National Library of Energy BETA

Sample records for metal oxo bonds

  1. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Trending: Metal Oxo Bonds Print Wednesday, 29 May 2013 00:00 Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides

  2. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the...

  3. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Print Metal oxides are important for scientific and technical applications in a variety of disciplines, including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing on the oxide's desirable chemical, magnetic, electronic, and thermal properties. The lack of a more sophisticated grasp of bonding in metal oxides constitutes a roadblock to innovation in a wide

  4. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in both in technological and biological processes that are often governed by careful control over the physical and chemical properties of metal-oxygen bonds. For example,...

  5. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectroscopy (XAS) has emerged as an effective method for quantitatively probing electronic structure and orbital mixing in molecules and materials. The presence of...

  6. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    low energy of the oxygen K-edge (about 530 eV), which magnifies issues associated with surface contamination and self-absorption effects. These challenges were overcome by...

  7. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effects. These challenges were overcome by applying state-of-the-art soft x-ray techniques in conjunction with hybrid density functional theory (DFT) calculations. To...

  8. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magnetic behavior, and conductivity. A better understanding of their behavior would help open up new avenues for innovation in a variety of scientific and technical areas. In this...

  9. BONDING ALUMINUM METALS

    DOE Patents [OSTI]

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  10. Metal-Oxo Catalysts for Generating Hydrogen from Water - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Metal-Oxo Catalysts for Generating Hydrogen from Water Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryScientists at Berkeley Lab have developed an inexpensive, highly efficient catalyst that can be used in the electrolysis of water to generate H2-a source of clean fuel, a reducing agent for metal ores, and a reactant used to produce hydrochloric acid

  11. Metal-bonded graphite foam composites

    SciTech Connect (OSTI)

    Menchhofer, Paul A; Klett, James W

    2015-04-28

    A metal-bonded graphite foam composite includes a ductile metal continuous phase and a dispersed phase that includes graphite foam particles.

  12. Molecular metal-Oxo catalysts for generating hydrogen from water

    DOE Patents [OSTI]

    Long, Jeffrey R; Chang, Christopher J; Karunadasa, Hemamala I

    2015-02-24

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition having the general formula [(PY5W.sub.2)MO].sup.2+, wherein PY5W.sub.2 is (NC.sub.5XYZ)(NC.sub.5H.sub.4).sub.4C.sub.2W.sub.2, M is a transition metal, and W, X, Y, and Z can be H, R, a halide, CF.sub.3, or SiR.sub.3, where R can be an alkyl or aryl group. The two accompanying counter anions, in one embodiment, can be selected from the following Cl.sup.-, I.sup.-, PF.sub.6.sup.-, and CF.sub.3SO.sub.3.sup.-. In embodiments of the invention, water, such as tap water containing electrolyte or straight sea water can be subject to an electric potential of between 1.0 V and 1.4 V relative to the standard hydrogen electrode, which at pH 7 corresponds to an overpotential of 0.6 to 1.0 V, with the result being, among other things, the generation of hydrogen with an optimal turnover frequency of ca. 1.5 million mol H.sub.2/mol catalyst per h.

  13. Method of bonding metals to ceramics

    DOE Patents [OSTI]

    Maroni, Victor A.

    1991-01-01

    A ceramic or glass having a thin layer of silver, gold or alloys thereof at the surface thereof. A first metal is bonded to the thin layer and a second metal is bonded to the first metal. The first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Tl and alloys thereof, and the second metal is selected from the class consisting of Cu, Al, Pb, An and alloys thereof.

  14. Method of bonding metals to ceramics

    DOE Patents [OSTI]

    Maroni, V.A.

    1991-04-23

    A ceramic or glass having a thin layer of silver, gold or alloys thereof at the surface thereof is disclosed. A first metal is bonded to the thin layer and a second metal is bonded to the first metal. The first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Tl and alloys thereof, and the second metal is selected from the class consisting of Cu, Al, Pb, Au and alloys thereof. 3 figures.

  15. Method of bonding metals to ceramics

    DOE Patents [OSTI]

    Maroni, Victor A.

    1992-01-01

    A method of forming a composite by providing a ceramic capable of having zero electrical resistance and complete diamagnetism at superconducting temperatures, bonding a thin layer of Ag, Au or alloys thereof with the ceramic. Thereafter, there is bonded a first metal to the ceramic surface at a temperature less than about 400.degree. C., and then a second metal is bonded to the first metal at a temperature less than about 400.degree. C. to form a composite wherein the first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Ti and alloys thereof and wherein the second metal is selected from the class consisting of Al, Cu, Pb and Zn and alloys thereof.

  16. Covalency in Metal-Oxygen Multiple Bonds Evaluated Using Oxygen K-edge Spectroscopy and Electronic Structure Theory

    SciTech Connect (OSTI)

    Minasian, Stefan G.; Keith, Jason M.; Batista, Enrique R.; Boland, Kevin S.; Bradley, Joseph A.; Daly, Scott R.; Kozimor, Stosh A.; Lukens, Wayne W.; Martin, Richard L.; Nordlund, Dennis; Seidler, Gerald T.; Shuh, David K.; Sokaras, Dimosthenis; Tyliszczak, Tolek; Wagner, Gregory L.; Weng, Tsu-Chein; Yang, Ping

    2014-01-01

    Advancing theories of how metal oxygen bonding influences metal oxo properties can expose new avenues for innovation in materials science, catalysis, and biochemistry. Historically, spectroscopic analyses of the transition metal peroxyanions, MO4x-, have formed the basis for new M O bonding theories. Herein, relative changes in M O orbital mixing in MO42- (M = Cr, Mo, W) and MO41- (M = Mn, Tc, Re) are evaluated for the first time by non-resonant inelastic X-ray scattering, X-ray absorption spectroscopy using fluorescence and transmission (via a scanning transmission X-ray microscope), and linear-response density functional theory. The results suggest that moving from Group 6 to Group 7 or down the triads increases M O e () mixing. Meanwhile, t2 mixing ( + ) remains relatively constant within the same Group. These unexpected changes in frontier orbital energy and composition are evaluated in terms of periodic trends in d orbital energy and radial extension.

  17. A Metal-Organic Framework Containing Unusual Eight-Connected Zr–-Oxo Secondary Building Units and Orthogonal Carboxylic Acids for Ultra-sensitive Metal Detection

    SciTech Connect (OSTI)

    Carboni, Michaël; Lin, Zekai; Abney, Carter W.; Zhang, Teng; Lin, Wenbin

    2015-08-21

    Two metal-organic frameworks (MOFs) with Zr-oxo secondary building units (SBUs) were prepared by using p,p'-terphenyldicarboxylate (TPDC) bridging ligands pre-functionalized with orthogonal succinic acid (MOF-1) and maleic acid groups (MOF-2). Single-crystal X-ray structure analysis of MOF-1 provides the first direct evidence for eight-connected SBUs in UiO-type MOFs. In contrast, MOF-2 contains twelve-connected SBUs as seen in the traditional UiO MOF topology. These structural assignments were confirmed by extended X-ray absorption fine structure (EXAFS) analysis. The highly porous MOF-1 is an excellent fluorescence sensor for metal ions with the detection limit of <0.5 ppb for Mn2+ and three to four orders of magnitude greater sensitivity for metal ions than previously reported luminescent MOFs.

  18. Thermal barrier and overlay coating systems comprising composite metal/metal oxide bond coating layers

    DOE Patents [OSTI]

    Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.; Vance, Steven J.

    2001-01-01

    The present invention generally describes multilayer coating systems comprising a composite metal/metal oxide bond coat layer. The coating systems may be used in gas turbines.

  19. Metal-bonded, carbon fiber-reinforced composites

    DOE Patents [OSTI]

    Sastri, S.A.; Pemsler, J.P.; Cooke, R.A.; Litchfield, J.K.; Smith, M.B.

    1996-03-05

    Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates. 2 figs.

  20. Metal-bonded, carbon fiber-reinforced composites

    DOE Patents [OSTI]

    Sastri, Suri A. (Lexington, MA); Pemsler, J. Paul (Lexington, MA); Cooke, Richard A. (Framingham, MA); Litchfield, John K. (Bedford, MA); Smith, Mark B. (Ipswich, MA)

    1996-01-01

    Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates.

  1. Bonding Low-density Nanoporous Metal Foams Using Sputtered Solder

    SciTech Connect (OSTI)

    Bono, M; Cervantes, O; Akaba, C; Hamza, A; Foreman, R; Teslich, N

    2007-08-21

    A method has been developed for bonding low-density nanoporous metal foam components to a substrate using solder that is sputtered onto the surfaces. Metal foams have unusual properties that make them excellent choices for many applications, and as technologies for processing these materials are evolving, their use in industry is increasing dramatically. Metal foams are lightweight and have advantageous dynamic properties, which make them excellent choices for many structural applications. They also provide good acoustic damping, low thermal conductivity, and excellent energy absorption characteristics. Therefore, these materials are commonly used in the automotive, aerospace, construction, and biomedical industries. The synthesis of nanoporous metal foams with a cell size of less then 1 {micro}m is an emerging technology that is expected to lead to widespread application of metal foams in microdevices, such as sensors and actuators. One of the challenges to manufacturing components from metal foams is that they can be difficult to attach to other structures without degrading their properties. For example, traditional liquid adhesives cannot be used because they are absorbed into foams. The problem of bonding or joining can be particularly difficult for small-scale devices made from nanoporous foam, due to the requirement for a thin bond layer. The current study addresses this problem and develops a method of soldering a nanoporous metal foam to a substrate with a bond thickness of less than 2 {micro}m. There are many applications that require micro-scale metal foams precisely bonded to substrates. This study was motivated by a physics experiment that used a laser to drive a shock wave through an aluminum foil and into a copper foam, in order to determine the speed of the shock in the copper foam. To avoid disturbing the shock, the interface between the copper foam and the aluminum substrate had to be as thin as possible. There are many other applications that

  2. Process Of Bonding A Metal Brush Structure To A Planar Surface Of A Metal Substrate

    DOE Patents [OSTI]

    Slattery, Kevin T.; Driemeyer, Daniel E.; Wille; Gerald W.

    1999-11-02

    Process for bonding a metal brush structure to a planar surface of a metal substrate in which an array of metal rods are retained and immobilized at their tips by a common retention layer formed of metal, and the brush structure is then joined to a planar surface of a metal substrate via the retention layer.

  3. Method for joining metal by solid-state bonding

    DOE Patents [OSTI]

    Burkhart, L. Elkin; Fultz, Chester R.; Maulden, Kerry A.

    1979-01-01

    The present development is directed to a method for joining metal at relatively low temperatures by solid-state bonding. Planar surfaces of the metal workpieces are placed in a parallel abutting relationship with one another. A load is applied to at least one of the workpieces for forcing the workpieces together while one of the workpieces is relatively slowly oscillated in a rotary motion over a distance of about 1.degree.. After a preselected number of oscillations, the rotary motion is terminated and the bond between the abutting surfaces is effected. An additional load may be applied to facilitate the bond after terminating the rotary motion.

  4. METHOD OF MAKING METAL BONDED CARBON BODIES

    DOE Patents [OSTI]

    Goeddel, W.V.; Simnad, M.T.

    1961-09-26

    A method of producing carbon bodies having high structural strength and low permeability is described. The method comprises mixing less than 10 wt.% of a diffusional bonding material selected from the group consisting of zirconium, niobium, molybdenum, titanium, nickel, chromium, silicon, and decomposable compounds thereof with finely divided particles of carbon or graphite. While being maintained at a mechanical pressure over 3,000 psi, the mixture is then heated uniformly to a temperature of 1500 deg C or higher, usually for less than one hour. The resulting carbon bodies have a low diffusion constant, high dimensional stability, and high mechanical strength.

  5. Tuning the Metal-Adsorbate Chemical Bond through the Ligand Effect...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning the Metal-Adsorbate Chemical Bond through the Ligand Effect on Platinum Subsurface ... Tuning chemical functionality by implementing a ligand effect - in other words, by ...

  6. Photochemical route to actinide-transition metal bonds: synthesis...

    Office of Scientific and Technical Information (OSTI)

    bonds: synthesis, characterization and reactivity of a series of thorium and uranium ... bonds: synthesis, characterization and reactivity of a series of thorium and uranium ...

  7. Propensity of bond exchange as a window into the mechanical properties of metallic glasses

    SciTech Connect (OSTI)

    Jiao, W.; Wang, X. L. Lan, S.; Pan, S. P.; Lu, Z. P.

    2015-02-09

    We investigated the mechanical properties of Zr-Cu-Al bulk metallic glasses, by compression experiment and molecular dynamics simulations. From the simulation, we found that the large, solvent atom, Zr, has high propensity of bond exchange compared to those of the smaller solute atoms. The difference in bond exchange is consistent with the observed disparity in mechanical behaviors: Zr-rich metallic glass exhibits low elastic modulus and large plastic strain. X-ray photoelectron spectroscopy measurements suggest that the increased propensity in bond exchange is related to the softening of Zr bonds with increasing Zr content.

  8. Method of bonding metals to ceramics and other materials

    DOE Patents [OSTI]

    Gruen, D.M.; Krauss, A.R.; DeWald, A.P.; Chienping Ju; Rigsbee, J.M.

    1993-01-05

    A composite and method of forming same wherein the composite has a non-metallic portion and an alloy portion wherein the alloy comprises an alkali metal and a metal which is an electrical conductor such as Cu, Ag, Al, Sn or Au and forms an alloy with the alkali metal. A cable of superconductors and composite is also disclosed.

  9. Method of bonding metals to ceramics and other materials

    DOE Patents [OSTI]

    Gruen, Dieter M.; Krauss, Alan R.; DeWald, A. Bruce; Ju, Chien-Ping; Rigsbee, James M.

    1993-01-01

    A composite and method of forming same wherein the composite has a non-metallic portion and an alloy portion wherein the alloy comprises an alkali metal and a metal which is an electrical conductor such as Cu, Ag, Al, Sn or Au and forms an alloy with the alkali metal. A cable of superconductors and composite is also disclosed.

  10. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOE Patents [OSTI]

    Hartwig, John F.; Kawatsura, Motoi; Loeber, Oliver

    2002-01-01

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  11. Liquid Metal Bond for Improved Heat Transfer in LWR Fuel Rods

    SciTech Connect (OSTI)

    Donald Olander

    2005-08-24

    A liquid metal (LM) consisting of 1/3 weight fraction each of Pb, Sn, and Bi has been proposed as the bonding substance in the pellet-cladding gap in place of He. The LM bond eliminates the large AT over the pre-closure gap which is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond. The HEATING 7.3 heat transfer code indicates that these void spaces lead to local fuel hot spots.

  12. Electrostatic Cooperativity of Hydroxyl Groups at Metal Oxide Surfaces

    SciTech Connect (OSTI)

    Boily, Jean F.; Lins, Roberto D.

    2009-09-24

    The O-H bond distribution of hydroxyl groups at the {110} goethite (R-FeOOH) surface was investigated by molecular dynamics. This distribution was strongly affected by electrostatic interactions with neighboring oxo and hydroxo groups. The effects of proton surface loading, simulated by emplacing two protons at different distances of separation, were diverse and generated several sets of O-H bond distributions. DFT calculations of a representative molecular cluster were also carried out to demonstrate the impact of these effects on the orientation of oxygen lone pairs in neighboring oxo groups. These effects should have strong repercussions on O-H stretching vibrations of metal oxide surfaces.h

  13. Tuning the Metal-Adsorbate Chemical Bond through the Ligand Effect on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Platinum Subsurface Alloys | Stanford Synchrotron Radiation Lightsource Tuning the Metal-Adsorbate Chemical Bond through the Ligand Effect on Platinum Subsurface Alloys Tuesday, July 31, 2012 The ability to design and control the activities of transition metal catalysts, which are scarce in nature and thus expensive, has been of great importance to the development of economical industrial and energy-saving processes. Over the years several methods have been suggested, especially for

  14. Anion Binding in Metal-Organic Frameworks Functionalized with Urea Hydrogen-Bonding Groups

    SciTech Connect (OSTI)

    Custelcean, Radu; Moyer, Bruce A; Bryantsev, Vyacheslav S.; Hay, Benjamin P.

    2006-01-01

    A series of metal-organic frameworks (MOFs) functionalized with urea hydrogen-bonding groups has been synthesized and structurally analyzed by single-crystal X-ray diffraction to evaluate the efficacy of anion coordination by urea within the structural constraints of the MOFs. We found that urea-based functionalities may be used for anion binding within metal-organic frameworks when the tendency for urea{hor_ellipsis}urea self-association is decreased by strengthening the intramolecular CH{hor_ellipsis}O hydrogen bonding of N-phenyl substituents to the carbonyl oxygen atom. Theoretical calculations indicate that N,N'-bis(m-pyridyl)urea (BPU) and N,N'-bis(m-cyanophenyl)urea (BCPU) should have enhanced hydrogen-bonding donor abilities toward anions and decreased tendencies to self-associate into hydrogen-bonded tapes compared to other disubstituted ureas. Accordingly, BPU and BCPU were incorporated in MOFs as linkers through coordination of various Zn, Cu, and Ag transition metal salts, including Zn(ClO{sub 4}){sub 2}, ZnSO{sub 4}, Cu(NO{sub 3}){sub 2}, Cu(CF{sub 3}SO{sub 3}){sub 2}, AgNO{sub 3}, and AgSO{sub 3}CH{sub 3}. Structural analysis by single-crystal X-ray diffraction showed that these linkers are versatile anion binders, capable of chelate hydrogen bonding to all of the oxoanions explored. Anion coordination by the urea functionalities was found to successfully compete with urea self-association in all cases except for that of charge-diffuse perchlorate.

