-08-10

    1. A diffuser separator apparatus which comprises a plurality of flow channels in a single stage, each of said channels having an inlet port and an outlet port and a constant cross sectional area between said ports, at least a portion of the defining surface of each of said channels being a diffusion separation membrane, and each of said channels having a different cross sectional area, means for connecting said channels in series so that each successive channel of said series has a smaller cross sectional area than the previous channel of said series, a source of gaseous mixture, individual means for flowing said gaseous mixture to the inlet port of each of said channels, gas receiving and analyzing means, individual means for flowing gas passing from each of said outlet ports and means for flowing gas passing through said membranes to said receiving and analyzing means, and individual means for connecting the outlet port of each channel with the inlet port of the channel having the next smaller cross sectional area.

  6. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    DOE Patents [OSTI]

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  7. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    DOE Patents [OSTI]

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  8. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    DOE Patents [OSTI]

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  9. Oxygenates from synthesis gas

    SciTech Connect (OSTI)

    Falter, W.; Keim, W.

    1994-12-31

    The direct synthesis of oxygenates starting from synthesis gas is feasible by homogeneous and heterogeneous catalysis. Homogeneous Rh and Ru based catalysts yielding methyl formate and alcohols will be presented. Interestingly, modified heterogeneous catalysts based on {open_quotes}Isobutyl Oel{close_quotes} catalysis, practized in Germany (BRD) up to 1952 and in the former DDR until recently, yield isobutanol in addition to methanol. These {open_quotes}Isobutyl Oel{close_quotes} catalysts are obtained by adding a base such as Li < Na < K < Cs to a Zn-Cr{sub 2}O{sub 3} methanol catalyst. Isobutanol is obtained in up to 15% yield. Our best catalyst a Zr-Zn-Mn-Li-Pd catalyst produced isobotanol up to 60% at a rate of 740g isobutanol per liter catalyst and hour.

  10. SEPARATION OF HEAVY METALS: REMOVAL FROM INDUSTRIAL WASTEWATERS

    Office of Scientific and Technical Information (OSTI)

    ... with the high quality treated water ready for reuse* Because ion exchange is efficient in removal of dissolved solids from normally dilute spent rinse waters, it is well suited for ...

  11. SEPARATION OF HEAVY METALS: REMOVAL FROM INDUSTRIAL WASTEWATERS

    Office of Scientific and Technical Information (OSTI)

    ... Advantages of the cementation process include: * Simple control requirements. The demand ... Quaternized polyethylenimine had a good selectivity for Pd, Pt, Hg, and Au. Polythiourea ...

  12. Volatile fluoride process for separating plutonium from other materials

    DOE Patents [OSTI]

    Spedding, F. H.; Newton, A. S.

    1959-04-14

    The separation of plutonium from uranium and/or fission products by formation of the higher fluorides off uranium and/or plutonium is described. Neutronirradiated uranium metal is first converted to the hydride. This hydrided product is then treated with fluorine at about 315 deg C to form and volatilize UF/sub 6/ leaving plutonium behind. Thc plutonium may then be separated by reacting the residue with fluorine at about 5004DEC and collecting the volatile plutonium fluoride thus formed.

  13. VOLATILE FLUORIDE PROCESS FOR SEPARATING PLUTONIUM FROM OTHER MATERIALS

    DOE Patents [OSTI]

    Spedding, F.H.; Newton, A.S.

    1959-04-14

    The separation of plutonium from uranium and/or tission products by formation of the higher fluorides of uranium and/or plutonium is discussed. Neutronirradiated uranium metal is first convcrted to the hydride. This hydrided product is then treatced with fluorine at about 315 deg C to form and volatilize UF/sup 6/ leaving plutonium behind. The plutonium may then be separated by reacting the residue with fluorine at about 500 deg C and collecting the volatile plutonium fluoride thus formed.

  14. Electrochemical cell with powdered electrically insulative material as a separator

    DOE Patents [OSTI]

    Mathers, James P.; Olszanski, Theodore W.; Boquist, Carl W.

    1978-01-01

    A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, can be compacted in layers with electrode materials to form an integral electrode structure or separately assembled into the cell. The assembled cell is heated to operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.

  15. Alkali metal/sulfur battery

    DOE Patents [OSTI]

    Anand, Joginder N.

    1978-01-01

    Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

  16. Gas separation by composite solvent-swollen membranes

    DOE Patents [OSTI]

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1989-04-25

    There is disclosed a composite immobilized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorus or sulfur atom, and having a boiling point of at least 100 C and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation. 3 figs.

  17. Gas separation by composite solvent-swollen membranes

    DOE Patents [OSTI]

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1989-01-01

    There is disclosed a composite immobulized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorous or sulfur atom, and having a boiling point of at least 100.degree. C. and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation.

  18. Composite mixed oxide ionic and electronic conductors for hydrogen separation

    DOE Patents [OSTI]

    Gopalan, Srikanth; Pal, Uday B.; Karthikeyan, Annamalai; Hengdong, Cui

    2009-09-15

    A mixed ionic and electronic conducting membrane includes a two-phase solid state ceramic composite, wherein the first phase comprises an oxygen ion conductor and the second phase comprises an n-type electronically conductive oxide, wherein the electronically conductive oxide is stable at an oxygen partial pressure as low as 10.sup.-20 atm and has an electronic conductivity of at least 1 S/cm. A hydrogen separation system and related methods using the mixed ionic and electronic conducting membrane are described.

  19. METHOD OF SEPARATING URANIUM FROM ALLOYS

    DOE Patents [OSTI]

    Chiotti, P.; Shoemaker, H.E.

    1960-06-28

    Uranium can be recovered from metallic uraniumthorium mixtures containing uranium in comparatively small amounts. The method of recovery comprises adding a quantity of magnesium to a mass to obtain a content of from 48 to 85% by weight; melting and forming a magnesium-thorium alloy at a temperature of between 585 and 800 deg C; agitating the mixture, allowing the mixture to settle whereby two phases, a thorium-containing magnesium-rich liquid phase and a solid uranium-rich phase, are formed; and separating the two phases.

  20. EIA-819, Monthly Oxygenate Report ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (EIA) Form EIA-819, "Monthly Biofuel and Oxygenate Report," is used to collect data on ethanol production capacity, as well as stocks, receipts, inputs, production, and blending of...

  1. Block copolymer battery separator

    DOE Patents [OSTI]

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  2. Organic contaminant separator

    DOE Patents [OSTI]

    Del Mar, Peter; Hemberger, Barbara J.

    1991-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a polyolefin tube having an internal diameter of from about 0.01 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the tube, (b) passing a solvent through the tube, said solvent capable of separating the adhered organic contaminant from the tube. Further, a chromatographic apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a polyolefin tube having an internal diameter of from about 0.01 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the tube is disclosed.

  3. Apparatus for diffusion separation

    DOE Patents [OSTI]

    Nierenberg, William A.; Pontius, Rex B.

    1976-08-10

    1. The method of testing the separation efficiency of porous permeable membranes which comprises causing a stream of a gaseous mixture to flow into contact with one face of a finely porous permeable membrane under such conditions that a major fraction of the mixture diffuses through the membrane, maintaining a rectangular cross section of the gaseous stream so flowing past said membrane, continuously recirculating the gas that diffuses through said membrane and continuously withdrawing the gas that does not diffuse through said membrane and maintaining the volume of said recirculating gas constant by continuously introducing into said continuously recirculating gas stream a mass of gas equivalent to that which is continuously withdrawn from said gas stream and comparing the concentrations of the light component in the entering gas, the withdrawn gas and the recirculated gas in order to determine the efficiency of said membrane.

  4. Isotope separation apparatus

    DOE Patents [OSTI]

    Arnush, Donald (Rancho Palos Verdes, CA); MacKenzie, Kenneth R. (Pacific Palisades, CA); Wuerker, Ralph F. (Palos Verdes Estates, CA)

    1980-01-01

    Isotope separation apparatus consisting of a plurality of cells disposed adjacent to each other in an evacuated container. A common magnetic field is established extending through all of the cells. A source of energetic electrons at one end of the container generates electrons which pass through the cells along the magnetic field lines. Each cell includes an array of collector plates arranged in parallel or in tandem within a common magnetic field. Sets of collector plates are disposed adjacent to each other in each cell. Means are provided for differentially energizing ions of a desired isotope by applying energy at the cyclotron resonant frequency of the desired isotope. As a result, the energized desired ions are preferentially collected by the collector plates.

