Sample records for metal oxo bonds

  1. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing...

  2. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliancesTrending: Metal Oxo Bonds Print Metal

  3. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliancesTrending: Metal Oxo Bonds Print

  4. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z Site Map OrganizationFAQTrending: Metal Oxo

  5. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z Site Map OrganizationFAQTrending: Metal

  6. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z Site Map OrganizationFAQ

  7. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z Site Map OrganizationFAQTrending:

  8. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z Site Map OrganizationFAQTrending:Trending:

  9. Metal-Oxo Catalysts for Generating Hydrogen from Water

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2010-06-23T23:59:59.000Z

    Scientists at Berkeley Lab have developed an inexpensive, highly efficient catalyst that can be used in the electrolysis of water to generate H2—a source of clean fuel, a reducing agent for metal ores, and a reactant used to produce hydrochloric acid and other chemicals. The catalyst is a metal-oxo complex in which modified pyridine rings surround an earth-abundant, low cost metal, such as molybdenum. Compared to other molecular catalysts, the Berkeley Lab compound has a longer life,...

  10. A Highly Reactive Mononuclear Non-Heme Manganese(IV)?Oxo Complex That Can Activate the Strong C?H Bonds of Alkanes

    SciTech Connect (OSTI)

    Wu, Xiujuan; Seo, Mi Sook; Davis, Katherine M.; Lee, Yong-Min; Chen, Junying; Cho, Kyung-Bin; Pushkar, Yulia N.; Nam, Wonwoo (Ewha); (Purdue)

    2012-03-15T23:59:59.000Z

    A mononuclear non-heme manganese(IV)-oxo complex has been synthesized and characterized using various spectroscopic methods. The Mn(IV)-oxo complex shows high reactivity in oxidation reactions, such as C-H bond activation, oxidations of olefins, alcohols, sulfides, and aromatic compounds, and N-dealkylation. In C-H bond activation, the Mn(IV)-oxo complex can activate C-H bonds as strong as those in cyclohexane. It is proposed that C-H bond activation by the non-heme Mn(IV)-oxo complex does not occur via an oxygen-rebound mechanism. The electrophilic character of the non-heme Mn(IV)-oxo complex is demonstrated by a large negative {rho} value of {approx}4.4 in the oxidation of para-substituted thioanisoles.

  11. X-ray Absorption Spectroscopy and Density Functional Theory Studies of [(H3buea)FeIII-X]n1 (X= S2-, O2-,OH-): Comparison of Bonding and Hydrogen Bonding in Oxo and Sulfido Complexes

    SciTech Connect (OSTI)

    Dey, Abhishek; Hocking, Rosalie K.; /Stanford U., Chem. Dept.; Larsen, Peter; Borovik, Andrew S.; /Kansas U.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.; /SLAC,

    2006-09-27T23:59:59.000Z

    Iron L-edge, iron K-edge, and sulfur K-edge X-ray absorption spectroscopy was performed on a series of compounds [Fe{sup III}H{sub 3}buea(X)]{sup n-} (X = S{sup 2-}, O{sup 2-}, OH{sup -}). The experimentally determined electronic structures were used to correlate to density functional theory calculations. Calculations supported by the data were then used to compare the metal-ligand bonding and to evaluate the effects of H-bonding in Fe{sup III}-O vs Fe{sup III-}S complexes. It was found that the Fe{sup III-}O bond, while less covalent, is stronger than the FeIII-S bond. This dominantly reflects the larger ionic contribution to the Fe{sup III-}O bond. The H-bonding energy (for three H-bonds) was estimated to be -25 kcal/mol for the oxo as compared to -12 kcal/mol for the sulfide ligand. This difference is attributed to the larger charge density on the oxo ligand resulting from the lower covalency of the Fe-O bond. These results were extended to consider an Fe{sup IV-}O complex with the same ligand environment. It was found that hydrogen bonding to Fe{sup IV-}O is less energetically favorable than that to Fe{sup III-}O, which reflects the highly covalent nature of the Fe{sup IV-}O bond.

  12. Method of bonding metals to ceramics

    DOE Patents [OSTI]

    Maroni, V.A.

    1991-04-23T23:59:59.000Z

    A ceramic or glass having a thin layer of silver, gold or alloys thereof at the surface thereof is disclosed. A first metal is bonded to the thin layer and a second metal is bonded to the first metal. The first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Tl and alloys thereof, and the second metal is selected from the class consisting of Cu, Al, Pb, Au and alloys thereof. 3 figures.

  13. Covalency in Metal-Oxygen Multiple Bonds Evaluated Using Oxygen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multiple Bonds Evaluated Using Oxygen K-edge Spectroscopy and Electronic Structure Theory . Covalency in Metal-Oxygen Multiple Bonds Evaluated Using Oxygen K-edge Spectroscopy...

  14. Covalency in Metal-Oxygen Multiple Bonds Evaluated Using Oxygen K-edge Spectroscopy and Electronic Structure Theory

    SciTech Connect (OSTI)

    Minasian, Stefan G.; Keith, Jason M.; Batista, Enrique R.; Boland, Kevin S.; Bradley, Joseph A.; Daly, Scott R.; Kozimor, Stosh A.; Lukens, Wayne W.; Martin, Richard L.; Nordlund, Dennis; Seidler, Gerald T.; Shuh, David K.; Sokaras, Dimosthenis; Tyliszczak, Tolek; Wagner, Gregory L.; Weng, Tsu-Chein; Yang, Ping

    2014-01-01T23:59:59.000Z

    Advancing theories of how metal oxygen bonding influences metal oxo properties can expose new avenues for innovation in materials science, catalysis, and biochemistry. Historically, spectroscopic analyses of the transition metal peroxyanions, MO4x-, have formed the basis for new M O bonding theories. Herein, relative changes in M O orbital mixing in MO42- (M = Cr, Mo, W) and MO41- (M = Mn, Tc, Re) are evaluated for the first time by non-resonant inelastic X-ray scattering, X-ray absorption spectroscopy using fluorescence and transmission (via a scanning transmission X-ray microscope), and linear-response density functional theory. The results suggest that moving from Group 6 to Group 7 or down the triads increases M O e () mixing. Meanwhile, t2 mixing ( + ) remains relatively constant within the same Group. These unexpected changes in frontier orbital energy and composition are evaluated in terms of periodic trends in d orbital energy and radial extension.

  15. Thermal barrier and overlay coating systems comprising composite metal/metal oxide bond coating layers

    DOE Patents [OSTI]

    Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL); Vance, Steven J. (Orlando, FL)

    2001-01-01T23:59:59.000Z

    The present invention generally describes multilayer coating systems comprising a composite metal/metal oxide bond coat layer. The coating systems may be used in gas turbines.

  16. Metal-bonded, carbon fiber-reinforced composites

    DOE Patents [OSTI]

    Sastri, Suri A. (Lexington, MA); Pemsler, J. Paul (Lexington, MA); Cooke, Richard A. (Framingham, MA); Litchfield, John K. (Bedford, MA); Smith, Mark B. (Ipswich, MA)

    1996-01-01T23:59:59.000Z

    Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates.

  17. Metal-bonded, carbon fiber-reinforced composites

    DOE Patents [OSTI]

    Sastri, S.A.; Pemsler, J.P.; Cooke, R.A.; Litchfield, J.K.; Smith, M.B.

    1996-03-05T23:59:59.000Z

    Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates. 2 figs.

  18. A Mild C-O Bond Formation Catalyzed by a Rhenium-Oxo Complex Benjamin D. Sherry, Alexander T. Radosevich, and F. Dean Toste*

    E-Print Network [OSTI]

    Toste, Dean

    , such as a halide or pseudohalide.1,2 For example, formation of sp3-C-O bonds by transition-metal-catalyzed allylic etherification requires the generation of copper3a,b or zinc3c alkoxides as nucleophiles and allylic esters, such as acetals (entry 15), ketals (entry 5), and t-butylcarbamates (entries 7, 8), were not cleaved

  19. Metal-and hydrogen-bonding competition during water absorption on Pd(111) and Ru(0001)

    E-Print Network [OSTI]

    Tatarkhanov, Mouslim

    2010-01-01T23:59:59.000Z

    Metal- and hydrogen-bonding competition during waterwith the greater degree of hydrogen-bonded network formationH and OH to maximize both hydrogen bonding and oxygen-metal

  20. An Investigation of Bonding Mechanism in Metal Cladding by Warm Rolling

    E-Print Network [OSTI]

    Yang, Wei

    2012-02-14T23:59:59.000Z

    , this research presents a bonding mechanism for the roll cladding process of dissimilar metals. The roll bonding model can help optimize rolling parameters for varying bonding strength depending on the demands of the application. It can also provide insights...

  1. Bimetallic cleavage of aromatic C-H bonds by rare-earth-metal complexes

    E-Print Network [OSTI]

    Huang, W; Huang, W; Dulong, F; Khan, SI; Cantat, T; Diaconescu, PL

    2014-01-01T23:59:59.000Z

    of Aromatic C-H Bonds by Rare Earth Metal Complexes Wenliangone week prior to use. Rare earth metal oxides (scandium,

  2. Electric charge trapping, residual stresses and properties of ceramics after metal/ceramics bonding

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and diffusion of metallic species in the ceramics, during the bonding process. Keywords: Joining; ToughnessElectric charge trapping, residual stresses and properties of ceramics after metal/ceramics bonding applications is rapidly increasing. Most of these applications require the use of ceramics bonded with metal

  3. Chemical bonding of hydrogen molecules to transition metal complexes

    SciTech Connect (OSTI)

    Kubas, G.J.

    1990-01-01T23:59:59.000Z

    The complex W(CO){sub 3}(PR{sub 3}){sub 2}(H{sub 2}) (CO = carbonyl; PR{sub 3} = organophosphine) was prepared and was found to be a stable crystalline solid under ambient conditions from which the hydrogen can be reversibly removed in vacuum or under an inert atmosphere. The weakly bonded H{sub 2} exchanges easily with D{sub 2}. This complex represents the first stable compound containing intermolecular interaction of a sigma-bond (H-H) with a metal. The primary interaction is reported to be donation of electron density from the H{sub 2} bonding electron pair to a vacant metal d-orbital. A series of complexes of molybdenum of the type Mo(CO)(H{sub 2})(R{sub 2}PCH{sub 2}CH{sub 2}PR{sub 2}){sub 2} were prepared by varying the organophosphine substitutent to demonstrate that it is possible to bond either dihydrogen or dihydride by adjusting the electron-donating properties of the co-ligands. Results of infrared and NMR spectroscopic studies are reported. 20 refs., 5 fig.

  4. The diffusion bonding of silicon carbide and boron carbide using refractory metals

    SciTech Connect (OSTI)

    Cockeram, B.V.

    1999-10-01T23:59:59.000Z

    Joining is an enabling technology for the application of structural ceramics at high temperatures. Metal foil diffusion bonding is a simple process for joining silicon carbide or boron carbide by solid-state, diffusive conversion of the metal foil into carbide and silicide compounds that produce bonding. Metal diffusion bonding trials were performed using thin foils (5 {micro}m to 100 {micro}m) of refractory metals (niobium, titanium, tungsten, and molybdenum) with plates of silicon carbide (both {alpha}-SiC and {beta}-SiC) or boron carbide that were lapped flat prior to bonding. The influence of bonding temperature, bonding pressure, and foil thickness on bond quality was determined from metallographic inspection of the bonds. The microstructure and phases in the joint region of the diffusion bonds were evaluated using SEM, microprobe, and AES analysis. The use of molybdenum foil appeared to result in the highest quality bond of the metal foils evaluated for the diffusion bonding of silicon carbide and boron carbide. Bonding pressure appeared to have little influence on bond quality. The use of a thinner metal foil improved the bond quality. The microstructure of the bond region produced with either the {alpha}-SiC and {beta}-SiC polytypes were similar.

  5. ELECTRONIC AND CHEMICAL PROPERTIES OF PD IN BIMETALLIC SYSTEMS: HOW MUCH DO WE KNOW ABOUT HETERONUCLEAR METAL-METAL BONDING?

    SciTech Connect (OSTI)

    RODRIGUEZ,J.A.

    2001-09-27T23:59:59.000Z

    The experimental and theoretical studies described above illustrate the complex nature of the heteronuclear metal-metal bond. In many cases, bimetallic bonding induces a significant redistribution of charge around the bonded metals. This redistribution of charge is usually linked to the strength of the bimetallic bond, affects the position of the core and valence levels of the metals, and can determine the chemical reactivity of the system under study. New concepts are emerging [22,23,34,36] and eventually the coupling of experiment and theory can be useful for designing more efficient bimetallic catalysts [98,106,107].

  6. Ligand field considerations for the reactivity of high valent metal-oxo complexes and of bimetallic HX splitting photocatalysts

    E-Print Network [OSTI]

    Chambers, Matthew Burke

    2013-01-01T23:59:59.000Z

    Inorganic molecular complexes are used to probe mechanistic steps in two reaction reactions related to energy storage. The first reaction considered is the O-O bond formation step required for water oxidation to oxygen. ...

  7. Direct-Coupling O? Bond Forming Pathway in Cobalt Oxide Water Oxidation Catalysts

    E-Print Network [OSTI]

    Wang, Lee-Ping

    We report a catalytic mechanism for water oxidation in a cobalt oxide cubane model compound, in which the crucial O–O bond formation step takes place by direct coupling between two CoIV(O) metal oxo groups. Our results are ...

  8. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOE Patents [OSTI]

    Hartwig, John F. (Durham, CT); Kawatsura, Motoi (Chatham, NJ); Loeber, Oliver (New Haven, CT)

    2002-01-01T23:59:59.000Z

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  9. Metal Catalyzed sp2 Bonded Carbon - Large-scale Graphene Synthesis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Catalyzed sp2 Bonded Carbon - Large-scale Graphene Synthesis and Beyond December 1, 2009 at 3pm36-428 Peter Sutter Center for Functional Nanomaterials sutter abstract:...

  10. Method of bonding metals to ceramics and other materials

    DOE Patents [OSTI]

    Gruen, D.M.; Krauss, A.R.; DeWald, A.P.; Chienping Ju; Rigsbee, J.M.

    1993-01-05T23:59:59.000Z

    A composite and method of forming same wherein the composite has a non-metallic portion and an alloy portion wherein the alloy comprises an alkali metal and a metal which is an electrical conductor such as Cu, Ag, Al, Sn or Au and forms an alloy with the alkali metal. A cable of superconductors and composite is also disclosed.

  11. Liquid Metal Bond for Improved Heat Transfer in LWR Fuel Rods

    SciTech Connect (OSTI)

    Donald Olander

    2005-08-24T23:59:59.000Z

    A liquid metal (LM) consisting of 1/3 weight fraction each of Pb, Sn, and Bi has been proposed as the bonding substance in the pellet-cladding gap in place of He. The LM bond eliminates the large AT over the pre-closure gap which is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond. The HEATING 7.3 heat transfer code indicates that these void spaces lead to local fuel hot spots.

  12. Ceramic-Metal Bonding Research in Japan japanese metals laboratories are becoming materials

    E-Print Network [OSTI]

    Eagar, Thomas W.

    bonding (Fig. 1), plasma spraying, brazing, or laser processing. In the Department of Weld1ng Engineering

  13. A molecular loop with interstitial channels in a chiral environment and study of formation of metal-metal bonds in dinickel, dipalladium and dititanium complexes

    E-Print Network [OSTI]

    Ibragimov, Sergey

    2006-08-16T23:59:59.000Z

    This dissertation consists of two independent topics: (1) a molecular loop with interstitial channels in a chiral environment; (2) study of formation of metal-metal bonds in dinickel, dipalladium and dititanium complexes On the first topic, a study...

  14. A molecular loop with interstitial channels in a chiral environment and study of formation of metal-metal bonds in dinickel, dipalladium and dititanium complexes 

    E-Print Network [OSTI]

    Ibragimov, Sergey

    2006-08-16T23:59:59.000Z

    This dissertation consists of two independent topics: (1) a molecular loop with interstitial channels in a chiral environment; (2) study of formation of metal-metal bonds in dinickel, dipalladium and dititanium complexes On ...

  15. Novel method for the prediction of an interface bonding species at alumina/metal interfaces

    SciTech Connect (OSTI)

    Yoshitake, Michiko, E-mail: yoshitake.michiko@nims.go.jp; Yagyu, Shinjiro [National Institute for Materials Science, 3-13, Sakura, Tsukuba 305-0003 (Japan); Chikyow, Toyohiro [National Institute for Materials Science, 1-1, Namiki, Tsukuba 305-0044 (Japan)

    2014-03-15T23:59:59.000Z

    Interface bonding between alumina and various metals is discussed from the viewpoint of chemical thermodynamics. A method to predict the interface bonding species at an alumina/metal interface under equilibrium conditions is proposed by using the concept of chemical equilibrium for interface termination. The originality of this method is in the way a simple estimation of the interface binding energy, which is generally applicable to most metals, is developed. The effectiveness of this method is confirmed by careful examination of the experimental results. Comparison of the predicted and experimentally observed interface terminations reveals that the proposed method agrees well with the reported results. The method uses only basic quantities of pure elements and the formation enthalpy of oxides. Therefore, it can be applied to most metals in the periodic table and is useful for screening materials in the quest to develop interfaces with particular functions.

  16. Metal-and hydrogen-bonding competition during water absorption on Pd(111) and Ru(0001)

    SciTech Connect (OSTI)

    Tatarkhanov, Mouslim; Ogletree, D. Frank; Rose, Franck; Mitsui, Toshiyuki; Fomin, Evgeny; Rose, Mark; Cerda, Jorge I.; Salmeron, Miquel

    2009-09-03T23:59:59.000Z

    The initial stages of water adsorption on the Pd(111) and Ru(0001) surfaces have been investigated experimentally by Scanning Tunneling Microscopy in the temperature range between 40 K and 130 K, and theoretically with Density Functional Theory (DFT) total energy calculations and STM image simulations. Below 125 K water dissociation does not occur at any appreciable rate and only molecular films are formed. Film growth starts by the formation of flat hexamer clusters where the molecules bind to the metal substrate through the O-lone pair while making H-bonds with neighboring molecules. As coverage increases, larger networks of linked hexagons are formed with a honeycomb structure, which requires a fraction of the water molecules to have their molecular plane perpendicular to the metal surface with reduced water-metal interaction. Energy minimization favors the growth of networks with limited width. As additional water molecules adsorb on the surface they attach to the periphery of existing islands, where they interact only weakly with the metal substrate. These molecules hop along the periphery of the clusters at intermediate temperatures. At higher temperatures they bind to the metal to continue the honeycomb growth. The water-Ru interaction is significantly stronger than the water-Pd interaction, which is consistent with the greater degree of hydrogen-bonded network formation and reduced water-metal bonding observed on Pd relative to Ru.

  17. Metal/polymer adhesion enhancement by reactive ion assisted interface bonding and mixing

    SciTech Connect (OSTI)

    Wu, P.K. [Department of Physics, Southern Oregon University, Ashland, Oregon 97520 (United States)] [Department of Physics, Southern Oregon University, Ashland, Oregon 97520 (United States); Lu, T. [Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)] [Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    1997-11-01T23:59:59.000Z

    The adhesion strength between sputter deposited Al on Teflon AF 1600 was increased from {lt}0.15N/mm to {gt}0.7N/mm by treating the interface with reactive ion assisted interface bonding and mixing (RIAIBM) and subsequent annealing. X-ray photoelectron spectroscopy measurements indicate the RIAIBM process and subsequent annealing promotes material mixing, implantation of the reactive species, bond breaking, and new bond formation at the interface. These factors are known to increase adhesion strength. The implementation of RIAIBM is straight forward and is suitable for application to both metal-on-polymer and polymer-on-metal systems. {copyright} {ital 1997 American Institute of Physics.}

  18. NonDestructive Inspection of Adhesive Bonds in Metal-Metal Joints

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    good bonding Immersion tank Ultrasonic phased array Pulsed thermography Laser ultrasonics (steel sample shown) 2008 DOE Merit Review - ALM Accomplishments - Body in...

  19. An ab initio molecular orbital study of metal nitrosyl bond angles in iron complexes

    E-Print Network [OSTI]

    Hawkins, Tommy Wayne

    1979-01-01T23:59:59.000Z

    I An ab initio molecular orbital study of the series [Fe(NO)CN)4] (N = 1, 2, 3) and [Fe(NO)Z(CN)ZN)] is made with emphasis on the effect of iron nitrosyl bond angle on electronic structure. In the [FeNO} 6 1- case, [Fe(NO)(CN)4] , there is a potential... barrier to bending of the nitrosyl which is consistent with existing models of transition metal 7 2- nitrosyl bonding. The [FeNO} complex, [Fe(NO) (CN)4] shows no sigrdficant barrier to moderate nitrosyl bending (up to an Fe-N-0 angle of 130 '), while...

  20. High-temperature, high-pressure bonding of nested tubular metallic components

    DOE Patents [OSTI]

    Quinby, Thomas C. (Kingston, TN)

    1980-01-01T23:59:59.000Z

    This invention is a tool for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  1. Structures and Reactivity of Transition-Metal Compounds Featuring Metal-Ligand Multiple Bonds

    E-Print Network [OSTI]

    Xu, Zhenggang

    2014-07-25T23:59:59.000Z

    isomers of product 2a-f. .................................................................. 89 Figure 34. The rearrangement between 2_iso6 and 2_iso3. ............................................. 92 Figure 35. The solvated ?G (kcal/mol) diagram... iso3 and iso6 for 2a-f (kcal/mol). ................ 91 Table 17. Results of energies differencesa between 2c_iso6 and 2c_iso3. ...................... 92 xv Table 18. Selected structural parameters of 2a from computations and experiments. (Bond...

  2. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    SciTech Connect (OSTI)

    Han, M.K.

    2006-05-06T23:59:59.000Z

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe{sub 13-x}Si{sub x} system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re{sub 2-x}Fe{sub 4}Si{sub 14-y} and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi{sub 2}: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb{sub 3}Zn{sub 3.6}Al{sub 7.4}: Partially ordered structure of Tb{sub 3}Zn{sub 3.6}Al{sub 7.4} compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn{sub 39}(Cr{sub x}Al{sub 1-x}){sub 81}: These layered structures are similar to icosahedral Mn-Al quasicrystalline compounds. Therefore, this compound may provide new insights into the formation, composition and structure of quasicrystalline materials.

  3. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    SciTech Connect (OSTI)

    Mi-Kyung Han

    2006-05-01T23:59:59.000Z

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe{sub 13-x}Si{sub x} system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE{sub 2-x}Fe{sub 4}Si{sub 14-y} and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi{sub 2}: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb{sub 3}Zn{sub 3.6}Al{sub 7.4}: Partially ordered structure of Tb{sub 3}Zn{sub 3.6}Al{sub 7.4} compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn{sub 39}(Cr{sub x}Al{sub 1-x}){sub 81}: These layered structures are similar to icosahedral Mn-Al quasicrystalline compounds. Therefore, this compound may provide new insights into the formation, composition and structure of quasicrystalline materials.

  4. Method of applying a bond coating and a thermal barrier coating on a metal substrate, and related articles

    DOE Patents [OSTI]

    Hasz, Wayne Charles (Pownal, VT); Borom, Marcus Preston (Tucson, AZ)

    2002-01-01T23:59:59.000Z

    A method for applying at least one bond coating on a surface of a metal-based substrate is described. A foil of the bond coating material is first attached to the substrate surface and then fused thereto, e.g., by brazing. The foil is often initially prepared by thermally spraying the bond coating material onto a removable support sheet, and then detaching the support sheet. Optionally, the foil may also include a thermal barrier coating applied over the bond coating. The substrate can be a turbine engine component.

  5. Benzene Adsorbed on Metals: Concerted Effect of Covalency and van der Waals Bonding

    E-Print Network [OSTI]

    Liu, Wei; Santra, Biswajit; Michaelides, Angelos; Scheffler, Matthias; Tkatchenko, Alexandre

    2012-01-01T23:59:59.000Z

    The adsorption of aromatic molecules on metal surfaces plays a key role in condensed matter physics and functional materials. Depending on the strength of the interaction between the molecule and the surface, the binding is typically classified as either physisorption or chemisorption. Van der Waals (vdW) interactions contribute significantly to the binding in physisorbed systems, but the role of the vdW energy in chemisorbed systems remains unclear. Here we study the interaction of benzene with the (111) surface of transition metals, ranging from weak adsorption (Ag and Au) to strong adsorption (Pt, Pd, Ir, and Rh). When vdW interactions are accurately accounted for, the barrier to adsorption predicted by standard density functional calculations essentially vanishes, producing a metastable precursor state on Pt and Ir surfaces. Notably, vdW forces contribute more to the binding of covalently bonded benzene than they do when benzene is physisorbed.

  6. Bonding of teflon to metals. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The bibliography contains citations concerning the adhesion of Teflon to metal. Adhesion strength, bond mechanisms, and the effects on friction and lubrication are discussed. Metal films applied to Teflon products and Teflon films joined to metal are discussed. Joining processes, surface treatments, and reasons for failure are examined. Applications discussed include bearings, pipe linings, and bridge coatings. (Contains a minimum of 75 citations and includes a subject term index and title list.)

  7. PHYSICAL REVIEW B 86, 245405 (2012) Benzene adsorbed on metals: Concerted effect of covalency and van der Waals bonding

    E-Print Network [OSTI]

    Alavi, Ali

    2012-01-01T23:59:59.000Z

    PHYSICAL REVIEW B 86, 245405 (2012) Benzene adsorbed on metals: Concerted effect of covalency, but the role of the vdW energy in chemisorbed systems remains unclear. Here we study the interaction of benzene of covalently bonded benzene than they do when benzene is physisorbed. Comparison to experimental data

  8. Vibrational fine structure in the valence ionizations of transition-metal hexacarbonyls: new experimental indication of metal-to-carbonyl. pi. bonding

    SciTech Connect (OSTI)

    Hubbard, J.L.; Lichtenberger, D.L.

    1982-04-21T23:59:59.000Z

    The first observations of metal-carbon vibrational structure in photoionization bands are reported. Attention is focused on the predominantly metal d ionizations of M(CO)/sub 6/ (M = Cr, Mo, and W), and the methods for obtaining high resolution and very high signal-to-noise He I ionization data are detailed. The /sup 2/T/sub 2g/ ionization band of Cr(CO)/sub 6/ and the spin-orbit split /sup 2/E'' and /sup 2/U' bands of W(CO)/sub 6/ show distinct vibrational progressions which correspond to the totally symmetric (a/sub 1g/) metal-carbon stretching mode in the positive ion states. The metal-carbon stretching frequencies are found to be significantly less in the positive ion states than in the ground states, indicating a reduction of metal-carbon bond order upon the loss of a t/sub 2g/ electron. Evaluation of the vibrational progressions shows that the metal-carbon bond length increases on the order of 0.10 A upon t/sub 2g/ ionization in the case of W(CO)/sub 6/ and about 0.14 A in the case of Cr(CO)/sub 6/. In addition, the beginning of a short progression in the a/sub 1g/ carbon-oxygen stretching mode is observed in the Mo(CO)/sub 6/ spectrum and is clearly seen in the W(CO)/sub 6/ spectrum. All of these observations show that removal of an electron from the predominantly metal t/sub 2g/ orbitals, which are strictly ..pi.. symmetry with respect to the carbonyls, substantially weakens the metal-to-carbonyl bond. 9 figures, 2 tables.

  9. Bonding in transition-metal cluster compounds. 1. The M/sub 6/(. mu. /sub 3/-X)/sub 8/ cluster

    SciTech Connect (OSTI)

    Woolley, R.G.

    1985-10-23T23:59:59.000Z

    The electronic structure of the transition-metal cluster moiety M/sub 6/(..mu../sub 3/-X)/sub 8/, with idealized O/sub h/ symmetry, is examined for X = chalcogen, halogen, and carbonyl ligands. The role of the metal d electrons in metal-metal bonding is emphasized, and the structure of the metal cluster d-band is described in detail. 54 references, 4 figures.

  10. Electron Density Distributions Calculated for the Nickel Sulfides Millerite, Vaesite, and Heazlewoodite and Nickel Metal: A Case for the Importance of Ni-Ni Bond Paths for

    E-Print Network [OSTI]

    Downs, Robert T.

    Electron Density Distributions Calculated for the Nickel Sulfides Millerite, Vaesite, and Heazlewoodite and Nickel Metal: A Case for the Importance of Ni-Ni Bond Paths for Electron Transport G. V. Gibbs's)) have been calculated for the bonded interactions comprising the nickel sulfide minerals millerite, Ni

  11. An Investigation of Bonding Mechanism in Metal Cladding by Warm Rolling 

    E-Print Network [OSTI]

    Yang, Wei

    2012-02-14T23:59:59.000Z

    the knowledge of the roll cladding process. To accomplish the objectives, aluminum 1100 sheet (Al 1100) and stainless steel 304 sheet (SST 304) are bonded by warm rolling under controlled conditions. The 180 degrees peel test is used to determine the bonding...

  12. Mechanistic studies on metal-catalyzed carbon-nitrogen bond forming reactions

    E-Print Network [OSTI]

    Strieter, Eric R

    2005-01-01T23:59:59.000Z

    Mechanistic studies on copper and palladium-catalyzed C-N bond forming reactions are described. To understand the mechanistic details of these processes, several principles of physical organic chemistry have been employed. ...

  13. Carbon–Oxygen Bond Formation via Organometallic Baeyer–Villiger Transformations: A Computational Study on the Impact of Metal Identity

    SciTech Connect (OSTI)

    Figg, Travis M. [Univ. of North Texas, Denton, TX (United States). Dept. of Chemistry and Center for Advanced Scientific Computing and Modeling; Webb, Joanna R. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Chemistry; Cundari, Thomas R. [Univ. of North Texas, Denton, TX (United States). Dept. of Chemistry and Center for Advanced Scientific Computing and Modeling; Gunnoe, T. Brent [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Chemistry

    2012-02-01T23:59:59.000Z

    Metal-mediated formation of C–O bonds is an important transformation that can occur by a variety of mechanisms. Recent studies suggest that oxygen-atom insertion into metal–hydrocarbyl bonds in a reaction that resembles the Baeyer–Villiger transformation is a viable process. In an effort to identify promising new systems, this study is designed to assess the impact of metal identity on such O-atom insertions for the reaction [(bpy)xM(Me)(OOH)]n ? [(bpy)xM(OMe)(OH)]n (x = 1 or 2; bpy = 2,2'-bipyridyl; n is varied to maintain the d-electron count at d? or d?). Six d?-square-planar complexes (M = PtII, PdII, NiII, IrI, RhI, and CoI) and eight d?-octahedral systems (M = IrIII, RhIII, CoIII, FeII RuII, OsII, MnI, and TcI) are studied. Using density functional theory calculations, the structures and energies of ground-state and transition-state species are elucidated. This study shows clear trends in calculated ?G’s for the O-atom insertions. The organometallic Baeyer–Villiger insertions are favored by lower coordination numbers (x = 1 versus x = 2), earlier transition metals, and first-row (3d) transition metals.

  14. Strong Bond Activation with Late Transition-Metal Pincer Complexes as a Foundation for Potential Catalysis

    E-Print Network [OSTI]

    Zhu, Yanjun

    2012-07-16T23:59:59.000Z

    introduction for pincer ligands ................................................ 1 1.2 Synthesis of pincer ligated transition metal complexes ........................ 3 1.3 Structural preference for group 9/10 metal complexes (4d and 5d) ...... 9 1... ..................................................................................... 126 V SYNTHESIS, CHARACTERIZATION, AND REACTIVITY OF A RHODIUM DIFLUOROCARBENE COMPLEX SUPPORTED BY PNP PINCER LIGAND ........................................................................................ 144 5.1 Introduction...

  15. Stress analysis and failure of the bond interface of a metal matrix component

    E-Print Network [OSTI]

    Pamel, Michele Lynn

    1995-01-01T23:59:59.000Z

    A two dimensional orthotropic thermoelastic finite element algorithm is developed herein, and it is used to evaluate the performance of a metal matrix composite (MMC) structural component provided by G.E. and Battelle Labs. The component consists...

  16. An ab initio molecular orbital study of metal nitrosyl bond angles in iron complexes 

    E-Print Network [OSTI]

    Hawkins, Tommy Wayne

    1979-01-01T23:59:59.000Z

    the berding process. Negligible transfer of charge, as determined by total charge population, between sntal and ligsnd is observed as in the (FeN0) case. The cyanide ligands appear to equally share a de- 6 ficit of about one charge unit. At the linear Fe...I An ab initio molecular orbital study of the series [Fe(NO)CN)4] (N = 1, 2, 3) and [Fe(NO)Z(CN)ZN)] is made with emphasis on the effect of iron nitrosyl bond angle on electronic structure. In the [FeNO} 6 1- case, [Fe(NO)(CN)4] , there is a potential...

  17. Ultra-stable Molecule-Surface Architectures at Metal Oxides: Structure, Bonding, and Electron-transfer Processes

    SciTech Connect (OSTI)

    Hamers, Robert John

    2013-12-07T23:59:59.000Z

    Research funded by this project focused on the development of improved strategies for functionalization of metal oxides to enhance charge?transfer processes relevant to solar energy conversion. Initial studies included Fe2O3, WO3, TiO2, SnO2, and ZnO as model oxide systems; these systems were chosen due to differences in metal oxidation state and chemical bonding types in these oxides. Later studies focused largely on SnO2 and ZnO, as these materials show particularly promising surface chemistry, have high electron mobility, and can be readily grown in both spherical nanoparticles and as elongated nanorods. New molecules were synthesized that allowed the direct chemical assembly of novel nanoparticle ?dyadic? structures in which two different oxide materials are chemically joined, leading to an interface that enhances the separation of of charge upon illumination. We demonstrated that such junctions enhance photocatalytic efficiency using model organic compounds. A separate effort focused on novel approaches to linking dye molecules to SnO2 and ZnO as a way to enhance solar conversion efficiency. A novel type of surface binding through

  18. Metal-Catalyzed Carbon-Carbon Bond Forming Reactions for the Synthesis of Significant Chiral Building Blocks 

    E-Print Network [OSTI]

    Bugarin Cervantes, Alejandro

    2011-08-08T23:59:59.000Z

    Morita Baylis-Hillman (MBH) reaction a carbon-carbon bond forming reaction between an ?,?-unsaturated carbonyl and aldehydes or activated ketones in the presence of a nucleophilic catalyst. The MBH reaction is an ...