  15. Metal Catalyzed sp2 Bonded Carbon - Large-scale Graphene Synthesis and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beyond | MIT-Harvard Center for Excitonics Metal Catalyzed sp2 Bonded Carbon - Large-scale Graphene Synthesis and Beyond December 1, 2009 at 3pm/36-428 Peter Sutter Center for Functional Nanomaterials sutter abstract: Carbon honeycomb lattices have shown a number of remarkable properties. When wrapped up into fullerenes, for instance, superconductivity with high transition temperatures can be induced by alkali intercalation. Rolling carbon sheets up into 1-dimensional nanotubes generates the

  16. High-temperature, high-pressure bonding of nested tubular metallic components

    DOE Patents [OSTI]

    Quinby, Thomas C. (Kingston, TN)

    1980-01-01

    This invention is a tool for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  17. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    SciTech Connect (OSTI)

    Mi-Kyung Han

    2006-05-01

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe{sub 13-x}Si{sub x} system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE{sub 2-x}Fe{sub 4}Si{sub 14-y} and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi{sub 2}: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb{sub 3}Zn{sub 3.6}Al{sub 7.4}: Partially ordered structure of Tb{sub 3}Zn{sub 3.6}Al{sub 7.4} compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn{sub 39}(Cr{sub x}Al{sub 1-x}){sub 81}: These layered structures are similar to icosahedral Mn-Al quasicrystalline

  18. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    SciTech Connect (OSTI)

    Han, M.K.

    2006-05-06

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe{sub 13-x}Si{sub x} system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re{sub 2-x}Fe{sub 4}Si{sub 14-y} and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi{sub 2}: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb{sub 3}Zn{sub 3.6}Al{sub 7.4}: Partially ordered structure of Tb{sub 3}Zn{sub 3.6}Al{sub 7.4} compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn{sub 39}(Cr{sub x}Al{sub 1-x}){sub 81}: These layered structures are similar to icosahedral Mn-Al quasicrystalline

  19. Method for applying a high-temperature bond coat on a metal substrate, and related compositions and articles

    DOE Patents [OSTI]

    Hasz, Wayne Charles; Sangeeta, D

    2006-04-18

    A method for applying a bond coat on a metal-based substrate is described. A slurry which contains braze material and a volatile component is deposited on the substrate. The slurry can also include bond coat material. Alternatively, the bond coat material can be applied afterward, in solid form or in the form of a second slurry. The slurry and bond coat are then dried and fused to the substrate. A repair technique using this slurry is also described, along with related compositions and articles.

  20. Method for applying a high-temperature bond coat on a metal substrate, and related compositions and articles

    DOE Patents [OSTI]

    Hasz, Wayne Charles; Sangeeta, D

    2002-01-01

    A method for applying a bond coat on a metal-based substrate is described. A slurry which contains braze material and a volatile component is deposited on the substrate. The slurry can also include bond coat material. Alternatively, the bond coat material can be applied afterward, in solid form or in the form of a second slurry. The slurry and bond coat are then dried and fused to the substrate. A repair technique using this slurry is also described, along with related compositions and articles.

  1. Method of applying a bond coating and a thermal barrier coating on a metal substrate, and related articles

    DOE Patents [OSTI]

    Hasz, Wayne Charles; Borom, Marcus Preston

    2002-01-01

    A method for applying at least one bond coating on a surface of a metal-based substrate is described. A foil of the bond coating material is first attached to the substrate surface and then fused thereto, e.g., by brazing. The foil is often initially prepared by thermally spraying the bond coating material onto a removable support sheet, and then detaching the support sheet. Optionally, the foil may also include a thermal barrier coating applied over the bond coating. The substrate can be a turbine engine component.

  2. Anion Coordination in Metal-Organic Frameworks Functionalized with Urea Hydrogen-Bonding Groups

    SciTech Connect (OSTI)

    Custelcean, Radu; Moyer, Bruce A.; Bryantsev, Vyacheslav; Hay, Benjamin P.

    2005-12-15

    A series of metal-organic frameworks (MOFs) functionalized with urea hydrogen-bonding groups have been designed, synthesized, and structurally analyzed by single crystal X-ray diffraction to evaluate the efficacy of anion binding within the structural constraints of the MOFs. We found that urea-based functionalities may be used for anion binding within metal-organic frameworks when the tendency for urea???urea self-association is decreased by strengthening the intramolelcular CH???O hydrogen bonding of N-phenyl substituents to the carbonyl oxygen atom. Theoretical calculations indicate that N,N?-bis(m-pyridyl)urea (BPU) and N,N?-bis(m-cyanophenyl)urea (BCPU) should have enhanced hydrogen-bonding donor abilities toward anions and decreased tendencies to self-associate into hydrogen-bonded chains compared to other disubstituted ureas. Accordingly, BPU and BCPU were incorporated in MOFs as linkers through coordination of various Zn, Cu, and Ag transition metal salts, including Zn(ClO4)2, ZnSO4, Cu(NO3)2, Cu(CF3SO3)2, AgNO3 and AgSO3CH3. Structural analysis by single-crystal X-ray diffraction showed that these linkers are versatile anion binders, capable of chelate hydrogen bonding to all of the oxoanions explored. Anion binding by the urea functionalities was found to successfully compete with urea self-association in all cases except for that of charge-diffuse perchlorate. This research was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy, under contract number DE-AC05-00OR22725 with Oak Ridge National Laboratory (managed by UT-Battelle, LLC), and performed at Oak Ridge National laboratory and Pacific Northwest National Laboratory (managed by Battelle for the U.S. Department of Energy under contract DE-AC05-76RL01830). This research was performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences laboratory

  3. A coordinatively saturated sulfate encapsulated in a metal-organic framework functionalized with urea hydrogen-bonding groups

    SciTech Connect (OSTI)

    Custelcean, Radu; Moyer, Bruce A.; Hay, Benjamin P.

    2005-10-14

    A functional coordination polymer decorated with urea hydrogen-bonding donor groups has been designed for optional binding of sulfate; self-assembly of a tripodal tri-urea linker with Ag2SO4 resulted in the formation of a 1D metal-organic framework that encapsulated SO42- anions via twelve complementary hydrogen bonds, which represents the highest coordination number observed for sulfate in a natural or synthetic host.

  4. A coordinatively saturated sulfate encapsulated in a metal-organic framework functionalized with urea hydrogen-bonding groups

    SciTech Connect (OSTI)

    Custelcean, Radu; Moyer, Bruce A; Hay, Benjamin

    2005-01-01

    A functional coordination polymer decorated with urea hydrogen-bonding donor groups has been designed for optimal binding of sulfate; self-assembly of a tripodal tris-urea linker with Ag2SO4 resulted in the formation of a 1D metal - organic framework that encapsulates SO42- anions via twelve complementary hydrogen bonds, which represents the highest coordination number observed for sulfate in a natural or synthetic host.

  5. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOE Patents [OSTI]

    Wrenn, G.E. Jr.; Holcombe, C.E. Jr.

    1988-09-13

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  6. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOE Patents [OSTI]

    Wrenn, Jr., George E. (Clinton, TN); Holcombe, Jr., Cressie E. (Farragut, TN)

    1988-01-01

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  7. Simple bond-order-type interatomic potential for an intermixed Fe-Cr-C system of metallic and covalent bondings in heat-resistant ferritic steels

    SciTech Connect (OSTI)

    Kumagai, Tomohisa Nakamura, Kaoru; Yamada, Susumu; Ohnuma, Toshiharu

    2014-12-28

    It is known that M{sub 23}C{sub 6}(M?=?Cr/Fe) behavior in heat-resistant ferritic steels affects the strength of the material at high temperature. The ability to garner direct information regarding the atomic motion using classical molecular dynamics simulations is useful for investigating the M{sub 23}C{sub 6} behavior in heat-resistant ferritic steels. For such classical molecular dynamics calculations, a suitable interatomic potential is needed. To satisfy this requirement, an empirical bond-order-type interatomic potential for Fe-Cr-C systems was developed because the three main elements to simulate the M{sub 23}C{sub 6} behavior in heat-resistant ferritic steels are Fe, Cr, and C. The angular-dependent term, which applies only in non-metallic systems, was determined based on the similarity between a Finnis-Sinclair-type embedded-atom-method interatomic potential and a Tersoff-type bond-order potential. The potential parameters were determined such that the material properties of Fe-Cr-C systems were reproduced. These properties include the energy and lattice constants of 89 crystal structures; the elastic constants of four realistic precipitates; the bulk moduli of B1, B2, and B3 crystals; the surface energies of B1 and B2 crystals; and the defect-formation energies and atomic configurations of 66 Fe-Cr-C complexes. Most of these material properties were found to be reproduced by our proposed empirical bond-order potentials. The formation energies and lattice constants of randomly mixed Fe-Cr alloys calculated using the interatomic potentials were comparable to those obtained through experiments and first-principles calculations. Furthermore, the energies and structures of interfaces between Cr carbide and ?-Fe as predicted through first-principles calculations were well reproduced using these interatomic potentials.

  8. Intriguing structures and magic sizes of heavy noble metal nanoclusters around size 55 governed by relativistic effect and covalent bonding

    SciTech Connect (OSTI)

    Zhao, X. J.; Xue, X. L.; Jia, Yu; Guo, Z. X.; Li, S. F.; Zhang, Zhenyu; Gao, Y. F.

    2015-11-07

    Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal Pt{sub N} nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for Pt{sub N}, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D{sub 6h} symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). However, the magic number of Pt{sub N} clusters around 55 is shifted to a new odd number of 57. The high symmetric three-layered Pt{sub 57} motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d{sup 9}6s{sup 1}) of Pt, which result in a delicate balance between the enhanced Pt–Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. These findings about Pt{sub N} clusters are also applicable to Ir{sub N} clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. The findings of the new odd magic number 57 are the important supplementary of the recently established GWCP.

  9. Transition Metal Catalyzed Hydroarylation of Multiple Bonds: Exploration of Second Generation Ruthenium Catalysts and Extension to Copper Systems

    SciTech Connect (OSTI)

    T. Brent Gunnoe

    2011-02-17

    Catalysts provide foundational technology for the development of new materials and can enhance the efficiency of routes to known materials. New catalyst technologies offer the possibility of reducing energy and raw material consumption as well as enabling chemical processes with a lower environmental impact. The rising demand and expense of fossil resources has strained national and global economies and has increased the importance of accessing more efficient catalytic processes for the conversion of hydrocarbons to useful products. The goals of the research are to develop and understand single-site homogeneous catalysts for the conversion of readily available hydrocarbons into useful materials. A detailed understanding of these catalytic reactions could lead to the development of catalysts with improved activity, longevity and selectivity. Such transformations could reduce the environmental impact of hydrocarbon functionalization, conserve energy and valuable fossil resources and provide new technologies for the production of liquid fuels. This project is a collaborative effort that incorporates both experimental and computational studies to understand the details of transition metal catalyzed C-H activation and C-C bond forming reactions with olefins. Accomplishments of the current funding period include: (1) We have completed and published studies of C-H activation and catalytic olefin hydroarylation by TpRu{l_brace}P(pyr){sub 3}{r_brace}(NCMe)R (pyr = N-pyrrolyl) complexes. While these systems efficiently initiate stoichiometric benzene C-H activation, catalytic olefin hydroarylation is hindered by inhibition of olefin coordination, which is a result of the steric bulk of the P(pyr){sub 3} ligand. (2) We have extended our studies of catalytic olefin hydroarylation by TpRu(L)(NCMe)Ph systems to L = P(OCH{sub 2}){sub 3}CEt. Thus, we have now completed detailed mechanistic studies of four systems with L = CO, PMe{sub 3}, P(pyr){sub 3} and P(OCH{sub 2}){sub 3}CEt

  10. Method Of Bonding A Metal Connection To An Electrode Including A Core Having A Fiber Or Foam Type Structure For An Electrochemical Cell, An

    DOE Patents [OSTI]

    Loustau, Marie-Therese; Verhoog, Roelof; Precigout, Claude

    1996-09-24

    A method of bonding a metal connection to an electrode including a core having a fiber or foam-type structure for an electrochemical cell, in which method at least one metal strip is pressed against one edge of the core and is welded thereto under compression, wherein, at least in line with the region in which said strip is welded to the core, which is referred to as the "main core", a retaining core of a type analogous to that of the main core is disposed prior to the welding.

  11. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    describe bonding in organometallics are at frequently at odds with classical coordination chemistry, in that they invoke a covalent bond between the metal and the carbon-based...

  12. Photochemical route to actinide-transition metal bonds: synthesis, characterization and reactivity of a series of thorium and uranium heterobimetallic complexes

    SciTech Connect (OSTI)

    Ward, Ashleigh; Lukens, Wayne; Lu, Connie; Arnold, John

    2014-04-01

    A series of actinide-transition metal heterobimetallics has been prepared, featuring thorium, uranium and cobalt. Complexes incorporating the binucleating ligand N[-(NHCH2PiPr2)C6H4]3 and Th(IV) (4) or U(IV) (5) with a carbonyl bridged [Co(CO)4]- unit were synthesized from the corresponding actinide chlorides (Th: 2; U: 3) and Na[Co(CO)4]. Irradiation of the isocarbonyls with ultraviolet light resulted in the formation of new species containing actinide-metal bonds in good yields (Th: 6; U: 7); this photolysis method provides a new approach to a relatively rare class of complexes. Characterization by single-crystal X-ray diffraction revealed that elimination of the bridging carbonyl is accompanied by coordination of a phosphine arm from the N4P3 ligand to the cobalt center. Additionally, actinide-cobalt bonds of 3.0771(5) and 3.0319(7) for the thorium and uranium complexes, respectively, were observed. The solution state behavior of the thorium complexes was evaluated using 1H, 1H-1H COSY, 31P and variable-temperature NMR spectroscopy. IR, UV-Vis/NIR, and variable-temperature magnetic susceptibility measurements are also reported.

  13. Solder extrusion pressure bonding process and bonded products produced thereby

    DOE Patents [OSTI]

    Beavis, L.C.; Karnowsky, M.M.; Yost, F.G.

    1992-06-16

    Disclosed is a process for production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about [minus]40 C and 110 C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  14. Solder extrusion pressure bonding process and bonded products produced thereby

    DOE Patents [OSTI]

    Beavis, Leonard C.; Karnowsky, Maurice M.; Yost, Frederick G.

    1992-01-01

    Production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about -40.degree. C. and 110.degree. C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  15. Transient liquid phase ceramic bonding

    DOE Patents [OSTI]

    Glaeser, Andreas M. (Berkeley, CA)

    1994-01-01

    Ceramics are joined to themselves or to metals using a transient liquid phase method employing three layers, one of which is a refractory metal, ceramic or alloy. The refractory layer is placed between two metal layers, each of which has a lower melting point than the refractory layer. The three layers are pressed between the two articles to be bonded to form an assembly. The assembly is heated to a bonding temperature at which the refractory layer remains solid, but the two metal layers melt to form a liquid. The refractory layer reacts with the surrounding liquid and a single solid bonding layer is eventually formed. The layers may be designed to react completely with each other and form refractory intermetallic bonding layers. Impurities incorporated into the refractory metal may react with the metal layers to form refractory compounds. Another method for joining ceramic articles employs a ceramic interlayer sandwiched between two metal layers. In alternative embodiments, the metal layers may include sublayers. A method is also provided for joining two ceramic articles using a single interlayer. An alternate bonding method provides a refractory-metal oxide interlayer placed adjacent to a strong oxide former. Aluminum or aluminum alloys are joined together using metal interlayers.

  16. Ultrathin body GaSb-on-insulator p-channel metal-oxide-semiconductor field-effect transistors on Si fabricated by direct wafer bonding

    SciTech Connect (OSTI)

    Yokoyama, Masafumi Takenaka, Mitsuru; Takagi, Shinichi; Yokoyama, Haruki

    2015-02-16

    We have realized ultrathin body GaSb-on-insulator (GaSb-OI) on Si wafers by direct wafer bonding technology using atomic-layer deposition (ALD) Al{sub 2}O{sub 3} and have demonstrated GaSb-OI p-channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs) on Si. A 23-nm-thick GaSb-OI p-MOSFET exhibits the peak effective mobility of ∼76 cm{sup 2}/V s. We have found that the effective hole mobility of the thin-body GaSb-OI p-MOSFETs decreases with a decrease in the GaSb-OI thickness or with an increase in Al{sub 2}O{sub 3} ALD temperature. The InAs passivation of GaSb-OI MOS interfaces can enhance the peak effective mobility up to 159 cm{sup 2}/V s for GaSb-OI p-MOSFETs with the 20-nm-thick GaSb layer.

