National Library of Energy BETA

Sample records for metal oxide semiconductor

  1. Metal Oxide Semiconductor Nanoparticles Open the Door to New...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Oxide Semiconductor Nanoparticles Open the Door to New Medical Innovations Technology available for licensing: novel nanometer-sized metal oxide semiconductors that allow...

  2. Method of physical vapor deposition of metal oxides on semiconductors

    DOE Patents [OSTI]

    Norton, David P. (Knoxville, TN)

    2001-01-01

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  3. Metal Oxide Semiconductor Gas Sensors and Neural Networks

    E-Print Network [OSTI]

    Siegel, Mel

    Olfaction Metal Oxide Semiconductor Gas Sensors and Neural Networks M. W. Siegel Carnegie Mellon around a chemical plant, sniffing as it goes for gas leaks (or the vapors of liquid leaks), navigating perhaps directed to the offending pipe fissure or open valve by acoustic homing toward the source

  4. Electrical characterization of native-oxide InAlPGaAs metal-oxide-semiconductor heterostructures using

    E-Print Network [OSTI]

    Electrical characterization of native-oxide InAlPÕGaAs metal-oxide-semiconductor heterostructures 8 December 2003; accepted 20 January 2004 InAIP native oxide/GaAs metal-oxide-semiconductor MOS of Schottky gates can lead to excessive gate leakage current and also restrict the forward gate bias to only

  5. Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors

    E-Print Network [OSTI]

    Gilbert, Matthew

    Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor on transport in graphene nanoribbon metal-oxide-semiconductor field-effect transistors MOSFETs are reported of Physics. DOI: 10.1063/1.2839330 Graphene has recently generated considerable interest as a semiconductor

  6. Transition metal oxides on organic semiconductors Yongbiao Zhao a

    E-Print Network [OSTI]

    Xiong, Qihua

    inverted organic light-emitting diodes (OLEDs) and inverted organic solar cells (OSCs), which can improve of organic semiconductors (OSs). For example, in organic light-emitting diodes (OLEDs) [7], they are used! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic

  7. Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators

    SciTech Connect (OSTI)

    Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

    1985-04-01

    The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

  8. Semiconductor assisted metal deposition for nanolithography applications

    DOE Patents [OSTI]

    Rajh, Tijana (Naperville, IL); Meshkov, Natalia (Downers Grove, IL); Nedelijkovic, Jovan M. (Belgrade, YU); Skubal, Laura R. (West Brooklyn, IL); Tiede, David M. (Elmhurst, IL); Thurnauer, Marion (Downers Grove, IL)

    2002-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  9. Hydrocarbon reaction with HF-cleaned Si(lOQ) and effects on metal-oxide-semiconductor device quality

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Hydrocarbon reaction with HF-cleaned Si(lOQ) and effects on metal-oxide-semiconductor device-cleaned Si( 100) towards hydrocarbon adsorption is examined by surface analysis; most hydrocarbons adsorb oxidation after HF treatment.4'5 In this letter, passivation against hydrocarbon contamination is studied

  10. Transient radiation hardened CMOS (complementary metal oxide semiconductor) operational amplifiers. Master's thesis

    SciTech Connect (OSTI)

    Trombley, G.J.

    1989-01-01

    General strategies are developed for designing radiation hardened bulk and silicon on insulator (SOI) complementary metal oxide semiconductor (CMOS) operational amplifiers. Comparisons are made between each technology concerning photocurrent mechanisms and the inherent advantages of SOI CMOS. Methods are presented for analysing circuit designs and minimizing the net photocurrent responses. Analysis is performed on standard operational amplifier circuits and subcircuits to demonstrate the usefulness of these methods. Radiation hardening topics discussed include superior radiation hardened topologies, photocurrent compensation and its limitations, and methods to ensure a preferred direction of photocurrent response. Several operational amplifier subcircuits are compared for their hardness characteristics. Folded cascode and three-stage operational amplifiers were fabricated on an SOI CMOS test chip supported by Texas Instruments, Incorporated. At the time of publication, the circuit operation was verified but radiation data were not yet available.

  11. Cross-plane electronic and thermal transport properties of p-type La0.67Sr0.33MnO3/LaMnO3 perovskite oxide metal/semiconductor

    E-Print Network [OSTI]

    Xu, Xianfan

    perovskite oxide metal/semiconductor superlattices Pankaj Jha,1,2 Timothy D. Sands,1,2,3,a) Laura Cassels,4)/lanthanum manganate (LaMnO3, i.e., LMO) perovskite oxide metal/semiconductor superlattices were investigated

  12. Strained Ge channel p-type metal-oxide-semiconductor field-effect transistors grown on Siâ?â??xGex/Si virtual substrates

    E-Print Network [OSTI]

    Lee, Minjoo L.

    We have fabricated strained Ge channel p-type metal-oxide-semiconductor field-effect transistors (p-MOSFETs) on Siâ??.â??Geâ??.â?? virtual substrates. The poor interface between silicon dioxide (SiOâ??) and the Ge channel ...

  13. Self-Aligned, Extremely High Frequency III-V Metal-Oxide-Semiconductor Field-Effect Transistors on Rigid and Flexible

    E-Print Network [OSTI]

    Javey, Ali

    Self-Aligned, Extremely High Frequency III-V Metal-Oxide- Semiconductor Field-Effect Transistors. The results demonstrate the potential of III-V-on-insulator platform for extremely high-frequency (EHF mobility transistors (HEMTs).15-20 The record-high cutoff frequency (ft) for InAs-based HEMTs has already

  14. Quantum-correlated photon pairs generated in a commercial 45nm complementary metal-oxide semiconductor microelectronics chip

    E-Print Network [OSTI]

    Gentry, Cale M; Wade, Mark W; Stevens, Martin J; Dyer, Shellee D; Zeng, Xiaoge; Pavanello, Fabio; Gerrits, Thomas; Nam, Sae Woo; Mirin, Richard P; Popovi?, Miloš A

    2015-01-01

    Correlated photon pairs are a fundamental building block of quantum photonic systems. While pair sources have previously been integrated on silicon chips built using customized photonics manufacturing processes, these often take advantage of only a small fraction of the established techniques for microelectronics fabrication and have yet to be integrated in a process which also supports electronics. Here we report the first demonstration of quantum-correlated photon pair generation in a device fabricated in an unmodified advanced (sub-100nm) complementary metal-oxide-semiconductor (CMOS) process, alongside millions of working transistors. The microring resonator photon pair source is formed in the transistor layer structure, with the resonator core formed by the silicon layer typically used for the transistor body. With ultra-low continuous-wave on-chip pump powers ranging from 5 $\\mu$W to 400 $\\mu$W, we demonstrate pair generation rates between 165 Hz and 332 kHz using >80% efficient WSi superconducting nano...

  15. Direct observation of both contact and remote oxygen scavenging of GeO{sub 2} in a metal-oxide-semiconductor stack

    SciTech Connect (OSTI)

    Fadida, S., E-mail: sivanfa@tx.technion.ac.il; Shekhter, P.; Eizenberg, M. [Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa (Israel); Cvetko, D. [Laboratorio TASC/IOM-CNR, Area di ricerca, Trieste (Italy); Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana (Slovenia); Floreano, L.; Verdini, A. [Laboratorio TASC/IOM-CNR, Area di ricerca, Trieste (Italy); Nyns, L.; Van Elshocht, S. [Imec, Kapeldreef 75, B-3001 Leuven (Belgium); Kymissis, I. [Department of Electrical Engineering, Columbia University, New York, New York 10027 (United States)

    2014-10-28

    In the path to incorporating Ge based metal-oxide-semiconductor into modern nano-electronics, one of the main issues is the oxide-semiconductor interface quality. Here, the reactivity of Ti on Ge stacks and the scavenging effect of Ti were studied using synchrotron X-ray photoelectron spectroscopy measurements, with an in-situ metal deposition and high resolution transmission electron microscopy imaging. Oxygen removal from the Ge surface was observed both in direct contact as well as remotely through an Al{sub 2}O{sub 3} layer. The scavenging effect was studied in situ at room temperature and after annealing. We find that the reactivity of Ti can be utilized for improved scaling of Ge based devices.

  16. Quantum-correlated photon pairs generated in a commercial 45nm complementary metal-oxide semiconductor microelectronics chip

    E-Print Network [OSTI]

    Cale M. Gentry; Jeffrey M. Shainline; Mark T. Wade; Martin J. Stevens; Shellee D. Dyer; Xiaoge Zeng; Fabio Pavanello; Thomas Gerrits; Sae Woo Nam; Richard P. Mirin; Miloš A. Popovi?

    2015-07-24

    Correlated photon pairs are a fundamental building block of quantum photonic systems. While pair sources have previously been integrated on silicon chips built using customized photonics manufacturing processes, these often take advantage of only a small fraction of the established techniques for microelectronics fabrication and have yet to be integrated in a process which also supports electronics. Here we report the first demonstration of quantum-correlated photon pair generation in a device fabricated in an unmodified advanced (sub-100nm) complementary metal-oxide-semiconductor (CMOS) process, alongside millions of working transistors. The microring resonator photon pair source is formed in the transistor layer structure, with the resonator core formed by the silicon layer typically used for the transistor body. With ultra-low continuous-wave on-chip pump powers ranging from 5 $\\mu$W to 400 $\\mu$W, we demonstrate pair generation rates between 165 Hz and 332 kHz using >80% efficient WSi superconducting nanowire single photon detectors. Coincidences-to-accidentals ratios consistently exceeding 40 were measured with a maximum of 55. In the process of characterizing this source we also accurately predict pair generation rates from the results of classical four-wave mixing measurements. This proof-of-principle device demonstrates the potential of commercial CMOS microelectronics as an advanced quantum photonics platform with capability of large volume, pristine process control, and where state-of-the-art high-speed digital circuits could interact with quantum photonic circuits.

  17. High quality HfO{sub 2}/p-GaSb(001) metal-oxide-semiconductor capacitors with 0.8?nm equivalent oxide thickness

    SciTech Connect (OSTI)

    Barth, Michael; Datta, Suman; Bruce Rayner, G.; McDonnell, Stephen; Wallace, Robert M.; Bennett, Brian R.; Engel-Herbert, Roman

    2014-12-01

    We investigate in-situ cleaning of GaSb surfaces and its effect on the electrical performance of p-type GaSb metal-oxide-semiconductor capacitor (MOSCAP) using a remote hydrogen plasma. Ultrathin HfO{sub 2} films grown by atomic layer deposition were used as a high permittivity gate dielectric. Compared to conventional ex-situ chemical cleaning methods, the in-situ GaSb surface treatment resulted in a drastic improvement in the impedance characteristics of the MOSCAPs, directly evidencing a much lower interface trap density and enhanced Fermi level movement efficiency. We demonstrate that by using a combination of ex-situ and in-situ surface cleaning steps, aggressively scaled HfO{sub 2}/p-GaSb MOSCAP structures with a low equivalent oxide thickness of 0.8?nm and efficient gate modulation of the surface potential are achieved, allowing to push the Fermi level far away from the valence band edge high up into the band gap of GaSb.

  18. Novel, band-controlled metal oxide compositions for semiconductor-mediated photocatalytic splitting of water to produce H{sub 2}

    SciTech Connect (OSTI)

    Gupta, Narendra M.

    2013-02-05

    Semiconductor-mediated photo-catalytic dissociation of water offers a unique opportunity for the production of H{sub 2}, a sustainable source of energy. More efficient and chemically stable photo-catalysts, however, remain a vital requirement for commercial viability of this process. The recent research in my group has focused on the synthesis of several new metal oxide (MO) photo-catalysts, such as: LaInO{sub 3}, GaFeO{sub 3}, InVO{sub 4}, In{sub 2}TiO{sub 5} and nanotubular TiO{sub 2}. These samples of controlled grain morphology have been synthesized by using different synthesis protocols and with and without coating of a noble metal co-catalyst. The doping of an impurity, either at cationic or at anionic lattice site, has helped in the tailoring of band structure and making these oxides visible-light-sensitive. Our study has revealed that the surface characteristics, grain morphology, band structure, and doping-induced lattice imperfections control the photo-physical properties and overall photo-catalytic water splitting activity of these metal/MO composites [1-6]. We have demonstrated that, besides promoting certain charge-transfer steps, metal-semiconductor interfaces influence the adsorption of water molecules and their subsequent interaction with photo-generated electron-hole pair at the catalyst surface. The role played by the above-mentioned micro-structural properties in photo-catalytic water splitting process will be discussed.

  19. An in-depth noise model for giant magnetoresistance current sensors for circuit design and complementary metal–oxide–semiconductor integration

    SciTech Connect (OSTI)

    Roldán, A. Roldán, J. B.; Reig, C.; Cardoso, S.; Cardoso, F.; Ferreira, R.; Freitas, P. P.

    2014-05-07

    Full instrumentation bridges based on spin valve of giant magnetoresistance and magnetic tunnel junction devices have been microfabricated and experimentally characterized from the DC and noise viewpoint. A more realistic model of these devices was obtained in this work, an electrical and thermal model previously developed have been improved in such a way that noise effects are also included. We have implemented the model in a circuit simulator and reproduced the experimental measurements accurately. This provides a more realistic and complete tool for circuit design where magnetoresistive elements are combined with well-known complementary metal–oxide–semiconductor modules.

  20. Prediction of the Thermal Annealing of Thick Oxide Metal-Oxide-Semiconductor Dosimeters Irradiated in a Harsh Radiation Environment

    E-Print Network [OSTI]

    Ravotti, F; Saigné, F; Dusseau, L; Sarrabayrouse, G

    2006-01-01

    Radiation-sensing MOSFET transistors produced by the laboratory LAAS-CNRS were exposed to a harsh hadron field that represents the real radiation environment expected at the CERN Large Hadron Collider Experiments. The long-term stability of the transistor's Ids-Vgs characteristic was investigated using the isochronal annealing technique. In this work, devices exposed to high intensity hadron levels show evidences of displacement damages in the Ids-Vgs annealing behavior. By comparing experimental and simulated results over fourteen months, the isochronal annealing method, originally devoted to oxide trapped charge, is shown to enable prediction of the recovery of silicon bulk defects.

  1. Shaping metal nanocrystals through epitaxial seeded growth

    E-Print Network [OSTI]

    Habas, Susan E.; Lee, Hyunjoo; Radmilovic, Velimir; Somorjai, Gabor A.; Yang, Peidong

    2008-01-01

    Structural Evolution in Metal Oxide/Semiconductor Colloidalasymmetric one-sided metal-tipped semiconductor nanocrystalGrowth of Magnetic-Metal- Functionalized Semiconductor Oxide

  2. Strained Sistrained Ge dual-channel heterostructures on relaxed Si0.5Ge0.5 for symmetric mobility p-type and n-type metal-oxide-semiconductor

    E-Print Network [OSTI]

    Strained SiÕstrained Ge dual-channel heterostructures on relaxed Si0.5Ge0.5 for symmetric mobility By growing heterostructures that combine a surface strained Si layer with a buried strained Ge layer on Si0.5Ge0.5 , we have fabricated metal-oxide-semiconductor field-effect transistors with mobility

  3. Electron-electron scattering-induced channel hot electron injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors with high-k/metal gate stacks

    SciTech Connect (OSTI)

    Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Liu, Xi-Wen [Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chang, Ting-Chang [Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Tainan, Taiwan (China); Chen, Ching-En; Ho, Szu-Han; Tseng, Tseung-Yuen [Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan (China); Cheng, Osbert; Huang, Cheng-Tung; Lu, Ching-Sen [Device Department, United Microelectronics Corporation, Tainan Science Park, Tainan, Taiwan (China)

    2014-10-06

    This work investigates electron-electron scattering (EES)-induced channel hot electron (CHE) injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors (n-MOSFETs) with high-k/metal gate stacks. Many groups have proposed new models (i.e., single-particle and multiple-particle process) to well explain the hot carrier degradation in nanoscale devices and all mechanisms focused on Si-H bond dissociation at the Si/SiO{sub 2} interface. However, for high-k dielectric devices, experiment results show that the channel hot carrier trapping in the pre-existing high-k bulk defects is the main degradation mechanism. Therefore, we propose a model of EES-induced CHE injection to illustrate the trapping-dominant mechanism in nanoscale n-MOSFETs with high-k/metal gate stacks.

  4. Trend of tunnel magnetoresistance and variation in threshold voltage for keeping data load robustness of metal–oxide–semiconductor/magnetic tunnel junction hybrid latches

    SciTech Connect (OSTI)

    Ohsawa, T.; Ikeda, S.; Hanyu, T.; Ohno, H.; Endoh, T.

    2014-05-07

    The robustness of data load of metal–oxide–semiconductor/magnetic tunnel junction (MOS/MTJ) hybrid latches at power-on is examined by using Monte Carlo simulation with the variations in magnetoresistances for MTJs and in threshold voltages for MOSFETs involved in 90?nm technology node. Three differential pair type spin-transfer-torque-magnetic random access memory cells (4T2MTJ, 6T2MTJ, and 8T2MTJ) are compared for their successful data load at power-on. It is found that the 4T2MTJ cell has the largest pass area in the shmoo plot in TMR ratio (tunnel magnetoresistance ratio) and V{sub dd} in which a whole 256?kb cell array can be powered-on successfully. The minimum TMR ratio for the 4T2MTJ in 0.9?V?

  5. Physical understanding of electron mobility in asymmetrically strained InGaAs-on-insulator metal-oxide-semiconductor field-effect transistors fabricated by lateral strain relaxation

    SciTech Connect (OSTI)

    Kim, SangHyeon, E-mail: dadembyora@mosfet.t.u-tokyo.ac.jp, E-mail: sh-kim@kist.re.kr; Yokoyama, Masafumi; Ikku, Yuki; Nakane, Ryosho; Takenaka, Mitsuru; Takagi, Shinichi [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ichikawa, Osamu; Osada, Takenori; Hata, Masahiko [Sumitomo Chemical Co. Ltd., 6 Kitahara, Tsukuba, Ibaraki 300-3294 (Japan)

    2014-03-17

    In this paper, we fabricated asymmetrically tensile-strained In{sub 0.53}Ga{sub 0.47}As-on-insulator (-OI) metal-oxide-semiconductor field-effect transistors (MOSFETs) using a lateral strain relaxation technique. A stripe-like line structure, fabricated in biaxially strained In{sub 0.53}Ga{sub 0.47}As-OI can lead to the lateral strain relaxation and asymmetric strain configuration in In{sub 0.53}Ga{sub 0.47}As-OI with the channel width of 100?nm. We have found that the effective mobility (?{sub eff}) enhancement in In{sub 0.53}Ga{sub 0.47}As-OI MOSFETs with uniaxial-like asymmetric strain becomes smaller than that in In{sub 0.53}Ga{sub 0.47}As-OI MOSFETs with biaxial strain. We have clarified from a systematic analysis between the strain values and the ?{sub eff} characteristics that this mobility behavior can be understood by the change of the energy level of the conduction band minimum due to the lateral strain relaxation.

  6. Electronic Structure of Low-Temperature Solution-Processed Amorphous Metal Oxide Semiconductors for Thin-Film Transistor Applications

    E-Print Network [OSTI]

    Socratous, Josephine; Banger, Kulbinder K.; Vaynzof, Yana; Sadhanala, Aditya; Brown, Adam D.; Sepe, Alessandro; Steiner, Ullrich; Sirringhaus, Henning

    2015-02-18

    of vehicles or build- ings. [ 3 ] Most of the research so far, has focused on oxides deposited via low- temperature sputtering techniques and a wide range of ternary and quaternary elemental compositions has been explored with InGaZnO (IGZO) being one... annealing temperature. Figure S5 (Supporting Information) shows corroborating electrical data for the quaternary oxide IGZO for different gallium doping. The presence of gallium is known to suppress oxygen vacan- cies due to its strong bond with oxygen...

  7. Selective etchant for oxide sacrificial material in semiconductor device fabrication

    SciTech Connect (OSTI)

    Clews, Peggy J.; Mani, Seethambal S.

    2005-05-17

    An etching composition and method is disclosed for removing an oxide sacrificial material during manufacture of semiconductor devices including micromechanical, microelectromechanical or microfluidic devices. The etching composition and method are based on the combination of hydrofluoric acid (HF) and sulfuric acid (H.sub.2 SO.sub.4). These acids can be used in the ratio of 1:3 to 3:1 HF:H.sub.2 SO.sub.4 to remove all or part of the oxide sacrificial material while providing a high etch selectivity for non-oxide materials including polysilicon, silicon nitride and metals comprising aluminum. Both the HF and H.sub.2 SO.sub.4 can be provided as "semiconductor grade" acids in concentrations of generally 40-50% by weight HF, and at least 90% by weight H.sub.2 SO.sub.4.

  8. L{sub g}?=?100?nm In{sub 0.7}Ga{sub 0.3}As quantum well metal-oxide semiconductor field-effect transistors with atomic layer deposited beryllium oxide as interfacial layer

    SciTech Connect (OSTI)

    Koh, D., E-mail: dh.koh@utexas.edu, E-mail: Taewoo.Kim@sematech.org [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States); SEMATECH, Inc., Albany, New York 12203 (United States); Kwon, H. M. [Department of Electronics Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, T.-W., E-mail: dh.koh@utexas.edu, E-mail: Taewoo.Kim@sematech.org; Veksler, D.; Gilmer, D.; Kirsch, P. D. [SEMATECH, Inc., Albany, New York 12203 (United States); Kim, D.-H. [SEMATECH, Inc., Albany, New York 12203 (United States); GLOBALFOUNDRIES, Malta, New York 12020 (United States); Hudnall, Todd W. [Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, 78666 (United States); Bielawski, Christopher W. [Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712 (United States); Maszara, W. [GLOBALFOUNDRIES, Santa Clara, California 95054 (United States); Banerjee, S. K. [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States)

    2014-04-21

    In this study, we have fabricated nanometer-scale channel length quantum-well (QW) metal-oxide-semiconductor field effect transistors (MOSFETs) incorporating beryllium oxide (BeO) as an interfacial layer. BeO has high thermal stability, excellent electrical insulating characteristics, and a large band-gap, which make it an attractive candidate for use as a gate dielectric in making MOSFETs. BeO can also act as a good diffusion barrier to oxygen owing to its small atomic bonding length. In this work, we have fabricated In{sub 0.53}Ga{sub 0.47}As MOS capacitors with BeO and Al{sub 2}O{sub 3} and compared their electrical characteristics. As interface passivation layer, BeO/HfO{sub 2} bilayer gate stack presented effective oxide thickness less 1 nm. Furthermore, we have demonstrated In{sub 0.7}Ga{sub 0.3}As QW MOSFETs with a BeO/HfO{sub 2} dielectric, showing a sub-threshold slope of 100?mV/dec, and a transconductance (g{sub m,max}) of 1.1 mS/?m, while displaying low values of gate leakage current. These results highlight the potential of atomic layer deposited BeO for use as a gate dielectric or interface passivation layer for III–V MOSFETs at the 7?nm technology node and/or beyond.

  9. Sample size requirements for estimating effective dose from computed tomography using solid-state metal-oxide-semiconductor field-effect transistor dosimetry

    SciTech Connect (OSTI)

    Trattner, Sigal; Cheng, Bin; Pieniazek, Radoslaw L.; Hoffmann, Udo; Douglas, Pamela S.; Einstein, Andrew J.

    2014-04-15

    Purpose: Effective dose (ED) is a widely used metric for comparing ionizing radiation burden between different imaging modalities, scanners, and scan protocols. In computed tomography (CT), ED can be estimated by performing scans on an anthropomorphic phantom in which metal-oxide-semiconductor field-effect transistor (MOSFET) solid-state dosimeters have been placed to enable organ dose measurements. Here a statistical framework is established to determine the sample size (number of scans) needed for estimating ED to a desired precision and confidence, for a particular scanner and scan protocol, subject to practical limitations. Methods: The statistical scheme involves solving equations which minimize the sample size required for estimating ED to desired precision and confidence. It is subject to a constrained variation of the estimated ED and solved using the Lagrange multiplier method. The scheme incorporates measurement variation introduced both by MOSFET calibration, and by variation in MOSFET readings between repeated CT scans. Sample size requirements are illustrated on cardiac, chest, and abdomen–pelvis CT scans performed on a 320-row scanner and chest CT performed on a 16-row scanner. Results: Sample sizes for estimating ED vary considerably between scanners and protocols. Sample size increases as the required precision or confidence is higher and also as the anticipated ED is lower. For example, for a helical chest protocol, for 95% confidence and 5% precision for the ED, 30 measurements are required on the 320-row scanner and 11 on the 16-row scanner when the anticipated ED is 4 mSv; these sample sizes are 5 and 2, respectively, when the anticipated ED is 10 mSv. Conclusions: Applying the suggested scheme, it was found that even at modest sample sizes, it is feasible to estimate ED with high precision and a high degree of confidence. As CT technology develops enabling ED to be lowered, more MOSFET measurements are needed to estimate ED with the same precision and confidence.

  10. Spillover-Assisted Hydrogen Evolution at Si-based Metal-Oxide...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Spillover-Assisted Hydrogen Evolution at Si-based Metal-Oxide-Semiconductor Photoelectrodes. Citation Details In-Document Search Title: Spillover-Assisted Hydrogen...

  11. Hydrogen Evolution at Si-based Metal-Insulator-Semiconductor...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Evolution at Si-based Metal-Insulator-Semiconductor Photoelectrodes Enhanced by Inversion Channel Charge Collection and Hydrogen Spillover Citation Details In-Document...

  12. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  13. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Phelps, Cindy (Moscow, ID)

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  14. Lattice matched semiconductor growth on crystalline metallic substrates

    DOE Patents [OSTI]

    Norman, Andrew G; Ptak, Aaron J; McMahon, William E

    2013-11-05

    Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a metal or metal alloy substrate having a crystalline surface with a known lattice parameter (a). The methods further include growing a crystalline semiconductor alloy layer on the crystalline substrate surface by coincident site lattice matched epitaxy. The semiconductor layer may be grown without any buffer layer between the alloy and the crystalline surface of the substrate. The semiconductor alloy may be prepared to have a lattice parameter (a') that is related to the lattice parameter (a). The semiconductor alloy may further be prepared to have a selected band gap.

  15. Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles

    DOE Patents [OSTI]

    Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji Won; Rondinone, Adam J.; Love, Lonnie J.; Duty, Chad Edward; Madden, Andrew Stephen; Li, Yiliang; Ivanov, Ilia N.; Rawn, Claudia Jeanette

    2014-06-24

    The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component containing at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.

  16. Electrochemical lithiation and delithiation for control of magnetic properties of nanoscale transition metal oxides

    E-Print Network [OSTI]

    Sivakumar, Vikram

    2008-01-01

    Transition metal oxides comprise a fascinating class of materials displaying a variety of magnetic and electronic properties, ranging from half-metallic ferromagnets like CrO2, ferrimagnetic semiconductors like Fey's, and ...

  17. Semiconductor to Metal to Half-Metal Transition in Pt-Embedded Zigzag Graphene Nanoribbons

    E-Print Network [OSTI]

    Krasheninnikov, Arkady V.

    Semiconductor to Metal to Half-Metal Transition in Pt-Embedded Zigzag Graphene Nanoribbons Xiaohui properties of Pt-embedded zigzag graphene nanoribbons (Pt-ZGNRs) are investigated using density-functional theory calculations. It is found that Pt-ZGNRs exhibit a semiconductor-metal-half-metal transition

  18. Monolithic integration of rare-earth oxides and semiconductors for on-silicon technology

    SciTech Connect (OSTI)

    Dargis, Rytis, E-mail: dargis@translucentinc.com; Clark, Andrew; Erdem Arkun, Fevzi [Translucent, Inc., 952 Commercial St., Palo Alto, California 94303 (United States); Grinys, Tomas; Tomasiunas, Rolandas [Institute of Applied Research, Vilnius University, Sauletekio al. 10, LT-10223 Vilnius (Lithuania); O'Hara, Andy; Demkov, Alexander A. [Department of Physics, The University of Texas at Austin, 2515 Speedway, C1600, Austin, Texas 78712 (United States)

    2014-07-01

    Several concepts of integration of the epitaxial rare-earth oxides into the emerging advanced semiconductor on silicon technology are presented. Germanium grows epitaxially on gadolinium oxide despite lattice mismatch of more than 4%. Additionally, polymorphism of some of the rare-earth oxides allows engineering of their crystal structure from hexagonal to cubic and formation of buffer layers that can be used for growth of germanium on a lattice matched oxide layer. Molecular beam epitaxy and metal organic chemical vapor deposition of gallium nitride on the rare-earth oxide buffer layers on silicon is discussed.

  19. Defect Chemistry and Plasmon Physics of Colloidal Metal Oxide Nanocrystals

    SciTech Connect (OSTI)

    Lounis, SD; Runnerstrorm, EL; Llordes, A; Milliron, DJ

    2014-05-01

    Plasmonic nanocrystals of highly doped metal oxides have seen rapid development in the past decade and represent a class of materials with unique optoelectronic properties. In this Perspective, we discuss doping mechanisms in metal oxides and the accompanying physics of free carrier scattering, both of which have implications in determining the properties of localized surface plasmon resonances (LSPRs) in these nanocrystals. The balance between activation and compensation of dopants limits the free carrier concentration of the most common metal oxides, placing a ceiling on the LSPR frequency. Furthermore, because of ionized impurity scattering of the oscillating plasma by dopant ions, scattering must be treated in a fundamentally different way in semiconductor metal oxide materials when compared with conventional metals. Though these effects are well-understood in bulk metal oxides, further study is needed to understand their manifestation in nanocrystals and corresponding impact on plasmonic properties, and to develop materials that surpass current limitations in free carrier concentration.

  20. Thin film hydrous metal oxide catalysts

    DOE Patents [OSTI]

    Dosch, Robert G. (Albuquerque, NM); Stephens, Howard P. (Albuquerque, NM)

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  1. Catalyzed Water Oxidation by Solar Irradiation of Band-Gap-Narrowed Semiconductors (Part 1. Overview).

    SciTech Connect (OSTI)

    Fujita,E.; Khalifah, P.; Lymar, S.; Muckerman, J.T.; Rodgriguez, J.

    2008-03-18

    The objectives of this report are: (1) Investigate the catalysis of water oxidation by cobalt and manganese hydrous oxides immobilized on titania or silica nanoparticles, and dinuclear metal complexes with quinonoid ligands in order to develop a better understanding of the critical water oxidation chemistry, and rationally search for improved catalysts. (2) Optimize the light-harvesting and charge-separation abilities of stable semiconductors including both a focused effort to improve the best existing materials by investigating their structural and electronic properties using a full suite of characterization tools, and a parallel effort to discover and characterize new materials. (3) Combine these elements to examine the function of oxidation catalysts on Band-Gap-Narrowed Semiconductor (BGNSC) surfaces and elucidate the core scientific challenges to the efficient coupling of the materials functions.

  2. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    DOE Patents [OSTI]

    Ren, Zhifeng (Newton, MA); Chen, Gang (Carlisle, MA); Poudel, Bed (West Newton, MA); Kumar, Shankar (Newton, MA); Wang, Wenzhong (Beijing, CN); Dresselhaus, Mildred (Arlington, MA)

    2009-09-08

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  3. Nanostructured Metal Oxide Anodes (Presentation)

    SciTech Connect (OSTI)

    Dillon, A. C.; Riley, L. A.; Lee, S.-H.; Kim, Y.-H.; Ban, C.; Gillaspie, D. T.; Pesaran, A.

    2009-05-01

    This summarizes NREL's FY09 battery materials research activity in developing metal oxide nanostructured anodes to enable high-energy, durable and affordable li-ion batteries for HEVs and PHEVs.

  4. Low temperature lithographically patterned metal oxide transistors for large area electronics

    E-Print Network [OSTI]

    Wang, Annie I. (Annie I-Jen), 1981-

    2011-01-01

    Optically transparent, wide bandgap metal oxide semiconductors are a promising candidate for large-area electronics technologies that require lightweight, temperature-sensitive flexible substrates. Because these thin films ...

  5. Anisotropy-based crystalline oxide-on-semiconductor material

    DOE Patents [OSTI]

    McKee, Rodney Allen (Kingston, TN); Walker, Frederick Joseph (Oak Ridge, TN)

    2000-01-01

    A semiconductor structure and device for use in a semiconductor application utilizes a substrate of semiconductor-based material, such as silicon, and a thin film of a crystalline oxide whose unit cells are capable of exhibiting anisotropic behavior overlying the substrate surface. Within the structure, the unit cells of the crystalline oxide are exposed to an in-plane stain which influences the geometric shape of the unit cells and thereby arranges a directional-dependent quality of the unit cells in a predisposed orientation relative to the substrate. This predisposition of the directional-dependent quality of the unit cells enables the device to take beneficial advantage of characteristics of the structure during operation. For example, in the instance in which the crystalline oxide of the structure is a perovskite, a spinel or an oxide of similarly-related cubic structure, the structure can, within an appropriate semiconductor device, exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic, ferromagnetic, antiferromagnetic, magneto-optic or large dielectric properties that synergistically couple to the underlying semiconductor substrate.