  19. Photochemical route to actinide-transition metal bonds: synthesis, characterization and reactivity of a series of thorium and uranium heterobimetallic complexes

    SciTech Connect (OSTI)

    Ward, Ashleigh; Lukens, Wayne; Lu, Connie; Arnold, John

    2014-04-01T23:59:59.000Z

    A series of actinide-transition metal heterobimetallics has been prepared, featuring thorium, uranium and cobalt. Complexes incorporating the binucleating ligand N[-(NHCH2PiPr2)C6H4]3 and Th(IV) (4) or U(IV) (5) with a carbonyl bridged [Co(CO)4]- unit were synthesized from the corresponding actinide chlorides (Th: 2; U: 3) and Na[Co(CO)4]. Irradiation of the isocarbonyls with ultraviolet light resulted in the formation of new species containing actinide-metal bonds in good yields (Th: 6; U: 7); this photolysis method provides a new approach to a relatively rare class of complexes. Characterization by single-crystal X-ray diffraction revealed that elimination of the bridging carbonyl is accompanied by coordination of a phosphine arm from the N4P3 ligand to the cobalt center. Additionally, actinide-cobalt bonds of 3.0771(5) and 3.0319(7) for the thorium and uranium complexes, respectively, were observed. The solution state behavior of the thorium complexes was evaluated using 1H, 1H-1H COSY, 31P and variable-temperature NMR spectroscopy. IR, UV-Vis/NIR, and variable-temperature magnetic susceptibility measurements are also reported.

  20. Partial-Transient-Liquid-Phase Bonding of Advanced Ceramics Using Surface-Modified Interlayers

    E-Print Network [OSTI]

    Reynolds, Thomas Bither

    2012-01-01T23:59:59.000Z

    Theoretical-Model for Diffusion Bonding." Metal Science 16,Derby, B. & Wallach, E. "Diffusion Bonding - Development ofInterfacial Contact during Diffusion Bonding." Metallurgical

  1. 2180 J. Am. Chem. SOC.1986, 108, 2180-2191 Bonding in Transition-Metal-Methylene Complexes. 2.

    E-Print Network [OSTI]

    Goddard III, William A.

    for numerous catalytic reactions (e.g., Fischer- Tropsch reductive polymerization of CO and olefin metathesis) and have been isolated in a number of cases includingk,b Me, ,OMe C o/ u" oc',, I( ..co and OC" t oc 0 1 2=CH2)+ (7), (Mn=CH2)+ (8), and (Fe=CH2)+ (9) lead also to a double bond with a similar covalent M ds

  2. Solder extrusion pressure bonding process and bonded products produced thereby

    DOE Patents [OSTI]

    Beavis, Leonard C. (Albuquerque, NM); Karnowsky, Maurice M. (Albuquerque, NM); Yost, Frederick G. (Ceder Crest, NM)

    1992-01-01T23:59:59.000Z

    Production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about -40.degree. C. and 110.degree. C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  3. Solder extrusion pressure bonding process and bonded products produced thereby

    DOE Patents [OSTI]

    Beavis, L.C.; Karnowsky, M.M.; Yost, F.G.

    1992-06-16T23:59:59.000Z

    Disclosed is a process for production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about [minus]40 C and 110 C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  4. AC 2010-1263: STUDENT UNDERSTANDING OF ATOMIC BONDS AND THEIR RELATION TO MECHANICAL PROPERTIES OF METALS IN AN

    E-Print Network [OSTI]

    Heckler, Andrew F.

    student difficulties in learning materials science. © American Society for Engineering Education, 2010 #12-level introductory materials science course for engineers. In particular, we describe a number of student OF METALS IN AN INTRODUCTORY MATERIALS SCIENCE ENGINEERING COURSE Andrew Heckler, Ohio State University

  5. Transient liquid phase ceramic bonding

    DOE Patents [OSTI]

    Glaeser, Andreas M. (Berkeley, CA)

    1994-01-01T23:59:59.000Z

    Ceramics are joined to themselves or to metals using a transient liquid phase method employing three layers, one of which is a refractory metal, ceramic or alloy. The refractory layer is placed between two metal layers, each of which has a lower melting point than the refractory layer. The three layers are pressed between the two articles to be bonded to form an assembly. The assembly is heated to a bonding temperature at which the refractory layer remains solid, but the two metal layers melt to form a liquid. The refractory layer reacts with the surrounding liquid and a single solid bonding layer is eventually formed. The layers may be designed to react completely with each other and form refractory intermetallic bonding layers. Impurities incorporated into the refractory metal may react with the metal layers to form refractory compounds. Another method for joining ceramic articles employs a ceramic interlayer sandwiched between two metal layers. In alternative embodiments, the metal layers may include sublayers. A method is also provided for joining two ceramic articles using a single interlayer. An alternate bonding method provides a refractory-metal oxide interlayer placed adjacent to a strong oxide former. Aluminum or aluminum alloys are joined together using metal interlayers.

  6. B(C6F5)3 Activation of Oxo Tungsten Complexes That Are Relevant to Olefin Metathesis

    E-Print Network [OSTI]

    Müller, Peter

    B(C6F5)3 Activation of Oxo Tungsten Complexes That Are Relevant to Olefin Metathesis Dmitry V Information ABSTRACT: We have found that coordination of B(C6F5)3 to an oxo ligand in tungsten oxo alkylidene reactions between a relatively well behaved Lewis acid (B(C6F5)3) and a variety of tungsten oxo complexes

  7. Z-Selective Olefin Metathesis Reactions Promoted by Tungsten Oxo Alkylidene Complexes

    E-Print Network [OSTI]

    Müller, Peter

    Z-Selective Olefin Metathesis Reactions Promoted by Tungsten Oxo Alkylidene Complexes Dmitry V). Early in the development of olefin metathesis catalysts that contain tungsten, it was shown that metathetically more active and reproducible systems were produced when tungsten oxo complexes were deliberately

  8. Author's personal copy Crystal structure of the uranium oxo borohydride complex

    E-Print Network [OSTI]

    Girolami, Gregory S.

    Author's personal copy Crystal structure of the uranium oxo borohydride complex U2(l-O)(BH4)6(dme)2 online 9 November 2011 Keywords: Uranium Borohydride Hydride Oxo Crystal structure Aminodiboranate a b s t r a c t The reaction of uranium tetrachloride, UCl4, with sodium N,N-dimethylaminodiboranate, Na(H3

  9. Pauling bond strength, bond length and electron density distribution

    SciTech Connect (OSTI)

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.; Iversen, Bo B.; Spackman, M. A.

    2014-01-18T23:59:59.000Z

    A power law regression equation, = 1.46(/r)-0.19, connecting the average experimental bond lengths, , with the average accumulation of the electron density at the bond critical point, , between bonded metal M and oxygen atoms, determined at ambient conditions for oxide crystals, where r is the row number of the M atom, is similar to the regression equation R(M-O) = 1.39(?(rc)/r)-0.21 determined for three perovskite crystals for pressures as high as 80 GPa. The two equations are also comparable with those, = 1.43(/r)-0.21, determined for a large number of oxide crystals at ambient conditions and = 1.39(/r)-0.22, determined for geometry optimized hydroxyacid molecules, that connect the bond lengths to the average Pauling electrostatic bond strength, , for the M-O bonded interactions. On the basis of the correspondence between the two sets of equations connecting ?(rc) and the Pauling bond strength s with bond length, it appears that Pauling’s simple definition of bond strength closely mimics the accumulation of the electron density between bonded pairs of atoms. The similarity of the expressions for the crystals and molecules is compelling evidence that the M-O bonded interactions for the crystals and molecules 2 containing the same bonded interactions are comparable. Similar expressions, connecting bond lengths and bond strength, have also been found to hold for fluoride, nitride and sulfide molecules and crystals. The Brown-Shannon bond valence, ?, power law expression ? = [R1/(R(M-O)]N that has found wide use in crystal chemistry, is shown to be connected to a more universal expression determined for oxides and the perovskites, = r[(1.41)/]4.76, demonstrating that the bond valence for a bonded interaction is likewise closely connected to the accumulation of the electron density between the bonded atoms. Unlike the Brown-Shannon expression, it is universal in that it holds for the M-O bonded interactions for a relatively wide range of M atoms of the periodic table. The power law equation determined for the oxide crystals at ambient conditions is similar to the power law expression = r[1.46/]5.26 determined for the perovskites at pressures as high as 80 GPa, indicating that the intrinsic connection between R(M-O) and ?(rc) that holds at ambient conditions also holds, to a first approximation, at high pressures.

  10. Carbon-carbon bond cleavage of 1,2-hydroxy ethers b7 vanadium(V) dipicolinate complexes

    SciTech Connect (OSTI)

    Hanson, Susan K [Los Alamos National Laboratory; Gordon, John C [Los Alamos National Laboratory; Thorn, David L [Los Alamos National Laboratory; Scott, Brian L [Los Alamos National Laboratory; Baker, R Tom [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The development of alternatives to current petroleum-based fuels and chemicals is becoming increasingly important due to concerns over climate change, growing world energy demand, and energy security issues. Using non-food derived biomass to produce renewable feedstocks for chemicals and fuels is a particularly attractive possibility. However, the majority of biomass is in the form of lignocellulose, which is often not fully utilized due to difficulties associated with breaking down both lignin and cellulose. Recently, a number of methods have been reported to transform cellulose directly into more valuable materials such as glucose, sorbitol, 5-(chloromethyl)furfural, and ethylene glycol. Less progress has been made with selective transformations of lignin, which is typically treated in paper and forest industries by kraft pulping (sodium hydroxide/sodium sulfide) or incineration. Our group has begun investigating aerobic oxidative C-C bond cleavage catalyzed by dipicolinate vanadium complexes, with the idea that a selective C-C cleavage reaction of this type could be used to produce valuable chemicals or intermediates from cellulose or lignin. Lignin is a randomized polymer containing methoxylated phenoxy propanol units. A number of different linkages occur naturally; one of the most prevalent is the {beta}-O-4 linkage shown in Figure 1, containing a C-C bond with 1,2-hydroxy ether substituents. While the oxidative C-C bond cleavage of 1,2-diols has been reported for a number of metals, including vanadium, iron, manganese, ruthenium, and polyoxometalate complexes, C-C bond cleavage of 1,2-hydroxy ethers is much less common. We report herein vanadium-mediated cleavage of C-C bonds between alcohol and ether functionalities in several lignin model complexes. In order to explore the scope and potential of vanadium complexes to effect oxidative C-C bond cleavage in 1,2-hydroxy ethers, we examined the reactivity of the lignin model complexes pinacol monomethyl ether (A), 2-phenoxyethanol (B), and 1,2-diphenyl-2-methoxyethanol (C) (Figure 1). Reaction of (dipic)V{sup V}(O)O{sup i}Pr (1a) or (dipic)V{sup v}(O)OEt (lb) with A, B, or C in acetonitrile yielded new vanadium(V) complexes where the alcohol-ether ligand was bound in a chelating fashion. From the reaction of 1b with pinacol monomethyl ether (A) in acetonitrile solution, (dipic)V{sup v}(O)(pinOMe) (2) (PinOMe = 2,3-dimethyl-3-methoxy-2-butanoxide) was isolated in 61 % yield. Reaction of 1b with 2-phenoxyethanol (B) in acetonitrile gave the new complex (dipic)V{sup v}(O)(OPE) (3) (OPE = 2-phenoxyethoxide), which was isolated in 76% yield. In a similar fashion, 1a reacted with 1,2-diphenyl-2-methoxyethanol (C) to give (dipic)V(O)(DPME) (4) (DPME = 1,2-diphenyl-2-methoxyethoxide), which was isolated in 39% yield. Complexes 2, 3, and 4 were characterized by {sup 1}H NMR and IR spectroscopy, elemental analysis, and X-ray crystallography. Compared to the previously reported vanadium(V) pinacolate complex (dipic)V(O)(pinOH) the X-ray structure of complex 2 reveals a slightly shorter V = O bond, 1.573(2) {angstrom} vs 1.588(2) {angstrom} for the pinOH structure. Complexes 3 and 4 display similar vanadium oxo bond distances of 1.568(2) {angstrom} and 1.576(2) {angstrom}, respectively. All three complexes show longer bonds to the ether-oxygen trans to the oxo (2.388(2) {angstrom} for 2, 2.547(2) {angstrom} for 3, and 2.438(2) {angstrom} for 4) than to the hydroxy-oxygen in the pinOH structure (2.252(2) {angstrom}).

  11. Pre-plated reactive diffusion-bonded battery electrode plaques

    DOE Patents [OSTI]

    Maskalick, Nicholas J. (Pittsburgh, PA)

    1984-01-01T23:59:59.000Z

    A high strength, metallic fiber battery plaque is made using reactive diffusion bonding techniques, where a substantial amount of the fibers are bonded together by an iron-nickel alloy.

  12. alpha-chloro beta-oxo sulfenyl: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alpha-chloro beta-oxo sulfenyl First Page Previous Page 1 Next Page Last Page Topic Index 1 Ferrocenyl bis-phosphine ligands bearing sulfinyl, sulfonyl or sulfenyl groups:...

  13. Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonded Arrays: The Power of Multiple Hydrogen Bonds. Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds. Abstract: Hydrogen bond interactions in small covalent model...

  14. Surface Modification by Atmospheric Pressure Plasma for Improved Bonding

    E-Print Network [OSTI]

    Williams, Thomas Scott

    2013-01-01T23:59:59.000Z

    steel type 410, and aluminum alloy 2024. Helium and oxygensteel type 410, and aluminum alloy 2024 was demonstratedAdhesive Bonding of Aluminum Alloys, Metal Finishing, 13.

  15. Effects of atmospheres on bonding characteristics of silver and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    temperature. To investigate the effects of atmospheres on the bonding characteristics of ceramic joints brazed with Ag-CuO braze filler metals, alumina joints prepared using a...

  16. Non-bonded ultrasonic transducer

    DOE Patents [OSTI]

    Eoff, J.M.

    1984-07-06T23:59:59.000Z

    A mechanically assembled non-bonded ultrasonic transducer includes a substrate, a piezoelectric film, a wetting agent, a thin metal electrode, and a lens held in intimate contact by a mechanical clamp. No epoxy or glue is used in the assembly of this device.

  17. Investing in Bonds

    E-Print Network [OSTI]

    Johnson, Jason; Polk, Wade

    2002-08-12T23:59:59.000Z

    Bonds, which are issued by governments and corporations, can be an important part of one's investment portfolio. U.S. government bonds, municipal bonds, zero-coupon bonds and other types are described. Also learn strategies for coping with inflation...

  18. Process Of Bonding Copper And Tungsten

    DOE Patents [OSTI]

    Slattery, Kevin T. (St. Charles, MO); Driemeyer, Daniel E. (Manchester, MO); Davis, John W. (Ballwin, MO)

    2000-07-18T23:59:59.000Z

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by sintering a stack of individual copper and tungsten powder blend layers having progressively higher copper content/tungsten content, by volume, ratio values in successive powder blend layers in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  19. Electronic structure of the dioxygen to transition metal bond: generalized molecular orbital calculations on models of manganese, iron, and cobalt porphyrins 

    E-Print Network [OSTI]

    Newton, James Edward

    1982-01-01T23:59:59.000Z

    calculat1on y1elded a I ground. state conf1gurat1on in which the bonding orbital has an occu- pation number of 1. 97 and the antibond1ng orbital has an occupat1on number of 0. 03 electrons. Both Pauling and Griffith geometr1es of Nn(0 )(H C H ) y1... Geometries. Basis sets. . Results Fenske-Hall molecular orbi tal calculations. Restricted Hartree-Fock-Roothaan-Configuration Interaction calculations. 56 58 59 ~ ~ 59 ~ ~ 61 62 62 65 Generalized Molecular Orbi tal-Conf i gurati on Interaction...

  20. Method of bonding

    DOE Patents [OSTI]

    Saller, deceased, Henry A. (late of Columbus, OH); Hodge, Edwin S. (Columbus, OH); Paprocki, Stanley J. (Columbus, OH); Dayton, Russell W. (Columbus, OH)

    1987-12-01T23:59:59.000Z

    1. A method of making a fuel-containing structure for nuclear reactors, comprising providing an assembly comprising a plurality of fuel units; each fuel unit consisting of a core plate containing thermal-neutron-fissionable material, sheets of cladding metal on its bottom and top surfaces, said cladding sheets being of greater width and length than said core plates whereby recesses are formed at the ends and sides of said core plate, and end pieces and first side pieces of cladding metal of the same thickness as the core plate positioned in said recesses, the assembly further comprising a plurality of second side pieces of cladding metal engaging the cladding sheets so as to space the fuel units from one another, and a plurality of filler plates of an acid-dissolvable nonresilient material whose melting point is above 2000.degree. F., each filler plate being arranged between a pair of said second side pieces and the cladding plates of two adjacent fuel units, the filler plates having the same thickness as the second side pieces; the method further comprising enclosing the entire assembly in an envelope; evacuating the interior of the entire assembly through said envelope; applying inert gas under a pressure of about 10,000 psi to the outside of said envelope while at the same time heating the assembly to a temperature above the flow point of the cladding metal but below the melting point of any material of the assembly, whereby the envelope is pressed against the assembly and integral bonds are formed between plates, sheets, first side pieces, and end pieces and between the sheets and the second side pieces; slowly cooling the assembly to room temperature; removing the envelope; and dissolving the filler plates without attacking the cladding metal.

  1. Pauling bond strength, bond length and electron density distribution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pauling bond strength, bond length and electron density distribution. Pauling bond strength, bond length and electron density distribution. Abstract: A power law regression...

  2. Surety Bond Program (Maryland)

    Broader source: Energy.gov [DOE]

    The Surety Bond Program, a program of the Maryland Small Business Development Financing Authority, assists eligible small businesses in obtaining bid, performance or payment bonds necessary to...

  3. Electronic structure of the dioxygen to transition metal bond: generalized molecular orbital calculations on models of manganese, iron, and cobalt porphyrins

    E-Print Network [OSTI]

    Newton, James Edward

    1982-01-01T23:59:59.000Z

    are reported for FeP where P = porphinato(2-) ~ (NH2)4 , (NHCH2)4 , (N4C2H10) , (N4CBH6) and for Fe(02)PL where P = porphi nato(2-), (NH2)4 , (N4C2H6) and L = imidazole, NH3. The MO calculations indicate that (N4C2H6) is a better model for the porphyri n... ring in metal-dioxygen porphyrin complexes than the model (NH ) . This model was employed in generalized molecular orbital-confi guration interaction calculations of Fe(02)P(NH3), Co(02)P(NH3), and Mn(02)P where P = (N4C2H6) The ozone...

  4. Nanocomposite of graphene and metal oxide materials | OSTI, US...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanocomposite of graphene and metal oxide materials Re-direct Destination: Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The...

  5. In-situ and theoretical studies for the dissociation of water on an active Ni/CeO? catalyst: Importance of strong metal-support interactions for the cleavage of O-H bonds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carrasco, Javier [Inst. de Catalisis y Petroleoquimica, CSIC, Madrid (Spain); CIC Energigune, Minana, Alava (Spain); Rodriguez, Jose A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Lopez-Duran, David [Inst. de Catalisis y Petroleoquimica, CSIC, Madrid (Spain); CIC Energigune, Minana, Alava (Spain); Liu, Zongyuan [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Duchon, Tomas [Charles Univ., Praha (Czech Republic); Evans, Jaime [Univ. Central de Venezuela, Caracas (Venezuela); Senanayake, Sanjaya D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Crumlin, Ethan J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Matolin, Vladimir [Charles Univ., Praha (Czech Republic); Ganduglia-Pirovano, M. Veronica [Inst. de Catalisis y Petroleoquimica, CSIC, Madrid (Spain)

    2015-03-23T23:59:59.000Z

    Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Here, supported by experimental and density-functional theory results, we elucidate the effect of the support on O-H bond cleavage activity for nickel/ceria systems. Ambient-pressure O1s photoemission spectra at low Ni loadings on CeO?(111) reveal a substantially larger amount of OH groups as compared to the bare support. Our computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO?(111) compared with pyramidal Ni? particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of this support effect is the ability of ceria to stabilize oxidized Ni˛? species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO? has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions.

  6. In-situ and theoretical studies for the dissociation of water on an active Ni/CeO? catalyst: Importance of strong metal-support interactions for the cleavage of O-H bonds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carrasco, Javier; Rodriguez, Jose A.; Lopez-Duran, David; Liu, Zongyuan; Duchon, Tomas; Evans, Jaime; Senanayake, Sanjaya D.; Crumlin, Ethan J.; Matolin, Vladimir; Ganduglia-Pirovano, M. Veronica

    2015-03-23T23:59:59.000Z

    Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Here, supported by experimental and density-functional theory results, we elucidate the effect of the support on O-H bond cleavage activity for nickel/ceria systems. Ambient-pressure O1s photoemission spectra at low Ni loadings on CeO?(111) reveal a substantially larger amount of OH groups as compared to the bare support. Our computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO?(111) compared with pyramidal Ni? particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of thismore »support effect is the ability of ceria to stabilize oxidized Ni˛? species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO? has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions.« less

  7. Bond Financing (New Jersey)

    Broader source: Energy.gov [DOE]

    Bond financing is available to eligible businesses through the New Jersey Economic Development Authority, in the amount of $500,000 to $10 million. The bonds can be used to finance capital...

  8. Essays on corporate bonds

    E-Print Network [OSTI]

    Bao, Jack (Jack C.)

    2009-01-01T23:59:59.000Z

    This thesis consists of three empirical essays on corporate bonds, examining the role of both credit risk and liquidity. In the first chapter, I test the ability of structural models of default to price corporate bonds in ...

  9. Local Government Revenue Bonds (Montana)

    Broader source: Energy.gov [DOE]

    Limited obligation local government bonds ("special revenue bonds") may be issued for qualified electric energy generation facilities, including those powered by renewables. These bonds generally...

  10. Electrically conductive resinous bond and method of manufacture

    DOE Patents [OSTI]

    Snowden, Jr., Thomas M. (P.O. Box 4231, Clearwater, FL 33518); Wells, Barbara J. (865 N. Village Dr., Apt. 101B, St. Petersburg, FL 33702)

    1987-01-01T23:59:59.000Z

    A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40.degree. to 365.degree. C. to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

  11. Electrically conductive resinous bond and method of manufacture

    DOE Patents [OSTI]

    Snowden, T.M. Jr.; Wells, B.J.

    1985-01-01T23:59:59.000Z

    A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40 to 365/sup 0/C to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

  12. Nitrogen-tuned bonding mechanism of Li and Ti adatom embedded graphene

    SciTech Connect (OSTI)

    Lee, Sangho; Chung, Yong-Chae, E-mail: yongchae@hanyang.ac.kr

    2013-09-15T23:59:59.000Z

    The effects of nitrogen defects on the bonding mechanism and resultant binding energy between the metal and graphene layer were investigated using density functional theory (DFT) calculations. For the graphitic N-doped graphene, Li adatom exhibited ionic bonding character, while Ti adatom showed features of covalent bonding similar to that of pristine graphene. However, in the cases of pyridinic and pyrrolic structures, partially covalent bonding characteristic occurred around N atoms in the process of binding with metals, and this particular bond formation enhanced the bond strength of metal on the graphene layer as much as it exceeded the cohesive energy of the metal bulk. Thus, Li and Ti metals are expected to be dispersed with atomic accuracy on the pyridinic and pyrrolic N-doped graphene layers. These results demonstrate that the bonding mechanism of metal–graphene complex can change according to the type of N defect, and this also affects the binding results. - Graphical abstract: Display Omitted - Highlights: • Nitrogen defects changed the bonding mechanism between metal and graphene. • Bonding character and binding results were investigated using DFT calculations. • Covalent bonding character occurred around pyridinic and pyrrolic N-doped graphene. • Pyridinic and pyrrolic N atoms are effective for metal dispersion on the graphene.

  13. Metal-Oxo Catalysts for Generating Hydrogen from Water - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from aRod

  14. Process Of Bonding Copper And Tungsten

    DOE Patents [OSTI]

    Slattery, Kevin T. (St. Charles, MO); Driemeyer, Daniel E. (Manchester, MO)

    1999-11-23T23:59:59.000Z

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by thermal plasma spraying mixtures of copper powder and tungsten powder in a varied blending ratio such that the blending ratio of the copper powder and the tungsten powder that is fed to a plasma torch is intermittently adjusted to provide progressively higher copper content/tungsten content, by volume, ratio values in the interlayer in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  15. Creep effects in diffusion bonding of oxygen-free copper

    E-Print Network [OSTI]

    Moilanen, Antti

    Diffusion is the transport of atoms or particles through the surrounding material. Various microstructural changes in metals are based on the diffusion phenomena. In solid metals the diffusion is closely related to crystallographic defects. In single-component metals the dominant mechanism of diffusion is the vacancy mechanism. Diffusion bonding is a direct technological application of diffusion. It is an advanced solidstate joining process in which the surfaces of two components are brought to contact with each other and heated under a pressing load in a controlled environment. During the process, the contact surfaces are bonded by atomic diffusion across the interface and as a result, one solid piece is formed. The condition of high temperature and low applied stress combined with relatively long process duration enables the creep effects to take place in bonded metals. Furthermore, creep causes unwanted permanent deformations in the bonded components. Some authors suggest that there could be a threshold fo...

  16. Bonding thermoplastic polymers

    DOE Patents [OSTI]

    Wallow, Thomas I. (Fremont, CA); Hunter, Marion C. (Livermore, CA); Krafcik, Karen Lee (Livermore, CA); Morales, Alfredo M. (Livermore, CA); Simmons, Blake A. (San Francisco, CA); Domeier, Linda A. (Danville, CA)

    2008-06-24T23:59:59.000Z

    We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.

  17. Private Activity Revenue Bonds (Maryland)

    Broader source: Energy.gov [DOE]

    Private Activity Revenue Bonds are available in the form of both taxable bonds and tax-exempt bonds. Both types of bonds provide access to long-term capital markets for fixed asset financing....

  18. Bonded semiconductor substrate

    DOE Patents [OSTI]

    Atwater, Jr.; Harry A. (South Pasadena, CA), Zahler; James M. (Pasadena, CA)

    2010-07-13T23:59:59.000Z

    Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600.degree. C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.

  19. Adsorption of propane, isopropyl, and hydrogen on cluster models of the M1 phase of Mo-V-Te-Nb-O mixed metal oxide catalyst

    SciTech Connect (OSTI)

    Govindasamy, Agalya [University of Cincinnati; Muthukumar, Kaliappan [University of Cincinnati; Yu, Junjun [University of Cincinnati; Xu, Ye [ORNL; Guliants, Vadim V. [University of Cincinnati

    2010-01-01T23:59:59.000Z

    The Mo-V-Te-Nb-O mixed metal oxide catalyst possessing the M1 phase structure is uniquely capable of directly converting propane into acrylonitrile. However, the mechanism of this complex eight-electron transformation, which includes a series of oxidative H-abstraction and N-insertion steps, remains poorly understood. We have conducted a density functional theory study of cluster models of the proposed active and selective site for propane ammoxidation, including the adsorption of propane, isopropyl (CH{sub 3}CHCH{sub 3}), and H which are involved in the first step of this transformation, that is, the methylene C-H bond scission in propane, on these active site models. Among the surface oxygen species, the telluryl oxo (Te=O) is found to be the most nucleophilic. Whereas the adsorption of propane is weak regardless of the MO{sub x} species involved, isopropyl and H adsorption exhibits strong preference in the order of Te=O > V=O > bridging oxygens > empty Mo apical site, suggesting the importance of TeO{sub x} species for H abstraction. The adsorption energies of isopropyl and H and consequently the reaction energy of the initial dehydrogenation of propane are strongly dependent on the number of ab planes included in the cluster, which points to the need to employ multilayer cluster models to correctly capture the energetics of surface chemistry on this mixed metal oxide catalyst.

  20. The time reversed elastic nonlinearity diagnostic applied to evaluation of diffusion bonds

    E-Print Network [OSTI]

    The time reversed elastic nonlinearity diagnostic applied to evaluation of diffusion bonds T. J based nondestructive evaluation techniques has begun. Here, diffusion bonded metal disks containing and impulse responses to perform TR experiments in thin h 5 mm, d 5 cm diffusion bonded disks, in order

  1. Bonded ultrasonic transducer and method for making

    DOE Patents [OSTI]

    Dixon, Raymond D. (Los Alamos, NM); Roe, Lawrence H. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1995-01-01T23:59:59.000Z

    An ultrasonic transducer is formed as a diffusion bonded assembly of piezoelectric crystal, backing material, and, optionally, a ceramic wear surface. The mating surfaces of each component are silver films that are diffusion bonded together under the application of pressure and heat. Each mating surface may also be coated with a reactive metal, such as hafnium, to increase the adhesion of the silver films to the component surfaces. Only thin silver films are deposited, e.g., a thickness of about 0.00635 mm, to form a substantially non-compliant bond between surfaces. The resulting transducer assembly is substantially free of self-resonances over normal operating ranges for taking resonant ultrasound measurements.

  2. Bond Financing Program (New Hampshire)

    Broader source: Energy.gov [DOE]

    BFA’s Bond Financing Program offers tax-exempt and taxable bonds for fixed-asset expansion projects. Industrial development revenue bonds can be used by manufacturers for the acquisition,...

  3. Preparation and characterization of chiral metal-metal bonded compounds

    E-Print Network [OSTI]

    Gibson, Elaine Claire

    1985-01-01T23:59:59.000Z

    (CH ) CHPR , with n = 3 or 4, and R = methyl, phenyl or 2 n iso-propyl groups. The 6-No X4(?P)2 compounds prepar ed have been characterized by their spectroscopic proper ties where possible. The molecular structures of 6-Mo Cl (dpcp) and B-No Br 4(dpcp.... Finally, I wish to thank Dr. P. Agaskar for his help with the CD V11 TABLE OF CONTENTS CHAPTER I INTRODUCTION II EXPERIMENTAL SECTION Page 12 General Procedures Starting Materials Preparation of R2PCH(CH ) CHPR2 Ligands. 3 rl Pr eparation of MX4...

  4. METAL NANOPARTICLES FUNCTIONALIZED WITH METAL-LIGAND COVALENT BONDS

    E-Print Network [OSTI]

    Kang, Xiongwu

    2012-01-01T23:59:59.000Z

    and Pelizzetti, E. ( 1989) Photocatalysis : fundamentals andPhotoelectrochemistry, photocatalysis, and photoreactors:Phase 9.1 Introduction Photocatalysis of a chemical reaction

  5. Low Temperature Material Bonding Technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2000-10-10T23:59:59.000Z

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  6. Low temperature material bonding technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2002-02-12T23:59:59.000Z

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  7. Differences in Electrostatic Potential Around DNA Fragments Containing Guanine and 8-oxo-Guanine

    SciTech Connect (OSTI)

    Haranczyk, Maciej; Gutowski, Maciej S.

    2007-02-01T23:59:59.000Z

    hanges of electrostatic potential (EP) around the DNA molecule resulting from chemical modifications of nucleotides may play a role in enzymatic recognition of damaged sites. Effects of chemical modifications of nucleotides on the structure of DNA have been characterized through large scale density functional theory computations. Quantum mechanical structural optimizations of DNA fragments with three pairs of nucleotoides and accompanying counteractions were performed with a B3LYP exchange-correlation functional and 6-31G** basis sets. The “intact” DNA fragment contained guanine in the middle layer, while the “damaged” fragment had the guanine replaced with 8-oxo-guanine. The electrostatic potential around these DNA fragments was projected on a surface around the double helix. The 2D maps of EP of intact and damaged DNA fragments were analyzed to identify these modifications of EP that result from the occurrence of 8-oxo-guanine. It was found that distortions of the phosphate groups and displacements of the accompanying countercations are clearly reflected in the EP maps.

  8. Bonding aerogels with polyurethanes

    SciTech Connect (OSTI)

    Matthews, F.M.; Hoffman, D.M.

    1989-11-01T23:59:59.000Z

    Aerogels, porous silica glasses with ultra-fine cell size (30nm), are made by a solution gelation (sol-gel) process. The resulting gel is critical point dried to densities from 0.15--0.60 g/cc. This material is machinable, homogeneous, transparent, coatable and bondable. To bond aerogel an adhesive should have long cure time, no attack on the aerogel structure, and high strength. Several epoxies and urethanes were examined to determine if they satisfied these conditions. Bond strengths above 13 psi were found with double bubble and DP-110 epoxies and XI-208/ODA-1000 and Castall U-2630 urethanes. Hardman Kalex Tough Stuff'' A-85 hardness urethane gave 18 psi bond strength. Hardman A-85, Tuff-Stuff'' was selected for further evaluation because it produced bond strengths comparable to the adherend cohesive strength. 5 refs., 2 figs.

  9. The New Chemical Bond

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    off when the first convincing experimental evidence of the phi bond showed up for the thorium sandwich complex, as revealed by its elaborate, never-before-seen symmetry. The...

  10. Characterization of anodic bonding

    E-Print Network [OSTI]

    Tudryn, Carissa Debra, 1978-

    2004-01-01T23:59:59.000Z

    Anodic bonding is a common process used in MicroElectroMechanical Systems (MEMS) device fabrication and packaging. Polycrystalline chemical vapor deposited (CVD) silicon carbide (SiC) is emerging as a new MEMS device and ...

  11. Water's Hydrogen Bond Strength

    E-Print Network [OSTI]

    Martin Chaplin

    2007-06-10T23:59:59.000Z

    Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperatures. The overall conclusion of this investigation is that water's hydrogen bond strength is poised centrally within a narrow window of its suitability for life.

  12. Sequence-Dependent Variation in the Reactivity of 8-Oxo-7,8-dihydro-2?-deoxyguanosine toward Oxidation

    E-Print Network [OSTI]

    Lim, Kok Seong

    The goal of this study was to define the effect of DNA sequence on the reactivity of 8-oxo-7,8-dihydro-2?-deoxyguanosine (8-oxodG) toward oxidation. To this end, we developed a quadrupole/time-of-flight (QTOF) mass ...

  13. The reduction of carbon-carbon multiple bond systems

    E-Print Network [OSTI]

    Ferguson, Donald Roy

    1965-01-01T23:59:59.000Z

    and Uses, " Reinhold Publishing Corporations New York, N. Y. & 1956, p. 309 the dicarbanion with carbon dioxide yields the di-sodium salt of 1, 1, 2, 4 2-tetraphenylsuccinic acid. If two atoms of an alkali metal add to the multiple bond of an al- kyne... acid. One mole of carbon dioxide reacts with III to form the indone. It was proposed on the basis of the foregoing evidence that alkali metals could be caused to add across an acetylenic bond of a molecule to form a vinylic dicarbanion. It was hoped...

  14. Chemistry of Materials 1989, 1,83-101 How C-C Bonds Are Formed and How They Influence

    E-Print Network [OSTI]

    Li, Jing

    Chemistry of Materials 1989, 1,83-101 How C-C Bonds Are Formed and How They Influence Structural Choices in Some Binary and Ternary Metal Carbides 83 Jing Li and Roald Hoffmann* Department of Chemistry properties. In the UC2structure, both uranium-carbon bonding and carbon-carbon bonding are enhanced upon

  15. Evaluating the Identity and Diiron Core Transformations of a (?-Oxo)diiron(III) Complex Supported by Electron-Rich Tris(pyridyl-2-methyl)amine Ligands

    E-Print Network [OSTI]

    Do, Loi H.

    The composition of a (?-oxo)diiron(III) complex coordinated by tris[(3,5-dimethyl-4-methoxy)pyridyl-2-methyl]amine (R[subscript 3]TPA) ligands was investigated. Characterization using a variety of spectroscopic methods and ...