  17. A single crystalline porphyrinic titanium metalorganic framework

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yuan, Shuai; Liu, Tian -Fu; Feng, Dawei; Tian, Jian; Wang, Kecheng; Qin, Junsheng; Zhang, Qiang; Chen, Ying -Pin; Bosch, Mathieu; Zou, Lanfang; et al

    2015-04-28

    We successfully assembled the photocatalytic titanium-oxo cluster and photosensitizing porphyrinic linker into a metalorganic framework (MOF), namely PCN-22. A preformed titanium-oxo carboxylate cluster is adopted as the starting material to judiciously control the MOF growth process to afford single crystals. This synthetic method is useful to obtain highly crystalline titanium MOFs, which has been a daunting challenge in this field. Moreover, PCN-22 demonstrated permanent porosity and photocatalytic activities toward alcohol oxidation.

  18. Alkane functionalization at ([mu]-Oxo)diiron(III) centers

    SciTech Connect (OSTI)

    Leising, R.A.; Kim, J.; Perez, M.A.; Que, L. Jr. )

    1993-10-20

    The reactivity of ([mu]-oxo)diferric complexes with [sup t]BuOOH (TBHP) for the functionalization of alkanes in CH[sub 3]CN has been investigated as part of our efforts to model dinuclear sites in nonheme iron enzymes. [Fe[sub 2](TPA)[sub 2]O(OAc)](CIO[sub 4])[sub 3] (1) (TPA = tris(2-pyridylmethyl)amine, OAc = acetate) is an efficient catalyst for cyclohexane oxidation, affording cyclohexanol (A, 9 equiv), cyclohexanone (K, 11 equiv), and (tert-butylperoxy)cyclohexane (P, 16 equiv) in 0.25 h at ambient temperature and pressure under an argon atmosphere. The catalyst is remarkably robust, as indicated by the [sup 1]H NMR and UV-vis spectra of the reaction mixture during the catalytic reaction and by its ability to maintain its turnover efficiency with subsequent additions of oxidant. The catalytic mechanism for TBHP utilization was explored by observing the effects of varying the tripodal ligands on the ([mu]-oxo)([mu]-carboxylato)diferric catalysts and varying the bridge on Fe[sub 2]O(TPA)[sub 2] catalysts. The (A + K)/P ratio increased as the ligands became more electron donating. Solvent also played an important role in determining the partitioning of products between A + K and P, with benzonitrile favoring hydroxylated products at the expense of P and pyridine having the opposite effect. 49 refs., 2 figs., 3 tabs.

  19. BREAKING BOND

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BREAKING BOND the Can chemistry help unbind us from fossil fuels? 1663 July 2016 21 When ... Their goal: to use chemistry to construct gasoline-like hydrocarbons from plant sugars. ...

  20. Carbon-carbon bond cleavage of 1,2-hydroxy ethers b7 vanadium(V) dipicolinate complexes

    SciTech Connect (OSTI)

    Hanson, Susan K; Gordon, John C; Thorn, David L; Scott, Brian L; Baker, R Tom

    2009-01-01

    The development of alternatives to current petroleum-based fuels and chemicals is becoming increasingly important due to concerns over climate change, growing world energy demand, and energy security issues. Using non-food derived biomass to produce renewable feedstocks for chemicals and fuels is a particularly attractive possibility. However, the majority of biomass is in the form of lignocellulose, which is often not fully utilized due to difficulties associated with breaking down both lignin and cellulose. Recently, a number of methods have been reported to transform cellulose directly into more valuable materials such as glucose, sorbitol, 5-(chloromethyl)furfural, and ethylene glycol. Less progress has been made with selective transformations of lignin, which is typically treated in paper and forest industries by kraft pulping (sodium hydroxide/sodium sulfide) or incineration. Our group has begun investigating aerobic oxidative C-C bond cleavage catalyzed by dipicolinate vanadium complexes, with the idea that a selective C-C cleavage reaction of this type could be used to produce valuable chemicals or intermediates from cellulose or lignin. Lignin is a randomized polymer containing methoxylated phenoxy propanol units. A number of different linkages occur naturally; one of the most prevalent is the {beta}-O-4 linkage shown in Figure 1, containing a C-C bond with 1,2-hydroxy ether substituents. While the oxidative C-C bond cleavage of 1,2-diols has been reported for a number of metals, including vanadium, iron, manganese, ruthenium, and polyoxometalate complexes, C-C bond cleavage of 1,2-hydroxy ethers is much less common. We report herein vanadium-mediated cleavage of C-C bonds between alcohol and ether functionalities in several lignin model complexes. In order to explore the scope and potential of vanadium complexes to effect oxidative C-C bond cleavage in 1,2-hydroxy ethers, we examined the reactivity of the lignin model complexes pinacol monomethyl ether (A

  1. Diffusion bonding

    DOE Patents [OSTI]

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  2. Pre-plated reactive diffusion-bonded battery electrode plaques

    DOE Patents [OSTI]

    Maskalick, Nicholas J.

    1984-01-01

    A high strength, metallic fiber battery plaque is made using reactive diffusion bonding techniques, where a substantial amount of the fibers are bonded together by an iron-nickel alloy.

  3. Non-bonded ultrasonic transducer

    DOE Patents [OSTI]

    Eoff, J.M.

    1984-07-06

    A mechanically assembled non-bonded ultrasonic transducer includes a substrate, a piezoelectric film, a wetting agent, a thin metal electrode, and a lens held in intimate contact by a mechanical clamp. No epoxy or glue is used in the assembly of this device.

  4. SOLID STATE BONDING OF THORIUM WITH ALUMINUM

    DOE Patents [OSTI]

    Storchhelm, S.

    1959-12-01

    A method is described for bonding thorium and aluminum by placing clean surfaces of thorium and aluminum in contact with each other and hot pressing the metals together in a protective atmosphere at a temperature of about 375 to 575 deg C and at a pressure of at least 10 tsi to effect a bond.

  5. IMPROVED BONDING METHOD

    DOE Patents [OSTI]

    Padgett, E.V. Jr.; Warf, D.H.

    1964-04-28

    An improved process of bonding aluminum to aluminum without fusion by ultrasonic vibrations plus pressure is described. The surfaces to be bonded are coated with an aqueous solution of alkali metal stearate prior to assembling for bonding. (AEC) O H19504 Present information is reviewed on steady state proliferation, differentiation, and maturation of blood cells in mammals. Data are cited from metabolic tracer studies, autoradiographic studies, cytologic studies, studies of hematopoietic response to radiation injuries, and computer analyses of blood cell production. A 3-step model for erythropoiesis and a model for granulocyte kinetics are presented. New approaches to the study of lymphocytopoiesis described include extracorporeal blood irradiation to deplete lymphocytic tissue without direct injury to the formative tissues as a means to study the stressed system, function control, and rates of proliferation. It is pointed out that present knowledge indicates that lymphocytes comprise a mixed family, with diverse life spans, functions, and migration patterns with apparent aimless recycling from modes to lymph to blood to nodes that has not yet been quantitated. Areas of future research are postulated. (70 references.) (C.H.)

  6. FINAL TECHNICAL REPORT for grant DE-FG02-93ER14353 ????"Carbon-Hydrogen Bond Functionalization Catalyzed by Transition Metal Systems"

    SciTech Connect (OSTI)

    Alan S. Goldman

    2012-05-21

    Alkanes are our most abundant organic resource but are highly resistant to selective chemical transformations. Alkenes (olefins) by contrast are the single most versatile class of molecules for selective transformations, and are intermediates in virtually every petrochemical process as well as a vast range of commodity and fine chemical processes. Over the course of this project we have developed the most efficient catalysts to date for the selective conversion of alkanes to give olefins, and have applied these catalysts to other dehydrogenation reactions. We have also developed some of the first efficient catalysts for carbonylation of alkanes and arenes to give aldehydes. The development of these catalysts has been accompanied by elucidation of the mechanism of their operation and the factors controlling the kinetics and thermodynamics of C-H bond activation and other individual steps of the catalytic cycles. This fundamental understanding will allow the further improvement of these catalysts, as well as the development of the next generation of catalysts for the functionalization of alkanes and other molecules containing C-H bonds.

  7. Process Of Bonding Copper And Tungsten

    DOE Patents [OSTI]

    Slattery, Kevin T.; Driemeyer, Daniel E.; Davis, John W.

    2000-07-18

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by sintering a stack of individual copper and tungsten powder blend layers having progressively higher copper content/tungsten content, by volume, ratio values in successive powder blend layers in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  8. Bond-valence methods for pKa prediction. II. Bond-valence, electrostatic, molecular geometry, and solvation effects

    SciTech Connect (OSTI)

    Bickmore, Barry R.; Rosso, Kevin M.; Tadanier, Christopher J.; Bylaska, Eric J.; Doud, Darrin

    2006-08-15

    In a previous contribution, we outlined a method for predicting (hydr)oxy-acid and oxide surface acidity constants based on three main factors: bond valence, Me?O bond ionicity, and molecular shape. Here electrostatics calculations and ab initio molecular dynamics simulations are used to qualitatively show that Me?O bond ionicity controls the extent to which the electrostatic work of proton removal departs from ideality, bond valence controls the extent of solvation of individual functional groups, and bond valence and molecular shape controls local dielectric response. These results are consistent with our model of acidity, but completely at odds with other methods of predicting acidity constants for use in multisite complexation models. In particular, our ab initio molecular dynamics simulations of solvated monomers clearly indicate that hydrogen bonding between (hydr)oxo-groups and water molecules adjusts to obey the valence sum rule, rather than maintaining a fixed valence based on the coordination of the oxygen atom as predicted by the standard MUSIC model.

  9. Method of bonding

    DOE Patents [OSTI]

    Saller, deceased, Henry A. (late of Columbus, OH); Hodge, Edwin S. (Columbus, OH); Paprocki, Stanley J. (Columbus, OH); Dayton, Russell W. (Columbus, OH)

    1987-12-01

    1. A method of making a fuel-containing structure for nuclear reactors, comprising providing an assembly comprising a plurality of fuel units; each fuel unit consisting of a core plate containing thermal-neutron-fissionable material, sheets of cladding metal on its bottom and top surfaces, said cladding sheets being of greater width and length than said core plates whereby recesses are formed at the ends and sides of said core plate, and end pieces and first side pieces of cladding metal of the same thickness as the core plate positioned in said recesses, the assembly further comprising a plurality of second side pieces of cladding metal engaging the cladding sheets so as to space the fuel units from one another, and a plurality of filler plates of an acid-dissolvable nonresilient material whose melting point is above 2000.degree. F., each filler plate being arranged between a pair of said second side pieces and the cladding plates of two adjacent fuel units, the filler plates having the same thickness as the second side pieces; the method further comprising enclosing the entire assembly in an envelope; evacuating the interior of the entire assembly through said envelope; applying inert gas under a pressure of about 10,000 psi to the outside of said envelope while at the same time heating the assembly to a temperature above the flow point of the cladding metal but below the melting point of any material of the assembly, whereby the envelope is pressed against the assembly and integral bonds are formed between plates, sheets, first side pieces, and end pieces and between the sheets and the second side pieces; slowly cooling the assembly to room temperature; removing the envelope; and dissolving the filler plates without attacking the cladding metal.

  10. In-situ and theoretical studies for the dissociation of water on an active Ni/CeO? catalyst: Importance of strong metal-support interactions for the cleavage of O-H bonds

    SciTech Connect (OSTI)

    Carrasco, Javier; Rodriguez, Jose A.; Lopez-Duran, David; Liu, Zongyuan; Duchon, Tomas; Evans, Jaime; Senanayake, Sanjaya D.; Crumlin, Ethan J.; Matolin, Vladimir; Ganduglia-Pirovano, M. Veronica

    2015-03-23

    Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Here, supported by experimental and density-functional theory results, we elucidate the effect of the support on O-H bond cleavage activity for nickel/ceria systems. Ambient-pressure O1s photoemission spectra at low Ni loadings on CeO?(111) reveal a substantially larger amount of OH groups as compared to the bare support. Our computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO?(111) compared with pyramidal Ni? particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of this support effect is the ability of ceria to stabilize oxidized Ni? species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO? has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions.

  11. In-situ and theoretical studies for the dissociation of water on an active Ni/CeO₂ catalyst: Importance of strong metal-support interactions for the cleavage of O-H bonds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carrasco, Javier; Rodriguez, Jose A.; Lopez-Duran, David; Liu, Zongyuan; Duchon, Tomas; Evans, Jaime; Senanayake, Sanjaya D.; Crumlin, Ethan J.; Matolin, Vladimir; Ganduglia-Pirovano, M. Veronica

    2015-03-23

    Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Here, supported by experimental and density-functional theory results, we elucidate the effect of the support on O-H bond cleavage activity for nickel/ceria systems. Ambient-pressure O1s photoemission spectra at low Ni loadings on CeO₂(111) reveal a substantially larger amount of OH groups as compared to the bare support. Our computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO₂(111) compared with pyramidal Ni₄ particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of thismore » support effect is the ability of ceria to stabilize oxidized Ni²⁺ species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO₂ has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions.« less

  12. Spectroscopic Evidence for a High-Spin Br-Fe(IV)-Oxo Intermediate in the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alpha-Ketoglutarate-Dependent Halogenase CytC3 from Streptomyces Working title - Spectroscopic Evidence for a High-Spin Br-Fe(IV)-Oxo Intermediate in the alpha-Ketoglutarate-Dependent Halogenase CytC3 from Streptomyces There are over 4,500 known halogenated natural products. The presence of a halogen in the molecular framework tunes a compound's chemical reactivity or biological activity in these natural fungicides and antibiotics. Four classes of enzymes are now known to catalyze

  13. Metal Nanostructure Formation on Graphene: Weak versus Strong...

    Office of Scientific and Technical Information (OSTI)

    Metal Nanostructure Formation on Graphene: Weak versus Strong Bonding Citation Details In-Document Search Title: Metal Nanostructure Formation on Graphene: Weak versus Strong...

  14. Nonconsumable electrode assembly and use thereof for the electrolytic production of metals and silicon

    DOE Patents [OSTI]

    Byrne, Stephen C.; Ray, Siba P.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor attached to a ceramic electrode body by a metal bond on a portion of the body having a level of free metal or metal alloy sufficient to effect a metal bond.

  15. Smart interfacial bonding alloys

    SciTech Connect (OSTI)

    R. Q. Hwang; J. C. Hamilton; J. E. Houston

    1999-04-01

    The goal of this LDRD was to explore the use of the newly discovered strain-stabilized 2-D interfacial alloys as smart interface bonding alloys (SIBA). These materials will be used as templates for the heteroepitaxial growth of metallic thin films. SIBA are formed by two metallic components which mix at an interface to relieve strain and prevent dislocations from forming in subsequent thin film growth. The composition of the SIBA is determined locally by the amount of strain, and therefore can react smartly to areas of the highest strain to relieve dislocations. In this way, SIBA can be used to tailor the dislocation structure of thin films. This project included growth, characterization and modeling of films grown using SIBA templates. Characterization will include atomic imaging of the dislocations structure, measurement of the mechanical properties of the film using interface force microscopy (IFM) and the nanoindenter, and measurement of the electronic structure of the SIBA with synchrotron photoemission. Resistance of films to sulfidation and oxidation will also be examined. The Paragon parallel processing computer will be used to calculate the structure of the SIBA and thin films in order to develop ability to predict and tailor SIBA and thin film behavior. This work will lead to the possible development of a new class of thin film materials with properties tailored by varying the composition of the SIBA, serving as a buffer layer to relieve the strain between the substrate and the thin film. Such films will have improved mechanical and corrosion resistance allowing application as protective barriers for weapons applications. They will also exhibit enhanced electrical conductivity and reduced electromigration making them particularly suitable for application as interconnects and other electronic needs.

  16. Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites

    SciTech Connect (OSTI)

    Xiao, Dianne J.; Bloch, Eric D.; Mason, Jarad A.; Queen, Wendy L.; Hudson, Matthew R.; Planas, Nora; Borycz, Joshua; Dzubak, Allison L.; Verma, Pragya; Lee, Kyuho; Bonino, Francesca; Crocellà, Valentina; Yano, Junko; Bordiga, Silvia; Truhlar, Donald G.; Gagliardi, Laura; Brown, Craig M.; Long, Jeffrey R.

    2014-08-19

    Enzymatic haem and non-haem high-valent iron–oxo species are known to activate strong C–H bonds, yet duplicating this reactivity in a synthetic system remains a formidable challenge. Although instability of the terminal iron–oxo moiety is perhaps the foremost obstacle, steric and electronic factors also limit the activity of previously reported mononuclear iron(IV)–oxo compounds. In particular, although nature's non-haem iron(IV)–oxo compounds possess high-spin S = 2 ground states, this electronic configuration has proved difficult to achieve in a molecular species. These challenges may be mitigated within metal–organic frameworks that feature site-isolated iron centres in a constrained, weak-field ligand environment. Here, we show that the metal–organic framework Fe2(dobdc) (dobdc4- = 2,5-dioxido-1,4-benzenedicarboxylate) and its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc), are able to activate the C–H bonds of ethane and convert it into ethanol and acetaldehyde using nitrous oxide as the terminal oxidant. Electronic structure calculations indicate that the active oxidant is likely to be a high-spin S = 2 iron(IV)–oxo species.