  5. Precision gap particle separator

    DOE Patents [OSTI]

    Benett, William J.; Miles, Robin; Jones, II., Leslie M.; Stockton, Cheryl

    2004-06-08

    A system for separating particles entrained in a fluid includes a base with a first channel and a second channel. A precision gap connects the first channel and the second channel. The precision gap is of a size that allows small particles to pass from the first channel into the second channel and prevents large particles from the first channel into the second channel. A cover is positioned over the base unit, the first channel, the precision gap, and the second channel. An port directs the fluid containing the entrained particles into the first channel. An output port directs the large particles out of the first channel. A port connected to the second channel directs the small particles out of the second channel.

  6. Advanced isotope separation

    SciTech Connect (OSTI)

    Not Available

    1982-05-04

    The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems.

  7. Nickel-hydrogen battery with oxygen and electrolyte management features

    DOE Patents [OSTI]

    Sindorf, John F.

    1991-10-22

    A nickel-hydrogen battery or cell having one or more pressure vessels containing hydrogen gas and a plurality of cell-modules therein. Each cell-module includes a configuration of cooperatively associated oxygen and electrolyte mangement and component alignment features. A cell-module having electrolyte includes a negative electrode, a positive electrode adapted to facilitate oxygen diffusion, a separator disposed between the positive and negative electrodes for separating them and holding electrolyte for ionic conductivity, an absorber engaging the surface of the positive electrode facing away from the separator for providing electrolyte to the positive electrode, and a pair of surface-channeled diffusion screens for enclosing the positive and negative electrodes, absorber, and separator and for maintaining proper alignment of these components. The screens, formed in the shape of a pocket by intermittently sealing the edges together along as many as three sides, permit hydrogen gas to diffuse therethrough to the negative electrodes, and prevent the edges of the separator from swelling. Electrolyte is contained in the cell-module, absorbhed by the electrodes, the separator and the absorber.

  8. Method and apparatus for melting metals

    DOE Patents [OSTI]

    Moore, Alan F.; Schechter, Donald E.; Morrow, Marvin Stanley

    2006-03-14

    A method and apparatus for melting metals uses microwave energy as the primary source of heat. The metal or mixture of metals are placed in a ceramic crucible which couples, at least partially, with the microwaves to be used. The crucible is encased in a ceramic casket for insulation and placed within a microwave chamber. The chamber may be evacuated and refilled to exclude oxygen. After melting, the crucible may be removed for pouring or poured within the chamber by dripping or running into a heated mold within the chamber. Apparent coupling of the microwaves with softened or molten metal produces high temperatures with great energy savings.

  9. The W-WO[subscript 2] oxygen fugacity buffer (WWO) at high pressure and

    Office of Scientific and Technical Information (OSTI)

    temperature: Implications for fO[subscript 2] buffering and metal-silicate partitioning (Journal Article) | SciTech Connect The W-WO[subscript 2] oxygen fugacity buffer (WWO) at high pressure and temperature: Implications for fO[subscript 2] buffering and metal-silicate partitioning Citation Details In-Document Search Title: The W-WO[subscript 2] oxygen fugacity buffer (WWO) at high pressure and temperature: Implications for fO[subscript 2] buffering and metal-silicate partitioning Authors:

  10. METHOD OF PRODUCING NIOBIUM METAL

    DOE Patents [OSTI]

    Wilhelm, H.A.; Stevens, E.R.

    1960-05-24

    A process is given for preparing ductile niobium metal by the reduction of niobium pentoxide with carbon. The invention resides in the addition, to the reaction mass, of from 0.05 to 0.4 atom of titanium (in the form of metallic titanium, titanium carbide, and/or titanium oxide) per one mole of niobium pentoxide. The mixture is heated under subatmospheric pressure to above 1300 deg C but below the melting point of niobium, and the carbon- and oxygen-free niobium sponge obtained is cooled under reduced pressure.

  11. Composite separators and redox flow batteries based on porous separators

    DOE Patents [OSTI]

    Li, Bin; Wei, Xiaoliang; Luo, Qingtao; Nie, Zimin; Wang, Wei; Sprenkle, Vincent L.

    2016-01-12

    Composite separators having a porous structure and including acid-stable, hydrophilic, inorganic particles enmeshed in a substantially fully fluorinated polyolefin matrix can be utilized in a number of applications. The inorganic particles can provide hydrophilic characteristics. The pores of the separator result in good selectivity and electrical conductivity. The fluorinated polymeric backbone can result in high chemical stability. Accordingly, one application of the composite separators is in redox flow batteries as low cost membranes. In such applications, the composite separator can also enable additional property-enhancing features compared to ion-exchange membranes. For example, simple capacity control can be achieved through hydraulic pressure by balancing the volumes of electrolyte on each side of the separator. While a porous separator can also allow for volume and pressure regulation, in RFBs that utilize corrosive and/or oxidizing compounds, the composite separators described herein are preferable for their robustness in the presence of such compounds.

  12. Method for separating boron isotopes

    DOE Patents [OSTI]

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  13. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; W.B. Yelon; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and initial studies on newer composition of Ti doped LSF. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. In addition, studies were also begun to obtain reliable estimates of fracture toughness and stable crack growth in specific environments. Newer composition of Ti doped LSF membranes were characterized by neutron diffraction analysis. Quench studies indicated an apparent correlation between the unit cell volume and oxygen occupancy. The studies however, indicated an anomaly of increasing Fe/Ti ratio with change in heat treatment. Ti doped LSF was also characterized for stoichiometry as a function of temp and pO{sub 2}. The non stoichiometry parameter {delta} was observed to increase almost linearly on lowering pO{sub 2} until a ideal stoichiometric composition of {delta} = 0.175 was approached.

  14. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

  15. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect (OSTI)

    Nash, Ken; Martin, Leigh; Lumetta, Gregg

    2015-04-02

    One of the most challenging aspects of advanced processing of used nuclear fuel is the separation of transplutonium actinides from fission product lanthanides. This separation is essential if actinide transmutation options are to be pursued in advanced fuel cycles, as lanthanides compete with actinides for neutrons in both thermal and fast reactors, thus limiting efficiency. The separation is difficult because the chemistry of Am3+ and Cm3+ is nearly identical to that of the trivalent lanthanides (Ln3+). The prior literature teaches that two approaches offer the greatest probability of devising a successful group separation process based on aqueous processes: 1) the application of complexing agents containing ligand donor atoms that are softer than oxygen (N, S, Cl-) or 2) changing the oxidation state of Am to the IV, V, or VI state to increase the essential differences between Am and lanthanide chemistry (an approach utilized in the PUREX process to selectively remove Pu4+ and UO22+ from fission products). The latter approach offers the additional benefit of enabling a separation of Am from Cm, as Cm(III) is resistant to oxidation and so can easily be made to follow the lanthanides. The fundamental limitations of these approaches are that 1) the soft(er) donor atoms that interact more strongly with actinide cations than lanthanides form substantially weaker bonds than oxygen atoms, thus necessitating modification of extraction conditions for adequate phase transfer efficiency, 2) soft donor reagents have been seen to suffer slow phase transfer kinetics and hydro-/radiolytic stability limitations and 3) the upper oxidation states of Am are all moderately strong oxidants, hence of only transient stability in media representative of conventional aqueous separations systems. There are examples in the literature of both approaches having been described. However, it is not clear at present that any extant process is sufficiently robust for application at the scale necessary for commercial fuel processing supporting transmutation of transplutonium elements. This research project continued basic themes investigated by this research group during the past decade. In the Fuel Cycle Research and Development program at DOE, the current favorite process for accomplishing the separation of trivalent actinides from fission product lanthanides is the TALSPEAK process. TALSPEAK is a solvent extraction method (developed at Oak Ridge National Lab in the 1960s) based on the combination of a cation exchanging extractant (e.g., HDEHP), an actinide-selective aminopolycarboxylate complexing agent (e.g., DTPA), and a carboxylic acid buffer to control pH in the range of 3-4. Considerable effort has been expended in this research group during the past 8 years to elaborate the details of TALSPEAK in the interest of developing improved approaches to the operation of TALSPEAK-like systems. In this project we focused on defining aggregation phenomena in conventional TALSPEAK separations, on supporting the development of Advanced TALSPEAK processes, on profiling the aqueous complexation kinetics of lanthanides in TALSPEAK relevant aqueous media, on the design of new diglycolamide and N-donor extractants, and on characterizing cation-cation complexes of pentavalent actinides.