  16. Cu-Cu direct bonding achieved by surface method at room temperature

    SciTech Connect (OSTI)

    Utsumi, Jun [Advanced Technology Research Center, Mitsubishi Heavy Industries, Ltd., 1-8-1 Sachiura, Kanazawa-ku, Yokohama 236-8515 (Japan); Ichiyanagi, Yuko, E-mail: yuko@ynu.ac.jp [Department of Physics, Graduate School of Engineering, Yokohama National University, Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan)

    2014-02-20T23:59:59.000Z

    The metal bonding is a key technology in the processes for the microelectromechanical systems (MEMS) devices and the semiconductor devices to improve functionality and higher density integration. Strong adhesion between surfaces at the atomic level is crucial; however, it is difficult to achieve close bonding in such a system. Cu films were deposited on Si substrates by vacuum deposition, and then, two Cu films were bonded directly by means of surface activated bonding (SAB) at room temperature. The two Cu films, with the surface roughness Ra about 1.3nm, were bonded by using SAB at room temperature, however, the bonding strength was very weak in this method. In order to improve the bonding strength between the Cu films, samples were annealed at low temperatures, between 323 and 473 K, in air. As the result, the Cu-Cu bonding strength was 10 times higher than that of the original samples without annealing.

  17. Economic Development Bond Program (Iowa)

    Broader source: Energy.gov [DOE]

    Through its Economic Development Bond Program, the Iowa Finance Authority (IFA) issues tax-exempt bonds on behalf of private entities or organizations for eligible purposes. The responsibility for...

  18. Private Activity Bond Allocation (Missouri)

    Broader source: Energy.gov [DOE]

    The Private Activity Bond Allocation Program provides low-interest financing through tax-exempt bonds for certain types of projects, including electric and gas utility projects. Eligible applicants...

  19. Method of coating metal surfaces to form protective metal coating thereon

    DOE Patents [OSTI]

    Krikorian, Oscar H. (Danville, CA); Curtis, Paul G. (Tracy, CA)

    1992-01-01T23:59:59.000Z

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof.

  20. Method of coating metal surfaces to form protective metal coating thereon

    DOE Patents [OSTI]

    Krikorian, O.H.; Curtis, P.G.

    1992-03-31T23:59:59.000Z

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof. 1 figure.

  1. Hybrid Two-Dimensional Electronic Systems and Other Applications of sp-2 Bonded Light Elements

    E-Print Network [OSTI]

    Kessler, Brian Maxwell

    2010-01-01T23:59:59.000Z

    A.4 A.5 vii List of Tables DOE Hydrogen Storage Targets forsp-2 Bonded Materials 5 Hydrogen Storage 5.1 Motivation andJeffrey R. Long. Hydrogen storage in a microporous metal-

  2. Bonding PMMA with Titanium for Dental Implants By Zhong Yuan Luo1

    E-Print Network [OSTI]

    Barthelat, Francois

    ` Bonding PMMA with Titanium for Dental Implants By Zhong Yuan Luo1 1Department of Mining(methyl methacrylate) (PMMA) from Titanium (Ti) metal in dental implants. Project Overview ·Bonding is enhanced by modifying the titanium surface ·Modification is achieved using diazonium chemistry ·Different procedures

  3. High-Temperature Thermoelectric Characterization of IIIV Semiconductor Thin Films by Oxide Bonding

    E-Print Network [OSTI]

    High-Temperature Thermoelectric Characterization of III­V Semiconductor Thin Films by Oxide Bonding and measurement method utilizing a SiO2­SiO2 covalent bonding technique is presented for high-temperature surface passivation, and metallization with a Ti-W-N diffusion barrier. A thermoelectric material, thin

  4. High temperature thermoelectric characterization of III-V semiconductor thin films by oxide bonding

    E-Print Network [OSTI]

    Bowers, John

    bonding Je-Hyeong Bahka) , Gehong Zenga) , Joshua M. O. Zide b) , Hong Luc) , Rajeev Singhd) , Di Lianga bonding technique is developed for high temperature thermoelectric characterization of the thin film III-W-N diffusion barrier. A thermoelectric material, thin film ErAs:InGaAlAs metal/semiconductor nanocomposite

  5. Ceramic to metal attachment system. [Ceramic electrode to metal conductor in MHD generator

    DOE Patents [OSTI]

    Marchant, D.D.

    1983-06-10T23:59:59.000Z

    A composition and method are described for attaching a ceramic electrode to a metal conductor. A layer of randomly interlocked metal fibers saturated with polyimide resin is sandwiched between the ceramic electrode and the metal conductor. The polyimide resin is then polymerized providing bonding.

  6. Chemically bonded phospho-silicate ceramics

    DOE Patents [OSTI]

    Wagh, Arun S. (Orland Park, IL); Jeong, Seung Y. (Westmont, IL); Lohan, Dirk (Chicago, IL); Elizabeth, Anne (Chicago, IL)

    2003-01-01T23:59:59.000Z

    A chemically bonded phospho-silicate ceramic formed by chemically reacting a monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and a sparsely soluble oxide, with a sparsely soluble silicate in an aqueous solution. The monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and sparsely soluble oxide are both in powder form and combined in a stochiometric molar ratio range of (0.5-1.5):1 to form a binder powder. Similarly, the sparsely soluble silicate is also in powder form and mixed with the binder powder to form a mixture. Water is added to the mixture to form a slurry. The water comprises 50% by weight of the powder mixture in said slurry. The slurry is allowed to harden. The resulting chemically bonded phospho-silicate ceramic exhibits high flexural strength, high compression strength, low porosity and permeability to water, has a definable and bio-compatible chemical composition, and is readily and easily colored to almost any desired shade or hue.

  7. Synthesis and Exploratory Catalysis of 3d Metals: Group-Transfer Reactions, and the Activation and Functionalization of Small Molecules Including Greenhouse Gases

    SciTech Connect (OSTI)

    Mindiola, Daniel J.

    2014-05-07T23:59:59.000Z

    Our work over the past three years has resulted in the development of electron rich and low-coordinate vanadium fragments, molecular nitrides of vanadium and parent imide systems of titanium, and the synthesis of phosphorus containing molecules of the 3d transition metal series. Likewise, with financial support from BES Division in DOE (DE-FG02-07ER15893), we now completed the full characterization of the first single molecular magnet (SMM) of Fe(III). We demonstrated that this monomeric form of Fe(III) has an unusual slow relaxation of the magnetization under zero applied field. To make matters more interesting, this system also undergoes a rare example of an intermediate to high-spin transition (an S = 3/2 to S = 5/2 transition). In 2010 we reported the synthesis of the first neutral and low-coordinate vanadium complexes having the terminal nitride functionality. We have now completed a full study to understand formation of the nitride ligand from the metastable azide precursor, and have also explored the reactivity of the nitride ligand in the context of incomplete and complete N-atom transfer. During the 2010-2013 period we also discovered a facile approach to assemble low-coordinate and low-valent vanadium(II) complexes and exploit their multielectron chemistry ranging from 1-3 electrons. Consequently, we can now access 3d ligand frameworks such as cyclo-P3 (and its corresponding radical anion), nitride radical anions and cations, low-coordinate vanadium oxo’s, and the first example of a vanadium thionitrosyl complex. A cis-divacant iron(IV) imido having some ligand centered radical has been also discovered, and we are in the process of elucidating its electronic structure (in particular the sign of zero field splitting and the origin of its magnitude), bonding and reactivity. We have also revisited some paramagnetic and classic metallocene compounds with S >1/2 ground states in order to understand their reactivity patterns and electronic structure. Lastly, we are completing the synthesis and characterization of a titanium nitride anion and formation of the first example of boryl and aluminyl imido titanium complexes.

  8. Investigation of bonding strength and sealing behavior of aluminum/stainless steel bonded at room temperature

    E-Print Network [OSTI]

    Howlader, Matiar R

    ], spark welding [3], explosive bonding [4], and diffusion bonding [5,6]. However, the processing such as diffusion bonding [5,6], friction welding [7e11], vacuum roll bonding [12] and hot roll bonding [13Investigation of bonding strength and sealing behavior of aluminum/stainless steel bonded at room

  9. Qualified Energy Conservation Bonds (Ohio)

    Broader source: Energy.gov [DOE]

    The Ohio Air Quality Development Authority (OAQDA) administers the Qualified Energy Conservation Bonds (QECB) program in Ohio. QECBs have been used by local governments and public universities to...

  10. Method for bonding thin film thermocouples to ceramics

    DOE Patents [OSTI]

    Kreider, Kenneth G. (Potomac, MD)

    1993-01-01T23:59:59.000Z

    A method is provided for adhering a thin film metal thermocouple to a ceramic substrate used in an environment up to 700 degrees Centigrade, such as at a cylinder of an internal combustion engine. The method includes the steps of: depositing a thin layer of a reactive metal on a clean ceramic substrate; and depositing thin layers of platinum and a platinum-10% rhodium alloy forming the respective legs of the thermocouple on the reactive metal layer. The reactive metal layer serves as a bond coat between the thin noble metal thermocouple layers and the ceramic substrate. The thin layers of noble metal are in the range of 1-4 micrometers thick. Preferably, the ceramic substrate is selected from the group consisting of alumina and partially stabilized zirconia. Preferably, the thin layer of reactive metal is in the range of 0.015-0.030 micrometers (15-30 nanometers) thick. The preferred reactive metal is chromium. Other reactive metals may be titanium or zirconium. The thin layer of reactive metal may be deposited by sputtering in ultra high purity argon in a vacuum of approximately 2 milliTorr (0.3 Pascals).

  11. Metal deposition using seed layers

    DOE Patents [OSTI]

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12T23:59:59.000Z

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  12. Steel bonded dense silicon nitride compositions and method for their fabrication

    DOE Patents [OSTI]

    Landingham, R.L.; Shell, T.E.

    1985-05-20T23:59:59.000Z

    A two-stage bonding technique for bonding high density silicon nitride and other ceramic materials to stainless steel and other hard metals, and multilayered ceramic-metal composites prepared by the technique are disclosed. The technique involves initially slurry coating a surface of the ceramic material at about 1500/sup 0/C in a vacuum with a refractory material and the stainless steel is then pressure bonded to the metallic coated surface by brazing it with nickel-copper-silver or nickel-copper-manganese alloys at a temperature in the range of about 850/sup 0/ to 950/sup 0/C in a vacuum. The two-stage bonding technique minimizes the temperature-expansion mismatch between the dissimilar materials.

  13. Noncovalent interaction or chemical bonding between alkaline earth cations and benzene? A quantum chemistry study using

    E-Print Network [OSTI]

    Sussman, Joel L.

    Noncovalent interaction or chemical bonding between alkaline earth cations and benzene? A quantum earth metal ion±benzene complexes were performed using the density-functional theory (DFT) B3LYP and ab of the al- kaline earth metal ions to benzene may be attributed to s±p and p±p interactions, which are signi

  14. Quantum Confinement in Hydrogen Bond

    E-Print Network [OSTI]

    Santos, Carlos da Silva dos; Ricotta, Regina Maria

    2015-01-01T23:59:59.000Z

    In this work, the quantum confinement effect is proposed as the cause of the displacement of the vibrational spectrum of molecular groups that involve hydrogen bonds. In this approach the hydrogen bond imposes a space barrier to hydrogen and constrains its oscillatory motion. We studied the vibrational transitions through the Morse potential, for the NH and OH molecular groups inside macromolecules in situation of confinement (when hydrogen bonding is formed) and non-confinement (when there is no hydrogen bonding). The energies were obtained through the variational method with the trial wave functions obtained from Supersymmetric Quantum Mechanics (SQM) formalism. The results indicate that it is possible to distinguish the emission peaks related to the existence of the hydrogen bonds. These analytical results were satisfactorily compared with experimental results obtained from infrared spectroscopy.

  15. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15T23:59:59.000Z

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  16. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04T23:59:59.000Z

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  17. Method for vacuum fusion bonding

    DOE Patents [OSTI]

    Ackler, Harold D. (Sunnyvale, CA); Swierkowski, Stefan P. (Livermore, CA); Tarte, Lisa A. (Livermore, CA); Hicks, Randall K. (Stockton, CA)

    2001-01-01T23:59:59.000Z

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  18. Fusion bonding and alignment fixture

    DOE Patents [OSTI]

    Ackler, Harold D. (Sunnyvale, CA); Swierkowski, Stefan P. (Livermore, CA); Tarte, Lisa A. (Livermore, CA); Hicks, Randall K. (Stockton, CA)

    2000-01-01T23:59:59.000Z

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  19. Low Temperature Material Bonding Techniq Ue

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2002-08-06T23:59:59.000Z

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  20. Local Option- Industrial Facilities and Development Bonds

    Broader source: Energy.gov [DOE]

    Under the Utah Industrial Facilities and Development Act, counties, municipalities, and state universities in Utah may issue Industrial Revenue Bonds (IRBs) or Industrial Development Bonds (IDBs)...

  1. In Situ Analysis of 8-Oxo-7,8-dihydro-2?-deoxyguanosine Oxidation Reveals Sequence- and Agent-Specific Damage Spectra

    E-Print Network [OSTI]

    Lim, Kok Seong

    Guanine is a major target for oxidation in DNA, with 8-oxo-7,8-dihydro-2?-deoxyguanosine (8-oxodG) as a major product. 8-oxodG is itself significantly more susceptible to oxidation than guanine, with the resulting damage ...

  2. Understanding mechanisms for C-H bond activation

    E-Print Network [OSTI]

    Vastine, Benjamin Alan

    2009-05-15T23:59:59.000Z

    is unclear as electrophilic and oxidative addition / reductive elimination (OA/RE) pathways have been proposed, and the research into this problem and other related aspects of this chemistry have been extensively considered in several books 18 and reviews... been proposed that lie between the two classic mechanisms that were discussed above; Lin has recently reviewed the current work in this field. 41 Webster and coworkers proposed metal-assisted ?-bond metathesis (MA?BM), 42 Lin and coworkers...

  3. The millimeter/submillimeter spectrum of LiSH (~XX1 further investigations of the metalsulfur bond

    E-Print Network [OSTI]

    Ziurys, Lucy M.

    . These species were created by the reaction of H2S or D2S and lithium vapor in a dc discharge. Extensive Ka. Although metal­oxygen bonds are quite common in multiple areas such as combustion, corrosive processes

  4. Energetics of C-H Bond Activation of Fluorinated Aromatic Hydrocarbons Using a [TpRh(CNneopentyl)] Complex

    E-Print Network [OSTI]

    Jones, William D.

    Energetics of C-H Bond Activation of Fluorinated Aromatic Hydrocarbons Using a [Tp activation of fluorinated aromatic hydrocarbons by [TpRh(CNneopentyl)] resulted in the formation of products of homogeneous transition-metal catalysts to activate and functionalize C-H bonds of hydrocarbons for industrial

  5. Pooled Bond Program (South Dakota)

    Broader source: Energy.gov [DOE]

    The Pooled Bond Program offered by the Economic Development Finance Authority is designed for capital intensive projects, providing small businesses access to larger capital markets for tax-exempt...

  6. Qualified Energy Conservation Bonds (QECBs)

    Broader source: Energy.gov [DOE]

    The ''Energy Improvement and Extension Act of 2008'', enacted in October 2008, authorized the issuance of Qualified Energy Conservation Bonds (QECBs) that may be used by state, local and tribal...

  7. Stabilization of Electrocatalytic Metal Nanoparticles at Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points. Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene...

  8. Displacement of the proton in hydrogen-bonded complexes of hydrogen fluoride by beryllium and magnesium ions

    SciTech Connect (OSTI)

    McDowell, Sean A. C. [Department of Biological and Chemical Sciences, University of the West Indies, Cave Hill Campus (Barbados)

    2009-05-14T23:59:59.000Z

    The displacement of the proton by a beryllium ion and by a magnesium ion from hydrogen-bonded complexes of hydrogen fluoride, of varying hydrogen bond strengths, was investigated theoretically using ab initio methods. Stable metal-containing species were obtained from all of the hydrogen-bonded complexes regardless of the strength of the hydrogen bond. It was found that the beryllium ion was energetically very effective in displacing the proton from hydrogen bonds, whereas the magnesium ion was unable to do so. The high stability of the beryllium-containing complexes is mainly due to the strong electrostatic bonding between the beryllium and fluoride atoms. This work supports the recent finding from a multidisciplinary bioinorganic study that beryllium displaces the proton in many strong hydrogen bonds.

  9. Method for joining carbon-carbon composites to metals

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); McMillan, April D. (Knoxville, TN); Moorhead, Arthur J. (Knoxville, TN)

    1997-01-01T23:59:59.000Z

    A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to "wick" into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy.

  10. Method for joining carbon-carbon composites to metals

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Moorhead, A.J.

    1997-07-15T23:59:59.000Z

    A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to ``wick`` into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy. 1 fig.

  11. CONVERTIBLE BONDS IN A DEFAULTABLE DIFFUSION MODEL

    E-Print Network [OSTI]

    Jeanblanc, Monique

    CONVERTIBLE BONDS IN A DEFAULTABLE DIFFUSION MODEL Tomasz R. Bielecki Department of Applied Research Grant PS12918. #12;2 Convertible Bonds in a Defaultable Diffusion Model 1 Introduction In [4), such as Convertible Bonds (CB), and we provided a rigorous decomposition of a CB into a bond component and a (game

  12. Metal-atom fluorescence from the quenching of metastable rare gases by metal carbonyls

    SciTech Connect (OSTI)

    Hollingsworth, W.E.

    1982-11-01T23:59:59.000Z

    A flowing afterglow apparatus was used to study the metal fluorescence resulting from the quenching of metastable rare-gas states by metal carbonyls. The data from the quenching or argon, neon, and helium by iron and nickel carbonyl agreed well with a restricted degree of freedom model indicating a concerted bond-breaking dissociation.

  13. Method for adhesion of metal films to ceramics

    DOE Patents [OSTI]

    Lowndes, D.H.; Pedraza, A.J.; DeSilva, M.J.; Kumar, R.A.

    1997-12-30T23:59:59.000Z

    Methods for making strongly bonded metal-ceramic materials are disclosed. The methods include irradiating a portion of the surface of the ceramic material with a pulsed ultraviolet laser having an energy density sufficient to effect activation of the irradiated surface of the ceramic material so that adhesion of metals subsequently deposited onto the irradiated surface is substantially increased. Advantages of the invention include (i) the need for only a small number of laser pulses at relatively low focused energy density, (ii) a smoother substrate surface, (iii) activation of the laser-treated surface which provides a chemical bond between the surface and a metal deposited thereon, (iv) only low temperature annealing is required to produce the strong metal-ceramic bond; (v) the ability to obtain strong adhesion between ceramic materials and oxidation resistant metals; (vi) ability to store the laser treated ceramic materials for later deposition of metals thereon. 7 figs.

  14. Method for adhesion of metal films to ceramics

    DOE Patents [OSTI]

    Lowndes, Douglas H. (Knoxville, TN); Pedraza, Anthony J. (Oak Ridge, TN); DeSilva, Melvin J. (Ithaca, NY); Kumar, Rajagopalan A. (Knoxville, TN)

    1997-01-01T23:59:59.000Z

    Methods for making strongly bonded metal-ceramic materials. The methods include irradiating a portion of the surface of the ceramic material with a pulsed ultraviolet laser having an energy density sufficient to effect activation of the irradiated surface of the ceramic material so that adhesion of metals subsequently deposited onto the irradiated surface is substantially increased. Advantages of the invention include (i) the need for only a small number of laser pulses at relatively low focused energy density, (ii) a smoother substrate surface, (iii) activation of the laser-treated surface which provides a chemical bond between the surface and a metal deposited thereon, (iv) only low temperature annealing is required to produce the strong metal-ceramic bond; (v) the ability to obtain strong adhesion between ceramic materials and oxidation resistant metals; (vi) ability to store the laser treated ceramic materials for later deposition of metals thereon.

  15. Ideally Glassy Hydrogen Bonded Networks

    E-Print Network [OSTI]

    J. C. Phillips

    2005-08-05T23:59:59.000Z

    The axiomatic theory of ideally glassy networks, which has proved effective in describing phase diagrams and properties of chalcogenide and oxide glasses and their foreign interfaces, is broadened here to include intermolecular interactions in hydrogen-bonded polyalcohols such as glycerol, monosaccharides (glucose), and the optimal bioprotective hydrogen-bonded disaccharide networks formed from trehalose. The methods of Lagrangian mechanics and Maxwellian scaffolds are useful at the molecular level when bonding hierarchies are characterized by constraint counting similar to the chemical methods used by Huckel and Pauling. Whereas Newtonian molecular dynamical methods are useful for simulating large-scale interactions for times of order 10 ps, constraint counting describes network properties on glassy (almost equilibrated) time scales, which may be of cosmological order for oxide glasses, or years for trehalose. The ideally glassy network of trehalose may consist of extensible tandem sandwich arrays.

  16. Bond Programs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |BleckleyMotionBocaBond County, Illinois:Bond

  17. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    SciTech Connect (OSTI)

    Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2014-09-16T23:59:59.000Z

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  18. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2013-10-22T23:59:59.000Z

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  19. Metal aminoboranes

    DOE Patents [OSTI]

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya; Shrestha, Roshan P.

    2010-05-11T23:59:59.000Z

    Metal aminoboranes of the formula M(NH2BH3)n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  20. Bonded polyimide fuel cell package

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry

    2010-06-08T23:59:59.000Z

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  1. Method for providing adhesion to a metal surface

    DOE Patents [OSTI]

    Harrah, L.A.; Allred, R.E.; Wilson, K.V. Jr.

    1992-02-18T23:59:59.000Z

    A process for treating metal surfaces to obtain improved susceptibility to bonding with adhesive compositions is disclosed. A metal surface is oxidized with a halogen to form a monolayer of halide ions on the surface. The halide ions are then exchanged with azide ions to form an azide monolayer on the metal surface. Upon contact of the treated surface with an adhesive composition, the azide layer may be thermally or photochemically decomposed to form active nitrene species, which react to bond the adhesive composition to the metal surface.

  2. Innovative use of adhesive interface characteristics to nondestructively quantify the strength of bonded joints.

    SciTech Connect (OSTI)

    Roach, Dennis Patrick; Duvall, Randy L.; Rackow, Kirk A.

    2010-05-01T23:59:59.000Z

    Advances in structural adhesives have permitted engineers to contemplate the use of bonded joints in areas that have long been dominated by mechanical fasteners and welds. Although strength, modulus, and toughness have been improved in modern adhesives, the typical concerns with using these polymers still exist. These include concerns over long-term durability and an inability to quantify bond strength (i.e., identify weak bonds) in adhesive joints. Bond deterioration in aging structures and bond strength in original construction are now critical issues that require more than simple flaw detection. Whether the structure involves metallic or composite materials, it is necessary to extend inspections beyond the detection of disbond flaws to include an assessment of the strength of the bond. Use of advanced nondestructive inspection (NDI) methods to measure the mechanical properties of a bonded joint and associated correlations with post-inspection failure tests have provided some clues regarding the key parameters involved in assessing bond strength. Recent advances in ultrasonic- and thermographic-based inspection methods have shown promise for measuring such properties. Specialized noise reduction and signal enhancement schemes have allowed thermographic interrogations to image the subtle differences between bond lines of various strengths. Similarly, specialized ultrasonic (UT) inspection techniques, including laser UT, guided waves, UT spectroscopy, and resonance methods, can be coupled with unique signal analysis algorithms to accurately characterize the properties of weak interfacial bonds. The generation of sufficient energy input levels to derive bond strength variations, the production of sufficient technique sensitivity to measure such minor response variations, and the difficulty in manufacturing repeatable weak bond specimens are all issues that exacerbate these investigations. The key to evaluating the bond strength lies in the ability to exploit the critical characteristics of weak bonds such as nonlinear responses, poor transmission of shear waves, and changes in response to stiffness-based interrogations. This paper will present several ongoing efforts that have identified promising methods for quantifying bond strength and discuss some completed studies that provide a foundation for further evolution in weak bond assessments.

  3. Bi{sub 6}(SeO{sub 3}){sub 3}O{sub 5}Br{sub 2}: A new bismuth oxo-selenite bromide

    SciTech Connect (OSTI)

    Berdonosov, Peter S., E-mail: berdonosov@inorg.chem.msu.ru [Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Olenev, Andrei V. [SineTheta Ltd., MSU Building 1-77, 119991 Moscow (Russian Federation)] [SineTheta Ltd., MSU Building 1-77, 119991 Moscow (Russian Federation); Kirsanova, Maria A. [Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow (Russian Federation)] [Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Lebed, Julia B. [Institute for nuclear research RAS, 142190, Troitsk, Moscow region (Russian Federation)] [Institute for nuclear research RAS, 142190, Troitsk, Moscow region (Russian Federation); Dolgikh, Valery A. [Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow (Russian Federation)] [Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow (Russian Federation)

    2012-12-15T23:59:59.000Z

    A new bismuth oxo-selenite bromide Bi{sub 6}(SeO{sub 3}){sub 3}O{sub 5}Br{sub 2} was synthesized and structurally characterized. The crystal structure belongs to the triclinic system (space group P1-bar , Z=2, a=7.1253(7) A, b=10.972(1) A, c=12.117(1) A, {alpha}=67.765(7) Degree-Sign , {beta}=82.188(8) Degree-Sign , {gamma}=78.445(7) Degree-Sign ) and is unrelated to those of other known oxo-selenite halides. It can be considered as an open framework composed of BiO{sub x} or BiO{sub y}Br{sub z} polyhedrons forming channels running along [1 0 0] direction which contain the selenium atoms in pyramidal shape oxygen coordination (SeO{sub 3}E). The spectroscopic properties and thermal stability were studied. The new compound is stable up to 400 Degree-Sign C. - graphical abstract: New bismuth oxo-selenite bromide with new open framework structure. Highlights: Black-Right-Pointing-Pointer New bismuth oxo-selenite bromide was found and structurally characterized. Black-Right-Pointing-Pointer Bi{sub 6}(SeO{sub 3}){sub 3}O{sub 5}Br{sub 2} exhibit a new open framework structure type. Black-Right-Pointing-Pointer BiO{sub x} or BiO{sub y}Br{sub z} polyhedrons form channels in the structure which are decorated by [SeO{sub 3}E] groups.

  4. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    SciTech Connect (OSTI)

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13T23:59:59.000Z

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has seen widespread success involves the use of a proximal heteroatom that serves as a directing group for the selective functionalization of a specific C-H bond. In a survey of examples of heteroatom-directed Rh catalysis, two mechanistically distinct reaction pathways are revealed. In one case, the heteroatom acts as a chelator to bind the Rh catalyst, facilitating reactivity at a proximal site. In this case, the formation of a five-membered metallacycle provides a favorable driving force in inducing reactivity at the desired location. In the other case, the heteroatom initially coordinates the Rh catalyst and then acts to stabilize the formation of a metal-carbon bond at a proximal site. A true test of the utility of a synthetic method is in its application to the synthesis of natural products or complex molecules. Several groups have demonstrated the applicability of C-H bond functionalization reactions towards complex molecule synthesis. Target-oriented synthesis provides a platform to test the effectiveness of a method in unique chemical and steric environments. In this respect, Rh-catalyzed methods for C-H bond functionalization stand out, with several syntheses being described in the literature that utilize C-H bond functionalization in a key step. These syntheses are highlighted following the discussion of the method they employ.

  5. Interaction of an aluminum atom with a closed subshell metal atom: Spectroscopic analysis of AlZn

    E-Print Network [OSTI]

    Morse, Michael D.

    Interaction of an aluminum atom with a closed subshell metal atom: Spectroscopic analysis of Al-block main group element, aluminum, and the 3d series of transi- tion metal atoms. Although the bonding in Al

  6. Major Business Expansion Bond Program (Maine)

    Broader source: Energy.gov [DOE]

    The Major Business Expansion Bond Program provides long-term, credit-enhanced financing up to $25,000,000 at taxable bond rates for businesses creating or retaining at least 50 jobs; up to $10,000...

  7. Industrial Revenue Bond Issuance Cost Assistance (Wisconsin)

    Broader source: Energy.gov [DOE]

    Industrial Revenue Bonds (IRB) are tax-exempt bonds that can be used to stimulate capital investment and job creation by providing private borrowers with access to financing at interest rates that...

  8. Secondary Market Taxable Bond Program (Maine)

    Broader source: Energy.gov [DOE]

    The Secondary Market Taxable Bond Program provides tax-exempt interest rate bond financing for real estate and machinery and equipment acquisitions. Up to 90% of the project debt may be financed,...

  9. The Market for Borrowing Corporate Bonds

    E-Print Network [OSTI]

    Asquith, Paul

    This paper describes the market for borrowing corporate bonds using a comprehensive data set from a major lender. The cost of borrowing corporate bonds is comparable to the cost of borrowing stock, between 10 and 20 basis ...

  10. Functional Metal Phosphonates

    E-Print Network [OSTI]

    Perry, Houston Phillipp

    2012-02-14T23:59:59.000Z

    ......................................................... 39 12 Zr6 prepared at 205 ?C with HF as a solubilizing agent ................................ 43 13 Layered structure of Zn(O3PC6H4CN)(H2O) and Mn(O3PC6H4CN)(H2O) viewed along the c-axis. The coordinating water molecules are between... acid groups form hydrogen-bonded pairs in in Zn(O3PC6H4CO2H)(H2O) and Mn(O3PC6H4CO2H)(H2O). ..................... 55 15 Inorganic layered structure common to divalent metal phosphonates. Octahedral metal ions are coordinated by five phosphonate...

  11. Bonded, walk-off compensated optical elements

    DOE Patents [OSTI]

    Ebbers, Christopher A. (Livermore, CA)

    2003-04-08T23:59:59.000Z

    A bonded, walk-off compensated crystal, for use with optical equipment, and methods of making optical components including same.

  12. Clean Energy and Bond Finance Initiative

    Broader source: Energy.gov [DOE]

    Provides information on Clean Energy and Bond Finance Initiative (CE+BFI). CE+BFI brings together public infrastructure finance agencies, clean energy public fund managers and institutional investors across the country to explore how to raise capital at scale for clean energy development through bond financing. Author: Clean Energy and Bond Finance Initiative

  13. Metallization and insulization during impact

    SciTech Connect (OSTI)

    Gilman, J.J.

    1992-10-01T23:59:59.000Z

    It is pointed out that the large strains produced by hypervelocity impacts can be expected to produce dramatic changes in the chemical bonding (electronic structures) of materials. This will change the mechanical behavior towards increased ductility when a semiconductor is compressed until it becomes metallic; and towards increased brittleness when a transition metal is expanded so as to localize its d-band electrons. Both isotropic compression (expansion) and shear strains can cause these transformations. Critical deformation criteria are given based on the observed cubic to tetragonal transformations in compressed semiconductors.

  14. Method of making cascaded die mountings with springs-loaded contact-bond options

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN); Adams, Donald J. (Knoxville, TN); Su, Gui-Jia (Knoxville, TN); Marlino, Laura D. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN); Coomer, Chester (Knoxville, TN)

    2007-06-19T23:59:59.000Z

    A cascaded die mounting device and method using spring contacts for die attachment, with or without metallic bonds between the contacts and the dies, is disclosed. One embodiment is for the direct refrigerant cooling of an inverter/converter carrying higher power levels than most of the low power circuits previously taught, and does not require using a heat sink.

  15. Cascaded die mountings with spring-loaded contact-bond options

    DOE Patents [OSTI]

    Hsu, John S.; Adams, Donald J.; Su, Gui-Jia; Marlino, Laura D.; Ayers, Curtis W.; Coomer, Chester

    2005-08-16T23:59:59.000Z

    A cascaded die mounting device and method using spring contacts for die attachment, with or without metallic bonds between the contacts and the dies, is disclosed. One embodiment is for the direct refrigerant cooling of an inverter/converter carrying higher power levels than most of the low power circuits previously taught, and does not require using a heat sink.

  16. 1 Reactivity Differences of Pt0 Phosphine Complexes in C-C Bond

    E-Print Network [OSTI]

    Jones, William D.

    ) upon irradiation with UV light (>300 nm). In comparison, dtbpe 14 analogues of these metal complexes-H bond activa- 26 tions have found many successful applications in organic 27 synthesis and industrial into useful raw 31 materials1 and could offer potential applications in organic 32 synthesis and petroleum

  17. Transition-State Charge Transfer Reveals Electrophilic, Ambiphilic, and Nucleophilic Carbon-Hydrogen Bond Activation

    E-Print Network [OSTI]

    Goddard III, William A.

    @scripps.edu To capture the powerful potential of metal-mediated carbon- hydrogen (C-H) bond activation, it is essentialTransition-State Charge Transfer Reveals Electrophilic, Ambiphilic, and Nucleophilic Carbon, California Institute of Technology, Pasadena, California 91125, and The Scripps Research Institute, Jupiter

  18. 952 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006 Epoxyless Fiber-to-Submount Bonding for Active

    E-Print Network [OSTI]

    Klotzkin, David

    - der the influence of an electric field at high temperature, oxides are formed between the glass typically remain rigid over the same temperature and environ- mental conditions with a reasonable bonding strength. Typical methods of fiber bonding include laser welding and epoxying. Welding requires a metal

  19. SMITH, GLEN. Bond Characteristics and Qualifications of Adhesives for Marine Applications and Steel Pipe Repair. (Under the direction of Dr. Sami Rizkalla.)

    E-Print Network [OSTI]

    designs using new materials. Adhesives that bond metals, plastics, FRP and other materials have been used for marine application and repair of steel pipeline. #12;BOND CHARACTERISTICS AND QUALIFICATIONS OF ADHESIVES of Science Department of Civil, Construction, and Environmental Engineering Raleigh 2005 APPROVED BY

  20. Bonding, antibonding and tunable optical forces in asymmetric membranes

    E-Print Network [OSTI]

    Hui, Pui-Chuen

    We demonstrate that tunable attractive (bonding) and repulsive (anti-bonding) forces can arise in highly asymmetric structures coupled to external radiation, a consequence of the bonding/anti-bonding level repulsion of ...