  17. A nanotubular metal-organic framework with permanent porosity : structure analysis and gas sorption studies.

    SciTech Connect (OSTI)

    Ma, S.; Simmons, J. M.; Li, J. R.; Yuan, D.; Weng, W.; Liu, D. J.; Zhou, H. C.; Chemical Sciences and Engineering Division; Texas A&M Univ.; NIST

    2009-01-01

    A nanotubular metal-organic framework, PCN-19, was constructed based on a micro3-oxo-trinickel basic carboxylate secondary building unit (SBU) and the 9,10-anthracenedicarboxylate ligand; its permanent porosity was confirmed by N2 adsorption isotherms, and its H2 storage performances were evaluated under both low and high pressures at 77 K.

  18. Bonding thermoplastic polymers

    DOE Patents [OSTI]

    Wallow, Thomas I.; Hunter, Marion C.; Krafcik, Karen Lee; Morales, Alfredo M.; Simmons, Blake A.; Domeier, Linda A.

    2008-06-24

    We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.

  19. Clean Energy Bond Finance Model: Industrial Development Bonds (IDBs) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bond Finance Model: Industrial Development Bonds (IDBs) Clean Energy Bond Finance Model: Industrial Development Bonds (IDBs) Overview of industrial development bonds. Author: Clean Energy and Bond Finance Initiative (CE+BFI) Industrial Development Bonds (IDBs) Fact Sheet More Documents & Publications Reduce Risk, Increase Clean Energy: How States and Cities are Using Old Finance Tools to Scale Up a New Industry Clean Energy and Bond Finance Initiative Financing

  20. Electrically conductive resinous bond and method of manufacture

    DOE Patents [OSTI]

    Snowden, Jr., Thomas M.; Wells, Barbara J.

    1987-01-01

    A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40.degree. to 365.degree. C. to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

  1. Electrically conductive resinous bond and method of manufacture

    DOE Patents [OSTI]

    Snowden, T.M. Jr.; Wells, B.J.

    1985-01-01

    A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40 to 365/sup 0/C to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

  2. Process Of Bonding Copper And Tungsten

    DOE Patents [OSTI]

    Slattery, Kevin T.; Driemeyer, Daniel E.

    1999-11-23

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by thermal plasma spraying mixtures of copper powder and tungsten powder in a varied blending ratio such that the blending ratio of the copper powder and the tungsten powder that is fed to a plasma torch is intermittently adjusted to provide progressively higher copper content/tungsten content, by volume, ratio values in the interlayer in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  3. Non-bonded piezoelectric ultrasonic transducer

    DOE Patents [OSTI]

    Eoff, James M.

    1985-01-01

    A mechanically assembled non-bonded ultrasonic transducer includes a substrate, a piezoelectric film, a wetting agent, a thin metal electrode, and a lens held in intimate contact by a mechanical clamp. No epoxy or glue is used in the assembly of this device.

  4. METHOD AND ALLOY FOR BONDING TO ZIRCONIUM

    DOE Patents [OSTI]

    McCuaig, F.D.; Misch, R.D.

    1960-04-19

    A brazing alloy can be used for bonding zirconium and its alloys to other metals, ceramics, and cermets, and consists of 6 to 9 wt.% Ni, 6 to 9 wn~.% Cr, Mo, or W, 0 to 7.5 wt.% Fe, and the balance Zr.

  5. Qualified Energy Conservation Bonds (QECBs)

    Broader source: Energy.gov [DOE]

    With tax credit bonds, generally the borrower who issues the bond pays back only the principal of the bond, and the bondholder receives federal tax credits in lieu of the traditional bond interest...

  6. Nitrogen-tuned bonding mechanism of Li and Ti adatom embedded graphene

    SciTech Connect (OSTI)

    Lee, Sangho; Chung, Yong-Chae, E-mail: yongchae@hanyang.ac.kr

    2013-09-15

    The effects of nitrogen defects on the bonding mechanism and resultant binding energy between the metal and graphene layer were investigated using density functional theory (DFT) calculations. For the graphitic N-doped graphene, Li adatom exhibited ionic bonding character, while Ti adatom showed features of covalent bonding similar to that of pristine graphene. However, in the cases of pyridinic and pyrrolic structures, partially covalent bonding characteristic occurred around N atoms in the process of binding with metals, and this particular bond formation enhanced the bond strength of metal on the graphene layer as much as it exceeded the cohesive energy of the metal bulk. Thus, Li and Ti metals are expected to be dispersed with atomic accuracy on the pyridinic and pyrrolic N-doped graphene layers. These results demonstrate that the bonding mechanism of metalgraphene complex can change according to the type of N defect, and this also affects the binding results. - Graphical abstract: Display Omitted - Highlights: Nitrogen defects changed the bonding mechanism between metal and graphene. Bonding character and binding results were investigated using DFT calculations. Covalent bonding character occurred around pyridinic and pyrrolic N-doped graphene. Pyridinic and pyrrolic N atoms are effective for metal dispersion on the graphene.

  7. Method of making sintered ductile intermetallic-bonded ceramic composites

    DOE Patents [OSTI]

    Plucknett, K.; Tiegs, T.N.; Becher, P.F.

    1999-05-18

    A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite. 2 figs.

  8. Method of making sintered ductile intermetallic-bonded ceramic composites

    DOE Patents [OSTI]

    Plucknett, Kevin; Tiegs, Terry N.; Becher, Paul F.

    1999-01-01

    A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite.

  9. Bonded semiconductor substrate

    DOE Patents [OSTI]

    Atwater, Jr.; Harry A. , Zahler; James M.

    2010-07-13

    Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600.degree. C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.

  10. Adsorption of propane, isopropyl, and hydrogen on cluster models of the M1 phase of Mo-V-Te-Nb-O mixed metal oxide catalyst

    SciTech Connect (OSTI)

    Govindasamy, Agalya; Muthukumar, Kaliappan; Yu, Junjun; Xu, Ye; Guliants, Vadim V.

    2010-01-01

    The Mo-V-Te-Nb-O mixed metal oxide catalyst possessing the M1 phase structure is uniquely capable of directly converting propane into acrylonitrile. However, the mechanism of this complex eight-electron transformation, which includes a series of oxidative H-abstraction and N-insertion steps, remains poorly understood. We have conducted a density functional theory study of cluster models of the proposed active and selective site for propane ammoxidation, including the adsorption of propane, isopropyl (CH{sub 3}CHCH{sub 3}), and H which are involved in the first step of this transformation, that is, the methylene C-H bond scission in propane, on these active site models. Among the surface oxygen species, the telluryl oxo (Te=O) is found to be the most nucleophilic. Whereas the adsorption of propane is weak regardless of the MO{sub x} species involved, isopropyl and H adsorption exhibits strong preference in the order of Te=O > V=O > bridging oxygens > empty Mo apical site, suggesting the importance of TeO{sub x} species for H abstraction. The adsorption energies of isopropyl and H and consequently the reaction energy of the initial dehydrogenation of propane are strongly dependent on the number of ab planes included in the cluster, which points to the need to employ multilayer cluster models to correctly capture the energetics of surface chemistry on this mixed metal oxide catalyst.

  11. Qualified Energy Conservation Bonds

    Broader source: Energy.gov [DOE]

    A Qualified Energy Conservation Bond (QECB) is a bond that enables qualified state, tribal, and local government issuers to borrow money at attractive rates to fund energy conservation projects (it is important to note that QECBs are not grants). A QECB is among the lowest-cost public financing tools because the U.S. Department of the Treasury subsidizes the issuer's borrowing costs.

  12. Bonded ultrasonic transducer and method for making

    DOE Patents [OSTI]

    Dixon, Raymond D.; Roe, Lawrence H.; Migliori, Albert

    1995-01-01

    An ultrasonic transducer is formed as a diffusion bonded assembly of piezoelectric crystal, backing material, and, optionally, a ceramic wear surface. The mating surfaces of each component are silver films that are diffusion bonded together under the application of pressure and heat. Each mating surface may also be coated with a reactive metal, such as hafnium, to increase the adhesion of the silver films to the component surfaces. Only thin silver films are deposited, e.g., a thickness of about 0.00635 mm, to form a substantially non-compliant bond between surfaces. The resulting transducer assembly is substantially free of self-resonances over normal operating ranges for taking resonant ultrasound measurements.

  13. Bonded ultrasonic transducer and method for making

    DOE Patents [OSTI]

    Dixon, R.D.; Roe, L.H.; Migliori, A.

    1995-11-14

    An ultrasonic transducer is formed as a diffusion bonded assembly of piezoelectric crystal, backing material, and, optionally, a ceramic wear surface. The mating surfaces of each component are silver films that are diffusion bonded together under the application of pressure and heat. Each mating surface may also be coated with a reactive metal, such as hafnium, to increase the adhesion of the silver films to the component surfaces. Only thin silver films are deposited, e.g., a thickness of about 0.00635 mm, to form a substantially non-compliant bond between surfaces. The resulting transducer assembly is substantially free of self-resonances over normal operating ranges for taking resonant ultrasound measurements. 12 figs.

  14. Qualified Energy Conservation Bonds

    Broader source: Energy.gov [DOE]

    Provides an in-depth description of qualified energy conservation bonds, including process and mechanics, case studies, utilization trends, barriers, and regulatory and legal issues. Author: Energy Programs Consortium

  15. Bonding aerogels with polyurethanes

    SciTech Connect (OSTI)

    Matthews, F.M.; Hoffman, D.M.

    1989-11-01

    Aerogels, porous silica glasses with ultra-fine cell size (30nm), are made by a solution gelation (sol-gel) process. The resulting gel is critical point dried to densities from 0.15--0.60 g/cc. This material is machinable, homogeneous, transparent, coatable and bondable. To bond aerogel an adhesive should have long cure time, no attack on the aerogel structure, and high strength. Several epoxies and urethanes were examined to determine if they satisfied these conditions. Bond strengths above 13 psi were found with double bubble and DP-110 epoxies and XI-208/ODA-1000 and Castall U-2630 urethanes. Hardman Kalex Tough Stuff'' A-85 hardness urethane gave 18 psi bond strength. Hardman A-85, Tuff-Stuff'' was selected for further evaluation because it produced bond strengths comparable to the adherend cohesive strength. 5 refs., 2 figs.

  16. Breaking the Bond

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Breaking the Bond 1663 Los Alamos science and technology magazine Latest Issue:July 2016 past issues All Issues » submit Breaking the Bond Can chemistry help unbind us from fossil fuels? July 21, 2016 info graphic gas pump Accelerating toward a more sustainable future: gas pumps may someday soon contain bio-gasoline made from plants. We are condensing millions of years of fossilization into a few chemical reactions. Fossil fuels are a finite resource. Unfortunately, the existing global

  17. Low temperature material bonding technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2002-02-12

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  18. Low Temperature Material Bonding Technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2000-10-10

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  19. Visible Light-Induced Electron Transfer from Di-mu-oxo Bridged Dinuclear Mn Complexes to Cr Centers in Silica Nanopores

    SciTech Connect (OSTI)

    Frei, Heinz; Weare, Walter W.; Pushkar, Yulia; Yachandra, Vittal K.; Frei, Heinz

    2008-06-03

    The compound (bpy)2MnIII(mu-O)2MnIV(bpy)2, a structural model relevant for the photosynthetic water oxidation complex, was coupled to single CrVI charge-transfer chromophores in the channels of the nanoporous oxide AlMCM-41. Mn K-edge EXAFS spectroscopy confirmed that the di-mu-oxo dinuclear Mn core of the complex is unaffected when loaded into the nanoscale pores. Observation of the 16-line EPR signal characteristic of MnIII(mu-O)2MnIV demonstrates that the majority of the loaded complexes retained their nascent oxidation state in the presence or absence of CrVI centers. The FT-Raman spectrum upon visible light excitation of the CrVI-OII --> CrV-OI ligand-to-metal charge-transfer reveals electron transfer from MnIII(mu-O)2MnIV (Mn-O stretch at 700 cm-1) to CrVI, resulting in the formation of CrV and MnIV(mu-O)2MnIV (Mn-O stretch at 645 cm-1). All initial and final states are directly observed by FT-Raman or EPR spectroscopy, and the assignments corroborated by X-ray absorption spectroscopy measurements. The endoergic charge separation products (DELTA Eo = -0.6 V) remain after several minutes, which points to spatial separation of CrV and MnIV(mu-O)2MnIV as a consequence of hole (OI) hopping as a major contributing mechanism. This is the first observation of visible light-induced oxidation of a potential water oxidation complex by a metal charge-transfer pump in a nanoporous environment. These findings will allow for the assembly and photochemical characterization of well defined transition metal molecular units, with the ultimate goal of performing endothermic, multi-electron transformations that are coupled to visible light electron pumps in nanostructured scaffolds.

  20. METAL COATED ARTICLES AND METHOD OF MAKING

    DOE Patents [OSTI]

    Eubank, L.D.

    1958-08-26

    A method for manufacturing a solid metallic uranium body having an integral multiple layer protective coating, comprising an inner uranium-aluminum alloy firmly bonded to the metallic uranium is presented. A third layer of silver-zinc alloy is bonded to the zinc-aluiminum layer and finally a fourth layer of lead-silver alloy is firmly bonded to the silver-zinc layer.

  1. Bonded Radii and the Contraction of the Electron Density of the Oxygen Atom by Bonded Interactions

    SciTech Connect (OSTI)

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.; Iversen, Bo B.; Spackman, M. A.

    2013-02-21

    The bonded radii for more than 550 bonded pairs of atoms, comprising more than 50 crystals, determined from experimental and theoretical electron density distributions, are compared with the effective ionic, ri(M), and crystal radii, rc(M), for metal atoms, M, bonded to O atoms. At odds with the fixed ionic radius of 1.40 , assumed for the O atom in the compilation of the ionic radii, the bonded radius for the atom, rb(O), is not fixed but displays a relatively wide range of values as the O atom is progressively polarized by the M-O bonded interactions: as such, rb(O) decreases systematically from 1.40 (the Pauling radius of the oxide anion) as bond lengths decrease when bonded to an electropositive atom like sodium, to 0.64 (Braggs atomic radius of the O atom) when bonded to an electronegative atom like nitrogen. Both rb(M) and rb(O) increase in tandum with the increasing coordination number of the M atom. The bonded radii of the M atoms are highly correlated with both ri(M) and rc(M), but they both depart systematically from rb(M) and become smaller as the electronegativity of the M atom increases and the M-O bond length decreases. The well-developed correlations between both sets of radii and rb(M) testifies to the relative precision of both sets of radii and the fact that both sets are highly correlated the M-O bond 1 lengths. On the other hand, the progressive departure of rb(O) from the fixed ionic radius of the O atom with the increasing electronegativity of the bonded M atom indicates that any compilation of sets of ionic radii, assuming that the radius for the oxygen atom is fixed in value, is problematical and impacts on the accuracy of the resulting sets of ionic and crystal radii thus compiled. The assumption of a fixed O atom radius not only results in a negative ionic radii for several atoms, but it also results in values of rb(M) that are much as ~ 0.6 larger than the ri(M) and rc(M) values, respectively, particularly for the more

  2. Diffusion Bonding Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diffusion Bonding Characterization - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  3. GRAPHITE BONDING METHOD

    DOE Patents [OSTI]

    King, L.D.P.

    1964-02-25

    A process for bonding or joining graphite members together in which a thin platinum foil is placed between the members, heated in an inert atmosphere to a temperature of 1800 deg C, and then cooled to room temperature is described. (AEC)

  4. Photochemical tissue bonding

    DOE Patents [OSTI]

    Redmond, Robert W.; Kochevar, Irene E.