  16. Oxygen detection using evanescent fields

    DOE Patents [OSTI]

    Duan, Yixiang; Cao, Weenqing

    2007-08-28

    An apparatus and method for the detection of oxygen using optical fiber based evanescent light absorption. Methylene blue was immobilized using a sol-gel process on a portion of the exterior surface of an optical fiber for which the cladding has been removed, thereby forming an optical oxygen sensor. When light is directed through the optical fiber, transmitted light intensity varies as a result of changes in the absorption of evanescent light by the methylene blue in response to the oxygen concentration to which the sensor is exposed. The sensor was found to have a linear response to oxygen concentration on a semi-logarithmic scale within the oxygen concentration range between 0.6% and 20.9%, a response time and a recovery time of about 3 s, ant to exhibit good reversibility and repeatability. An increase in temperature from 21.degree. C. to 35.degree. C. does not affect the net absorption of the sensor.

  17. Organic containment separator

    DOE Patents [OSTI]

    Del Mar, Peter

    1995-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  18. Organic contaminant separator

    DOE Patents [OSTI]

    Del Mar, P.

    1993-12-28

    A process is presented of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube. The solvent is capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus is presented for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium. The apparatus includes a composite tube comprised of a blend of a polyolefin and a polyester. The composite tube has an internal diameter of from about 0.1 to about 2.0 millimeters and has sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube. 2 figures.

  19. Organic contaminant separator

    DOE Patents [OSTI]

    Mar, Peter D.

    1994-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  20. Organic contaminant separator

    DOE Patents [OSTI]

    Del Mar, Peter

    1995-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  1. Organic contaminant separator

    DOE Patents [OSTI]

    Del Mar, Peter

    1993-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  2. RESONATOR PARTICLE SEPARATOR

    DOE Patents [OSTI]

    Blewett, J.P.

    1962-01-01

    A wave guide resonator structure is described for use in separating particles of equal momentum but differing in mass and having energies exceeding one billion electron volts. The particles are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high-energy accelerator. In this wave guide construction, the particles undergo preferential deflection as a result of the presence of an electric field. The boundary conditions established in the resonator are such as to eliminate an interfering magnetic component, and to otherwise phase the electric field to obtain a traveling wave such as one which moves at the same speed as the unwanted particle. The latter undergoes continuous deflection over the whole length of the device and is, therefore, eliminated while the wanted particle is deflected in opposite directions over the length of the resonator and is thus able to enter an exit aperture. (AEC)

  3. Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method making the same

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL)

    2011-03-08

    The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. A preferred embodiment of the invented electrochemical cell generally comprises a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. A preferred novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.

  4. Cooperative Cluster Metalation and Ligand Migration in Zirconium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal-Organic Frameworks | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Cluster Metalation and Ligand Migration in Zirconium Metal-Organic Frameworks Previous Next List Yuan, Shuai; Chen, Ying-Pin; Qin, Junsheng; Lu, Weigang; Wang, Xuan; Zhang, Qiang; Bosch, Mathieu; Liu, Tian-Fu; Lian, Xizhen; and Zhou, Hong-Cai. Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal-Organic Frameworks. Angew. Chem., Int. Ed., 54, 14696-14700 (2015). DOI:

  5. Recent advances in the kinetics of oxygen reduction

    SciTech Connect (OSTI)

    Adzic, R.

    1996-07-01

    Oxygen reduction is considered an important electrocatalytic reaction; the most notable need remains improvement of the catalytic activity of existing metal electrocatalysts and development of new ones. A review is given of new advances in the understanding of reaction kinetics and improvements of the electrocatalytic properties of some surfaces, with focus on recent studies of relationship of the surface properties to its activity and reaction kinetics. The urgent need is to improve catalytic activity of Pt and synthesize new, possibly non- noble metal catalysts. New experimental techniques for obtaining new level of information include various {ital in situ} spectroscopies and scanning probes, some involving synchrotron radiation. 138 refs, 18 figs, 2 tabs.

  6. Arrays of stacked metal coordination compounds

    DOE Patents [OSTI]

    Bulkowski, J.E.

    1986-10-21

    A process is disclosed for preparing novel arrays of metal coordination compounds characterized by arrangement of the metal ions, separated by a linking agent, in stacked order one above the other. The process permits great flexibility in the design of the array. For example, layers of different composition can be added to the array at will. 3 figs.

  7. Arrays of stacked metal coordination compounds

    DOE Patents [OSTI]

    Bulkowski, John E. (Newark, DE)

    1986-01-01

    A process is disclosed for preparing novel arrays of metal coordination compounds characterized by arrangement of the metal ions, separated by a linking agent, in stacked order one above the other. The process permits great flexibility in the design of the array. For example, layers of different composition can be added to the array at will.

  8. Bimetallic Fe-Ni Oxygen Carriers for Chemical Looping Combustion

    SciTech Connect (OSTI)

    Bhavsar, Saurabh; Veser, Goetz

    2013-11-06

    The relative abundance, low cost, and low toxicity of iron make Fe-based oxygen carriers of great interest for chemical looping combustion (CLC), an emerging technology for clean and efficient combustion of fossil and renewable fuels. However, Fe also shows much lower reactivity than other metals (such as Ni and Cu). Here, we demonstrate strong improvement of Fe-based carriers by alloying the metal phase with Ni. Through a combination of carrier synthesis and characterization with thermogravimetric and fixed-bed reactor studies, we demonstrate that the addition of Ni results in a significant enhancement in activity as well as an increase in selectivity for total oxidation. Furthermore, comparing alumina and ceria as support materials highlights the fact that reducible supports can result in a strong increase in oxygen carrier utilization.

  9. Electrochemical oxygen pumps. Final CRADA report.

    SciTech Connect (OSTI)

    Carter, J. D. Noble, J.

    2009-10-01

    All tasks of the Work Plan of ISTC Project 2277p have been completed, thus: (1) techniques of chemical synthesis were developed for more than ten recipes of electrolyte based on cerium oxide doped with 20 mole% of gadolinium (CeGd)O{sub 2}, doped by more than 10 oxide systems including 6 recipes in addition to the Work Plan; (2) electric conductivity and mechanical strength of CeGd specimens with additions of oxide systems were performed, two candidate materials for the electrolyte of electrochemical oxygen pump (pure CeGd and CeGd doped by 0.2 wt% of a transition metal) were chosen; (3) extended studies of mechanical strength of candidate material specimens were performed at room temperature and at 400, 600, 800 C; (4) fixtures for determination of mechanical strength of tubes by external pressure above 40 atmospheres at temperature up to 700 C were developed and fabricated; and (5) technology of slip casting of tubes from pure (Ce,Gd)O{sub 2} and of (Ce,Gd)O{sub 2} doped by 0.2 wt% of a transition metal, withstanding external pressure of minimum 40 atmospheres at temperature up to 700 C was developed, a batch of tubes was sent for testing to Argonne National Laboratory; (6) technology of making nanopowder from pure (Ce,Gd)O{sub 2} was developed based on chemical synthesis and laser ablation techniques, a batch of nanopowder with the weight 1 kg was sent for testing to Argonne National Laboratory; (7) a business plan for establishing a company for making powders of materials for electrochemical oxygen pump was developed; and (8) major results obtained within the Project were reported at international conferences and published in the Russian journal Electrochemistry. In accordance with the Work Plan a business trip of the following project participants was scheduled for April 22-29, 2006, to Tonawanda, NY, USA: Manager Victor Borisov; Leader of technology development Gennady Studenikin; Leader of business planning Elena Zadorozhnaya; Leader of production Vasily Lepalovsky; and Translator Vladimir Litvinov. During this trip project participants were to discuss with the project Technical Monitor J.D. Carter and representative of Praxair Inc. J. Chen the results of project activities (prospects of transition metal-doped material application in oxygen pumps), as well as the prospects of cooperation with Praxair at the meeting with the company management in the following fields: (1) Deposition of thin films of oxide materials of complex composition on support by magnetron and ion sputtering, research of coatings properties; (2) Development of block-type structure technology (made of porous and dense ceramics) for oxygen pump. The block-type structure is promising because when the size of electrolyte block is 2 x 2 inches and assembly height is 10 inches (5 blocks connected together) the area of active surface is ca. 290 square inches (in case of 8 slots), that roughly corresponds to one tube with diameter 1 inch and height 100 inches. So performance of the system made of such blocks may be by a factor of two or three higher than that of tube-based system. However one month before the visit, J. Chen notified us of internal changes at Praxair and the cancellation of the visit to Tonawanda, NY. During consultations with the project Technical Monitor J.D. Carter and Senior Project Manager A. Taylor a decision was made to extend the project term by 2 quarters to prepare proposals for follow-on activities during this extension (development of block-type structures made of dense and porous oxide ceramics for electrochemical oxygen pumps) using the funds that were not used for the trip to the US.

  10. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-11-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

  11. Method for making monolithic metal oxide aerogels

    DOE Patents [OSTI]

    Droege, M.W.; Coronado, P.R.; Hair, L.M.