  1. Metal inks

    DOE Patents [OSTI]

    Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

    2014-02-04T23:59:59.000Z

    Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

  2. Electrophilic, Ambiphilic, and Nucleophilic C-H bond Activation: Understanding the electronic continuum of C-H bond activation through transition-state and reaction pathway interaction energy decompositions

    SciTech Connect (OSTI)

    Ess, Daniel H; Goddard, William A; Periana, Roy A

    2010-01-01T23:59:59.000Z

    The potential energy and interaction energy profiles for metal- and metal?ligand-mediated alkane C?H bond activation were explored using B3LYP density functional theory (DFT) and the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA). The set of complexes explored range from late transition metal group 10 (Pt and Pd) and group 11 (Au) metal centers to group 7?9 (Ir, Rh, Ru, and W) metal centers as well as a group 3 Sc complex. The coordination geometries, electron metal count (d{sup 8}, d{sup 6}, d{sup 4}, and d{sup 0}), and ligands (N-heterocycles, O-donor, phosphine, and Cp*) are also diverse. Quantitative analysis using ALMO-EDA of both directions of charge-transfer stabilization (occupied to unoccupied orbital stabilization) energies between the metal?ligand fragment and the coordinated C?H bond in the transition state for cleavage of the C?H bond allows classification of C?H activation reactions as electrophilic, ambiphilic, or nucleophilic on the basis of the net direction of charge-transfer energy stabilization. This bonding pattern transcends any specific mechanistic or bonding paradigm, such as oxidative addition, ?-bond metathesis, or substitution. Late transition metals such as Au(III), Pt(II), Pd(II), and Rh(III) metal centers with N-heterocycle, halide, or O-donor ligands show electrophilically dominated reaction profiles with forward charge-transfer from the C?H bond to the metal, leading to more stabilization than reverse charge transfer from the metal to the C?H bond. Transition states and reaction profiles for d{sup 6} Ru(II) and Ir(III) metals with Tp and acac ligands were found to have nearly equal forward and reverse charge-transfer energy stabilization. This ambiphilic region also includes the classically labeled electrophilic cationic species Cp*(PMe{sub 3})Ir(Me). Nucleophilic character, where the metal to C?H bond charge-transfer interaction is most stabilizing, was found in metathesis reactions with W(II) and Sc(III) metal center complexes in reactions as well as late transition metal Ir(I) and Rh(I) pincer complexes that undergo C?H bond insertion. Comparison of pincer ligands shows that the PCP ligand imparts more nucleophilic character to an Ir metal center than a deprotonated PNP ligand. The PCP and POCOP ligands do not show a substantial difference in the electronics of C?H activation. It was also found that Rh(I) is substantially more nucleophilic than Ir(I). Lastly, as a qualitative approximation, investigation of transition-state fragment orbital energies showed that relative frontier orbital energy gaps correctly reflect electrophilic, ambiphilic, or nucleophilic charge-transfer stabilization patterns.

  3. Bond Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |BleckleyMotionBocaBond County, Illinois:

  4. Theoretical Study on the Reaction of Ti+ with Acetone and the Role of Intersystem

    E-Print Network [OSTI]

    Ihee, Hyotcherl

    MCO+ .5,6,8 Because of the strong metal-oxo bond of the early transition metals, the reactions trend. It has been shown that Fe+ , Co+ , and Ni+ react readily with acetone to give MCO+ and CH3-CH3

  5. Method of bonding silver to glass and mirrors produced according to this method

    DOE Patents [OSTI]

    Pitts, J.R.; Thomas, T.M.; Czanderna, A.W.

    1984-07-31T23:59:59.000Z

    A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

  6. Method of bonding silver to glass and mirrors produced according to this method

    DOE Patents [OSTI]

    Pitts, John R. (Golden, CO); Thomas, Terence M. (Arvada, CO); Czanderna, Alvin W. (Lakewood, CO)

    1985-01-01T23:59:59.000Z

    A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

  7. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09T23:59:59.000Z

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  8. Cold bond agglomeration of waste oxides for recycling

    SciTech Connect (OSTI)

    D`Alessio, G.; Lu, W.K. [McMaster Univ., Hamilton, Ontario (Canada). Dept. of Materials Science and Engineering

    1996-12-31T23:59:59.000Z

    Recycling of waste oxides has been an on-going challenge for integrated steel plants. The majority of these waste oxides are collected from the cleaning systems of ironmaking and steelmaking processes, and are usually in the form of fine particulates and slurries. In most cases, these waste materials are contaminated by oils and heavy metals and often require treatment at a considerable expense prior to landfill disposal. This contamination also limits the re-use or recycling potential of these oxides as secondary resources of reliable quality. However, recycling of some selected wastes in blast furnaces or steelmaking vessels is possible, but first requires agglomeration of the fine particulate by such methods as cold bond briquetting. Cold bond briquetting technology provides both mechanical compacting and bonding (with appropriate binders) of the particulates. This method of recycling has the potential to be economically viable and environmentally sustainable. The nature of the present study is cold bond briquetting of iron ore pellet fines with a molasses-cement-H{sub 2}O binder for recycling in a blast furnace. The inclusion of molasses is for its contribution to the green strength of briquettes. During the curing stage, significant gains in strength may be credited to molasses in the presence of cement. The interactions of cement (and its substitutes), water and molasses and their effects on the properties of the agglomerates during and after various curing conditions were investigated. Tensile strengths of briquettes made in the laboratory and subjected to experimental conditions which simulated the top part of a blast furnace shaft were also examined.

  9. Qualified Energy Conservation Bonds | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    description of qualified energy conservation bonds, including process and mechanics, case studies, utilization trends, barriers, and regulatory and legal issues. Author:...

  10. Tax-Exempt Bond Financing (Delaware)

    Broader source: Energy.gov [DOE]

    The Delaware Economic Development Authority provides tax-exempt bond financing for financial assistance to new or expanding businesses, governmental units and certain organizations that are exempt...

  11. Hydrogen Adsorption Induces Interlayer Carbon Bond Formation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Adsorption Induces Interlayer Carbon Bond Formation in Supported Few-Layer Graphene Friday, February 28, 2014 Among the allotropes of carbon, diamond has some of the most...

  12. Tax-Exempt Industrial Revenue Bonds (Kansas)

    Broader source: Energy.gov [DOE]

    Tax-Exempt Industrial Revenue Bonds are issued by cities and counties for the purchase, construction, improvement or remodeling of a facility for agricultural, commercial, hospital, industrial,...

  13. Nuclear reactor multiphysics via bond graph formalism

    E-Print Network [OSTI]

    Sosnovsky, Eugeny

    2014-01-01T23:59:59.000Z

    This work proposes a simple and effective approach to modeling nuclear reactor multiphysics problems using bond graphs. Conventional multiphysics simulation paradigms normally use operator splitting, which treats the ...

  14. Cadmium and Zinc Thiolate and Selenolate Metal-Organic Frameworks

    SciTech Connect (OSTI)

    Turner, D.; Stone, K; Stephens, P; Vaid, T

    2010-01-01T23:59:59.000Z

    Metal-organic frameworks based on metal-sulfur or metal-selenium bonds are relatively rare; herein we describe the synthesis and structural characterization of several examples, including, for example, [Cd(en){sub 3}][Cd(SC{sub 6}H{sub 4}S){sub 2}], which contains the anionic two-dimensional square-grid network [Cd(SC{sub 6}H{sub 4}S){sub 2}]{sub n}{sup 2n-}.

  15. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2014-11-01T23:59:59.000Z

    The thermal performance and reliability of sintered-silver is being evaluated for power electronics packaging applications. This will be experimentally accomplished by the synthesis of large-area bonded interfaces between metalized substrates that will be subsequently subjected to thermal cycles. A finite element model of crack initiation and propagation in these bonded interfaces will allow for the interpretation of degradation rates by a crack-velocity (V)-stress intensity factor (K) analysis. The experiment is outlined, and the modeling approach is discussed.

  16. How Hydrogen Bond Redundancy Affects Protein Flexibility

    E-Print Network [OSTI]

    Naomi Fox; Filip Jagodzinski; Jeanne Hardy; Ileana Streinu

    Modeling a Protein as a BodyBarHinge and Associated Graph Main Question: Stability in proteins is the resistance to denaturation, or unfolding. A protein that is highly stable has a high tolerance to bonds breaking before unfolding; an unstable protein has less tolerance. In this study, we focus on the question, how many hydrogen bonds

  17. Intramolecular electronic communication between dimetal units with multiple metal??al bonds

    E-Print Network [OSTI]

    Li, Zhong

    2009-05-15T23:59:59.000Z

    of dimolybdenum units linked by an oxalate dianion.............................................................. 7 3 Reaction diagrams for the polyamidate-linked dimolybdenum compounds. .............................................................. 16...V is found for the oxalate linked compound. 14,15 The planar conformation of this compound at solid state is not retained in solution and free rotation along the central C?C is possible. Some functionalization on the dicarboxylates was also performed...

  18. Synthesis, Characterization, and Toxicity Studies of Dirhodium and Diiridium Metal-Metal Bonded Compounds

    E-Print Network [OSTI]

    Lane, Sarah Margaret

    2012-10-19T23:59:59.000Z

    in long term remission in children with acute lymphoblastic leukemia.6 Combination therapy is used in almost all chemotherapy treatment today. Around this time the idea of adjuvant therapy took hold. It was shown that chemotherapy was more effective... (embryonic tissue), carcinoma (epithelial tissue), leukemia (tissues that form blood), lymphoma (lymphatic tissue), myeloma (bone marrow), and sarcoma (connective or supportive tissue – bone, cartilage, muscle). The extent to which the disease has spread...

  19. Intramolecular electronic communication between dimetal units with multiple metal??al bonds 

    E-Print Network [OSTI]

    Li, Zhong

    2009-05-15T23:59:59.000Z

    . For example, [Mo 2 (cis?DAniF) 2 ] 2 (??Cl 4 ) has a large ?E 1/2 value of 540 mV, which corresponds to a comproportionation constant of 1.3 ? 10 9 . Because of the large comproportionation constant, oxidation of the neutral precursor gives a mixed...V/s, and 0.10 M Bu 4 NPF 6 (in CH 2 Cl 2 ) as electrolyte. The EPR spectrum was recorded on a Bruker ESP300 spectrometer and Magnetic susceptibility measurements were performed on a Quantum Design SQUID MPMS?XL magnetometer. Preparation of [Mo 2 (DAniF) 3...

  20. NonDestructive Inspection of Adhesive Bonds in Metal-Metal Joints...

    Energy Savers [EERE]

    DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08dasch2.pdf More Documents & Publications Non-Destructive...

  1. Synthesis, Characterization and Investigation of Metal-Metal Bonded Dirhodium Complexes

    E-Print Network [OSTI]

    Li, Zhanyong

    2014-06-20T23:59:59.000Z

    Photocatalysis for H2O reduction ................................................................................. 11 CHAPTER II COMPREHENSIVE INVESTIGATION OF A FAMILY OF UNUSUAL PARTIAL PADDLEWHEEL DIRHODIUM ISOCYANIDE COMPLEXES.... 11 Photocatalysis for H2O reduction The environmental issues and impending energy crisis arising from the rapid consumption of traditional fossil fuels has led to an upsurgence in research aimed at developing clean and renewable energy resources...

  2. Non-Destructive Inspection of Adhesive Bonds in Metal-Metal Joints |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEnginesVacant Under SecretaryNon-Availability

  3. NonDestructive Inspection of Adhesive Bonds in Metal-Metal Joints |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEnginesVacantmagnetic materialsDepartment of

  4. Microstructural developments in TLP bonds using thin interlayers based on Ni-B coatings

    SciTech Connect (OSTI)

    Saha, R.K. [Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4 (Canada); Khan, T.I., E-mail: tkhan@ucalgary.ca [Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4 (Canada)

    2009-09-15T23:59:59.000Z

    Oxide dispersion strengthened alloy MA 758 was transient liquid phase (TLP) bonded using thin interlayers based on Ni-B electrodeposited coatings and the microstructural developments across the joint region were studied. The bonding surfaces were electrodeposited with a coat thickness of 2-9 {mu}m and microstructural features were characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. The homogeneity of the joint was assessed performing micro-hardness test. The results showed that the coating thickness as well as the amount of melting point depressants (boron) in the coatings had a significant effect on the microstructural developments within the joint region. TLP bonds made using a 2 {mu}m thick coating interlayer produced a joint with no visible precipitate formation and parent metal dissolution, and the absence of precipitates was attributed to the lower volume concentration of boron in the 2 {mu}m thick coating interlayer.

  5. Modeling Low-Barrier Hydrogen Bonds and Solution Effects

    E-Print Network [OSTI]

    Theel, Kelly

    2013-01-01T23:59:59.000Z

    Modeling low-barrier hydrogen bonds . . . . . 1.3 ModelingTypical hydrogen-bond 1-D potential energy surface . LBHB 1-representation of a Low Barrier Hydrogen Bond . . . . . . .

  6. sp2 Carbon-Hydrogen Bond (C-H) Functionalization

    E-Print Network [OSTI]

    Yotphan, Sirilata

    2010-01-01T23:59:59.000Z

    C-C) bonds from carbon-hydrogen (C-H) bonds in organicof them is unusually short. Hydrogen atoms were included insp 2 Carbon-Hydrogen Bond (C-H) Functionalization By

  7. Low Barrier Hydrogen Bonds in Acyclic Tertiary Diamines

    E-Print Network [OSTI]

    Khodagholian, Sevana

    2010-01-01T23:59:59.000Z

    In Search of a Low Barrier Hydrogen Bond in Proton Bridgedand J.A. Gerlt, “The Low Barrier Hydrogen Bond in EnzymaticShow That Low-Barrier Hydrogen Bonds do not Offer a

  8. Structural and Mechanistic Insights into C-P Bond Hydrolysis by Phosphonoacetate Hydrolase

    SciTech Connect (OSTI)

    Agarwal, Vinayak; Borisova, Svetlana A.; Metcalf, William W.; van der Donk, Wilfred A.; Nair, Satish K. (UIUC)

    2011-12-22T23:59:59.000Z

    Bacteria have evolved pathways to metabolize phosphonates as a nutrient source for phosphorus. In Sinorhizobium meliloti 1021, 2-aminoethylphosphonate is catabolized to phosphonoacetate, which is converted to acetate and inorganic phosphate by phosphonoacetate hydrolase (PhnA). Here we present detailed biochemical and structural characterization of PhnA that provides insights into the mechanism of C-P bond cleavage. The 1.35 {angstrom} resolution crystal structure reveals a catalytic core similar to those of alkaline phosphatases and nucleotide pyrophosphatases but with notable differences, such as a longer metal-metal distance. Detailed structure-guided analysis of active site residues and four additional cocrystal structures with phosphonoacetate substrate, acetate, phosphonoformate inhibitor, and a covalently bound transition state mimic provide insight into active site features that may facilitate cleavage of the C-P bond. These studies expand upon the array of reactions that can be catalyzed by enzymes of the alkaline phosphatase superfamily.

  9. Metal oxide films on metal

    DOE Patents [OSTI]

    Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

    1995-01-01T23:59:59.000Z

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  10. Arylpalladium Phosphonate Complexes as Reactive Intermediates in Phosphorus-Carbon Bond Forming Reactions

    SciTech Connect (OSTI)

    Kohler, Mark C. [Bucknell University; Grimes, Thomas V. [University of North Texas; Wang, Xiaoping [ORNL; Cundari, Thomas R. [University of North Texas; Stockland, Robert A. Jr. [Bucknell University

    2009-01-01T23:59:59.000Z

    Phosphorus-carbon bond formation from discrete transition metal complexes have been investigated through a combination of synthetic, spectroscopic, crystallographic, and computational methods. Reactive intermediates of the type (diphosphine)Pd(aryl)(P(O)(OEt)(2)) have been prepared, characterized, and studied as possible intermediates in metal-mediated coupling reactions. Several of the reactive intermediates were characterized crystallographicaliy, and a discussion of the solid state structures is presented. In contrast to other carbon-heteroelement bond forming reactions, palladium complexes containing electron-donating substituents on the aromatic fragment exhibited faster rates of reductive elimination. Large bite angle diphosphine ligands induced rapid rates of elimination, while bipyridine and small bite angle diphosphine ligands resulted in much slower rates of elimination. An investigation of the effect of typical impurities on the elimination reaction was carried out. While excess diphosphine, pyridine, and acetonitrile had little effect on the observed rate, the addition of water slowed the phosphorus-carbon bond forming reaction. Coordination of water to the complex was observed spectroscopically and crystallographically. Computational studies were utilized to probe the reaction pathways for P-C bond formation via Pd catalysis.

  11. Earth-Abundant Transition Metal Chemistry: Electrocatalytic Hydrogen Production and the Synthesis of High-spin Iron(IV)-oxo Complexes

    E-Print Network [OSTI]

    Bigi, Julian

    2012-01-01T23:59:59.000Z

    simulation (red) in 1:1 acetonitrile/toluene. Spectrometer0.1 M n Bu 4 NPF 6 in acetonitrile. Scan rate: 1000 mV/sec;0.1 M n Bu 4 NPF 6 in acetonitrile. Scan rate: 100 mV/sec;

  12. Earth-Abundant Transition Metal Chemistry: Electrocatalytic Hydrogen Production and the Synthesis of High-spin Iron(IV)-oxo Complexes

    E-Print Network [OSTI]

    Bigi, Julian

    2012-01-01T23:59:59.000Z

    or to ca 130 K on the Smart 1000 using a home-built device).or to ca 130 K on the Smart 1000 using a home-built device).or to ca 130 K on the Smart 1000 using a home-built device).

  13. Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable...

    Broader source: Energy.gov (indexed) [DOE]

    presentation overview of qualified energy conservation bond and new clean renewable energy bonds, including characteristics, mechanics, allocated volume, and other information....

  14. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with...

  15. Three Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and Transition State Analogues. Three Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and Transition State Analogues....

  16. A Preorganized Hydrogen Bond Network and Its Effect on Anion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preorganized Hydrogen Bond Network and Its Effect on Anion Stability. A Preorganized Hydrogen Bond Network and Its Effect on Anion Stability. Abstract: Rigid tricyclic locked in...

  17. Hydrogen-Bond Acidic Polymers for Chemical Vapor Sensing. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acidic Polymers for Chemical Vapor Sensing. Hydrogen-Bond Acidic Polymers for Chemical Vapor Sensing. Abstract: A review with 171 references. Hydrogen-bond acidic polymers for...

  18. Local Option- Industrial Facilities and Development Bonds (Utah)

    Broader source: Energy.gov [DOE]

    Under the Utah Industrial Facilities and Development Act, counties, municipalities, and state universities in Utah may issue Industrial Revenue Bonds (IRBs) or Industrial Development Bonds (IDBs)...

  19. Qualified Energy Conservation Bonds (ŤQECBs?) & New Clean Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Qualified Energy Conservation Bonds ("QECBs") & New Clean Renewable Energy Bonds ("New CREBs") Slide 1 DISCLAIMER: The information in this presentation is for informational...

  20. Investigations into the Nature of Halogen Bonding Including Symmetry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    into the Nature of Halogen Bonding Including Symmetry Adapted Perturbation Theory Analyses. Investigations into the Nature of Halogen Bonding Including Symmetry Adapted...

  1. Experimental and Theoretical Examination of C-CN Bond Activation of Benzonitrile Using Zerovalent Nickel

    E-Print Network [OSTI]

    Jones, William D.

    Nickel Tu¨lay A. Ates¸in, Ting Li, Se´bastien Lachaize, Juventino J. García, and William D. JonesVersidad Nacional Auto´noma de Me´xico, Me´xico City, Me´xico D. F. 04510 ReceiVed May 9, 2008 The nickel(0 these transition states, those for the migration of the nickel metal between the carbon-carbon bonds of the phenyl

  2. Method of making bonded or sintered permanent magnets

    DOE Patents [OSTI]

    McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.

    1995-11-28T23:59:59.000Z

    An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density. 14 figs.

  3. Method of making bonded or sintered permanent magnets

    DOE Patents [OSTI]

    McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.

    1993-08-31T23:59:59.000Z

    An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density.

  4. Method of making bonded or sintered permanent magnets

    DOE Patents [OSTI]

    McCallum, R. William (Ames, IA); Dennis, Kevin W. (Ames, IA); Lograsso, Barbara K. (Ames, IA); Anderson, Iver E. (Ames, IA)

    1995-11-28T23:59:59.000Z

    An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density.

  5. The Ohio Enterprise Bond Fund (Ohio)

    Broader source: Energy.gov [DOE]

    The Ohio Enterprise Bond Fund (OEBF) was created in 1988 to promote economic development, create and retain quality jobs and assist governmental operations. The program enables non-profit and for...

  6. Industrial Revenue Bond Program (District of Columbia)

    Broader source: Energy.gov [DOE]

    The District provides below market bond financing to lower the costs of borrowing for qualified capital construction and renovation projects. The program is available to non-profits, institutions,...

  7. Corporate bond repurchases and earnings management

    E-Print Network [OSTI]

    Lemayian, Zawadi Rehema

    2013-01-01T23:59:59.000Z

    This paper investigates whether earnings management incentives are associated with gains/losses recognized when firms repurchase bonds. The research question is motivated by the inclusion of these gains/losses in firms' ...

  8. Metals 2000

    SciTech Connect (OSTI)

    Allison, S.W.; Rogers, L.C.; Slaughter, G. [Oak Ridge National Lab., TN (United States); Boensch, F.D. [6025 Oak Hill Lane, Centerville, OH (United States); Claus, R.O.; de Vries, M. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1993-05-01T23:59:59.000Z

    This strategic planning exercise identified and characterized new and emerging advanced metallic technologies in the context of the drastic changes in global politics and decreasing fiscal resources. In consideration of a hierarchy of technology thrusts stated by various Department of Defense (DOD) spokesmen, and the need to find new and creative ways to acquire and organize programs within an evolving Wright Laboratory, five major candidate programs identified are: C-17 Flap, Transport Fuselage, Mach 5 Aircraft, 4.Fighter Structures, and 5. Missile Structures. These results were formed by extensive discussion with selected major contractors and other experts, and a survey of advanced metallic structure materials. Candidate structural applications with detailed metal structure descriptions bracket a wide variety of uses which warrant consideration for the suggested programs. An analysis on implementing smart skins and structures concepts is given from a metal structures perspective.

  9. Dendritic metal nanostructures

    DOE Patents [OSTI]

    Shelnutt, John A. (Tijeras, NM); Song, Yujiang (Albuquerque, NM); Pereira, Eulalia F. (Vila Nova de Gaia, PT); Medforth, Craig J. (Winters, CA)

    2010-08-31T23:59:59.000Z

    Dendritic metal nanostructures made using a surfactant structure template, a metal salt, and electron donor species.

  10. Bio-Oxo Technology

    Energy Savers [EERE]

    resources that is environmentally friendly with a reduced carbon footprint and at a cost competitive price will benefit all. 6 Easel commercialization approach Transition...

  11. Bio-Oxo Technology

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green Bus rolled into Washington,Almost allEasel

  12. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    DOE Patents [OSTI]

    Gordon, John Howard

    2014-09-09T23:59:59.000Z

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  13. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOE Patents [OSTI]

    Lilga, M.A.; Hallen, R.T.

    1990-08-28T23:59:59.000Z

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the producer gas from coal gasification processes. 3 figs.

  14. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOE Patents [OSTI]

    Lilga, Michael A. (Richland, WA); Hallen, Richard T. (Richland, WA)

    1991-01-01T23:59:59.000Z

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.

  15. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOE Patents [OSTI]

    Lilga, M.A.; Hallen, R.T.

    1991-10-15T23:59:59.000Z

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.

  16. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOE Patents [OSTI]

    Lilga, Michael A. (Richland, WA); Hallen, Richard T. (Richland, WA)

    1990-01-01T23:59:59.000Z

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.

  17. July 18, 2012 Using Qualified Energy Conservation Bonds for Public

    E-Print Network [OSTI]

    July 18, 2012 Using Qualified Energy Conservation Bonds for Public Building Upgrades: Reducing Energy Bills in the City of Philadelphia Qualified Energy Conservation Bonds (QECBs) are federally Energy Conservation Bond (QECB) is a bond that enables qualified state, tribal and local government

  18. Qualified Energy Conservation Bond State-by-State Summary Tables

    Broader source: Energy.gov [DOE]

    Provides a list of qualified energy conservation bond state summary tables. Author: Energy Programs Consortium

  19. The Ties That Bond: Re-Examining the Relationship between Facebook Use and Bonding Social Capital

    E-Print Network [OSTI]

    Michigan, University of

    The Ties That Bond: Re-Examining the Relationship between Facebook Use and Bonding Social Capital established a positive relationship between measures of Facebook use and perceptions of social capital. Like other social network sites, Facebook is especially well-positioned to enhance users' bridging social

  20. Hydrogen Bond Networks: Structure and Evolution after Hydrogen Bond Breaking John B. Asbury, Tobias Steinel, and M. D. Fayer*

    E-Print Network [OSTI]

    Fayer, Michael D.

    Hydrogen Bond Networks: Structure and Evolution after Hydrogen Bond Breaking John B. Asbury, TobiasVed: September 1, 2003; In Final Form: December 18, 2003 The nature of hydrogen bonding networks following hydrogen bond breaking is investigated using vibrational echo correlation spectroscopy of the hydroxyl

  1. Shirzadi et al. Surface and Interface Analysis 2001; 31:609-618 Interface evolution and bond strength when diffusion bonding

    E-Print Network [OSTI]

    Cambridge, University of

    strength when diffusion bonding materials with stable oxide films A.A. Shirzadi* , H. Assadi and E morphologies and strengths of aluminium diffusion bonds are reviewed. Previous approaches, proposed to overcome for both solid-state diffusion bonding and conventional transient liquid phase (TLP) diffusion bonding. Non

  2. Steel-SiC Metal Matrix Composite Development

    SciTech Connect (OSTI)

    Smith, Don D.

    2005-07-17T23:59:59.000Z

    The goal of this project is to develop a method for fabricating SiC-reinforced high-strength steel. We are developing a metal-matrix composite (MMC) in which SiC fibers are be embedded within a metal matrix of steel, with adequate interfacial bonding to deliver the full benefit of the tensile strength of the SiC fibers in the composite.

  3. Metal Hydrides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19,DepartmentEnergyMetalMetal

  4. Bond Strength Measurements from an Australian Standard Bond Wrench in Comparison to the Unbalanced ASTM C 1072 Bond Wrench to the Balanced and Unbalanced Wrenches

    E-Print Network [OSTI]

    Suresh, Sri Vishnu Chaitanya Guptha

    2014-08-14T23:59:59.000Z

    Bond wrenches. The Australian wrench values were significantly higher than the American bond wrenches for similar types of samples. Hence it was recommended that the tests be carried out by replacing the cement with Portland cement. This experimental...

  5. Alkyl Chlorides as Hydrogen Bond Acceptors

    SciTech Connect (OSTI)

    Nadas, Janos I [ORNL; Vukovic, Sinisa [ORNL; Hay, Benjamin [ORNL

    2012-01-01T23:59:59.000Z

    To gain an understanding of the role of an alkyl chloride as a hydrogen bond acceptor, geometries and interaction energies were calculated at the MP2/aug-cc-pVDZ level of theory for complexes between ethyl chloride and representative hydrogen donor groups. The results establish that these donors, which include hydrogen cyanide, methanol, nitrobenzene, pyrrole, acetamide, and N-methylurea, form X-H {hor_ellipsis} Cl hydrogen bonds (X = C, N, O) of weak to moderate strength, with {Delta}E values ranging from -2.8 to -5.3 kcal/mol.

  6. Phosphate-bonded calcium aluminate cements

    DOE Patents [OSTI]

    Sugama, Toshifumi (Mastic Beach, NY)

    1993-01-01T23:59:59.000Z

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120.degree. C. to about 300.degree. C. to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate.

  7. Phosphate-bonded calcium aluminate cements

    DOE Patents [OSTI]

    Sugama, T.

    1993-09-21T23:59:59.000Z

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.

  8. Adhesive bonding using variable frequency microwave energy

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); McMillan, April D. (Knoxville, TN); Paulauskas, Felix L. (Oak Ridge, TN); Fathi, Zakaryae (Cary, NC); Wei, Jianghua (Raleigh, NC)

    1998-01-01T23:59:59.000Z

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

  9. Adhesive bonding using variable frequency microwave energy

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-09-08T23:59:59.000Z

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  10. Adhesive bonding using variable frequency microwave energy

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-08-25T23:59:59.000Z

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  11. Method for producing chemically bonded phosphate ceramics and for stabilizing contaminants encapsulated therein utilizing reducing agents

    SciTech Connect (OSTI)

    Singh, Dileep (Naperville, IL); Wagh, Arun S. (Orland Park, IL); Jeong, Seung-Young (Westmont, IL)

    2000-01-01T23:59:59.000Z

    Known phosphate ceramic formulations are improved and the ability to produce iron-based phosphate ceramic systems is enabled by the addition of an oxidizing or reducing step during the acid-base reactions that form the phosphate ceramic products. The additives allow control of the rate of the acid-base reactions and concomitant heat generation. In an alternate embodiment, waste containing metal anions are stabilized in phosphate ceramic products by the addition of a reducing agent to the phosphate ceramic mixture. The reduced metal ions are more stable and/or reactive with the phosphate ions, resulting in the formation of insoluble metal species within the phosphate ceramic matrix, such that the resulting chemically bonded phosphate ceramic product has greater leach resistance.

  12. Monitoring detachment and diffusion of metallic species in polycarbonate

    SciTech Connect (OSTI)

    Bencomo, M. [Department of Physics, Texas A and M U. College Station, TX 77843 (United States); Castro-Colin, M. [Bruker AXS GmbH, 76187, Karlsruhe (Germany); Lopez, J. A.; Ramirez-Homs, E. [Department of Physics, U. of Texas at El Paso, El Paso, TX 79968 (United States)

    2013-07-03T23:59:59.000Z

    Photon absorption is known to create peroxy radicals in polymers, in a process that entails the removal of hydrogen atoms and the subsequent breakage of bonds. Bond-breaking is found to free, from the polymeric matrix, metallic additives which are then able to diffuse out, as evidenced by the change in both the metallic fluorescence yield and the XPS profiles of C, N, and O. Polycarbonate was artificially weathered using UV radiation from mercury emission lines at 365, 405 and 435 nm, followed by thermal treatment. The UV wavelengths used have energies comparable to those of covalent bonds found in polymeric chains. Both processes, light exposure and thermal, have the purpose of stimulating the degradation of polycarbonate.

  13. MetalLigand-Containing Polymers: Terpyridine as the Supramolecular Unit

    E-Print Network [OSTI]

    Tew, Gregory N.

    -assemble molecules into supramolecular materials including hydrogen and metal bonds, p­p and donor of supramolecular chemistry, the use of polymeric macromolecules as basic elements in supramo- lecular materials has and express their functionality in the final material. Such materials are referred to as supramolecular

  14. air metal hydride: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air metal hydride First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Carbon-Fluorine Bond Cleavage by...

  15. Thermodynamic aspects of dehydrogenation reactions on noble metal surfaces

    SciTech Connect (OSTI)

    Svane, K. L., E-mail: ksvane@inano.au.dk; Hammer, B., E-mail: hammer@phys.au.dk [Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, Aarhus University (Denmark)

    2014-11-07T23:59:59.000Z

    The reaction free energy for dehydrogenation of phenol, aniline, thiophenol, benzoic acid, and 1,4-benzenediol on the close packed copper, silver, and gold surfaces has been studied by density functional theory calculations. Dehydrogenation of thiophenol is found to be favourable on all three surfaces while aniline does not dehydrogenate on any of them. For phenol, benzenediol and benzoic acid dehydrogenation is favourable on copper and silver only, following the general trend of an increasing reaction free energy when going form gold to silver to copper. This trend can be correlated with the changes in bond lengths within the molecule upon dehydrogenation. While copper is able to replace hydrogen, leaving small changes in the bond lengths of the aromatic ring, the metal-molecule bond is weaker for silver and gold, resulting in a partial loss of aromaticity. This difference in bond strength leads to pronounced differences in adsorption geometries upon multiple dehydrogenations.

  16. Nitride-bonded silicon carbide composite filter

    SciTech Connect (OSTI)

    Thomson, B.N.; DiPietro, S.G.

    1995-12-01T23:59:59.000Z

    The objective of this program is to develop and demonstrate an advanced hot gas filter, using ceramic component technology, with enhanced durability to provide increased resistance to thermal fatigue and crack propagation. The material is silicon carbide fiber reinforced nitride bonded silicon carbide.

  17. Fluorinated diamond bonded in fluorocarbon resin

    DOE Patents [OSTI]

    Taylor, Gene W. (Los Alamos, NM)

    1982-01-01T23:59:59.000Z

    By fluorinating diamond grit, the grit may be readily bonded into a fluorocarbon resin matrix. The matrix is formed by simple hot pressing techniques. Diamond grinding wheels may advantageously be manufactured using such a matrix. Teflon fluorocarbon resins are particularly well suited for using in forming the matrix.

  18. Air America: Upholding the Airmen's Bond

    E-Print Network [OSTI]

    Kilgard, Michael P.

    Air America: Upholding the Airmen's Bond April 18, 2009 The University of Texas at Dallas Conference Center Auditorium A Symposium to Acknowledge and Commemorate Air America Rescue Efforts during with Air America Senior Operations Officer, CIA, Retired 2 p.m. Laos Rescues: Lima Site 85 Dr. Tim Castle

  19. Bayesian field theoretic reconstruction of bond potential and bond mobility in single molecule force spectroscopy

    E-Print Network [OSTI]

    Chang, Joshua C; Chou, Tom

    2015-01-01T23:59:59.000Z

    Quantifying the forces between and within macromolecules is a necessary first step in understanding the mechanics of molecular structure, protein folding, and enzyme function and performance. In such macromolecular settings, dynamic single-molecule force spectroscopy (DFS) has been used to distort bonds. The resulting responses, in the form of rupture forces, work applied, and trajectories of displacements, have been used to reconstruct bond potentials. Such approaches often rely on simple parameterizations of one-dimensional bond potentials, assumptions on equilibrium starting states, and/or large amounts of trajectory data. Parametric approaches typically fail at inferring complex-shaped bond potentials with multiple minima, while piecewise estimation may not guarantee smooth results with the appropriate behavior at large distances. Existing techniques, particularly those based on work theorems, also do not address spatial variations in the diffusivity that may arise from spatially inhomogeneous coupling to...

  20. C-O Bond Activation and C-C Bond Formation Paths in Catalytic CO Hydrogenation

    E-Print Network [OSTI]

    Loveless, Brett

    2012-01-01T23:59:59.000Z

    Anderson, The Fischer-Tropsch and Related Synthesis, Wiley,Anderson, The Fischer-Tropsch and Related Synthesis, Wiley,C-C bond formation paths in Fischer-Tropsch synthesis are

  1. Various Carbon to Carbon Bond Lengths Inter-related via the Golden Ratio, and their Linear Dependence on Bond Energies

    E-Print Network [OSTI]

    Raji Heyrovska

    2008-09-11T23:59:59.000Z

    This work presents the relations between the carbon to carbon bond lengths in the single, double and triple bonds and in graphite, butadiene and benzene. The Golden ratio, which was shown to divide the Bohr radius into two parts pertaining to the charged particles, the electron and proton, and to divide inter-atomic distances into their cationic and anionic radii, also plays a role in the carbon-carbon bonds and in the ionic/polar character of those in graphite, butadiene and benzene. Further, the bond energies of the various CC bonds are shown to vary linearly with the bond lengths.

  2. Experimental bond critical point and local energy density properties...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mn-O, Fe-O and Co-O bonded interactions for Abstract: Bond critical point, bcp, and local energy density properties for the electron density, ED, distributions, calculated with...