    2012-01-10

    Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

  5. Tuning the reactivity of mononuclear nonheme manganese(iv)-oxo complexes by triflic acid

    SciTech Connect (OSTI)

    Chen, Junying; Yoon, Heejung; Lee, Yong -Min; Seo, Mi Sook; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo

    2015-04-14

    Triflic acid (HOTf)-bound nonheme Mn(IV)-oxo complexes, [(L)MnIV(O)]2+(HOTf)2 (L = N4Py and Bn-TPEN; N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine and Bn-TPEN = N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine), were synthesized by adding HOTf to the solutions of the [(L)MnIV(O)]2+ complexes and were characterized by various spectroscopies. The one-electron reduction potentials of the MnIV(O) complexes exhibited a significant positive shift upon binding of HOTf. The driving force dependences of electron transfer (ET) from electron donors to the MnIV(O) and MnIV(O)(HOTf)2 complexes were examined and evaluated in light of the Marcus theory of ET to determine the reorganization energies of ET. The smaller reorganization energies and much more positive reduction potentials of the [(L)MnIV(O)]2+(HOTf)2 complexes resulted in greatly enhanced oxidation capacity towards one-electron reductants and para-X-substituted-thioanisoles. The reactivities of the Mn(IV)-oxo complexes were markedly enhanced by binding of HOTf, such as a 6.4 105-fold increase in the oxygen atom transfer (OAT) reaction (i.e., sulfoxidation). Such a remarkable acceleration in the OAT reaction results from the enhancement of ET from para-X-substituted-thioanisoles to the MnIV(O) complexes as revealed by the unified ET driving force dependence of the rate constants of OAT and ET reactions of [(L)MnIV(O)]2+(HOTf)2. In contrast, deceleration was observed in the rate of H-atom transfer (HAT) reaction of [(L)MnIV(O)]2+(HOTf)2 complexes with 1,4-cyclohexadiene as compared with those of the [(L)MnIV(O)]2+ complexes. Thus, the binding of two HOTf molecules to the MnIV(O) moiety resulted in remarkable acceleration of the ET rate when

  6. Tuning the reactivity of mononuclear nonheme manganese(iv)-oxo complexes by triflic acid

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Junying; Yoon, Heejung; Lee, Yong -Min; Seo, Mi Sook; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo

    2015-04-14

    Triflic acid (HOTf)-bound nonheme Mn(IV)-oxo complexes, [(L)MnIV(O)]2+–(HOTf)2 (L = N4Py and Bn-TPEN; N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine and Bn-TPEN = N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine), were synthesized by adding HOTf to the solutions of the [(L)MnIV(O)]2+ complexes and were characterized by various spectroscopies. The one-electron reduction potentials of the MnIV(O) complexes exhibited a significant positive shift upon binding of HOTf. The driving force dependences of electron transfer (ET) from electron donors to the MnIV(O) and MnIV(O)–(HOTf)2 complexes were examined and evaluated in light of the Marcus theory of ET to determine the reorganization energies of ET. The smaller reorganization energies and much more positive reduction potentialsmore » of the [(L)MnIV(O)]2+–(HOTf)2 complexes resulted in greatly enhanced oxidation capacity towards one-electron reductants and para-X-substituted-thioanisoles. The reactivities of the Mn(IV)-oxo complexes were markedly enhanced by binding of HOTf, such as a 6.4 × 105-fold increase in the oxygen atom transfer (OAT) reaction (i.e., sulfoxidation). Such a remarkable acceleration in the OAT reaction results from the enhancement of ET from para-X-substituted-thioanisoles to the MnIV(O) complexes as revealed by the unified ET driving force dependence of the rate constants of OAT and ET reactions of [(L)MnIV(O)]2+–(HOTf)2. In contrast, deceleration was observed in the rate of H-atom transfer (HAT) reaction of [(L)MnIV(O)]2+–(HOTf)2 complexes with 1,4-cyclohexadiene as compared with those of the [(L)MnIV(O)]2+ complexes. Thus, the binding of two HOTf molecules to the MnIV(O) moiety resulted in remarkable acceleration of the ET rate when the ET is thermodynamically feasible. When the ET reaction is highly endergonic, the rate of the HAT reaction is decelerated due to the steric effect of the counter anion of HOTf.« less

  7. STRIPPING METAL COATINGS

    DOE Patents [OSTI]

    Siefen, H.T.; Campbell, J.M.

    1959-02-01

    A method is described for removing aluminumuranium-silicon alloy bonded to metallic U comprising subjecting the Al-U -Si alloy to treatment with hot concentrated HNO/sun 3/ to partially dissolve and embrittle the alloy and shot- blasting the embrittled alloy to loosen it from the U.

  8. Bond Program | Open Energy Information

    Open Energy Info (EERE)

    Bond Program Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleBondProgram&oldid5427...

  9. Low temperature reactive bonding

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Bionta, Richard M. (Livermore, CA)

    1995-01-01

    The joining technique requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process.

  10. Opportunities in Bond Financing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities in Bond Financing James Dack Vice President Alternative Energy Finance Group Stern Brothers & Co. Seattle, WA 98101 Biogas and Fuel Cells Workshop National Renewable Energy Laboratory Golden, Colorado June 11-13, 2012 2 INTRODUCTION * Stern Brothers, founded in 1917 and headquartered in St. Louis, is an investment banking firm that is focused on project financing (taxable and tax-exempt) for renewable energy, real estate, higher education and healthcare. * Stern's Alternative

  11. Cu-Cu direct bonding achieved by surface method at room temperature

    SciTech Connect (OSTI)

    Utsumi, Jun [Advanced Technology Research Center, Mitsubishi Heavy Industries, Ltd., 1-8-1 Sachiura, Kanazawa-ku, Yokohama 236-8515 (Japan); Ichiyanagi, Yuko, E-mail: yuko@ynu.ac.jp [Department of Physics, Graduate School of Engineering, Yokohama National University, Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan)

    2014-02-20

    The metal bonding is a key technology in the processes for the microelectromechanical systems (MEMS) devices and the semiconductor devices to improve functionality and higher density integration. Strong adhesion between surfaces at the atomic level is crucial; however, it is difficult to achieve close bonding in such a system. Cu films were deposited on Si substrates by vacuum deposition, and then, two Cu films were bonded directly by means of surface activated bonding (SAB) at room temperature. The two Cu films, with the surface roughness Ra about 1.3nm, were bonded by using SAB at room temperature, however, the bonding strength was very weak in this method. In order to improve the bonding strength between the Cu films, samples were annealed at low temperatures, between 323 and 473 K, in air. As the result, the Cu-Cu bonding strength was 10 times higher than that of the original samples without annealing.

  12. Bonding Tools | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bonding Tools Bonding Tools Bonds are one of the most common forms of financing used by state and local governments, because they are a low-cost source of capital available to most entities. State and local officials may consider using bonds for a variety of clean energy purposes, including: Financing a specific set of energy upgrades in their own facilities (can be combined with an energy savings performance contract) Capitalizing finance programs (e.g., revolving loan fund) for public sector

  13. Qualified Energy Conservation Bond Webinars

    Broader source: Energy.gov [DOE]

    Provides a listing of past qualified energy conservation bond webinars and associated files. Author: U.S. Department of Energy

  14. Method of coating metal surfaces to form protective metal coating thereon

    DOE Patents [OSTI]

    Krikorian, Oscar H.; Curtis, Paul G.

    1992-01-01

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof.

  15. Method of coating metal surfaces to form protective metal coating thereon

    DOE Patents [OSTI]

    Krikorian, O.H.; Curtis, P.G.

    1992-03-31

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof. 1 figure.

  16. Physical mechanisms of copper-copper wafer bonding

    SciTech Connect (OSTI)

    Rebhan, B.; Hingerl, K.

    2015-10-07

    The study of the physical mechanisms driving Cu-Cu wafer bonding allowed for reducing the bonding temperatures below 200 °C. Metal thermo-compression Cu-Cu wafer bonding results obtained at such low temperatures are very encouraging and suggest that the process is possible even at room temperature if some boundary conditions are fulfilled. Sputtered (PVD) and electroplated Cu thin layers were investigated, and the analysis of both metallization techniques demonstrated the importance of decreasing Cu surface roughness. For an equal surface roughness, the bonding temperature of PVD Cu wafers could be even further reduced due to the favorable microstructure. Their smaller grain size enhances the length of the grain boundaries (observed on the surface prior bonding), acting as efficient mass transfer channels across the interface, and hence the grains are able to grow over the initial bonding interface. Due to the higher concentration of random high-angle grain boundaries, this effect is intensified. The model presented is explaining the microstructural changes based on atomic migration, taking into account that the reduction of the grain boundary area is the major driving force to reduce the Gibbs free energy, and predicts the subsequent microstructure evolution (grain growth) during thermal annealing.

  17. Printability Optimization For Fine Pitch Solder Bonding

    SciTech Connect (OSTI)

    Kwon, Sang-Hyun; Lee, Chang-Woo; Yoo, Sehoon

    2011-01-17

    Effect of metal mask and pad design on solder printability was evaluated by DOE in this study. The process parameters were stencil thickness, squeegee angle, squeegee speed, mask separating speed, and pad angle of PCB. The main process parameters for printability were stencil thickness and squeegee angle. The response surface showed that maximum printability of 1005 chip was achieved at the stencil thickness of 0.12 mm while the maximum printability of 0603 and 0402 chip was obtained at the stencil thickness of 0.05 mm. The bonding strength of the MLCC chips was also directly related with the printability.

  18. Low temperature reactive bonding

    DOE Patents [OSTI]

    Makowiecki, D.M.; Bionta, R.M.

    1995-01-17

    The joining technique is disclosed that requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process. 5 figures.

  19. Understanding Trends in CO2 adsorption in Metal-Organic Frameworks...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding Trends in CO2 adsorption in Metal-Organic Frameworks with Open-Metal Sites ... bond analysis, we study and explain trends in the binding between CO2 and open-metal ...

  20. Process for protecting bonded components from plating shorts

    DOE Patents [OSTI]

    Tarte, Lisa A.; Bonde, Wayne L.; Carey, Paul G.; Contolini, Robert J.; McCarthy, Anthony M.

    2000-01-01

    A method which protects the region between a component and the substrate onto which the components is bonded using an electrically insulating fillet of photoresist. The fillet protects the regions from subsequent plating with metal and therefore shorting the plated conductors which run down the sides of the component and onto the substrate.

  1. Metal-organic framework materials with ultrahigh surface areas

    SciTech Connect (OSTI)

    Farha, Omar K.; Hupp, Joseph T.; Wilmer, Christopher E.; Eryazici, Ibrahim; Snurr, Randall Q.; Gomez-Gualdron, Diego A.; Borah, Bhaskarjyoti

    2015-12-22

    A metal organic framework (MOF) material including a Brunauer-Emmett-Teller (BET) surface area greater than 7,010 m.sup.2/g. Also a metal organic framework (MOF) material including hexa-carboxylated linkers including alkyne bond. Also a metal organic framework (MOF) material including three types of cuboctahedron cages fused to provide continuous channels. Also a method of making a metal organic framework (MOF) material including saponifying hexaester precursors having alkyne bonds to form a plurality of hexa-carboxylated linkers including alkyne bonds and performing a solvothermal reaction with the plurality of hexa-carboxylated linkers and one or more metal containing compounds to form the MOF material.

  2. Multilayer roll bonded aluminium foil: processing, microstructure and flow stress

    SciTech Connect (OSTI)

    Barlow, C.Y.; Nielsen, P.; Hansen, N

    2004-08-02

    Bulk aluminium has been produced by warm-rolling followed by cold-rolling of commercial purity (99% purity) aluminium foil. The bonding appeared perfect from observation with the naked eye, light and transmission electron microscopy. By comparison with bulk aluminium of similar purity (AA1200) rolled to a similar strain (90%RA), the roll-bonded metal showed a much higher density of high-angle grain boundaries, similar strength and improved thermal stability. This study has implications for a number of applications in relation to the processing of aluminium. Roll bonding is of interest as a method for grain size refinement; oxide-containing materials have increased strength, enhanced work-hardening behaviour, and exhibit alterations in recrystallisation behaviour. The behaviour of the hard oxide film is of interest in aluminium processing, and has been investigated by characterising the size and distribution of oxide particles in the roll-bonded samples.

  3. Diffusion welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    DOE Patents [OSTI]

    Byrne, Stephen C.; Vasudevan, Asuri K.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor diffusion welded to a portion of a ceramic electrode body having a level of free metal or metal alloy sufficient to effect a metal bond.

  4. Chemically bonded phospho-silicate ceramics

    DOE Patents [OSTI]

    Wagh, Arun S.; Jeong, Seung Y.; Lohan, Dirk; Elizabeth, Anne

    2003-01-01

    A chemically bonded phospho-silicate ceramic formed by chemically reacting a monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and a sparsely soluble oxide, with a sparsely soluble silicate in an aqueous solution. The monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and sparsely soluble oxide are both in powder form and combined in a stochiometric molar ratio range of (0.5-1.5):1 to form a binder powder. Similarly, the sparsely soluble silicate is also in powder form and mixed with the binder powder to form a mixture. Water is added to the mixture to form a slurry. The water comprises 50% by weight of the powder mixture in said slurry. The slurry is allowed to harden. The resulting chemically bonded phospho-silicate ceramic exhibits high flexural strength, high compression strength, low porosity and permeability to water, has a definable and bio-compatible chemical composition, and is readily and easily colored to almost any desired shade or hue.

  5. Metal Hydride Storage Materials | Department of Energy

    Office of Environmental Management (EM)

    ... typically of alkali or alkaline earth elements that are ionically bonded to a complex anion. ... Journal of Rare Earths (23), 2005; pp. 611-616. Switendick, A.C. In Hydrogen in Metals ...

  6. Ceramic to metal attachment system. [Ceramic electrode to metal conductor in MHD generator

    DOE Patents [OSTI]

    Marchant, D.D.

    1983-06-10

    A composition and method are described for attaching a ceramic electrode to a metal conductor. A layer of randomly interlocked metal fibers saturated with polyimide resin is sandwiched between the ceramic electrode and the metal conductor. The polyimide resin is then polymerized providing bonding.

  7. Theoretical Study of High-Valent Vanadium Oxo-Porphyrins as a Dopant of Crude Oil

    SciTech Connect (OSTI)

    Salcedo, Roberto; Martinez, LMR; Martinez-Magadan, Jose M.

    2001-06-15

    The role played by the vanadyl porphyrinate as a dopant for zeolites in the refinement process of crude oil is analyzed using DFT calculations. The pair formed by the vanadium atom and its bonded oxygen atoms seems to be the responsible items in the dopant reaction. However, the present paper shows the participation of the vanadium atom as being the most important.

  8. Method for bonding thin film thermocouples to ceramics

    DOE Patents [OSTI]

    Kreider, Kenneth G. (Potomac, MD)

    1993-01-01

    A method is provided for adhering a thin film metal thermocouple to a ceramic substrate used in an environment up to 700 degrees Centigrade, such as at a cylinder of an internal combustion engine. The method includes the steps of: depositing a thin layer of a reactive metal on a clean ceramic substrate; and depositing thin layers of platinum and a platinum-10% rhodium alloy forming the respective legs of the thermocouple on the reactive metal layer. The reactive metal layer serves as a bond coat between the thin noble metal thermocouple layers and the ceramic substrate. The thin layers of noble metal are in the range of 1-4 micrometers thick. Preferably, the ceramic substrate is selected from the group consisting of alumina and partially stabilized zirconia. Preferably, the thin layer of reactive metal is in the range of 0.015-0.030 micrometers (15-30 nanometers) thick. The preferred reactive metal is chromium. Other reactive metals may be titanium or zirconium. The thin layer of reactive metal may be deposited by sputtering in ultra high purity argon in a vacuum of approximately 2 milliTorr (0.3 Pascals).

  9. Metal deposition using seed layers

    DOE Patents [OSTI]

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  10. Metallic carbon materials

    DOE Patents [OSTI]

    Cohen, Marvin Lou; Crespi, Vincent Henry; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    1999-01-01

    Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

  11. Steel bonded dense silicon nitride compositions and method for their fabrication

    DOE Patents [OSTI]

    Landingham, R.L.; Shell, T.E.

    1985-05-20

    A two-stage bonding technique for bonding high density silicon nitride and other ceramic materials to stainless steel and other hard metals, and multilayered ceramic-metal composites prepared by the technique are disclosed. The technique involves initially slurry coating a surface of the ceramic material at about 1500/sup 0/C in a vacuum with a refractory material and the stainless steel is then pressure bonded to the metallic coated surface by brazing it with nickel-copper-silver or nickel-copper-manganese alloys at a temperature in the range of about 850/sup 0/ to 950/sup 0/C in a vacuum. The two-stage bonding technique minimizes the temperature-expansion mismatch between the dissimilar materials.

  12. Steel bonded dense silicon nitride compositions and method for their fabrication

    DOE Patents [OSTI]

    Landingham, Richard L.; Shell, Thomas E.

    1987-01-01

    A two-stage bonding technique for bonding high density silicon nitride and other ceramic materials to stainless steel and other hard metals, and multilayered ceramic-metal composites prepared by the technique are disclosed. The technique involves initially slurry coating a surface of the ceramic material at about 1500.degree. C. in a vacuum with a refractory material and the stainless steel is then pressure bonded to the metallic coated surface by brazing it with nickel-copper-silver or nickel-copper-manganese alloys at a temperature in the range of about 850.degree. to 950.degree. C. in a vacuum. The two-stage bonding technique minimizes the temperature-expansion mismatch between the dissimilar materials.

  13. Method for vacuum fusion bonding

    DOE Patents [OSTI]

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2001-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  14. Fusion bonding and alignment fixture

    DOE Patents [OSTI]

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2000-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  15. Public Bonding Options | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bonding Options Public Bonding Options Traditionally, state and local governments (as well as certain other nonprofit organizations such as universities and hospitals) have had the ability to issue debt, in the form of bonds, to finance construction and/or improvements to public infrastructure. Bonds issued by state and local governments-often referred to as municipal or public bonds-can also be used, under certain circumstances for private activities. Public bonds vary by tax liability, as well

  16. Clean Energy Revenue Bond Program

    Broader source: Energy.gov [DOE]

    The bonds are exempt from taxation by the state, and any type of renewable energy system and most energy efficiency measures, including energy recovery and combined heat and power (CHP) systems,...

  17. Low Temperature Material Bonding Techniq Ue

    DOE Patents [OSTI]

    Ramsey, J. Michael; Foote, Robert S.