  6. Impact of ultrathin Al2O3 barrier layer on electrical properties of LaLuO3 metal-oxide-semiconductor devices

    E-Print Network [OSTI]

    . Lanthanum lutetium oxide LaLuO3 is identified as one of the most promising high- candidates. It fulfills lanthanum tris N,N -diisopropylformamidinate , lutetium tris N,N -diethylformamidinate , and H2O lutetium precursor was kept at 115 °C. The temperature window for ALD growth was between 250 and 350 °C

  7. METAL OXIDE NANOPARTICLES

    SciTech Connect (OSTI)

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  8. Low interface defect density of atomic layer deposition BeO with self-cleaning reaction for InGaAs metal oxide semiconductor field effect transistors

    SciTech Connect (OSTI)

    Shin, H. S. [Department of Electronics Engineering, Chungnam National University, Daejeon (Korea, Republic of) [Department of Electronics Engineering, Chungnam National University, Daejeon (Korea, Republic of); SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741 (United States); The University of Texas, Austin, Texas 78758 (United States); Yum, J. H. [SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741 (United States) [SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741 (United States); The University of Texas, Austin, Texas 78758 (United States); Johnson, D. W. [SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741 (United States) [SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741 (United States); Texas A and M University College Station, Texas 77843 (United States); Harris, H. R. [Texas A and M University College Station, Texas 77843 (United States)] [Texas A and M University College Station, Texas 77843 (United States); Hudnall, Todd W. [Texas State University, 601 University Drive, San Marcos, Texas 78666 (United States)] [Texas State University, 601 University Drive, San Marcos, Texas 78666 (United States); Oh, J. [Yonsei University, Incheon, 406-840 (Korea, Republic of)] [Yonsei University, Incheon, 406-840 (Korea, Republic of); Kirsch, P.; Wang, W.-E. [SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741 (United States)] [SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741 (United States); Bielawski, C. W.; Banerjee, S. K.; Lee, J. C. [The University of Texas, Austin, Texas 78758 (United States)] [The University of Texas, Austin, Texas 78758 (United States); Lee, H. D. [Department of Electronics Engineering, Chungnam National University, Daejeon (Korea, Republic of)] [Department of Electronics Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2013-11-25

    In this paper, we discuss atomic configuration of atomic layer deposition (ALD) beryllium oxide (BeO) using the quantum chemistry to understand the theoretical origin. BeO has shorter bond length, higher reaction enthalpy, and larger bandgap energy compared with those of ALD aluminum oxide. It is shown that the excellent material properties of ALD BeO can reduce interface defect density due to the self-cleaning reaction and this contributes to the improvement of device performance of InGaAs MOSFETs. The low interface defect density and low leakage current of InGaAs MOSFET were demonstrated using X-ray photoelectron spectroscopy and the corresponding electrical results.

  9. Using a Semiconductor-to-Metal Transition to Control Optical Transmission through Subwavelength Hole Arrays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Donev, E. U.; Suh, J. Y.; Lopez, R.; Feldman, L. C.; Haglund, R. F.

    2008-01-01

    We describe a simple configuration in which the extraordinary optical transmission effect through subwavelength hole arrays in noble-metal films can be switched by the semiconductor-to-metal transition in an underlying thin film of vanadium dioxide. In these experiments, the transition is brought about by thermal heating of the bilayer film. The surprising reverse hysteretic behavior of the transmission through the subwavelength holes in the vanadium oxide suggest that this modulation is accomplished by a dielectric-matching condition rather than plasmon coupling through the bilayer film. The results of this switching, including the wavelength dependence, are qualitatively reproduced by a transfer matrix model.more »The prospects for effecting a similar modulation on a much faster time scale by using ultrafast laser pulses to trigger the semiconductor-to-metal transition are also discussed.« less

  10. Metal-sensing layer-semiconductor and metal-sensing layer-metal heterostructure gas sensors

    SciTech Connect (OSTI)

    O'Leary, M.; Li, Zheng; Fonash, S.J.

    1987-01-01

    Extremely sensitive gas sensors can be fabricated using heterostructures of the form metal-sensing layer-semiconductor or metal-sensing layer-metal. These structures are heterostructure diodes which have the barrier controlling transport at least partially located in the sensing layer. In the presence of the gas species to be detected, the electrical properties of the sensing layer evolve, resulting in a modification of the barrier to electric current transport and, hence, resulting in detection due to changes in the current-voltage characteristics of the device. This type of sensor structure is demonstrated using the Pd/Ti-O/sub x/Ti heterostructure hydrogen detector.

  11. Method for plating with metal oxides

    DOE Patents [OSTI]

    Silver, G.L.; Martin, F.S.

    1994-08-23

    A method is disclosed of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate. 1 fig.

  12. Method for plating with metal oxides

    DOE Patents [OSTI]

    Silver, Gary L. (Centerville, OH); Martin, Frank S. (Farmersville, OH)

    1994-08-23

    A method of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate.

  13. Metal-Semiconductor junctions tlu@math.pku.edu.cn

    E-Print Network [OSTI]

    Lu, Tiao

    of Ec and Ev and also changes EFi n=ni e -q F - kT , p=ni e q F- kT n-p 2ni = e -F1 Metal-Semiconductor junctions tlu@math.pku.edu.cn homepage: dsec.pku.edu.cn/~tlu blog: http://hi.baidu.com/motioo #12;2 - Many of the properties of pn junctions can be realized by forming an appropriate metal

  14. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOE Patents [OSTI]

    Coops, Melvin S. (Livermore, CA)

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  15. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOE Patents [OSTI]

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  16. Generic process for preparing a crystalline oxide upon a group IV semiconductor substrate

    DOE Patents [OSTI]

    McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN); Chisholm, Matthew F. (Oak Ridge, TN)

    2000-01-01

    A process for growing a crystalline oxide epitaxially upon the surface of a Group IV semiconductor, as well as a structure constructed by the process, is described. The semiconductor can be germanium or silicon, and the crystalline oxide can generally be represented by the formula (AO).sub.n (A'BO.sub.3).sub.m in which "n" and "m" are non-negative integer repeats of planes of the alkaline earth oxides or the alkaline earth-containing perovskite oxides. With atomic level control of interfacial thermodynamics in a multicomponent semiconductor/oxide system, a highly perfect interface between a semiconductor and a crystalline oxide can be obtained.

  17. Electrochemistry, Photoelectrochemistry And Photoelectron Spectroscopy Of Nanostructured Metal Oxides

    E-Print Network [OSTI]

    Södergren, S

    1997-01-01

    Electrochemistry, Photoelectrochemistry And Photoelectron Spectroscopy Of Nanostructured Metal Oxides

  18. Fabrication and characterization of metal-semiconductor-metal nanorod using template synthesis

    SciTech Connect (OSTI)

    Kim, Kyohyeok; Kwon, Namyong; Hong, Junki; Chung, Ilsub [Sungkyunkwan University Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Sungkyunkwan University Advanced Institute of Nanotechnology and Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2009-07-15

    The authors attempted to fabricate and characterize one dimensional metal-semiconductor-metal (MSM) nanorod using a template. Cadmium selenide (CdSe) and polypyrrole (Ppy) were chosen as n-type and p-type semiconductor materials, respectively, whereas Au was chosen as a metal electrode. The fabrication of the nanorod was achieved by ''template synthesis'' method using polycarbonate membrane. The structure of the fabricated nanorod was analyzed using scanning electron microscopy and energy dispersive spectroscopy. In addition, the electrical properties of MSM nanorods were characterized using scanning probe microscopy (Seiko Instruments, SPA 300 HV) by probing with a conductive cantilever. I-V characteristics as a function of the temperature give the activation energy, as well as the barrier height of a metal-semiconductor contact, which is useful to understand the conduction mechanism of MSM nanorods.

  19. Chemical dynamics and bonding at gas/semiconductor and oxide/semiconductor interfaces

    E-Print Network [OSTI]

    Bishop, Sarah R.

    2010-01-01

    and physical properties of semiconductor materials. Onematerials considered, Ge and III-V semiconductors, have favorable intrinsic properties

  20. Nanostructured transition metal oxides useful for water oxidation catalysis

    DOE Patents [OSTI]

    Frei, Heinz M; Jiao, Feng

    2013-12-24

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  1. Plasmonic finite-thickness metal-semiconductor-metal waveguide as ultra-compact modulator

    E-Print Network [OSTI]

    Babicheva, Viktoriia E; Lavrinenko, Andrei V

    2013-01-01

    We propose a plasmonic modulator with semiconductor gain material for optoelectronic integrated circuits. We analyze properties of a finite-thickness metal-semiconductor-metal (F-MSM) waveguide to be utilized as an ultra-compact and fast plasmonic modulator. The InP-based semiconductor core allows electrical control of signal propagation. By pumping the core we can vary the gain level and thus the transmittance of the whole system. The study of the device was made using both analytical approaches for planar two-dimensional case as well as numerical simulations for finite-width waveguides. We analyze the eigenmodes of the F-MSM waveguide, propagation constant, confinement factor, Purcell factor, absorption coefficient, and extinction ratio of the structure. We show that using thin metal layers instead of thick ones we can obtain higher extinction ratio of the device.

  2. Ammonia release method for depositing metal oxides

    DOE Patents [OSTI]

    Silver, G.L.; Martin, F.S.

    1994-12-13

    A method is described for depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates. 1 figure.

  3. Ammonia release method for depositing metal oxides

    DOE Patents [OSTI]

    Silver, Gary L. (Centerville, OH); Martin, Frank S. (Farmersville, OH)

    1994-12-13

    A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

  4. Method for producing metal oxide nanoparticles

    DOE Patents [OSTI]

    Phillips, Jonathan (Santa Fe, NM); Mendoza, Daniel (Santa Fe, NM); Chen, Chun-Ku (Albuquerque, NM)

    2008-04-15

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  5. Growth of metal and semiconductor nanostructures using localized photocatalysts

    SciTech Connect (OSTI)

    Shelnutt, John A; Wang, Zhongchun; Medforth, Craig J

    2006-03-08

    Our overall goal has been to understand and develop a light-driven approach to the controlled growth of novel metal and semiconductor nanostructures and nanomaterials. In this photochemical process, bio-inspired porphyrin-based photocatalysts reduce metal salts in aqueous solutions at ambient temperatures when exposed to visible light, providing metal nucleation and growth centers. The photocatalyst molecules are pre-positioned at the nanoscale to control the location of the deposition of metal and therefore the morphology of the nanostructures that are grown. Self-assembly, chemical confinement, and molecular templating are some of the methods we are using for nanoscale positioning of the photocatalyst molecules. When exposed to light, each photocatalyst molecule repeatedly reduces metal ions from solution, leading to deposition near the photocatalyst and ultimately the synthesis of new metallic nanostructures and nanostructured materials. Studies of the photocatalytic growth process and the resulting nanostructures address a number of fundamental biological, chemical, and environmental issues and draw on the combined nanoscience characterization and multi-scale simulation capabilities of the new DOE Center for Integrated Nanotechnologies at Sandia National Laboratories and the University of Georgia. Our main goals are to elucidate the processes involved in the photocatalytic growth of metal nanomaterials and provide the scientific basis for controlled nanosynthesis. The nanomaterials resulting from these studies have applications in nanoelectronics, photonics, sensors, catalysis, and micromechanical systems. Our specific goals for the past three years have been to understand the role of photocatalysis in the synthesis of dendritic metal (Pt, Pd, Au) nanostructures grown from aqueous surfactant solutions under ambient conditions and the synthesis of photocatalytic porphyrin nanostructures (e.g., nanotubes) as templates for fabrication of photo-active metal-composite nanodevices. The proposed nanoscience concentrates on two thematic research areas: (1) the creation of metal and semiconductor nanostructures and nanomaterials for realizing novel catalytic phenomena and quantum control, (2) understanding photocatalytic metal deposition processes at the nanoscale especially on photocatalytic porphyrin nanostructures such as nanotubes, and (3) the development and use of multi-scale, multi-phenomena theory and simulation for ionic self-assembly and catalytic processes.

  6. Metal oxide composite dosimeter method and material

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1998-01-01

    The present invention is a method of measuring a radiation dose wherein a radiation responsive material consisting essentially of metal oxide is first exposed to ionizing radiation. The metal oxide is then stimulating with light thereby causing the radiation responsive material to photoluminesce. Photons emitted from the metal oxide as a result of photoluminescence may be counted to provide a measure of the ionizing radiation.

  7. Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jahangir-Moghadam, Mohammadreza; Ahmadi-Majlan, Kamyar; Shen, Xuan; Droubay, Timothy; Bowden, Mark; Chrysler, Matthew; Su, Dong; Chambers, Scott A.; Ngai, Joseph H.

    2015-02-09

    The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO? and Ge, in which the band gap of the former is enhanced with Zr content x. We presentmore »structural and electrical characterization of SrZrxTi1-xO?-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.« less

  8. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect (OSTI)

    Dr. Ramana Reddy

    2012-04-12

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode. Successful extraction of metal from metal oxide dissolved in Urea/ChCl (2:1) was accomplished. The current efficiencies were relatively high in both the metal deposition processes with current efficiency greater than 86% for lead and 95% for zinc. This technology will advance the metal oxide reduction process by increasing the process efficiency and also eliminate the production of CO2 which makes this an environmentally benign technology for metal extraction.

  9. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  10. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  11. Methods of producing adsorption media including a metal oxide

    DOE Patents [OSTI]

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  12. Method of producing adherent metal oxide coatings on metallic surfaces

    DOE Patents [OSTI]

    Lane, Michael H. (Clifton Park, NY); Varrin, Jr., Robert D. (McLean, VA)

    2001-01-01

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  13. Three-Electrode Metal Oxide Reduction Cell

    DOE Patents [OSTI]

    Dees, Dennis W. (Downers Grove, IL); Ackerman, John P. (Downers Grove, IL)

    2005-06-28

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  14. Three-electrode metal oxide reduction cell

    DOE Patents [OSTI]

    Dees, Dennis W. (Downers Groves, IL); Ackerman, John P. (Downers Grove, IL)

    2008-08-12

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  15. Method for making monolithic metal oxide aerogels

    SciTech Connect (OSTI)

    Droege, Michael W. (Livermore, CA); Coronado, Paul R. (Livermore, CA); Hair, Lucy M. (Livermore, CA)

    1995-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.

  16. Method for making monolithic metal oxide aerogels

    DOE Patents [OSTI]

    Droege, M.W.; Coronado, P.R.; Hair, L.M.

    1995-03-07

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.

  17. Direct electrochemical reduction of metal-oxides

    DOE Patents [OSTI]

    Redey, Laszlo I. (Downers Grove, IL); Gourishankar, Karthick (Downers Grove, IL)

    2003-01-01

    A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

  18. Microbial-mediated method for metal oxide nanoparticle formation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search Title: Microbial-mediated method for metal oxide nanoparticle formation The invention is directed to a method for producing metal oxide nanoparticles, the method...

  19. Nanocomposite of graphene and metal oxide materials | OSTI, US...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanocomposite of graphene and metal oxide materials Re-direct Destination: Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The...

  20. Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Presents...

  1. Ternary Self-Assembly of Ordered Metal Oxide Graphene Nanocomposites for

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    , or polymer-based nanocomposites.4,5,16,17 Recently, a range of nanoscale building blocks, including carbon to achieve similar control is to use amphiphilic polymer or surfactant to direct the self-assembly of nanostructured metal oxides, semiconductors, and polymer materials.11 15 There has been a growing in- terest

  2. Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters

    SciTech Connect (OSTI)

    Lee, Kyu-Tae; Seo, Sungyong; Yong Lee, Jae; Jay Guo, L.

    2014-06-09

    We present transmission visible wavelength filters based on strong interference behaviors in an ultrathin semiconductor material between two metal layers. The proposed devices were fabricated on 2?cm?×?2?cm glass substrate, and the transmission characteristics show good agreement with the design. Due to a significantly reduced light propagation phase change associated with the ultrathin semiconductor layer and the compensation in phase shift of light reflecting from the metal surface, the filters show an angle insensitive performance up to ±70°, thus, addressing one of the key challenges facing the previously reported photonic and plasmonic color filters. This principle, described in this paper, can have potential for diverse applications ranging from color display devices to the image sensors.

  3. Metal-optic and Plasmonic Semiconductor-based Nanolasers

    E-Print Network [OSTI]

    Lakhani, Amit

    2012-01-01

    of Metals . . . . . . . . . . . . . . . . . . . . . . .coupled Metal-optic Nanocavities . . . . . . . . . . . . . .dependent quality factors Q metal for good conduc- tors.

  4. High surface area, electrically conductive nanocarbon-supported metal oxide

    DOE Patents [OSTI]

    Worsley, Marcus A; Han, Thomas Yong-Jin; Kuntz, Joshua D; Cervanted, Octavio; Gash, Alexander E; Baumann, Theodore F; Satcher, Jr., Joe H

    2014-03-04

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

  5. Synthesis and characterization of nanostructured transition metal oxides for energy storage devices

    E-Print Network [OSTI]

    Kim, Jong Woung

    2012-01-01

    nanostructured transition metal oxides for energy storage devicesnanostructured transition metal oxides for energy storage devices

  6. Process for etching mixed metal oxides

    DOE Patents [OSTI]

    Ashby, C.I.H.; Ginley, D.S.

    1994-10-18

    An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.

  7. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Kim, Jeom-Soo (Naperville, IL); Johnson, Christopher S. (Naperville, IL)

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  8. Lattice mismatched compound semiconductors and devices on silicon

    E-Print Network [OSTI]

    Yang, Li, Ph. D. Massachusetts Institute of Technology

    2011-01-01

    III-V compound semiconductors, due to their superior electron mobility, are promising candidates for n-type metal-oxide-semiconductor field effect transistors (MOSFETs). However, the limited size of III-V substrates and ...

  9. Superatoms and Metal-Semiconductor Motifs for Cluster Materials

    SciTech Connect (OSTI)

    Castleman, A. W.

    2013-10-11

    A molecular understanding of catalysis and catalytically active materials is of fundamental importance in designing new substances for applications in energy and fuels. We have performed reactivity studies and ultrafast ionization and coulomb explosion studies on a variety of catalytically-relevant materials, including transition metal oxides of Fe, Co, Ni, Cu, Ti, V, Nb, and Ta. We demonstrate that differences in charge state, geometry, and elemental composition of clusters of such materials determine chemical reactivity and ionization behavior, crucial steps in improving performance of catalysts.

  10. Combinatorial Discovery and Optimization of the Composition, Doping and Morphology of New Oxide Semiconductors for Efficient Photoelectrochemical Water Splitting

    SciTech Connect (OSTI)

    Parkinson, Bruce A.; Jianghua, He

    2015-01-06

    The increasing need for carbon free energy has focused renewed attention on solar energy conversion. Although photovoltaic cells excel at directly converting of solar energy to electricity, they do not directly produce stored energy or fuels that account for more than 75% of current energy use. Direct photoelectrolysis of water has the advantage of converting solar energy directly to hydrogen, an ideal non-carbon and nonpolluting energy carrier, by replacing both a photovoltaic array and an electrolysis unit with one potentially inexpensive device. Unfortunately no materials are currently known to efficiently photoelectrolyze water that are, efficient, inexpensive and stable under illumination in electrolytes for many years. Nanostructured semiconducting metal oxides could potentially fulfill these requirements, making them the most promising materials for solar water photoelectrolysis, however no oxide semiconductor has yet been discovered with all the required properties. We have developed a simple, high-throughput combinatorial approach to prepare and screen many multi component metal oxides for water photoelectrolysis activity. The approach uses ink jet printing of overlapping patterns of soluble metal oxide precursors onto conductive glass substrates. Subsequent pyrolysis produces metal oxide phases that are screened for photoelectrolysis activity by measuring photocurrents produced by scanning a laser over the printed patterns in aqueous electrolytes. Several promising and unexpected compositions have been identified.

  11. Versatile Applications of Nanostructured Metal Oxides

    E-Print Network [OSTI]

    Li, Li

    2014-05-29

    of nanopar- ticles becomes broader, an onion type morphology was observed, particles larger than RPEO segregate out, forming a silica-rich core surrounded by a lamellar or lamel- lar/hexagonal structure. This can be understood by the entropic contributions... , acids or bases, metal salts, enzymes, radical initia- tors and solvents. Heterogeneous catalysts typically are solids that do not dissolve. For example, supported metals, transition metal oxides and sulfides, solid acids and bases, immobilized enzymes...

  12. Method for making monolithic metal oxide aerogels

    SciTech Connect (OSTI)

    Coronado, Paul R. (Livermore, CA)

    1999-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  13. Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon

    E-Print Network [OSTI]

    Nordlund, Kai

    Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum for this potential makes use of the fact that chemical bonding in both covalent systems and d-transition metals can for describing the C-C/Pt-Pt/Pt-C interactions. It resembles, in the case of the pure metal interaction

  14. Antiferromagnetic exchange bias of a ferromagnetic semiconductor by a ferromagnetic metal

    E-Print Network [OSTI]

    Olejnik, K.

    2010-01-01

    able interest for spintronics, as they o?er the prospect ofof semiconductor spintronics. The development of FM metal/FMfor room temperature spintronics, and also o?er a new means

  15. Antiferromagnetic exchange bias of a ferromagnetic semiconductor by a ferromagnetic metal

    E-Print Network [OSTI]

    Olejnik, K.

    2010-01-01

    polarization e?ect in a spintronic device. Here, weable interest for spintronics, as they o?er the prospect ofof semiconductor spintronics. The development of FM metal/FM

  16. PLUTONIUM METAL: OXIDATION CONSIDERATIONS AND APPROACH

    SciTech Connect (OSTI)

    Estochen, E.

    2013-03-20

    Plutonium is arguably the most unique of all metals when considered in the combined context of metallurgical, chemical, and nuclear behavior. Much of the research in understanding behavior and characteristics of plutonium materials has its genesis in work associated with nuclear weapons systems. However, with the advent of applications in fuel materials, the focus in plutonium science has been more towards nuclear fuel applications, as well as long term storage and disposition. The focus of discussion included herein is related to preparing plutonium materials to meet goals consistent with non-proliferation. More specifically, the emphasis is on the treatment of legacy plutonium, in primarily metallic form, and safe handling, packaging, and transport to meet non-proliferation goals of safe/secure storage. Elevated temperature oxidation of plutonium metal is the treatment of choice, due to extensive experiential data related to the method, as the oxide form of plutonium is one of only a few compounds that is relatively simple to produce, and stable over a large temperature range. Despite the simplicity of the steps required to oxidize plutonium metal, it is important to understand the behavior of plutonium to ensure that oxidation is conducted in a safe and effective manner. It is important to understand the effect of changes in environmental variables on the oxidation characteristics of plutonium. The primary purpose of this report is to present a brief summary of information related to plutonium metal attributes, behavior, methods for conversion to oxide, and the ancillary considerations related to processing and facility safety. The information provided is based on data available in the public domain and from experience in oxidation of such materials at various facilities in the United States. The report is provided as a general reference for implementation of a simple and safe plutonium metal oxidation technique.

  17. Polarimetry of thin metal transmission gratings in the resonance region and its impact on the response of metal-semiconductor-metal

    E-Print Network [OSTI]

    Polarimetry of thin metal transmission gratings in the resonance region and its impact on the response of metal-semiconductor-metal photodetectors Erli Chena) and Stephen Y. Chou Department Received 17 December 1996; accepted for publication 4 March 1997 The resonance behavior of metal

  18. Spin injection and transport in semiconductor and metal nanostructures

    E-Print Network [OSTI]

    Zhu, Lei

    2009-01-01

    1 1.1 Introduction to spintronics: fundamentals andCahay, Introduction to spintronics (CRC Press, Boca Raton,in Semiconductor Spintronics and Quantum Computation, edited

  19. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  20. Toward Photochemical Water Splitting Using Band-Gap-Narrowed Semiconductors and Transition-Metal Based Molecular Catalysts

    SciTech Connect (OSTI)

    Muckerman,J.T.; Rodriguez, J.A.; Fujita, E.

    2009-06-07

    We are carrying out coordinated theoretical and experimental studies of toward photochemical water splitting using band-gap-narrowed semiconductors (BGNSCs) with attached multi-electron molecular water oxidation and hydrogen production catalysts. We focus on the coupling between the materials properties and the H{sub 2}O redox chemistry, with an emphasis on attaining a fundamental understanding of the individual elementary steps in the following four processes: (1) Light-harvesting and charge-separation of stable oxide or oxide-derived semiconductors for solar-driven water splitting, including the discovery and characterization of the behavior of such materials at the aqueous interface; (2) The catalysis of the four-electron water oxidation by dinuclear hydroxo transition-metal complexes with quinonoid ligands, and the rational search for improved catalysts; (3) Transfer of the design principles learned from the elucidation of the DuBois-type hydrogenase model catalysts in acetonitrile to the rational design of two-electron hydrogen production catalysts for aqueous solution; (4) Combining these three elements to examine the function of oxidation catalysts on BGNSC photoanode surfaces and hydrogen production catalysts on cathode surfaces at the aqueous interface to understand the challenges to the efficient coupling of the materials functions.

  1. Electro-mechanical coupling of semiconductor film grown on stainless steel by oxidation

    E-Print Network [OSTI]

    Volinsky, Alex A.

    Electro-mechanical coupling of semiconductor film grown on stainless steel by oxidation M. C. Lin,1) Electro-mechanical coupling phenomenon in oxidation film on stainless steel has been discovered by using Publishing LLC. [http://dx.doi.org/10.1063/1.4824072] It is generally known that stainless steel (SS) has

  2. Reduction of metal oxides through mechanochemical processing

    DOE Patents [OSTI]

    Froes, Francis H. (Moscow, ID); Eranezhuth, Baburaj G. (Moscow, ID); Senkov, Oleg N. (Moscow, ID)

    2000-01-01

    The low temperature reduction of a metal oxide using mechanochemical processing techniques. The reduction reactions are induced mechanically by milling the reactants. In one embodiment of the invention, titanium oxide TiO.sub.2 is milled with CaH.sub.2 to produce TiH.sub.2. Low temperature heat treating, in the range of 400.degree. C. to 700.degree. C., can be used to remove the hydrogen in the titanium hydride.

  3. Metal sulfide initiators for metal oxide sorbent regeneration

    DOE Patents [OSTI]

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  4. Spectroscopic studies of metal growth on oxides 

    E-Print Network [OSTI]

    Luo, Kai

    2000-01-01

    of metal clusters on well-defined oxide surfaces. In this work, the nucleation and growth modes of Ag on TiO?(110)(1x1) and (1x2) surfaces, Ag on ultra-thin Al?O? films, and Au on ultra-thin SiO? films were studied by scanning tunneling microscopy (STM...

  5. Pressure-Induced Electronic Phase Transitions Transition Metal Oxides and Rare Earth Metals

    E-Print Network [OSTI]

    Islam, M. Saif

    Pressure-Induced Electronic Phase Transitions in Transition Metal Oxides and Rare Earth Metals Metal Oxides and Rare Earth Metals by Brian Ross Maddox Electron correlation can affect profound changes transition in a transition metal monoxide. iv #12;The lanthanides (the 4f metals also known as rare-earths

  6. Reactor process using metal oxide ceramic membranes

    DOE Patents [OSTI]

    Anderson, M.A.

    1994-05-03

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques. 2 figures.

  7. Reactor process using metal oxide ceramic membranes

    DOE Patents [OSTI]

    Anderson, Marc A. (Madison, WI)

    1994-01-01

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques.

  8. A Computational Study of Metal-Contacts to Beyond-Graphene 2D Semiconductor Materials Jiahao Kang+

    E-Print Network [OSTI]

    A Computational Study of Metal-Contacts to Beyond-Graphene 2D Semiconductor Materials Jiahao Kang]-[5]. The mobility of carriers in TMD semiconductors is currently lower than in graphene although it can be boosted guidelines for novel 2D semiconductor device design and fabrication. I. Introduction As CMOS technology

  9. Effect of realistic metal electronic structure on the lower limit of contact resistivity of epitaxial metal-semiconductor contacts

    SciTech Connect (OSTI)

    Hegde, Ganesh Chris Bowen, R.

    2014-08-04

    The effect of realistic metal electronic structure on the lower limit of resistivity in [100] oriented n-Si is investigated using full band Density Functional Theory and Semi-Empirical Tight Binding calculations. It is shown that the “ideal metal” assumption may fail in some situations and, consequently, underestimate the lower limit of contact resistivity in n-Si by at least an order of magnitude at high doping concentrations. The mismatch in transverse momentum space in the metal and the semiconductor, the so-called “valley filtering effect,” is shown to be sensitive to the details of the transverse boundary conditions for the unit cells used. The results emphasize the need for explicit inclusion of the metal atomic and electronic structure in the atomistic modeling of transport across metal-semiconductor contacts.

  10. Method for producing nanostructured metal-oxides

    DOE Patents [OSTI]

    Tillotson, Thomas M.; Simpson, Randall L.; Hrubesh, Lawrence W.; Gash, Alexander

    2006-01-17

    A synthetic route for producing nanostructure metal-oxide-based materials using sol-gel processing. This procedure employs the use of stable and inexpensive hydrated-metal inorganic salts and environmentally friendly solvents such as water and ethanol. The synthesis involves the dissolution of the metal salt in a solvent followed by the addition of a proton scavenger, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively. Using this method synthesis of metal-oxide nanostructured materials have been carried out using inorganic salts, such as of Fe.sup.3+, Cr.sup.3+, Al.sup.3+, Ga.sup.3+, In.sup.3+, Hf.sup.4+, Sn.sup.4+, Zr.sup.4+, Nb.sup.5+, W.sup.6+, Pr.sup.3+, Er.sup.3+, Nd.sup.3+, Ce.sup.3+, U.sup.3+ and Y.sup.3+. The process is general and nanostructured metal-oxides from the following elements of the periodic table can be made: Groups 2 through 13, part of Group 14 (germanium, tin, lead), part of Group 15 (antimony, bismuth), part of Group 16 (polonium), and the lanthanides and actinides. The sol-gel processing allows for the addition of insoluble materials (e.g., metals or polymers) to the viscous sol, just before gelation, to produce a uniformly distributed nanocomposites upon gelation. As an example, energetic nanocomposites of Fe.sub.xO.sub.y gel with distributed Al metal are readily made. The compositions are stable, safe, and can be readily ignited to thermitic reaction.

  11. "Metal-oxide gas sensors have been around for

    E-Print Network [OSTI]

    Diebold, Ulrike

    Publishing "Metal-oxide gas sensors have been around for over 40 years, but only now we have: Surface Studies of Gas Sensing Metal Oxides 21 February 2007 1. Could you explain the significance of your article to the non-specialist? Metal oxide-gas sensors are practical devices used in a variety of every

  12. Transition metal oxide improves overall efficiency and maintains performance with inexpensive metals.

    E-Print Network [OSTI]

    that inserting a transition metal oxide (TMO) between the lead sulfide (PbS) quantum dot (QD) layer and the metalTransition metal oxide improves overall efficiency and maintains performance with inexpensive of performance. n-type TMOs consisting of molybdenum oxide (MoOx) and vanadium oxide (V2Ox) were used

  13. Reactor vessel using metal oxide ceramic membranes

    DOE Patents [OSTI]

    Anderson, Marc A. (Madison, WI); Zeltner, Walter A. (Oregon, WI)

    1992-08-11

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane.

  14. Searching Room Temperature Ferromagnetism in Wide Gap Semiconductors Fe-doped Strontium Titanate and Zinc Oxide

    E-Print Network [OSTI]

    Pereira, LMC; Wahl, U

    Scientic findings in the very beginning of the millennium are taking us a step further in the new paradigm of technology: spintronics. Upgrading charge-based electronics with the additional degree of freedom of the carriers spin-state, spintronics opens a path to the birth of a new generation of devices with the potential advantages of non-volatility and higher processing speed, integration densities and power efficiency. A decisive step towards this new age lies on the attribution of magnetic properties to semiconductors, the building block of today's electronics, that is, the realization of ferromagnetic semiconductors (FS) with critical temperatures above room temperature. Unfruitful search for intrinsic RT FS lead to the concept of Dilute(d) Magnetic Semiconductors (DMS): ordinary semiconductor materials where 3 d transition metals randomly substitute a few percent of the matrix cations and, by some long-range mechanism, order ferromagnetically. The times are of intense research activity and the last few ...