  3. Single-Issue Industrial Revenue Bond Program (Missouri)

    Broader source: Energy.gov [DOE]

    The Missouri Development Finance Board administers a Single-Issue Tax-Exempt Industrial Revenue Bond Program as well as a Taxable Industrial Revenue Bond Program. The Tax-Exempt Program finances (i...

  4. Imaging Intrinsic Diffusion of Bridge-Bonded Oxygen Vacancies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intrinsic Diffusion of Bridge-Bonded Oxygen Vacancies on TiO2(110). Imaging Intrinsic Diffusion of Bridge-Bonded Oxygen Vacancies on TiO2(110). Abstract: Since oxygen atom...

  5. ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement ID:23278) ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement ID:23278) 2013 DOE Hydrogen and Fuel...

  6. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Ramsey, Philip B. (Livermore, CA); Juntz, Robert S. (Hayward, CA)

    1995-01-01T23:59:59.000Z

    An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.

  7. Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy

    E-Print Network [OSTI]

    Wen, Haidan

    2010-01-01T23:59:59.000Z

    manifesting in fewer/weaker hydrogen bonds and structuralstructures with weaker hydrogen-bonding is recorded viais characteristic of the hydrogen bond network in water. The

  8. Hydrogen Bonding DOI: 10.1002/anie.200501349

    E-Print Network [OSTI]

    Simons, Jack

    systems[5­13] and crystal engineering.[14­18] Most C�H···O hydrogen bonds have been observed for the soHydrogen Bonding DOI: 10.1002/anie.200501349 Observation of Weak C�H···O Hydrogen Bonding to Unactivated Alkanes** Xue-Bin Wang, Hin-Koon Woo, Boggavarapu Kiran, and Lai-Sheng Wang* The hydrogen bond

  9. Measuring Interfacial Stiffness of Adhesively-Bonded Wood

    E-Print Network [OSTI]

    Nairn, John A.

    , the interfaces will fail, the elements will cease to share load, and the composite will have poor properties property. Nearly all methods for characterizing wood adhesive bonds consider only strength of the bonds. Typically a bond line is loaded until failure and the final load at failure is recorded. Some common

  10. Hydrogen Bonding Penalty upon Ligand Binding Hongtao Zhao, Danzhi Huang*

    E-Print Network [OSTI]

    Caflisch, Amedeo

    Hydrogen Bonding Penalty upon Ligand Binding Hongtao Zhao, Danzhi Huang* Department of Biochemistry, University of Zurich, Zurich, Switzerland Abstract Ligand binding involves breakage of hydrogen bonds with water molecules and formation of new hydrogen bonds between protein and ligand. In this work, the change

  11. Flip chip electrical interconnection by selective electroplating and bonding

    E-Print Network [OSTI]

    Lin, Liwei

    the interconnection and device substrates to en- hance the ion diffusion during the final electroplating and bondingFlip chip electrical interconnection by selective electroplating and bonding L.-W. Pan, P. Yuen, L of flip-chip, selective elec- troplating and bonding. The electrical interconnection lines are built

  12. Oil prices and government bond risk premiums Herv Alexandre*

    E-Print Network [OSTI]

    Boyer, Edmond

    Oil prices and government bond risk premiums By Hervé Alexandre*ş Antonin de Benoist * Abstract : This article analyses the impact of oil price on bond risk premiums issued by emerging economies. No empirical study has yet focussed on the effects of the oil price on government bond risk premiums. We develop

  13. Energetics of hydrogen bonds in peptides Sheh-Yi Sheu*

    E-Print Network [OSTI]

    Sheu, Sheh-Yi

    for water. We find that the activation energy for the rupture of the hydrogen bond in a -sheet under calculation can be useful for the prediction of hydrogen bond strengths in various environments of interest extensively to calculate free energy changes caused by hydrogen bond rupture. Here the water environment

  14. Analysis of C H...O hydrogen bonds

    E-Print Network [OSTI]

    Babu, M. Madan

    1 Analysis of C H...O hydrogen bonds in high resolution protein crystal structures from the PDB 1.4 Identification of C-H...O hydrogen bonds............................................. 1.4.1 The definition of a C-H...O hydrogen bond.................................... 1.4.2 Fixing the hydrogen and measuring the parameters

  15. Evaluation of the Role of Water in the H2 Bond Formation by Ni(II)-based Electrocatalysts

    SciTech Connect (OSTI)

    Ho, Ming-Hsun; Raugei, Simone; Rousseau, Roger J.; Dupuis, Michel; Bullock, R. Morris

    2013-07-17T23:59:59.000Z

    We investigate the role of water in the H-H bond formation by a family of nickel molecular catalysts that exhibit high rates for H2 production in acetonitrile solvent. A key feature leading to the high reactivity is the Lewis acidity of the Ni(II) center and pendant amines in the diphosphine ligand that function as Lewis bases, facilitating H-H bond formation or cleavage. Significant increases in the rate of H2 production have been reported in the presence of added water. Our calculations show that molecular water can displace an acetonitrile solvent molecule in the first solvation shell of the metal. One or two water molecules can also participate in shuttling a proton that can combine with a metal hydride to form the H-H bond. However the participation of the water molecules does not lower the barrier to H-H bond formation. Thus these calculations suggest that the rate increase due to water in these electrocatalysts is not associated with the elementary step of H-H bond formation or cleavage, but rather with the proton delivery steps. We attribute the higher barrier in the H-H bond formation in the presence of water to a decrease in direct interaction between the protic and hydridic hydrogen atoms forced by the water molecules. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory - Pacific Northwest National Laboratory, the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory, and the Jaguar supercomputer at Oak Ridge National Laboratory.

  16. Article coated with flash bonded superhydrophobic particles

    DOE Patents [OSTI]

    Simpson, John T (Clinton, TN) [Clinton, TN; Blue, Craig A (Knoxville, TN) [Knoxville, TN; Kiggans, Jr., James O [Oak Ridge, TN

    2010-07-13T23:59:59.000Z

    A method of making article having a superhydrophobic surface includes: providing a solid body defining at least one surface; applying to the surface a plurality of diatomaceous earth particles and/or particles characterized by particle sizes ranging from at least 100 nm to about 10 .mu.m, the particles being further characterized by a plurality of nanopores, wherein at least some of the nanopores provide flow through porosity, the particles being further characterized by a plurality of spaced apart nanostructured features that include a contiguous, protrusive material; flash bonding the particles to the surface so that the particles are adherently bonded to the surface; and applying a hydrophobic coating layer to the surface and the particles so that the hydrophobic coating layer conforms to the nanostructured features.

  17. Anesthesia cutoff phenomenon: Interfacial hydrogen bonding

    SciTech Connect (OSTI)

    Chiou, J.S.; Ma, S.M.; Kamaya, H.; Ueda, I. (Univ. of Utah School of Medicine, Salt Lake City (USA))

    1990-05-04T23:59:59.000Z

    Anesthesia cutoff refers to the phenomenon of loss of anesthetic potency in a homologous series of alkanes and their derivatives when their sizes become too large. In this study, hydrogen bonding of 1-alkanol series (ethanol to eicosanol) to dipalmitoyl-L-alpha-phosphatidylcholine (DPPC) was studied by Fourier transform infrared spectroscopy (FTIR) in DPPC-D2O-in-CCl4 reversed micelles. The alkanols formed hydrogen bonds with the phosphate moiety of DPPC and released the DPPC-bound deuterated water, evidenced by increases in the bound O-H stretching signal of the alkanol-DPPC complex and also in the free O-D stretching band of unbound D2O. These effects increased according to the elongation of the carbon chain of 1-alkanols from ethanol (C2) to 1-decanol (C10), but suddenly almost disappeared at 1-tetradecanol (C14). Anesthetic potencies of these alkanols, estimated by the activity of brine shrimps, were linearly related to hydrogen bond-breaking activities below C10 and agreed with the FTIR data in the cutoff at C10.

  18. Microchannel cooling of face down bonded chips

    DOE Patents [OSTI]

    Bernhardt, Anthony F. (Berkeley, CA)

    1993-01-01T23:59:59.000Z

    Microchannel cooling is applied to flip-chip bonded integrated circuits, in a manner which maintains the advantages of flip-chip bonds, while overcoming the difficulties encountered in cooling the chips. The technique is suited to either multichip integrated circuit boards in a plane, or to stacks of circuit boards in a three dimensional interconnect structure. Integrated circuit chips are mounted on a circuit board using flip-chip or control collapse bonds. A microchannel structure is essentially permanently coupled with the back of the chip. A coolant delivery manifold delivers coolant to the microchannel structure, and a seal consisting of a compressible elastomer is provided between the coolant delivery manifold and the microchannel structure. The integrated circuit chip and microchannel structure are connected together to form a replaceable integrated circuit module which can be easily decoupled from the coolant delivery manifold and the circuit board. The coolant supply manifolds may be disposed between the circuit boards in a stack and coupled to supplies of coolant through a side of the stack.

  19. Microchannel cooling of face down bonded chips

    DOE Patents [OSTI]

    Bernhardt, A.F.

    1993-06-08T23:59:59.000Z

    Microchannel cooling is applied to flip-chip bonded integrated circuits, in a manner which maintains the advantages of flip-chip bonds, while overcoming the difficulties encountered in cooling the chips. The technique is suited to either multi chip integrated circuit boards in a plane, or to stacks of circuit boards in a three dimensional interconnect structure. Integrated circuit chips are mounted on a circuit board using flip-chip or control collapse bonds. A microchannel structure is essentially permanently coupled with the back of the chip. A coolant delivery manifold delivers coolant to the microchannel structure, and a seal consisting of a compressible elastomer is provided between the coolant delivery manifold and the microchannel structure. The integrated circuit chip and microchannel structure are connected together to form a replaceable integrated circuit module which can be easily decoupled from the coolant delivery manifold and the circuit board. The coolant supply manifolds may be disposed between the circuit boards in a stack and coupled to supplies of coolant through a side of the stack.

  20. Thermal Modeling of A Friction Bonding Process

    SciTech Connect (OSTI)

    John Dixon; Douglas Burkes; Pavel Medvedev

    2007-10-01T23:59:59.000Z

    A COMSOL model capable of predicting temperature evolution during nuclear fuel fabrication is being developed at the Idaho National Laboratory (INL). Fuel plates are fabricated by friction bonding (FB) uranium-molybdenum (U-Mo) alloy foils positioned between two aluminum plates. The ability to predict temperature distribution during fabrication is imperative to ensure good quality bonding without inducing an undesirable chemical reaction between U-Mo and aluminum. A three-dimensional heat transfer model of the FB process implementing shallow pin penetration for cladding monolithic nuclear fuel foils is presented. Temperature distribution during the FB process as a function of fabrication parameters such as weld speed, tool load, and tool rotational frequency are predicted. Model assumptions, settings, and equations are described in relation to standard friction stir welding. Current experimental design for validation and calibration of the model is also demonstrated. Resulting experimental data reveal the accuracy in describing asymmetrical temperature distributions about the tool face. Temperature of the bonded plate drops beneath the pin and is higher on the advancing side than the retreating side of the tool.

  1. Vacuum fusion bonding of glass plates

    DOE Patents [OSTI]

    Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  2. Vacuum fusion bonding of glass plates

    DOE Patents [OSTI]

    Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  3. Hydrogen Bond Breaking and Reformation in Alcohol Oligomers Following Vibrational Relaxation of a Non-Hydrogen-Bond Donating Hydroxyl Stretch

    E-Print Network [OSTI]

    Fayer, Michael D.

    Hydrogen Bond Breaking and Reformation in Alcohol Oligomers Following Vibrational Relaxation of a Non-Hydrogen-Bond Donating Hydroxyl Stretch K. J. Gaffney, I. R. Piletic, and M. D. Fayer* Department measured with ultrafast infrared pump-probe experiments. Non-hydrogen-bond donating OD stretches (2690 cm-1

  4. Nondestructive inspection of bonded composite doublers for aircraft

    SciTech Connect (OSTI)

    Roach, D.; Moore, D.; Walkington, P.

    1996-12-31T23:59:59.000Z

    One major thrust in FAA`s National Aging Aircraft Research Program is to foster new technologies in civil aircraft maintenance. Recent DOD and other government developments in using bonded composite doublers on metal structures support the need for validation of such doubler applications on US certificated airplanes. In this study, a specific composite application was chosen on an L-1011 aircraft. Primary inspection requirements for these doublers include identifying disbonds between composite laminate and aluminum parent material, and delaminations in the composite laminate. Surveillance of cracks or corrosion in the parent aluminum material beneath the double is also a concern. No single NDI method can inspect for every flaw type, therefore we need to know NDI capabilities and limitations. This paper reports on a series of NDI tests conducted on laboratory test structures and on a fuselage section from a retired L-1011. Application of ultrasonics, x-ray, and eddy current to composite doublers and results from test specimens loaded to provide a changing flaw profile, are presented in this paper. Development of appropriate inspection calibration standards are also discussed.

  5. Method of waste stabilization with dewatered chemically bonded phosphate ceramics

    DOE Patents [OSTI]

    Wagh, Arun; Maloney, Martin D.

    2010-06-29T23:59:59.000Z

    A method of stabilizing a waste in a chemically bonded phosphate ceramic (CBPC). The method consists of preparing a slurry including the waste, water, an oxide binder, and a phosphate binder. The slurry is then allowed to cure to a solid, hydrated CBPC matrix. Next, bound water within the solid, hydrated CBPC matrix is removed. Typically, the bound water is removed by applying heat to the cured CBPC matrix. Preferably, the quantity of heat applied to the cured CBPC matrix is sufficient to drive off water bound within the hydrated CBPC matrix, but not to volatalize other non-water components of the matrix, such as metals and radioactive components. Typically, a temperature range of between 100.degree. C.-200.degree. C. will be sufficient. In another embodiment of the invention wherein the waste and water have been mixed prior to the preparation of the slurry, a select amount of water may be evaporated from the waste and water mixture prior to preparation of the slurry. Another aspect of the invention is a direct anyhydrous CBPC fabrication method wherein water is removed from the slurry by heating and mixing the slurry while allowing the slurry to cure. Additional aspects of the invention are ceramic matrix waste forms prepared by the methods disclosed above.

  6. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25T23:59:59.000Z

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  7. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Phelps, Cindy (Moscow, ID)

    1997-01-01T23:59:59.000Z

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  8. Method for bonding a transmission line to a downhole tool

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

    2007-11-06T23:59:59.000Z

    An apparatus for bonding a transmission line to the central bore of a downhole tool includes a pre-formed interface for bonding a transmission line to the inside diameter of a downhole tool. The pre-formed interface includes a first surface that substantially conforms to the outside contour of a transmission line and a second surface that substantially conforms to the inside diameter of a downhole tool. In another aspect of the invention, a method for bonding a transmission line to the inside diameter of a downhole tool includes positioning a transmission line near the inside wall of a downhole tool and placing a mold near the transmission line and the inside wall. The method further includes injecting a bonding material into the mold and curing the bonding material such that the bonding material bonds the transmission line to the inside wall.

  9. Elastic Moduli Inheritance and Weakest Link in Bulk Metallic Glasses

    SciTech Connect (OSTI)

    Stoica, Alexandru Dan [ORNL; Wang, Xun-Li [ORNL; Lu, Z.P. [University of Science and Technology, Beijing; Clausen, Bjorn [Los Alamos National Laboratory (LANL); Brown, Donald [Los Alamos National Laboratory (LANL)

    2012-01-01T23:59:59.000Z

    We show that a variety of bulk metallic glasses (BMGs) inherit their Young s modulus and shear modulus from the solvent components. This is attributed to preferential straining of locally solvent-rich configurations among tightly bonded atomic clusters, which constitute the weakest link in an amorphous structure. This aspect of inhomogeneous deformation, also revealed by our in-situ neutron diffraction studies of an elastically deformed BMG, suggests a scenario of rubber-like viscoelasticity owing to a hierarchy of atomic bonds in BMGs.

  10. Olefin Metatheses in Metal Coordination Spheres: Development of Gyroscope-like trans-Spanning Bis(pyridine) Complexes and Organometallic pi-Adducts of Conjugated Polymers 

    E-Print Network [OSTI]

    Zeits, Paul

    2012-02-14T23:59:59.000Z

    The olefin metathesis reaction has become one of the most powerful carbon-carbon bond forming reaction in synthetic chemistry. This work has expanded the utility of olefin metathesis in metal coordination spheres in three ...

  11. Partial-Transient-Liquid-Phase Bonding of Advanced Ceramics Using Surface-Modified Interlayers

    E-Print Network [OSTI]

    Reynolds, Thomas Bither

    2012-01-01T23:59:59.000Z

    Alumina Diffusion Bonding and Titanium Active Brazing."O 3 -Titanium Adhesion in the View of the Diffusion Bonding

  12. Metal-phosphate binders

    DOE Patents [OSTI]

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12T23:59:59.000Z

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  13. Bond selective chemistry beyond the adiabatic approximation

    SciTech Connect (OSTI)

    Butler, L.J. [Univ. of Chicago, IL (United States)

    1993-12-01T23:59:59.000Z

    One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.

  14. Ceramic-metal composite article and joining method

    DOE Patents [OSTI]

    Kang, Shinhoo (Wayland, MA); Selverian, John H. (Burlington, MA); Kim, Hans J. (Concord, MA); Dunn, Edmund M. (Lexington, MA); Kim, Kyung S. (Barrington, RI)

    1992-01-01T23:59:59.000Z

    A ceramic-metal article including a ceramic rod, a metal rod, and a braze joining the ceramic and metal rods at a braze area of a coaxial bore in the metal rod. The bore gradually decreases in diameter, having an inward seat area sized for close sliding fit about the ceramic, a larger brazing area near the joint end, and a void area intermediate the braze and seat areas. The ceramic is seated without brazing in the bore seat area. The side wall between the brazing area and the metal outer surface is about 0.030-0.080 inch. The braze includes an inner braze layer, an outer braze layer, and an interlayer about 0.030-0.090 inch thick. A shoulder between the brazing and void areas supports the interlayer during bonding while preventing bonding between the void area and the ceramic member, leaving a void space between the void area and the ceramic member. A venting orifice extends generally radially through the metal member from the outer surface to the void space. The braze layers are palladium, platinum, gold, silver, copper, nickel, indium, chromium, molybdenum, niobium, iron, aluminum, or alloys thereof. Preferred is a gold-palladium-nickel brazing alloy. The interlayer is nickel, molybdenum, copper, tantalum, tungsten, niobium, aluminum, cobalt, iron, or an alloy thereof.

  15. Ceramic-metal composite article and joining method

    DOE Patents [OSTI]

    Kang, S.; Selverian, J.H.; Kim, H.J.; Dunn, E.M.; Kim, K.S.

    1992-04-28T23:59:59.000Z

    A ceramic-metal article including a ceramic rod, a metal rod, and a braze joining the ceramic and metal rods at a braze area of a coaxial bore in the metal rod is described. The bore gradually decreases in diameter, having an inward seat area sized for close sliding fit about the ceramic, a larger brazing area near the joint end, and a void area intermediate the braze and seat areas. The ceramic is seated without brazing in the bore seat area. The side wall between the brazing area and the metal outer surface is about 0.030-0.080 inch. The braze includes an inner braze layer, an outer braze layer, and an interlayer about 0.030-0.090 inch thick. A shoulder between the brazing and void areas supports the interlayer during bonding while preventing bonding between the void area and the ceramic member, leaving a void space between the void area and the ceramic member. A venting orifice extends generally radially through the metal member from the outer surface to the void space. The braze layers are palladium, platinum, gold, silver, copper, nickel, indium, chromium, molybdenum, niobium, iron, aluminum, or alloys thereof. Preferred is a gold-palladium-nickel brazing alloy. The interlayer is nickel, molybdenum, copper, tantalum, tungsten, niobium, aluminum, cobalt, iron, or an alloy thereof. 4 figs.

  16. Repairable chip bonding/interconnect process

    DOE Patents [OSTI]

    Bernhardt, Anthony F. (Berkeley, CA); Contolini, Robert J. (Livermore, CA); Malba, Vincent (Livermore, CA); Riddle, Robert A. (Tracy, CA)

    1997-01-01T23:59:59.000Z

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder.

  17. Repairable chip bonding/interconnect process

    DOE Patents [OSTI]

    Bernhardt, A.F.; Contolini, R.J.; Malba, V.; Riddle, R.A.

    1997-08-05T23:59:59.000Z

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules is disclosed. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder. 10 figs.

  18. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution AndControllingCoolCorrectiveCostsXCovalent Bonding in

  19. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution AndControllingCoolCorrectiveCostsXCovalent Bonding

  20. Qualified Energy Conservation Bond (QECB) Update: New

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified Energy Conservation Bond (QECB) Update: New

  1. Metal Hydrides - Science Needs

    Broader source: Energy.gov (indexed) [DOE]

    with traditions in metal hydride research Metal and Ceramic Sciences Condensed Matter Physics Materials Chemistry Chemical and Biological Sciences Located on campus of Tier...

  2. Final Environmental Impact Statement for the Treatment and Management of Sodium-Bonded Spent Nuclear Fuel

    SciTech Connect (OSTI)

    N /A

    2000-08-04T23:59:59.000Z

    DOE is responsible for the safe and efficient management of its sodium-bonded spent nuclear fuel. This fuel contains metallic sodium, a highly reactive material; metallic uranium, which is also reactive; and in some cases, highly enriched uranium. The presence of reactive materials could complicate the process of qualifying and licensing DOE's sodium-bonded spent nuclear fuel inventory for disposal in a geologic repository. Currently, more than 98 percent of this inventory is located at the Idaho National Engineering and Environmental Laboratory (INEEL), near Idaho Falls, Idaho. In addition, in a 1995 agreement with the State of Idaho, DOE committed to remove all spent nuclear fuel from Idaho by 2035. This EIS evaluates the potential environmental impacts associated with the treatment and management of sodium-bonded spent nuclear fuel in one or more facilities located at Argonne National Laboratory-West (ANL-W) at INEEL and either the F-Canyon or Building 105-L at the Savannah River Site (SRS) near Aiken, South Carolina. DOE has identified and assessed six proposed action alternatives in this EIS. These are: (1) electrometallurgical treatment of all fuel at ANL-W, (2) direct disposal of blanket fuel in high-integrity cans with the sodium removed at ANL-W, (3) plutonium-uranium extraction (PUREX) processing of blanket fuel at SRS, (4) melt and dilute processing of blanket fuel at ANL-W, (5) melt and dilute processing of blanket fuel at SRS, and (6) melt and dilute processing of all fuel at ANL-W. In addition, Alternatives 2 through 5 include the electrometallurgical treatment of driver fuel at ANL-W. Under the No Action Alternative, the EIS evaluates both the continued storage of sodium-bonded spent nuclear fuel until the development of a new treatment technology or direct disposal without treatment. Under all of the alternatives, the affected environment is primarily within 80 kilometers (50 miles) of spent nuclear fuel treatment facilities. Analyses indicate little difference in the environmental impacts among alternatives. DOE has identified electrometallurgical treatment as its Preferred Alternative for the treatment and management of all sodium-bonded spent nuclear fuel, except for the Fermi-1 blanket fuel. The No Action Alternative is preferred for the Fermi-1 blanket spent nuclear fuel.

  3. Transition metals on the (0001) surface of graphite: Fundamental aspects of adsorption, diffusion, and morphology

    SciTech Connect (OSTI)

    Appy, David [Ames Laboratory; Lei, Huaping [Ames Laboratory; Wang, Cai-Zhuang [Ames Laboratory; Tringides, Michael C [Ames Laboratory; Liu, Da-Jiang [Ames Laboratory; Evans, James W [Ames Laboratory; Thiel, Patricia A [Ames Laboratory

    2014-08-01T23:59:59.000Z

    In this article, we review basic information about the interaction of transition metal atoms with the (0 0 0 1) surface of graphite, especially fundamental phenomena related to growth. Those phenomena involve adatom-surface bonding, diffusion, morphology of metal clusters, interactions with steps and sputter-induced defects, condensation, and desorption. General traits emerge which have not been summarized previously. Some of these features are rather surprising when compared with metal-on-metal adsorption and growth. Opportunities for future work are pointed out.

  4. Heavy metal biosensor

    SciTech Connect (OSTI)

    Hillson, Nathan J; Shapiro, Lucille; Hu, Ping; Andersen, Gary L

    2014-04-15T23:59:59.000Z

    Compositions and methods are provided for detection of certain heavy metals using bacterial whole cell biosensors.

  5. Using Qualified Energy Conservation Bonds for Public Building...

    Broader source: Energy.gov (indexed) [DOE]

    Summarizes how the City of Philadelphia leveraged 6.25 million in qualified energy conservation bonds to upgrade the energy efficiency of city buildings. Author: Lawrence Berkeley...

  6. Qualified Energy Conservation Bonds (QECBs) APPENDIX A: QECB...

    Broader source: Energy.gov (indexed) [DOE]

    Qualified energy conservation bonds appendices. Author: U. S. Department of Energy Appendix A: QECB Counsel, Underwriters, Banks and Trustees More Documents & Publications...

  7. Qualified Energy Conservation Bond Webinars | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    listing of past qualified energy conservation bond webinars and associated files. Author: U.S. Department of Energy Qualified Energy Conservation Webinars Website More Documents &...

  8. Energetics of Hydrogen Bond Network Rearrangements in Liquid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly...

  9. Competition between Covalent and Noncovalent Bond Cleavages in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    localized and mainly affected by the identity of the phosphorylated side chain. The hydrogen bonding in the peptide and ligand properties play a minor role in determining the...

  10. Atomistic modeling of amorphous silicon carbide using a bond...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    there is partial recovery of shortrange order. Citation: Devanathan R, F Gao, and WJ Weber.2007."Atomistic modeling of amorphous silicon carbide using a bond-order...

  11. Clean Renewable Energy Bonds (CREBs) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    different rules than prior CREB allocations authorized under 26 USC 54. ''''' Clean renewable energy bonds (CREBs) may be used by certain entities -- primarily in the public...

  12. Municipal Bond - Power Purchase Agreement Model Continues to...

    Broader source: Energy.gov (indexed) [DOE]

    for power purchase agreement model to provide low-cost solar energy. Author: National Renewable Energy Laboratory Municipal Bond - Power Purchase Agreement Model Continues to...

  13. Qualified Energy Conservation Bond (QECB) Update: New Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    Lawrence Berkeley National Laboratory Qualified Energy Conservation Bond (QECB) Update: New Guidance from the U.S. Department of Treasury and the Internal Revenue Service...

  14. Hydrogen-Bond Networks: Strengths of Different Types of Hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energetic driving force for enzyme catalysis and conformational changes such as in protein folding due to multiple hydrogen bonds in a HBN. Citation: Shokri A, Y Wang, GA...

  15. Torsion Testing of Diffusion Bonded LIGA Formed Nickel

    SciTech Connect (OSTI)

    Buchheit, T.E.; Christenson, T.R.; Schmale, D.T.

    1999-01-27T23:59:59.000Z

    A test technique has been devised which is suitable for the testing of the bond strength of batch diffusion bonded LIGA or DXRL defined structures. The method uses a torsion tester constructed with the aid of LIGA fabrication and distributed torsion specimens which also make use of the high aspect ratio nature of DXRL based processing. Measurements reveal achieved bond strengths of 130MPa between electroplated nickel with a bond temperature of 450 C at 7 ksi pressure which is a sufficiently low temperature to avoid mechanical strength degradation.

  16. FITCH RATES ENERGY NORTHWEST (WA) ELECTRIC REV REF BONDS 'AA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SECURITY Energy Northwest (ENW) bonds are secured by payments from the Bonneville Power Administration (Bonneville). Bonneville's payment to ENW is made as an operating...

  17. adhesively bonded shell: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    various conditions, including the type of surface preparation, pH of the environmental media, (more) Xu, Dingying 2004-01-01 2 Bond Characteristics and Qualifications of...

  18. A nonchromate method for refurbishment of worn metallic components

    SciTech Connect (OSTI)

    Dearnaley, G.; Badger, P. [Southwest Research Inst., San Antonio, TX (United States); [Wear-Cote International Inc., Rock Island, IL (United States)

    1995-12-31T23:59:59.000Z

    Hard chrome electrodeposition is a widely used method for building up worn metallic components, but regulations concerning hexavalent chromium effluent are making this process less acceptable. A new method is described in which electroless nickel with phosphorus is used in a closed-loop system in order to build up the worn surface, and an amorphous diamond-like carbon (DLC) coating is bonded to this to provide a low-friction bearing surface. The combination is highly resistant to wear and corrosion.

  19. Differentiation of O-H and C-H Bond Scission Mechanisms of Ethylene Glycol on Pt and Ni/Pt Using Theory and Isotopic Labeling Experiments

    SciTech Connect (OSTI)

    Salciccioli, Michael; Yu, Weiting; Barteau, Mark A; Chen, Jingguang; Vlachos, Dion G.

    2011-05-25T23:59:59.000Z

    Understanding and controlling bond-breaking sequences of oxygenates on transition metal catalysts can greatly impact the utilization of biomass feedstocks for fuels and chemicals. The decomposition of ethylene glycol, as the simplest representative of biomass-derived polyols, was studied via density functional theory (DFT) calculations to identify the differences in reaction pathways between Pt and the more active Ni/Pt bimetallic catalyst. Comparison of the computed transition states indicated three potentially feasible paths from ethylene glycol to C1 oxygenated adsorbates on Pt. While not important on Pt, the pathway to 1,2-dioxyethylene (OCH?CH?O) is favored energetically on the Ni/Pt catalyst. Temperature-programmed desorption (TPD) experiments were conducted with deuterated ethylene glycols for comparison with DFT results. These experiments confirmed that decomposition of ethylene glycol on Pt proceeds via initial O–H bond cleavage, followed by C–H and the second O–H bond cleavages, whereas on the Ni/Pt surface, both O–H bonds are cleaved initially. The results are consistent with vibrational spectra and indicate that tuning of the catalyst surface can selectively control bond breaking. Finally, the significant mechanistic differences in decomposition of polyols compared to that of monoalcohols and hydrocarbons serve to identify general trends in bond scission sequences.

  20. Method of bonding single crystal quartz by field-assisted bonding

    DOE Patents [OSTI]

    Curlee, R.M.; Tuthill, C.D.; Watkins, R.D.

    1991-04-23T23:59:59.000Z

    The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals. 2 figures.

  1. Method of bonding single crystal quartz by field-assisted bonding

    DOE Patents [OSTI]

    Curlee, Richard M. (Tijeras, NM); Tuthill, Clinton D. (Edgewood, NM); Watkins, Randall D. (Albuquerque, NM)

    1991-01-01T23:59:59.000Z

    The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals.

  2. Quantum Finance Hamiltonian for Coupon Bond European and Barrier Options

    E-Print Network [OSTI]

    Chaudhuri, Sanjay

    Quantum Finance Hamiltonian for Coupon Bond European and Barrier Options Belal E. Baaquie RMI are financial derivatives that can be analyzed in the Hamiltonian formulation of quantum finance. Forward-2963 Fax: (65) 6777-6126 Email: phybeb@nus.edu.sg #12;Quantum Finance Hamiltonian for Coupon Bond European

  3. July 18, 2012 Qualified Energy Conservation Bond (QECB) Update: New

    E-Print Network [OSTI]

    July 18, 2012 Qualified Energy Conservation Bond (QECB) Update: New Guidance from the U.S. Department of Treasury and the Internal Revenue Service Qualified Energy Conservation Bonds (QECBs a range of energy conservation projects at very attractive borrowing rates over long contract terms

  4. BOND PROPERTIES OF CFCC PRESTRESSING STRANDS IN PRETENSIONED CONCRETE BEAMS

    E-Print Network [OSTI]

    BOND PROPERTIES OF CFCC PRESTRESSING STRANDS IN PRETENSIONED CONCRETE BEAMS by Nolan G. Domenico plastic prestressing strands (CFCC) in pretensioned concrete beams. The bond characteristics are examined for 15.2 mm diameter and 12.5 mm diameter seven-wire CFCC strands. Ten prestressed concrete beams

  5. Time- and temperature-dependent failures of a bonded joint

    SciTech Connect (OSTI)

    Sihn, Sangwook; Miyano, Yasushi; Tsai, S.W. [Stanford Univ., Palo Alto, CA (United States)

    1997-07-01T23:59:59.000Z

    Time and temperature dependent properties of a tubular lap bonded joint are reported. The joint bonds a cast iron rod and a composite pipe together with an epoxy type of an adhesive material containing chopped glass fiber. A new fabrication method is proposed.

  6. Proton Transfer and Hydrogen Bonding in Chemical and Biological

    E-Print Network [OSTI]

    Amrhein, Valentin

    Proton Transfer and Hydrogen Bonding in Chemical and Biological Systems: A Force Field Approach and support. i #12;ii #12;Abstract Proton transfer and hydrogen bonds are fundamental for the function be regarded as incipient proton transfer reactions, so theoretically they can be de- scribed in unitary way

  7. Diffusion Bonding Aluminium Alloys and Composites: New Approaches and Modelling

    E-Print Network [OSTI]

    Cambridge, University of

    Diffusion Bonding Aluminium Alloys and Composites: New Approaches and Modelling Amir A. Shirzadi for advanced aluminium alloys and composites will enable them to be more widely used. The aim of this Ph of the research, two new methods for TLP diffusion bonding of aluminium-based composites (aluminium alloys

  8. Silica coated magnetite nanoparticles for removal of heavy metal ions from polluted waters

    E-Print Network [OSTI]

    Dash, Monika

    2013-01-01T23:59:59.000Z

    Magnetic removal of Hg2+ and other heavy metal ions like Cd2+, Pb2+ etc. using silica coated magnetite particles from polluted waters is a current topic of active research to provide efficient water recycling and long term high quality water. The technique used to study the bonding characteristics of such kind of nanoparticles with the heavy metal ions is a very sensitive hyperfine specroscopy technique called the perturbed angular correlation technique (PAC).