    1995-03-07

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.

  12. Method for making monolithic metal oxide aerogels

    DOE Patents [OSTI]

    Droege, Michael W. (Livermore, CA); Coronado, Paul R. (Livermore, CA); Hair, Lucy M. (Livermore, CA)

    1995-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.

  13. Method for making monolithic metal oxide aerogels

    DOE Patents [OSTI]

    Coronado, Paul R. (Livermore, CA)

    1999-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  14. Reversible CO Binding Enables Tunable CO/H2 and CO/N2 Separations in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal-Organic Frameworks with Exposed Divalent Metal Cations | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Reversible CO Binding Enables Tunable CO/H2 and CO/N2 Separations in Metal-Organic Frameworks with Exposed Divalent Metal Cations Previous Next List Eric D. Bloch, Matthew R. Hudson, Jarad A. Mason, Sachin Chavan, Valentina Crocellà, Joshua D. Howe, Kyuho Lee, Allison L. Dzubak, Wendy L. Queen, Joseph M. Zadrozny, Stephen J. Geier, Li-Chiang Lin,

  15. Ion beam measurement of deuterium in palladium and calculation of hydrogen isotope separation factors

    SciTech Connect (OSTI)

    Gullinger, T.R.; Kelly, M.J.; Knapp, J.A.; Walsh, D.S.; Doyle, B.L. )

    1991-08-01

    In this paper, the authors demonstrate a new technique for measuring hydrogen isotope separation factors in hydrogen-absorbing metals. Using external ion beam nuclear reaction analysis of metal electrodes in an operating electrochemical cell, the authors monitor in situ the deuterium content of the electrode. changing the deuterium/hydrogen ratio in the electrolyte changes the observed deuterium content of the metal electrode, and, assuming identical ultimate total metal loading for deuterium, hydrogen, and any mixture of deuterium and hydrogen, a simple calculation yields the separation factor.

  16. METHOD TO TEST ISOTOPIC SEPARATION EFFICIENCY OF PALLADIUM PACKED COLUMNS

    SciTech Connect (OSTI)

    Heung, L; Gregory Staack, G; James Klein, J; William Jacobs, W

    2007-06-27

    The isotopic effect of palladium has been applied in different ways to separate hydrogen isotopes for many years. At Savannah River Site palladium deposited on kieselguhr (Pd/k) is used in a thermal cycling absorption process (TCAP) to purify tritium for over ten years. The need to design columns for different throughputs and the desire to advance the performance of TCAP created the need to evaluate different column designs and packing materials for their separation efficiency. In this work, columns with variations in length, diameter and metal foam use, were tested using an isotope displacement method. A simple computer model was also developed to calculate the number of theoretical separation stages using the test results. The effects of column diameter, metal foam and gas flow rate were identified.

  17. Tests of isotopic separation efficiency of palladium packed columns

    SciTech Connect (OSTI)

    Heung, L. K.; Staack, G. C.; Klein, J. E.; Jacobs, W. D.

    2008-07-15

    The isotopic effect of palladium has been applied in different ways to separate hydrogen isotopes for many years. At Savannah River Site palladium deposited on kieselguhr (Pd/k) is used in a thermal cycling absorption process (TCAP) to purify tritium for over ten years. The need to design columns for different throughputs and the desire to advance the performance of TCAP created the need to evaluate different column designs and packing materials for their separation efficiency. In this work, columns with variations in length, diameter and metal foam presence were tested using an isotope displacement method. A simple computer model was also developed to calculate the number of theoretical separation stages based on the test results. The effects of column diameter, metal foam presence and gas flow rate were identified. (authors)

  18. Alkali metal recovery from carbonaceous material conversion process

    DOE Patents [OSTI]

    Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  19. Combined current collector and electrode separator

    DOE Patents [OSTI]

    Gerenser, Robert J.; Littauer, Ernest L.

    1983-01-01

    This relates to reactive metal cells wherein there is a cathode and a consumable anode. It is necessary to separate the cathode from the anode so that an electrolyte may constantly flow over the face of the anode opposing the cathode. It has been found that this separator may also beneficially function as a current collector. The combined current collector and separator includes a peripheral supporting frame of which a portion may function as a bus-bar. A plurality of bars or ribs extend in parallel relation across the opening defined by the supporting frame and are electrically connected to the bus-bar portion. It is preferred that each bar or rib have a pointed or line edge which will engage and slightly bite into the associated anode to maintain the bar or rib in electrical contact with the anode. This abstract forms no part of the specification of this application and is not to be construed as limiting the claims of the application.

  20. Combined current collector and electrode separator

    DOE Patents [OSTI]

    Gerenser, R.J.; Littauer, E.L.

    1983-08-23

    This relates to reactive metal cells wherein there is a cathode and a consumable anode. It is necessary to separate the cathode from the anode so that an electrolyte may constantly flow over the face of the anode opposing the cathode. It has been found that this separator may also beneficially function as a current collector. The combined current collector and separator includes a peripheral supporting frame of which a portion may function as a bus-bar. A plurality of bars or ribs extend in parallel relation across the opening defined by the supporting frame and are electrically connected to the bus-bar portion. It is preferred that each bar or rib have a pointed or line edge which will engage and slightly bite into the associated anode to maintain the bar or rib in electrical contact with the anode. This abstract forms no part of the specification of this application and is not to be construed as limiting the claims of the application. 6 figs.

  1. DISSOLUTION OF PLUTONIUM CONTAINING CARRIER PRECIPITATE BY CARBONATE METATHESIS AND SEPARATION OF SULFIDE IMPURITIES THEREFROM BY SULFIDE PRECIPITATION

    DOE Patents [OSTI]

    Duffield, R.B.

    1959-07-14

    A process is described for recovering plutonium from foreign products wherein a carrier precipitate of lanthanum fluoride containing plutonium is obtained and includes the steps of dissolving the carrier precipitate in an alkali metal carbonate solution, adding a soluble sulfide, separating the sulfide precipitate, adding an alkali metal hydroxide, separating the resulting precipitate, washing, and dissolving in a strong acid.

  2. Water-soluble polymers for recovery of metal ions from aqueous streams

    DOE Patents [OSTI]

    Smith, Barbara F. (Los Alamos, NM); Robison, Thomas W. (Los Alamos, NM)

    1998-01-01

    A process of selectively separating a target metal contained in an aqueous solution by contacting the aqueous solution containing a target metal with an aqueous solution including a water-soluble polymer capable of binding with the target metal for sufficient time whereby a water-soluble polymer-target metal complex is formed, and, separating the solution including the water-soluble polymer-target metal complex from the solution is disclosed.

  3. Metal oxide films on metal

    DOE Patents [OSTI]

    Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  4. Surface protected lithium-metal-oxide electrodes

    DOE Patents [OSTI]

    Thackeray, Michael M.; Kang, Sun-Ho

    2016-04-05

    A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.

  5. Separation process using microchannel technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Dublin, OH); Perry, Steven T. (Galloway, OH); Arora, Ravi (Dublin, OH); Qiu, Dongming (Bothell, WA); Lamont, Michael Jay (Hilliard, OH); Burwell, Deanna (Cleveland Heights, OH); Dritz, Terence Andrew (Worthington, OH); McDaniel, Jeffrey S. (Columbus, OH); Rogers, Jr.; William A. (Marysville, OH); Silva, Laura J. (Dublin, OH); Weidert, Daniel J. (Lewis Center, OH); Simmons, Wayne W. (Dublin, OH); Chadwell, G. Bradley (Reynoldsburg, OH)

    2009-03-24

    The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.

  6. Gas separation membrane module assembly

    DOE Patents [OSTI]

    Wynn, Nicholas P; Fulton, Donald A.

    2009-03-31

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  7. Continuous production of tritium in an isotope-production reactor with a separate circulation system

    DOE Patents [OSTI]

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium is allowed to flow through the reactor in separate loops in order to facilitate the production and removal of tritium.

  8. Gas adsorption and gas mixture separations using carborane-based MOF material

    DOE Patents [OSTI]

    Farha, Omar K.; Hupp, Joseph T.; Bae, Youn-Sang; Snurr, Randall Q.; Spokoyny, Alexander M.; Mirkin, Chad A.

    2010-06-29

    A method of separating a mixture of carbon dioxide and a hydrocarbon gas using a metal-organic framework (MOF) material having a three-dimensional carborane ligand structure.

  9. Hydrothermal alkali metal catalyst recovery process

    DOE Patents [OSTI]

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  10. Hydrogen-permeable composite metal membrane and uses thereof

    DOE Patents [OSTI]

    Edlund, David J.; Friesen, Dwayne T.