  15. Searching Room Temperature Ferromagnetism in Wide Gap Semiconductors Fe-doped Strontium Titanate and Zinc Oxide

    E-Print Network [OSTI]

    Pereira, LMC; Wahl, U

    Scientific findings in the very beginning of the millennium are taking us a step further in the new paradigm of technology: spintronics. Upgrading charge-based electronics with the additional degree of freedom of the carriers spin-state, spintronics opens a path to the birth of a new generation of devices with the potential advantages of non-volatility and higher processing speed, integration densities and power efficiency. A decisive step towards this new age lies on the attribution of magnetic properties to semiconductors, the building block of today's electronics, that is, the realization of ferromagnetic semiconductors (FS) with critical temperatures above room temperature. Unfruitful search for intrinsic RT FS lead to the concept of Dilute(d) Magnetic Semiconductors (DMS): ordinary semiconductor materials where 3 d transition metals randomly substitute a few percent of the matrix cations and, by some long-range mechanism, order ferromagnetically. The times are of intense research activity and the last fe...

  16. Thermal barrier and overlay coating systems comprising composite metal/metal oxide bond coating layers

    DOE Patents [OSTI]

    Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL); Vance, Steven J. (Orlando, FL)

    2001-01-01

    The present invention generally describes multilayer coating systems comprising a composite metal/metal oxide bond coat layer. The coating systems may be used in gas turbines.

  17. Metal oxide and metal fluoride nanostructures and methods of making same

    DOE Patents [OSTI]

    Wong, Stanislaus S. (Stony Brook, NY); Mao, Yuanbing (Los Angeles, CA)

    2009-08-18

    The present invention includes pure single-crystalline metal oxide and metal fluoride nanostructures, and methods of making same. These nanostructures include nanorods and nanoarrays.

  18. Screening method for selecting semiconductor substrates having defects below a predetermined level in an oxide layer

    DOE Patents [OSTI]

    Warren, W.L.; Vanheusden, K.J.R.; Schwank, J.R.; Fleetwood, D.M.; Shaneyfelt, M.R.; Winokur, P.S.; Devine, R.A.B.

    1998-07-28

    A method is disclosed for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer. 5 figs.

  19. Screening method for selecting semiconductor substrates having defects below a predetermined level in an oxide layer

    DOE Patents [OSTI]

    Warren, William L. (Albuquerque, NM); Vanheusden, Karel J. R. (Albuquerque, NM); Schwank, James R. (Albuquerque, NM); Fleetwood, Daniel M. (Albuquerque, NM); Shaneyfelt, Marty R. (Albuquerque, NM); Winokur, Peter S. (Albuquerque, NM); Devine, Roderick A. B. (St. Martin le Vinoux, FR)

    1998-01-01

    A method for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus-voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer.

  20. Method for producing metal oxide aerogels

    DOE Patents [OSTI]

    Tillotson, Thomas M. (Tracy, CA); Poco, John F. (Livermore, CA); Hrubesh, Lawrence W. (Pleasanton, CA); Thomas, Ian M. (Livermore, CA)

    1995-01-01

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm.sup.3 and greater than 0.27g/cm.sup.3. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods.

  1. Method for producing metal oxide aerogels

    DOE Patents [OSTI]

    Tillotson, T.M.; Poco, J.F.; Hrubesh, L.W.; Thomas, I.M.

    1995-04-25

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm{sup 3} and greater than 0.27g/cm{sup 3}. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods. 8 figs.

  2. Method for inhibiting oxidation of metal sulfide-containing material

    DOE Patents [OSTI]

    Elsetinow, Alicia; Borda, Michael J.; Schoonen, Martin A.; Strongin, Daniel R.

    2006-12-26

    The present invention provides means for inhibiting the oxidation of a metal sulfide-containing material, such as ore mine waste rock or metal sulfide taiulings, by coating the metal sulfide-containing material with an oxidation-inhibiting two-tail lipid coating (12) thereon, thereby inhibiting oxidation of the metal sulfide-containing material in acid mine drainage conditions. The lipids may be selected from phospholipids, sphingolipids, glycolipids and combinations thereof.

  3. Low resistance barrier layer for isolating, adhering, and passivating copper metal in semiconductor fabrication

    DOE Patents [OSTI]

    Weihs, Timothy P. (Baltimore, MD); Barbee, Jr., Troy W. (Palto Alto, CA)

    2002-01-01

    Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

  4. Promises and problems with metallic interconnects for reduced temperature solid oxide fuel cells

    E-Print Network [OSTI]

    Hou, Peggy Y.; Huang, Keqin; Bakker, Wate T.

    1999-01-01

    METALLIC INTERCONNECTS FOR REDUCED TEMPERATURE SOLID OXIDE FUELto fuel cell stacks with multiple metallic interconnects.

  5. High-performance self-aligned inversion-channel In{sub 0.53}Ga{sub 0.47}As metal-oxide-semiconductor field-effect-transistors by in-situ atomic-layer-deposited HfO{sub 2}

    SciTech Connect (OSTI)

    Lin, T. D.; Chang, W. H.; Chang, Y. C.; Hong, M., E-mail: raynien@phys.nthu.edu.tw, E-mail: mhong@phys.ntu.edu.tw [Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Chu, R. L.; Chang, Y. H. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)] [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lee, M. Y.; Hong, P. F.; Chen, Min-Cheng [National Nano Device Laboratories, Hsinchu 30076, Taiwan (China)] [National Nano Device Laboratories, Hsinchu 30076, Taiwan (China); Kwo, J., E-mail: raynien@phys.nthu.edu.tw, E-mail: mhong@phys.ntu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2013-12-16

    Self-aligned inversion-channel In{sub 0.53}Ga{sub 0.47}As metal-oxide-semiconductor field-effect-transistors (MOSFETs) have been fabricated using the gate dielectrics of in-situ directly atomic-layer-deposited (ALD) HfO{sub 2} followed by ALD-Al{sub 2}O{sub 3}. There were no surface pretreatments and no interfacial passivation/barrier layers prior to the ALD. TiN/Al{sub 2}O{sub 3} (4?nm)/HfO{sub 2} (1?nm)/In{sub 0.53}Ga{sub 0.47}As/InP MOS capacitors exhibited well-behaved capacitance-voltage characteristics with true inversion behavior, low leakage current densities of ?10{sup ?8}?A/cm{sup 2} at ±1?MV/cm, and thermodynamic stability at high temperatures. Al{sub 2}O{sub 3} (3?nm)/HfO{sub 2} (1?nm)/In{sub 0.53}Ga{sub 0.47}As MOSFETs of 1 ?m gate length, with 700?°C–800?°C rapid thermal annealing in source/drain activation, have exhibited high extrinsic drain current (I{sub D}) of 1.5?mA/?m, transconductance (G{sub m}) of 0.84 mS/?m, I{sub ON}/I{sub OFF} of ?10{sup 4}, low sub-threshold swing of 103?mV/decade, and field-effect electron mobility of 1100 cm{sup 2}/V?·?s. The devices have also achieved very high intrinsic I{sub D} and G{sub m} of 2?mA/?m and 1.2?mS/?m, respectively.

  6. Optical properties of metallic (III, Mn)V ferromagnetic semiconductors in the infrared to visible range 

    E-Print Network [OSTI]

    Hankiewicz, EM; Jungwirth, T.; Dietl, T.; Timm, C.; Sinova, Jairo.

    2004-01-01

    We report on a study of the ac conductivity and magneto-optical properties of metallic ferromagnetic (III, Mn)V semiconductors in the infrared to visible spectrum at zero temperature. Our analysis is based on the successful kinetic exchange model...

  7. Theoretical investigation of energy alignment at metal/semiconductor interfaces for solar photovoltaic applications

    E-Print Network [OSTI]

    Tomasik, Michelle Ruth

    2015-01-01

    Our work was inspired by the need to improve the efficiency of new types of solar cells. We mainly focus on metal-semiconductor interfaces. In the CdSe study, we find that not all surface states serve to pin the Fermi ...

  8. CO oxidation on gold-supported iron oxides: New insights into strong oxide–metal interactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Liang; Liu, Yun; Yang, Fan; Evans, Jaime; Rodriguez, José A.; Liu, Ping

    2015-07-14

    Very active FeOx–Au catalysts for CO oxidation are obtained after depositing nanoparticles of FeO, Fe3O4, and Fe2O3 on a Au(111) substrate. Neither FeO nor Fe2O3 is stable under the reaction conditions. Under an environment of CO/O2, they undergo oxidation (FeO) or reduction (Fe2O3) to yield nanoparticles of Fe3O4 that are not formed in a bulk phase. Using a combined experimental and theoretical approach, we show a strong oxide–metal interaction (SOMI) between Fe3O4 nanostructures and Au(111), which gives the oxide special properties, allows the formation of an active phase, and provides a unique interface to facilitate a catalytic reaction. This workmore »highlights the important role that the SOMI can play in enhancing the catalytic performance of the oxide component in metal–oxide catalysts.« less

  9. Method for restoring the resistance of indium oxide semiconductors after heating while in sealed structures

    DOE Patents [OSTI]

    Seager, C.H.; Evans, J.T. Jr.

    1998-11-24

    A method is described for counteracting increases in resistivity encountered when Indium Oxide resistive layers are subjected to high temperature annealing steps during semiconductor device fabrication. The method utilizes a recovery annealing step which returns the Indium Oxide layer to its original resistivity after a high temperature annealing step has caused the resistivity to increase. The recovery anneal comprises heating the resistive layer to a temperature between 100 C and 300 C for a period of time that depends on the annealing temperature. The recovery is observed even when the Indium Oxide layer is sealed under a dielectric layer. 1 fig.

  10. Method for restoring the resistance of indium oxide semiconductors after heating while in sealed structures

    DOE Patents [OSTI]

    Seager, Carleton H. (1304 Onava Ct., NE., Albuquerque, NM 87112); Evans, Jr., Joseph Tate (13609 Verbena Pl., NE., Albuquerque, NM 87112)

    1998-01-01

    A method for counteracting increases in resistivity encountered when Indium Oxide resistive layers are subjected to high temperature annealing steps during semiconductor device fabrication. The method utilizes a recovery annealing step which returns the Indium Oxide layer to its original resistivity after a high temperature annealing step has caused the resistivity to increase. The recovery anneal comprises heating the resistive layer to a temperature between 100.degree. C. and 300.degree. C. for a period of time that depends on the annealing temperature. The recovery is observed even when the Indium Oxide layer is sealed under a dielectric layer.

  11. MBE Growth of Ferromagnetic Metal/Compound Semiconductor Heterostructures for Spintronics

    SciTech Connect (OSTI)

    Palmstrom, Chris

    2009-07-01

    Electrical transport and spin-dependent transport across ferromagnet/semiconductor contacts is crucial in the realization of spintronic devices. Interfacial reactions, the formation of non-magnetic interlayers, and conductivity mismatch have been attributed to low spin injection efficiency. MBE has been used to grow epitaxial ferromagnetic metal/GA(1-x)AL(x)As heterostructures with the aim of controlling the interfacial structural, electronic, and magnetic properties. In situ, STM, XPS, RHEED and LEED, and ex situ XRD, RBS, TEM, magnetotransport, and magnetic characterization have been used to develop ferromagnetic elemental and metallic compound/compound semiconductor tunneling contacts for spin injection. The efficiency of the spin polarized current injected from the ferromagnetic contact has been determined by measuring the electroluminescence polarization of the light emitted from/GA(1-x)AL(x)As light-emitting diodes as a function of applied magnetic field and temperature. Interfacial reactions during MBE growth and post-growth anneal, as well as the semiconductor device band structure, were found to have a dramatic influence on the measured spin injection, including sign reversal. Lateral spin-transport devices with epitaxial ferromagnetic metal source and drain tunnel barrier contacts have been fabricated with the demonstration of electrical detection and the bias dependence of spin-polarized electron injection and accumulation at the contacts. This talk emphasizes the progress and achievements in the epitaxial growth of a number of ferromagnetic compounds/III-V semiconductor heterostructures and the progress towards spintronic devices.

  12. MBE Growth of Ferromagnetic Metal/Compound Semiconductor Heterostructures for Spintronics

    ScienceCinema (OSTI)

    Palmstrom, Chris [University of California, Santa Barbara, California, United States

    2010-01-08

    Electrical transport and spin-dependent transport across ferromagnet/semiconductor contacts is crucial in the realization of spintronic devices. Interfacial reactions, the formation of non-magnetic interlayers, and conductivity mismatch have been attributed to low spin injection efficiency. MBE has been used to grow epitaxial ferromagnetic metal/GA(1-x)AL(x)As heterostructures with the aim of controlling the interfacial structural, electronic, and magnetic properties. In situ, STM, XPS, RHEED and LEED, and ex situ XRD, RBS, TEM, magnetotransport, and magnetic characterization have been used to develop ferromagnetic elemental and metallic compound/compound semiconductor tunneling contacts for spin injection. The efficiency of the spin polarized current injected from the ferromagnetic contact has been determined by measuring the electroluminescence polarization of the light emitted from/GA(1-x)AL(x)As light-emitting diodes as a function of applied magnetic field and temperature. Interfacial reactions during MBE growth and post-growth anneal, as well as the semiconductor device band structure, were found to have a dramatic influence on the measured spin injection, including sign reversal. Lateral spin-transport devices with epitaxial ferromagnetic metal source and drain tunnel barrier contacts have been fabricated with the demonstration of electrical detection and the bias dependence of spin-polarized electron injection and accumulation at the contacts. This talk emphasizes the progress and achievements in the epitaxial growth of a number of ferromagnetic compounds/III-V semiconductor heterostructures and the progress towards spintronic devices.

  13. Metal oxide membranes for gas separation

    DOE Patents [OSTI]

    Anderson, Marc A. (Madison, WI); Webster, Elizabeth T. (Madison, WI); Xu, Qunyin (Plainsboro, NJ)

    1994-01-01

    A method for permformation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation.

  14. Metal oxide membranes for gas separation

    DOE Patents [OSTI]

    Anderson, M.A.; Webster, E.T.; Xu, Q.

    1994-08-30

    A method for formation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation. 4 figs.

  15. Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    based Monolithic Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Three-Dimensional Composite Nanostructures for Lean NOx...

  16. Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor-like by Electrostatic Gating

    E-Print Network [OSTI]

    Wang, Feng

    Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor neutral graphene but decreases in highly doped graphene. We show that this transition from semiconductor graphene upon optical excitation. We observe that the photoinduced terahertz absorption increases in charge

  17. Controlled metal-semiconductor sintering/alloying by one-directional reverse illumination

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Denver, CO)

    1993-01-01

    Metal strips deposited on a top surface of a semiconductor substrate are sintered at one temperature simultaneously with alloying a metal layer on the bottom surface at a second, higher temperature. This simultaneous sintering of metal strips and alloying a metal layer on opposite surfaces of the substrate at different temperatures is accomplished by directing infrared radiation through the top surface to the interface of the bottom surface with the metal layer where the radiation is absorbed to create a primary hot zone with a temperature high enough to melt and alloy the metal layer with the bottom surface of the substrate. Secondary heat effects, including heat conducted through the substrate from the primary hot zone and heat created by infrared radiation reflected from the metal layer to the metal strips, as well as heat created from some primary absorption by the metal strips, combine to create secondary hot zones at the interfaces of the metal strips with the top surface of the substrate. These secondary hot zones are not as hot as the primary hot zone, but they are hot enough to sinter the metal strips to the substrate.

  18. X ray photoelectron analysis of oxide-semiconductor interface after breakdown in Al{sub 2}O{sub 3}/InGaAs stacks

    SciTech Connect (OSTI)

    Shekhter, P.; Palumbo, F.; Cohen Weinfeld, K.; Eizenberg, M.

    2014-09-08

    In this work, the post-breakdown characteristics of metal gate/Al{sub 2}O{sub 3}/InGaAs structures were studied using surface analysis by x ray photoelectron spectroscopy. The results show that for dielectric breakdown under positive bias, localized filaments consisting of oxidized substrate atoms (In, Ga and As) were formed, while following breakdown under negative bias, a decrease of oxidized substrate atoms was observed. Such differences in the microstructure at the oxide-semiconductor interface after breakdown for positive and negative voltages are explained by atomic diffusion of the contact atoms into the gate dielectric in the region of the breakdown spot by the current induced electro-migration effect. These findings show a major difference between Al{sub 2}O{sub 3}/InGaAs and SiO{sub 2}/Si interfaces, opening the way to a better understanding of the breakdown characteristics of III-V complementary-metal-oxide-semiconductor technology.

  19. Metal Oxide Semiconductor Nanoparticles Open the Door to New Medical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matter ByMentor-ProtegeFrom the DirectorInnovations | Argonne

  20. Metal Oxide Semiconductor Nanoparticles Pave the Way for Medical Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matter ByMentor-ProtegeFrom the DirectorInnovations |

  1. Metal oxide porous ceramic membranes with small pore sizes

    DOE Patents [OSTI]

    Anderson, Marc A. (Madison, WI); Xu, Qunyin (Madison, WI)

    1991-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  2. Solder for oxide layer-building metals and alloys

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-09-15

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel is disclosed. The composition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than approximately 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300 C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  3. Solder for oxide layer-building metals and alloys

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1992-01-01

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel. The comosition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than aproximatley 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300.degree. C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  4. Oxidized film structure and method of making epitaxial metal oxide structure

    DOE Patents [OSTI]

    Gan, Shupan [Richland, WA; Liang, Yong [Richland, WA

    2003-02-25

    A stable oxidized structure and an improved method of making such a structure, including an improved method of making an interfacial template for growing a crystalline metal oxide structure, are disclosed. The improved method comprises the steps of providing a substrate with a clean surface and depositing a metal on the surface at a high temperature under a vacuum to form a metal-substrate compound layer on the surface with a thickness of less than one monolayer. The compound layer is then oxidized by exposing the compound layer to essentially oxygen at a low partial pressure and low temperature. The method may further comprise the step of annealing the surface while under a vacuum to further stabilize the oxidized film structure. A crystalline metal oxide structure may be subsequently epitaxially grown by using the oxidized film structure as an interfacial template and depositing on the interfacial template at least one layer of a crystalline metal oxide.

  5. 1/f noise in semiconductor and metal nanocrystal solids

    SciTech Connect (OSTI)

    Liu, Heng Lhuillier, Emmanuel Guyot-Sionnest, Philippe

    2014-04-21

    Electrical 1/f noise is measured in thin films of CdSe, CdSe/CdS, ZnO, HgTe quantum dots and Au nanocrystals. The 1/f noise, normalized per nanoparticle, shows no systematic dependence on the nanoparticle material and the coupling material. However, over 10 orders of magnitude, it correlates well with the nearest neighbor conductance suggesting some universal magnitude of the 1/f noise in these granular conductors. In the hopping regime, the main mechanism of 1/f noise is determined to be mobility fluctuated. In the metallic regime obtained with gold nanoparticle films, the noise drops to a similar level as bulk gold films and with a similar temperature dependence.

  6. Metal oxide/organic interface investigations for photovoltaic devices

    E-Print Network [OSTI]

    Pachoumi, Olympia

    2014-10-07

    the performance and stability of interfacial charge extraction layers for organic solar cells. Two novel ternary metal oxides, zinc-strontrium- oxide (ZnSrO) and zinc-barium-oxide (ZnBaO), were fabricated and their use as electron extraction layers in inverted...

  7. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOE Patents [OSTI]

    Poston, James A. (Star City, WV)

    1997-01-01

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  8. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOE Patents [OSTI]

    Poston, J.A.

    1997-12-02

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  9. Antiferromagnetic half-metals, gapless half-metals, and spin gapless semiconductors: The D0{sub 3}-type Heusler alloys

    SciTech Connect (OSTI)

    Gao, G. Y. Yao, Kai-Lun

    2013-12-02

    High-spin-polarization materials are desired for the realization of high-performance spintronic devices. We combine recent experimental and theoretical findings to theoretically design several high-spin-polarization materials in binary D0{sub 3}-type Heusler alloys: gapless (zero-gap) half-metallic ferrimagnets of V{sub 3}Si and V{sub 3}Ge, half-metallic antiferromagnets of Mn{sub 3}Al and Mn{sub 3}Ga, half-metallic ferrimagnets of Mn{sub 3}Si and Mn{sub 3}Ge, and a spin gapless semiconductor of Cr{sub 3}Al. The high spin polarization, zero net magnetic moment, zero energy gap, and slight disorder compared to the ternary and quaternary Heusler alloys make these binary materials promising candidates for spintronic applications. All results are obtained by the electronic structure calculations from first-principles.

  10. Formation of metal oxides by cathodic arc deposition

    SciTech Connect (OSTI)

    Anders, S.; Anders, A.; Rubin, M.; Wang, Z.; Raoux, S.; Kong, F.; Brown, I.G.

    1995-03-01

    Metal oxide thin films are of interest for a number of applications. Cathodic arc deposition, an established, industrially applied technique for formation of nitrides (e.g. TiN), can also be used for metal oxide thin film formation. A cathodic arc plasma source with desired cathode material is operated in an oxygen atmosphere, and metal oxides of various stoichiometric composition can be formed on different substrates. We report here on a series of experiments on metal oxide formation by cathodic arc deposition for different applications. Black copper oxide has been deposited on ALS components to increase the radiative heat transfer between the parts. Various metal oxides such as tungsten oxide, niobium oxide, nickel oxide and vanadium oxide have been deposited on ITO glass to form electrochromic films for window applications. Tantalum oxide films are of interest for replacing polymer electrolytes. Optical waveguide structures can be formed by refractive index variation using oxide multilayers. We have synthesized multilayers of Al{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/AI{sub 2}O{sub 3}/Si as possible basic structures for passive optoelectronic integrated circuits, and Al{sub 2-x}Er{sub x}O{sub 3} thin films with a variable Er concentration which is a potential component layer for the production of active optoelectronic integrated devices such as amplifiers or lasers at a wavelength of 1.53 {mu}m. Aluminum and chromium oxide films have been deposited on a number of substrates to impart improved corrosion resistance at high temperature. Titanium sub-oxides which are electrically conductive and corrosion resistant and stable in a number of aggressive environments have been deposited on various substrates. These sub-oxides are of great interest for use in electrochemical cells.

  11. Solution-mediated strategies for synthesizing metal oxides, borates and phosphides using nanocrystals as reactive precursors 

    E-Print Network [OSTI]

    Henkes, Amanda Erin

    2009-05-15

    ) the solution-mediated diffusion of phosphorus into a nanocrystalline metal to form target metal phosphides. To form multi-metal oxides using the first strategy, metal oxide nanoparticle precursors are mixed in stoichiometric ratios in solution to form a...

  12. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    SciTech Connect (OSTI)

    Richard T. Scalettar; Warren E. Pickett

    2005-08-02

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.

  13. NREL Demonstrates Efficient Solar Water Splitting by Metal Oxide Photoabsorber (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    New development demonstrates that inexpensive and robust metal oxide photoabsorbers hold great promise as photoanodes for water oxidation.

  14. Method for converting uranium oxides to uranium metal

    DOE Patents [OSTI]

    Duerksen, Walter K. (Norris, TN)

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  15. Catalysis using hydrous metal oxide ion exchangers

    DOE Patents [OSTI]

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  16. Metal Oxide Thin Films Deposited from Metal Organic Precursors in Supercritical CO2 Solutions

    E-Print Network [OSTI]

    Gougousi, Theodosia

    Metal Oxide Thin Films Deposited from Metal Organic Precursors in Supercritical CO2 Solutions and oxidizing agents are delivered in liquid and supercritical CO2. A cyclic deposition process is presented properties of supercritical CO2 can aid in the delivery of precursors and in the removal of byproducts

  17. Amorphous silicon enhanced metal-insulator-semiconductor contacts for silicon solar cells

    SciTech Connect (OSTI)

    Bullock, J. Cuevas, A.; Yan, D.; Demaurex, B.; Hessler-Wyser, A.; De Wolf, S.

    2014-10-28

    Carrier recombination at the metal-semiconductor contacts has become a significant obstacle to the further advancement of high-efficiency diffused-junction silicon solar cells. This paper provides the proof-of-concept of a procedure to reduce contact recombination by means of enhanced metal-insulator-semiconductor (MIS) structures. Lightly diffused n{sup +} and p{sup +} surfaces are passivated with SiO{sub 2}/a-Si:H and Al{sub 2}O{sub 3}/a-Si:H stacks, respectively, before the MIS contacts are formed by a thermally activated alloying process between the a-Si:H layer and an overlying aluminum film. Transmission/scanning transmission electron microscopy (TEM/STEM) and energy dispersive x-ray spectroscopy are used to ascertain the nature of the alloy. Idealized solar cell simulations reveal that MIS(n{sup +}) contacts, with SiO{sub 2} thicknesses of ?1.55?nm, achieve the best carrier-selectivity producing a contact resistivity ?{sub c} of ?3 m? cm{sup 2} and a recombination current density J{sub 0c} of ?40 fA/cm{sup 2}. These characteristics are shown to be stable at temperatures up to 350?°C. The MIS(p{sup +}) contacts fail to achieve equivalent results both in terms of thermal stability and contact characteristics but may still offer advantages over directly metallized contacts in terms of manufacturing simplicity.

  18. Magnetic Properties of Mesoporous and Nano-particulate Metal Oxides 

    E-Print Network [OSTI]

    Hill, Adrian H

    2009-01-01

    The magnetic properties of the first row transition metal oxides are wide and varied and have been studied extensively since the 1930’s. Observations that the magnetic properties of these material types change with the ...

  19. Charge, orbital and magnetic ordering in transition metal oxides 

    E-Print Network [OSTI]

    Senn, Mark Stephen

    2013-06-29

    Neutron and x-ray diffraction has been used to study charge, orbital and magnetic ordering in some transition metal oxides. The long standing controversy regarding the nature of the ground state (Verwey structure) of the ...

  20. Metal oxides for efficient infrared to visible upconversion

    E-Print Network [OSTI]

    Etchart, Isabelle

    2010-10-12

    Department of Materials Science and Metallurgy Metal Oxides for Efficient Infrared to Visible Upconversion Isabelle Etchart Corpus Christi College A dissertation submitted for the degree of Doctor of Philosophy Preface i... to the investigation of lanthanide-doped metal oxide hosts due to their good chemical, thermal and mechanical stabilities. Chapter 1 : General i ntroductio n 4 1 .4 . Previo us w ork In this thesis, we present results obtained on Y 2...

  1. Inert electrode containing metal oxides, copper and noble metal

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

    2001-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  2. Inert electrode containing metal oxides, copper and noble metal

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

    2000-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  3. Displacement method and apparatus for reducing passivated metal powders and metal oxides

    DOE Patents [OSTI]

    Morrell; Jonathan S. (Knoxville, TN), Ripley; Edward B. (Knoxville, TN)

    2009-05-05

    A method of reducing target metal oxides and passivated metals to their metallic state. A reduction reaction is used, often combined with a flux agent to enhance separation of the reaction products. Thermal energy in the form of conventional furnace, infrared, or microwave heating may be applied in combination with the reduction reaction.

  4. Enhanced Half-Metallicity in Edge-Oxidized Zigzag Graphene

    E-Print Network [OSTI]

    Hod, Oded

    Enhanced Half-Metallicity in Edge-Oxidized Zigzag Graphene Nanoribbons Oded Hod,* Vero´nica Barone theoretical study of the electronic properties and relative stabilities of edge-oxidized zigzag graphene with nanometer scale dimen- sions. Recently, a new type of graphene-based material was experimentally realized.12

  5. Metal-oxide-based energetic materials and synthesis thereof

    DOE Patents [OSTI]

    Tillotson, Thomas M. (Tracy, CA), Simpson; Randall L. (Livermore, CA); Hrubesh, Lawrence W. (Pleasanton, CA)

    2006-01-17

    A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite. Other ingredients may be added to this basic nanostructure to change physical and chemical properties, which include organic constituents for binders or gas generators during reactions, burn rate modifiers, or spectral emitters.

  6. Amorphous oxide semiconductors are promising new materials for various optoelectronic applications. In this study, improved electrical and optical properties upon thermal and microwave processing of

    E-Print Network [OSTI]

    Amorphous oxide semiconductors are promising new materials for various optoelectronic applications. In this study, improved electrical and optical properties upon thermal and microwave processing of mixed-oxide semiconductors are reported. First, arsenic-doped silicon was used as a model system to understand susceptor

  7. First principles study of Fe in diamond: A diamond-based half metallic dilute magnetic semiconductor

    SciTech Connect (OSTI)

    Benecha, E. M.; Lombardi, E. B.

    2013-12-14

    Half-metallic ferromagnetic ordering in semiconductors, essential in the emerging field of spintronics for injection and transport of highly spin polarised currents, has up to now been considered mainly in III–V and II–VI materials. However, low Curie temperatures have limited implementation in room temperature device applications. We report ab initio Density Functional Theory calculations on the properties of Fe in diamond, considering the effects of lattice site, charge state, and Fermi level position. We show that the lattice sites and induced magnetic moments of Fe in diamond depend strongly on the Fermi level position and type of diamond co-doping, with Fe being energetically most favorable at the substitutional site in p-type and intrinsic diamond, while it is most stable at a divacancy site in n-type diamond. Fe induces spin polarized bands in the band gap, with strong hybridization between Fe-3d and C-2s,2p bands. We further consider Fe-Fe spin interactions in diamond and show that substitutional Fe{sup +1} in p-type diamond exhibits a half-metallic character, with a magnetic moment of 1.0??{sub B} per Fe atom and a large ferromagnetic stabilization energy of 33?meV, an order of magnitude larger than in other semiconductors, with correspondingly high Curie temperatures. These results, combined with diamond's unique properties, demonstrate that Fe doped p-type diamond is likely to be a highly suitable candidate material for spintronics applications.

  8. Aerosol chemical vapor deposition of metal oxide films

    DOE Patents [OSTI]

    Ott, K.C.; Kodas, T.T.

    1994-01-11

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

  9. Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells

    E-Print Network [OSTI]

    Heo, Jaeyeong

    We demonstrate a tunable electron-blocking layer to enhance the performance of an Earth-abundant metal-oxide solar-cell material. A 5 nm thick amorphous ternary metal-oxide buffer layer reduces interface recombination, ...

  10. Ethanol oxidation on metal oxide-supported platinum catalysts

    SciTech Connect (OSTI)

    L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

    2009-09-01

    Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.

  11. Methods of making metal oxide nanostructures and methods of controlling morphology of same

    DOE Patents [OSTI]

    Wong, Stanislaus S; Hongjun, Zhou

    2012-11-27

    The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.

  12. Effects of hole localization on limiting p-type conductivity in oxide and nitride semiconductors

    SciTech Connect (OSTI)

    Lyons, J. L.; Janotti, A.; Van de Walle, C. G. [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States)

    2014-01-07

    We examine how hole localization limits the effectiveness of substitutional acceptors in oxide and nitride semiconductors and explain why p-type doping of these materials has proven so difficult. Using hybrid density functional calculations, we find that anion-site substitutional impurities in AlN, GaN, InN, and ZnO lead to atomic-like states that localize on the impurity atom itself. Substitution with cation-site impurities, on the other hand, triggers the formation of polarons that become trapped on nearest-neighbor anions, generally leading to large ionization energies for these acceptors. Unlike shallow effective-mass acceptors, these two types of deep acceptors couple strongly with the lattice, significantly affecting the optical properties and severely limiting prospects for achieving p-type conductivity in these wide-band-gap materials.

  13. Super-Resolution Mapping of Photogenerated Electron and Hole Separation in Single Metal-Semiconductor Nanocatalysts

    SciTech Connect (OSTI)

    Ha, Ji Won [Ames Laboratory; Ruberu, T. Purnima A. [Ames Laboratory; Han, Rui [Ames Laboratory; Dong, Bin [Ames Laboratory; Vela, Javier [Ames Laboratory; Fang, Ning [Ames Laboratory

    2014-01-12

    Metal–semiconductor heterostructures are promising visible light photocatalysts for many chemical reactions. Here, we use high-resolution superlocalization imaging to reveal the nature and photocatalytic properties of the surface reactive sites on single Au–CdS hybrid nanocatalysts. We experimentally reveal two distinct, incident energy-dependent charge separation mechanisms that result in completely opposite photogenerated reactive sites (e– and h+) and divergent energy flows on the hybrid nanocatalysts. We find that plasmon-induced hot electrons in Au are injected into the conduction band of the CdS semiconductor nanorod. The specifically designed Au-tipped CdS heterostructures with a unique geometry (two Au nanoparticles at both ends of each CdS nanorod) provide more convincing high-resolution single-turnover mapping results and clearly prove the two charge separation mechanisms. Engineering the direction of energy flow at the nanoscale can provide an efficient way to overcome important challenges in photocatalysis, such as controlling catalytic activity and selectivity. These results bear enormous potential impact on the development of better visible light photocatalysts for solar-to-chemical energy conversion.