  9. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01T23:59:59.000Z

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  10. Clean renewable energy bonds (CREBs) present a low-cost opportunity for public entities to issue bonds to finance

    E-Print Network [OSTI]

    Clean renewable energy bonds (CREBs) present a low-cost opportunity for public entities to issue bonds to finance renewable energy projects. The federal government lowers the cost of debt by providing created under the Energy Tax Incentives Act of 2005 (and detailed in Internal Revenue Code Section 54

  11. Rhodium mediated bond activation: from synthesis to catalysis

    SciTech Connect (OSTI)

    Ho, Hung-An

    2012-03-06T23:59:59.000Z

    Recently, our lab has developed monoanionic tridentate ligand, To{sup R}, showing the corresponding coordination chemistry and catalyst reactivity of magnesium, zirconium, zinc and iridium complexes. This thesis details synthetic chemistry, structural study and catalytic reactivity of the To{sup R}-supported rhodium compounds. Tl[To{sup R}] has been proved to be a superior ligand transfer agent for synthesizing rhodium complexes. The salt metathesis route of Tl[To{sup M}] with [Rh({mu}-Cl)(CO)]{sub 2} and [Rh({mu}- Cl)(COE)]{sub 2} gives To{sup M}Rh(CO){sub 2} (2.2) and To{sup M}RhH({eta}{sup 3}-C{sub 8}H{sub 13}) (3.1) respectively while Tl[To{sup P}] with [Rh({mu}-Cl)(CO)]{sub 2} affords To{sup P}Rh(CO){sub 2} (2.3). 2.2 reacts with both strong and weak electrophiles, resulting in the oxazoline N-attacked and the metal center-attacked compounds correspondingly. Using one of the metal center-attacked electrophiles, 2.3 was demonstrated to give high diastereoselectivity. Parallel to COE allylic C-H activation complex 3.1, the propene and allylbenzene allylic C-H activation products have also been synthesized. The subsequent functionalization attempts have been examined by treating with Brřnsted acids, Lewis acids, electrophiles, nucleophiles, 1,3-dipolar reagents and reagents containing multiple bonds able to be inserted. Various related complexes have been obtained under these conditions, in which one of the azide insertion compounds reductively eliminates to give an allylic functionalization product stoichiometrically. 3.1 reacts with various primary alcohols to give the decarbonylation dihydride complex To{sup M}Rh(H){sub 2}CO (4.1). 4.1 shows catalytic reactivity for primary alcohol decarbonylation under a photolytic condition. Meanwhile, 2.2 has been found to be more reactive than 4.1 for catalytic alcohol decarbonylation under the same condition. Various complexes and primary alcohols have been investigated as well. The proposed mechanism is based on the stochiometric reactions of the possible metal and organic intermediates. Primary amines, hypothesized to undergo a similar reaction pathway, have been verified to give dehydrogenative coupling product, imines. In the end, the well-developed neutral tridentate Tpm coordinates to the rhodium bis(ethylene) dimer in the presence of TlPF{sub 6} to give the cationic complex, [TpmRh(C{sub 2}H{sub 4}){sub 2}][PF{sub 6}] (5.1). 5.1 serves as the first example of explicit determination of the solid state hapticity, evidenced by X-ray structure, among all the cationic Tpm{sup R}M(C{sub 2}H{sub 4}){sub 2}{sup +} (Tpm{sup R} = Tpm, Tpm*, M = Rh, Ir) derivatives. The substitution chemistry of this compound has been studied by treating with soft and hard donors. The trimethylphosphine-sbustituted complex activates molecular hydrogen to give the dihydride compound.

  12. Theoretical Electron Density Distributions for Fe-and Cu-Sulfide Earth Materials: A Connection between Bond Length, Bond Critical Point Properties, Local Energy Densities,

    E-Print Network [OSTI]

    Downs, Robert T.

    , Biomolecular and Chemical Sciences, UniVersity of Western Australia, Australia ReceiVed: August 7, 2006 between Bond Length, Bond Critical Point Properties, Local Energy Densities, and Bonded Interactions G. V; In Final Form: December 6, 2006 Bond critical point and local energy density properties together with net

  13. Metal phthalocyanine catalysts

    DOE Patents [OSTI]

    Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

    1994-01-01T23:59:59.000Z

    As a new composition of matter, alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  14. Liquid Metal Transformers

    E-Print Network [OSTI]

    Sheng, Lei; Liu, Jing

    2014-01-01T23:59:59.000Z

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clar...

  15. Tuning the Metal-Adsorbate Chemical Bond through the Ligand Effect...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enhanced catalytic activity. For example, the authors have shown that embedding nickel and cobalt in the subsurface region of Pt(111) will tune the electronic structure of...

  16. Designing Higher Surface Area Metal-Organic Frameworks: Are Triple Bonds Better Than Phenyls?

    E-Print Network [OSTI]

    hydrogen is a compelling alternative to gasoline in many respects, high- density storage is a significant applications, including gas storage,4-8 gas and chemical separations,9-12 chemical catalysis,13,14 sensing,15-board H2 storage systems for the year 2017: 5.5 wt % in gravimetric capacity and 40 g/L of volumetric

  17. Tuning the Metal-Adsorbate Chemical Bond through the Ligand Effect on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zand Analysis Utilities (TAU)Tuning of

  18. Metal Catalyzed sp2 Bonded Carbon - Large-scale Graphene Synthesis and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverview and History MentorStockpileMukul

  19. Transient-Liquid-Phase (TLP) Bonding of Al2O3 Using Nb-based Multilayer Interlayers

    E-Print Network [OSTI]

    Hong, Sung Moo

    2009-01-01T23:59:59.000Z

    Alumina Diffusion Bonding and Titanium Active Brazing.Requirements for Diffusion Bonding Titanium. In: Jaffee RI,O 3 -Titanium Adhesion in the View of the Diffusion Bonding

  20. Transient-Liquid-Phase (TLP) Bonding of Al2O3 Using Nb-based Multilayer Interlayers

    E-Print Network [OSTI]

    Hong, Sung Moo

    2009-01-01T23:59:59.000Z

    p. 539-44. Derby B. Diffusion Bonding. In: Nicholas M (ed).Requirements for Diffusion Bonding Titanium. In: Jaffee RI,Contact During Diffusion Bonding. Metallurgical Transactions

  1. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, Paul O. (Golden, CO); Kennedy, Cheryl E. (Lafayette, CO); Jorgensen, Gary J. (Pine, CO); Shinton, Yvonne D. (Northglenn, CO); Goggin, Rita M. (Englewood, CO)

    1994-01-01T23:59:59.000Z

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  2. PHYTOEXTRACTION OF HEAVY METALS

    E-Print Network [OSTI]

    Blouin-Demers, Gabriel

    Plants Chelating agents Pb hyperaccumulation Effects of pH on metal extraction Disposal options contaminants from soils Contaminants must be in harvestable portions of the plant (Wongkongkatep et al. 2003) Chelating Agents: desorb heavy metals from soil matrix and form water-soluble metal complexes (Shen et al

  3. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01T23:59:59.000Z

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  4. Hydrogen Bond Dynamics Probed with Ultrafast Infrared Heterodyne-Detected Multidimensional Vibrational Stimulated Echoes

    E-Print Network [OSTI]

    Fayer, Michael D.

    Hydrogen Bond Dynamics Probed with Ultrafast Infrared Heterodyne-Detected Multidimensional, USA (Received 24 February 2003; published 3 December 2003) Hydrogen bond dynamics are explicated hydrogen bonded network are measured with ultrashort (

  5. Metal alkoxides. Models for metal oxides. 15. Carbon-carbon and carbon-hydrogen bond activation in the reactions between ethylene and ditungsten hexaalkoxides: W sub 2 (OCH sub 2 -t-Bu) sub 6 (. eta. sup 2 -C sub 2 H sub 4 ) sub 2 , W sub 2 (OR) sub 6 (CH sub 2 ) sub 4 (. eta. sup 2 -C sub 2 H sub 4 ), and W sub 2 (OR) sub 6 (. mu. -CCH sub 2 CH sub 2 CH sub 2 ) (where r = CH sub 2 -t-Bu, i-Pr, c-C sub 5 h sub 9 , and c-C sub 6 H sub 11 ). Preparations, properties, structures, and reaction mechanisms

    SciTech Connect (OSTI)

    Chisholm, M.H.; Huffman, J.C.; Hampden-Smith, M.J. (Indiana Univ., Bloomington (USA))

    1989-07-05T23:59:59.000Z

    W{sub 2}(OR){sub 6} (M {triple bond}M) compounds and ethylene (1 atm, 22{degree}C) react in alkane and aromatic hydrocarbon solvents to give W{sub 2}(OR){sub 6}({mu}-CCH{sub 2}CH{sub 2}CH{sub 2}) compounds and ethane, where R = i-Pr, c-C{sub 5}H{sub 9}, c-C{sub 6}H{sub 11}, and CH{sub 2}-t-Bu. Under comparable conditions, W{sub 2}(O-t-Bu){sub 6} and ethylene fail to react. In the formation of W{sub 2}(OR){sub 6}({mu}-CCH{sub 2}CH{sub 2}CH{sub 2}) compounds, the intermediates W{sub 2}(OCH{sub 2}-t-Bu){sub 6}({eta}{sup 2}-C{sub 2}H{sub 4}){sub 2} and W{sub 2}(OR){sub 6}(CH{sub 2}){sub 4}({eta}{sup 2}-C{sub 2}H{sub 4}), where R = C-C{sub 5}H{sub 9}, i-Pr, and CH{sub 2}-t-Bu, have been characterized. For R = i-Pr and CH{sub 2}-t-Bu, the intermediates are shown to be formed reversibly from W{sub 2}(OR){sub 6} and ethylene. The compound W{sub 2}(O-i-Pr){sub 6}(CH{sub 2}){sub 4}({eta}{sup 2}-C{sub 2}H{sub 4}) has been fully characterized by an X-ray study and found to contain a metallacyclopentane ring and a W-{eta}{sup 2}-C{sub 2}H{sub 4} moiety, one at each metal center. The pyridine adduct W{sub 2}(O-i-Pr){sub 6}({mu}-CCH{sub 2}CH{sub 2}ch{sub 2})(py) has been fully characterized and shown to contain a novel 1,6-dimetallabicyclo(3.1.0)hex-1(5)-ene organometallic core. All compounds have been characterized by {sup 13}C and {sup 1}H NMR studies. Various aspects of the reaction pathway have been probed by the use of isotopically labeled ethylenes, and a proposed general scheme is compared to previous studies of ethylene activation at mononuclear metal centers and carbonyl dinuclear and cluster compounds.

  6. Hydrogen-Bond Networks: Strengths of Different Types of Hydrogen Bonds and An Alternative to the Low Barrier Hydrogen-Bond Proposal

    SciTech Connect (OSTI)

    Shokri, Alireza; Wang, Yanping; O'Doherty, George A.; Wang, Xue B.; Kass, Steven R.

    2013-11-27T23:59:59.000Z

    We report quantifying the strengths of different types of hydrogen bonds in hydrogen bond networks (HBNs) via measurement of the adiabatic electron detachment energy of the conjugate base of a small covalent polyol model compound (i.e., (HOCH2CH2CH(OH)CH2)2CHOH) in the gas phase and the pKa of the corresponding acid in DMSO. The latter result reveals that the hydrogen bonds to the charged center and those that are one solvation shell further away (i.e., primary and secondary) provide 5.3 and 2.5 pKa units of stabilization per hydrogen bond in DMSO. Computations indicate that these energies increase to 8.4 and 3.9 pKa units in benzene and that the total stabilizations are 16 (DMSO) and 25 (benzene) pKa units. Calculations on a larger linear heptaol (i.e., (HOCH2CH2CH(OH)CH2CH(OH)CH2)2CHOH) reveal that the terminal hydroxyl groups each contribute 0.6 pKa units of stabilization in DMSO and 1.1 pKa units in benzene. All of these results taken together indicate that the presence of a charged center can provide a powerful energetic driving force for enzyme catalysis and conformational changes such as in protein folding due to multiple hydrogen bonds in a HBN.

  7. E-Print Network 3.0 - amide bonds stabilize Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amide-Amide and Amide-Water Hydrogen Bonds Summary: Bonds: Implicationsfor Protein Folding and Stability Eric S.Eberhardt and Ronald T. Rained Department... folds, many of...

  8. The Role of Non-Bonded Interactions in the Conformational Dynamics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Non-Bonded Interactions in the Conformational Dynamics of Organophosphorous Hydrolase Adsorbed onto Functionalized The Role of Non-Bonded Interactions in the Conformational...

  9. Ultrafast studies of organometallic photochemistry: The mechanism of carbon-hydrogen bond activation in solution

    SciTech Connect (OSTI)

    Bromberg, S.E.

    1998-05-01T23:59:59.000Z

    When certain organometallic compounds are photoexcited in room temperature alkane solution, they are able to break or activate the C-H bonds of the solvent. Understanding this potentially practical reaction requires a detailed knowledge of the entire reaction mechanism. Because of the dynamic nature of chemical reactions, time-resolved spectroscopy is commonly employed to follow the important events that take place as reactants are converted to products. For the organometallic reactions examined here, the electronic/structural characteristics of the chemical systems along with the time scales for the key steps in the reaction make ultrafast UV/Vis and IR spectroscopy along with nanosecond Step-Scan FTIR spectroscopy the ideal techniques to use for this study. An initial study of the photophysics of (non-activating) model metal carbonyls centering on the photodissociation of M(CO){sub 6} (M = Cr, W, Mo) was carried out in alkane solutions using ultrafast IR spectroscopy. Next, picosecond UV/vis studies of the C-H bond activation reaction of Cp{sup *}M(CO){sub 2} (M = Rh, Ir), conducted in room temperature alkane solution, are described in an effort to investigate the origin of the low quantum yield for bond cleavage ({approximately}1%). To monitor the chemistry that takes place in the reaction after CO is lost, a system with higher quantum yield is required. The reaction of Tp{sup *}Rh(CO){sub 2} (Tp{sup *} = HB-Pz{sub 3}{sup *}, Pz{sup *} = 3,5-dimethylpyrazolyl) in alkanes has a quantum yield of {approximately}30%, making time resolved spectroscopic measurements possible. From ultrafast IR experiments, two subsequently formed intermediates were observed. The nature of these intermediates are discussed and the first comprehensive reaction mechanism for a photochemical C-H activating organometallic complex is presented.

  10. Liquid Metal Transformers

    E-Print Network [OSTI]

    Lei Sheng; Jie Zhang; Jing Liu

    2014-01-30T23:59:59.000Z

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clarified. Such events are hard to achieve otherwise on rigid metal or conventional liquid spheres. This finding has both fundamental and practical significances which suggest a generalized way of making smart soft machine, collecting discrete metal fluids, as well as flexibly manipulating liquid metal objects including accompanying devices.

  11. Influence of chain topology and bond potential on the glass transition of polymer chains simulated with the bond fluctuation model

    E-Print Network [OSTI]

    Juan J. Freire

    2006-12-20T23:59:59.000Z

    The bond fluctuation model with a bond potential has been applied to investigation of the glass transition of linear chains and chains with a regular disposition of small branches. Cooling and subsequent heating curves are obtained for the chain energies and also for the mean acceptance probability of a bead jump. In order to mimic different trends to vitrification, a factor B gauging the strength of the bond potential with respect to the long-range potential (i.e. the intramolecular or intermolecular potential between indirectly bonded beads) has been introduced. (A higher value of B leads to a preference for the highest bond lengths and a higher total energy, implying a greater tendency to vitrify.) Different cases have been considered for linear chains: no long-range potential, no bond potential and several choices for B. Furthermore, we have considered two distinct values of B for alternate bonds in linear chains. In the case of the branched chains, molecules with different values of B for bonds in the main chain and in the branches have also been investigated. The possible presence of crystallization has been characterized by calculating the collective light scattering function of the different samples after annealing at a convenient temperature below the onset of crystallization. It is concluded that crystallization is inherited more efficiently in the systems with branched chains and also for higher values of B. The branched molecules with the highest B values in the main chain bonds exhibit two distinct transitions in the heating curves which may be associated with two glass transitions. This behavior has been detected experimentally for chains with relatively long flexible branches.

  12. Emission intensity in the visible and IR spectral ranges from Si-based structures formed by direct bonding with simultaneous doping with erbium (Er) and europium (Eu)

    SciTech Connect (OSTI)

    Mezdrogina, M. M., E-mail: margaret.m@mail.ioffe.ru; Kostina, L. S.; Beliakova, E. I.; Kuzmin, R. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2013-09-15T23:59:59.000Z

    The photo- and electroluminescence spectra of silicon-based structures formed by direct bonding with simultaneous doping with rare-earth metals are studied. It is shown that emission in the visible and IR spectral ranges can be obtained from n-Si:Er/p-Si and n-Si:Eu/p-Si structures fabricated by the method suggested in the study. The results obtained make this method promising for the fabrication of optoelectronic devices.

  13. Semi-flexible hydrogen-bonded and non-hydrogen bonded lattice polymers

    E-Print Network [OSTI]

    J Krawczyk; AL Owczarek; T Prellberg

    2008-07-06T23:59:59.000Z

    We investigate the addition of stiffness to the lattice model of hydrogen-bonded polymers in two and three dimensions. We find that, in contrast to polymers that interact via a homogeneous short-range interaction, the collapse transition is unchanged by any amount of stiffness: this supports the physical argument that hydrogen bonding already introduces an effective stiffness. Contrary to possible physical arguments, favouring bends in the polymer does not return the model's behaviour to that comparable to the semi-flexible homogeneous interaction model, where the canonical $\\theta$-point occurs for a range of parameter values. In fact, for sufficiently large bending energies the crystal phase disappears altogether, and no phase transition of any type occurs. We also compare the order-disorder transition from the globule phase to crystalline phase in the semi-flexible homogeneous interaction model to that for the fully-flexible hybrid model with both hydrogen and non-hydrogen like interactions. We show that these phase transitions are of the same type and are a novel polymer critical phenomena in two dimensions. That is, it is confirmed that in two dimensions this transition is second-order, unlike in three dimensions where it is known to be first order. We also estimate the crossover exponent and show that there is a divergent specific heat, finding $\\phi=0.7(1)$ or equivalently $\\alpha=0.6(2)$. This is therefore different from the $\\theta$ transition, for which $\\alpha=-1/3$.

  14. Extraction process for removing metallic impurities from alkalide metals

    DOE Patents [OSTI]

    Royer, Lamar T. (Knoxville, TN)

    1988-01-01T23:59:59.000Z

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  15. Electronic structure and chemical bonding anisotropy investigation of wurtzite AlN

    E-Print Network [OSTI]

    Magnuson, M; Höglund, C; Birch, J; Hultman, L; 10.1103/PhysRevB.80.155105

    2011-01-01T23:59:59.000Z

    The electronic structure and the anisotropy of the Al - N {\\pi} and {\\sigma} chemical bonding of wurtzite AlN has been investigated by bulk-sensitive total fluorescence yield absorption and soft x-ray emission spectroscopies. The measured N K, Al L1, and Al L2,3 x-ray emission and N 1s x-ray absorption spectra are compared with calculated spectra using first principles density-functional theory including dipole transition matrix elements. The main N 2p - Al 3p hybridization regions are identified at -1.0 to -1.8 eV and -5.0 to -5.5 eV below the top of the valence band. In addition, N 2s - Al 3p and N 2s - Al 3s hybridization regions are found at the bottom of the valence band around -13.5 eV and -15 eV, respectively. A strongly modified spectral shape of Al 3s states in the Al L2,3 emission from AlN in comparison to Al metal is found, which is also reflected in the N 2p - Al 3p hybridization observed in the Al L1 emission. The differences between the electronic structure and chemical bonding of AlN and Al met...

  16. FITCH RATES PORT OF MORROW (OR) TRANSMISSION FACILITIES REV BONDS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FITCH RATES PORT OF MORROW (OR) TRANSMISSION FACILITIES REV BONDS 'AA'; OUTLOOK STABLE Fitch Ratings-Austin-24 November 2014: Fitch Ratings assigns 'AA' ratings to the Port of...

  17. Mpemba paradox: Hydrogen bond memory and water-skin supersolidity

    E-Print Network [OSTI]

    Chang Q Sun

    2015-01-05T23:59:59.000Z

    Numerical reproduction of measurements, experimental evidence for skin super-solidity and hydrogen-bond memory clarified that Mpemba paradox integrates the heat emission-conduction-dissipation dynamics in the source-path-drain cycle system.

  18. Wafer bonding : mechanics-based models and experiments

    E-Print Network [OSTI]

    Turner, Kevin Thomas, 1977-

    2004-01-01T23:59:59.000Z

    Direct wafer bonding has emerged as an important technology in the manufacture of silicon-on-insulator substrates (SOI), microelectromechanical systems (MEMS), and three-dimensional integrated circuits (3D IC's). While the ...

  19. aliphatic ch bonds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015-01-01 39 H-atom high-n Rydberg time-of-flight spectroscopy of CH bond fission in acrolein dissociated at 193 nm Chemistry Websites Summary: H-atom high-n Rydberg...

  20. Bond Angle Torsion http://www.nobelprize.org/

    E-Print Network [OSTI]

    Fukai, Tomoki

    MARBLE-K 20141024 1 #12;2 MARBLE MARBLE #12;MD Bond Angle Torsion http) MARBLE-K PME CHARMM Force Field AMBER Force Field NMRSAXS molx XNMR #12;MARBLE

  1. Mechanistic Examination of C?-C? Bond Cleavages of Tryptophan...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (X C, S, L, F, Y, Q) species. The C?–C? bond cleavage of a C-terminal decarboxylated tryptophan residue (M - CO2•+) can generate M - CO2 - 116+,...

  2. Spectroscopic investigations of hydrogen bond dynamics in liquid water

    E-Print Network [OSTI]

    Fecko, Christopher J., 1975-

    2004-01-01T23:59:59.000Z

    Many of the remarkable physical and chemical properties of liquid water are due to the strong influence hydrogen bonds have on its microscopic dynamics. However, because of the fast timescales involved, there are relatively ...

  3. Resummed thermodynamic perturbation theory for bond cooperativity in associating fluids

    SciTech Connect (OSTI)

    Marshall, Bennett D., E-mail: bennettd1980@gmail.com; Chapman, Walter G. [Department of Chemical and Biomolecular Engineering, Rice University, 6100 S. Main, Houston, Texas 77005 (United States)] [Department of Chemical and Biomolecular Engineering, Rice University, 6100 S. Main, Houston, Texas 77005 (United States)

    2013-12-07T23:59:59.000Z

    We develop a resummed thermodynamic perturbation theory for bond cooperativity in associating fluids by extension of Wertheim's multi-density formalism. We specifically consider the case of an associating hard sphere with two association sites and both pairwise and triplet contributions to the energy, such that the first bond in an associated cluster receives an energy ??{sup (1)} and each subsequent bond in the cluster receives an energy ??{sup (2)}. To test the theory we perform new Monte Carlo simulations for potentials of this type. Theory and simulation are found to be in excellent agreement. We show that decreasing the energetic benefit of hydrogen bonding can actually result in a decrease in internal energy in the fluid. We also predict that when ?{sup (1)} = 0 and ?{sup (2)} is nonzero there is a transition temperature where the system transitions from a fluid of monomers to a mixture of monomers and very long chains.

  4. Ultrafast structural fluctuations and rearrangements of water's hydrogen bonded network

    E-Print Network [OSTI]

    Loparo, Joseph J. (Joseph John)

    2007-01-01T23:59:59.000Z

    Aqueous chemistry is strongly influenced by water's ability to form an extended network of hydrogen bonds. It is the fluctuations and rearrangements of this network that stabilize reaction products and drive the transport ...

  5. Kinetics and mechanism of the thermal dissociation of O,O'-bis(1,3,5-TRI-tert-butyl-4-oxo-2,5-cyclo-hexadienyl)-p-benzoquinone dioxime in solution

    SciTech Connect (OSTI)

    Khizhnyi, V.A.; Danilova, T.A.; Goloverda, G.Z.; Dobronravova, Z.A.

    1987-09-20T23:59:59.000Z

    The kinetics and mechanism of the thermal dissociation of O,O'-bis(1,3,5-tri-tert-butyl-4-oxo-2,5-cyclohexadienyl)-p-benzoquinone dioxime (quinol ether) in solutions in nonpolar solvents were investigated. The dissociation of the quinol ether is reversible two-stage process and involves the formation of an intermediate radical. In relation to the reaction conditions (initial concentration, temperature) the dissociation rate of the quinol ether obeys the kinetic equations omega = k/sub eff/ x c/sup 1/2/ or omega = k/sub 1/c. The change in the reaction order is due to the ratio of the rates of dissociation of the intermediate radical and of its reaction with the phenoxyl radical. The ESR spectra were recorded on a Varian E-9 radiospectrometer with high-frequency modulation of 100 kHz.

  6. Integrated optical MEMS using through-wafer vias and bump-bonding.

    SciTech Connect (OSTI)

    McCormick, Frederick Bossert; Frederick, Scott K.

    2008-01-01T23:59:59.000Z

    This LDRD began as a three year program to integrate through-wafer vias, micro-mirrors and control electronics with high-voltage capability to yield a 64 by 64 array of individually controllable micro-mirrors on 125 or 250 micron pitch with piston, tip and tilt movement. The effort was a mix of R&D and application. Care was taken to create SUMMiT{trademark} (Sandia's ultraplanar, multilevel MEMS technology) compatible via and mirror processes, and the ultimate goal was to mate this MEMS fabrication product to a complementary metal-oxide semiconductor (CMOS) electronics substrate. Significant progress was made on the via and mirror fabrication and design, the attach process development as well as the electronics high voltage (30 volt) and control designs. After approximately 22 months, the program was ready to proceed with fabrication and integration of the electronics, final mirror array, and through wafer vias to create a high resolution OMEMS array with individual mirror electronic control. At this point, however, mission alignment and budget constraints reduced the last year program funding and redirected the program to help support the through-silicon via work in the Hyper-Temporal Sensors (HTS) Grand Challenge (GC) LDRD. Several months of investigation and discussion with the HTS team resulted in a revised plan for the remaining 10 months of the program. We planned to build a capability in finer-pitched via fabrication on thinned substrates along with metallization schemes and bonding techniques for very large arrays of high density interconnects (up to 2000 x 2000 vias). Through this program, Sandia was able to build capability in several different conductive through wafer via processes using internal and external resources, MEMS mirror design and fabrication, various bonding techniques for arrayed substrates, and arrayed electronics control design with high voltage capability.

  7. Microbial cleavage of organic C-S bonds

    DOE Patents [OSTI]

    Kilbane, J.J. II.

    1994-10-25T23:59:59.000Z

    A microbial process is described for selective cleavage of organic C-S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials. Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C-S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  8. Bonded Bracket Assmebly for Frameless Solar Panels

    SciTech Connect (OSTI)

    Murray, Todd

    2013-01-30T23:59:59.000Z

    In February 2011 the US Department of Energy announced their new Sunshot Initiative. The Sunshot goal is to reduce the total cost of solar energy systems by about 75 percent before the end of the decade. The DOE estimated that a total installed cost of $1 per watt for photovoltaic systems would be equivalent to 6���¢/kilowatt hour (kWh) for energy available from the grid. The DOE also estimated that to meet the $1 per watt goal, PV module costs would need to be reduced to $.50 per watt, balance of systems costs would need to be reduced to $.40 per watt, and power electronic costs would need to reach $.10 per watt. To address the BOS balance of systems cost component of the $1 per watt goal, the DOE announced a funding opportunity called (BOS-X) Extreme Balance of System Hardware Cost Reductions. The DOE identified eight areas within the total BOS costs: 1) installation labor, 2) installation materials, 3) installation overhead and profit, 4) tracker, 5) permitting and commissioning, 6) site preparation, 7) land acquisition, 8) sales tax. The BOS-X funding announcement requested applications in four specific topics: Topic 1: Transformational Building Integrated Photovoltaic (BIPV) Modules Topic 2: Roof and Ground Mount Innovations Topic 3: Transformational Photovoltaic System Designs Topic 4: Development of New Wind Load Codes for PV Systems The application submitted by ARaymond Tinnerman reflected the requirements listed in Topic #2, Roof and Ground Mount Innovations. The goal of topic #2 was to develop technologies that would result in the extreme reduction of material and labor costs associated with applications that require physical connections and attachments to roof and ground mount structures. The topics researched in this project included component cost reduction, labor reduction, weight reduction, wiring innovations, and alternative material utilization. The project objectives included: 1) The development of an innovative quick snap bracket assembly that would be bonded to frameless PV modules for commercial rooftop installations. 2) The development of a composite pultruded rail to replace traditional racking materials. 3) In partnership with a roofing company, pilot the certification of a commercial roof to be solar panel compliant, eliminating the need for structural analysis and government oversight resulting in significantly decreased permitting costs. 4) Reduce the sum of all cost impacts in topic #2 from a baseline total of $2.05/watt to $.34/watt.

  9. Mercury stabilization in chemically bonded phosphate ceramics

    SciTech Connect (OSTI)

    Wagh, A. S.; Singh, D.; Jeong, S. Y.

    2000-04-04T23:59:59.000Z

    Mercury stabilization and solidification is a significant challenge for conventional stabilization technologies. This is because of the stringent regulatory limits on leaching of its stabilized products. In a conventional cement stabilization process, Hg is converted at high pH to its hydroxide, which is not a very insoluble compound; hence the preferred route for Hg sulfidation to convert it into insoluble cinnabar (HgS). Unfortunately, efficient formation of this compound is pH-dependent. At a high pH, one obtains a more soluble Hg sulfate, in a very low pH range, insufficient immobilization occurs because of the escape of hydrogen sulfide, while efficient formation of HgS occurs only in a moderately acidic region. Thus, the pH range of 4 to 8 is where stabilization with Chemically Bonded Phosphate Ceramics (CBPC) is carried out. This paper discusses the authors experience on bench-scale stabilization of various US Department of Energy (DOE) waste streams containing Hg in the CBPC process. This process was developed to treat DOE's mixed waste streams. It is a room-temperature-setting process based on an acid-base reaction between magnesium oxide and monopotassium phosphate solution that forms a dense ceramic within hours. For Hg stabilization, addition of a small amount (< 1 wt.%) of Na{sub 2}S or K{sub 2}S is sufficient in the binder composition. Here the Toxicity Characteristic Leaching Procedure (TCLP) results on CBPC waste forms of surrogate waste streams representing secondary Hg containing wastes such as combustion residues and Delphi DETOX{trademark} residues are presented. The results show that although the current limit on leaching of Hg is 0.2 mg/L, the results from the CBPC waste forms are at least one order lower than this stringent limit. Encouraged by these results on surrogate wastes, they treated actual low-level Hg-containing mixed waste from their facility at Idaho. TCLP results on this waste are presented here. The efficient stabilization in all these cases is attributed to chemical immobilization as both a sulfide (cinnabar) and a phosphate, followed by its physical encapsulation in a dense matrix of the ceramic.

  10. Conceptual Design of a MEDE Treatment System for Sodium Bonded Fuel

    SciTech Connect (OSTI)

    Carl E. Baily; Karen A. Moore; Collin J. Knight; Peter B. Wells; Paul J. Petersen; Ali S. Siahpush; Matthew T. Weseman

    2008-05-01T23:59:59.000Z

    Unirradiated sodium bonded metal fuel and casting scrap material containing highly enriched uranium (HEU) is stored at the Materials and Fuels Complex (MFC) on the Idaho National Laboratory (INL). This material, which includes intact fuel assemblies and elements from the Fast Flux Test Facility (FFTF) and Experimental Breeder Reactor-II (EBR-II) reactors as well as scrap material from the casting of these fuels, has no current use under the terminated reactor programs for both facilities. The Department of Energy (DOE), under the Sodium-Bonded Spent Nuclear Fuel Treatment Record of Decision (ROD), has determined that this material could be prepared and transferred to an off-site facility for processing and eventual fabrication of fuel for commercial nuclear reactors. A plan is being developed to prepare, package and transfer this material to the DOE High Enriched Uranium Disposition Program Office (HDPO), located at the Y-12 National Security Complex in Oak Ridge, Tennessee. Disposition of the sodium bonded material will require separating the elemental sodium from the metallic uranium fuel. A sodium distillation process known as MEDE (Melt-Drain-Evaporate), will be used for the separation process. The casting scrap material needs to be sorted to remove any foreign material or fines that are not acceptable to the HDPO program. Once all elements have been cut and loaded into baskets, they are then loaded into an evaporation chamber as the first step in the MEDE process. The chamber will be sealed and the pressure reduced to approximately 200 mtorr. The chamber will then be heated as high as 650 şC, causing the sodium to melt and then vaporize. The vapor phase sodium will be driven into an outlet line where it is condensed and drained into a receiver vessel. Once the evaporation operation is complete, the system is de-energized and returned to atmospheric pressure. This paper describes the MEDE process as well as a general overview of the furnace systems, as necessary, to complete the MEDE process.

  11. Metal atomization spray nozzle

    DOE Patents [OSTI]

    Huxford, T.J.

    1993-11-16T23:59:59.000Z

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  12. Deformation Behavior of Nanoporous Metals

    SciTech Connect (OSTI)

    Biener, J; Hodge, A M; Hamza, A V

    2007-11-28T23:59:59.000Z

    Nanoporous open-cell foams are a rapidly growing class of high-porosity materials (porosity {ge} 70%). The research in this field is driven by the desire to create functional materials with unique physical, chemical and mechanical properties where the material properties emerge from both morphology and the material itself. An example is the development of nanoporous metallic materials for photonic and plasmonic applications which has recently attracted much interest. The general strategy is to take advantage of various size effects to introduce novel properties. These size effects arise from confinement of the material by pores and ligaments, and can range from electromagnetic resonances to length scale effects in plasticity. In this chapter we will focus on the mechanical properties of low density nanoporous metals and how these properties are affected by length scale effects and bonding characteristics. A thorough understanding of the mechanical behavior will open the door to further improve and fine-tune the mechanical properties of these sometimes very delicate materials, and thus will be crucial for integrating nanoporous metals into products. Cellular solids with pore sizes above 1 micron have been the subject of intense research for many years, and various scaling relations describing the mechanical properties have been developed.[4] In general, it has been found that the most important parameter in controlling their mechanical properties is the relative density, that is, the density of the foam divided by that of solid from which the foam is made. Other factors include the mechanical properties of the solid material and the foam morphology such as ligament shape and connectivity. The characteristic internal length scale of the structure as determined by pores and ligaments, on the other hand, usually has only little effect on the mechanical properties. This changes at the submicron length scale where the surface-to-volume ratio becomes large and the effect of free surfaces can no longer be neglected. As the material becomes more and more constraint by the presence of free surfaces, length scale effects on plasticity become more and more important and bulk properties can no longer be used to describe the material properties. Even the elastic properties may be affected as the reduced coordination of surface atoms and the concomitant redistribution of electrons may soften or stiffen the material. If, and to what extend, such length scale effects control the mechanical behavior of nanoporous materials depends strongly on the material and the characteristic length scale associated with its plastic deformation. For example, ductile materials such as metals which deform via dislocation-mediated processes can be expected to exhibit pronounced length scale effects in the sub-micron regime where free surfaces start to constrain efficient dislocation multiplication. In this chapter we will limit our discussion to our own area of expertise which is the mechanical behavior of nanoporous open-cell gold foams as a typical example of nanoporous metal foams. Throughout this chapter we will review our current understanding of the mechanical properties of nanoporous open-cell foams including both experimental and theoretical studies.

  13. Solid-phase materials for chelating metal ions and methods of making and using same

    DOE Patents [OSTI]

    Harrup, Mason K.; Wey, John E.; Peterson, Eric S.

    2003-06-10T23:59:59.000Z

    A solid material for recovering metal ions from aqueous streams, and methods of making and using the solid material, are disclosed. The solid material is made by covalently bonding a chelating agent to a silica-based solid, or in-situ condensing ceramic precursors along with the chelating agent to accomplish the covalent bonding. The chelating agent preferably comprises a oxime type chelating head, preferably a salicylaldoxime-type molecule, with an organic tail covalently bonded to the head. The hydrocarbon tail includes a carbon-carbon double bond, which is instrumental in the step of covalently bonding the tail to the silica-based solid or the in-situ condensation. The invented solid material may be contacted directly with aqueous streams containing metal ions, and is selective to ions such as copper (II) even in the presence of such ions as iron (III) and other materials that are present in earthen materials. The solid material with high selectivity to copper may be used to recover copper from mining and plating industry streams, to replace the costly and toxic solvent extraction steps of conventional copper processing.