    1993-06-08

    Various hydrogen production and hydrogen sulfide decomposition processes are disclosed that utilize composite metal membranes that contain an intermetallic diffusion barrier separating a hydrogen-permeable base metal and a hydrogen-permeable coating metal. The barrier is a thermally stable inorganic proton conductor.

  11. Metal/ceramic composites with high hydrogen permeability

    DOE Patents [OSTI]

    Dorris, Stephen E.; Lee, Tae H.; Balachandran, Uthamalingam

    2003-05-27

    A membrane for separating hydrogen from fluids is provided comprising a sintered homogenous mixture of a ceramic composition and a metal. The metal may be palladium, niobium, tantalum, vanadium, or zirconium or a binary mixture of palladium with another metal such as niobium, silver, tantalum, vanadium, or zirconium.

  12. Catalytic synthesis of metal crystals using conductive polymers

    DOE Patents [OSTI]

    Wang, Hsing-Lin; Li, Wenguang

    2008-01-15

    A method of forming metal nanoparticles using a polymer colloid that includes at least one conductive polymer and at least one polyelectrolyte. Metal ions are reduced in water by the conductive polymer to produce the nanoparticles, which may be then incorporated in the colloidal structure to form a colloid composite. The method can also be used to separate selected metal ions from aqueous solutions.

  13. Natural Ores as Oxygen Carriers in Chemical Looping Combustion

    SciTech Connect (OSTI)

    Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James

    2013-08-01

    Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe{sub 2}O{sub 3} due to low-concentrations of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magnetite, and limonite (Fe-based) demonstrated better reaction performances than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe{sub 2}O{sub 3}-based ores possess greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC processes were also studied by scanning electron microscopy (SEM).

  14. Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction Download presentation slides from the June 19,...

  15. Study of using oxygen-enriched combustion air for locomotive diesel engines

    SciTech Connect (OSTI)

    Poola, R.B.; Sekar, R.; Assanis, D.N.; Cataldi, G.R.

    1996-12-31

    A thermodynamic simulation is used to study the effects of oxygen-enriched intake air on the performance and nitrogen oxide (NO) emissions of a locomotive diesel engine. The parasitic power of the air separation membrane required to supply the oxygen-enriched air is also estimated. For a given constraint on peak cylinder pressure, the gross and net power output of an engine operating under different levels of oxygen enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in an increase in net engine power of approximately 13% when intake air with an oxygen content of 28% by volume is used and fuel injection timing is retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure can improve power by only 4%. If part of the significantly higher exhaust enthalpies available as a result of oxygen enrichment are recovered, the power requirements of the air separator membrane can be met, resulting in substantial net power improvements. Oxygen enrichment with its attendant higher combustion temperatures, reduces emissions of particulates and visible smoke but increases NO emissions (by up to three times at 26% oxygen content). Therefore, exhaust gas after-treatment and heat recovery would be required if the full potential of oxygen enrichment for improving the performance of locomotive diesel engines is to be realized.

  16. Electrically conductive polycrystalline diamond and particulate metal based electrodes

    DOE Patents [OSTI]

    Swain, Greg M.; Wang, Jian

    2005-04-26

    An electrically conducting and dimensionally stable diamond (12, 14) and metal particle (13) electrode produced by electrodepositing the metal on the diamond is described. The electrode is particularly useful in harsh chemical environments and at high current densities and potentials. The electrode is particularly useful for generating hydrogen, and for reducing oxygen and oxidizing methanol in reactions which are of importance in fuel cells.

  17. Evaluation of metallized paint coatings for composite spacecraft structures

    SciTech Connect (OSTI)

    Brzuskiewicz, J.E. )

    1990-04-01

    Thermal control coatings are needed to minimize temperature excursions of composite spacecraft structures in low earth orbit. Coatings prepared with combinations of metal flake and metal oxide pigments were prepared to obtain a range of solar absorptance and emittance properties. These coatings were subjected to screening tests to characterize their ultraviolet stability, atomic oxygen resistance and outgassing properties.

  18. Alkene epoxidation employing metal nitro complexes

    DOE Patents [OSTI]

    Andrews, M.A.; Cheng, C.W.; Kelley, K.P.

    1982-07-15

    Process for converting alkenes to form epoxides utilizes transition metal nitro complexes of the formula: M(RCN)/sub 2/XNO/sub 2/ wherein M is palladium or platinum, R is an alkyl or aryl group containing up to 12 carbon atoms, and X is a monoanionic, monodentate ligand such as chlorine, optionally in the presence of molecular oxygen.

  19. Separator material for electrochemical cells

    DOE Patents [OSTI]

    Cieslak, W.R.; Storz, L.J.

    1991-03-26

    An electrochemical cell is characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant.

  20. Vision 2020: 2000 Separations Roadmap

    SciTech Connect (OSTI)

    Adler, Stephen; Beaver, Earl; Bryan, Paul; Robinson, Sharon; Watson, Jack

    2000-01-01

    This report documents the results of four workshops on the technology barriers, research needs, and priorities of the chemical, agricultural, petroleum, and pharmaceutical industries as they relate to separation technologies utilizing adsorbents, crystallization, distillation, extraction, membranes, separative reactors, ion exchange, bioseparations, and dilute solutions.

  1. Three phase downhole separator process

    DOE Patents [OSTI]

    Cognata, Louis John (Baytown, TX)

    2008-06-24

    Three Phase Downhole Separator Process (TPDSP) is a process which results in the separation of all three phases, (1) oil, (2) gas, and (3) water, at the downhole location in the well bore, water disposal injection downhole, and oil and gas production uphole.

  2. Separator material for electrochemical cells

    DOE Patents [OSTI]

    Cieslak, Wendy R.; Storz, Leonard J.

    1991-01-01

    An electrochemical cell characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant.

  3. Dilute Oxygen Combustion Phase I Final Report

    SciTech Connect (OSTI)

    Ryan, H.M.; Riley, M.F.; Kobayashi, H.

    1997-10-31

    A novel burner, in which fuel (natural gas) and oxidant (oxygen or air) are separately injected into a furnace, shows promise for achieving very low nitrogen oxide(s) (NOx) emissions for commercial furnace applications. The dilute oxygen combustion (DOC) burner achieves very low NOx through in-furnace dilution of the oxidant stream prior to combustion, resulting in low flame temperatures, thus inhibiting thermal NOx production. The results of a fundamental and applied research effort on the development of the DOC burner are presented. In addition, the results of a market survey detailing the potential commercial impact of the DOC system are disclosed. The fundamental aspects of the burner development project involved examining the flame characteristics of a natural gas turbulent jet in a high-temperature (~1366 K) oxidant (7-27% O2 vol. wet). Specifically, the mass entrainment rate, the flame lift-off height, the velocity field and major species field of the jet were evaluated as a function of surrounding-gas temperature and composition. The measured entrainment rate of the fuel jet decreased with increasing oxygen content in the surrounding high-temperature oxidant, and was well represented by the d+ scaling correlation found in the literature. The measured flame lift-off height decreased with increasing oxygen content and increasing temperature of the surrounding gas. An increase in surrounding-gas oxygen content and/or temperature inhibited the velocity decay within the jet periphery as a function of axial distance as compared to isothermal turbulent jets. However, the velocity measurements were only broadly represented by the d+ scaling correlation. Several DOC burner configurations were tested in a laboratory-scale furnace at a nominal firing rate of 185 kW (~0.63 MMBtu/h). The flue gas composition was recorded as a function of furnace nitrogen content, furnace temperature, burner geometric arrangement, firing rate, and fuel injection velocity. NOx emissions increased with increasing furnace nitrogen content and furnace temperature, but remained relatively insensitive to variations in fuel injection velocity and firing rate. NOx emissions below 5-10-3 g/MJ (10 ppm-air equivalent at 3% O2 dry) were obtained for furnace temperatures below 1533 K (2300°F) and furnace nitrogen levels between 1 and 40%. CO emissions were typically low (<35 ppm). Detailed in-furnace species measurements revealed the importance of the interior furnace circulation patterns, as influenced by fuel and oxidant injection schemes, on pollutant emissions. The combustion stability traits of several DOC burner arrangements were ascertained through furnace pressure measurements, wit6h increased stability occurring as furnace temperature increased and as the separation distance between fuel and oxidant inputs decreased. Based on current market conditions, oxy-fuel conversion of batch steel reheat furnaces with a DOC burner is justified on the basis of lower utility costs alone. However, conversion of continuous steel reheat furnaces, which are responsible for most steel production, required additional economic incentives, such as further fuel savings, increased furnace productivity, or emission credits.