  14. Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor-like by Electrostatic Gating

    E-Print Network [OSTI]

    Zettl, Alex

    with dry nitrogen during the measurement. Sample preparation We grow single layer graphene on copper foil1 Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor electro-optic sampling.2 The focused THz beam at our graphene sample has a diameter of 1 mm. For optical

  15. Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor-like by Electrostatic Gating

    E-Print Network [OSTI]

    Zettl, Alex

    1 Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor electro-optic sampling.2 The focused THz beam at our graphene sample has a diameter of 1 mm. For optical between optical pump and THz probe. We use ion-gel gating to control the carrier concentration in graphene

  16. Comparative study of metal or oxide capped indiumtin oxide anodes for organic light-emitting diodes

    E-Print Network [OSTI]

    of Physics. DOI: 10.1063/1.1556184 I. INTRODUCTION Organic light-emitting diodes OLEDs 1 are challengingComparative study of metal or oxide capped indium­tin oxide anodes for organic light as anodes in organic light-emitting diodes based on N,N -diphenyl-N,N bis 3-methyl-phenyl-1,1 -biphenyl-4

  17. Phonon softening and metallization of a narrow-gap semiconductor by thermal disorder

    SciTech Connect (OSTI)

    Delaire, Olivier A [ORNL; Marty, Karol J [ORNL; Stone, Matthew B [ORNL; Kent, Paul R [ORNL; Lucas, [ORNL; Abernathy, Douglas L [ORNL; Mandrus, David [ORNL; Sales, Brian C [ORNL

    2011-01-01

    The vibrations of ions in solids at finite temperature depend on interatomic force-constants that result from electrostatic interactions between ions, and the response of the electron density to atomic displacements. At high temperatures, vibration amplitudes are substantial, and electronic states are affected, thus modifying the screening properties of the electron density. By combining inelastic neutron scattering measurements of Fe$_{1-x}$Co$_x$Si as a function of temperature, and finite-temperature first-principles calculations including thermal disorder effects, we show that the coupling between phonons and electronic structure results in an anomalous temperature dependence of phonons. The strong concomitant renormalization of the electronic structure induces the semiconductor-to-metal transition that occurs with increasing temperature in FeSi. Our results show that for systems with rapidly changing electronic densities of states at the Fermi level, there are likely to be significant phonon-electron interactions, resulting in anomalous temperature dependent properties.

  18. Strongly modified four-wave mixing in a coupled semiconductor quantum dot-metal nanoparticle system

    SciTech Connect (OSTI)

    Paspalakis, Emmanuel; Evangelou, Sofia; Kosionis, Spyridon G.; Terzis, Andreas F.

    2014-02-28

    We study the four-wave mixing effect in a coupled semiconductor quantum dot-spherical metal nanoparticle structure. Depending on the values of the pump field intensity and frequency, we find that there is a critical distance that changes the form of the spectrum. Above this distance, the four-wave mixing spectrum shows an ordinary three-peaked form and the effect of controlling its magnitude by changing the interparticle distance can be obtained. Below this critical distance, the four-wave mixing spectrum becomes single-peaked; and as the interparticle distance decreases, the spectrum is strongly suppressed. The behavior of the system is explained using the effective Rabi frequency that creates plasmonic metaresonances in the hybrid structure. In addition, the behavior of the effective Rabi frequency is explained via an analytical solution of the density matrix equations.

  19. Sharp semiconductor-to-metal transition of VO{sub 2} thin films on glass substrates

    SciTech Connect (OSTI)

    Jian, Jie; Chen, Aiping [Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843-3128 (United States); Zhang, Wenrui [Material Science and Engineering Program, Texas A and M University, College Station, Texas 77843-3128 (United States); Wang, Haiyan, E-mail: wangh@ece.tamu.edu [Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843-3128 (United States); Material Science and Engineering Program, Texas A and M University, College Station, Texas 77843-3128 (United States)

    2013-12-28

    Outstanding phase transition properties of vanadium dioxide (VO{sub 2}) thin films on amorphous glass were achieved and compared with the ones grown on c-cut sapphire and Si (111) substrates, all by pulsed laser deposition. The films on glass substrate exhibit a sharp semiconductor-to-metal transition (?4.3?°C) at a near bulk transition temperature of ?68.4?°C with an electrical resistance change as high as 3.2?×?10{sup 3} times. The excellent phase transition properties of the films on glass substrate are correlated with the large grain size and low defects density achieved. The phase transition properties of VO{sub 2} films on c-cut sapphire and Si (111) substrates were found to be limited by the high defect density.

  20. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    DOE Patents [OSTI]

    Perkins, John (Boulder, CO); Van Hest, Marinus Franciscus Antonius Maria (Lakewood, CO); Ginley, David (Evergreen, CO); Taylor, Matthew (Golden, CO); Neuman, George A. (Holland, MI); Luten, Henry A. (Holland, MI); Forgette, Jeffrey A. (Hudsonville, MI); Anderson, John S. (Holland, MI)

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  1. Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics

    SciTech Connect (OSTI)

    Ha, Tae-Jun

    2014-10-15

    We investigate the origin of visible-light-induced instability in amorphous metal-oxide based thin film transistors (oxide-TFTs) for transparent electronics by exploring the shift in threshold voltage (V{sub th}). A large hysteresis window in amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs possessing large optical band-gap (?3 eV) was observed in a visible-light illuminated condition whereas no hysteresis window was shown in a dark measuring condition. We also report the instability caused by photo irradiation and prolonged gate bias stress in oxide-TFTs. Larger V{sub th} shift was observed after photo-induced stress combined with a negative gate bias than the sum of that after only illumination stress and only negative gate bias stress. Such results can be explained by trapped charges at the interface of semiconductor/dielectric and/or in the gate dielectric which play a role in a screen effect on the electric field applied by gate voltage, for which we propose that the localized-states-assisted transitions by visible-light absorption can be responsible.

  2. Synthesis and characterization of nanostructured transition metal oxides for energy storage devices

    E-Print Network [OSTI]

    Kim, Jong Woung

    2012-01-01

    Figure 1.1. Ragone plot of various energy storage systems [metal oxides for energy storage devices A dissertationmetal oxides for energy storage devices by Jong Woung Kim

  3. Oxidation/Reduction Reactions at the Metal Contact-TlBr Interface...

    Office of Scientific and Technical Information (OSTI)

    Conference: OxidationReduction Reactions at the Metal Contact-TlBr Interface: An X-ray Photoelectron Spectroscopy Study Citation Details In-Document Search Title: Oxidation...

  4. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2006-11-14

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0oxidation state and with at least one ion being Ni, and where M' is one or more ions with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  5. All-alkoxide synthesis of strontium-containing metal oxides

    DOE Patents [OSTI]

    Boyle, Timothy J. (Albuquerque, NM)

    2001-01-01

    A method for making strontium-containing metal-oxide ceramic thin films from a precursor liquid by mixing a strontium neo-pentoxide dissolved in an amine solvent and at least one metal alkoxide dissolved in a solvent, said at least one metal alkoxide selected from the group consisting of alkoxides of calcium, barium, bismuth, cadmium, lead, titanium, tantalum, hafnium, tungsten, niobium, zirconium, yttrium, lanthanum, antimony, chromium and thallium, depositing a thin film of the precursor liquid on a substrate, and heating the thin film in the presence of oxygen at between 550 and 700.degree. C.

  6. Control of cerium oxidation state through metal complex secondary structures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; Schelter, Eric J.

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observedmore »when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.« less

  7. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    DOE Patents [OSTI]

    Lyons, J.E.; Ellis, P.E. Jr.; Wagner, R.W.

    1996-01-02

    Transition metal complexes of Gable porphyrins are disclosed having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  8. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    DOE Patents [OSTI]

    Lyons, James E. (Wallingford, PA); Ellis, Jr., Paul E. (Downingtown, PA); Wagner, Richard W. (Murrysville, PA)

    1996-01-01

    Transition metal complexes of Gable porphyrins having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  9. Oxidation resistant filler metals for direct brazing of structural ceramics

    DOE Patents [OSTI]

    Moorhead, Arthur J. (Knoxville, TN)

    1986-01-01

    A method of joining ceramics and metals to themselves and to one another is described using essentially pure trinickel aluminide and trinickel aluminide containing small amounts of carbon. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  10. Abstract A comprehensive overview of density functional theory simulations of high-k oxide/III-V semiconductor interfaces is presented. The methodologies of

    E-Print Network [OSTI]

    Kummel, Andrew C.

    /III-V semiconductor interfaces is presented. The methodologies of realistic amorphous high-k oxide generation.), Fundamentals of III-V Semiconductor MOSFETs, DOI 10.1007/978-1-4419-1547-4_5, © Springer Science+Business Media is the electrical permittivity of vacuum. As follows from Eq. (5.1), using a material with high dielectric constant

  11. Reduction of Metal Oxides by Microwave Heating of Multi-walled...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reduction of Metal Oxides by Microwave Heating of Multi-walled Carbon Nanotubes Microwave heating of a metal oxide in the presence of multi-walled carbon nanotubes may result in...

  12. Electrical excitation of colloidally synthesized quantum dots in metal oxide structures

    E-Print Network [OSTI]

    Wood, Vanessa Claire

    2010-01-01

    This thesis develops methods for integrating colloidally synthesized quantum dots (QDs) and metal oxides in optoelectronic devices, presents three distinct light emitting devices (LEDs) with metal oxides surrounding a QD ...

  13. Volatile organometallic complexes suitable for use in chemical vapor depositions on metal oxide films

    DOE Patents [OSTI]

    Giolando, Dean M.

    2003-09-30

    Novel ligated compounds of tin, titanium, and zinc are useful as metal oxide CVD precursor compounds without the detriments of extreme reactivity yet maintaining the ability to produce high quality metal oxide coating by contact with heated substrates.

  14. Method of depositing an electrically conductive oxide film on a textured metallic substrate and articles formed therefrom

    DOE Patents [OSTI]

    Christen, David K. (Oak Ridge, TN); He, Qing (Bloomington, MN)

    2003-04-29

    The present invention provides a biaxially textured laminate article having a polycrystalline biaxially textured metallic substrate with an electrically conductive oxide layer epitaxially deposited thereon and methods for producing same. In one embodiment a biaxially texture Ni substrate has a layer of LaNiO.sub.3 deposited thereon. An initial layer of electrically conductive oxide buffer is epitaxially deposited using a sputtering technique using a sputtering gas which is an inert or forming gas. A subsequent layer of an electrically conductive oxide layer is then epitaxially deposited onto the initial layer using a sputtering gas comprising oxygen. The present invention will enable the formation of biaxially textured devices which include HTS wires and interconnects, large area or long length ferromagnetic and/or ferroelectric memory devices, large area or long length, flexible light emitting semiconductors, ferroelectric tapes, and electrodes.

  15. Method of depositing an electrically conductive oxide film on a textured metallic substrate and articles formed therefrom

    DOE Patents [OSTI]

    Christen, David K. (Oak Ridge, TN); He, Qing (Bloomington, MN)

    2001-01-01

    The present invention provides a biaxially textured laminate article having a polycrystalline biaxially textured metallic substrate with an electrically conductive oxide layer epitaxially deposited thereon and methods for producing same. In one embodiment a biaxially texture Ni substrate has a layer of LaNiO.sub.3 deposited thereon. An initial layer of electrically conductive oxide buffer is epitaxially deposited using a sputtering technique using a sputtering gas which is an inert or forming gas. A subsequent layer of an electrically conductive oxide layer is then epitaxially deposited onto the initial layer using a sputtering gas comprising oxygen. The present invention will enable the formation of biaxially textured devices which include HTS wires and interconnects, large area or long length ferromagnetic and/or ferroelectric memory devices, large area or long length, flexible light emitting semiconductors, ferroelectric tapes, and electrodes.

  16. Development of epitaxial AlxSc1-xN for artificially structured metal/semiconductor superlattice metamaterials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sands, Timothy D.; Stach, Eric A.; Saha, Bivas; Saber, Sammy; Naik, Gururaj V.; Boltasseva, Alexandra; Kvam, Eric P.

    2015-02-01

    Epitaxial nitride rocksalt metal/semiconductor superlattices are emerging as a novel class of artificially structured materials that have generated significant interest in recent years for their potential application in plasmonic and thermoelectric devices. Though most nitride metals are rocksalt, nitride semiconductors in general have hexagonal crystal structure. We report rocksalt aluminum scandium nitride (Al,Sc)N alloys as the semiconducting component in epitaxial rocksalt metal/semiconductor superlattices. The AlxSc1-xN alloys when deposited directly on MgO substrates are stabilized in a homogeneous rocksalt (single) phase when x more »the rocksalt phase has been extended to x xSc1-xN alloys show moderate direct bandgap bowing with a bowing parameter, B = 1.41 ± 0.19 eV. The direct bandgap of metastable rocksalt AlN is extrapolated to be 4.70 ± 0.20 eV. The tunable lattice parameter, bandgap, dielectric permittivity, and electronic properties of rocksalt AlxSc1-xN alloys enable high quality epitaxial rocksalt metal/AlxSc1-xN superlattices with a wide range of accessible metamaterials properties.« less

  17. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01

    Metal Oxides Cathodes for Lithium-ion Batteries Kinson C.storage using rechargeable lithium-ion batteries has become

  18. Schottky barrier height reduction for holes by Fermi level depinning using metal/nickel oxide/silicon contacts

    SciTech Connect (OSTI)

    Islam, Raisul, E-mail: raisul@stanford.edu; Shine, Gautam; Saraswat, Krishna C. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2014-11-03

    We report the experimental demonstration of Fermi level depinning using nickel oxide (NiO) as the insulator material in metal-insulator-semiconductor (M-I-S) contacts. Using this contact, we show less than 0.1?eV barrier height for holes in platinum/NiO/silicon (Pt/NiO/p-Si) contact. Overall, the pinning factor was improved from 0.08 (metal/Si) to 0.26 (metal/NiO/Si). The experimental results show good agreement with that obtained from theoretical calculation. NiO offers high conduction band offset and low valence band offset with Si. By reducing Schottky barrier height, this contact can be used as a carrier selective contact allowing hole transport but blocking electron transport, which is important for high efficiency in photonic applications such as photovoltaics and optical detectors.

  19. Nanotube Formation: Researchers Learn To Control The Dimensions Of Metal Oxide Nanotubes

    E-Print Network [OSTI]

    Nair, Sankar

    made from metal oxides -- work that could lead to a technique for precisely conNanotube Formation: Researchers Learn To Control The Dimensions Of Metal Oxide Nanotubes Science their diameter and length. Based on metal oxides in combination with silicon and germanium, such single

  20. Catalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures

    E-Print Network [OSTI]

    Goodman, Wayne

    oxidation over platinum group metals has been investigated for some eight decades by many researchersCatalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures A Catalytic oxidation of CO over platinum group metals (Pt, Ir, Rh and Pd) has been the subject of many

  1. Electromigration in metal interconnects is the most pernicious failure mechanism in semiconductor integrated circuits (ICs). Early electromigration investigations were primarily focused on aluminum interconnects for

    E-Print Network [OSTI]

    Electromigration in metal interconnects is the most pernicious failure mechanism in semiconductor interconnects for silicon-based ICs. An alternative metallization compatible with gallium arsenide (Ga at higher current densities and elevated temperatures. Gold-based metallization was implemented on Ga

  2. Method to determine the position-dependant metal correction factor for dose-rate equivalent laser testing of semiconductor devices

    DOE Patents [OSTI]

    Horn, Kevin M.

    2013-07-09

    A method reconstructs the charge collection from regions beneath opaque metallization of a semiconductor device, as determined from focused laser charge collection response images, and thereby derives a dose-rate dependent correction factor for subsequent broad-area, dose-rate equivalent, laser measurements. The position- and dose-rate dependencies of the charge-collection magnitude of the device are determined empirically and can be combined with a digital reconstruction methodology to derive an accurate metal-correction factor that permits subsequent absolute dose-rate response measurements to be derived from laser measurements alone. Broad-area laser dose-rate testing can thereby be used to accurately determine the peak transient current, dose-rate response of semiconductor devices to penetrating electron, gamma- and x-ray irradiation.

  3. Cyclic catalytic upgrading of chemical species using metal oxide materials

    DOE Patents [OSTI]

    White, James H; Schutte, Erick J; Rolfe, Sara L

    2013-05-07

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01metal oxides.

  4. Rapid low-temperature processing of metal-oxide thin film transistors with combined far ultraviolet and thermal annealing

    SciTech Connect (OSTI)

    Leppäniemi, J. Ojanperä, K.; Kololuoma, T.; Huttunen, O.-H.; Majumdar, H.; Alastalo, A.; Dahl, J.; Tuominen, M.; Laukkanen, P.

    2014-09-15

    We propose a combined far ultraviolet (FUV) and thermal annealing method of metal-nitrate-based precursor solutions that allows efficient conversion of the precursor to metal-oxide semiconductor (indium zinc oxide, IZO, and indium oxide, In{sub 2}O{sub 3}) both at low-temperature and in short processing time. The combined annealing method enables a reduction of more than 100?°C in annealing temperature when compared to thermally annealed reference thin-film transistor (TFT) devices of similar performance. Amorphous IZO films annealed at 250?°C with FUV for 5?min yield enhancement-mode TFTs with saturation mobility of ?1?cm{sup 2}/(V·s). Amorphous In{sub 2}O{sub 3} films annealed for 15?min with FUV at temperatures of 180?°C and 200?°C yield TFTs with low-hysteresis and saturation mobility of 3.2?cm{sup 2}/(V·s) and 7.5?cm{sup 2}/(V·s), respectively. The precursor condensation process is clarified with x-ray photoelectron spectroscopy measurements. Introducing the FUV irradiation at 160?nm expedites the condensation process via in situ hydroxyl radical generation that results in the rapid formation of a continuous metal-oxygen-metal structure in the film. The results of this paper are relevant in order to upscale printed electronics fabrication to production-scale roll-to-roll environments.

  5. Quantum filter of spin polarized states: Metal–dielectric–ferromagnetic/semiconductor device

    SciTech Connect (OSTI)

    Makarov, Vladimir I.; Khmelinskii, Igor

    2014-02-01

    Highlights: • Development of a new spintronics device. • Development of quantum spin polarized filters. • Development of theory of quantum spin polarized filter. - Abstract: Recently we proposed a model for the Quantum Spin-Polarized State Filter (QSPSF). The magnetic moments are transported selectively in this model, detached from the electric charge carriers. Thus, transfer of a spin-polarized state between two conductors was predicted in a system of two levels coupled by exchange interaction. The strength of the exchange interaction between the two conductive layers depends on the thickness of the dielectric layer separating them. External magnetic fields modulate spin-polarized state transfer, due to Zeeman level shift. Therefore, a linearly growing magnetic field generates a series of current peaks in a nearby coil. Thus, our spin-state filter should contain as least three nanolayers: (1) conductive or ferromagnetic; (2) dielectric; and (3) conductive or semiconductive. The spectrum of spin-polarized states generated by the filter device consists of a series of resonance peaks. In a simple case the number of lines equals S, the total spin angular momentum of discrete states in one of the coupled nanolayers. Presently we report spin-polarized state transport in metal–dielectric–ferromagnetic (MDF) and metal–dielectric–semiconductor (MDS) three-layer sandwich devices. The exchange-resonance spectra in such devices are quite specific, differing also from spectra observed earlier in other three-layer devices. The theoretical model is used to interpret the available experimental results. A detailed ab initio analysis of the magnetic-field dependence of the output magnetic moment averaged over the surface of the device was carried out. The model predicts the resonance structure of the signal, although at its present accuracy it cannot predict the positions of the spectral peaks.

  6. Voltage oxide removal for plating: A new method of electroplating oxide coated metals in situ

    SciTech Connect (OSTI)

    Gutfeld, R. J. von; West, A. C. [Department of Chemical Engineering, Columbia University, New York, New York 10027 (United States)

    2007-03-15

    A novel in situ method for electroplating oxide coated metals is described. Termed VORP, for voltage oxide removal for plating, the process utilizes a voltage pulse {approx}20-200 V, {approx}2 ms in duration, applied between working and counterelectrodes while both are immersed in a copper electrolyte. The pulse is almost immediately followed by galvanostatic plate-up. Adherent copper deposits up to {approx}4 {mu}m in height on stainless steel 316 coupons have been obtained. Temperature testing up to 260 deg. C in air does not affect the copper adhesion. A preliminary model for oxide removal is proposed utilizing concepts of dielectric breakdown.

  7. Synthesis of metal-metal oxide catalysts and electrocatalysts using a metal cation adsorption/reduction and adatom replacement by more noble ones

    DOE Patents [OSTI]

    Adzic, Radoslav; Vukmirovic, Miomir; Sasaki, Kotaro

    2010-04-27

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen. The invention also relates to methods of making the metal-metal oxide composites.

  8. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Douglas A. (Murrysville, PA)

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  9. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Oakbrook, IL)

    2008-12-23

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  10. Lithium Metal Oxide Electrodes For Lithium Cells And Batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

    2004-01-20

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  11. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOE Patents [OSTI]

    Flinn, J.E.; Kelly, T.F.

    1999-06-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains. 20 figs.

  12. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOE Patents [OSTI]

    Flinn, John E. (Idaho Falls, ID); Kelly, Thomas F. (Madison, WI)

    1999-01-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.

  13. Synthesis, Characterization, and Ultrafast Dynamics of Metal, Metal Oxide, and Semiconductor Nanomaterials

    E-Print Network [OSTI]

    Wheeler, Damon Andreas

    2013-01-01

    for Lasing and Solar Energy Conversion. The Journal ofoptical detectors, solar energy conversion, sensors, andwith a maximum solar energy conversion efficiency of 14-

  14. Synthesis, Characterization, and Ultrafast Dynamics of Metal, Metal Oxide, and Semiconductor Nanomaterials

    E-Print Network [OSTI]

    Wheeler, Damon Andreas

    2013-01-01

    Microscopy (EM), and PL Measurements UV-Vis spectra of theMicroscopy, and ICP-OES Measurements UV-Vis spectra of theMicroscopy (EM), UV-Vis, and Raman Measurements….242

  15. Synthesis, Characterization, and Ultrafast Dynamics of Metal, Metal Oxide, and Semiconductor Nanomaterials

    E-Print Network [OSTI]

    Wheeler, Damon Andreas

    2013-01-01

    in hematite derived from goethite. 1979, 29, Li, D. ; Teoh,of Anion Adsorption on Goethite. 1987, 51, 54-56. (126)Amorphous Silica, and Goethite Surfaces. (136) Thimsen, E. ;

  16. Synthesis, Characterization, and Ultrafast Dynamics of Metal, Metal Oxide, and Semiconductor Nanomaterials

    E-Print Network [OSTI]

    Wheeler, Damon Andreas

    2013-01-01

    R. ; Mao, S. S. Energy & Environmental Science A perspectiveDurrant, J. R. Energy & Environmental Science CorrelatingGratzel, M. Energy & Environmental Science Cathodic shift in

  17. Synthesis, Characterization, and Ultrafast Dynamics of Metal, Metal Oxide, and Semiconductor Nanomaterials

    E-Print Network [OSTI]

    Wheeler, Damon Andreas

    2013-01-01

    Solar Absorption for Photocatalysis with Black Hydrogenatedof physical Chemistry C Photocatalysis of Ag-Loaded TiO 2Lu, G. ; Yates, J. T. , Photocatalysis on TiO2 Surfaces:

  18. Synthesis, Characterization, and Ultrafast Dynamics of Metal, Metal Oxide, and Semiconductor Nanomaterials

    E-Print Network [OSTI]

    Wheeler, Damon Andreas

    2013-01-01

    study using atomic layer deposition," Journal Of PhysicalArrays Formed by Atomic Layer Deposition. 2011, 115, 9498-Cells Prepared by Atomic Layer Deposition. 2011, 27, 461-

  19. Hydrocracking and hydroisomerization of long-chain alkanes and polyolefins over metal-promoted anion-modified transition metal oxides

    SciTech Connect (OSTI)

    Venkatesh, Koppampatti R. (Pittsburgh, PA); Hu, Jianli (Cranbury, NJ); Tierney, John W. (Pittsburgh, PA); Wender, Irving (Pittsburgh, PA)

    2001-01-01

    A method of cracking a feedstock by contacting the feedstock with a metal-promoted anion-modified metal oxide catalyst in the presence of hydrogen gas. The metal oxide of the catalyst is one or more of ZrO.sub.2, HfO.sub.2, TiO.sub.2 and SnO.sub.2, and the feedstock is principally chains of at least 20 carbon atoms. The metal-promoted anion-modified metal oxide catalyst contains one or more of Pt, Ni, Pd, Rh, Ir, Ru, (Mn & Fe) or mixtures of them present between about 0.2% to about 15% by weight of the catalyst. The metal-promoted anion-modified metal oxide catalyst contains one or more of SO.sub.4, WO.sub.3, or mixtures of them present between about 0.5% to about 20% by weight of the catalyst.

  20. Hydrocracking and hydroisomerization of long-chain alkanes and polyolefins over metal-promoted anion-modified transition metal oxides

    SciTech Connect (OSTI)

    Venkatesh, Koppampatti R.; Hu, Jianli; Tierney, John W.; Wender, Irving

    1996-12-01

    A method is described for cracking a feedstock by contacting the feedstock with a metal-promoted anion-modified metal oxide catalyst in the presence of hydrogen gas. The metal oxide of the catalyst is one or more of ZrO{sub 2}, HfO{sub 2}, TiO{sub 2} and SnO{sub 2}, and the feedstock is principally chains of at least 20 carbon atoms. The metal-promoted anion-modified metal oxide catalyst contains one or more of Pt, Ni, Pd, Rh, Ir, Ru, (Mn and Fe) or mixtures of them present between about 0.2% to about 15% by weight of the catalyst. The metal-promoted anion-modified metal oxide catalyst contains one or more of SO{sub 4}, WO{sub 3}, or mixtures of them present between about 0.5% to about 20% by weight of the catalyst.

  1. Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems

    DOE Patents [OSTI]

    Park, Paul W.

    2004-03-16

    A lean NOx catalyst and method of preparing the same is disclosed. The lean NOx catalyst includes a ceramic substrate, an oxide support material, preferably .gamma.-alumina, deposited on the substrate and a metal promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium, cerium, vanadium, oxides thereof, and combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between about 80 to 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  2. Features of an intermetallic n-ZrNiSn semiconductor heavily doped with atoms of rare-earth metals

    SciTech Connect (OSTI)

    Romaka, V. A., E-mail: vromaka@polynet.lviv.ua [National Academy of Sciences of Ukraine, Ya. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics (Ukraine); Fruchart, D.; Hlil, E. K. [CNRS, Institute Neel (France); Gladyshevskii, R. E. [Ivan Franko Lviv National University (Ukraine); Gignoux, D. [CNRS, Institute Neel (France); Romaka, V. V.; Kuzhel, B. S. [Ivan Franko Lviv National University (Ukraine); Krayjvskii, R. V. [Lvivska Politechnika National University (Ukraine)

    2010-03-15

    The crystal structure, density of electron states, electron transport, and magnetic characteristics of an intermetallic n-ZrNiSn semiconductor heavily doped with atoms of rare-earth metals (R) have been studied in the ranges of temperatures 1.5-400 K, concentrations of rare-earth metal 9.5 x 10{sup 19}-9.5 x 10{sup 21} cm{sup -3}, and magnetic fields H {<=} 15 T. The regions of existence of Zr{sub 1-x}R{sub x}NiSn solid solutions are determined, criteria for solubility of atoms of rare-earth metals in ZrNiSn and for the insulator-metal transition are formulated, and the nature of 'a priori doping' of ZrNiSn is determined as a result of redistribution of Zr and Ni atoms at the crystallographic sites of Zr. Correlation between the concentration of the R impurity, the amplitude of modulation of the bands of continuous energies, and the degree of occupation of potential wells of small-scale fluctuations with charge carriers is established. The results are discussed in the context of the Shklovskii-Efros model of a heavily doped and compensated semiconductor.

  3. Enzyme Mediated Synthesis of a Semiconducting Metal Oxide

    E-Print Network [OSTI]

    Johnson, John Michael

    2012-01-01

    Semiconductor photocatalysis………………………………………..…5 Figure 2.1cost photovoltaics and photocatalysis. The motivation behindsensing 2 , heterogeneous photocatalysis 3 , and electrodes

  4. Accumulation capacitance frequency dispersion of III-V metal-insulator-semiconductor devices due to disorder induced gap states

    SciTech Connect (OSTI)

    Galatage, R. V. [Department of Electrical Engineering, The University of Texas at Dallas, Richardson, Texas 75080 (United States); Zhernokletov, D. M. [Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080 (United States); Dong, H.; Brennan, B.; Hinkle, C. L. [Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080 (United States); Wallace, R. M. [Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080 (United States); Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080 (United States); Vogel, E. M. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-07-07

    The origin of the anomalous frequency dispersion in accumulation capacitance of metal-insulator-semiconductor devices on InGaAs and InP substrates is investigated using modeling, electrical characterization, and chemical characterization. A comparison of the border trap model and the disorder induced gap state model for frequency dispersion is performed. The fitting of both models to experimental data indicate that the defects responsible for the measured dispersion are within approximately 0.8 nm of the surface of the crystalline semiconductor. The correlation between the spectroscopically detected bonding states at the dielectric/III-V interface, the interfacial defect density determined using capacitance-voltage, and modeled capacitance-voltage response strongly suggests that these defects are associated with the disruption of the III-V atomic bonding and not border traps associated with bonding defects within the high-k dielectric.

  5. Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory

    E-Print Network [OSTI]

    Metz, Ricardo B.

    Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory-phase transition metal oxide cations can convert methane to methanol. Methane activation by MO+ is discussed reaction are also presented. Introduction The direct oxidation of methane to an easily transportable liquid

  6. Illumination induced charge separation at tetraphenyl-porphyrin/metal oxide interfaces

    E-Print Network [OSTI]

    Shapira, Yoram

    Illumination induced charge separation at tetraphenyl-porphyrin/metal oxide interfaces Y. Zidon were studied at tetraphenyl-porphyrin H2TPP /metal oxide interfaces by surface photovoltage spectroscopy. The thickness of the depleted Ti and Sn oxide layers was about 2 nm. Acceptorlike interface

  7. Mechanistic Studies of Charge Injection from Metallic Electrodes into Organic Semiconductors Mediated by Ionic Functionalities: Final Report

    SciTech Connect (OSTI)

    Nguyen, Thuc-Quyen [UCSB; Bazan, Guillermo [UCSB; Mikhailovsky, Alexander [UCSB

    2014-04-15

    Metal-organic semiconductor interfaces are important because of their ubiquitous role in determining the performance of modern electronics such as organic light emitting diodes (OLEDs), fuel cells, batteries, field effect transistors (FETs), and organic solar cells. Interfaces between metal electrodes required for external wiring to the device and underlying organic structures directly affect the charge carrier injection/collection efficiency in organic-based electronic devices primarily due to the mismatch between energy levels in the metal and organic semiconductor. Environmentally stable and cost-effective electrode materials, such as aluminum and gold typically exhibit high potential barriers for charge carriers injection into organic devices leading to increased operational voltages in OLEDs and FETs and reduced charge extraction in photovoltaic devices. This leads to increased power consumption by the device, reduced overall efficiency, and decreased operational lifetime. These factors represent a significant obstacle for development of next generation of cheap and energy-efficient components based on organic semiconductors. It has been noticed that introduction of organic materials with conjugated backbone and ionic pendant groups known as conjugated poly- and oligoelectrolytes (CPEs and COEs), enables one to reduce the potential barriers at the metal-organic interface and achieve more efficient operation of a device, however exact mechanisms of the phenomenon have not been understood. The goal of this project was to delineate the function of organic semiconductors with ionic groups as electron injection layers. The research incorporated a multidisciplinary approach that encompassed the creation of new materials, novel processing techniques, examination of fundamental electronic properties and the incorporation of the resulting knowledgebase into development of novel organic electronic devices with increased efficiency, environmental stability, and reduced cost. During the execution of the project, main efforts were focused on the synthesis of new charge-bearing organic materials, such as CPEs and COEs, and block copolymers with neutral and ionic segments, studies of mechanisms responsible for the charge injection modulation in devices with ionic interlayers, and use of naturally occurring charged molecules for creation of enhanced devices. The studies allowed PIs to demonstrate the usefulness of the proposed approach for the improvement of operational parameters in model OLED and FET systems resulting in increased efficiency, decreased contact resistance, and possibility to use stable metals for fabrication of device electrodes. The successful proof-of-the-principle results potentially promise development of light-weight, low fabrication cost devices which can be used in consumer applications such as displays, solar cells, and printed electronic devices. Fundamental mechanisms responsible for the phenomena observed have been identified thus advancing the fundamental knowledgebase.