  14. Hydrogen Bond Migration between Molecular Sites Observed with Ultrafast 2D IR Chemical Exchange Spectroscopy

    E-Print Network [OSTI]

    Fayer, Michael D.

    Hydrogen Bond Migration between Molecular Sites Observed with Ultrafast 2D IR Chemical ExchangeVed: January 12, 2010 Hydrogen-bonded complexes between phenol and phenylacetylene are studied using ultrafast hydrogen bonding acceptor sites (phenyl or acetylene) that compete for hydrogen bond donors in solution

  15. Thermal Performance and Reliability of Bonded Interfaces for Power Electronics Packaging Applications (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2013-07-01T23:59:59.000Z

    This presentation discusses the thermal performance and reliability of bonded interfaces for power electronics packaging applications.

  16. The C OH O hydrogen bond: A determinant of stability and specificity

    E-Print Network [OSTI]

    Senes, Alessandro

    recovered by hydro- gen bond formation, so hydrogen bonds provide a small or even unfavorable net energy hydro- gen bond has been unclear and its interaction energy has been believed to be small. Recently that apparent carbon hydro- gen bonds cluster frequently at glycine-, serine-, and threonine-rich packing

  17. Mechanical Study of Copper Bonded at Low Temperature using Spark Plasma Sintering Process

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    is approximatively 6.47 MPa [7]. J. W. Elmer & al [8] have presented a diffusion bonding of high purity copper using a conventional furnace. A series of diffusion bonds was done to determine the relationship between bond strengthMechanical Study of Copper Bonded at Low Temperature using Spark Plasma Sintering Process Bassem

  18. Highly Efficient Vertical Outgassing Channels for Robust, Void-Free, Low-Temperature Direct Wafer Bonding

    E-Print Network [OSTI]

    Bowers, John

    molecules diffusion at bonding interface to VOCs. Conventional anneal time of 12-18 hours required to bond Bonding Di Liang1 , Erik A. Lucero2 , John E. Bowers1 1 Department of Electrical and Computer Engineering wafer bonding is favored for dissimilar materials integration, particularly in III-V compound

  19. A new hydrogen-bonding potential for the design of proteinRNA interactions predicts specific

    E-Print Network [OSTI]

    Baker, David

    A new hydrogen-bonding potential for the design of protein­RNA interactions predicts specific-dependent hydrogen-bonding potential based on the statistical analysis of hydrogen-bonding geometries of hydrogen-bonding atom pairs at protein­ nucleic acid interfaces. A scoring function based on the hydrogen

  20. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    DOE Patents [OSTI]

    Makowiecki, D.M.; Ramsey, P.B.; Juntz, R.S.

    1995-07-04T23:59:59.000Z

    An improved method is disclosed for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite`s high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding. 11 figs.

  1. Effect of quantum nuclear motion on hydrogen bonding

    SciTech Connect (OSTI)

    McKenzie, Ross H., E-mail: r.mckenzie@uq.edu.au; Bekker, Christiaan [School of Mathematics and Physics, University of Queensland, Brisbane 4072 (Australia)] [School of Mathematics and Physics, University of Queensland, Brisbane 4072 (Australia); Athokpam, Bijyalaxmi; Ramesh, Sai G. [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012 (India)] [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012 (India)

    2014-05-07T23:59:59.000Z

    This work considers how the properties of hydrogen bonded complexes, X–H?Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O–H?O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4 ? 3.0 Ĺ, i.e., from strong to weak hydrogen bonds. The position of the proton (which determines the X–H bond length) and its longitudinal vibrational frequency, along with the isotope effects in both are described quantitatively. An analysis of the secondary geometric isotope effect, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of bending modes is also considered: their quantum effects compete with those of the stretching mode for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures several trends.

  2. Heavy Metal Humor: Reconsidering Carnival in Heavy Metal Culture

    E-Print Network [OSTI]

    Powell, Gary Botts

    2013-06-05T23:59:59.000Z

    This thesis considers Bakhtin?s carnivalesque theory by analyzing comedic rhetoric performed by two comedic metal bands. Through the theories of Johan Huizinga and Mikhail Bakhtin, Chapter I: I Play Metal argues that heavy metal culture is a modern...

  3. Transition Metal Dopants Essential for Producing Ferromagnetism...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Dopants Essential for Producing Ferromagnetism in Metal Oxide Nanoparticles. Transition Metal Dopants Essential for Producing Ferromagnetism in Metal Oxide Nanoparticles....

  4. Metal roofing Shingle roofing

    E-Print Network [OSTI]

    Hutcheon, James M.

    Metal roofing panel Shingle roofing Water & ice barrier Thermal Barrier Plywood Student: Arpit between the roof and the attic. · Apply modifications to traditional roofing assembly and roofing roof with only a water barrier between the plywood and the roofing panels. Metal roofing panel Shingle

  5. Porous metallic bodies

    DOE Patents [OSTI]

    Landingham, R.L.

    1984-03-13T23:59:59.000Z

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides a

  6. Production of magnesium metal

    DOE Patents [OSTI]

    Blencoe, James G. (Harriman, TN) [Harriman, TN; Anovitz, Lawrence M. (Knoxville, TN) [Knoxville, TN; Palmer, Donald A. (Oliver Springs, TN) [Oliver Springs, TN; Beard, James S. (Martinsville, VA) [Martinsville, VA

    2010-02-23T23:59:59.000Z

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  7. 1,2-CF bond activation of perfluoroarenes and alkylidene isomers of titanium. DFT analysis of the CeF bond activation pathway and rotation of the titanium

    E-Print Network [OSTI]

    Baik, Mu-Hyun

    1,2-CF bond activation of perfluoroarenes and alkylidene isomers of titanium. DFT analysis of the CeF bond activation pathway and rotation of the titanium alkylidene moiety José G. Andino, Hongjun Received in revised form 26 July 2011 Accepted 27 July 2011 Keywords: Alkylidene Titanium CeF bond

  8. Intramolecular Hydrogen Bonding in Disubstituted Ethanes. A Comparison of NH,,,O-and OH,,,O-Hydrogen Bonding through Conformational Analysis of 4-Amino-4-oxobutanoate

    E-Print Network [OSTI]

    Goddard III, William A.

    Intramolecular Hydrogen Bonding in Disubstituted Ethanes. A Comparison of NH,,,O- and OH,,,O- Hydrogen Bonding through Conformational Analysis of 4-Amino-4-oxobutanoate (succinamate) and Monohydrogen 1 of amide NH,,,O- and carboxyl OH,,,O- hydrogen bonds were investigated via conformational analysis

  9. Chemical strategies for die/wafer submicron alignment and bonding.

    SciTech Connect (OSTI)

    Martin, James Ellis; Baca, Alicia I.; Chu, Dahwey; Rohwer, Lauren Elizabeth Shea

    2010-09-01T23:59:59.000Z

    This late-start LDRD explores chemical strategies that will enable sub-micron alignment accuracy of dies and wafers by exploiting the interfacial energies of chemical ligands. We have micropatterned commensurate features, such as 2-d arrays of micron-sized gold lines on the die to be bonded. Each gold line is functionalized with alkanethiol ligands before the die are brought into contact. The ligand interfacial energy is minimized when the lines on the die are brought into registration, due to favorable interactions between the complementary ligand tails. After registration is achieved, standard bonding techniques are used to create precision permanent bonds. We have computed the alignment forces and torque between two surfaces patterned with arrays of lines or square pads to illustrate how best to maximize the tendency to align. We also discuss complex, aperiodic patterns such as rectilinear pad assemblies, concentric circles, and spirals that point the way towards extremely precise alignment.

  10. COMPARISON OF AIR AND DEUTERIUM ON PINCH WELD BOND APPEARANCE

    SciTech Connect (OSTI)

    Korinko, P

    2005-10-11T23:59:59.000Z

    The effect that air and deuterium internal atmospheres have on the pinch weld bond quality was evaluated by conducting a scoping study using type 304L stainless steel LF-7 test stems that were fabricated for an associated study. Welds were made under cool, yet nominal conditions to exacerbate the influence of the atmosphere. The bond quality of the welds was directly related to the internal atmosphere with the air atmosphere welds being of lower quality than the deuterium atmosphere welds for nominally identical welding conditions.

  11. Probing Reaction Dynamics of Transition-Metal Complexes in Solution via Time-Resolved Soft X-ray Spectroscopy

    SciTech Connect (OSTI)

    Huse, Nils; Kim, Tae Kyu; Khalil, Munira; Jamula, Lindsey; McCusker, James K.; Schoenlein, Robert W.

    2010-05-02T23:59:59.000Z

    We report the first time-resolved soft x-ray measurements of solvated transition-metal complexes. L-edge spectroscopy directly probes dynamic changes in ligand-field splitting of 3d orbitals associated with the spin transition, and mediated by changes in ligand-bonding.

  12. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes

    SciTech Connect (OSTI)

    Liu, Kexi; Lei, Yinkai; Wang, Guofeng, E-mail: guw8@pitt.edu [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)] [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2013-11-28T23:59:59.000Z

    Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O{sub 2} adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N{sub 4} chelation, as well as the molecular and electronic structures for the O{sub 2} adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O{sub 2} on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d{sub z{sup 2}}, d{sub xy}, d{sub xz}, and d{sub yz}) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O{sub 2} adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.

  13. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOE Patents [OSTI]

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03T23:59:59.000Z

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  14. Bonding Similar and Dissimilar Lightweight Materials using Reactive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies (RNT) MAGNA Publishing and presenting research results in Sheet Metals Welding Conference XIII, May 2008. 11 Summary Summary Summary Potential for petroleum...

  15. Methods of making metallic glass foil laminate composites

    DOE Patents [OSTI]

    Vianco, P.T.; Fisher, R.W.; Hosking, F.M.; Zanner, F.J.

    1996-08-20T23:59:59.000Z

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone. 6 figs.

  16. Methods of making metallic glass foil laminate composites

    DOE Patents [OSTI]

    Vianco, Paul T. (Albuquerque, NM); Fisher, Robert W. (Albuquerque, NM); Hosking, Floyd M. (Albuquerque, NM); Zanner, Frank J. (Sandia Park, NM)

    1996-01-01T23:59:59.000Z

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone.

  17. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14T23:59:59.000Z

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  18. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, N.N.; Watkin, J.G.

    1992-03-24T23:59:59.000Z

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  19. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, Nancy N. (Los Alamos, NM); Watkin, John G. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  20. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  1. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  2. Transition Metal Switchable Mirror

    SciTech Connect (OSTI)

    None

    2009-01-01T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  3. Transition Metal Switchable Mirror

    SciTech Connect (OSTI)

    2009-08-21T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  4. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  5. Crystallographic, Kinetic and Computational Studies on the Reaction Mechanism of Xanthine Oxidoreductase

    E-Print Network [OSTI]

    Cao, Hongnan

    2011-01-01T23:59:59.000Z

    glutamine retains the property of a hydrogen bonding donor.retains the property of being a hydrogen-bonding donor. Wehydrogen-bonds to the apical oxo ligand of molybdenum and may indirectly affect the chemical or electronic properties

  6. Method of preparation of bonded polyimide fuel cell package

    DOE Patents [OSTI]

    Morse, Jeffrey D. (Martinez, CA); Jankowski, Alan (Livermore, CA); Graff, Robert T. (Modesto, CA); Bettencourt, Kerry (Dublin, CA)

    2011-04-26T23:59:59.000Z

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  7. Advance Refundings of Municipal Bonds Columbia Business School

    E-Print Network [OSTI]

    Sadeh, Norman M.

    Advance Refundings of Municipal Bonds Andrew Ang Columbia Business School and NBER Richard C. Green of Vineer Bhansali, Trevor Harris, Tal Heppenstall, Andrew Kalotay, Kemp Lewis, Paul Luhmann, Matt of colleagues, especially Jennifer Carpenter, Dan Li, Norman Sch¨urhoff, and Chester Spatt, along with seminar

  8. Hydrogen Bonding Increases Packing Density in the Protein Interior

    E-Print Network [OSTI]

    Hydrogen Bonding Increases Packing Density in the Protein Interior David Schell,1,2 Jerry Tsai,1 J System Health Science Center, College Station, Texas 77843-1114 ABSTRACT The contribution of hydrogen to the stability, but experimental studies show that bury- ing polar groups, especially those that are hydrogen

  9. Water inertial reorientation: Hydrogen bond strength and the angular potential

    E-Print Network [OSTI]

    Fayer, Michael D.

    Water inertial reorientation: Hydrogen bond strength and the angular potential David E. Moilanen) The short-time orientational relaxation of water is studied by ultrafast infrared pump-probe spectroscopy with recent molecular dynamics simulations employing the simple point charge-extended water model at room

  10. Channel Bonding in Cognitive Radio Wireless Sensor Networks

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Channel Bonding in Cognitive Radio Wireless Sensor Networks Mubashir Husain Rehmani, St-mail: rehmani@univ-mlv.fr, lohier@univ-mlv.fr, rachedi@univ-mlv.fr Abstract--Recently, wireless sensor networks, Wireless Multimedia Sensor Networks (WMSNs) have lot of new potential applications in different domains

  11. Enantioselective nickel catalysis : exploiting activated C-H bonds

    E-Print Network [OSTI]

    Bencivenga, Nicholas Ernest

    2012-01-01T23:59:59.000Z

    A method for the nickel-catalyzed cross-coupling between benzoxazole and secondary halides was explored. This method was to make use of the activated C-H bond found in benzoxazole at the 2-position to generate the nucleophilic ...

  12. Bonded polyimide fuel cell package and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry

    2005-11-01T23:59:59.000Z

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  13. Diffusion limited cluster aggregation with irreversible flexible bonds

    E-Print Network [OSTI]

    Sujin Babu; Jean-Christophe Gimel; Taco Nicolai

    2008-01-29T23:59:59.000Z

    Irreversible diffusion limited cluster aggregation (DLCA) of hard spheres was simulated using Brownian cluster dynamics. Bound spheres were allowed to move freely within a specified range, but no bond breaking was allowed. The structure and size distribution of the clusters was investigated before gelation. The pair correlation function and the static structure factor of the gels were determined as a function of the volume fraction and time. Bond flexibility led to local densification of the clusters and the gels, with a certain degree of order. At low volume fractions densification of the clusters occurred during their growth, but at higher volume fractions it occurred mainly after gelation. At very low volume fractions, the large scale structure (fractal dimension), size distribution and growth kinetics of the clusters was found to be close to that known for DLCA with rigid bonds. Restructuring of the gels continued for long times, indicating that aging processes in systems with strong attraction do not necessarily involve bond breaking. The mean square displacement of particles in the gels was determined. It is shown to be highly heterogeneous and to increase with decreasing volume fraction.

  14. WHAT'S GRAPHENE? Mono or few layers of sp2 bonded

    E-Print Network [OSTI]

    Mellor-Crummey, John

    WHAT'S GRAPHENE? · Mono or few layers of sp2 bonded carbon atoms in a honeycomb lattice 105cm2/Vs at RT. 1 Due to its unique transport properties, graphene is suitable for implementation sampling (EOS) timeresolved spectroscopy to optically pump and THz probe exfoliated graphene ribbons (GR

  15. A Single Disulfide Bond Differentiates Aggregation Pathways of 2-Microglobulin

    E-Print Network [OSTI]

    Dokholyan, Nikolay V.

    simulation; aggregation; domain swapping*Corresponding author Introduction Amyloid fibrils are insolubleA Single Disulfide Bond Differentiates Aggregation Pathways of ß2-Microglobulin Yiwen Chen1 at Chapel Hill Chapel Hill, NC 27599, USA Deposition of wild-type ß2-microglobulin (ß2m) into amyloid

  16. Bonded labour The Dalits of Nepal are a marginalised

    E-Print Network [OSTI]

    Richner, Heinz

    Bonded labour The Dalits of Nepal are a marginalised group of people who have suffered systematic that, while illegal, is still widespread in remote rural areas of Nepal. To meet their basic needs in their neighbour- hood. Referred to in Nepal as Haliya/ Haruwa and Charuwa, they have to plough the landlords' land

  17. alteredintramolecular hydrogen-bonding pattern: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alteredintramolecular hydrogen-bonding pattern First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1...

  18. Comparing systemic risk in European government bonds and national indices

    E-Print Network [OSTI]

    Jurczyk, Jan; Morgenstern, Ingo

    2015-01-01T23:59:59.000Z

    It has been shown, that the systemic risk contained in financial markets can be indicated by the change of cross-correlation between different indices and stocks. This change is tracked by using principle component analysis (PCA). We use this technique to investigate the systemic risk contained in European economy by comparing government long term bonds and indices.

  19. Validation of bonded composite doubler technology through application oriented structural testing

    SciTech Connect (OSTI)

    Roach, D.; Graf, D.

    1996-08-01T23:59:59.000Z

    One of the major thrusts established under the FAA`s National Aging Aircraft Research Program is to foster new technologies associated with civil aircraft maintenance. Recent DOD and other government developments in the use of bonded composite patches on metal structures has supported the need for research and validation of such doubler applications on U.S. certificated airplanes. Composite patching is a rapidly maturing technology which shows promise of cost savings on aging aircraft. Sandia Labs is conducting a proof-of-concept project with Delta Air Lines, Lockheed Martin, Textron, and the FAA which seeks to remove any remaining obstacles to the approved use of composite doublers. By focusing on a specific commercial aircraft application - reinforcement of the L-1011 door frame - and encompassing all {open_quotes}cradle-to-grave{close_quotes} tasks such as design, analysis, installation, and inspection, this program is designed to prove the capabilities of composite doublers. This paper reports on a series of structural tests which have been conducted on coupons and subsize test articles. Tension-tension fatigue and residual strength tests attempted to grow engineered flaws in coupons with composite doublers bonded to aluminum skin. Also, structures which modeled key aspects of the door corner installation were subjected to extreme tension, shear, and bending loads. In this manner it was possible to study strain fields in and around the Lockheed-designed composite doubler using realistic aircraft load scenarios and to assess the potential for interply delaminations and disbonds between the aluminum and the laminate. The data acquired was also used to validate finite element models (FEM) and associated Damage Tolerance Analyses.

  20. Time-Resolved XAFS Spectroscopic Studies of B-H and N-H Oxidative Addition to Transition Metal Catalysts Relevant to Hydrogen Storage

    SciTech Connect (OSTI)

    Bitterwolf, Thomas E. [University of Idaho

    2014-12-09T23:59:59.000Z

    Successful catalytic dehydrogenation of aminoborane, H3NBH3, prompted questions as to the potential role of N-H oxidative addition in the mechanisms of these processes. N-H oxidative addition reactions are rare, and in all cases appear to involve initial dative bonding to the metal by the amine lone pairs followed by transfer of a proton to the basic metal. Aminoborane and its trimethylborane derivative block this mechanism and, in principle, should permit authentic N-H oxidative attrition to occur. Extensive experimental work failed to confirm this hypothesis. In all cases either B-H complexation or oxidative addition of solvent C-H bonds dominate the chemistry.

  1. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOE Patents [OSTI]

    Coops, Melvin S. (Livermore, CA)

    1992-01-01T23:59:59.000Z

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  2. Divalent metal nanoparticles

    E-Print Network [OSTI]

    DeVries, Gretchen Anne

    2008-01-01T23:59:59.000Z

    Metal nanoparticles hold promise for many scientific and technological applications, such as chemical and biological sensors, vehicles for drug delivery, and subdiffraction limit waveguides. To fabricate such devices, a ...

  3. Production of magnesium metal

    DOE Patents [OSTI]

    Blencoe, James G. (Harriman, TN); Anovitz, Lawrence M. (Knoxville, TN); Palmer, Donald A. (Oliver Springs, TN); Beard, James S. (Martinsville, VA)

    2012-04-10T23:59:59.000Z

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

  4. Functionalized Silicone Nanospheres: Synthesis, Transition Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functionalized Silicone Nanospheres: Synthesis, Transition Metal Immobilization, and Catalytic Applications. Functionalized Silicone Nanospheres: Synthesis, Transition Metal...

  5. Molten metal reactors

    DOE Patents [OSTI]

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

    2013-11-05T23:59:59.000Z

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  6. Development of bonded composite doublers for the repair of oil recovery equipment.

    SciTech Connect (OSTI)

    Roach, David W.; Rackow, Kirk A.

    2005-06-01T23:59:59.000Z

    An unavoidable by-product of a metallic structure's use is the appearance of crack and corrosion flaws. Economic barriers to the replacement of these structures have created an aging infrastructure and placed even greater demands on efficient and safe repair methods. In the past decade, an advanced composite repair technology has made great strides in commercial aviation use. Extensive testing and analysis, through joint programs between the Sandia Labs FAA Airworthiness Assurance Center and the aviation industry, have proven that composite materials can be used to repair damaged aluminum structure. Successful pilot programs have produced flight performance history to establish the durability of bonded composite patches as a permanent repair on commercial aircraft structures. With this foundation in place, this effort is adapting bonded composite repair technology to civil structures. The use of bonded composite doublers has the potential to correct the difficulties associated with current repair techniques and the ability to be applied where there are no rehabilitation options. It promises to be cost-effective with minimal disruption to the users of the structure. This report concludes a study into the application of composite patches on thick steel structures typically used in mining operations. Extreme fatigue, temperature, erosive, and corrosive environments induce an array of equipment damage. The current weld repair techniques for these structures provide a fatigue life that is inferior to that of the original plate. Subsequent cracking must be revisited on a regular basis. The use of composite doublers, which do not have brittle fracture problems such as those inherent in welds, can help extend the structure's fatigue life and reduce the equipment downtime. Two of the main issues for adapting aircraft composite repairs to civil applications are developing an installation technique for carbon steel and accommodating large repairs on extremely thick structures. This study developed and proved an optimum field installation process using specific mechanical and chemical surface preparation techniques coupled with unique, in-situ heating methods. In addition, a comprehensive performance assessment of composite doubler repairs was completed to establish the viability of this technology for large, steel structures. The factors influencing the durability of composite patches in severe field environments were evaluated along with related laminate design issues.

  7. Elastic properties of Pu metal and Pu-Ga alloys

    SciTech Connect (OSTI)

    Soderlind, P; Landa, A; Klepeis, J E; Suzuki, Y; Migliori, A

    2010-01-05T23:59:59.000Z

    We present elastic properties, theoretical and experimental, of Pu metal and Pu-Ga ({delta}) alloys together with ab initio equilibrium equation-of-state for these systems. For the theoretical treatment we employ density-functional theory in conjunction with spin-orbit coupling and orbital polarization for the metal and coherent-potential approximation for the alloys. Pu and Pu-Ga alloys are also investigated experimentally using resonant ultrasound spectroscopy. We show that orbital correlations become more important proceeding from {alpha} {yields} {beta} {yields} {gamma} plutonium, thus suggesting increasing f-electron correlation (localization). For the {delta}-Pu-Ga alloys we find a softening with larger Ga content, i.e., atomic volume, bulk modulus, and elastic constants, suggest a weakened chemical bonding with addition of Ga. Our measurements confirm qualitatively the theory but uncertainties remain when comparing the model with experiments.

  8. Metal chelate process to remove pollutants from fluids

    DOE Patents [OSTI]

    Chang, S.G.T.

    1994-12-06T23:59:59.000Z

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO[sub x] and optionally SO[sub 2] from a fluid using a metal ion (Fe[sup 2+]) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution. 26 figures.

  9. Method of forming and assembly of metal and ceramic parts

    DOE Patents [OSTI]

    Ripley, Edward B

    2014-04-22T23:59:59.000Z

    A method of forming and assembling at least two parts together that may be metal, ceramic, or a combination of metal and ceramic parts. Such parts may have different CTE. Individual parts that are formed and sintered from particles leave a network of interconnecting porosity in each sintered part. The separate parts are assembled together and then a fill material is infiltrated into the assembled parts using a method such as capillary action, gravity, and/or pressure. The assembly is then cured to yield a bonded and fully or near-fully dense part that has the desired physical and mechanical properties for the part's intended purpose. Structural strength may be added to the parts by the inclusion of fibrous materials.

  10. Synthesis, chemical bonding and physical properties of RERhB{sub 4} (RE=Y, Dy-Lu)

    SciTech Connect (OSTI)

    Veremchuk, I. [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Str. 40, 01187 Dresden (Germany); Mori, T. [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Str. 40, 01187 Dresden (Germany); National Institute for Materials Science, Namiki 1-1, Tsukuba 305-0044 (Japan); Prots, Yu.; Schnelle, W.; Leithe-Jasper, A.; Kohout, M. [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Str. 40, 01187 Dresden (Germany); Grin, Yu. [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Str. 40, 01187 Dresden (Germany)], E-mail: grin@cpfs.mpg.de

    2008-08-15T23:59:59.000Z

    The compounds of rare-earth metals with rhodium and boron RERhB{sub 4} (RE=Y, Dy-Lu) crystallize with the orthorhombic structure type YCrB{sub 4} (space group Pbam, Pearson symbol oP24). The crystal structures of the compounds with RE=Y, Er, Tm and Yb were refined by using single-crystal diffraction data. Analysis of chemical bonding for YRhB{sub 4} and YbRhB{sub 4} was performed by electron localizability indicator and by calculation of quantum chemical charges (quantum theory of atoms in molecules). Boron and rhodium form the 3-D polyanion containing planar nets of three-bonded boron atoms interconnected by rhodium along [001]. The interaction of the RE species with the rhodium-boron polyanion is predominantly ionic. Magnetic susceptibility data of TmRhB{sub 4} and YbRhB{sub 4} showed that the RE species are in 4f{sup 12} (Tm) and 4f{sup 13} (Yb) electronic states, respectively. In the low-temperature region, the specific heat revealed a Schottky anomaly for TmRhB{sub 4} while an antiferromagnetic transition is observed at 3.5 K for YbRhB{sub 4}. X-ray absorption measurement at the Yb L{sub III} edge for YbRhB{sub 4} reveals the 4f{sup 13} state of ytterbium. - Graphical abstract: The compounds of rare-earth metals with rhodium and boron RERhB{sub 4} (RE=Y, Dy-Lu) crystallize with the orthorhombic structure type YCrB{sub 4}. Analysis of chemical bonding for YRhB{sub 4} and YbRhB{sub 4} was performed by electron localizability indicator and by calculation of quantum chemical charges (quantum theory of atoms in molecules). Boron and rhodium form the 3-D polyanion containing planar nets of three-bonded boron atoms interconnected by rhodium along [001]. The interaction of the RE species with the rhodium-boron polyanion is predominantly ionic.

  11. Electronic Structure of Transition Metal-Cysteine Complexes From X-Ray Absorption Spectroscopy

    SciTech Connect (OSTI)

    Leung, B.O.; Jalilehvand, F.; Szilagyi, R.K.

    2009-05-19T23:59:59.000Z

    The electronic structures of Hg{sup II}, Ni{sup II}, Cr{sup III}, and Mo{sup V} complexes with cysteine were investigated by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy and density functional theory. The covalency in the metal-sulfur bond was determined by analyzing the intensities of the electric-dipole allowed pre-edge features appearing in the XANES spectra below the ionization threshold. Because of the well-defined structures of the selected cysteine complexes, the current work provides a reference set for further sulfur K-edge XAS studies of bioinorganic active sites with transition metal-sulfur bonds from cysteine residues as well as more complex coordination compounds with thiolate ligands.

  12. Metal corrosion in a supercritical carbon dioxide - liquid sodium power cycle.

    SciTech Connect (OSTI)

    Moore, Robert Charles; Conboy, Thomas M.

    2012-02-01T23:59:59.000Z

    A liquid sodium cooled fast reactor coupled to a supercritical carbon dioxide Brayton power cycle is a promising combination for the next generation nuclear power production process. For optimum efficiency, a microchannel heat exchanger, constructed by diffusion bonding, can be used for heat transfer from the liquid sodium reactor coolant to the supercritical carbon dioxide. In this work, we have reviewed the literature on corrosion of metals in liquid sodium and carbon dioxide. The main conclusions are (1) pure, dry CO{sub 2} is virtually inert but can be highly corrosive in the presence of even ppm concentrations of water, (2) carburization and decarburization are very significant mechanism for corrosion in liquid sodium especially at high temperature and the mechanism is not well understood, and (3) very little information could be located on corrosion of diffusion bonded metals. Significantly more research is needed in all of these areas.

  13. Method for forming metal contacts

    DOE Patents [OSTI]

    Reddington, Erik; Sutter, Thomas C; Bu, Lujia; Cannon, Alexandra; Habas, Susan E; Curtis, Calvin J; Miedaner, Alexander; Ginley, David S; Van Hest, Marinus Franciscus Antonius Maria

    2013-09-17T23:59:59.000Z

    Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.

  14. Hydrogen Bonding, H-D Exchange, and Molecular Mobility in Thin...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonding, H-D Exchange, and Molecular Mobility in Thin Water Films on TiO2(110). Hydrogen Bonding, H-D Exchange, and Molecular Mobility in Thin Water Films on TiO2(110). Abstract:...

  15. Imaging Adsorbate O-H Bond Cleavage: Methanol on TiO2(110). ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O-H Bond Cleavage: Methanol on TiO2(110). Abstract: We investigated methanol adsorption and dissociation on bridge-bonded oxygen vacancies of TiO2(110) (1×1) surface...

  16. Chemical Bonding In Amorphous Si Coated-carbon Nanotube As Anodes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonding In Amorphous Si Coated-carbon Nanotube As Anodes For Li ion Batteries: A XANES Study. Chemical Bonding In Amorphous Si Coated-carbon Nanotube As Anodes For Li ion...

  17. Dynamical bond cooperativity enables very fast and strong binding between sliding surfaces

    E-Print Network [OSTI]

    Trřmborg, Jřrgen Kjoshagen

    2015-01-01T23:59:59.000Z

    Cooperative binding affects many processes in biology, but it is commonly addressed only in equilibrium. In this work we explore dynamical cooperativity in driven systems, where the cooperation occurs because some of the bonds change the dynamical response of the system to a regime where the other bonds become active. To investigate such cooperativity we study the frictional binding between two flow driven surfaces that interact through a large population of activated bonds. In particular, we study systems where each bond can have two different modes: one mode corresponds to a fast forming yet weak bond, and the other is a strong yet slow forming bond. We find considerable cooperativity between both types of bonds. Under some conditions the system behaves as if there were only one binding mode, corresponding to a strong and fast forming bond. Our results may have important implications on the friction and adhesion between sliding surfaces containing complementary binding motifs, such as in the case of cells b...

  18. The contribution of tyrosine water=hydrogen bonds to protein stability

    E-Print Network [OSTI]

    Bechert, Charles John

    2013-02-22T23:59:59.000Z

    studied: RNase Sa (Tyr 30, 49, 55, 81 ? v Phc). Studying the RNasc Sa mutanls will allow us to compare the importance of intramolccular hydrogen bonds involving other groups within I. he protein versus intermolecular hydrogen bonds involving buried HTO...

  19. New method to diffusion bond superalloys A. A. Shirzadi and E. R. Wallach

    E-Print Network [OSTI]

    Cambridge, University of

    carried out in this eld. Despite recent developments in the fusion welding of superalloys using laser, such as brazing and transient liquid phase (TLP) diffusion bonding, normally require long bonding times and

  20. Facile Thermal W-W Bond Homolysis in the N-Heterocyclic Carbene...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal W-W Bond Homolysis in the N-Heterocyclic Carbene-Containing Tungsten Dimer CpW(CO)2(IMe)2. Facile Thermal W-W Bond Homolysis in the N-Heterocyclic Carbene-Containing...

  1. 2-Propanol Dehydration on TiO2(110): The Effect of Bridge-Bonded...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-Propanol Dehydration on TiO2(110): The Effect of Bridge-Bonded Oxygen Vacancy Blocking. 2-Propanol Dehydration on TiO2(110): The Effect of Bridge-Bonded Oxygen Vacancy Blocking....

  2. Role of interatomic bonding in the mechanical anisotropy and interlayer cohesion of CSH crystals

    SciTech Connect (OSTI)

    Dharmawardhana, C.C. [Department of Physics and Astronomy, University of Missouri—Kansas City, Kansas City, MO 64110 (United States)] [Department of Physics and Astronomy, University of Missouri—Kansas City, Kansas City, MO 64110 (United States); Misra, A. [Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, KS 66045 (United States)] [Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, KS 66045 (United States); Aryal, S.; Rulis, P. [Department of Physics and Astronomy, University of Missouri—Kansas City, Kansas City, MO 64110 (United States)] [Department of Physics and Astronomy, University of Missouri—Kansas City, Kansas City, MO 64110 (United States); Ching, W.Y., E-mail: ccdxz8@mail.umkc.edu [Department of Physics and Astronomy, University of Missouri—Kansas City, Kansas City, MO 64110 (United States)

    2013-10-15T23:59:59.000Z

    Atomic scale properties of calcium silicate hydrate (CSH), the main binding phase of hardened Portland cement, are not well understood. Over a century of intense research has identified almost 50 different crystalline CSH minerals which are mainly categorized by their Ca/Si ratio. The electronic structure and interatomic bonding in four major CSH crystalline phases with structures close to those found in hardened cement are investigated via ab initio methods. Our result reveals the critical role of hydrogen bonding and importance of specifying precise locations for water molecules. Quantitative analysis of contributions from different bond types to the overall cohesion shows that while the Si-O covalent bonds dominate, the hydrogen bonding and Ca-O bonding are also very significant. Calculated results reveal the correlation between bond topology and interlayer cohesion. The overall bond order density (BOD) is found to be a more critical measure than the Ca/Si ratio in classifying different CSH crystals.

  3. High-Temperature Zirconia Oxygen Sensor with Sealed Metal/Metal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference...

  4. Method for improving the oxidation-resistance of metal substrates coated with thermal barrier coatings

    DOE Patents [OSTI]

    Thompson, Anthony Mark (Niskayuna, NY); Gray, Dennis Michael (Delanson, NY); Jackson, Melvin Robert (Niskayuna, NY)

    2002-01-01T23:59:59.000Z

    A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

  5. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2014-06-01T23:59:59.000Z

    This presentation reviews the status of the performance and reliability of bonded interfaces for high-temperature packaging.

  6. Structural evolution across the insulator-metal transition in oxygen-deficient BaTiO3-? studied using neutron total scattering and Rietveld analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jeong, I.-K.; Lee, Seunghun; Jeong, Se-Young; Won, C. J.; Hur, N.; Llobet, A.