  4. Dilute Oxygen Combustion Phase 2 Final Report

    SciTech Connect (OSTI)

    Ryan, H.M.; Riley, M.F.; Kobayashi, H.

    2005-09-30

    A novel burner, in which fuel (natural gas) and oxidant (oxygen or air) are separately injected into a furnace, shows promise for achieving very low nitrogen oxide(s) (NOx) emissions for commercial furnace applications. The dilute oxygen combustion (DOC) burner achieves very low NOx through in-furnace dilution of the oxidant stream prior to combustion, resulting in low flame temperatures, thus inhibiting thermal NOx production. The results of a fundamental and applied research effort on the development of the DOC burner are presented. In addition, the results of a market survey detailing the potential commercial impact of the DOC system are disclosed. The fundamental aspects of the burner development project involved examining the flame characteristics of a natural gas turbulent jet in a high-temperature (~1366 K) oxidant (7-27% O2 vol. wet). Specifically, the mass entrainment rate, the flame lift-off height, the velocity field and major species field of the jet were evaluated as a function of surrounding-gas temperature and composition. The measured entrainment rate of the fuel jet decreased with increasing oxygen content in the surrounding high-temperature oxidant, and was well represented by the d+ scaling correlation found in the literature. The measured flame lift-off height decreased with increasing oxygen content and increasing temperature of the surrounding gas. An increase in surrounding-gas oxygen content and/or temperature inhibited the velocity decay within the jet periphery as a function of axial distance as compared to isothermal turbulent jets. However, the velocity measurements were only broadly represented by the d+ scaling correlation. Several DOC burner configurations were tested in a laboratory-scale furnace at a nominal firing rate of 185 kW (~0.63 MMBtu/h). The flue gas composition was recorded as a function of furnace nitrogen content, furnace temperature, burner geometric arrangement, firing rate, and fuel injection velocity. NOx emissions increased with increasing furnace nitrogen content and furnace temperature, but remained relatively insensitive to variations in fuel injection velocity and firing rate. NOx emissions below 5-10-3 g/MJ (10 ppm-air equivalent at 3% O2 dry) were obtained for furnace temperatures below 1533 K (2300?F) and furnace nitrogen levels between 1 and 40%. CO emissions were typically low (<35 ppm). Detailed in-furnace species measurements revealed the importance of the interior furnace circulation patterns, as influenced by fuel and oxidant injection schemes, on pollutant emissions. The combustion stability traits of several DOC burner arrangements were ascertained through furnace pressure measurements, wit6h increased stability occurring as furnace temperature increased and as the separation distance between fuel and oxidant inputs decreased. Based on current market conditions, oxy-fuel conversion of batch steel reheat furnaces with a DOC burner is justified on the basis of lower utility costs alone. However, conversion of continuous steel reheat furnaces, which are responsible for most steel production, required additional economic incentives, such as further fuel savings, increased furnace productivity, or emission credits.

  5. Extraction of trace metals from fly ash

    DOE Patents [OSTI]

    Blander, Milton; Wai, Chien M.; Nagy, Zoltan

    1984-01-01

    A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  6. Extraction of trace metals from fly ash

    DOE Patents [OSTI]

    Blander, M.; Wai, C.M.; Nagy, Z.

    1983-08-15

    A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  7. Process for the conversion of lower alcohols to higher branched oxygenates

    DOE Patents [OSTI]

    Barger, Paul T. (Arlington Heights, IL)

    1996-01-01

    A process is provided for the production of branched C.sub.4+ oxygenates from lower alcohols such as methanol, ethanol, propanol and mixtures thereof. The process comprises contacting the lower alcohols with a solid catalyst comprising a mixed metal oxide support having components selected from the group consisting of oxides of zinc, magnesium, zirconia, titanium, manganese, chromium, and lanthanides, and an activation metal selected from the group consisting of Group VIII metal, Group IB metals, and mixtures thereof. The advantage of the process is improved yields and selectivity to isobutanol which can subsequently be employed in the production of high octane motor gasoline.

  8. Process for the conversion of lower alcohols to higher branched oxygenates

    DOE Patents [OSTI]

    Barger, P.T.

    1996-09-24

    A process is provided for the production of branched C{sub x} oxygenates from lower alcohols such as methanol, ethanol, propanol and mixtures thereof. The process comprises contacting the lower alcohols with a solid catalyst comprising a mixed metal oxide support having components selected from the group consisting of oxides of zinc, magnesium, zirconia, titanium, manganese, chromium, and lanthanides, and an activation metal selected from the group consisting of Group VIII metal, Group IB metals, and mixtures thereof. The advantage of the process is improved yields and selectivity to isobutanol which can subsequently be employed in the production of high octane motor gasoline.

  9. Method of producing thermally sprayed metallic coating

    DOE Patents [OSTI]

    Byrnes, Larry Edward; Kramer, Martin Stephen; Neiser, Richard A.

    2003-08-26

    The cylinder walls of light metal engine blocks are thermally spray coated with a ferrous-based coating using an HVOF device. A ferrous-based wire is fed to the HVOF device to locate a tip end of the wire in a high temperature zone of the device. Jet flows of oxygen and gaseous fuel are fed to the high temperature zone and are combusted to generate heat to melt the tip end. The oxygen is oversupplied in relation to the gaseous fuel. The excess oxygen reacts with and burns a fraction of the ferrous-based feed wire in an exothermic reaction to generate substantial supplemental heat to the HVOF device. The molten/combusted metal is sprayed by the device onto the walls of the cylinder by the jet flow of gases.

  10. Method for fixating sludges and soils contaminated with mercury and other heavy metals

    DOE Patents [OSTI]

    Broderick, Thomas E.; Roth, Rachel L.; Carlson, Allan L.

    2005-06-28

    The invention relates to a method, composition and apparatus for stabilizing mercury and other heavy metals present in a particulate material such that the metals will not leach from the particulate material. The method generally involves the application of a metal reagent, a sulfur-containing compound, and the addition of oxygen to the particulate material, either through agitation, sparging or the addition of an oxygen-containing compound.

  11. Special isotope separation at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Hendrickson, P.D.

    1989-02-03

    The SIS facilities will include a Plutonium Processing Facility (PPF), a Laser Support Facility (LSF), and all associated equipment required for isotope separation. The SIS Plant will process fuel-grade plutonium into weapons-grade plutonium using Atomic Vapor Laser Isotope Separation (AVLIS) and supporting chemical processes. The AVLIS process uses precisely tuned visible laser light to selectively ionize or excite specific plutonium isotopes in a vapor stream. The ionized plutonium isotopes (Pu 240, Pu 238 and Pu 241) are then separated from the plutonium isotope of interest (Pu 239). Chemical processes are required to (1) prepare the AVLIS plutonium feed for processing, remove americium-241, and cast plutonium metal into forms that meet AVLIS processing requirements; (2) recover and, if required, purify the AVLIS plutonium product; and (3) recover and process the AVLIS separated by-products. This presentation describes the production facility and some of the plutonium processes.

  12. Process for removing metals from water

    DOE Patents [OSTI]

    Napier, J.M.; Hancher, C.M.; Hackett, G.D.

    1987-06-29

    A process for removing metals from water including the steps of prefiltering solids from the water, adjusting the pH to between about 2 and 3, reducing the amount of dissolved oxygen in the water, increasing the pH to between about 6 and 8, adding water-soluble sulfide to precipitate insoluble sulfide- and hydroxide-forming metals, adding a containing floc, and postfiltering the resultant solution. The postfiltered solution may optionally be eluted through an ion exchange resin to remove residual metal ions. 2 tabs.

  13. Incorporation of noble metals into aerogels

    DOE Patents [OSTI]

    Hair, L.M.; Sanner, R.D.; Coronado, P.R.

    1998-12-22

    Aerogels or xerogels containing atomically dispersed noble metals for applications such as environmental remediation are disclosed. New noble metal precursors, such as Pt--Si or Pd(Si--P){sub 2}, have been created to bridge the incompatibility between noble metals and oxygen, followed by their incorporation into the aerogel or xerogel through sol-gel chemistry and processing. Applications include oxidation of hydrocarbons and reduction of nitrogen oxide species, complete oxidation of volatile organic carbon species, oxidative membranes for photocatalysis and partial oxidation for synthetic applications.

  14. Incorporation of noble metals into aerogels

    DOE Patents [OSTI]

    Hair, Lucy M.; Sanner, Robert D.; Coronado, Paul R.

    1998-01-01

    Aerogels or xerogels containing atomically dispersed noble metals for applications such environmental remediation. New noble metal precursors, such as Pt--Si or Pd(Si--P).sub.2, have been created to bridge the incompatibility between noble metals and oxygen, followed by their incorporation into the aerogel or xerogel through sol-gel chemistry and processing. Applications include oxidation of hydrocarbons and reduction of nitrogen oxide species, complete oxidation of volatile organic carbon species, oxidative membranes for photocatalysis and partial oxidation for synthetic applications.