  8. Oxidative dehydrogenation (ODH) of ethane with O2 as oxidant on selected transition metal-loaded zeolites

    E-Print Network [OSTI]

    Poeppelmeier, Kenneth R.

    Oxidative dehydrogenation (ODH) of ethane with O2 as oxidant on selected transition metal Accepted 14 April 2009 Available online 17 May 2009 Keywords: Oxidative dehydrogenation Ethane Ethylene of ethane (ODHE) to ethylene were characterized. Acidic Ni-loaded Y zeolite exhibits an ethylene

  9. Dilute magnetic semiconductor and half-metal behaviour mediated by 3d transition-metal doped in black/blue phosphorene

    E-Print Network [OSTI]

    Yu, Weiyang; Niu, Chun-Yao; Li, Chong; Cho, Jun-Hyung; Jia, Yu

    2015-01-01

    Using first-principles calculations, we present a theoretical study of the structural, electronic and magnetic properties of 3d transition metal (TM) atoms interacting with phosphorus monovacancies in two-dimensional black/blue phosphorene. We pay special attention to the magnetic properties of these substitutional impurities and find that they can be fully understood by a simple model based on the Hund's rule. For TM-doped black phosphorene, the calculated band structures of substitutional Ti, Cr, Mn, Fe and Ni impurities show dilute magnetic semiconductor (DMS) properties while those of substitutional Sc, V and Co impurities show nonmagnetic property. For TM-doped blue phosphorene, the calculated band structures of substitutional V, Cr, Mn and Fe impurities show DMS properties, and those of substitutional Ti and Ni impurities show half-metal properties, while Sc and V impurities show nonmagnetic property. We identify three different regimes associated with the occupation of different phosphorus-metal hybrid...

  10. Cyclic catalytic upgrading of chemical species using metal oxide materials

    DOE Patents [OSTI]

    White, James H. (Boulder, CO); Schutte, Erick J. (Thornton, CO); Rolfe, Sara L. (Loveland, CO)

    2010-11-02

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having one of the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, or Fe; B''=Cu; 0.01

  11. Electrostatic Cooperativity of Hydroxyl Groups at Metal Oxide Surfaces

    SciTech Connect (OSTI)

    Boily, Jean F.; Lins, Roberto D.

    2009-09-24

    The O-H bond distribution of hydroxyl groups at the {110} goethite (R-FeOOH) surface was investigated by molecular dynamics. This distribution was strongly affected by electrostatic interactions with neighboring oxo and hydroxo groups. The effects of proton surface loading, simulated by emplacing two protons at different distances of separation, were diverse and generated several sets of O-H bond distributions. DFT calculations of a representative molecular cluster were also carried out to demonstrate the impact of these effects on the orientation of oxygen lone pairs in neighboring oxo groups. These effects should have strong repercussions on O-H stretching vibrations of metal oxide surfaces.h

  12. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

    2004-01-13

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

  13. Optical and dielectric characteristics of the rare-earth metal oxide Lu{sub 2}O{sub 3}

    SciTech Connect (OSTI)

    Ordin, S. V., E-mail: stas_ordin@mail.ru; Shelykh, A. I. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2010-05-15

    The characteristics of the Lu{sub 2}O{sub 3} oxide and their variations controlled by compositional defects are studied. The defects are anion vacancies produced on partial reduction of the oxide. Such defects exhibit features typical of quantum objects and have a profound effect on the optical transmittance spectrum, the character of conduction (insulator or semiconductor properties) and the order of magnitude of the permittivity {epsilon} (capable of varying from 11.2 to 125). The structural features of vacancies in the oxides are considered, and the effect of vacancies on the polarization, conductivity, and lattice vibrations is studied. The studies are carried out in the temperature range 200-900 K, the wavelength range 0.03-50 {mu}m, and the current frequency range 10{sup 2}-10{sup 5} Hz. The rare-earth metal oxides attract interest for applications in microelectronics due to their high permittivity (several times higher than the permittivity of SiO{sub 2}) and, hence, the prospects for use of these oxides instead of SiO{sub 2}.

  14. Metal-Semiconductor Zn-ZnO Core-Shell Nanobelts and Nanotubes Xiang Yang Kong,, Yong Ding, and Zhong Lin Wang*,

    E-Print Network [OSTI]

    Wang, Zhong L.

    with silica,10 tape structured nanobelts of SnO2 and TiO2,11 core-shell structured Si-Ge nanowires,12 and ZnMetal-Semiconductor Zn-ZnO Core-Shell Nanobelts and Nanotubes Xiang Yang Kong,, Yong Ding-semiconductor Zn-ZnO core-shell nanobelts and nanotubes have been synthesized. The core is a belt-shaped Zn single

  15. Metal-based turn-on fluorescent probes for nitric oxide sensing

    E-Print Network [OSTI]

    Lim, Mi Hee

    2006-01-01

    Chapter 1. Metal-Based Turn-On Fluorescent Probes for Sensing Nitric Oxide. Nitric oxide, a reactive free radical, regulates a variety of biological processes. The absence of tools to detect NO directly, rapidly, specifically ...

  16. Method of adhesion between an oxide layer and a metal layer

    DOE Patents [OSTI]

    Jennison, Dwight R.; Bogicevic, Alexander; Kelber, Jeffry A.; Chambers, Scott A.

    2004-09-14

    A method of controlling the wetting characteristics and increasing the adhesion between a metal and an oxide layer. By introducing a negatively-charged species to the surface of an oxide layer, layer-by-layer growth of metal deposited onto the oxide surface is promoted, increasing the adhesion strength of the metal-oxide interface. The negatively-charged species can either be deposited onto the oxide surface or a compound can be deposited that dissociates on, or reacts with, the surface to form the negatively-charged species. The deposited metal adatoms can thereby bond laterally to the negatively-charged species as well as vertically to the oxide surface as well as react with the negatively charged species, be oxidized, and incorporated on or into the surface of the oxide.

  17. Alloy Engineering of Defect Properties in Semiconductors: Suppression of Deep Levels in 2D Transition-metal Dichalcogenides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Bing; Yoon, Mina; Sumpter, Bobby G; Wei, Su-Huai; Liu, Feng

    2015-09-18

    Developing practical approaches to effectively reduce the deep defect levels in semiconductors is critical for their use in electronic and optoelectronic devices, but this is still a very challenging task. In this Letter, we propose that specific alloying can provide an effective means to suppress the deep defect levels in semiconductors while maintaining their basic electronic properties. Specifically, we demonstrate that for such 2D transition-metal dichalcogenides as MoSe2 and WSe2, in which the most abundant defects that can induce deep levels are anion vacancies, the deep levels can be effectively suppressed in Mo1-xWxSe2 alloys at low W concentrations. This surprisingmore »phenomenon is associated with the fact that the global alloy concentration can substantially tune the band edge energies, whereas the preferred locations of Se vacancies around W atoms control the defect level locally. Our findings illustrate a new concept of alloy engineering and provide a promising approach to control the defect properties of semiconductors.« less

  18. Inorganic Chemistry Solutions to Semiconductor Nanocrystal Problems

    SciTech Connect (OSTI)

    Alvarado, Samuel R. [Ames Laboratory; Guo, Yijun [Ames Laboratory; Ruberu, T. Purnima A. [Ames Laboratory; Tavasoli, Elham [Ames Laboratory; Vela, Javier [Ames Laboratory

    2014-03-15

    The optoelectronic and chemical properties of semiconductor nanocrystals heavily depend on their composition, size, shape and internal structure, surface functionality, etc. Available strategies to alter these properties through traditional colloidal syntheses and ligand exchange methods place a premium on specific reaction conditions and surfactant combinations. In this invited review, we apply a molecular-level understanding of chemical precursor reactivity to reliably control the morphology, composition and intimate architecture (core/shell vs. alloyed) of semiconductor nanocrystals. We also describe our work aimed at achieving highly selective, low-temperature photochemical methods for the synthesis of semiconductor–metal and semiconductor–metal oxide photocatalytic nanocomposites. In addition, we describe our work on surface modification of semiconductor nanocrystal quantum dots using new approaches and methods that bypass ligand exchange, retaining the nanocrystal's native ligands and original optical properties, as well as on spectroscopic methods of characterization useful in determining surface ligand organization and chemistry. Using recent examples from our group and collaborators, we demonstrate how these efforts have lead to faster, wider and more systematic application of semiconductor nanocrystal-based materials to biological imaging and tracking, and to photocatalysis of unconventional substrates. We believe techniques and methods borrowed from inorganic chemistry (including coordination, organometallic and solid state chemistry) have much to offer in reaching a better understanding of the synthesis, functionalization and real-life application of such exciting materials as semiconductor nanocrystals (quantum dots, rods, tetrapods, etc.).

  19. Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell

    DOE Patents [OSTI]

    Isenberg, A.O.

    1987-03-10

    Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection. 1 fig.

  20. Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell

    DOE Patents [OSTI]

    Isenberg, Arnold O. (Forest Hills Boro, PA)

    1987-01-01

    Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection.

  1. Project Profile: Thermochemical Heat Storage for CSP Based on Multivalent Metal Oxides

    Broader source: Energy.gov [DOE]

    General Atomics (GA), under the Thermal Storage FOA, is developing a high-density thermochemical heat storage system based on solid metal oxides.

  2. Preferential orientation of metal oxide superconducting materials by mechanical means

    DOE Patents [OSTI]

    Capone, Donald W. (Bolingbrook, IL)

    1990-01-01

    A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0<.times.<0.5) is capable of accommodating very large current densities. By aligning the two-dimensional Cu--O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the metal oxide material to accommodate high current densities. The orthorhombic crystalline particles have a tendency to lie down on one of the longer sides, i.e., on the a- or b-direction. Aligning the crystals in this orientation is accomplished by mechanical working of the material such as by extrusion, tape casting or slip casting, provided a single crystal powder is used as a starting material, to provide a highly oriented, e.g., approximately 90% of the crystal particles have a common orientation, superconducting matrix capable of supporting large current densities.

  3. Preferential orientation of metal oxide superconducting materials by mechanical means

    DOE Patents [OSTI]

    Capone, D.W.

    1990-11-27

    A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) is capable of accommodating very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the metal oxide material to accommodate high current densities. The orthorhombic crystalline particles have a tendency to lie down on one of the longer sides, i.e., on the a- or b-direction. Aligning the crystals in this orientation is accomplished by mechanical working of the material such as by extrusion, tape casting or slip casting, provided a single crystal powder is used as a starting material, to provide a highly oriented, e.g., approximately 90% of the crystal particles have a common orientation, superconducting matrix capable of supporting large current densities. 3 figs.

  4. Acoustic plane wave preferential orientation of metal oxide superconducting materials

    DOE Patents [OSTI]

    Tolt, Thomas L. (North Olmsted, OH); Poeppel, Roger B. (Glen Ellyn, IL)

    1991-01-01

    A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0metal oxide in the form of a ceramic slip which has not yet set, orientation of the crystal basal planes parallel with the direction of desired current flow is accomplished by an applied acoustic plane wave in the acoustic or ultrasonic frequency range (either progressive or standing) in applying a torque to each crystal particle. The ceramic slip is then set and fired by conventional methods to produce a conductor with preferentially oriented grains and substantially enhanced current carrying capacity.

  5. Synthesis of transition-metal phosphides from oxidic precursors by reduction in hydrogen plasma

    SciTech Connect (OSTI)

    Guan Jie [Department of Catalytic Chemistry and Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012 (China); Wang Yao [Liaoning Key Laboratory of Petrochemical Technology and Equipments, Dalian University of Technology, Dalian 116012 (China); Qin Minglei; Yang Ying [Department of Catalytic Chemistry and Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012 (China); Li Xiang [Department of Catalytic Chemistry and Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012 (China); Liaoning Key Laboratory of Petrochemical Technology and Equipments, Dalian University of Technology, Dalian 116012 (China); Wang Anjie, E-mail: ajwang@dlut.edu.c [Department of Catalytic Chemistry and Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012 (China); Liaoning Key Laboratory of Petrochemical Technology and Equipments, Dalian University of Technology, Dalian 116012 (China)

    2009-06-15

    A series of transition metal phosphides, including MoP, WP, CoP, Co{sub 2}P, and Ni{sub 2}P, were synthesized from their oxidic precursors by means of hydrogen plasma reduction under mild conditions. The effects of reduction conditions, such as metal to phosphorus molar ratio, power input, and reduction time, on the synthesis of metal phosphides were investigated. The products were identified by means of XRD characterization. It is indicated that metal phosphides were readily synthesized stoichiometrically from their oxides in hydrogen plasma under mild conditions. - Graphical abstract: Metal phosphides were obtained stoichiometrically from their oxidic precursors by hydrogen plasma reaction under mild conditions.

  6. NANOSTRUCTURED METAL OXIDE CATALYSTS VIA BUILDING BLOCK SYNTHESES

    SciTech Connect (OSTI)

    Craig E. Barnes

    2013-03-05

    A broadly applicable methodology has been developed to prepare new single site catalysts on silica supports. This methodology requires of three critical components: a rigid building block that will be the main structural and compositional component of the support matrix; a family of linking reagents that will be used to insert active metals into the matrix as well as cross link building blocks into a three dimensional matrix; and a clean coupling reaction that will connect building blocks and linking agents together in a controlled fashion. The final piece of conceptual strategy at the center of this methodology involves dosing the building block with known amounts of linking agents so that the targeted connectivity of a linking center to surrounding building blocks is obtained. Achieving targeted connectivities around catalytically active metals in these building block matrices is a critical element of the strategy by which single site catalysts are obtained. This methodology has been demonstrated with a model system involving only silicon and then with two metal-containing systems (titanium and vanadium). The effect that connectivity has on the reactivity of atomically dispersed titanium sites in silica building block matrices has been investigated in the selective oxidation of phenols to benezoquinones. 2-connected titanium sites are found to be five times as active (i.e. initial turnover frequencies) than 4-connected titanium sites (i.e. framework titanium sites).

  7. Chemically Modified Metal Oxide Nanostructure for Photoelectrochemical Water Splitting

    E-Print Network [OSTI]

    Wang, Gongming

    2013-01-01

    be good catalysts for catalytic oxidation of small organicsolution, indicative of catalytic oxidation of urea presentactive catalytic species for water oxidation. The catalytic

  8. Performance enhancement of GaN metal–semiconductor–metal ultraviolet photodetectors by insertion of ultrathin interfacial HfO{sub 2} layer

    SciTech Connect (OSTI)

    Kumar, Manoj E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, Burak; Okyay, Ali Kemal E-mail: aokyay@ee.bilkent.edu.tr

    2015-03-15

    The authors demonstrate improved device performance of GaN metal–semiconductor–metal ultraviolet (UV) photodetectors (PDs) by ultrathin HfO{sub 2} (UT-HfO{sub 2}) layer on GaN. The UT-HfO{sub 2} interfacial layer is grown by atomic layer deposition. The dark current of the PDs with UT-HfO{sub 2} is significantly reduced by more than two orders of magnitude compared to those without HfO{sub 2} insertion. The photoresponsivity at 360?nm is as high as 1.42 A/W biased at 5 V. An excellent improvement in the performance of the devices is ascribed to allowed electron injection through UT-HfO{sub 2} on GaN interface under UV illumination, resulting in the photocurrent gain with fast response time.

  9. Resonant Ultrasound Studies of Complex Transition Metal Oxides

    SciTech Connect (OSTI)

    Dr. Henry Bass; Dr. J. R. Gladden

    2008-08-18

    Department of Energy EPSCoR The University of Mississippi Award: DE-FG02-04ER46121 Resonant Ultrasound Spectroscopy Studies of Complex Transition Metal Oxides The central thrust of this DOE funded research program has been to apply resonant ultrasound spectroscopy (RUS), an elegant and efficient method for determining the elastic stiffness constants of a crystal, to the complex and poorly understood class of materials known as transition metal oxides (TMOs). Perhaps the most interesting and challenging feature of TMOs is their strongly correlated behavior in which spin, lattice, and charge degrees of freedom are strongly coupled. Elastic constants are a measure of the interatomic potentials in a crystal and are thus sensitive probes into the atomic environment. This sensitivity makes RUS an ideal tool to study the coupling of phase transition order parameters to lattice strains. The most significant result of the project has been the construction of a high temperature RUS apparatus capable of making elastic constant measurements at temperatures as high as 1000 degrees Celsius. We have designed and built novel acoustic transducers which can operate as high as 600 degrees Celsius based on lithium niobate piezoelectric elements. For measurement between 600 to 1000 C, a buffer rod system is used in which the samples under test and transducers are separated by a rod with low acoustic attenuation. The high temperature RUS system has been used to study the charge order (CO) transition in transition metal oxides for which we have discovered a new transition occurring about 35 C below the CO transition. While the CO transition exhibits a linear coupling between the strain and order parameter, this new precursor transition shows a different coupling indicating a fundamentally different mechanism. We have also begun a study, in collaboration with the Jet Propulsion Laboratory, to study novel thermoelectric materials at elevated temperatures. These materials include silicon germanium with various doping and Zintl phase materials. Such materials show promise for increased figures of merit, vital to making thermolectrics competitive with traditional power generation mechanisms.

  10. Single-step preparation and consolidation of reduced early-transition-metal oxide/metal n-type thermoelectric composites

    E-Print Network [OSTI]

    Gaultois, Michael W; Douglas, Jason E; Sparks, Taylor D; Seshadri, Ram

    2015-01-01

    oxide/metal n-type thermoelectric composites Michael W.here as interesting thermoelectric materials. Numerous2.5 W m ?1 K ?1 . Thermoelectric properties of these n-type

  11. Non-equilibrium oxidation states of zirconium during early stages of metal oxidation Wen Ma, F. William Herbert, Sanjaya D. Senanayake, and Bilge Yildiz

    E-Print Network [OSTI]

    Yildiz, Bilge

    Non-equilibrium oxidation states of zirconium during early stages of metal oxidation Wen Ma, F.1116/1.4792068 The initial, thermal oxidation of zirconium at room temperature J. Appl. Phys. 96, 7126 (2004); 10 of zirconium during early stages of metal oxidation Wen Ma,1 F. William Herbert,1,2 Sanjaya D. Senanayake,3

  12. Oxidation catalysts comprising metal exchanged hexaaluminate wherein the metal is Sr, Pd, La, and/or Mn

    DOE Patents [OSTI]

    Wickham, David (Boulder, CO); Cook, Ronald (Lakewood, CO)

    2008-10-28

    The present invention provides metal-exchanged hexaaluminate catalysts that exhibit good catalytic activity and/or stability at high temperatures for extended periods with retention of activity as combustion catalysts, and more generally as oxidation catalysts, that make them eminently suitable for use in methane combustion, particularly for use in natural gas fired gas turbines. The hexaaluminate catalysts of this invention are of particular interest for methane combustion processes for minimization of the generation of undesired levels (less than about 10 ppm) of NOx species. Metal exchanged hexaaluminate oxidation catalysts are also useful for oxidation of volatile organic compounds (VOC), particularly hydrocarbons. Metal exchanged hexaaluminate oxidation catalysts are further useful for partial oxidation, particularly at high temperatures, of reduced species, particularly hydrocarbons (alkanes and alkenes).

  13. Atomic Layer Deposition of Hafnium and Zirconium Oxides Using Metal Amide Precursors

    E-Print Network [OSTI]

    Atomic Layer Deposition of Hafnium and Zirconium Oxides Using Metal Amide Precursors Dennis M (ALD) of smooth and highly conformal films of hafnium and zirconium oxides was studied using six metal alkylamide precursors for hafnium and zirconium. Water was used as an oxygen source during these experiments

  14. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2013-10-22

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  15. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2014-09-16

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  16. Metal oxide morphology in argon-assisted glancing angle deposition

    SciTech Connect (OSTI)

    Sorge, J. B.; Taschuk, M. T.; Wakefield, N. G.; Sit, J. C.; Brett, M. J. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 (Canada); Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 (Canada) and NRC National Institute for Nanotechnology, Edmonton, AB T6G 2M9 (Canada)

    2012-03-15

    Glancing angle deposition (GLAD) is a thin film deposition technique capable of fabricating columnar architectures such as posts, helices, and chevrons with control over nanoscale film features. Argon bombardment during deposition modifies the GLAD process, producing films with new morphologies which have shown promise for sensing and photonic devices. The authors report modification of column tilt angle, film density, and specific surface area for 12 different metal oxide and fluoride film materials deposited using Ar-assisted GLAD. For the vapor flux/ion beam geometry and materials studied here, with increasing argon flux, the column tilt increases, film density increases, and specific surface area decreases. With a better understanding of the nature of property modification and the mechanisms responsible, the Ar-assisted deposition process can be more effectively targeted towards specific applications, including birefringent thin films or photonic crystal square spirals.

  17. Strain-based control of crystal anisotropy for perovskite oxides on semiconductor-based material

    DOE Patents [OSTI]

    McKee, Rodney Allen (Kingston, TN); Walker, Frederick Joseph (Oak Ridge, TN)

    2000-01-01

    A crystalline structure and a semiconductor device includes a substrate of a semiconductor-based material and a thin film of an anisotropic crystalline material epitaxially arranged upon the surface of the substrate so that the thin film couples to the underlying substrate and so that the geometries of substantially all of the unit cells of the thin film are arranged in a predisposed orientation relative to the substrate surface. The predisposition of the geometries of the unit cells of the thin film is responsible for a predisposed orientation of a directional-dependent quality, such as the dipole moment, of the unit cells. The predisposed orientation of the unit cell geometries are influenced by either a stressed or strained condition of the lattice at the interface between the thin film material and the substrate surface.

  18. EURODISPLAY 2002 631 P-64: A Comparative Study of Metal Oxide Coated Indium-tin Oxide Anodes

    E-Print Network [OSTI]

    over that of a conventional OLED without an oxide capped anode. 1. Introduction Organic light for Organic Light-emitting Diodes Chengfeng Qiu, Haiying Chen, Zhilang Xie, Man Wong and Hoi Sing Kwok Center of metals enhance while other oxides degrade the hole-injection and quantum efficiencies of organic light

  19. Nitric Oxide in Biological Denitrification: Fe/Cu Metalloenzyme and Metal Complex NOx Redox Chemistry

    E-Print Network [OSTI]

    Schroeder, Imke

    Nitric Oxide in Biological Denitrification: Fe/Cu Metalloenzyme and Metal Complex NOx Redox Nitrite Reductase: 1204 2. Copper Nitrite Reductases 1206 B. Nitric Oxide Reductase 1208 1. Structure 1208 Nitric Oxide Sensors, Scavengers, and Delivery Agents 1227 IV. Concluding Remarks 1229 V. Acknowledgments

  20. Scanning probe microscopy imaging before and after atomic layer oxide deposition on a compound semiconductor surface

    E-Print Network [OSTI]

    Kummel, Andrew C.

    Scanning probe microscopy imaging before and after atomic layer oxide deposition on a compound fabricated using trimethylaluminum (TMA) and water atomic layer deposition (ALD) for the Al2O3 gate oxide level (Fig 2) suggesting that an ordered monolayer layer might be a requirement for unpinning

  1. Photo-response of a P3HT:PCBM blend in metal-insulator-semiconductor capacitors

    SciTech Connect (OSTI)

    Devynck, M.; Rostirolla, B.; Watson, C. P.; Taylor, D. M.

    2014-11-03

    Metal-insulator-semiconductor capacitors are investigated, in which the insulator is cross-linked polyvinylphenol and the active layer a blend of poly(3-hexylthiophene), P3HT, and the electron acceptor [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM). Admittance spectra and capacitance-voltage measurements obtained in the dark both display similar behaviour to those previously observed in P3HT-only devices. However, the photo-capacitance response is significantly enhanced in the P3HT:PCBM case, where exciton dissociation leads to electron transfer into the PCBM component. The results are consistent with a network of PCBM aggregates that is continuous through the film but with no lateral interconnection between the aggregates at or near the blend/insulator interface.

  2. Method for heat treating and sintering metal oxides with microwave radiation

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Farragut, TN); Dykes, Norman L. (Oak Ridge, TN); Meek, Thomas T. (Knoxville, TN)

    1989-01-01

    A method for microwave sintering materials, primarily metal oxides, is described. Metal oxides do not normally absorb microwave radiation at temperatures ranging from about room temperature to several hundred degrees centrigrade are sintered with microwave radiation without the use of the heretofore required sintering aids. This sintering is achieved by enclosing a compact of the oxide material in a housing or capsule formed of a oxide which has microwave coupling properties at room temprature up to at least the microwave coupling temperature of the oxide material forming the compact. The heating of the housing effects the initial heating of the oxide material forming the compact by heat transference and then functions as a thermal insulator for the encased oxide material after the oxide material reaches a sufficient temperature to adequately absorb or couple with microwave radiation for heating thereof to sintering temperature.

  3. 2012 DEFECTS IN SEMICONDUCTORS GORDON RESEARCH CONFERENCE, AUGUST 12-17, 2012

    SciTech Connect (OSTI)

    GLASER, EVAN

    2012-08-17

    The meeting shall strive to develop and further the fundamental understanding of defects and their roles in the structural, electronic, optical, and magnetic properties of bulk, thin film, and nanoscale semiconductors and device structures. Point and extended defects will be addressed in a broad range of electronic materials of particular current interest, including wide bandgap semiconductors, metal-oxides, carbon-based semiconductors (e.g., diamond, graphene, etc.), organic semiconductors, photovoltaic/solar cell materials, and others of similar interest. This interest includes novel defect detection/imaging techniques and advanced defect computational methods.

  4. Regenerable MgO promoted metal oxide oxygen carriers for chemical looping combustion

    DOE Patents [OSTI]

    Siriwardane, Ranjani V.; Miller, Duane D.

    2014-08-19

    The disclosure provides an oxygen carrier comprised of a plurality of metal oxide particles in contact with a plurality of MgO promoter particles. The MgO promoter particles increase the reaction rate and oxygen utilization of the metal oxide when contacting with a gaseous hydrocarbon at a temperature greater than about 725.degree. C. The promoted oxide solid is generally comprised of less than about 25 wt. % MgO, and may be prepared by physical mixing, incipient wetness impregnation, or other methods known in the art. The oxygen carrier exhibits a crystalline structure of the metal oxide and a crystalline structure of MgO under XRD crystallography, and retains these crystalline structures over subsequent redox cycles. In an embodiment, the metal oxide is Fe.sub.2O.sub.3, and the gaseous hydrocarbon is comprised of methane.

  5. Metal Oxide Nanostructured Materials for Optical and Energy Applications

    E-Print Network [OSTI]

    Moore, Michael Christopher

    2013-01-01

    of a Stack of Two Metal Micromeshes. The Journal of Physicalals 3, 601 (2004). M. T. Hill et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Optics

  6. Reactivity of biogenic manganese oxide for metal sequestration and photochemistry: Computational solid state physics study

    SciTech Connect (OSTI)

    Kwon, K.D.; Sposito, G.

    2010-02-01

    Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.

  7. Production of crystalline refractory metal oxides containing colloidal metal precipitates and useful as solar-effective absorbers

    DOE Patents [OSTI]

    Narayan, Jagdish (Knoxville, TN); Chen, Yok (Oak Ridge, TN)

    1983-01-01

    This invention is a new process for producing refractory crystalline oxides having improved or unusual properties. The process comprises the steps of forming a doped-metal crystal of the oxide; exposing the doped crystal in a bomb to a reducing atmosphere at superatmospheric pressure and a temperature effecting precipitation of the dopant metal in the crystal lattice of the oxide but insufficient to effect net diffusion of the metal out of the lattice; and then cooling the crystal. Preferably, the cooling step is effected by quenching. The process forms colloidal precipitates of the metal in the oxide lattice. The process may be used, for example, to produce thermally stable black MgO crystalline bodies containing magnetic colloidal precipitates consisting of about 99% Ni. The Ni-containing bodies are solar-selective absorbers, having a room-temperature absorptivity of about 0.96 over virtually all of the solar-energy spectrum and exhibiting an absorption edge in the region of 2 .mu.m. The process parameters can be varied to control the average size of the precipitates. The process can produce a black MgO crystalline body containing colloidal Ni precipitates, some of which have the face-centered-cubic structure and others of which have the body-centered cubic structure. The products of the process are metal-precipitate-containing refractory crystalline oxides which have improved or unique optical, mechanical, magnetic, and/or electronic properties.

  8. 1/f noise in all-epitaxial metal-semiconductor diodes

    E-Print Network [OSTI]

    Young, Adam C; Zimmerman, J D; Brown, E R; Gossard, A C

    2006-01-01

    S. Kogan, Electronic Noise and Fluctuations in SolidsLETTERS 88, 073518 ?2006? 1/f noise in all-epitaxial metal-in the low-frequency noise performance by using MBE-grown

  9. Fabrication and applications of in-fiber semiconductor and metal microspheres

    E-Print Network [OSTI]

    Sarathi, Tara

    2015-01-01

    Currently, the synthesis of semiconducting or metal microspheres has occurred via top-down approaches, such as through ball milling or e-beam lithography, or via bottom-up approaches, such as colloidal chemistry. Top-down ...

  10. Extrusion of metal oxide superconducting wire, tube or ribbon

    DOE Patents [OSTI]

    Dusek, Joseph T.

    1993-10-05

    A process for extruding a superconducting metal oxide composition YBa.sub.2 Cu.sub.3 O.sub.7-x provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6-85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87-355 mil has also been produced. Flat ribbons have been produced in the range of 10-125 mil thick by 100-500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.

  11. Low temperature production of large-grain polycrystalline semiconductors

    DOE Patents [OSTI]

    Naseem, Hameed A. (Fayetteville, AR); Albarghouti, Marwan (Loudonville, NY)

    2007-04-10

    An oxide or nitride layer is provided on an amorphous semiconductor layer prior to performing metal-induced crystallization of the semiconductor layer. The oxide or nitride layer facilitates conversion of the amorphous material into large grain polycrystalline material. Hence, a native silicon dioxide layer provided on hydrogenated amorphous silicon (a-Si:H), followed by deposited Al permits induced crystallization at temperatures far below the solid phase crystallization temperature of a-Si. Solar cells and thin film transistors can be prepared using this method.

  12. Method for the rapid synthesis of large quantities of metal oxide nanowires at low temperatures

    DOE Patents [OSTI]

    Sunkara, Mahendra Kumar (Louisville, KY); Vaddiraju, Sreeram (Mountain View, CA); Mozetic, Miran (Ljubljan, SI); Cvelbar, Uros (Idrija, SI)

    2009-09-22

    A process for the rapid synthesis of metal oxide nanoparticles at low temperatures and methods which facilitate the fabrication of long metal oxide nanowires. The method is based on treatment of metals with oxygen plasma. Using oxygen plasma at low temperatures allows for rapid growth unlike other synthesis methods where nanomaterials take a long time to grow. Density of neutral oxygen atoms in plasma is a controlling factor for the yield of nanowires. The oxygen atom density window differs for different materials. By selecting the optimal oxygen atom density for various materials the yield can be maximized for nanowire synthesis of the metal.

  13. Light induced instability mechanism in amorphous InGaZn oxide semiconductors

    SciTech Connect (OSTI)

    Robertson, John; Guo, Yuzheng

    2014-04-21

    A model of the negative bias illumination stress instability in InGaZn oxide is presented, based on the photo-excitation of electrons from oxygen interstitials. The O interstitials are present to compensate hydrogen donors. The O interstitials are found to spontaneously form in O-rich conditions for Fermi energies at the conduction band edge, much more easily that in related oxides. The excited electrons give rise to a persistent photoconductivity due to an energy barrier to recombination. The formation energy of the O interstitials varies with their separation from the H donors, which leads to a voltage stress dependence on the compensation.

  14. Fabrication of Metal/Oxide Nanostructures by Anodization Processes for Biosensor, Drug Delivery and Supercapacitor Applications 

    E-Print Network [OSTI]

    Chen, Po-Chun

    2014-01-13

    This dissertation proposed to initiate the research into the fabrication of metal/oxide nanostructures by anodization process for biosensor, drug delivery and supercapacitor applications by producing different nanostructures ...

  15. Design and construction of rigs for studying surface condensation and creating anodized metal oxide surfaces

    E-Print Network [OSTI]

    Sun, Wei-Yang

    2011-01-01

    This thesis details the design and construction of a rig for studying surface condensation and a rig for creating anodized metal oxides (AMOs). The condensation rig characterizes condensation for different surfaces; this ...

  16. Near-infrared photodetector consisting of J-aggregating cyanine dye and metal oxide thin films

    E-Print Network [OSTI]

    Osedach, Timothy P.

    We demonstrate a near-infrared photodetector that consists of a thin film of the J-aggregating cyanine dye, U3, and transparent metal-oxide charge transport layers. The high absorption coefficient of the U3 film, combined ...

  17. Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains

    DOE Patents [OSTI]

    Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.; Bhinde, M.V.