    2011-08-01T23:59:59.000Z

    Oxygen-deficient BaTiO3-? exhibits an insulator-metal transition with increasing ?. We performed neutron total scattering measurements to study structural evolution across an insulator-metal transition in BaTiO3-?. Despite its significant impact on resistivity, slight oxygen reduction (?=0.09) caused only a small disturbance on the local doublet splitting of Ti-O bond. This finding implies that local polarization is well preserved under marginal electric conduction. In the highly oxygen-deficient metallic state (?=0.25), however, doublet splitting of the Ti-O bond became smeared. The smearing of the local Ti-O doublet is complemented with long-range structural analysis and demonstrates that the metallic conduction in the highly oxygen-reducedmore »BaTiO3-? is due to the appearance of nonferroelectric cubic lattice.« less

  7. Structural evolution across the insulator-metal transition in oxygen-deficient BaTiO3-? studied using neutron total scattering and Rietveld analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jeong, I.-K.; Lee, Seunghun; Jeong, Se-Young; Won, C. J.; Hur, N.; Llobet, A.

    2011-08-01T23:59:59.000Z

    Oxygen-deficient BaTiO3-? exhibits an insulator-metal transition with increasing ?. We performed neutron total scattering measurements to study structural evolution across an insulator-metal transition in BaTiO3-?. Despite its significant impact on resistivity, slight oxygen reduction (?=0.09) caused only a small disturbance on the local doublet splitting of Ti-O bond. This finding implies that local polarization is well preserved under marginal electric conduction. In the highly oxygen-deficient metallic state (?=0.25), however, doublet splitting of the Ti-O bond became smeared. The smearing of the local Ti-O doublet is complemented with long-range structural analysis and demonstrates that the metallic conduction in the highly oxygen-reduced BaTiO3-? is due to the appearance of nonferroelectric cubic lattice.

  8. Mixed valency and electronic structure in self-assembled monolayers, self-exchange, and hydrogen bonded assemblies

    E-Print Network [OSTI]

    Goeltz, John Christopher

    2011-01-01T23:59:59.000Z

    P. ”Mixed valency across hydrogen bonds” J. Am. Chem. Soc.6 Mixed valency across hydrogen bonds: a more completeMixed valency across hydrogen bonds,” by John C. Goeltz and

  9. Hydrogen Bond Dissociation and Reformation in Methanol Oligomers Following Hydroxyl Stretch Relaxation

    E-Print Network [OSTI]

    Fayer, Michael D.

    Hydrogen Bond Dissociation and Reformation in Methanol Oligomers Following Hydroxyl Stretch, 2002 Vibrational relaxation and hydrogen bond dynamics in methanol-d dissolved in CCl4 have been-d molecules both accepting and donating hydrogen bonds at 2500 cm-1 . Following vibrational relaxation

  10. Hydrogen bond dynamics in the active site of photoactive yellow protein

    E-Print Network [OSTI]

    Herschlag, Dan

    Hydrogen bond dynamics in the active site of photoactive yellow protein Paul A. Sigala, Mark A for review February 5, 2009) Hydrogen bonds play major roles in biological structure and function. Nonetheless, hydrogen-bonded protons are not typically observed by X-ray crystallography, and most structural

  11. Hydrogen bond breaking probed with multidimensional stimulated vibrational echo correlation spectroscopy

    E-Print Network [OSTI]

    Fayer, Michael D.

    Hydrogen bond breaking probed with multidimensional stimulated vibrational echo correlation September 2003 Hydrogen bond population dynamics are extricated with exceptional detail using ultrafast ( 50 of methanol­OD oligomers in CCl4 . Hydrogen bond breaking makes it possible to acquire data for times much

  12. The Hydrogen Bonding of Cytosinewith Guanine:Calorimetric and`H-NMR Analysis

    E-Print Network [OSTI]

    Williams, Loren

    The Hydrogen Bonding of Cytosinewith Guanine:Calorimetric and`H-NMR Analysis of the Molecular of hydrogen-bondformation between guanine (G) and cytusine (C) in o-dichloro- benzene and in chloroformat 25°C forming hydrogen bonds. Consequently, hydrogen-bond formation in our system is primarily between the bases

  13. Hydrogen bond dynamics in membrane protein function Ana-Nicoleta Bondar a,

    E-Print Network [OSTI]

    White, Stephen

    Review Hydrogen bond dynamics in membrane protein function Ana-Nicoleta Bondar a, , Stephen H 30 November 2011 Available online 8 December 2011 Keywords: Membrane protein structure Hydrogen bond Membrane protein dynamics Lipid­protein interactions Changes in inter-helical hydrogen bonding

  14. Low Temperature Transient Liquid Phase Bonding of Ti6AI4V

    E-Print Network [OSTI]

    Eagar, Thomas W.

    bonds by intermetallic formation and subsequent diffusion annealing, but are limited to temperatures above 87s·c. Solid state activated diffusion bonding using sputtered copper intcrlayers will form joints temperature [1,2]. 1LP bonding of titanium has been used to produce aerospace components as descnoed by Norris

  15. Bonding is carried out by building up Quartz Wax on the sample holder to

    E-Print Network [OSTI]

    Smith, Tanya M.

    Bonding is carried out by building up Quartz Wax on the sample holder to support and bond the tooth that the Quartz Wax should cover as much of the sample face as possible to ensure a strong bond. Application Note Tooth Wax layer Figure 1 Sample holder Tooth Thin Section #12;B. Cutting - SIngle Selection Figure 2

  16. Correlation Analysis of Chemical Bonds (CACB) II: Quantum Mechanical Operators for Classical Chemical Concepts

    E-Print Network [OSTI]

    Goddard III, William A.

    crossing in reactions still lags far behind. Theoretical approaches to extracting the underlying chemicalCorrelation Analysis of Chemical Bonds (CACB) II: Quantum Mechanical Operators for Classical of the statistical covariance of the previous operator. Here the bonds correlation relates to bond exchange processes

  17. Information-Based Trading in the Junk Bond Market Department of Applied Economics and Management

    E-Print Network [OSTI]

    Kearns, Michael

    Information-Based Trading in the Junk Bond Market Xing Zhou Department of Applied Economics-based trading takes place in the high-yield corporate bond market, and how firm-specific information flow across that current corporate bond returns have explanatory power for future stock price changes. This implies

  18. TRANSIENT UQUID PHASE BONDING PROCESSES W. D. MacDonald and T.W. Eagar

    E-Print Network [OSTI]

    Eagar, Thomas W.

    . In this article, the term TLP \\viii apply to those bonding processes which rely on solid state diffusion to drive) ) ) .. ' TRANSIENT UQUID PHASE BONDING PROCESSES W. D. MacDonald and T.W. Eagar Department Transient liquid phase (TLP) bonding is an ancient process that has received increased attention in recent

  19. Silver diffusion bonding and layer transfer of lithium niobate to silicon Kenneth Diest,a

    E-Print Network [OSTI]

    Atwater, Harry

    Silver diffusion bonding and layer transfer of lithium niobate to silicon Kenneth Diest,a Melissa J July 2008; accepted 8 August 2008; published online 5 September 2008 A diffusion bonding method has, and upon heating, a diffusion bond was formed. Transmission electron microscopy confirms the interface

  20. Influence of silicon dangling bonds on germanium thermal diffusion within R. S. Cai,2

    E-Print Network [OSTI]

    Influence of silicon dangling bonds on germanium thermal diffusion within SiO2 glass D. Barba,1 R online 17 March 2014) We study the influence of silicon dangling bonds on germanium thermal diffusion of several orders of magnitudes.12,16­18 This may suggest that Si dangling bonds can affect the diffusion

  1. Particle/substrate interaction in the cold-spray bonding process

    E-Print Network [OSTI]

    Grujicic, Mica

    , atomic inter-diffusion is not expected to play a significant role in particle/substrate bonding. This canC2 148 9 Particle/substrate interaction in the cold-spray bonding process M. GRUJICIC, Clemson in this chapter to the problem of particle/substrate interactions and bonding during cold spray. The actual

  2. Low Temperature Transient Liquid Phase (LTTLP) Bonding for Au/Cu

    E-Print Network [OSTI]

    Eagar, Thomas W.

    of Technology, Cambridge, MA 02139 TheLow Temperature TransientLiquidPhase Diffusion Bonding (LTTLP) process has) ) M. M. Hou Low Temperature Transient Liquid Phase (LTTLP) Bonding for Au/Cu and Cu been bonded to copper heatsink.s at temperatures less than 160"C, using /n-Sn eutectic solders. After

  3. Simultaneous Bayesian reconstruction of diffusivity and bond potentials using path integrals

    E-Print Network [OSTI]

    Levine, Alex J.

    Simultaneous Bayesian reconstruction of diffusivity and bond potentials using path integrals Joshua requires fewer data and allows simultaneous inference of both complex bond potentials and diffusivity spectroscopy (DFS) has been used to distort bonds. The resulting responses, in the form of rupture forces, work

  4. Ionwater hydrogen-bond switching observed with 2D IR vibrational echo chemical

    E-Print Network [OSTI]

    Fayer, Michael D.

    Ion­water hydrogen-bond switching observed with 2D IR vibrational echo chemical exchange for review November 8, 2008) The exchange of water hydroxyl hydrogen bonds between anions and water oxygens of anion­ water hydroxyl hydrogen bond switching under thermal equilib- rium conditions as Taw 7 1 ps. Pump

  5. Extent of Hydrogen-Bond Protection in Folded Proteins: A Constraint on Packing Architectures

    E-Print Network [OSTI]

    Berry, R. Stephen

    Extent of Hydrogen-Bond Protection in Folded Proteins: A Constraint on Packing Architectures Ariel structuring and ultimately exclusion of water by hydrophobes surrounding backbone hydrogen bonds turn hydrophobes yields an optimal hydrogen-bond stabilization. This motif is shown to be nearly ubiquitous

  6. Ligand Binding to the Pregnane X Receptor by Geometric Matching of Hydrogen Bonds

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    space. Hydrogen bonds have been used in FlexX [3] as part of a more complete energy function. Our conformations to PXR based on hydrogen bond geometry and use them as a starting point for ranking ligands aspect of the energy function, the hydrogen bonds, in order to identify the discriminating factor

  7. Native Hydrogen Bonds in a Molten Globule: The Apoflavodoxin Thermal Intermediate

    E-Print Network [OSTI]

    Sancho, Javier

    Native Hydrogen Bonds in a Molten Globule: The Apoflavodoxin Thermal Intermediate MarőÂa P. IruÂn1 in surface- exposed hydrogen bonds connecting secondary-structure elements in the native protein. All hydrogen bonds analysed are formed in the molten globule intermediate, either with native strength

  8. A CH O Hydrogen Bond Stabilized Polypeptide Chain Reversal Motif at the C Terminus of Helices

    E-Print Network [OSTI]

    Babu, M. Madan

    A C­H· · ·O Hydrogen Bond Stabilized Polypeptide Chain Reversal Motif at the C Terminus of Helices of Science Bangalore 560012, India The serendipitous observation of a C­H· · ·O hydrogen bond mediated­N hydrogen bond involving the side- chain of residue T 2 4 and the N­H group of residue T ţ 3. In as many

  9. Bonding topologies in diamondlike amorphous-carbon films

    SciTech Connect (OSTI)

    SIEGAL,MICHAEL P.; PROVENCIO,PAULA P.; TALLANT,DAVID R.; SIMPSON,REGINA L.; KLEINSORGE,B.; MILNE,W.I.

    2000-01-27T23:59:59.000Z

    The carbon ion energy used during filtered cathodic vacuum arc deposition determines the bonding topologies of amorphous-carbon (a-C) films. Regions of relatively low density occur near the substrate/film and film/surface interfaces and their thicknesses increase with increasing deposition energy. The ion subplantation growth results in mass density gradients in the bulk portion of a-C in the growth direction; density decreases with distance from the substrate for films grown using ion energies < 60 eV and increases for films grown using ion energies > 160 eV. Films grown between these energies are the most diamondlike with relatively uniform bulk density and the highest optical transparencies. Bonding topologies evolve with increasing growth energy consistent with the propagation of subplanted carbon ions inducing a partial transformation of 4-fold to 3-fold coordinated carbon atoms.

  10. Wafer bonded virtual substrate and method for forming the same

    DOE Patents [OSTI]

    Atwater, Jr., Harry A. (So. Pasadena, CA); Zahler, James M. (Pasadena, CA); Morral, Anna Fontcuberta i (Paris, FR)

    2007-07-03T23:59:59.000Z

    A method of forming a virtual substrate comprised of an optoelectronic device substrate and handle substrate comprises the steps of initiating bonding of the device substrate to the handle substrate, improving or increasing the mechanical strength of the device and handle substrates, and thinning the device substrate to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. The handle substrate is typically Si or other inexpensive common substrate material, while the optoelectronic device substrate is formed of more expensive and specialized electro-optic material. Using the methodology of the invention a wide variety of thin film electro-optic materials of high quality can be bonded to inexpensive substrates which serve as the mechanical support for an optoelectronic device layer fabricated in the thin film electro-optic material.

  11. Characterization of Fuel-Cladding Bond Strength Using Laser Shock

    SciTech Connect (OSTI)

    James A. Smith; David L. Cottle; Barry H. Rabin

    2014-04-01T23:59:59.000Z

    This paper describes new laser-based capabilities for characterization of fuel-cladding bond strength in nuclear fuels, and presents preliminary results obtained from studies on as-fabricated monolithic fuel consisting of uranium-10 wt.% molybdenum alloys clad in 6061 aluminum by hot isostatic pressing. Two complementary experimental methods are employed, laser-shock testing and laser-ultrasonic imaging. Measurements are spatially localized, non-contacting and require minimum specimen preparation, and are therefore ideally suited for applications involving radioactive materials, including irradiated materials. The theoretical principles and experimental approaches employed in characterization of nuclear fuel plates are described. The ability to measure layer thicknesses, elastic properties of the constituents, and the location and nature of laser-shock induced debonds is demonstrated, and preliminary bond strength measurement results are discussed.

  12. Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix

    DOE Patents [OSTI]

    Taylor, G.W.; Roybal, H.E.

    1983-11-14T23:59:59.000Z

    A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al/sub 2/O/sub 3/ yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

  13. Oxford Area Community School District (Michigan) Bonds Case Study

    Broader source: Energy.gov [DOE]

    Michigan’s Oxford Area Community School District entered into an energy savings performance contract and issued limited tax general obligation bonds to fund the up-front costs of almost $3 million of energy-related improvements. Case study is excerpted from Financing Energy Upgrades for K-12 School Districts: A Guide to Tapping into Funding for Energy Efficiency and Renewable Energy Improvements. Author: Merrian Borgeson and Mark Zimring

  14. Compacting Plastic-Bonded Explosive Molding Powders to Dense Solids

    SciTech Connect (OSTI)

    B. Olinger

    2005-04-15T23:59:59.000Z

    Dense solid high explosives are made by compacting plastic-bonded explosive molding powders with high pressures and temperatures for extended periods of time. The density is influenced by manufacturing processes of the powders, compaction temperature, the magnitude of compaction pressure, pressure duration, and number of repeated applications of pressure. The internal density variation of compacted explosives depends on method of compaction and the material being compacted.

  15. Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix

    DOE Patents [OSTI]

    Taylor, Gene W. (Los Alamos, NM); Roybal, Herman E. (Santa Fe, NM)

    1985-01-01T23:59:59.000Z

    A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al.sub.2 O.sub.3 yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

  16. Molecular dynamics of gas phase hydrogen-bonded complexes

    E-Print Network [OSTI]

    Wofford, Billy Alan

    1987-01-01T23:59:59.000Z

    . These analyses have permitted the calculation of an approximate stretching harmonic force field for the hydrogen-bound heterodimer HCN---HF. In addition, a new technique is developed to determine both the ground state and equilibrium dissociation energies... OF FIGURES. CHAPTER I. INTRODUCTION. CHAPTER II. MOLECULAR DYNAMICS IN HYDROGEN-BONDED INTERACTIONS: A PRELIMINARY EXPERIMENTALLY DETERMINED HARMONIC STRETCHING FORCE FIELD FOR HCN---HF. Introduction. Experimental Calculations. 10 Discussion. 19...

  17. Algorithm for anisotropic diffusion in hydrogen-bonded networks

    E-Print Network [OSTI]

    Edoardo Milotti

    2007-04-04T23:59:59.000Z

    In this paper I describe a specialized algorithm for anisotropic diffusion determined by a field of transition rates. The algorithm can be used to describe some interesting forms of diffusion that occur in the study of proton motion in a network of hydrogen bonds. The algorithm produces data that require a nonstandard method of spectral analysis which is also developed here. Finally, I apply the algorithm to a simple specific example.

  18. Quantum Confinement in Hydrogen Bond of DNA and RNA

    E-Print Network [OSTI]

    da Silva dos Santos; Elso Drigo Filho; Regina Maria Ricotta

    2015-02-09T23:59:59.000Z

    The hydrogen bond is a fundamental ingredient to stabilize the DNA and RNA macromolecules. The main contribution of this work is to describe quantitatively this interaction as a consequence of the quantum confinement of the hydrogen. The results for the free and confined system are compared with experimental data. The formalism to compute the energy gap of the vibration motion used to identify the spectrum lines is the Variational Method allied to Supersymmetric Quantum Mechanics.

  19. Quantum Confinement in Hydrogen Bond of DNA and RNA

    E-Print Network [OSTI]

    Santos, da Silva dos; Ricotta, Regina Maria

    2015-01-01T23:59:59.000Z

    The hydrogen bond is a fundamental ingredient to stabilize the DNA and RNA macromolecules. The main contribution of this work is to describe quantitatively this interaction as a consequence of the quantum confinement of the hydrogen. The results for the free and confined system are compared with experimental data. The formalism to compute the energy gap of the vibration motion used to identify the spectrum lines is the Variational Method allied to Supersymmetric Quantum Mechanics.

  20. Opening Pandora's Box - Sovereign Bonds in International Arbitration

    E-Print Network [OSTI]

    Waibel, Michael

    OPENING PANDORA’S BOX: SOVEREIGN BONDS IN INTERNATIONAL ARBITRATION By Michael Waibel* In recent years, sovereign debt crises have received much attention from the perspective of international public policy, but an effective legal solution... . In 1995, Mexico was unable to meet its external debt obligations. Three years later, a severe financial crisis hit East Asia. Russia defaulted in 1998. Argentina’s 2001 default on more than U.S.$100 billion in private debt was the largest in history.7...

  1. Synthesis, structure, and bonding in K12Au21Sn4. A polar intermetallic compound with dense Au20 and open AuSn4 layers

    SciTech Connect (OSTI)

    Li, Bin; Kim, Sung-Jin; Miller, Gordon J.; and Corbett, John D.

    2009-10-29T23:59:59.000Z

    The new phase K{sub 12}Au{sub 21}Sn{sub 4} has been synthesized by direct reaction of the elements at elevated temperatures. Single crystal X-ray diffraction established its orthorhombic structure, space group Pmmn (No. 59), a = 12.162(2); b = 18.058(4); c = 8.657(2) {angstrom}, V = 1901.3(7) {angstrom}{sup 3}, and Z = 2. The structure consists of infinite puckered sheets of vertex-sharing gold tetrahedra (Au{sub 20}) that are tied together by thin layers of alternating four-bonded-Sn and -Au atoms (AuSn{sub 4}). Remarkably, the dense but electron-poorer blocks of Au tetrahedra coexist with more open and saturated Au-Sn layers, which are fragments of a zinc blende type structure that maximize tetrahedral heteroatomic bonding outside of the network of gold tetrahedra. LMTO band structure calculations reveal metallic properties and a pseudogap at 256 valence electrons per formula unit, only three electrons fewer than in the title compound and at a point at which strong Au-Sn bonding is optimized. Additionally, the tight coordination of the Au framework atoms by K plays an important bonding role: each Au tetrahedra has 10 K neighbors and each K atom has 8-12 Au contacts. The appreciably different role of the p element Sn in this structure from that in the triel members in K{sub 3}Au{sub 5}In and Rb{sub 2}Au{sub 3}Tl appears to arise from its higher electron count which leads to better p-bonding (valence electron concentrations = 1.32 versus 1.22).

  2. Nitrided Metallic Bipolar Plates

    SciTech Connect (OSTI)

    Brady, Michael P [ORNL; Tortorelli, Peter F [ORNL; Pihl, Josh A [ORNL; Toops, Todd J [ORNL; More, Karren Leslie [ORNL; Meyer III, Harry M [ORNL; Vitek, John Michael [ORNL; Wang, Heli [National Renewable Energy Laboratory (NREL); Turner, John [National Renewable Energy Laboratory (NREL); Wilson, Mahlon [Los Alamos National Laboratory (LANL); Garzon, Fernando [Los Alamos National Laboratory (LANL); Rockward, Tommy [Los Alamos National Laboratory (LANL); Connors, Dan [GenCell Corp; Rakowski, Jim [Allegheny Ludlum; Gervasio, Don [Arizona State University

    2008-01-01T23:59:59.000Z

    The objectives are: (1) Develop and optimize stainless steel alloys amenable to formation of a protective Cr-nitride surface by gas nitridation, at a sufficiently low cost to meet DOE targets and with sufficient ductility to permit manufacture by stamping. (2) Demonstrate capability of nitridation to yield high-quality stainless steel bipolar plates from thin stamped alloy foils (no significant stamped foil warping or embrittlement). (3) Demonstrate single-cell fuel cell performance of stamped and nitrided alloy foils equivalent to that of machined graphite plates of the same flow-field design ({approx}750-1,000 h, cyclic conditions, to include quantification of metal ion contamination of the membrane electrode assembly [MEA] and contact resistance increase attributable to the bipolar plates). (4) Demonstrate potential for adoption in automotive fuel cell stacks. Thin stamped metallic bipolar plates offer the potential for (1) significantly lower cost than currently-used machined graphite bipolar plates, (2) reduced weight/volume, and (3) better performance and amenability to high volume manufacture than developmental polymer/carbon fiber and graphite composite bipolar plates. However, most metals exhibit inadequate corrosion resistance in proton exchange membrane fuel cell (PEMFC) environments. This behavior leads to high electrical resistance due to the formation of surface oxides and/or contamination of the MEA by metallic ions, both of which can significantly degrade fuel cell performance. Metal nitrides offer electrical conductivities up to an order of magnitude greater than that of graphite and are highly corrosion resistant. Unfortunately, most conventional coating methods (for metal nitrides) are too expensive for PEMFC stack commercialization or tend to leave pinhole defects, which result in accelerated local corrosion and unacceptable performance.

  3. Vacuum fusion bonded glass plates having microstructures thereon

    DOE Patents [OSTI]

    Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  4. Structural behavior of silicone bonded glass block panels

    SciTech Connect (OSTI)

    Chang, K.F. [Structural Engineering Associates, Inc., San Antonio, TX (United States); Sandberg, L.B. [Michigan Technological Univ. Houghton, MI (United States)

    1996-12-31T23:59:59.000Z

    Silicone sealant was submitted for mortar in bonding glass blocks. The sealant`s tensile and shear strengths and stiffnesses were determined. Joints bonding two glass blocks were tested for stiffness and strength in tension, bending, out-of-plane shear, and in-plane shear. Bending tests were done on specimens one block wide and four blocks long to evaluate one-way bending behavior. A six block by six block panel, supported on all four sides, was built and tested under simulated wind load. An analytical model with material nonlinearity in the joints was developed for the one-way bending case. It gave good comparisons with the experimental data to load levels approaching failure. A more complex analytical model was developed for the two-way panel. It was only valid for lower load levels, in the range of potential allowable design loads, but compared well with test results. Silicone bonded glass block panels have potential for meeting the wind load requirements necessary for exterior use.

  5. Intermetallic compound formation at Cu-Al wire bond interface

    SciTech Connect (OSTI)

    Bae, In-Tae; Young Jung, Dae [Small Scale Systems Integration and Packaging Center, State University of New York at Binghamton, Binghamton, New York 13902 (United States); Chen, William T.; Du Yong [Advanced Semiconductor Engineering Inc., 1255 E Arques Ave, Sunnyvale, California 94085 (United States)

    2012-12-15T23:59:59.000Z

    Intermetallic compound (IMC) formation and evolution at Cu-Al wire bond interface were studied using focused ion beam /scanning electron microscopy, transmission electron microscopy (TEM)/energy dispersive x-ray spectroscopy (EDS), nano beam electron diffraction (NBED) and structure factor (SF) calculation. It was found that discrete IMC patches were formed at the Cu/Al interface in as-packaged state and they grew toward Al pad after high temperature storage (HTS) environment at 150 Degree-Sign C. TEM/EDS and NBED results combined with SF calculation revealed the evidence of metastable {theta} Prime -CuAl{sub 2} IMC phase (tetragonal, space group: I4m2, a = 0.404 nm, c= 0.580 nm) formed at Cu/Al interfaces in both of the as-packaged and the post-HTS samples. Two feasible mechanisms for the formation of the metastable {theta} Prime -CuAl{sub 2} phase are discussed based on (1) non-equilibrium cooling of wire bond that is attributed to highly short bonding process time and (2) the epitaxial relationships between Cu and {theta} Prime -CuAl{sub 2}, which can minimize lattice mismatch for {theta} Prime -CuAl{sub 2} to grow on Cu.

  6. Effect of hydrogen bond cooperativity on the behavior of water

    E-Print Network [OSTI]

    Kevin Stokely; Marco G. Mazza; H. Eugene Stanley; Giancarlo Franzese

    2009-08-27T23:59:59.000Z

    Four scenarios have been proposed for the low--temperature phase behavior of liquid water, each predicting different thermodynamics. The physical mechanism which leads to each is debated. Moreover, it is still unclear which of the scenarios best describes water, as there is no definitive experimental test. Here we address both open issues within the framework of a microscopic cell model by performing a study combining mean field calculations and Monte Carlo simulations. We show that a common physical mechanism underlies each of the four scenarios, and that two key physical quantities determine which of the four scenarios describes water: (i) the strength of the directional component of the hydrogen bond and (ii) the strength of the cooperative component of the hydrogen bond. The four scenarios may be mapped in the space of these two quantities. We argue that our conclusions are model-independent. Using estimates from experimental data for H bond properties the model predicts that the low-temperature phase diagram of water exhibits a liquid--liquid critical point at positive pressure.

  7. High Activity of Ce1-xNixO2-y for H2 Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal-Oxide Interactions

    SciTech Connect (OSTI)

    G Zhou; L Barrio; S Agnoli; S Senanayake; J Evans; A Kubacka; M Estrella; J Hanson; A Martinez-Arias; et al.

    2011-12-31T23:59:59.000Z

    The importance of the oxide: Ce{sub 0.8}Ni{sub 0.2}O{sub 2-y} is an excellent catalyst for ethanol steam reforming. Metal-oxide interactions perturb the electronic properties of the small particles of metallic nickel present in the catalyst under the reaction conditions and thus suppress any methanation activity. The nickel embedded in ceria induces the formation of O vacancies, which facilitate cleavage of the OH bonds in ethanol and water.

  8. Metallic coating of microspheres

    SciTech Connect (OSTI)

    Meyer, S.F.

    1980-08-15T23:59:59.000Z

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates.

  9. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, Haskell (Los Alamos, NM)

    1986-01-01T23:59:59.000Z

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  10. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, H.

    1983-07-26T23:59:59.000Z

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  11. Metal alloy identifier

    DOE Patents [OSTI]

    Riley, William D. (Avondale, MD); Brown, Jr., Robert D. (Avondale, MD)

    1987-01-01T23:59:59.000Z

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  12. Resummed thermodynamic perturbation theory for bond cooperativity in associating fluids with small bond angles: Effects of steric hindrance and ring formation

    SciTech Connect (OSTI)

    Marshall, Bennett D., E-mail: bennettd1980@gmail.com; Haghmoradi, Amin; Chapman, Walter G. [Department of Chemical and Biomolecular Engineering, Rice University, 6100 S. Main, Houston, Texas 77005 (United States)] [Department of Chemical and Biomolecular Engineering, Rice University, 6100 S. Main, Houston, Texas 77005 (United States)

    2014-04-28T23:59:59.000Z

    In this paper we develop a thermodynamic perturbation theory for two site associating fluids which exhibit bond cooperativity (system energy is non-pairwise additive). We include both steric hindrance and ring formation such that the equation of state is bond angle dependent. Here, the bond angle is the angle separating the centers of the two association sites. As a test, new Monte Carlo simulations are performed, and the theory is found to accurately predict the internal energy as well as the distribution of associated clusters as a function of bond angle.

  13. Formation of chemically bonded ceramics with magnesium dihydrogen phosphate binder

    DOE Patents [OSTI]

    Wagh, Arun S.; Jeong, Seung-Young

    2004-08-17T23:59:59.000Z

    A new method for combining magnesium oxide, MgO, and magnesium dihydrogen phosphate to form an inexpensive compactible ceramic to stabilize very low solubility metal oxides, ashes, swarfs, and other iron or metal-based additives, to create products and waste forms which can be poured or dye cast, and to reinforce and strengthen the ceramics formed by the addition of fibers to the initial ceramic mixture.

  14. Wick for metal vapor laser

    DOE Patents [OSTI]

    Duncan, David B. (Livermore, CA)

    1992-01-01T23:59:59.000Z

    An improved wick for a metal vapor laser is made of a refractory metal cylinder, preferably molybdenum or tungsten for a copper laser, which provides the wicking surface. Alternately, the inside surface of the ceramic laser tube can be metalized to form the wicking surface. Capillary action is enhanced by using wire screen, porous foam metal, or grooved surfaces. Graphite or carbon, in the form of chunks, strips, fibers or particles, is placed on the inside surface of the wick to reduce water, reduce metal oxides and form metal carbides.

  15. Ternary Electrocatalysts for Oxidizing Ethanol to Carbon Dioxide: Making Ir Capable of Splitting C-C bond

    SciTech Connect (OSTI)

    Li, Meng [Brookhaven National Laboratory (BNL); Cullen, David A [ORNL; Sasaki, Kotaro [Brookhaven National Laboratory (BNL); Marinkovic, N. [University of Delaware; More, Karren Leslie [ORNL; Adzic, Radoslav R. [Brookhaven National Laboratory (BNL)

    2013-01-01T23:59:59.000Z

    Splitting the C-C bond is the main obstacle to electroxidation of ethanol (EOR) to CO2. We recently demonstrated that the ternary PtRhSnO2 electrocatalyst can accomplish that reaction at room temperature with Rh having a unique capability to split the C-C bond. In this article we report the finding that Ir can be induced to split the C-C bond as a component of the ternary catalyst. We synthesized, characterized and compared the properties of several ternary electrocatalysts. Carbon-supported nanoparticle (NP) electrocatalysts comprising a SnO2 NP core decorated with multi-metallic nanoislands (MM = PtIr, PtRh, IrRh, PtIrRh) were prepared using a seeded growth approach. An array of characterization techniques were employed to establish the composition and architecture of the synthesized MM /SnO2 NPs, while electrochemical and in situ infrared reflection absorption spectroscopy studies elucidated trends in activity and the nature of the reaction intermediates and products. Both EOR reactivity and selectivity towards CO2 formation of several of these MM /SnO2/C electrocatalysts are significantly higher compared to conventional Pt/C and Pt/SnO2/C catalysts. We demonstrate that the PtIr/SnO2/C catalyst with high Ir content shows outstanding catalytic property with the most negative EOR onset potential and reasonably good selectivity towards ethanol complete oxidation to CO2. PtRh/SnO2/C catalysts with a moderate Rh content exhibit the highest EOR selectivity, as deduced from infrared studies.

  16. On the bonding nature of electron states for the Fe-Mo double perovskite

    SciTech Connect (OSTI)

    Carvajal, E.; Cruz-Irisson, M. [ESIME-Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana 1000, C.P. 04430, México, D.F. (Mexico); Oviedo-Roa, R. [Programa de Investigación en Ingeniería Molecular, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, C.P. 07730, México, D.F. (Mexico); Navarro, O. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, 04510, México, D.F. (Mexico)

    2014-05-15T23:59:59.000Z

    The electronic transport as well as the effect of an external magnetic field has been investigated on manganese-based materials, spinels and perovskites. Potential applications of double perovskites go from magnetic sensors to electrodes in solid-oxide fuel cells; besides the practical interests, it is known that small changes in composition modify radically the physical properties of double perovskites. We have studied the Sr{sub 2}FeMoO{sub 6} double perovskite compound (SFMO) using first-principles density functional theory. The calculations were done within the generalized gradient approximation (GGA) scheme with the Perdew-Burke-Ernzerhof (PBE) functional. We have made a detailed analysis of each electronic state and the charge density maps around the Fermi level. For the electronic properties of SFMO it was used a primitive cell, for which we found the characteristic half-metallic behavior density of states composed by e{sub g} and t{sub 2g} electrons from Fe and Mo atoms. Those peaks were tagged as bonding or antibonding around the Fermi level at both, valence and conduction bands.

  17. Application of chemical structure and bonding of actinide oxide materials for forensic science

    SciTech Connect (OSTI)

    Wilkerson, Marianne Perry [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxide materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, or process history of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science to characterize actinide oxide molecular structures for forensic science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  18. Development of a Fluxless Flip Chip Bonding Process for Optical Military Electronics

    SciTech Connect (OSTI)

    Girardi, Michael

    2007-11-11T23:59:59.000Z

    As military electronics tend to become lighter, smaller, thinner, and lower cost, the use of flip chip technology is becoming more common place to meet system requirements, yet survive environments. This paper explores the development of an optical flip chip application and details the selection/qualification of the substrate. The selected assembly consists of a procured 1x12 Vertical Cavity Surface Emitting Laser (VCSEL) die, having 80um diameter eutectic AuSn solder bumps at 250um pitch and flip chip bonded to a .006” thick 99.6% alumina substrate with .006” diameter thru holes and metallized with 500Ĺ WTi, under minimum 2.0-3.0?m (80-120?”) thin film deposited Au. An 8 run, 3 factor, 2 level Full Factorial Design of Experiments (DOE) was completed on procured detector arrays and procured ceramic substrates using the Suss Microtec FC150. The optimum settings for the peak temperature, peak time and final die z-height were selected using the ANOVA results and interaction plots. Additional studies were completed to qualify in-house produced substrates. An epoxy glob-top encapsulant was selected to dissipate stress on the flip chip solder joints and to enhance thermal shock performance.

  19. The Breathing Orbital Valence Bond Method in Diffusion Monte Carlo: C-H Bond Dissociation ofAcetylene

    SciTech Connect (OSTI)

    Domin, D.; Braida, Benoit; Lester Jr., William A.

    2008-05-30T23:59:59.000Z

    This study explores the use of breathing orbital valence bond (BOVB) trial wave functions for diffusion Monte Carlo (DMC). The approach is applied to the computation of the carbon-hydrogen (C-H) bond dissociation energy (BDE) of acetylene. DMC with BOVB trial wave functions yields a C-H BDE of 132.4 {+-} 0.9 kcal/mol, which is in excellent accord with the recommended experimental value of 132.8 {+-} 0.7 kcal/mol. These values are to be compared with DMC results obtained with single determinant trial wave functions, using Hartree-Fock orbitals (137.5 {+-} 0.5 kcal/mol) and local spin density (LDA) Kohn-Sham orbitals (135.6 {+-} 0.5 kcal/mol).

  20. Lithium Metal Anodes for Rechargeable Batteries. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...