    2002-08-06

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  18. Method to improve commercial bonded SOI material

    DOE Patents [OSTI]

    Maris, Humphrey John; Sadana, Devendra Kumar

    2000-07-11

    A method of improving the bonding characteristics of a previously bonded silicon on insulator (SOI) structure is provided. The improvement in the bonding characteristics is achieved in the present invention by, optionally, forming an oxide cap layer on the silicon surface of the bonded SOI structure and then annealing either the uncapped or oxide capped structure in a slightly oxidizing ambient at temperatures greater than 1200.degree. C. Also provided herein is a method for detecting the bonding characteristics of previously bonded SOI structures. According to this aspect of the present invention, a pico-second laser pulse technique is employed to determine the bonding imperfections of previously bonded SOI structures.

  19. Local Option- Industrial Facilities and Development Bonds

    Broader source: Energy.gov [DOE]

    Under the Utah Industrial Facilities and Development Act, counties, municipalities, and state universities in Utah may issue Industrial Revenue Bonds (IRBs) or Industrial Development Bonds (IDBs)...

  20. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  1. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2015-06-30

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  2. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  3. New Clean Renewable Energy Bonds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Clean Renewable Energy Bonds New Clean Renewable Energy Bonds New clean renewable energy bonds (CREBs) are tax credit bonds, the proceeds of which are used for capital ...

  4. A trinuclear oxo-chromium(III) complex containing the natural flavonoid primuletin: Synthesis, characterization, and antiradical properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rocha, Reginaldo C.; Alexiou, Anamaria D.P.; Decandio, Carla C.; Almeida, Sabrina da N.; Ferreira, Marcelo J.P.; Romoff, Paulete

    2015-04-10

    A new trinuclear oxo-centered chromium(III) complex with formula [Cr₃O(CH₃CO₂)₆(L)(H₂O)₂] (L = 5-hydroxyflavone, known as primuletin) was synthetized and characterized by ESI mass spectrometry, thermogravimetry, and ¹H-NMR, UV-Vis, and FTIR spectroscopies. In agreement with the experimental results, DFT calculations indicated that the flavonoid ligand is coordinated to one of the three Cr(III) centers in an O,O-bidentate mode through the 5-hydroxy/4-keto groups. In a comparative study involving the uncoordinated primuletin and its corresponding complex, systematic reactions with the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) showed that antiradical activity increases upon complexation.

  5. Solid state bonding of beryllium-copper for an ITER first wall application

    SciTech Connect (OSTI)

    Odegard, B.C. Jr.; Cadden, C.H.

    1998-02-01

    Several different joint assemblies were evaluated in support of a manufacturing technology for diffusion bonding a beryllium armor tile to a copper alloy heat sink for fusion reactor applications. Because beryllium reacts with all but a few elements to form intermetallic compounds, this study considered several different surface treatments as a means of both inhibiting these reactions and promoting a good diffusion bond between the two substrates. A diffusion bonded assemblies used aluminum or an aluminum-beryllium composite (AlBeMet-150) as the interfacial material in contact with beryllium. In most cases, explosive bonding was utilized as a technique for joining the copper alloy heat sink to an aluminum or AlBeMet-150 substrate, which was subsequently diffusion bonded to an aluminum coated beryllium tile. In this approach, a 250 {micro}m thick titanium foil was used as a diffusion barrier between the copper and aluminum to prevent the formation of Cu-Al intermetallic phases. In all cases, a hot isostatic pressing (HIP) furnace was used in conjunction with canned assemblies in order to minimize oxidation and apply sufficient pressure on the assembly for excellent metal-to-metal contact and subsequent bonding. Several different processing schedules were evaluated during the course of this study; bonded assemblies were produced that failed outside the bond area indicating a 100% joint efficiency.

  6. Method for joining carbon-carbon composites to metals

    DOE Patents [OSTI]

    Lauf, Robert J.; McMillan, April D.; Moorhead, Arthur J.

    1997-01-01

    A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to "wick" into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy.

  7. Method for joining carbon-carbon composites to metals

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Moorhead, A.J.

    1997-07-15

    A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to ``wick`` into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy. 1 fig.

  8. INFORMATION REGARDING PERFORMANCE AND PAYMENT BONDS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C&BS Form Date: 5-20-2015 1 INFORMATION REGARDING PERFORMANCE AND PAYMENT BONDS I. PERFORMANCE BOND A performance bond secures performance and fulfillment of the Subcontractor's obligations under the subcontract. A performance bond is required in accordance with this subcontract. The Subcontractor shall submit the performance bond to the subcontract administrator within five (5) calendar days after notification of award and prior to starting work for any subcontract exceeding $30,000.00. The

  9. Metal aminoboranes

    DOE Patents [OSTI]

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya Kaviraj; Shrestha, Roshan P.

    2010-05-11

    Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  10. Bonded polyimide fuel cell package

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry

    2010-06-08

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  11. Method for adhesion of metal films to ceramics

    DOE Patents [OSTI]

    Lowndes, D.H.; Pedraza, A.J.; DeSilva, M.J.; Kumar, R.A.

    1997-12-30

    Methods for making strongly bonded metal-ceramic materials are disclosed. The methods include irradiating a portion of the surface of the ceramic material with a pulsed ultraviolet laser having an energy density sufficient to effect activation of the irradiated surface of the ceramic material so that adhesion of metals subsequently deposited onto the irradiated surface is substantially increased. Advantages of the invention include (i) the need for only a small number of laser pulses at relatively low focused energy density, (ii) a smoother substrate surface, (iii) activation of the laser-treated surface which provides a chemical bond between the surface and a metal deposited thereon, (iv) only low temperature annealing is required to produce the strong metal-ceramic bond; (v) the ability to obtain strong adhesion between ceramic materials and oxidation resistant metals; (vi) ability to store the laser treated ceramic materials for later deposition of metals thereon. 7 figs.

  12. Method for adhesion of metal films to ceramics

    DOE Patents [OSTI]

    Lowndes, Douglas H.; Pedraza, Anthony J.; DeSilva, Melvin J.; Kumar, Rajagopalan A.

    1997-01-01

    Methods for making strongly bonded metal-ceramic materials. The methods include irradiating a portion of the surface of the ceramic material with a pulsed ultraviolet laser having an energy density sufficient to effect activation of the irradiated surface of the ceramic material so that adhesion of metals subsequently deposited onto the irradiated surface is substantially increased. Advantages of the invention include (i) the need for only a small number of laser pulses at relatively low focused energy density, (ii) a smoother substrate surface, (iii) activation of the laser-treated surface which provides a chemical bond between the surface and a metal deposited thereon, (iv) only low temperature annealing is required to produce the strong metal-ceramic bond; (v) the ability to obtain strong adhesion between ceramic materials and oxidation resistant metals; (vi) ability to store the laser treated ceramic materials for later deposition of metals thereon.

  13. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    SciTech Connect (OSTI)

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2015-04-28

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  14. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2014-09-16

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  15. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2013-10-22

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  16. Method for providing adhesion to a metal surface

    DOE Patents [OSTI]

    Harrah, Larry A.; Allred, Ronald E.; Wilson, Jr., Kennard V.

    1992-01-01

    A process for treating metal surfaces to obtain improved susceptibility to bonding with adhesive compositions is disclosed. A metal surface is oxidized with a halogen to form a monolayer of halide ions on the surface. The halide ions are then exchanged with azide ions to form an azide monolayer on the metal surface. Upon contact of the treated surface with an adhesive composition, the azide layer may be thermally or photochemically decomposed to form active nitrene species, which react to bond the adhesive composition to the metal surface.

  17. Method for providing adhesion to a metal surface

    DOE Patents [OSTI]

    Harrah, L.A.; Allred, R.E.; Wilson, K.V. Jr.

    1992-02-18

    A process for treating metal surfaces to obtain improved susceptibility to bonding with adhesive compositions is disclosed. A metal surface is oxidized with a halogen to form a monolayer of halide ions on the surface. The halide ions are then exchanged with azide ions to form an azide monolayer on the metal surface. Upon contact of the treated surface with an adhesive composition, the azide layer may be thermally or photochemically decomposed to form active nitrene species, which react to bond the adhesive composition to the metal surface.

  18. Hi Bond Tapes Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hi Bond Tapes Ltd Jump to: navigation, search Name: Hi-Bond Tapes Ltd Place: Northamptonshire, England, United Kingdom Zip: NN17 5TS Product: Northamptonshire-based supplier of...

  19. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    SciTech Connect (OSTI)

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    seen widespread success involves the use of a proximal heteroatom that serves as a directing group for the selective functionalization of a specific C-H bond. In a survey of examples of heteroatom-directed Rh catalysis, two mechanistically distinct reaction pathways are revealed. In one case, the heteroatom acts as a chelator to bind the Rh catalyst, facilitating reactivity at a proximal site. In this case, the formation of a five-membered metallacycle provides a favorable driving force in inducing reactivity at the desired location. In the other case, the heteroatom initially coordinates the Rh catalyst and then acts to stabilize the formation of a metal-carbon bond at a proximal site. A true test of the utility of a synthetic method is in its application to the synthesis of natural products or complex molecules. Several groups have demonstrated the applicability of C-H bond functionalization reactions towards complex molecule synthesis. Target-oriented synthesis provides a platform to test the effectiveness of a method in unique chemical and steric environments. In this respect, Rh-catalyzed methods for C-H bond functionalization stand out, with several syntheses being described in the literature that utilize C-H bond functionalization in a key step. These syntheses are highlighted following the discussion of the method they employ.

  20. Bond strength and stress measurements in thermal barrier coatings

    SciTech Connect (OSTI)

    Gell, M.; Jordan, E.

    1995-12-31

    Thermal barrier coatings have been used extensively in aircraft gas turbines for more than 15 years to insulate combustors and turbine vanes from the hot gas stream. Plasma sprayed thermal barrier coatings (TBCs) provide metal temperature reductions as much as 300{degrees}F, with improvements in durability of two times or more being achieved. The introduction of TBCs deposited by electron beam physical vapor deposition (EB-PVD) processes in the last five years has provided a major improvement in durability and also enabled TBCs to be applied to turbine blades for improved engine performance. This program evaluates the bond strength of yttria stabilized zirconia coatings with MCrAlY and Pt-Al bond coats utilizing diffraction and fluorescence methods.

  1. Bonded, walk-off compensated optical elements

    DOE Patents [OSTI]

    Ebbers, Christopher A.

    2003-04-08

    A bonded, walk-off compensated crystal, for use with optical equipment, and methods of making optical components including same.

  2. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Covalent Bonding in Actinide Sandwich Molecules Print Wednesday, 28 May 2014 00:00 Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic

  3. Silicon-nitride and metal composite

    DOE Patents [OSTI]

    Landingham, R.L.; Huffsmith, S.A.

    A composite and a method for bonding the composite are described. The composite includes a ceramic portion of silicon nitride, a refractory metal portion and a layer of MoSi/sub 2/ indirectly bonding the composite together. The method includes contacting the layer of MoSi/sub 2/ with a surface of the silicon nitride and with a surface of the metal; heating the layer to a temperature below 1400/sup 0/C; and, simultaneously, compressing the layer such that the contacting is with a pressure of at least 30 MPa. This composite overcomes useful life problems in the fabrication of parts for a helical expander for use in power generation.

  4. Silicon-nitride and metal composite

    DOE Patents [OSTI]

    Landingham, Richard L.; Huffsmith, Sarah A.

    1981-01-01

    A composite and a method for bonding the composite. The composite includes a ceramic portion of silicon nitride, a refractory metal portion and a layer of MoSi.sub.2 indirectly bonding the composite together. The method includes contacting the layer of MoSi.sub.2 with a surface of the silicon nitride and with a surface of the metal; heating the layer to a temperature below 1400.degree. C.; and, simultaneously with the heating, compressing the layer such that the contacting is with a pressure of at least 30 MPa. This composite overcomes useful life problems in the fabrication of parts for a helical expander for use in power generation.

  5. Method of measuring metal coating adhesion

    DOE Patents [OSTI]

    Roper, John R.

    1985-01-01

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  6. Method of measuring metal coating adhesion

    DOE Patents [OSTI]

    Roper, J.R.

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  7. Metal inks

    DOE Patents [OSTI]

    Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

    2014-02-04

    Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

  8. METAL PHTHALOCYANINES

    DOE Patents [OSTI]

    Frigerio, N.A.

    1962-03-27

    A process is given for preparing heavy metal phthalocyanines, sulfonated or not. The process comprises mixing an inorganic metal salt with dimethyl formamide or methyl sulfoxide; separating the metal complex formed from the solution; mixing the complex with an equimolar amount of sodium, potassium, lithium, magnesium, or beryllium sulfonated or unsulfonated phthalocyanine whereby heavy-metal phthalocyanine crystals are formed; and separating the crystals from the solution. Uranyl, thorium, lead, hafnium, and lanthanide rare earth phthalocyanines can be produced by the process. (AEC)

  9. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  10. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  11. Composite metal foil and ceramic fabric materials

    DOE Patents [OSTI]

    Webb, Brent J.; Antoniak, Zen I.; Prater, John T.; DeSteese, John G.

    1992-01-01

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed.

  12. Composite metal foil and ceramic fabric materials

    DOE Patents [OSTI]

    Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.

    1992-03-24

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.

  13. Solid polymer battery electrolyte and reactive metal-water battery

    DOE Patents [OSTI]

    Harrup, Mason K.; Peterson, Eric S.; Stewart, Frederick F.

    2000-01-01

    In one implementation, a reactive metal-water battery includes an anode comprising a metal in atomic or alloy form selected from the group consisting of periodic table Group 1A metals, periodic table Group 2A metals and mixtures thereof. The battery includes a cathode comprising water. Such also includes a solid polymer electrolyte comprising a polyphosphazene comprising ligands bonded with a phosphazene polymer backbone. The ligands comprise an aromatic ring containing hydrophobic portion and a metal ion carrier portion. The metal ion carrier portion is bonded at one location with the polymer backbone and at another location with the aromatic ring containing hydrophobic portion. The invention also contemplates such solid polymer electrolytes use in reactive metal/water batteries, and in any other battery.

  14. Cascaded die mountings with spring-loaded contact-bond options

    DOE Patents [OSTI]

    Hsu, John S.; Adams, Donald J.; Su, Gui-Jia; Marlino, Laura D.; Ayers, Curtis W.; Coomer, Chester

    2005-08-16

    A cascaded die mounting device and method using spring contacts for die attachment, with or without metallic bonds between the contacts and the dies, is disclosed. One embodiment is for the direct refrigerant cooling of an inverter/converter carrying higher power levels than most of the low power circuits previously taught, and does not require using a heat sink.

  15. Method of making cascaded die mountings with springs-loaded contact-bond options

    DOE Patents [OSTI]

    Hsu, John S.; Adams, Donald J.; Su, Gui-Jia; Marlino, Laura D.; Ayers, Curtis W.; Coomer, Chester

    2007-06-19

    A cascaded die mounting device and method using spring contacts for die attachment, with or without metallic bonds between the contacts and the dies, is disclosed. One embodiment is for the direct refrigerant cooling of an inverter/converter carrying higher power levels than most of the low power circuits previously taught, and does not require using a heat sink.

  16. Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bonds (New CREBs) | Department of Energy Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable Energy Bonds (New CREBs) Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable Energy Bonds (New CREBs) Provides a presentation overview of qualified energy conservation bond and new clean renewable energy bonds, including characteristics, mechanics, allocated volume, and other information. Author: U.S. Department of Energy Qualified Energy Conservation Bonds &

  17. Kinetic and mechanistic studies of reactive intermediates in photochemical and transition metal-assisted oxidation, decarboxylation and alkyl transfer reactions

    SciTech Connect (OSTI)

    Carraher, Jack McCaslin

    2014-01-01

    Reactive species like high-valent metal-oxo complexes and carbon and oxygen centered radicals are important intermediates in enzymatic systems, atmospheric chemistry, and industrial processes. Understanding the pathways by which these intermediates form, their relative reactivity, and their fate after reactions is of the utmost importance. Herein are described the mechanistic detail for the generation of several reactive intermediates, synthesis of precursors, characterization of precursors, and methods to direct the chemistry to more desirable outcomes yielding ‘greener’ sources of commodity chemicals and fuels.

  18. Bonding energies and long-range order in the trialuminides

    SciTech Connect (OSTI)

    Sparks, C.J.; Specht, E.D.; Ice, G.E.; Zschack, P.; Schneibel, J.

    1990-01-01

    The degree of long-range order in the trialuminides is determined by X-ray powder diffraction techniques. Long-range order exists to their melting points. For the binary trialuminides Al{sub 3}Ti, Al{sub 73}Ti{sub 27}, and Al{sub 3}Sc, the degree of long-range order is nearly perfect and is a measure of the lack of mixing of the aluminum atoms onto the sublattice occupied by either Ti or Sc. A calculation of the bond energy between neighboring pairs of atoms from the ordering (melting) temperature is made following the Bragg-Williams mean field theory approach. These bond energies compare favorably with more sophisticated calculations. Bond energies are found to be larger than the energy difference between the crystal structure forms DO{sub 22}, Ll{sub 2}, and DO{sub 23}, and therefore, more relevant to understanding the mechanical and chemical behavior of the trialuminides. Ordering or melting temperatures of these intermetallics reflect the strong Al-metal near-neighbor pair potentials and may provide insights to their brittle properties. 11 refs., 2 figs., 2 tabs.