    1998-06-23

    Transition metal complexes of meso-haloalkylporphyrins are disclosed, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides. 7 figs.

  18. Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains

    DOE Patents [OSTI]

    Wijesekera, Tilak (Glen Mills, PA); Lyons, James E. (Wallingford, PA); Ellis, Jr., Paul E. (Downingtown, PA); Bhinde, Manoj V. (Boothwyn, PA)

    1998-01-01

    Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides.

  19. Thermal and Physical Properties of Plutonium Dioxide Produced from the Oxidation of Metal: a Data Summary

    SciTech Connect (OSTI)

    Wayne, David M.

    2014-01-13

    The ARIES Program at the Los Alamos National Laboratory removes plutonium metal from decommissioned nuclear weapons, and converts it to plutonium dioxide in a specially-designed Direct Metal Oxidation furnace. The plutonium dioxide is analyzed for specific surface area, particle size distribution, and moisture content. The purpose of these analyses is to certify that the plutonium dioxide powder meets or exceeds the specifications of the end-user, and the specifications for the packaging and transport of nuclear materials. Analytical results from plutonium dioxide from ARIES development activities, from ARIES production activities, from muffle furnace oxidation of metal, and from metal that was oxidized over a lengthy time interval in air at room temperature, are presented. The processes studied produce plutonium dioxide powder with distinct differences in measured properties, indicating the significant influence of oxidation conditions on physical properties.

  20. Water growth on metals and oxides: binding, dissociation and role of hydroxyl groups

    E-Print Network [OSTI]

    Salmeron, M.

    2008-01-01

    Note: In this paper the water structures formed are due toand correspond to a second water layer, not the first (seeWater growth on metals and oxides: binding, dissociation and

  1. Low dark current and high speed ZnO metal–semiconductor–metal photodetector on SiO{sub 2}/Si substrate

    SciTech Connect (OSTI)

    Çal??kan, Deniz; Bütün, Bayram; Çak?r, M. Cihan; Özcan, ?adan; Özbay, Ekmel

    2014-10-20

    ZnO thin films are deposited by radio-frequency magnetron sputtering on thermally grown SiO{sub 2} on Si substrates. Pt/Au contacts are fabricated by standard photolithography and lift-off in order to form a metal-semiconductor-metal (MSM) photodetector. The dark current of the photodetector is measured as 1?pA at 100?V bias, corresponding to 100?pA/cm{sup 2} current density. Spectral photoresponse measurement showed the usual spectral behavior and 0.35?A/W responsivity at a 100?V bias. The rise and fall times for the photocurrent are measured as 22 ps and 8?ns, respectively, which are the lowest values to date. Scanning electron microscope image shows high aspect ratio and dense grains indicating high surface area. Low dark current density and high speed response are attributed to high number of recombination centers due to film morphology, deducing from photoluminescence measurements. These results show that as deposited ZnO thin film MSM photodetectors can be used for the applications needed for low light level detection and fast operation.

  2. Theory of nitride oxide adsorption on transition metal (111) surfaces: a first-principles investigation

    E-Print Network [OSTI]

    Li, Weixue

    In this work, we report a density functional theory study of nitric oxide (NO) adsorption on close of NO adsorption on TM(111) surfaces in the submonolayer regime. 1. Introduction The catalytic reduction of NOxTheory of nitride oxide adsorption on transition metal (111) surfaces: a first

  3. Analytica Chimica Acta 573574 (2006) 913 Metal oxide thin films as sensing layers for ozone detection

    E-Print Network [OSTI]

    2006-01-01

    Analytica Chimica Acta 573­574 (2006) 9­13 Metal oxide thin films as sensing layers for ozone. Their structural, electrical and ozone sensing properties were analyzed. Structural investigations carried out with ultraviolet light and subsequent oxidation in ozone atmosphere at room temperature. © 2006 Elsevier B.V. All

  4. Mercury Removal from Aqueous Systems Using Commercial and Laboratory Prepared Metal Oxide Nanoparticles 

    E-Print Network [OSTI]

    Desai, Ishan

    2010-10-12

    Five commercial metal oxide nanoparticles (CuO, SiO2, Fe2O3, TiO2 and Al2O3) have been individually screened for mercury removal in a batch reactor under bicarbonate buffered and non-buffered aqueous solutions (DI water). Copper oxide...

  5. Electrostatic screening by semiconductors 

    E-Print Network [OSTI]

    Krcmar, Maja

    1998-01-01

    distributions. We determine the sluice screening length for the screening of a charged surface defect, and the interaction energy between two charged surface defects. We find the spatial scales over which dielectric and metallic properties of the semiconductors...

  6. Plasmonic transparent conducting metal oxide nanoparticles and films for optical sensing applications

    DOE Patents [OSTI]

    Ohodnicki, Jr., Paul R; Wang, Congjun; Andio, Mark A

    2014-01-28

    The disclosure relates to a method of detecting a change in a chemical composition by contacting a doped oxide material with a monitored stream, illuminating the doped oxide material with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The doped metal oxide has a carrier concentration of at least 10.sup.18/cm.sup.3, a bandgap of at least 2 eV, and an electronic conductivity of at least 10.sup.1 S/cm, where parameters are specified at a temperature of 25.degree. C. The optical response of the doped oxide materials results from the high carrier concentration of the doped metal oxide, and the resulting impact of changing gas atmospheres on that relatively high carrier concentration. These changes in effective carrier densities of conducting metal oxide nanoparticles are postulated to be responsible for the change in measured optical absorption associated with free carriers. Exemplary doped metal oxides include but are not limited to Al-doped ZnO, Sn-doped In.sub.2O.sub.3, Nb-doped TiO.sub.2, and F-doped SnO.sub.2.

  7. Electronically conducting metal oxide nanoparticles and films for optical sensing applications

    DOE Patents [OSTI]

    Ohodnicki, Jr., Paul R.; Wang, Congjun; Andio, Mark A

    2014-09-16

    The disclosure relates to a method of detecting a change in a chemical composition by contacting a conducting oxide material with a monitored stream, illuminating the conducting oxide material with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The conducting metal oxide has a carrier concentration of at least 10.sup.17/cm.sup.3, a bandgap of at least 2 eV, and an electronic conductivity of at least 10.sup.-1 S/cm, where parameters are specified at the gas stream temperature. The optical response of the conducting oxide materials is proposed to result from the high carrier concentration and electronic conductivity of the conducting metal oxide, and the resulting impact of changing gas atmospheres on that relatively high carrier concentration and electronic conductivity. These changes in effective carrier densities and electronic conductivity of conducting metal oxide films and nanoparticles are postulated to be responsible for the change in measured optical absorption associated with free carriers. Exemplary conducting metal oxides include but are not limited to Al-doped ZnO, Sn-doped In.sub.2O.sub.3, Nb-doped TiO.sub.2, and F-doped SnO.sub.2.

  8. Disordered electronic and magnetic systems - transition metal (Mn) and rare earth (Gd) doped amorphous group IV semiconductors (C, Si, Ge)

    E-Print Network [OSTI]

    Zeng, Li

    2007-01-01

    for semiconductor spintronics. e Nature Phys. , 3(3):153,and D. M. Treger. Spintronics: a spin-based electronicsapplications, such as spintronics and quantum computing. Our

  9. Superconductors and Complex Transition Metal Oxides for Tunable...

    Office of Scientific and Technical Information (OSTI)

    for Tunable THz Plasmonic Metamaterials The outline of this presentation are: (1) Motivation - Non-tunability of metal metamaterials; (2) Superconductors for temperature tunable...

  10. SiGe optoelectronic metal-oxide semiconductor field-effect transistor

    E-Print Network [OSTI]

    Miller, David A. B.

    - munication rockets up. Although still efficient at short distances, copper wires suffer excessive power dissipation and delay in global lines and cannot cope with the growing bandwidth demand [1]. As the chip problems faced by copper wires [3]. Compound semi- conductors have been the forerunner in optoelec- tronic

  11. Control of Nanostructures and Interfaces of Metal Oxide Semiconductors for Quantum-Dots-Sensitized Solar Cells

    E-Print Network [OSTI]

    Cao, Guozhong

    for the solar cells, solar fuel, photo catalyst, and energy storage devices due to their excellent photoelectric-Dots-Sensitized Solar Cells Jianjun Tian, and Guozhong Cao*,,§ Beijing Institute of Nanoenergy and Nanosystems, Chinese for the quantum dots sensitized solar cells (QDSCs), owing to their large specific surface area for loading

  12. Spillover-Assisted Hydrogen Evolution at Si-based Metal-Oxide-Semiconductor

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail. (Conference)Feedback System in thewitness windows.Photoelectrodes. (Journal Article)

  13. Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Tiegs, Terry N. (Lenoir City, TN)

    1992-01-01

    A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  14. Chemically Modified Metal Oxide Nanostructure for Photoelectrochemical Water Splitting

    E-Print Network [OSTI]

    Wang, Gongming

    2013-01-01

    the reported solar conversion efficiency of hematitelead to a good solar conversion efficiency. 16, 24, 26, 27for urea oxidation, the solar conversion efficiency of TiO 2

  15. Spin and orbital ordering in ternary transition metal oxides 

    E-Print Network [OSTI]

    Kimber, Simon A. J.

    Spin and orbital orderings are amongst the most important phenomena in the solid state chemistry of oxides. Physical property and powder neutron and X-ray diffraction measurements are reported for a range of mostly low ...

  16. Metal catalyzed copolymerization processes involving carbon oxides as substrates 

    E-Print Network [OSTI]

    Phelps, Andrea Lee

    2005-11-01

    Studies concerning two different copolymerization processes are detailed in this dissertation: propylene oxide/CO2 coupling to afford poly(propylene carbonate) and Nbutylaziridine/ CO coupling to afford poly-??-butylalanoid. ...

  17. Band gap tuning in transition metal oxides by site-specific substitution

    DOE Patents [OSTI]

    Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok

    2013-12-24

    A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.

  18. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    DOE Patents [OSTI]

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A; Brown, Gilbert M

    2014-12-16

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (.mu.m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m.sup.2/g and 500 m.sup.2/g, and wherein the composition has an electrical conductivity of at least 1.times.10.sup.-7 S/cm at 25.degree. C. and 60 MPa. The methods of making comprise forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least one method selected from the group consisting of: (i) annealing in a reducing atmosphere, (ii) doping with an aliovalent element, and (iii) coating with a coating composition.

  19. Determination of Interfacial Adhesion Strength between Oxide Scale and Substrate for Metallic SOFC Interconnects

    SciTech Connect (OSTI)

    Sun, Xin; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-01-21

    The interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of metallic interconnects in SOFC operating environments. It is necessary, therefore, to establish a methodology to quantify the interfacial adhesion strength between the oxide scale and the metallic interconnect substrate, and furthermore to design and optimize the interconnect material as well as the coating materials to meet the design life of an SOFC system. In this paper, we present an integrated experimental/analytical methodology for quantifying the interfacial adhesion strength between oxide scale and a ferritic stainless steel interconnect. Stair-stepping indentation tests are used in conjunction with subsequent finite element analyses to predict the interfacial strength between the oxide scale and Crofer 22 APU substrate.

  20. Magnetism, half-metallicity and electrical transport properties of V- and Cr-doped semiconductor SnTe: A theoretical study

    SciTech Connect (OSTI)

    Liu, Y.; Bose, S. K.; Kudrnovský, J.

    2013-12-07

    This work presents results for the electronic structure, magnetic properties, and electrical resistivity of the semiconductor SnTe doped with 3d transition metals V and Cr. From the standpoint of potential application in spintronics, we look for half-metallic states and analyze their properties in both rock salt and zinc blende structures using ab initio electronic structure methods. In both cases, it is the Sn-sublattice that is doped with the transition metals, as has been the case with experiments performed so far. We find four half-metallic compounds at their optimized cell volumes. Results of exchange interactions and the Curie temperature are presented and analyzed for all the relevant cases. Resistivity calculation based on Kubo-Greenwood formalism shows that the resistivities of these alloys due to transition metal doping of the Sn-sublattice may vary, in most cases, from typical liquid metal or metallic glass value to 2–3 times higher. 25% V-doping of the Sn-sublattice in the rock salt structure gives a very high resistivity, which can be traced to high values of the lattice parameter resulting in drastically reduced hopping or diffusivity of the states at the Fermi level.

  1. Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas: Gold, Palladium and Platinum Formulations

    SciTech Connect (OSTI)

    Presto, A.A.; Granite, E.J

    2008-07-01

    The use of noble metals as catalysts for mercury oxidation in flue gas remains an area of active study. To date, field studies have focused on gold and palladium catalysts installed at pilot scale. In this article, we introduce bench-scale experimental results for gold, palladium and platinum catalysts tested in realistic simulated flue gas. Our initial results reveal some intriguing characteristics of catalytic mercury oxidation and provide insight for future research into this potentially important process.

  2. Spinel-structured metal oxide on a substrate and method of making same by molecular beam epitaxy

    DOE Patents [OSTI]

    Chambers, Scott A.

    2006-02-21

    A method of making a spinel-structured metal oxide on a substrate by molecular beam epitaxy, comprising the step of supplying activated oxygen, a first metal atom flux, and at least one other metal atom flux to the surface of the substrate, wherein the metal atom fluxes are individually controlled at the substrate so as to grow the spinel-structured metal oxide on the substrate and the metal oxide is substantially in a thermodynamically stable state during the growth of the metal oxide. A particular embodiment of the present invention encompasses a method of making a spinel-structured binary ferrite, including Co ferrite, without the need of a post-growth anneal to obtain the desired equilibrium state.

  3. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOE Patents [OSTI]

    Chang, S.G.; Littlejohn, D.; Shi, Y.

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.

  4. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOE Patents [OSTI]

    Chang, Shih-Ger (El Cerrito, CA); Littlejohn, David (Oakland, CA); Shi, Yao (Berkeley, CA)

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH.sub.3. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20.degree. and 90.degree. C. to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution.

  5. Disordered electronic and magnetic systems - transition metal (Mn) and rare earth (Gd) doped amorphous group IV semiconductors (C, Si, Ge)

    E-Print Network [OSTI]

    Zeng, Li

    2007-01-01

    for semiconductor spintronics. e Nature Phys. , 3(3):153,and D. M. Treger. Spintronics: a spin-based electronicsa test bed for simple spintronic devices. (In, Mn)As and (

  6. Low temperature formation of electrode having electrically conductive metal oxide surface

    DOE Patents [OSTI]

    Anders, Simone (Albany, CA); Anders, Andre (Albany, CA); Brown, Ian G. (Berkeley, CA); McLarnon, Frank R. (Orinda, CA); Kong, Fanping (Berkeley, CA)

    1998-01-01

    A low temperature process is disclosed for forming metal suboxides on substrates by cathodic arc deposition by either controlling the pressure of the oxygen present in the deposition chamber, or by controlling the density of the metal flux, or by a combination of such adjustments, to thereby control the ratio of oxide to metal in the deposited metal suboxide coating. The density of the metal flux may, in turn, be adjusted by controlling the discharge current of the arc, by adjusting the pulse length (duration of on cycle) of the arc, and by adjusting the frequency of the arc, or any combination of these parameters. In a preferred embodiment, a low temperature process is disclosed for forming an electrically conductive metal suboxide, such as, for example, an electrically conductive suboxide of titanium, on an electrode surface, such as the surface of a nickel oxide electrode, by such cathodic arc deposition and control of the deposition parameters. In the preferred embodiment, the process results in a titanium suboxide-coated nickel oxide electrode exhibiting reduced parasitic evolution of oxygen during charging of a cell made using such an electrode as the positive electrode, as well as exhibiting high oxygen overpotential, resulting in suppression of oxygen evolution at the electrode at full charge of the cell.

  7. Facile, Noncovalent Decoration of Graphene Oxide Sheets with Nanocrystals

    E-Print Network [OSTI]

    Chen, Junhong

    -metal [25] and graphene-semiconductor [26] hybrid structures; however, these methods typically involveFacile, Noncovalent Decoration of Graphene Oxide Sheets with Nanocrystals Ganhua Lu1 , Shun Mao1 Facile dry decoration of graphene oxide sheets with aerosol Ag nanocrystals synthesized from an arc

  8. Metal-semiconductor-transition observed in Bi{sub 2}Ca(Sr, Ba){sub 2}Co{sub 2}O{sub 8+?} single crystals

    SciTech Connect (OSTI)

    Dong, Song-Tao [National Laboratory of Solid State Microstructures and Department of Material Science and Engineering, Nanjing University, Nanjing 210093 (China); Institute of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Zhang, Bin-Bin; Zhang, Lun-Yong; Yao, Shu-Hua, E-mail: ybchen@nju.edu.cn, E-mail: shyao@nju.edu.cn; Zhou, Jian; Zhang, Shan-Tao; Gu, Zheng-Bin; Chen, Yan-Feng [National Laboratory of Solid State Microstructures and Department of Material Science and Engineering, Nanjing University, Nanjing 210093 (China); Chen, Y. B., E-mail: ybchen@nju.edu.cn, E-mail: shyao@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)

    2014-07-28

    Electrical property evolution of Bi{sub 2}AE{sub 2}Co{sub 2}O{sub 8+?} single crystals (AE?=?Ca, Sr and Ba) is systematically explored. When AE changes from Ca to Ba, the electrical property of Bi{sub 2}Ca{sub 2}Co{sub 2}O{sub 8+?} and Bi{sub 2}Sr{sub 2}Co{sub 2}O{sub 8+?} demonstrates semiconductor-like properties. But Bi{sub 2}Ba{sub 2}Co{sub 2}O{sub 8+?} shows the metallic behavior. Analysis of temperature-dependent resistance substantiates that from metallic Bi{sub 2}Ba{sub 2}Co{sub 2}O{sub 8+?} to semiconductor-like Bi{sub 2}Sr{sub 2}Co{sub 2}O{sub 8+?} can be attributed to Anderson localization. However the semiconductor behaviour of Bi{sub 2}Sr{sub 2}Co{sub 2}O{sub 8+?} and Bi{sub 2}Ca{sub 2}Co{sub 2}O{sub 8+?} is related to electronic correlations effect that is inferred by large negative magnetoresistance (?70%). The theoretical electronic structures and valence X-ray photoemission spectroscopy substantiate that there is a relative large density of state around Fermi level in Bi{sub 2}Ba{sub 2}Co{sub 2}O{sub 8+?} compared with other two compounds. It suggests that Bi{sub 2}Ba{sub 2}Co{sub 2}O{sub 8+?} is more apt to be metal in this material system.

  9. Process for making surfactant capped metal oxide nanocrystals, and products produced by the process

    DOE Patents [OSTI]

    Alivisatos, A. Paul; Rockenberger, Joerg

    2006-01-10

    Disclosed is a process for making surfactant capped nanocrystals of metal oxides which are dispersable in organic solvents. The process comprises decomposing a metal cupferron complex of the formula MXCupX, wherein M is a metal, and Cup is a N-substituted N-Nitroso hydroxylamine, in the presence of a coordinating surfactant, the reaction being conducted at a temperature ranging from about 150 to about 400.degree. C., for a period of time sufficient to complete the reaction. Also disclosed are compounds made by the process.

  10. Inorganic Metal Oxide/Organic Polymer Nanocomposites And Method Thereof

    DOE Patents [OSTI]

    Gash, Alexander E. (Livermore, CA); Satcher, Joe H. (Patterson, CA); Simpson, Randy (Livermore, CA)

    2004-11-16

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal in organic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophilic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the material, providing superb mixing of the component phases in the energetic nanocomposite.

  11. Inorganic metal oxide/organic polymer nanocomposites and method thereof

    DOE Patents [OSTI]

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-03-30

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal inorganic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophillic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the composite material, providing superb mixing of the component phases in the energetic nanocomposite.

  12. Evaluation of Novel Ceria-Supported Metal Oxides As Oxygen Carriers for Chemical-Looping Combustion

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    for copper-based materials, and at 950 °C for iron- and manganese-based materials. Methane or syngas (50% COEvaluation of Novel Ceria-Supported Metal Oxides As Oxygen Carriers for Chemical-Looping Combustion of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Goteborg, Sweden

  13. A generalized kinetic model for the formation and growth of single-walled metal oxide nanotubes

    E-Print Network [OSTI]

    Nair, Sankar

    A generalized kinetic model for the formation and growth of single-walled metal oxide nanotubes G,n a School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA b School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA c

  14. Electrochromic nickel oxide simultaneously doped with lithium and a metal dopant

    DOE Patents [OSTI]

    Gillaspie, Dane T; Weir, Douglas G

    2014-04-01

    An electrochromic device comprising a counter electrode layer comprised of lithium metal oxide which provides a high transmission in the fully intercalated state and which is capable of long-term stability, is disclosed. Methods of making an electrochromic device comprising such a counter electrode are also disclosed.

  15. AC conductivity of nanoporous metal-oxide photoanodes for solar energy conversion

    E-Print Network [OSTI]

    Konezny, Steven J.

    AC conductivity of nanoporous metal-oxide photoanodes for solar energy conversion Steven J. Konezny% solar-to-electric energy conversion efficiency) exploited the large surface area of nanoporous thin for solar photoconversion is analyzed using a model based on fluctuation-induced tunneling conduction (FITC

  16. ANALYSIS OF THE ELECTRON EXCITATION SPECTRA IN HEAVY RARE EARTH METALS, HYDRIDES AND OXIDES

    E-Print Network [OSTI]

    Boyer, Edmond

    397 ANALYSIS OF THE ELECTRON EXCITATION SPECTRA IN HEAVY RARE EARTH METALS, HYDRIDES AND OXIDES C thin evaporated foils of heavy rare earths (Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in three different chemical of high energy incident electrons (75 keV) transmitted through thin foils of yttric rare earth elements

  17. Disordered electronic and magnetic systems - transition metal (Mn) and rare earth (Gd) doped amorphous group IV semiconductors (C, Si, Ge)

    E-Print Network [OSTI]

    Zeng, Li

    2007-01-01

    various transition or rare-earth metals provide a rich ?eldTransition Metal (Mn) and Rare Earth (Gd) Doped AmorphousTransition Metal (Mn) and Rare Earth (Gd) Doped Amorphous

  18. Synthesis of high {Tc} superconducting coatings and patterns by melt writing and oxidation of metallic precursor alloys

    DOE Patents [OSTI]

    Gao, W.; Vander Sande, J.B.

    1998-07-28

    A method is provided for fabrication of superconducting oxides and superconducting oxide composites and for joining superconductors to other materials. A coating of a molten alloy containing the metallic elements of the oxide is applied to a substrate surface and oxidized to form the superconducting oxide. A material can be contacted to the molten alloy which is subsequently oxidized joining the material to the resulting superconducting oxide coating. Substrates of varied composition and shape can be coated or joined by this method. 5 figs.

  19. Band-Gap Engineering of Zinc Oxide Colloids via Lattice Substitution with Sulfur Leading to Materials with Advanced Properties for

    E-Print Network [OSTI]

    Nabben, Reinhard

    Band-Gap Engineering of Zinc Oxide Colloids via Lattice Substitution with Sulfur Leading requires a precise control over electronic properties. Zinc oxide is favorable for large the full inorganic UV protection are made. KEYWORDS: metal oxides, semiconductors, band gap engineering

  20. Nanoparticles as Reactive Precursors: Synthesis of Alloys, Intermetallic Compounds, and Multi-Metal Oxides Through Low-Temperature Annealing and Conversion Chemistry 

    E-Print Network [OSTI]

    Bauer, John C.

    2010-07-14

    and intermetallic compounds at or below 600 degrees C. This method was further extended to synthesizing multi-metal oxide systems by annealing metal oxide nanoparticle composites hundreds of degrees lower than more traditional methods. Nanoparticles of Pt (supported...

  1. Investigation of some new hydro(solvo)thermal synthesis routes to nanostructured mixed-metal oxides

    SciTech Connect (OSTI)

    Burnett, David L.; Harunsani, Mohammad H.; Kashtiban, Reza J.; Playford, Helen Y.; Sloan, Jeremy; Hannon, Alex C.; Walton, Richard I.

    2014-06-01

    We present a study of two new solvothermal synthesis approaches to mixed-metal oxide materials and structural characterisation of the products formed. The solvothermal oxidation of metallic gallium by a diethanolamine solution of iron(II) chloride at 240 °C produces a crystalline sample of a spinel-structured material, made up of nano-scale particles typically 20 nm in dimension. XANES spectroscopy at the K-edge shows that the material contains predominantly Fe{sup 2+} in an octahedral environment, but that a small amount of Fe{sup 3+} is also present. Careful analysis using transmission electron microscopy and powder neutron diffraction shows that the sample is actually a mixture of two spinel materials: predominantly (>97%) an Fe{sup 2+} phase Ga{sub 1.8}Fe{sub 1.2}O{sub 3.9}, but with a minor impurity phase that is iron-rich. In contrast, the hydrothermal reaction of titanium bis(ammonium lactato)dihydroxide in water with increasing amounts of Sn(IV) acetate allows nanocrystalline samples of the SnO{sub 2}–TiO{sub 2} solid solution to be prepared directly, as proved by powder XRD and Raman spectroscopy. - Graphical abstract: New solvothermal synthesis approaches to spinel and rutile mixed-metal oxides are reported. - Highlights: • Solvothermal oxidation of gallium metal in organic iron(II) solution gives a novel iron gallate spinel. • Hydrothermal reaction of titanium(IV) complex and tin(IV) acetate produces the complete SnO{sub 2}–TiO{sub 2} solid solution. • Nanostructured mixed-metal oxide phases are produced directly from solution.

  2. Metal Current Collector Protected by Oxide Film - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matter ByMentor-ProtegeFrom the Director HereMetal Current

  3. Rare earth zirconium oxide buffer layers on metal substrates

    DOE Patents [OSTI]

    Williams, Robert K. (Knoxville, TN); Paranthaman, Mariappan (Knoxville, TN); Chirayil, Thomas G. (Knoxville, TN); Lee, Dominic F. (Knoxville, TN); Goyal, Amit (Knoxville, TN); Feenstra, Roeland (Knoxville, TN)

    2001-01-01

    A laminate article comprises a substrate and a biaxially textured (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer over the substrate, wherein 0metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  4. Oxidation induced amorphous stabilization of the subsurface region in Zr-Cu metallic glass

    SciTech Connect (OSTI)

    Lim, K. R. [Light Metal Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan-gu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Park, J. M. [Materials Research Center, Samsung Advanced Institute of Technology (SAIT) San 14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-712 (Korea, Republic of); Park, S. H.; Na, M. Y.; Kim, K. C.; Kim, D. H., E-mail: dohkim@yonsei.ac.kr [Department of Materials Science and Engineering, Center for Non-crystalline Materials, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, W. T. [Department of Optical Engineering, Cheongju University, 36 Naedock-dong, Cheongju 360-764 (Korea, Republic of)

    2014-01-20

    In the present study, we demonstrate that selective surface oxidation of Zr{sub 70}Cu{sub 30} metallic glass can stabilize the amorphous structure in the subsurface region of the matrix. The oxidation proceeds by selective oxidation of Zr, forming monoclinic ZrO{sub 2} layer on the surface, and the subsurface layer becomes Cu-enriched due to back diffusion of Cu atoms from the oxide layer. Interestingly, in this system, the composition change in the subsurface region leads to enhancement of glass stability, forming of a double layered surface structure consisted of inner amorphous layer and outer monoclinic ZrO{sub 2} layer even when the remaining matrix is completely crystallized.

  5. Poly(cyclohexylethylene)-block-poly(ethylene oxide) block polymers for metal oxide templating

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schulze, Morgan W.; Sinturel, Christophe; Hillmyer, Marc A.

    2015-09-01

    A series of poly(cyclohexylethylene)-block-poly(ethylene oxide) (CEO) diblock copolymers were synthesized through tandem anionic polymerizations and heterogeneous catalytic hydrogenation. Solvent-annealed CEO diblock films were used to template dense arrays of inorganic oxide nanodots via simple spin coating of an inorganic precursor solution atop the ordered film. The substantial chemical dissimilarity of the two blocks enables (i) selective inclusion of the inorganic precursor within the PEO domain and (ii) the formation of exceptionally small feature sizes due to a relatively large interaction parameter estimated from mean-field analysis of the order–disorder transition temperatures of compositionally symmetric samples. UV/ozone treatment following incorporation produces anmore »ordered arrangement of oxide nanodots and simultaneously removes the block polymer template. However, we report the smallest particles (6 ± 1 nm) templated from a selective precursor insertion method to date using a block polymer scaffold.« less

  6. Electrical conductivity in oxygen-deficient phases of transition metal oxides from first-principles calculations.

    SciTech Connect (OSTI)

    Bondi, Robert James; Desjarlais, Michael Paul; Thompson, Aidan Patrick; Brennecka, Geoffrey L.; Marinella, Matthew

    2013-09-01

    Density-functional theory calculations, ab-initio molecular dynamics, and the Kubo-Greenwood formula are applied to predict electrical conductivity in Ta2Ox (0x5) as a function of composition, phase, and temperature, where additional focus is given to various oxidation states of the O monovacancy (VOn; n=0,1+,2+). Our calculations of DC conductivity at 300K agree well with experimental measurements taken on Ta2Ox thin films and bulk Ta2O5 powder-sintered pellets, although simulation accuracy can be improved for the most insulating, stoichiometric compositions. Our conductivity calculations and further interrogation of the O-deficient Ta2O5 electronic structure provide further theoretical basis to substantiate VO0 as a donor dopant in Ta2O5 and other metal oxides. Furthermore, this dopant-like behavior appears specific to neutral VO cases in both Ta2O5 and TiO2 and was not observed in other oxidation states. This suggests that reduction and oxidation reactions may effectively act as donor activation and deactivation mechanisms, respectively, for VO0 in transition metal oxides.

  7. Metal oxide coating of carbon supports for supercapacitor applications.

    SciTech Connect (OSTI)

    Boyle, Timothy J.; Tribby, Louis, J; Lakeman, Charles D. E.; Han, Sang M.; Lambert, Timothy N.; Fleig, Patrick F.

    2008-07-01

    The global market for wireless sensor networks in 2010 will be valued close to $10 B, or 200 M units. TPL, Inc. is a small Albuquerque based business that has positioned itself to be a leader in providing uninterruptible power supplies in this growing market with projected revenues expected to exceed $26 M in 5 years. This project focused on improving TPL, Inc.'s patent-pending EnerPak{trademark} device which converts small amounts of energy from the environment (e.g., vibrations, light or temperature differences) into electrical energy that can be used to charge small energy storage devices. A critical component of the EnerPak{trademark} is the supercapacitor that handles high power delivery for wireless communications; however, optimization and miniaturization of this critical component is required. This proposal aimed to produce prototype microsupercapacitors through the integration of novel materials and fabrication processes developed at New Mexico Technology Research Collaborative (NMTRC) member institutions. In particular, we focused on developing novel ruthenium oxide nanomaterials and placed them into carbon supports to significantly increase the energy density of the supercapacitor. These improvements were expected to reduce maintenance costs and expand the utility of the TPL, Inc.'s device, enabling New Mexico to become the leader in the growing global wireless power supply market. By dominating this niche, new customers were expected to be attracted to TPL, Inc. yielding new technical opportunities and increased job opportunities for New Mexico.

  8. Modeling of surface oxidation and oxidation induced damage in metal matrix composites 

    E-Print Network [OSTI]

    Ma, Xinzheng

    1995-01-01

    of the moving interface problem. In addition to the surface oxidation formulation, a one-way coupled thermomechanical analysis of a unidirectional SiC/Ti-15-3 composite undergoing simple tension is performed and the critical applied load for surface crack...

  9. Process for producing chalcogenide semiconductors

    DOE Patents [OSTI]

    Noufi, R.; Chen, Y.W.

    1985-04-30

    A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.

  10. Oxidative dehydrogenation (ODH) of ethane with O[subscript 2] as oxidant on selected transition metal-loaded zeolites

    SciTech Connect (OSTI)

    Lin, Xufeng; Hoel, Cathleen A.; Sachtler, Wolfgang M.H.; Poeppelmeier, Kenneth R.; Weitz, Eric

    2009-09-14

    Ni-, Cu-, and Fe-loaded acidic and basic Y zeolites were synthesized, and their catalytic properties for oxidative dehydrogenation of ethane (ODHE) to ethylene were characterized. Acidic Ni-loaded Y zeolite exhibits an ethylene productivity of up to 108 g{sub C{sub 2}H{sub 4}}g{sub cat}{sup -1} h{sup -1} with a selectivity of {approx}75%. Acidic Cu- and Fe-loaded Y zeolites have an ethylene productivity of up to 0.37 g{sub C{sub 2}H{sub 4}}g{sub cat}{sup -1} h{sup -1} and a selectivity of {approx}50%. For the same metal, the acidity of the zeolite favors both ODHE productivity and ethylene selectivity. Extended X-ray absorption fine structure (EXAFS) studies show that Ni, present in particles on Ni/HY during the ODHE catalytic process, contains both Ni-Ni and Ni-O bonds, and that the ratio of oxidized Ni versus metallic Ni increases with the temperature. The insights these studies provide into the ODHE reaction mechanism are discussed.