  15. Dendritic metal nanostructures

    DOE Patents [OSTI]

    Shelnutt, John A.; Song, Yujiang; Pereira, Eulalia F.; Medforth, Craig J.

    2010-08-31

    Dendritic metal nanostructures made using a surfactant structure template, a metal salt, and electron donor species.

  16. EVALUATING AN INNOVATIVE OXYGEN SENSOR FOR REMOTE SUBSURFACE OXYGEN MEASUREMENTS

    SciTech Connect (OSTI)

    Millings, M; Brian Riha, B; Warren Hyde, W; Karen Vangelas, K; Brian02 Looney, B

    2006-10-12

    Oxygen is a primary indicator of whether anaerobic reductive dechlorination and similar redox based processes contribute to natural attenuation remedies at chlorinated solvent contaminated sites. Thus, oxygen is a viable indicator parameter for documenting that a system is being sustained in an anaerobic condition. A team of researchers investigated the adaptation of an optical sensor that was developed for oceanographic applications. The optical sensor, because of its design and operating principle, has potential for extended deployment and sensitivity at the low oxygen levels relevant to natural attenuation. The results of the research indicate this tool will be useful for in situ long-term monitoring applications, but that the traditional characterization tools continue to be appropriate for characterization activities.

  17. METHOD OF SEPARATING FISSION PRODUCTS FROM FUSED BISMUTH-CONTAINING URANIUM

    DOE Patents [OSTI]

    Wiswall, R.H.

    1958-06-24

    A process is described for removing metal selectively from liquid metal compositions. The method effects separation of flssion product metals selectively from dilute solution in fused bismuth, which contains uraniunn in solution without removal of more than 1% of the uranium. The process comprises contacting the fused bismuth with a fused salt composition consisting of sodium, potassium and lithium chlorides, adding to fused bismuth and molten salt a quantity of bismuth chloride which is stoichiometrically required to convert the flssion product metals to be removed to their chlorides which are more stable in the fused salt than in the molten metal and are, therefore, preferentially taken up in the fused salt phase.

  18. Zero Emission Power Plants Using Solid Oxide Fuel Cells and Oxygen Transport Membranes

    SciTech Connect (OSTI)

    Shockling, Larry A.; Huang, Keqin; Gilboy, Thomas E.; Christie, G. Maxwell; Raybold, Troy M.

    2001-11-06

    Siemens Westinghouse Power Corp. (SWPC) is engaged in the development of Solid Oxide Fuel Cell stationary power systems. SWPC has combined DOE Developmental funds with commercial customer funding to establish a record of successful SOFC field demonstration power systems of increasing size. SWPC will soon deploy the first unit of a newly developed 250 kWe Combined Heat Power System. It will generate electrical power at greater than 45% electrical efficiency. The SWPC SOFC power systems are equipped to operate on lower number hydrocarbon fuels such as pipeline natural gas, which is desulfurized within the SOFC power system. Because the system operates with a relatively high electrical efficiency, the CO2 emissions, {approx}1.0 lb CO2/ kW-hr, are low. Within the SOFC module the desulfurized fuel is utilized electrochemically and oxidized below the temperature for NOx generation. Therefore the NOx and SOx emissions for the SOFC power generation system are near negligible. The byproducts of the power generation from hydrocarbon fuels that are released into the environment are CO2 and water vapor. This forward looking DOE sponsored Vision 21 program is supporting the development of methods to capture and sequester the CO2, resulting in a Zero Emission power generation system. To accomplish this, SWPC is developing a SOFC module design, to be demonstrated in operating hardware, that will maintain separation of the fuel cell anode gas, consisting of H2, CO, H2O and CO2, from the vitiated air. That anode gas, the depleted fuel stream, containing less than 18% (H2 + CO), will be directed to an Oxygen Transport Membrane (OTM) Afterburner that is being developed by Praxair, Inc.. The OTM is supplied air and the depleted fuel. The OTM will selectively transport oxygen across the membrane to oxidize the remaining H2 and CO. The water vapor is then condensed from the totally 1.5.DOC oxidized fuel stream exiting the afterburner, leaving only the CO2 in gaseous form. That CO2 can then be compressed and sequestered, resulting in a Zero Emission power generation system operating on hydrocarbon fuel that adds only water vapor to the environment. Praxair has been developing oxygen separation systems based on dense walled, mixed electronic, oxygen ion conducting ceramics for a number of years. The oxygen separation membranes find applications in syngas production, high purity oxygen production and gas purification. In the SOFC afterburner application the chemical potential difference between the high temperature SOFC depleted fuel gas and the supplied air provides the driving force for oxygen transport. This permeated oxygen subsequently combusts the residual fuel in the SOFC exhaust. A number of experiments have been carried out in which simulated SOFC depleted fuel gas compositions and air have been supplied to either side of single OTM tubes in laboratory-scale reactors. The ceramic tubes are sealed into high temperature metallic housings which precludes mixing of the simulated SOFC depleted fuel and air streams. In early tests, although complete oxidation of the residual CO and H2 in the simulated SOFC depleted fuel was achieved, membrane performance degraded over time. The source of degradation was found to be contaminants in the simulated SOFC depleted fuel stream. Following removal of the contaminants, stable membrane performance has subsequently been demonstrated. In an ongoing test, the dried afterburner exhaust composition has been found to be stable at 99.2% CO2, 0.4% N2 and 0.6%O2 after 350 hours online. Discussion of these results is presented. A test of a longer, commercial demonstration size tube was performed in the SWPC test facility. A similar contamination of the simulated SOFC depleted fuel stream occurred and the performance degraded over time. A second test is being prepared. Siemens Westinghouse and Praxair are collaborating on the preliminary design of an OTM equipped Afterburner demonstration unit. The intent is to test the afterburner in conjunction with a reduced size SOFC test module that has the anode gas separation features incorporated into the hardware.

  19. Pseudo-stationary separation materials for highly parallel separations.

    SciTech Connect (OSTI)

    Singh, Anup K.; Palmer, Christopher

    2005-05-01

    Goal of this study was to develop and characterize novel polymeric materials as pseudostationary phases in electrokinetic chromatography. Fundamental studies have characterized the chromatographic selectivity of the materials as a function of chemical structure and molecular conformation. The selectivities of the polymers has been studied extensively, resulting in a large body of fundamental knowledge regarding the performance and selectivity of polymeric pseudostationary phases. Two polymers have also been used for amino acid and peptide separations, and with laser induced fluorescence detection. The polymers performed well for the separation of derivatized amino acids, and provided some significant differences in selectivity relative to a commonly used micellar pseudostationary phase. The polymers did not perform well for peptide separations. The polymers were compatible with laser induced fluorescence detection, indicating that they should also be compatible with chip-based separations.

  20. Clean Metal Casting

    SciTech Connect (OSTI)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  1. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  2. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Pinnau, Ingo; Segelke, Scott

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  3. Efficient separations & processing crosscutting program

    SciTech Connect (OSTI)

    1996-08-01

    The Efficient Separations and Processing Crosscutting Program (ESP) was created in 1991 to identify, develop, and perfect chemical and physical separations technologies and chemical processes which treat wastes and address environmental problems throughout the DOE complex. The ESP funds several multiyear tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESP supports applied research and development (R & D) leading to the demonstration or use of these separations technologies by other organizations within the Department of Energy (DOE), Office of Environmental Management.

  4. Metal hydrides

    SciTech Connect (OSTI)

    Carnes, J.R.; Kherani, N.P.

    1987-11-01

    Metal hydride information is not available for most hydrides in a consolidated quick-reference source. This report's objective is to fill the need for such a document providing basic thermodynamic data for as many metal hydrides as possible. We conduced a computerized library search to access as many sources as possible and screened each source for such thermodynamic data as pressure-temperature graphs, van't Hoff curves, and impurity effects. We included any other relevant information and commented on it. A primary concern to be investigated in the future is the behavior of metal tritides. This would be important in the area of emergency tritium cleanup systems. The hydride graphs are useful, however, as tritides may be expected in most cases to behave similarly and at least follow trends of their respective hydrides. 42 refs., 40 figs., 5 tabs.

  5. Magnetic separation of micro-spheres from viscous biological fluids.

    SciTech Connect (OSTI)

    Chen, H.; Kaminski, M. D.; Xianqiao, L.; Caviness, P.; Torno, M.; Rosengart, A. J.; Dhar, P.; Chemical Engineering; Univ. of Chicago Pritzker School of Medicine; Illinois Inst. of Tech.