  19. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  20. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  1. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  2. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  3. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  4. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  5. Method of bonding silver to glass and mirrors produced according to this method

    DOE Patents [OSTI]

    Pitts, J.R.; Thomas, T.M.; Czanderna, A.W.

    1984-07-31

    A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

  6. Method of bonding silver to glass and mirrors produced according to this method

    DOE Patents [OSTI]

    Pitts, John R.; Thomas, Terence M.; Czanderna, Alvin W.

    1985-01-01

    A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

  7. Hydrogen Adsorption Induces Interlayer Carbon Bond Formation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Adsorption Induces Interlayer Carbon Bond Formation in Supported Few-Layer ... that only a sub-monolayer amount of hydrogen adsorption on the topmost layer results ...

  8. Green Infrastructure Bonds | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    allowing the Department of Business, Economic Development, and Tourism to issue Green Infrastructure Bonds to secture low-cost financing for clean energy installations,...

  9. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in discussions of...

  10. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bonds, are vital as industrial or bioinorganic catalysts and as precursors for nanomaterial synthesis. The work at the ALS also provides conclusive evidence for a new form of...

  11. Tire with outer groove containing bonded tube

    DOE Patents [OSTI]

    Welter, Carolin Anna; Chandra, Dinesh; Benedict, Robert Leon

    2016-02-16

    The invention relates generally to a pneumatic rubber tire which contains an outer, annular, circular groove which contains a flexible tube bonded to the walls of the groove.

  12. Non-Destructive Inspection of Adhesive Bonds in Metal-Metal Joints...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon lm15moore.pdf More Documents & Publications FY 2008 Progress Report for Lightweighting Materials ...

  13. Non-Destructive Inspection of Adhesive Bonds in Metal-Metal Joints

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  14. Spectroscopic Evidence for a High-Spin Br-Fe(IV)-Oxo Intermediate in the alpha-Ketoglutarate-Dependent Halogenase CytC3 from Streptomyces

    SciTech Connect (OSTI)

    Galonic Fujimori,D.; Barr, E.; Matthews, M.; Koch, G.; Yonce, J.; Walsh, C.; Bollinger, J.; Krebs, C.; Riggs-Gelasco, P.

    2007-01-01

    The complex of the mononuclear non-heme halogenase CytC3 from Streptomyces, Fe(II), {alpha}-ketoglutarate, bromide, and the substrate l-2-aminobutyryl-S-CytC2 reacts with O2 to form a reaction intermediate. Variable-field, freeze-quench Mossbauer spectroscopy reveals this intermediate to be a mixture of two high-spin Fe(IV) complexes in an approximate 3.7/1 ratio. Freeze-quench Fe K-edge X-ray absorption spectroscopy provides further insight into the structure of this intermediate. A short 1.62-Angstroms interaction between the Fe and one of its ligands is attributed to the Fe(IV)-oxo group, and a 2.43-Angstroms interaction is assigned to the Fe-Br interaction. A significantly longer Fe-Br separation (2.53 Angstroms) is observed in the reactant complex, consistent with lower valency of the Fe in the reactant complex. This intermediate is the first example for a Br-Fe(IV)-oxo complex in a protein and provides evidence for a unifying mechanism for Fe(II) and {alpha}-ketoglutarate-dependent dioxygenases and halogenases.

  15. Spectroscopic Evidence for a High-Spin Br-Fe(IV)-Oxo Intermediate in the -Ketoglutarate-Dependent Halogenase CyTc3 From Streptomyces

    SciTech Connect (OSTI)

    Fujimori, D.Galonic; Barr, E.W.; Matthews, M.L.; Koch, G.M.; Yonce, J.R.; Walsh, C.T.; Bollinger, J.M., Jr.; Krebs, C.; Riggs-Gelasco, P.J.

    2009-06-01

    The complex of the mononuclear non-heme halogenase CytC3 from Streptomyces, Fe(II), {alpha}-ketoglutarate, bromide, and the substrate l-2-aminobutyryl-S-CytC2 reacts with O{sub 2} to form a reaction intermediate. Variable-field, freeze-quench Moessbauer spectroscopy reveals this intermediate to be a mixture of two high-spin Fe(IV) complexes in an approximate 3.7/1 ratio. Freeze-quench Fe K-edge X-ray absorption spectroscopy provides further insight into the structure of this intermediate. A short 1.62-{angstrom} interaction between the Fe and one of its ligands is attributed to the Fe(IV)-oxo group, and a 2.43-{angstrom} interaction is assigned to the Fe-Br interaction. A significantly longer Fe-Br separation (2.53 {angstrom}) is observed in the reactant complex, consistent with lower valency of the Fe in the reactant complex. This intermediate is the first example for a Br-Fe(IV)-oxo complex in a protein and provides evidence for a unifying mechanism for Fe(II) and {alpha}-ketoglutarate-dependent dioxygenases and halogenases.

  16. Cold bond agglomeration of waste oxides for recycling

    SciTech Connect (OSTI)

    D`Alessio, G.; Lu, W.K.

    1996-12-31

    Recycling of waste oxides has been an on-going challenge for integrated steel plants. The majority of these waste oxides are collected from the cleaning systems of ironmaking and steelmaking processes, and are usually in the form of fine particulates and slurries. In most cases, these waste materials are contaminated by oils and heavy metals and often require treatment at a considerable expense prior to landfill disposal. This contamination also limits the re-use or recycling potential of these oxides as secondary resources of reliable quality. However, recycling of some selected wastes in blast furnaces or steelmaking vessels is possible, but first requires agglomeration of the fine particulate by such methods as cold bond briquetting. Cold bond briquetting technology provides both mechanical compacting and bonding (with appropriate binders) of the particulates. This method of recycling has the potential to be economically viable and environmentally sustainable. The nature of the present study is cold bond briquetting of iron ore pellet fines with a molasses-cement-H{sub 2}O binder for recycling in a blast furnace. The inclusion of molasses is for its contribution to the green strength of briquettes. During the curing stage, significant gains in strength may be credited to molasses in the presence of cement. The interactions of cement (and its substitutes), water and molasses and their effects on the properties of the agglomerates during and after various curing conditions were investigated. Tensile strengths of briquettes made in the laboratory and subjected to experimental conditions which simulated the top part of a blast furnace shaft were also examined.

  17. Identification of products containing {single_bond}COOH, {single_bond}OH, and {single_bond}C{double_bond}O in atmospheric oxidation of hydrocarbons

    SciTech Connect (OSTI)

    Yu, J.; Flagan, R.C.; Seinfeld, J.H.

    1998-08-15

    Atmospheric oxidation of hydrocarbons by hydroxyl radicals and ozone leads to products containing {single_bond}COOH, {single_bond}OH, and {single_bond}C{double_bond}O functional groups. The high polarity of such compounds precludes direct GC-MS analysis. In addition, many such compounds often exist in a single sample at trace levels. An analytical method has been developed to identify compounds containing one or more functional groups of carbonyl, carboxy, and hydroxy in atmospheric samples. In the method, {single_bond}C{double_bond}O groups are derivatized using O-(2,3,4,5,6-pentafluorobenzyl) hydroxy amine(PFBHA), and {single_bond}COOH and {single_bond}OH groups are derivatized using a silylation reagent N,O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA). The derivatives are easily resolved by a GC column. The chemical ionization mass spectra of these derivatives exhibit several pseudomolecular ions, allowing unambiguous determination of molecular weights. Functional group identification is accomplished by monitoring the ions in the electron ionization mass spectra that are characteristic of each functional group derivative: m/z 181 for carbonyl and m/z 73 and 75 for carboxyl and hydroxy groups. The method is used to identify products in laboratory studies of ozone oxidation of {alpha}-pinene and {Delta}{sup 3}-carene.

  18. Hydrogen bond dynamics in bulk alcohols

    SciTech Connect (OSTI)

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S.

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamicsquantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquidalcoholshas attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  19. Surface preparation of IPNS (Intense Pulsed Neutron Source) booster target components prior to diffusion bonding

    SciTech Connect (OSTI)

    Simandl, R.F.; Richards, H.L.; Thompson, L.M.

    1988-10-06

    In support of Argonne National Laboratory's Intense Pulsed Neutron Source (IPNS) program, the Oak Ridge Y-12 Plant has fabricated 15 Zircaloy-2 clad, enriched uranium booster targets using hot isostatic pressing (HIP) to effect diffusion bonding between the enriched uranium core and the Zircaloy-2 cladding. Guided by x-ray photoelectron spectroscopy for chemical analysis (XPS/ESCA) data, surface preparation procedures for both the Zircaloy-2 and uranium were refined to ensure 100% bonding between the dissimilar metals and survival of the rigors of beta quenching. 7 refs., 11 figs., 4 tabs.

  20. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2014-11-01

    The thermal performance and reliability of sintered-silver is being evaluated for power electronics packaging applications. This will be experimentally accomplished by the synthesis of large-area bonded interfaces between metalized substrates that will be subsequently subjected to thermal cycles. A finite element model of crack initiation and propagation in these bonded interfaces will allow for the interpretation of degradation rates by a crack-velocity (V)-stress intensity factor (K) analysis. The experiment is outlined, and the modeling approach is discussed.

  1. 1 mil gold bond wire study.

    SciTech Connect (OSTI)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  2. Metal oxide films on metal

    DOE Patents [OSTI]

    Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  3. Bio-Oxo Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is it difficult? Aldehydes are more toxic to bacterial cells than alcohols. Toxins and inhibitors such as acetate, formate and 5- (hydroxymethyl)furfural are created ...

  4. Method of CO and/or CO.sub.2 hydrogenation using doped mixed-metal oxides

    DOE Patents [OSTI]

    Shekhawat, Dushyant; Berry, David A.; Haynes, Daniel J.; Abdelsayed, Victor; Smith, Mark W.; Spivey, James J.

    2015-10-06

    A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a perovskite, a pyrochlore, a fluorite, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate a hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO.sub.2, or mixtures thereof and the hydrogen agent may be H.sub.2. In a particular embodiment, the hydrogenated product comprises an alcohol, an olefin, an aldehyde, a ketone, an ester, an oxo-product, or mixtures thereof.

  5. Atomically Bonded Transparent Superhydrophobic Coatings

    SciTech Connect (OSTI)

    Aytug, Tolga

    2015-08-01

    Maintaining clarity and avoiding the accumulation of water and dirt on optically transparent surfaces such as US military vehicle windshields, viewports, periscope optical head windows, and electronic equipment cover glasses are critical to providing a high level of visibility, improved survivability, and much-needed safety for warfighters in the field. Through a combination of physical vapor deposition techniques and the exploitation of metastable phase separation in low-alkali borosilicate, a novel technology was developed for the fabrication of optically transparent, porous nanostructured silica thin film coatings that are strongly bonded to glass platforms. The nanotextured films, initially structurally superhydrophilic, exhibit superior superhydrophobicity, hence antisoiling ability, following a simple but robust modification in surface chemistry. The surfaces yield water droplet contact angles as high as 172°. Moreover, the nanostructured nature of these coatings provides increased light scattering in the UV regime and reduced reflectivity (i.e., enhanced transmission) over a broad range of the visible spectrum. In addition to these functionalities, the coatings exhibit superior mechanical resistance to abrasion and are thermally stable to temperatures approaching 500°C. The overall process technology relies on industry standard equipment and inherently scalable manufacturing processes and demands only nontoxic, naturally abundant, and inexpensive base materials. Such coatings, applied to the optical components of current and future combat equipment and military vehicles will provide a significant strategic advantage for warfighters. The inherent self-cleaning properties of such superhydrophobic coatings will also mitigate biofouling of optical windows exposed to high-humidity conditions and can help decrease repair/replacement costs, reduce maintenance, and increase readiness by limiting equipment downtime.

  6. Boosting investor yields through bond insurance

    SciTech Connect (OSTI)

    Mosbacher, M.L.; Burkhardt, D.A.

    1993-02-01

    The market for utility securities generally tends to be fairly static. Innovative financing techniques are rarely used because of the marketability of utility securities stemming from the companies' generally strong financial credit and the monopoly markets most utilities serve. To many people, utility securities are considered the pillars of the financial world, and innovation is not needed. Further, plain vanilla utility issues are easily understood by investors, as well as by regulators and customers. Over the past several years, however, a new utility bond product has crept into the world of utility securities - insured secondary utility bonds. These insured bonds may possibly be used as an alternative financing technique for newly issued debt. Individual investors often tend to rely on insurance as a tool for reducing credit risk and are willing to take the lower yields as a tradeoff. Insured utility bonds are created by brokerage firms through the acqusition of a portion of an outstanding utility bond issue and subsequent solicitation of the insurance companies for bids. The insurance company then agrees to insure that portion of the issue until maturity for a fee, and the brokerage firm sells those bonds to their customers as a AAA-insured bond. Issuers are encouraged to explore the retail market as a financing alternative. They may find a most cost-effective means of raising capital.

  7. Metals 2000

    SciTech Connect (OSTI)

    Allison, S.W.; Rogers, L.C.; Slaughter, G.; Boensch, F.D.; Claus, R.O.; de Vries, M.

    1993-05-01

    This strategic planning exercise identified and characterized new and emerging advanced metallic technologies in the context of the drastic changes in global politics and decreasing fiscal resources. In consideration of a hierarchy of technology thrusts stated by various Department of Defense (DOD) spokesmen, and the need to find new and creative ways to acquire and organize programs within an evolving Wright Laboratory, five major candidate programs identified are: C-17 Flap, Transport Fuselage, Mach 5 Aircraft, 4.Fighter Structures, and 5. Missile Structures. These results were formed by extensive discussion with selected major contractors and other experts, and a survey of advanced metallic structure materials. Candidate structural applications with detailed metal structure descriptions bracket a wide variety of uses which warrant consideration for the suggested programs. An analysis on implementing smart skins and structures concepts is given from a metal structures perspective.

  8. Metal Hydrides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Hydrides Theodore Motyka Savannah River National Laboratory Metal Hydride System Architect Jose-Miguel Pasini, & Bart van Hassel UTRC Claudio Corgnale & Bruce Hardy SRNL Kevin Simmons and Mark Weimar PNNL Darsh Kumar GM, Matthew Thornton NREL, Kevin Drost OSU DOE Materials-Based Hydrogen Storage Summit Defining Pathways for Onboard Automotive Applications 2 Outline * Background and MH History * MH HSECoE Results * Material Operating Requirements * Modeling and Analyses * BOP and

  9. Surface preparation of adhesively bonded joints

    SciTech Connect (OSTI)

    Hogg, I.C.; Janardhana, M.N.

    1993-12-31

    For the bonding of structures, it is essential that correct surface preparation is completed to ensure both a reliable and a durable bond. In a controlled environment this can be achieved easily, but difficulties can occur in the field. This paper is a compilation of research completed in the area of surface preparation for the bonding of aluminum and graphite epoxy composites. Finite element analysis software MSC/NASTRAN has been used to investigate the effect of adhesion on the strength and failure characteristics of a single lap joint.

  10. Growth morphology and properties of metals on graphene

    SciTech Connect (OSTI)

    Liu, Xiaojie; Han, Yong; Evans, James W.; Engstfeld, Albert K.; Behm, R. Juergen; Tringides, Michael C.; Hupalo, Myron; Lin, Hai -Qing; Huang, Li; Ho, Kai -Ming; Appy, David; Thiel, Patricia A.; Wang, Cai -Zhuang

    2015-12-01

    Graphene, a single atomic layer of graphite, has been the focus of recent intensive studies due to its novel electronic and structural properties. With this study, metals grown on graphene also have been of interest because of their potential use as metal contacts in graphene devices, for spintronics applications, and for catalysis. All of these applications require good understanding and control of the metal growth morphology, which in part reflects the strength of the metal–graphene bond. The interaction between graphene and metal is sufficiently strong to modify the electronic structure of graphene is also of great importance. We will discuss recent experimental and computational studies related to deposition of metals on graphene supported on various substrates (SiC, SiO2, and hexagonal close-packed metal surfaces). Of specific interest are the metal–graphene interactions (adsorption energies and diffusion barriers of metal adatoms), and the crystal structures and thermal stability of the metal nanoclusters.

  11. A Surprising Path for Proton Transfer Without Hydrogen Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Surprising Path for Proton Transfer Without Hydrogen Bonds Print Hydrogen bonds are found everywhere in chemistry and biology and are critical in DNA and RNA. A hydrogen bond...

  12. A Surprising Path for Proton Transfer Without Hydrogen Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Surprising Path for Proton Transfer Without Hydrogen Bonds A Surprising Path for Proton Transfer Without Hydrogen Bonds Print Wednesday, 25 July 2012 00:00 Hydrogen bonds are...

  13. Dendritic metal nanostructures

    DOE Patents [OSTI]

    Shelnutt, John A.; Song, Yujiang; Pereira, Eulalia F.; Medforth, Craig J.

    2010-08-31

    Dendritic metal nanostructures made using a surfactant structure template, a metal salt, and electron donor species.

  14. Synthesis, characterization, and crystal structure of 2-amino-7-methyl-5-oxo-4-phenyl-4,5-dihydropyrano[3,2-c] pyran-3-carbonitrile

    SciTech Connect (OSTI)

    Sharma, S.; Banerjee, B.; Brahmachari, G.; Kant, Rajni; Gupta, V. K.