  11. Inert anode containing oxides of nickel, iron and zinc useful for the electrolytic production of metals

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA); Liu, Xinghua (Monroeville, PA)

    2002-01-01

    An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and ZnO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and ZnO: 0.2 to 0.99 NiO; 0.0001 to 0.8 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.3 ZnO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

  12. Inert anode containing oxides of nickel iron and cobalt useful for the electrolytic production of metals

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA)

    2002-01-01

    An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and CoO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and CoO: 0.15 to 0.99 NiO; 0.0001 to 0.85 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.45 CoO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

  13. Composite materials with metal oxide attached to lead chalcogenide nanocrystal quantum dots with linkers

    DOE Patents [OSTI]

    Fuke, Nobuhiro; Koposov, Alexey Y; Sykora, Milan; Hoch, Laura

    2014-12-16

    Composite materials useful for devices such as photoelectrochemical solar cells include a substrate, a metal oxide film on the substrate, nanocrystalline quantum dots (NQDs) of lead sulfide, lead selenide, and lead telluride, and linkers that attach the NQDs to the metal oxide film. Suitable linkers preserve the 1s absorption peak of the NQDs. A suitable linker has a general structure A-B-C where A is a chemical group adapted for binding to a MO.sub.x and C is a chemical group adapted for binding to a NQD and B is a divalent, rigid, or semi-rigid organic spacer moiety. Other linkers that preserve the 1s absorption peak may also be used.

  14. Molecular receptors in metal oxide sol-gel materials prepared via molecular imprinting

    DOE Patents [OSTI]

    Sasaki, Darryl Y. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Daitch, Charles E. (Charlottesville, VA); Shea, Kenneth J. (Irvine, CA); Rush, Daniel J. (Philadelphia, PA)

    2000-01-01

    A method is provided for molecularly imprinting the surface of a sol-gel material, by forming a solution comprised of a sol-gel material, a solvent, an imprinting molecule, and a functionalizing siloxane monomer of the form Si(OR).sub.3-n X.sub.n, wherein n is an integer between zero and three and X is a functional group capable of reacting with the imprinting molecule, evaporating the solvent, and removing the imprinting molecule to form the molecularly imprinted metal oxide sol-gel material. The use of metal oxide sol-gels allows the material porosity, pore size, density, surface area, hardness, electrostatic charge, polarity, optical density, and surface hydrophobicity to be tailored and be employed as sensors and in catalytic and separations operations.

  15. Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections

    DOE Patents [OSTI]

    Huang, Kevin (Export, PA); Ruka, Roswell J. (Pittsburgh, PA)

    2012-05-08

    An intermediate temperature solid oxide fuel cell structure capable of operating at from 600.degree. C. to 800.degree. C. having a very thin porous hollow elongated metallic support tube having a thickness from 0.10 mm to 1.0 mm, preferably 0.10 mm to 0.35 mm, a porosity of from 25 vol. % to 50 vol. % and a tensile strength from 700 GPa to 900 GPa, which metallic tube supports a reduced thickness air electrode having a thickness from 0.010 mm to 0.2 mm, a solid oxide electrolyte, a cermet fuel electrode, a ceramic interconnection and an electrically conductive cell to cell contact layer.

  16. NANOSTRUCTURED METAL OXIDES FOR ANODES OF LI-ION RECHARGEABLE BATTERIES

    SciTech Connect (OSTI)

    Au, M.

    2009-12-04

    The aligned nanorods of Co{sub 3}O{sub 4} and nanoporous hollow spheres (NHS) of SnO{sub 2} and Mn{sub 2}O{sub 3} were investigated as the anodes for Li-ion rechargeable batteries. The Co{sub 3}O{sub 4} nanorods demonstrated 1433 mAh/g reversible capacity. The NHS of SnO{sub 2} and Mn{sub 2}O{sub 3} delivered 400 mAh/g and 250 mAh/g capacities respectively in multiple galvonastatic discharge-charge cycles. It was found that high capacity of NHS of metal oxides is sustainable attributed to their unique structure that maintains material integrity during cycling. The nanostructured metal oxides exhibit great potential as the new anode materials for Li-ion rechargeable batteries with high energy density, low cost and inherent safety.

  17. Combinatorial approach for development of new metal oxides materials for all oxide photovoltaics

    E-Print Network [OSTI]

    Shimanovich, Klimentiy

    2015-01-01

    The combinatorial approach to all oxide material and device research is based on the synthesis of hundreds of related materials in a single experiment. This approach requires the development of new tools to rapidly characterize these materials libraries and new techniques to analyze the resulting data. The research presented here is intended to make a contribution towards meeting this demand, and thereby advance the pace of materials research. In many cases photovoltaic determinations are well-suited for high throughput methodologies, enabling direct quantitative analysis of properties whose implementation I demonstrate my thesis. This thesis focuses on the development and utilization of high throughput and combinatorial methods that have incorporated, or are associated with, the all-oxide photovoltaic field. The development of new absorbers often requires novel buffer layers, contact materials, and interface engineering. The importance and contribution of the combinatorial material science approach for the d...

  18. Temperature threshold for nanorod structuring of metal and oxide films grown by glancing angle deposition

    SciTech Connect (OSTI)

    Deniz, Derya; Lad, Robert J.

    2011-01-15

    Thin films of tin (Sn), aluminum (Al), gold (Au), ruthenium (Ru), tungsten (W), ruthenium dioxide (RuO{sub 2}), tin dioxide (SnO{sub 2}), and tungsten trioxide (WO{sub 3}) were grown by glancing angle deposition (GLAD) to determine the nanostructuring temperature threshold, {Theta}{sub T}, above which adatom surface diffusion becomes large enough such that nanorod morphology is no longer formed during growth. The threshold was found to be lower in metals compared to oxides. Films were grown using both dc and pulsed dc magnetron sputtering with continuous substrate rotation over the temperature range from 291 to 866 K. Film morphologies, structures, and compositions were characterized by high resolution scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. Films were also grown in a conventional configuration for comparison. For elemental metals, nanorod structuring occurs for films with melting points higher than that of Al (933 K) when grown at room temperature with a rotation rate of {approx}5 rpm, corresponding to a value of {Theta}{sub T}{approx_equal}0.33{+-}0.01. For the oxide films, a value of {Theta}{sub T}{approx_equal}0.5 was found, above which GLAD nanorod structuring does not occur. The existence of a nanostructuring temperature threshold in both metal and oxide GLAD films can be attributed to greater adatom mobilities as temperature is increased resulting in nonkinetically limited film nucleation and growth processes.

  19. Oxidation Resistant, Cr Retaining, Electrically Conductive Coatings on Metallic Alloys for SOFC Interconnects

    SciTech Connect (OSTI)

    Vladimir Gorokhovsky

    2008-03-31

    This report describes significant results from an on-going, collaborative effort to enable the use of inexpensive metallic alloys as interconnects in planar solid oxide fuel cells (SOFCs) through the use of advanced coating technologies. Arcomac Surface Engineering, LLC, under the leadership of Dr. Vladimir Gorokhovsky, is investigating filtered-arc and filtered-arc plasma-assisted hybrid coating deposition technologies to promote oxidation resistance, eliminate Cr volatility, and stabilize the electrical conductivity of both standard and specialty steel alloys of interest for SOFC metallic interconnect (IC) applications. Arcomac has successfully developed technologies and processes to deposit coatings with excellent adhesion, which have demonstrated a substantial increase in high temperature oxidation resistance, stabilization of low Area Specific Resistance values and significantly decrease Cr volatility. An extensive matrix of deposition processes, coating compositions and architectures was evaluated. Technical performance of coated and uncoated sample coupons during exposures to SOFC interconnect-relevant conditions is discussed, and promising future directions are considered. Cost analyses have been prepared based on assessment of plasma processing parameters, which demonstrate the feasibility of the proposed surface engineering process for SOFC metallic IC applications.

  20. Effect of electron collecting metal oxide layer in normal and inverted structure polymer solar cells

    SciTech Connect (OSTI)

    Ng, A.; Liu, X.; Sun, Y. C.; Djuriši?, A. B. [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. (China); Ng, A. M. C. [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China and Nanostructure Institute for Energy and Environmental Research, Division of Physical Sciences, South University of Science and Technology of China, Shenzhen (China); Chan, W. K. [Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. (China)

    2013-12-04

    We performed a systematic study of the effect of electron collecting metal oxide layer on the performance of P3HT: PCBM solar cells. Zinc oxide (ZnO) or titanium dioxide (TiO{sub 2}) buffer layers were prepared by either e-beam evaporation or solution processing method. We also compared the photovoltaic performance of inserting the buffer layer between indium tin oxide (ITO) and the polymer layer for the inverted structure (ITO/ ZnO or TiO{sub 2}/P3HT:PCBM/V{sub 2}O{sub 5}/Au) as well as inserting the buffers layers between the polymer and the aluminum electrode for the conventional structure (ITO/V{sub 2}O{sub 5}/P3HT:PCBM/ZnO or TiO{sub 2}/Al). The results are shown in detail.

  1. Protective coating on positive lithium-metal-oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Johnson, Christopher S.; Thackeray, Michael M.; Kahaian, Arthur J.

    2006-05-23

    A positive electrode for a non-aqueous lithium cell comprising a LiMn2-xMxO4 spinel structure in which M is one or more metal cations with an atomic number less than 52, such that the average oxidation state of the manganese ions is equal to or greater than 3.5, and in which 0.ltoreq.x.ltoreq.0.15, having one or more lithium spine oxide LiM'2O4 or lithiated spinel oxide Li1+yM'2O4 compounds on the surface thereof in which M' are cobalt cations and in which 0.ltoreq.y.ltoreq.1.

  2. Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides

    DOE Patents [OSTI]

    Tracy, C.E.; Benson, D.K.; Ruth, M.R.

    1985-08-16

    A method of synthesizing a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of electro-optically active transition metal oxides.

  3. Modelling of thermo-mechanical and irradiation behavior of metallic and oxide fuels for sodium fast reactors

    E-Print Network [OSTI]

    Karahan, Aydin

    2009-01-01

    A robust and reliable code to model the irradiation behavior of metal and oxide fuels in sodium cooled fast reactors is developed. Modeling capability was enhanced by adopting a non-empirical mechanistic approach to the ...

  4. Evaluation of the thermodynamic properties of hydrated metal oxide nanoparticles by INS techniques

    SciTech Connect (OSTI)

    Spencer, Elinor; Ross, Dr. Nancy; Parker, Stewart F.; Kolesnikov, Alexander I

    2013-01-01

    In this contribution we will present a detailed methodology for the elucidation of the following aspects of the thermodynamic properties of hydrated metal oxide nanoparticles from high-resolution, low-temperature inelastic neutron scattering (INS) data: (i) the isochoric heat capacity and entropy of the hydration layers both chemi- and physisorbed to the particle surface; (ii) the magnetic contribution to the heat capacity of the nanoparticles. This will include the calculation of the vibrational density of states (VDOS) from the raw INS spectra, and the subsequent extraction of the thermodynamic data from the VDOS. This technique will be described in terms of a worked example namely, cobalt oxide (Co3O4 and CoO). To complement this evaluation of the physical properties of metal oxide nanoparticle systems, we will emphasise the importance of high-resolution, high-energy INS for the determination of the structure and dynamics of the water species, namely molecular (H2O) and dissociated water (OH, hydroxyl), confined to the oxide surfaces. For this component of the chapter we will focus on INS investigations of hydrated isostructural rutile (a-TiO2) and cassiterite (SnO2) nanoparticles. We will complete this discussion of nanoparticle analysis by including an appraisal of the INS instrumentation employed in such studies with particular focus on TOSCA [ISIS, Rutherford Appleton Laboratory (RAL), U.K.] and the newly developed spectrometer SEQUOIA [SNS, Oak Ridge National Laboratory (ORNL), U.S.A].

  5. Co-Al mixed metal oxides/carbon nanotubes nanocomposite prepared via a precursor route and enhanced catalytic property

    SciTech Connect (OSTI)

    Fan Guoli; Wang Hui; Xiang Xu; Li Feng

    2013-01-15

    The present work reported the synthesis of Co-Al mixed metal oxides/carbon nanotubes (CoAl-MMO/CNT) nanocomposite from Co-Al layered double hydroxide/CNTs composite precursor (CoAl-LDH/CNT). The materials were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), low temperature nitrogen adsorption-desorption experiments, thermogravimetric and differential thermal analyses (TG-DTA), Raman spectra and X-ray photoelectron spectroscopy (XPS). The results revealed that in CoAl-MMO/CNT nanocomposite, the nanoparticles of cobalt oxide (CoO) and Co-containing spinel-type complex metal oxides could be well-dispersed on the surface of CNTs, thus forming the heterostructure of CoAl-MMO and CNTs. Furthermore, as-synthesized CoAl-MMO/CNT nanocomposite was utilized as additives for catalytic thermal decomposition of ammonium perchlorate (AP). Compared to those for pure AP and CoAl-MMO, the peak temperature of AP decomposition for CoAl-MMO/CNT was significantly decreased, which is attributed to the novel heterostructure and synergistic effect of multi-component metal oxides of nanocomposite. - Graphical abstract: Hybrid Co-Al mixed metal oxides/carbon nanotubes nanocomposite showed the enhanced catalytic activity in the thermal decomposition of ammonium perchlorate, as compared to carbon nanotubes and pure Co-Al mixed metal oxides. Highlights: Black-Right-Pointing-Pointer Co-Al mixed metal oxides/carbon nanotubes nanocomposite was synthesized. Black-Right-Pointing-Pointer Co-Al mixed metal oxides consisted of cobalt oxide and Co-containing spinels. Black-Right-Pointing-Pointer Nanocomposite exhibited excellent catalytic activity for the decomposition of AP. Black-Right-Pointing-Pointer The superior catalytic property is related to novel heterostructure and composition.

  6. Synthesis and structural, magnetic, thermal, and transport properties of several transition metal oxides and aresnides

    SciTech Connect (OSTI)

    Das, Supriyo

    2010-05-16

    Oxide compounds containing the transition metal vanadium (V) have attracted a lot of attention in the field of condensed matter physics owing to their exhibition of interesting properties including metal-insulator transitons, structural transitions, ferromagnetic and antiferromagnetic orderings, and heavy fermion behavior. Binary vanadium oxides V{sub n}O{sub 2n-1} where 2 {le} n {le} 9 have triclinic structures and exhibit metal-insulator and antiferromagnetic transitions. The only exception is V{sub 7}O{sub 13} which remains metallic down to 4 K. The ternary vanadium oxide LiV{sub 2}O{sub 4} has the normal spinel structure, is metallic, does not undergo magnetic ordering and exhibits heavy fermion behavior below 10 K. CaV{sub 2}O{sub 4} has an orthorhombic structure with the vanadium spins forming zigzag chains and has been suggested to be a model system to study the gapless chiral phase. These provide great motivation for further investigation of some known vanadium compounds as well as to explore new vanadium compounds in search of new physics. This thesis consists, in part, of experimental studies involving sample preparation and magnetic, transport, thermal, and x-ray measurements on some strongly correlated eletron systems containing the transition metal vanadium. The compounds studied are LiV{sub 2}O{sub 4}, YV{sub 4}O{sub 8}, and YbV{sub 4}O{sub 8}. The recent discovery of superconductivity in RFeAsO{sub 1-x}F{sub x} (R = La, Ce, Pr, Gd, Tb, Dy, Sm, and Nd), and AFe{sub 2}As{sub 2} (A = Ba, Sr, Ca, and Eu) doped with K, Na, or Cs at the A site with relatively high T{sub c} has sparked tremendous activities in the condensed matter physics community and a renewed interest in the area of superconductivity as occurred following the discovery of the layered cuprate high T{sub c} superconductors in 1986. To discover more superconductors with hopefully higher T{sub c}'s, it is extremely important to investigate compounds having crystal structures related to the compounds showing high T{sub c} superconductivity. Along with the vanadium oxide compounds described before, this thesis describes our investigations of magnetic, structural, thermal and transport properties of EuPd{sub 2}Sb{sub 2} single crystals which have a crystal structure closely related to the AFe{sub 2}As{sub 2} compounds and also a study of the reaction kinetics of the formation of LaFeAsO{sub 1-x}F{sub x}.

  7. Gas Carburization of Thin-Walled Austenitic Stainless Steel Formed via the Reduction of Metal Oxide Extrusions

    E-Print Network [OSTI]

    Li, Mo

    Gas Carburization of Thin-Walled Austenitic Stainless Steel Formed via the Reduction of Metal Oxide with constant carbon composition. In the case of stainless steels, the protective layer of chrome oxide must the surface hardness of steel by introducing a carbon-rich gas environment to a specimen at an elevated

  8. Small cell experiments for electrolytic reduction of uranium oxides to uranium metal using fluoride salts

    SciTech Connect (OSTI)

    Haas, P.A.; Adcock, P.W.; Coroneos, A.C.; Hendrix, D.E. )

    1994-08-01

    Electrolytic reduction of uranium oxide was proposed for the preparation of uranium metal feed for the atomic vapor laser isotope separation (AVLIS) process. A laboratory cell of 25-cm ID was operated to obtain additional information in areas important to design and operation of a pilot plant cell. Reproducible test results and useful operating and control procedures were demonstrated. About 20 kg of uranium metal of acceptable purity were prepared. A good supply of dissolved UO[sub 2] feed at the anode is the most important controlling requirement for efficient cell operation. A large fraction of the cell current is nonproductive in that it does not produce a metal product nor consume carbon anodes. All useful test conditions gave some reduction of UF[sub 4] to produce CF[sub 4] in addition to the reduction of UO[sub 2], but the fraction of metal from the reduction of UF[sub 4] can be decreased by increasing the concentration of dissolved UO[sub 2]. Operation of large continuous cells would probably be limited to current efficiencies of less than 60 pct, and more than 20 pct of the metal would result from the reduction of UF[sub 4].

  9. Variation of the shape and morphological properties of silica and metal oxide powders by electro homogeneous precipitation

    DOE Patents [OSTI]

    Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Sisson, Warren G. (Oak Ridge, TN); Brunson, Ronald R. (Lenoir City, TN)

    1997-01-01

    The present invention provides a method for preparing irreversible linear aggregates (fibrils) of metal oxide powders by utilizing static or pulsed DC electrical fields across a relatively non-conducting liquid solvent in which organometal compounds or silicon alkoxides have been dissolved. The electric field is applied to the relatively non-conducting solution throughout the particle formation and growth process promoting the formation of either linear aggregates (fibrils) or spherical shaped particles as desired. Thus the present invention provides a physical method for altering the size, shape and porosity of precursor hydrous metal oxide or hydrous silicon oxide powders for the development of advanced ceramics with improved strength and insulating capacity.

  10. High Temperature Strength of YSZ Joints Brazed with Palladium Silver Copper Oxide Filler Metals

    SciTech Connect (OSTI)

    Darsell, Jens T.; Weil, K. Scott

    2010-06-09

    The Ag-CuOx system is being investigated as potential filler metals for use in air brazing high-temperature electrochemical devices such as solid oxide fuel cells and gas concentrators. The current study examines the effects of palladium addition on the high temperature joint strength of specimens prepared from yttria stabilized zirconia (YSZ) bars brazed with the binary Ag-CuOx, and 15Pd-Ag-CuO. It was found that while the binary Ag-CuOx system exhibits stronger room temperature strength than the 15Pd system the strength is reduced to values equivalent of the 15Pd system at 800°C. The 15Pd system exhibits a lower ambient temperature strength that is retained at 800°C. In both systems the failure mechanism at high temperature appears to be peeling of the noble metal component from the oxide phases and tearing through the noble metal phase whereas sufficient adhesion is retained at lower temperatures to cause fracture of the YSZ substrate.

  11. Metal–semiconductor transition in atomically thin Bi{sub 2}Sr{sub 2}Co{sub 2}O{sub 8} nanosheets

    SciTech Connect (OSTI)

    Wang, Yang; Cheng, Rui; Dong, Jianjin; Liu, Yuan; Zhou, Hailong; Yu, Woo Jong; Terasaki, Ichiro; Huang, Yu; Duan, Xiangfeng

    2014-09-01

    Two-dimensional layered materials have attracted considerable attention since the discovery of graphene. Here we demonstrate that the layered Bi{sub 2}Sr{sub 2}Co{sub 2}O{sub 8} (BSCO) can be mechanically exfoliated into single- or few-layer nanosheets. The BSCO nanosheets with four or more layers display bulk metallic characteristics, while the nanosheets with three or fewer layers have a layer-number-dependent semiconducting characteristics. Charge transport in bilayer or trilayer BSCO nanosheets exhibits Mott 2D variable-range-hopping (VRH) conduction throughout 2 K–300 K, while the charge transport in monolayers follows the Mott-VRH law above a crossover temperature of 75 K, and is governed by Efros and Shklovskii-VRH laws below 75 K. Disorder potentials and Coulomb charging both contribute to the transport gap of these nanodevices. Our study reveals a distinct layer number-dependent metal-to-semiconductor transition in a new class of 2D materials, and is of great significance for both fundamental investigations and practical devices.

  12. Correlation effects in (111) bilayers of perovskite transition-metal oxides

    SciTech Connect (OSTI)

    Okamoto, Satoshi; Zhu, Wenguang; Nomura, Yusuke; Arita, R.; Xiao, Di; Nagaosa, Naoto

    2014-01-01

    We investigate the correlation-induced Mott, magnetic, and topological phase transitions in artificial (111) bilayers of perovskite transition-metal oxides LaAuO3 and SrIrO3 for which the previous density-functional theory calculations predicted topological insulating states. Using the dynamical-mean-field theory with realistic band structures and Coulomb interactions, LaAuO3 bilayer is shown to be far away from a Mott insulating regime, and a topological-insulating state is robust. On the other hand, SrIrO3 bilayer is on the verge of an orbital-selective topological Mott transition and turns to a trivial insulator by an antiferromagnetic ordering. Oxide bilayers thus provide a novel class of topological materials for which the interplay between the spin-orbit coupling and electron-electron interactions is a fundamental ingredient.

  13. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOE Patents [OSTI]

    Liu, David K. (San Pablo, CA)

    1992-01-01

    Method and apparatus for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure.

  14. Rapid thermal cycling of metal-supported solid oxide fuel cellmembranes

    SciTech Connect (OSTI)

    Matus, Yuriy B.; De Jonghe, Lutgard C.; Jacobson, Craig P.; Visco, Steven J.

    2004-01-02

    Solid oxide fuel cell (SOFC) membranes were developed in which zirconia-based electrolyte thin films were supported by a composite metal/ceramic electrode, and were subjected to rapid thermal cycling between 200 and 800 C. The effects of this cycling on membrane performance were evaluated. The membranes, not yet optimized for performance, showed a peak power density of 350mW/cm2at 900 C in laboratory-sized SOFCs that was not affected by the thermal cycling. This resistance to cycling degradation is attributed to the close matching of thermal expansion coefficient of the cermet support electrode with that of the zirconia electrolyte.

  15. Low Temperature Deposition of Metal Oxide Thin Films in Supercritical Carbon Dioxide using Metal-organic Precursors

    E-Print Network [OSTI]

    Gougousi, Theodosia

    Semiconductor (CMOS) devices, [1,2] magnetic tunnel junctions, [3] and optical coatings.[4] Conventional such as electroplating, [6,7] electroless deposition, [8,9] and in supercritical carbon dioxide for the deposition

  16. The behavior of a solid oxide fuel cell (SOFC) cermet (ceramic-metal composite) anode under reaction conditions depends significantly on the structure, morphology and atomic scale interactions between the metal and the ceramic

    E-Print Network [OSTI]

    The behavior of a solid oxide fuel cell (SOFC) cermet (ceramic-metal composite) anode under for Solid Oxide Fuel Cell Anodes Vaneet Sharma Advisors: Peter A. Crozier and Renu Sharma November 3, 2011

  17. Impact of Iron-Reducing Bacteria on Metals and Radionuclides Adsorbed to Humic-Coated Iron(III) Oxides

    SciTech Connect (OSTI)

    Burgos, W. D.

    2005-02-01

    This is the final report for Grant No. DEFGO2-98ER62691 submitted to the DOE NABR Program. This research has focused on (1) the role of natural organic matter (NOM), quinines, and complexants in enhancing the biological reduction of solid-phase crystalline ferric oxides, (2) the effect of heavy metals (specifically zinc) and NOM on ferric oxide bioreduction, (3) the sorption of Me(II) [Cu(II), Fe(II), Mn(II) and Zn(II)] to ferric oxides and subsequent Me(II)-promoted phase transformations of the ferric oxides, and (4) the development of reaction-based biogeochemical models to numerically simulate our experimental results.

  18. Characterization of a Fe/Y[subscript 2]O[subscript 3] metal/oxide interface using neutron and x-ray scattering

    E-Print Network [OSTI]

    Watkins, E. B.

    The structure of metal/oxide interfaces is important to the radiation resistance of oxide dispersion-strengthened steels. We find evidence of gradual variations in stoichiometry and magnetization across a Fe/Y[subscript ...

  19. Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect

    SciTech Connect (OSTI)

    Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

    2008-09-15

    A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two ferritic stainless steel coupons for strength evaluation. The steel coupons were pre-oxidized at elevated temperatures to promote thick oxide layers to simulate long-term exposure conditions. In addition, seals to as-received metal coupons were also tested after aging in oxidizing or reducing environments to simulate the actual SOFC environment. Room temperature tensile testing showed strength degradation when using pre-oxidized coupons, and more extensive degradation after aging in air. Fracture surface and microstructural analysis confirmed that the cause of degradation was formation of SrCrO4 at the outer sealing edges exposed to air.

  20. Water growth on metals and oxides: binding, dissociation and role of hydroxyl groups

    SciTech Connect (OSTI)

    Salmeron, M.; Bluhm, H.; Tatarkhanov, M.; Ketteler, G.; Shimizu, T.K.; Mugarza, A.; Deng, Xingyi; Herranz, T.; Yamamoto, S.; Nilsson, A.

    2008-09-01

    The authors discuss the role of the presence of dangling H bonds from water or from surface hydroxyl species on the wetting behavior of surfaces. Using Scanning Tunneling and Atomic Force Microscopies, and Photoelectron Spectroscopy, they have examined a variety of surfaces, including mica, oxides, and pure metals. They find that in all cases, the availability of free, dangling H-bonds at the surface is crucial for the subsequent growth of wetting water films. In the case of mica electrostatic forces and H-bonding to surface O atoms determine the water orientation in the first layer and also in subsequent layers with a strong influence in its wetting characteristics. In the case of oxides like TiO{sub 2}, Cu{sub 2}O, SiO{sub 2} and Al{sub 2}O{sub 3}, surface hydroxyls form readily on defects upon exposure to water vapor and help nucleate the subsequent growth of molecular water films. On pure metals, such as Pt, Pd, and Ru, the structure of the first water layer and whether or not it exhibits dangling H bonds is again crucial. Dangling H-bonds are provided by molecules with their plane oriented vertically, or by OH groups formed by the partial dissociation of water. By tying the two II atoms of the water molecules into strong H-bonds with pre-adsorbed O on Ru can also quench the wettability of the surface.

  1. Sodiation kinetics of metal oxide conversion electrodes: A comparative study with lithiation

    SciTech Connect (OSTI)

    He, Kai; Lin, Feng; Zhu, Yizhou; Yu, Xiqian; Li, Jing; Lin, Ruoqian; Nordlund, Dennis; Weng, Tsu Chien; Richards, Ryan M.; Yang, Xiao -Qing; Doeff, Marca M.; Stach, Eric A.; Mo, Yifei; Xin, Huolin L.; Su, Dong

    2015-08-19

    The development of sodium ion batteries (NIBs) can provide an alternative to lithium ion batteries (LIBs) for sustainable, low-cost energy storage. However, due to the larger size and higher m/e ratio of the sodium ion compared to lithium, sodiation reactions of candidate electrodes are expected to differ in significant ways from the corresponding lithium ones. In this work, we investigated the sodiation mechanism of a typical transition metal-oxide, NiO, through a set of correlated techniques, including electrochemical and synchrotron studies, real-time electron microscopy observation, and ab initio molecular dynamics (MD) simulations. We found that a crystalline Na?O reaction layer that was formed at the beginning of sodiation plays an important role in blocking the further transport of sodium ions. In addition, sodiation in NiO exhibits a “shrinking-core” mode that results from a layer-by-layer reaction, as identified by ab initio MD simulations. For lithiation, however, the formation of Li anti-site defects significantly distorts the local NiO lattice that facilitates Li insertion, thus enhancing the overall reaction rate. These observations delineate the mechanistic difference between sodiation and lithiation in metal-oxide conversion materials. More importantly, our findings identify the importance of understanding the role of reaction layers on the functioning of electrodes and thus provide critical insights into further optimizing NIB materials through surface engineering.

  2. Sodiation kinetics of metal oxide conversion electrodes: A comparative study with lithiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Kai; Lin, Feng; Zhu, Yizhou; Yu, Xiqian; Li, Jing; Lin, Ruoqian; Nordlund, Dennis; Weng, Tsu Chien; Richards, Ryan M.; Yang, Xiao -Qing; et al

    2015-08-19

    The development of sodium ion batteries (NIBs) can provide an alternative to lithium ion batteries (LIBs) for sustainable, low-cost energy storage. However, due to the larger size and higher m/e ratio of the sodium ion compared to lithium, sodiation reactions of candidate electrodes are expected to differ in significant ways from the corresponding lithium ones. In this work, we investigated the sodiation mechanism of a typical transition metal-oxide, NiO, through a set of correlated techniques, including electrochemical and synchrotron studies, real-time electron microscopy observation, and ab initio molecular dynamics (MD) simulations. We found that a crystalline Na?O reaction layer thatmore »was formed at the beginning of sodiation plays an important role in blocking the further transport of sodium ions. In addition, sodiation in NiO exhibits a “shrinking-core” mode that results from a layer-by-layer reaction, as identified by ab initio MD simulations. For lithiation, however, the formation of Li anti-site defects significantly distorts the local NiO lattice that facilitates Li insertion, thus enhancing the overall reaction rate. These observations delineate the mechanistic difference between sodiation and lithiation in metal-oxide conversion materials. More importantly, our findings identify the importance of understanding the role of reaction layers on the functioning of electrodes and thus provide critical insights into further optimizing NIB materials through surface engineering.« less

  3. Controlled growth of semiconductor crystals

    DOE Patents [OSTI]

    Bourret-Courchesne, E.D.

    1992-07-21

    A method is disclosed for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B[sub x]O[sub y] are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T[sub m1] of the oxide of boron (T[sub m1]=723 K for boron oxide B[sub 2]O[sub 3]), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T[sub m2] of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm[sup 2]. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 [mu]m. 7 figs.

  4. Controlled growth of semiconductor crystals

    DOE Patents [OSTI]

    Bourret-Courchesne, Edith D. (Richmond, CA)

    1992-01-01

    A method for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B.sub.x O.sub.y are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T.sub.m1 of the oxide of boron (T.sub.m1 =723.degree. K. for boron oxide B.sub.2 O.sub.3), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T.sub.m2 of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm.sup.2. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 .mu.m.

  5. Effect of oxygen vacancy on half metallicity in Ni-doped CeO{sub 2} diluted magnetic semiconductor

    SciTech Connect (OSTI)

    Saini, Hardev S. Saini, G. S. S.; Singh, Mukhtiyar; Kashyap, Manish K.

    2015-05-15

    The electronic and magnetic properties of Ni-doped CeO{sub 2} diluted amgentic semiconductor (DMS) including the effect of oxygen vacancy (V{sub o}) with doping concentration, x = 0.125 have been calculated using FPLAPW method based on Density Functional Theory (DFT) as implemented in WIEN2k. In the present supercell approach, the XC potential was constructed using GGA+U formalism in which Coulomb correction is applied to standard GGA functional within the parameterization of Perdew-Burke-Ernzerhof (PBE). We have found that the ground state properties of bulk CeO{sub 2} compound have been modified significantly due to the substitution of Ni-dopant at the cation (Ce) site with/without V{sub O} and realized that the ferromagnetism in CeO{sub 2} remarkably depends on the V{sub o} concentrations. The presence of V{sub o}, in Ni-doped CeO{sub 2}, can leads to strong ferromagnetic coupling between the nearest neighboring Ni-ions and induces a HMF in this compound. Such ferromagnetic exchange coupling is mainly attributed to spin splitting of Ni-d states, via electrons trapped in V{sub o}. The HMF characteristics of Ni-doped CeO{sub 2} including V{sub o} makes it an ideal material for spintronic devices.