    2007-02-21

    A magnetically based detoxification system is being developed as a therapeutic tool for selective and rapid removal of biohazards, i.e. chemicals and radioactive substances, from human blood. One of the key components of this system is a portable magnetic separator capable of separating polymer-based magnetic nano/micro-spheres from arterial blood flow in an ex vivo unit. The magnetic separator consists of an array of alternating and parallel capillary tubing and magnetizable wires, which is exposed to an applied magnetic field created by two parallel permanent magnets such that the magnetic field is perpendicular to both the wires and the fluid flow. In this paper, the performance of this separator was evaluated via preliminary in vitro flow experiments using a separator unit consisting of single capillary glass tubing and two metal wires. Pure water, ethylene glycol-water solution (v:v = 39:61 and v:v = 49:51) and human whole blood were used as the fluids. The results showed that when the viscosity increased from 1.0 cp to 3.0 cp, the capture efficiency (CE) decreased from 90% to 56%. However, it is still feasible to obtain >90% CE in blood flow if the separator design is optimized to create higher magnetic gradients and magnetic fields in the separation area.

  6. Fuel cell separator with compressible sealing flanges

    DOE Patents [OSTI]

    Mientek, Anthony P.

    1985-04-30

    A separator for separating adjacent fuel cells in a stack of such cells includes a flat, rectangular, gas-impermeable plate disposed between adjacent cells and having two opposite side margins thereof folded back over one side of the plate to form two first seal flanges and having the other side margins thereof folded back over the opposite side of the plate to form two second seal flanges, each of the seal flanges cooperating with the plate to define a channel in which is disposed a resiliently compressible stack of thin metal sheets. The two first seal flanges cooperate with the electrolyte matrix of one of the cells to form a gas-impermeable seal between an electrode of the one cell and one of two reactant gas manifolds. The second seal flanges cooperate with the electrolyte matrix of the other cell for forming a gas-impermeable seal between an electrode of the other cell and the other of the two reactant gas manifolds. The seal flanges cooperate with the associated compressible stacks of sheets for maintaining a spacing between the plate and the electrolyte matrices while accommodating variation of that spacing.

  7. Fuel cell separator with compressible sealing flanges

    DOE Patents [OSTI]

    Mientek, A.P.

    1984-03-30

    A separator for separating adjacent fuel cells in a stack of such cells includes a flat, rectangular, gas-impermeable plate disposed between adjacent cells and having two opposite side margins thereof folded back over one side of the plate to form two first seal flanges and having the other side margins thereof folded back over the opposite side of the plate to form two second seal flanges, each of the seal flanges cooperating with the plate to define a channel in which is disposed a resiliently compressible stack of thin metal sheets. The two first seal flanges cooperate with the electrolyte matrix of one of the cells to form a gas-impermeable seal between an electrode of the one cell and one of two reactant gas manifolds. The second seal flanges cooperate with the electrolyte matrix of the other cell for forming a gas-impermeable seal between an electrode of the other cell and the other of the two reactant gas manifolds. The seal flanges cooperate with the associated compressible stacks of sheets for maintaining a spacing between the plate and the electrolyte matrices while accommodating variation of that spacing.

  8. Fluorine separation and generation device

    DOE Patents [OSTI]

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.; Stefan, Constantin I.

    2006-08-15

    A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

  9. Fluorine separation and generation device

    DOE Patents [OSTI]

    The Regents of the University of California

    2008-12-23

    A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

  10. Continuous magnetic separator and process

    DOE Patents [OSTI]

    Oder, Robin R.; Jamison, Russell E.

    2008-04-22

    A continuous magnetic separator and process for separating a slurry comprising magnetic particles into a clarified stream and a thickened stream. The separator has a container with a slurry inlet, an overflow outlet for the discharge of the clarified slurry stream, and an underflow outlet for the discharge of a thickened slurry stream. Magnetic particles in the slurry are attracted to, and slide down, magnetic rods within the container. The slurry is thus separated into magnetic concentrate and clarified slurry. Flow control means can be used to control the ratio of the rate of magnetic concentrate to the rate of clarified slurry. Feed control means can be used to control the rate of slurry feed to the slurry inlet.

  11. Fluorine separation and generation device

    DOE Patents [OSTI]

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.; Stefan, Constantin I.

    2010-03-02

    A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

  12. Controllable positive exchange bias via redox-driven oxygen migration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gilbert, Dustin A.; Olamit, Justin; Dumas, Randy K.; Kirby, B. J.; Grutter, Alexander J.; Maranville, Brian B.; Arenholz, Elke; Borchers, Julie A.; Liu, Kai

    2016-03-21

    We report that ionic transport in metal/oxide heterostructures offers a highly effective means to tailor material properties via modification of the interfacial characteristics. However, direct observation of ionic motion under buried interfaces and demonstration of its correlation with physical properties has been challenging. Using the strong oxygen affinity of gadolinium, we design a model system of GdxFe1-x/NiCoO bilayer films, where the oxygen migration is observed and manifested in a controlled positive exchange bias over a relatively small cooling field range. The exchange bias characteristics are shown to be the result of an interfacial layer of elemental nickel and cobalt, amore » few nanometres in thickness, whose moments are larger than expected from uncompensated NiCoO moments. This interface layer is attributed to a redox-driven oxygen migration from NiCoO to the gadolinium, during growth or soon after. Ultimately, these results demonstrate an effective path to tailoring the interfacial characteristics and interlayer exchange coupling in metal/oxide heterostructures.« less

  13. Hydrogen isotope separation from water

    DOE Patents [OSTI]

    Jensen, R.J.

    1975-09-01

    A process for separating tritium from tritium-containing water or deuterium enrichment from water is described. The process involves selective, laser-induced two-photon excitation and photodissociation of those water molecules containing deuterium or tritium followed by immediate reaction of the photodissociation products with a scavenger gas which does not substantially absorb the laser light. The reaction products are then separated from the undissociated water. (auth)

  14. METAL COMPOSITIONS

    DOE Patents [OSTI]

    Seybolt, A.U.

    1959-02-01

    Alloys of uranium which are strong, hard, and machinable are presented, These alloys of uranium contain bctween 0.1 to 5.0% by weight of at least one noble metal such as rhodium, palladium, and gold. The alloys may be heat treated to obtain a product with iniproved tensile and compression strengths,

  15. Method for the generation of variable density metal vapors which bypasses the liquidus phase

    DOE Patents [OSTI]

    Kunnmann, Walter; Larese, John Z.

    2001-01-01

    The present invention provides a method for producing a metal vapor that includes the steps of combining a metal and graphite in a vessel to form a mixture; heating the mixture to a first temperature in an argon gas atmosphere to form a metal carbide; maintaining the first temperature for a period of time; heating the metal carbide to a second temperature to form a metal vapor; withdrawing the metal vapor and the argon gas from the vessel; and separating the metal vapor from the argon gas. Metal vapors made using this method can be used to produce uniform powders of the metal oxide that have narrow size distribution and high purity.

  16. High-Temperature Zirconia Oxygen Sensor with Sealed Metal/Metal Oxide Internal Reference

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  17. High-Temperature Zirconia Oxygen Sensor with Sealed Metal/Metal...

    Broader source: Energy.gov (indexed) [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of ...

  18. Porous platinum-based catalysts for oxygen reduction

    DOE Patents [OSTI]

    Erlebacher, Jonah D; Snyder, Joshua D

    2014-11-25

    A porous metal that comprises platinum and has a specific surface area that is greater than 5 m.sup.2/g and less than 75 m.sup.2/g. A fuel cell includes a first electrode, a second electrode spaced apart from the first electrode, and an electrolyte arranged between the first and the second electrodes. At least one of the first and second electrodes is coated with a porous metal catalyst for oxygen reduction, and the porous metal catalyst comprises platinum and has a specific surface area that is greater than 5 m.sup.2/g and less than 75 m.sup.2/g. A method of producing a porous metal according to an embodiment of the current invention includes producing an alloy consisting essentially of platinum and nickel according to the formula Pt.sub.xNi.sub.1-x, where x is at least 0.01 and less than 0.3; and dealloying the alloy in a substantially pH neutral solution to reduce an amount of nickel in the alloy to produce the porous metal.

  19. Robust Metal-Organic Framework with An Octatopic Ligand for Gas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust Metal-Organic Framework with An Octatopic Ligand for Gas Adsorption and Separation: Combined Characterization by Experiments and Molecular Simulation Previous Next List...

  20. Understanding CO2 dynamics inside open-metal sites MOFs | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Understanding CO2 dynamics inside open-metal sites MOFs