    2015-12-15

    2-Amino-7-methyl-5-oxo-4-phenyl-4,5-dihydropyrano[3,2-c] pyran-3-carbonitrile, C{sub 16}H{sub 12}N{sub 2}O{sub 3} is synthesized via one-pot multi-component reaction at room temperature using commercially available urea as inexpensive and environmentally benign organo-catalyst. Its structure is determined by single-crystal X-ray diffraction technique The crystals are monoclinic, a = 10.7357(12), b = 8.7774(8), c = 15.0759(16) Å, β = 103.575(11)°, Z = 4, sp. gr. P2{sub 1}/n, R = 0.0551 for 1696 observed reflections. The crystal structure is stabilized by N–H···N, C–H···O, and C–H···π interactions.

  15. The plant limonoid 7-oxo-deacetoxygedunin inhibits RANKL-induced osteoclastogenesis by suppressing activation of the NF-{kappa}B and MAPK pathways

    SciTech Connect (OSTI)

    Wisutsitthiwong, Chonnaree; Buranaruk, Chayanit; Pudhom, Khanitha; Palaga, Tanapat

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer A gedunin type limonoid from seeds of mangroves, 7-oxo-7-deacetoxygedunin, exhibits strong anti-osteoclastogenic activity. Black-Right-Pointing-Pointer Treatment with this limonoid results in significant decrease in expression of NFATc1 and osteoclast-related genes. Black-Right-Pointing-Pointer The mode of action of this limonoid is by inhibiting activation of the NF-{kappa}B and MAPK pathways which are activated by RANKL. -- Abstract: Osteoclasts together with osteoblasts play pivotal roles in bone remodeling. Aberrations in osteoclast differentiation and activity contribute to osteopenic disease. Osteoclasts differentiate from monocyte/macrophage progenitors, a process that is initiated by the interaction between receptor activator of NF-{kappa}B (RANK) and its ligand, RANKL. In this study, we identified 7-oxo-7-deacetoxygedunin (7-OG), a gedunin type limonoid from seeds of the mangrove Xylocarpus moluccensis, as a potent inhibitor of osteoclastogenesis. Additionally, 7-OG showed strong anti-osteoclastogenic activity with low cytotoxicity against the monocyte/macrophage progenitor cell line, RAW264.7. The IC50 for anti-osteoclastogenic activity was 4.14 {mu}M. Treatment with 7-OG completely abolished the appearance of multinucleated giant cells with tartrate-resistant acid phosphatase activity in RAW264.7 cells stimulated with RANKL. When the expression of genes related to osteoclastogenesis was investigated, a complete downregulation of NFATc1 and cathepsin K and a delayed downregulation of irf8 were observed upon 7-OG treatment in the presence of RANKL. Furthermore, treatment with this limonoid suppressed RANKL-induced activation of p38, MAPK and Erk and nuclear localization of NF-{kappa}B p65. Taken together, we present evidence indicating a plant limonoid as a novel osteoclastogenic inhibitor that could be used for osteoporosis and related conditions.

  16. Clean Energy and Bond Finance Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy and Bond Finance Initiative Clean Energy and Bond Finance Initiative Provides information on Clean Energy and Bond Finance Initiative (CE+BFI). CE+BFI brings together public infrastructure finance agencies, clean energy public fund managers and institutional investors across the country to explore how to raise capital at scale for clean energy development through bond financing. Author: Clean Energy and Bond Finance Initiative Clean Energy and Bond Finance Initiative Website More

  17. Producing microchannels using graduated diffusion bonding of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of precision machined foils or sheets (laminates) to make a micro-channel reactor A novel multi-step process for the diffusion bonding of laminates National Energy Technology...

  18. Method for forming or bonding a liner

    DOE Patents [OSTI]

    Prevender, Thomas S.

    1980-01-01

    A process and means for forming or bonding a liner to a shell or element wherein the liner is filled with or immersed in water and a portion of the water is frozen.

  19. Local Option- Energy Efficiency Project Bonds

    Broader source: Energy.gov [DOE]

    On March 2015, the Arkansas legislature passed SB 896 or the “Local Government Energy Efficiency Project Bond Act” which provides enabling legislation for a municipality or a county to issue energy...

  20. Cement Bond Log | Open Energy Information

    Open Energy Info (EERE)

    casing and cement and between cement and borehole wall. Most cement-bond logs are a measurement only of the amplitude of the early arriving casing signal. Although a small...

  1. Bond Coating Performance of Thermal Barrier Coatings for Industrial Gas Turbines

    SciTech Connect (OSTI)

    Wright, Ian G; Pint, Bruce A

    2005-01-01

    Thermal barrier coatings are intended to work in conjunction with internal cooling schemes to reduce the metal temperature of critical hot gas path components in gas turbine engines. The thermal resistance is typically provided by a 100--250 {mu}m thick layer of ceramic (most usually zirconia stabilized with an addition of 7--8 wt% of yttria), and this is deposited on to an approximately 50 {mu} thick, metallic bond coating that is intended to anchor the ceramic to the metallic surface, to provide some degree of mechanical compliance, and to act as a reservoir of protective scale-forming elements (Al) to protect the underlying superalloy from high-temperature corrosion. A feature of importance to the durability of thermal barrier coatings is the early establishment of a continuous, protective oxide layer (preferably {alpha}-alumina) at the bond coating-ceramic interface. Because zirconia is permeable to oxygen, this oxide layer continues to grow during service. Some superalloys are inherently resistant to high-temperature oxidation, so a separate bond coating may not be needed in those cases. Thermal barrier coatings have been in service in aeroengines for a number of years, and the use of this technology for increasing the durability and/or efficiency of industrial gas turbines is currently of significant interest. The data presented were taken from an investigation of routes to optimize bond coating performance, and the focus of the paper is on the influences of reactive elements and Pt on the oxidation behaviour of NiAl-based alloys determined in studies using cast versions of bond coating compositions.

  2. Method of making bonded or sintered permanent magnets

    DOE Patents [OSTI]

    McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.

    1993-08-31

    An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density.

  3. Method of making bonded or sintered permanent magnets

    DOE Patents [OSTI]

    McCallum, R. William; Dennis, Kevin W.; Lograsso, Barbara K.; Anderson, Iver E.

    1995-11-28

    An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density.

  4. Method of making bonded or sintered permanent magnets

    DOE Patents [OSTI]

    McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.

    1995-11-28

    An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density. 14 figs.

  5. Syntactic foam composites and bonding. Final report

    SciTech Connect (OSTI)

    McWhirter, R.J.

    1980-09-01

    A manufacturing process has been developed to produce billets molded from a composite of carbon microspheres, a polyimide resin, and carbon fibers. The billets then are machined to configuration which results in extremely sharp and fragile edges on one part. To strengthen these parts, a parylene coating is applied, after which the parts are assembled with other parts by bonding. Bonding and assembly problems are discussed in detail; other problems encountered are summarized, and several are referenced to previous reports.

  6. Opportunities in Bond Financing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Bond Financing Opportunities in Bond Financing Presentation about financial options and opportunities for biogas and fuel cells. Presented by James Dack, Stern Brothers, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado. june2012_biogas_workshop_dack.pdf (154.9 KB) More Documents & Publications Leveraging Federal Funds Biogas and Fuel Cells Workshop Summary Report: Proceedings from the Biogas and Fuel Cells Workshop, Golden, Colorado, June 11-13,

  7. An unusual carbon-carbon bond cleavage reaction during phosphinothrici...

    Office of Scientific and Technical Information (OSTI)

    An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis Citation Details In-Document Search Title: An unusual carbon-carbon bond cleavage reaction ...

  8. Fitzgerald Wtr Lgt & Bond Comm | Open Energy Information

    Open Energy Info (EERE)

    Fitzgerald Wtr Lgt & Bond Comm Jump to: navigation, search Name: Fitzgerald Wtr Lgt & Bond Comm Place: Georgia Phone Number: (229) 426-5400 Website: fitzutilities.com Outage...

  9. Taking Advantage of Qualified Energy Conservation Bonds (QECBs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantage of Qualified Energy Conservation Bonds (QECBs) Taking Advantage of Qualified Energy Conservation Bonds (QECBs) This webinar, held on Sept. 22, 2010, provides information ...

  10. FITCH RATES ENERGY NORTHWEST, WA'S ELECTRIC REV RFDG BONDS 'AA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    debt (4.1 billion). KEY RATING DRIVERS BONNEVILLE'S OBLIGATION SECURES BONDS: The rating on the Energy Northwest bonds reflects the credit quality of Bonneville and its...

  11. Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Provides a presentation overview of qualified energy conservation bond and new clean renewable energy bonds, including characteristics, mechanics, allocated volume, and other ...

  12. Peer Exchange Call on Financing and Revenue: Bond Funding | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Exchange Call on Financing and Revenue: Bond Funding Peer Exchange Call on Financing and Revenue: Bond Funding Better Buildings Neighborhood Program Peer Exchange Call on ...

  13. Intramolecular hydrogen bonding as a synthetic tool to induce...

    Office of Scientific and Technical Information (OSTI)

    hydrogen bonding as a synthetic tool to induce chemical selectivity in acid catalyzed porphyrin synthesis Citation Details In-Document Search Title: Intramolecular hydrogen bonding ...

  14. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon bonds

    DOE Patents [OSTI]

    Guan, Zhibin; Lu, Yixuan

    2015-09-15

    A method of preparing a malleable and/or self-healing polymeric or composite material is provided. The method includes providing a polymeric or composite material comprising at least one alkene-containing polymer, combining the polymer with at least one homogeneous or heterogeneous transition metal olefin metathesis catalyst to form a polymeric or composite material, and performing an olefin metathesis reaction on the polymer so as to form reversible carbon-carbon double bonds in the polymer. Also provided is a method of healing a fractured surface of a polymeric material. The method includes bringing a fractured surface of a first polymeric material into contact with a second polymeric material, and performing an olefin metathesis reaction in the presence of a transition metal olefin metathesis catalyst such that the first polymeric material forms reversible carbon-carbon double bonds with the second polymeric material. Compositions comprising malleable and/or self-healing polymeric or composite material are also provided.

  15. Metal hydrides

    SciTech Connect (OSTI)

    Carnes, J.R.; Kherani, N.P.

    1987-11-01

    Metal hydride information is not available for most hydrides in a consolidated quick-reference source. This report's objective is to fill the need for such a document providing basic thermodynamic data for as many metal hydrides as possible. We conduced a computerized library search to access as many sources as possible and screened each source for such thermodynamic data as pressure-temperature graphs, van't Hoff curves, and impurity effects. We included any other relevant information and commented on it. A primary concern to be investigated in the future is the behavior of metal tritides. This would be important in the area of emergency tritium cleanup systems. The hydride graphs are useful, however, as tritides may be expected in most cases to behave similarly and at least follow trends of their respective hydrides. 42 refs., 40 figs., 5 tabs.

  16. An investigation on microstructure evolution and mechanical properties during liquid state diffusion bonding of Al2024 to Ti–6Al–4V

    SciTech Connect (OSTI)

    Samavatian, Majid; Halvaee, Ayoub; Amadeh, Ahmad Ali; Khodabandeh, Alireza

    2014-12-15

    Joining mechanism of Ti/Al dissimilar alloys was studied during liquid state diffusion bonding process using Cu/Sn/Cu interlayer at 510 °C under vacuum of 7.5 × 10{sup −5} Torr for various bonding times. The microstructure and compositional changes in the joint zone were analyzed by scanning electron microscopy equipped with energy dispersive spectroscopy and X-ray diffraction. Microhardness and shear strength tests were also applied to study the mechanical properties of the joints. It was found that with an increase in bonding time, the elements of interlayer diffused into the parent metals and formed various intermetallic compounds at the interface. Diffusion process led to the isothermal solidification and the bonding evolution in the joint zone. The results from mechanical tests showed that microhardness and shear strength values have a straight relation with bonding time so that the maximum shear strength of joint was obtained for a bond made with 60 min bonding time. - Highlights: • Liquid state diffusion bonding of Al2024 to Ti–6Al–4V was performed successfully. • Diffusion of the elements caused the formation of various intermetallics at the interface. • Microhardness and shear strength values have a straight relation with bonding time. • The maximum shear strength reached to 36 MPa in 60 min bonding time.

  17. Guidance for Energy Efficiency and Conservation Block Grant Grantees on Qualified Energy Conservation Bonds and New Clean Renewable Energy Bonds

    Broader source: Energy.gov [DOE]

    Guidance for Energy Efficiency and Conservation Block Grant Program grantees regarding Qualified Energy Conservation Bonds (QECBs) and New Clean Renewable Energy Bonds (New CREBs)

  18. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    SciTech Connect (OSTI)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  19. METAL COMPOSITIONS

    DOE Patents [OSTI]

    Seybolt, A.U.

    1959-02-01

    Alloys of uranium which are strong, hard, and machinable are presented, These alloys of uranium contain bctween 0.1 to 5.0% by weight of at least one noble metal such as rhodium, palladium, and gold. The alloys may be heat treated to obtain a product with iniproved tensile and compression strengths,

  20. Anion separation with metal-organic frameworks

    SciTech Connect (OSTI)

    Custelcean, Radu; Moyer, Bruce A

    2007-01-01

    The application of metal-organic frameworks (MOFs) to anion separations with a special emphasis on anion selectivity is reviewed. The coordination frameworks are classified on the basis of the main interactions to the included anion, from weak and non-specific van der Waals forces to more specific interactions such as coordination to Lewis acid metal centers or hydrogen bonding. The importance of anion solvation phenomena to the observed anion selectivities is highlighted, and strategies for reversing the Hofmeister bias that favors large, less hydrophilic anions, and for obtaining peak selectivities based on shape recognition are delineated. Functionalization of the anion-binding sites in MOFs with strong and directional hydrogen-bonding groups that are complementary to the included anion, combined with organizational rigidity of the coordination framework, appears to be the most promising approach for achieving non-Hofmeister selectivity.

  1. Qualified Energy Conservation Bond State-by-State Summary Tables

    Broader source: Energy.gov [DOE]

    Provides a list of qualified energy conservation bond state summary tables. Author: Energy Programs Consortium

  2. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, Nathaniel M.; Dye, Robert C.; Snow, Ronny C.; Birdsell, Stephan A.

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  3. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  4. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOE Patents [OSTI]

    Lilga, M.A.; Hallen, R.T.

    1991-10-15

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.

  5. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOE Patents [OSTI]

    Lilga, Michael A.; Hallen, Richard T.

    1991-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.

  6. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOE Patents [OSTI]

    Lilga, M.A.; Hallen, R.T.

    1990-08-28

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the producer gas from coal gasification processes. 3 figs.

  7. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOE Patents [OSTI]

    Lilga, Michael A.; Hallen, Richard T.

    1990-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.

  8. Epoxy bond and stop etch fabrication method

    DOE Patents [OSTI]

    Simmons, Jerry A.; Weckwerth, Mark V.; Baca, Wes E.

    2000-01-01

    A class of epoxy bond and stop etch (EBASE) microelectronic fabrication techniques is disclosed. The essence of such techniques is to grow circuit components on top of a stop etch layer grown on a first substrate. The first substrate and a host substrate are then bonded together so that the circuit components are attached to the host substrate by the bonding agent. The first substrate is then removed, e.g., by a chemical or physical etching process to which the stop etch layer is resistant. EBASE fabrication methods allow access to regions of a device structure which are usually blocked by the presence of a substrate, and are of particular utility in the fabrication of ultrafast electronic and optoelectronic devices and circuits.

  9. Fundamental aspects of recoupled pair bonds. II. Recoupled pair bond dyads in carbon and sulfur difluoride

    SciTech Connect (OSTI)

    Dunning, Thom H. Takeshita, Tyler Y.; Xu, Lu T.

    2015-01-21

    Formation of a bond between a second ligand and a molecule with a recoupled pair bond results in a recoupled pair bond dyad. We examine the recoupled pair bond dyads in the a{sup 3}B{sub 1} states of CF{sub 2} and SF{sub 2}, which are formed by the addition of a fluorine atom to the a{sup 4}Σ{sup −} states of CF and SF, both of which possess recoupled pair bonds. The two dyads are very different. In SF{sub 2}, the second FS–F bond is very strong (D{sub e} = 106.3 kcal/mol), the bond length is much shorter than that in the SF(a{sup 4}Σ{sup −}) state (1.666 Å versus 1.882 Å), and the three atoms are nearly collinear (θ{sub e} = 162.7°) with only a small barrier to linearity (0.4 kcal/mol). In CF{sub 2}, the second FC–F bond is also very strong (D{sub e} = 149.5 kcal/mol), but the bond is only slightly shorter than that in the CF(a{sup 4}Σ{sup −}) state (1.314 Å versus 1.327 Å), and the molecule is strongly bent (θ{sub e} = 119.0°) with an 80.5 kcal/mol barrier to linearity. The a{sup 3}B{sub 1} states of CF{sub 2} and SF{sub 2} illustrate the fundamental differences between recoupled pair bond dyads formed from 2s and 3p lone pairs.

  10. Phosphate-bonded calcium aluminate cements

    DOE Patents [OSTI]

    Sugama, T.

    1993-09-21

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.