  6. Disposition of Uranium -233 (sup 233U) in Plutonium Metal and Oxide at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Freiboth, Cameron J.; Gibbs, Frank E.

    2000-03-01

    This report documents the position that the concentration of Uranium-233 ({sup 233}U) in plutonium metal and oxide currently stored at the DOE Rocky Flats Environmental Technology Site (RFETS) is well below the maximum permissible stabilization, packaging, shipping and storage limits. The {sup 233}U stabilization, packaging and storage limit is 0.5 weight percent (wt%), which is also the shipping limit maximum. These two plutonium products (metal and oxide) are scheduled for processing through the Building 371 Plutonium Stabilization and Packaging System (PuSPS). This justification is supported by written technical reports, personnel interviews, and nuclear material inventories, as compiled in the ''History of Uranium-233 ({sup 233}U) Processing at the Rocky Flats Plant In Support of the RFETS Acceptable Knowledge Program'' RS-090-056, April 1, 1999. Relevant data from this report is summarized for application to the PuSPS metal and oxide processing campaigns.

  7. On the State of the Art of Metal Interconnects for SOFC Application

    SciTech Connect (OSTI)

    Jablonski@netl.doe.gov

    2011-02-27

    One of the recent developments for Solid Oxide Fuel Cells (SOFC) is oxide component materials capable of operating at lower temperatures such as 700-800C. This lower temperature range has provided for the consideration of metallic interconnects which have several advantages over ceramic interconnects: low cost, ease in manufacturing, and high conductivity. Most metals and alloys will oxidize under both the anode and cathode conditions within an SOFC, thus a chief requirement is that the base metal oxide scale must be electrically conductive since this constitutes the majority of the electrical resistance in a metallic interconnect. Common high temperature alloys form scales that contain chrome, silicon and aluminum oxides among others. Under SOFC operating conditions chrome oxide is a semi-conductor while silicon and aluminum oxides are insulators. In this talk we will review the evolution in candidate alloys and surface modifications which constitute an engineered solution for SOFC interconnect applications.

  8. Heterojunction metal-oxide-metal Au-Fe{sub 3}O{sub 4}-Au single nanowire device for spintronics

    SciTech Connect (OSTI)

    Reddy, K. M. Punnoose, Alex; Hanna, Charles; Padture, Nitin P.

    2015-05-07

    In this report, we present the synthesis of heterojunction magnetite nanowires in alumina template and describe magnetic and electrical properties from a single nanowire device for spintronics applications. Heterojunction Au-Fe-Au nanowire arrays were electrodeposited in porous aluminum oxide templates, and an extensive and controlled heat treatment process converted Fe segment to nanocrystalline cubic magnetite phase with well-defined Au-Fe{sub 3}O{sub 4} interfaces as confirmed by the transmission electron microscopy. Magnetic measurements revealed Verwey transition shoulder around 120?K and a room temperature coercive field of 90?Oe. Current–voltage (I-V) characteristics of a single Au-Fe{sub 3}O{sub 4}-Au nanowire have exhibited Ohmic behavior. Anomalous positive magnetoresistance of about 0.5% is observed on a single nanowire, which is attributed to the high spin polarization in nanowire device with pure Fe{sub 3}O{sub 4} phase and nanocontact barrier. This work demonstrates the ability to preserve the pristine Fe{sub 3}O{sub 4} and well defined electrode contact metal (Au)–magnetite interface, which helps in attaining high spin polarized current.

  9. Method and apparatus for preparation of spherical metal carbonates and lithium metal oxides for lithium rechargeable batteries

    DOE Patents [OSTI]

    Kang, Sun-Ho (Naperville, IL); Amine, Khalil (Downers Grove, IL)

    2008-10-14

    A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling. Another aspect of the invention includes materials with the composition Li.sub.1+xNi.sub..alpha.Co.sub..beta.Mn.sub..gamma.M'.sub..delta.O.sub.yF- .sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti), where the x is between 0 and 0.2, the .alpha. between 0 and 1, the .beta. between 0 and 1, the .gamma. between 0 and 2, the .delta. between about 0 and about 0.2, the y is between 2 and 4, and the z is between 0 and 0.5.

  10. X-Ray Absorption Studies of Vanadium-Containing Metal Oxide Nanocrystals

    SciTech Connect (OSTI)

    Hohn, Keith, L.

    2006-01-09

    Metal oxide nanocrystals offer significant potential for use as catalysts or catalyst supports due to their high surface areas and unique chemical properties that result from the high number of exposed corners and edges. However, little is known about the catalytic activity of these materials, especially as oxidation catalysts. This research focused on the preparation, characterization and use of vanadium-containing nanocrystals as selective oxidation catalysts. Three vanadium-containing nanocrystals were prepared using a modified sol-gel procedure: V/MgO, V/SiO2, and vanadium phosphate (VPO). These represent active oxidation catalysts for a number of industrially relevant reactions. The catalysts were characterized by x-ray diffraction and Raman, UV-VIS, infrared and x-ray absorption spectroscopies with the goal of determining the primary structural and chemical differences between nanocrystals and microcrystals. The catalytic activity of these catalysts was also studied in oxidative dehydrogenation of butane and methanol oxidation to formaldehyde. V/MgO nanocrystals were investigated for activity in oxidative dehydrogenation of butane and compared to conventional V/MgO catalysts. Characterization of V/MgO catalysts using Raman spectroscopy and x-ray absorption spectroscopy showed that both types of catalysts contained magnesium orthovanadate at vanadium loadings below 15 weight%, but above that loading, magnesium pyrovanadate may have been present. In general, MgO nanocrystals had roughly half the crystal size and double the surface area of the conventional MgO. In oxidative dehydrogenation of butane, nanocrystalline V/MgO gave higher selectivity to butene than conventional V/MgO at the same conversion. This difference was attributed to differences in vanadium domain size resulting from the higher surface areas of the nanocrystalline support, since characterization suggested that similar vanadium phases were present on both types of catalysts. Experiments in methanol oxidation were used to probe the chemical differences between sol-gel prepared and conventionally prepared metal oxides. Both V/MgO and V/SiO2 were studied. For both catalysts, similar product selectivities were noted for either preparation method, suggesting similar acid/base and redox properties for the catalysts. At lower weight loadings (<5%), activity was also similar, but at higher weight loadings the sol-gel prepared catalysts were more active. This was attributed to the greater dispersion of vanadium on sol-gel prepared catalysts, and it was suggested that small vanadium oxide domains were more active in methanol oxidation than polymeric and bulk domains. A novel sol-gel method was developed for preparation of VPO catalysts, which are used industrially in butane oxidation to maleic anhydride. In this method vanadium (V) triisopropoxide was reacted with orthophosphoric acid in THF to form a gel. Drying this gel under air resulted in an intercalated VOPO4 compound, where solvent molecules were trapped between layers of the vanadium phosphate compound. Higher surface areas could be achieved by drying this gel at high pressure in an autoclave. The amount of solvent (THF) placed in the autoclave was important in this process. Low amounts of solvent led to a lower surface area, as the solvent evaporated before reaching the critical point and collapsed the gel's pores. In addition, vanadium reduction occurred in the autoclave due to reaction of isopropanol with the vanadium phosphate. Higher amounts of THF reduced the concentration of isopropanol, leading to less reduction. Surfaces areas in excess of 100 m2/g were achieved with this method, and the product was confirmed through XPS and IR to be VOHPO4*0.5H2O, the common precursor for industrial VPO catalysts. Furthermore, this product displayed a platelet morphology, which is desirable for butane oxidation. Further work showed that this material could be transformed to (VO)2P2O7 (the industrial catalyst for butane oxidation to maleic anhydride) by heating under nitrogen without losing much surface are

  11. Kinetic Consequences of Chemisorbed Oxygen Atoms during Methane Oxidation on Group VIII Metal Clusters

    E-Print Network [OSTI]

    Chin, Ya Huei

    2011-01-01

    Chin, Y-H. ; Resasco, D.E. Catalytic Oxidation of methane onreactions in catalytic partial oxidation, reforming, andoccurrence of direct catalytic partial oxidation of methane

  12. Hydrogenation of CO2 to methanol: Importance of metal–oxide and metal–carbide interfaces in the activation of CO2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodriguez, José A.; Liu, Ping; Stacchiola, Dario J.; Senanayake, Sanjaya D.; White, Michael G.; Chen, Jingguang G.

    2015-09-30

    In this study, the high thermochemical stability of CO2 makes it very difficult to achieve the catalytic conversion of the molecule into alcohols or other hydrocarbon compounds, which can be used as fuels or the starting point for the generation of fine chemicals. Pure metals and bimetallic systems used for the CO2 ? CH3OH conversion usually bind CO2 too weakly and, thus, show low catalytic activity. Here, we discuss a series of recent studies that illustrate the advantages of metal–oxide and metal–carbide interfaces when aiming at the conversion of CO2 into methanol. CeOx/Cu(111), Cu/CeOx/TiO2(110), and Au/CeOx/TiO2(110) exhibit an activity formore »the CO2 ? CH3OH conversion that is 2–3 orders of magnitude higher than that of a benchmark Cu(111) catalyst. In the Cu–ceria and Au–ceria interfaces, the multifunctional combination of metal and oxide centers leads to complementary chemical properties that open active reaction pathways for methanol synthesis. Efficient catalysts are also generated after depositing Cu and Au on TiC(001). In these cases, strong metal–support interactions modify the electronic properties of the admetals and make them active for the binding of CO2 and its subsequent transformation into CH3OH at the metal–carbide interfaces.« less

  13. Gate-control efficiency and interface state density evaluated from capacitance-frequency-temperature mapping for GaN-based metal-insulator-semiconductor devices

    SciTech Connect (OSTI)

    Shih, Hong-An; Kudo, Masahiro; Suzuki, Toshi-kazu

    2014-11-14

    We present an analysis method for GaN-based metal-insulator-semiconductor (MIS) devices by using capacitance-frequency-temperature (C-f-T) mapping to evaluate the gate-control efficiency and the interface state density, both exhibiting correlations with the linear-region intrinsic transconductance. The effectiveness of the method was exemplified by application to AlN/AlGaN/GaN MIS devices to elucidate the properties of AlN-AlGaN interfaces depending on their formation processes. Using the C-f-T mapping, we extract the gate-bias-dependent activation energy with its derivative giving the gate-control efficiency, from which we evaluate the AlN-AlGaN interface state density through the Lehovec equivalent circuit in the DC limit. It is shown that the gate-control efficiency and the interface state density have correlations with the linear-region intrinsic transconductance, all depending on the interface formation processes. In addition, we give characterization of the AlN-AlGaN interfaces by using X-ray photoelectron spectroscopy, in relation with the results of the analysis.

  14. Analysis of AlN/AlGaN/GaN metal-insulator-semiconductor structure by using capacitance-frequency-temperature mapping

    SciTech Connect (OSTI)

    Shih, Hong-An; Kudo, Masahiro; Suzuki, Toshi-kazu [Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2012-07-23

    AlN/AlGaN/GaN metal-insulator-semiconductor (MIS) structure is analyzed by using capacitance-frequency-temperature (C-f-T) mapping. Applying sputtering-deposited AlN, we attained AlN/AlGaN/GaN MIS heterostructure field-effect transistors with much suppressed gate leakage currents, but exhibiting frequency dispersion in C-V characteristics owing to high-density AlN/AlGaN interface states. In order to investigate the interface states deteriorating the device performance, we measured temperature-dependent frequency dispersion in the C-V characteristics. As a result, we obtained C-f-T mapping, whose analysis gives the activation energies of electron trapping, namely the interface state energy levels, for a wide range of the gate biases. This analysis method is auxiliary to the conventional conductance method, serving as a valuable tool for characterization of wide-bandgap devices with deep interface states. From the analysis, we can directly evaluate the gate-control efficiency of the devices.

  15. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, X.; Sheldon, P.

    1998-01-27

    A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  16. Methane Activation by Transition-Metal Oxides, MOx (M ) Cr, Mo, W; x ) 1, 2, 3) Xin Xu,# Francesco Faglioni, and William A. Goddard, III*

    E-Print Network [OSTI]

    Goddard III, William A.

    Methane Activation by Transition-Metal Oxides, MOx (M ) Cr, Mo, W; x ) 1, 2, 3) Xin Xu,# Francesco, 2002 Recent experiments on the dehydrogenation-aromatization of methane (DHAM) to form benzene using a MoO3/HZSM-5 catalyst stimulated us to examine methane activation by the transition-metal oxide

  17. Method for producing metal oxide aerogels having densities less than 0.02 g/cc

    SciTech Connect (OSTI)

    Tillotson, Thomas M. (Tracy, CA); Poco, John F. (Livermore, CA); Hrubesh, Lawrence W. (Pleasanton, CA); Thomas, Ian M. (Livermore, CA)

    1994-01-01

    A two-step method is described for making transparent aerogels which have a density of less than 0.003 g/cm.sup.3 to those with a density of more than 0.8 g/cm.sup.3, by a sol/gel process and supercritical extraction. Condensed metal oxide intermediate made with purified reagents can be diluted to produce stable aerogels with a density of less than 0.02 g/cm.sup.3. High temperature, direct supercritical extraction of the liquid phase of the gel produces hydrophobic aerogels which are stable at atmospheric moisture conditions. Monolithic, homogeneous silica aerogels with a density of less than 0.02 to higher than 0.8 g/cm.sup.3, with high thermal insulation capacity, improved mechanical strength and good optical transparency, are described.

  18. Method for producing metal oxide aerogels having densities less than 0. 02 g/cc

    DOE Patents [OSTI]

    Tillotson, T.M.; Poco, J.F.; Hrubesh, L.W.; Thomas, I.M.

    1994-01-04

    A two-step method is described for making transparent aerogels which have a density of less than 0.003 g/cm[sup 3] to those with a density of more than 0.8 g/cm[sup 3], by a sol/gel process and supercritical extraction. Condensed metal oxide intermediate made with purified reagents can be diluted to produce stable aerogels with a density of less than 0.02 g/cm[sup 3]. High temperature, direct supercritical extraction of the liquid phase of the gel produces hydrophobic aerogels which are stable at atmospheric moisture conditions. Monolithic, homogeneous silica aerogels with a density of less than 0.02 to higher than 0.8 g/cm[sup 3], with high thermal insulation capacity, improved mechanical strength and good optical transparency, are described. 7 figures.

  19. Wide band gap semiconductor templates

    DOE Patents [OSTI]

    Arendt, Paul N. (Los Alamos, NM); Stan, Liliana (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); DePaula, Raymond F. (Santa Fe, NM); Usov, Igor O. (Los Alamos, NM)

    2010-12-14

    The present invention relates to a thin film structure based on an epitaxial (111)-oriented rare earth-Group IVB oxide on the cubic (001) MgO terminated surface and the ion-beam-assisted deposition ("IBAD") techniques that are amendable to be over coated by semiconductors with hexagonal crystal structures. The IBAD magnesium oxide ("MgO") technology, in conjunction with certain template materials, is used to fabricate the desired thin film array. Similarly, IBAD MgO with appropriate template layers can be used for semiconductors with cubic type crystal structures.

  20. Microstructure of cosputter-deposited metal-and oxide-MoS2 solid lubricant thin films

    E-Print Network [OSTI]

    Marks, Laurence D.

    Microstructure of cosputter-deposited metal- and oxide-MoS2 solid lubricant thin films M. R of cosputtering small amounts of Ni (3%, 9%) and SbOx (20%) on the final microstructure of MoS2 lubricant thin performance is discussed. I. INTRODUCTION Sputter-deposited films of MoS2 have been used as solid lubricants

  1. Mechanisms of poron Adsorption on Metal Oxides. C.V. TONER, IV and D.l. SPARKS, Univ. of Delaware.

    E-Print Network [OSTI]

    Sparks, Donald L.

    Mechanisms of poron Adsorption on Metal Oxides. C.V. TONER, IV· and D.l. SPARKS, Univ. of Delaware in the soil solution. Yet the reaction mechanism has not been firmly established. Pressure-jump relaxation kjnetic experiments were conducted to determine the mechanism ,of borate adsorption on alUlllina (1 Al~03

  2. Devices and chemical sensing applications of metal oxide nanowires Guozhen Shen,* Po-Chiang Chen, Koungmin Ryu and Chongwu Zhou*

    E-Print Network [OSTI]

    Zhou, Chongwu

    . Finally, we will conclude this review with some perspectives and outlook on the future developments, nanogenerators, solar cells and photo- catalysts, and field nanoemitters. In the third part, we will discuss with some perspectives and outlook on the future developments in the metal oxide nanowire research area. 2

  3. Real-Time Observation of Atomic Layer Deposition Inhibition: Metal Oxide Growth on Self-Assembled Alkanethiols

    E-Print Network [OSTI]

    Real-Time Observation of Atomic Layer Deposition Inhibition: Metal Oxide Growth on Self each atomic layer deposition (ALD) cycle to an analytical island-growth model that enables moderately optimized conditions. KEYWORDS: atomic layer deposition, self-assembled monolayers, quartz crystal

  4. Charge noise analysis of metal oxide semiconductor dual-gate Si/SiGe quantum point contacts

    SciTech Connect (OSTI)

    Kamioka, J.; Oda, S.; Kodera, T.; Takeda, K.; Obata, T.; Tarucha, S.

    2014-05-28

    The frequency dependence of conductance noise through a gate-defined quantum point contact fabricated on a Si/SiGe modulation doped wafer is characterized. The 1/f{sup 2} noise, which is characteristic of random telegraph noise, is reduced by application of a negative bias on the global top gate to reduce the local gate voltage. Direct leakage from the large global gate voltage also causes random telegraph noise, and therefore, there is a suitable point to operate quantum dot measurement.

  5. A hybrid magnetic/complementary metal oxide semiconductor three-context memory bit cell for non-volatile circuit design

    SciTech Connect (OSTI)

    Jovanovi?, B. E-mail: lionel.torres@lirmm.fr; Brum, R. M.; Torres, L.

    2014-04-07

    After decades of continued scaling to the beat of Moore's law, it now appears that conventional silicon based devices are approaching their physical limits. In today's deep-submicron nodes, a number of short-channel and quantum effects are emerging that affect the manufacturing process, as well as, the functionality of the microelectronic systems-on-chip. Spintronics devices that exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, are promising solutions to circumvent these scaling threats. Being compatible with the CMOS technology, such devices offer a promising synergy of radiation immunity, infinite endurance, non-volatility, increased density, etc. In this paper, we present a hybrid (magnetic/CMOS) cell that is able to store and process data both electrically and magnetically. The cell is based on perpendicular spin-transfer torque magnetic tunnel junctions (STT-MTJs) and is suitable for use in magnetic random access memories and reprogrammable computing (non-volatile registers, processor cache memories, magnetic field-programmable gate arrays, etc). To demonstrate the potential our hybrid cell, we physically implemented a small hybrid memory block using 45?nm × 45?nm round MTJs for the magnetic part and 28?nm fully depleted silicon on insulator (FD-SOI) technology for the CMOS part. We also report the cells measured performances in terms of area, robustness, read/write speed and energy consumption.

  6. Characterization of near-terahertz complementary metal-oxide semiconductor circuits using a Fourier-transform interferometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Arenas, D. J.; Shim, Dongha; Koukis, D. I.; Seok, Eunyoung; Tanner, D. B.; O, Kenneth K.

    2011-10-24

    Optical methods for measuring of the emission spectra of oscillator circuits operating in the 400-600 GHz range are described. The emitted power from patch antennas included in the circuits is measured by placing the circuit in the source chamber of a Fourier-transform interferometric spectrometer. The results show that this optical technique is useful for measuring circuits pushing the frontier in operating frequency. The technique also allows the characterization of the circuit by measuring the power radiated in the fundamental and in the harmonics. This capability is useful for oscillator architectures designed to cancel the fundamental and use higher harmonics. Themore »radiated power was measured using two techniques: direct measurement of the power by placing the device in front of a bolometer of known responsivity, and by comparison to the estimated power from blackbody sources. The latter technique showed that these circuits have higher emission than blackbody sources at the operating frequencies, and, therefore, offer potential spectroscopy applications.« less

  7. Performance analysis of boron nitride embedded armchair graphene nanoribbon metal–oxide–semiconductor field effect transistor with Stone Wales defects

    SciTech Connect (OSTI)

    Chanana, Anuja; Sengupta, Amretashis; Mahapatra, Santanu

    2014-01-21

    We study the performance of a hybrid Graphene-Boron Nitride armchair nanoribbon (a-GNR-BN) n-MOSFET at its ballistic transport limit. We consider three geometric configurations 3p, 3p + 1, and 3p + 2 of a-GNR-BN with BN atoms embedded on either side (2, 4, and 6 BN) on the GNR. Material properties like band gap, effective mass, and density of states of these H-passivated structures are evaluated using the Density Functional Theory. Using these material parameters, self-consistent Poisson-Schrodinger simulations are carried out under the Non Equilibrium Green's Function formalism to calculate the ballistic n-MOSFET device characteristics. For a hybrid nanoribbon of width ?5?nm, the simulated ON current is found to be in the range of 265??A–280??A with an ON/OFF ratio 7.1 × 10{sup 6}–7.4 × 10{sup 6} for a V{sub DD}?=?0.68?V corresponding to 10?nm technology node. We further study the impact of randomly distributed Stone Wales (SW) defects in these hybrid structures and only 2.5% degradation of ON current is observed for SW defect density of 3.18%.

  8. INFLUENCE OF OXIDE GROWTH AND METAL CREEP ON STRAIN DEVELOPMENT IN THE STEAM-SIDE OXIDE IN BOILER TUBES

    SciTech Connect (OSTI)

    Sabau, Adrian S [ORNL; Wright, Ian G [ORNL

    2010-01-01

    This effort is concerned with developing a quantitative description of the exfoliation behavior of oxide scales grown inside steam tubes in a pressure boiler. Consideration of the development of stress/strain in growing oxides has included expansion mismatch-induced strains during thermal cycling as well as inelastic mechanical effects from oxide/alloy creep phenomena and volume change from oxide growth. The magnitude of the parameters used has been closely matched to actual boiler operating practice. The creep model used was validated against published data. Representation of oxide growth-induced strain was found to be a difficult challenge because the processes involved are not fully understood. In addition to the traditional uniaxial (radial) and dilatational models, lateral growth models are discussed in the context of experimentally-derived criteria, such as the level of elastic strains involved in oxide exfoliation. It was found that strain variation in the oxide cannot be neglected.

  9. Variation of the shape and morphological properties of silica and metal oxide powders by electro homogeneous precipitation

    DOE Patents [OSTI]

    Harris, M.T.; Basaran, O.A.; Sisson, W.G.; Brunson, R.R.

    1997-02-18

    The present invention provides a method for preparing irreversible linear aggregates (fibrils) of metal oxide powders by utilizing static or pulsed DC electrical fields across a relatively non-conducting liquid solvent in which organometal compounds or silicon alkoxides have been dissolved. The electric field is applied to the relatively non-conducting solution throughout the particle formation and growth process promoting the formation of either linear aggregates (fibrils) or spherical shaped particles as desired. Thus the present invention provides a physical method for altering the size, shape and porosity of precursor hydrous metal oxide or hydrous silicon oxide powders for the development of advanced ceramics with improved strength and insulating capacity. 3 figs.

  10. Alloy Films Deposited by Electroplating as Precursors for Protective Oxide Coatings on Solid Oxide Fuel Cells Metallic Interconnect Materials

    SciTech Connect (OSTI)

    Johnson, Christopher; Gemmen, R.S.; Cross, Caleb

    2006-10-01

    The successful development of stainless steel interconnects for intermediate temperature solid oxide fuel cells (SOFC) may be the materials breakthrough that makes SOFC technology truly commercial. Many of the ferritic stainless steels, however, suffer from a relatively high area specific resistance (ASR) after long exposure times at temperature and the Cr in the native oxide can evaporate and contaminate other cell components. Conductive coatings that resist oxide scale growth and chromium evaporation may prevent both of these problems. In the present study electrochemical deposition of binary alloys followed by oxidation of the alloy to form protective and conductive oxide layers is examined. Results are presented for the deposition of Mn/Co and Fe/Ni alloys via electroplating to form a precursor for spinel oxide coating formation. Analysis of the alloy coatings is done by SEM, EDS and XRD.

  11. Surface Binding and Organization of Sensitizing Dyes on Metal Oxide Single Crystal Surfaces

    SciTech Connect (OSTI)

    Parkinson, Bruce

    2010-06-04

    Even though investigations of dye-sensitized nanocrystalline semiconductors in solar cells has dominated research on dye-sensitized semiconductors over the past two decades. Single crystal electrodes represent far simpler model systems for studying the sensitization process with a continuing train of studies dating back more than forty years. Even today single crystal surfaces prove to be more controlled experimental models for the study of dye-sensitized semiconductors than the nanocrystalline substrates. We analyzed the scientific advances in the model sensitized single crystal systems that preceded the introduction of nanocrystalline semiconductor electrodes. It then follows the single crystal research to the present, illustrating both their striking simplicity of use and clarity of interpretation relative to nanocrystalline electrodes. Researchers have employed many electrochemical, photochemical and scanning probe techniques for studying monolayer quantities of sensitizing dyes at specific crystallographic faces of different semiconductors. These methods include photochronocoulometry, electronic spectroscopy and flash photolysis of dyes at potential-controlled semiconductor electrodes and the use of total internal reflection methods. In addition, we describe the preparation of surfaces of single crystal SnS2 and TiO2 electrodes to serve as reproducible model systems for charge separation at dye sensitized solar cells. This process involves cleaving the SnS2 electrodes and a photoelectrochemical surface treatment for TiO2 that produces clean surfaces for sensitization (as verified by AFM) resulting in near unity yields for electron transfer from the molecular excited dyes into the conduction band.

  12. Metal-ion catalyzed oxidation of a G-agent simulant by oxone. Final report Oct 89-Dec 90

    SciTech Connect (OSTI)

    Leslie, D.R.; Ward, J.R.

    1992-07-01

    By means of the ability of oxone to oxidize sulphur, oxone has been shown to be a rapid decontaminant for mustard or VX. G-agents, such as sarin or soman, are difficult to oxidize, and all means to decontaminate sarin or soman are based on hydrolysis. To see if oxone might have utility as a general decontaminant, experiments were run to see if the ability of oxone to destroy organophosphorus esters could be enhanced with transition-metal catalysts. Hydrolysis of the G-agent simulant diisopropyl methylphosphonate (DIMP) was promoted in oxone solution by the presence of such low valent metal ions as cobalt (II), chromium (III), or manganese (II). The reaction is initiated by radical formation from decomposition of HO-SO3. Radical chains may be terminated by dimerization of S04-, other reactions forming 02, or by reduction of the radical to S04= by low valent metal ion. The radical can also reduce the oxidized metal ion back to the original low valent state, thereby providing a path for turnover of the metal ion. The relatively slow rate and the potential for contaminants in field application that could react with the SO4- radicals make it unlikely that metal ion catalysis of oxone decomposition will prove to be a useful decontaminant. Decontamination, NMR, Chemical agents, Metal-ion catalysis, Chromium (III), DIMP, Oxone, Kinetics. This paper describes the effect of a crystal field, according to site symmetry, upon the magnetic quantum-level structure of an atomic ion, as expressed in electric dipole transitions (a corresponding treatment for magnetic dipole transitions, in the original German, is not included). Crystal field Magnetic quantum numbers Atomic ion.

  13. Amorphous Silicon as Semiconductor Material for High Resolution LAPS

    E-Print Network [OSTI]

    Moritz, Werner

    ) is limited by the properties of the semiconductor material used. We investigated metalAmorphous Silicon as Semiconductor Material for High Resolution LAPS Werner Moritz1 , Tatsuo-insulator- semiconductor (MIS) structures based on amorphous silicon (a-Si) prepared as a thin layer on transparent glass

  14. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates

    SciTech Connect (OSTI)

    Patty, Kira; Campbell, Quinn; Hamilton, Nathan; West, Robert G.; Sadeghi, Seyed M.; Mao, Chuanbin

    2014-09-21

    We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggests the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide.

  15. Fluorescence-based detection methodologies for nitric oxide using transition metal scaffolds

    E-Print Network [OSTI]

    Hilderbrand, Scott A. (Scott Alan), 1976-

    2004-01-01

    Chapter 1. Fluorescence-Based Detection Methodologies for Nitric Oxide: A Review. Chapter 2. Cobalt Chemistry with Mixed Aminotroponimine Salicylaldimine Ligands: Synthesis, Characterization, and Nitric Oxide Reactivity. ...

  16. Electric double layer at metal oxide surfaces: Static properties of the cassiterite - Water Interface

    SciTech Connect (OSTI)

    Vlcek, Lukas; Zhang, Zhan; Machesky, Michael L.; Wesolowski, David J

    2007-04-01

    The structure of water at the (110) surface of cassiterite ({alpha}-SnO{sub 2}) at ambient conditions was studied by means of molecular dynamics simulations and X-ray crystal truncation rod experiments and interpreted with the help of the revised MUSIC model of surface protonation. The interactions of the metal oxide in the simulations were described by a recently developed classical force field based on the SPC/E model of water. Two extreme cases of completely hydroxylated and nonhydroxylated surfaces were considered along with a mixed surface with 50% dissociation. To study the dependence of the surface properties on pH, neutral and negatively charged variants of the surfaces were constructed. Axial and lateral density distributions of water for different types of surfaces were compared to each other and to experimental axial density distributions found by X-ray experiments. Although significant differences were found between the structures of the studied interfaces, the axial distances between Sn and O atoms are very similar and therefore could not be clearly distinguished by the diffraction technique. The explanation of structures observed in the density distributions was provided by a detailed analysis of hydrogen bonding in the interfacial region. It revealed qualitatively different hydrating patterns formed at neutral hydroxylated and nonhydroxylated surfaces and suggested a preference for the dissociative adsorption of water. At negatively charged surfaces, however, the situation can be reversed by the electric field stabilizing a hydrogen bond network similar to that found at the neutral nonhydroxylated surface. Comparison with previously studied rutile ({alpha}-TiO{sub 2}) surfaces provided insight into the differences between the hydration of these two metal oxides, and an important role was ascribed to their different lattice parameters. A link to macroscopic properties was provided by the revised MUSIC surface protonation model. Explicit use of the Sn-O bond lengths based on ab initio calculations and H-bond configurations as inputs led to the prediction of a pH of zero net-proton induced surface charge (pH{sub pzc}) that agrees very well with those determined experimentally (about 4.4 at 298 K).

  17. Electric double layer at metal oxide surfaces:static properties of the cassiterite-water interface.

    SciTech Connect (OSTI)

    Vlcek, L.; Zhang, Z.; Machesky, M .L.; Fenter, P.; Rosenqvist, J.; Wesolowski, D. J.; Anovitz, L. M.; Predota, M.; Cummings, P. T.; Vanderbilt Univ.; ORNL; Univ. of South Bohimia; Illinois State Water Survey

    2007-03-24

    The structure of water at the (110) surface of cassiterite ({alpha}-SnO{sub 2}) at ambient conditions was studied by means of molecular dynamics simulations and X-ray crystal truncation rod experiments and interpreted with the help of the revised MUSIC model of surface protonation. The interactions of the metal oxide in the simulations were described by a recently developed classical force field based on the SPC/E model of water. Two extreme cases of completely hydroxylated and nonhydroxylated surfaces were considered along with a mixed surface with 50% dissociation. To study the dependence of the surface properties on pH, neutral and negatively charged variants of the surfaces were constructed. Axial and lateral density distributions of water for different types of surfaces were compared to each other and to experimental axial density distributions found by X-ray experiments. Although significant differences were found between the structures of the studied interfaces, the axial distances between Sn and O atoms are very similar and therefore could not be clearly distinguished by the diffraction technique. The explanation of structures observed in the density distributions was provided by a detailed analysis of hydrogen bonding in the interfacial region. It revealed qualitatively different hydrating patterns formed at neutral hydroxylated and nonhydroxylated surfaces and suggested a preference for the dissociative adsorption of water. At negatively charged surfaces, however, the situation can be reversed by the electric field stabilizing a hydrogen bond network similar to that found at the neutral nonhydroxylated surface. Comparison with previously studied rutile ({alpha}-TiO{sub 2}) surfaces provided insight into the differences between the hydration of these two metal oxides, and an important role was ascribed to their different lattice parameters. A link to macroscopic properties was provided by the revised MUSIC surface protonation model. Explicit use of the Sn-O bond lengths based on ab initio calculations and H-bond configurations as inputs led to the prediction of a pH of zero net-proton induced surface charge (pH{sub pzc}) that agrees very well with those determined experimentally (about 4.4 at 298 K).

  18. Photodeposition of Pt on Colloidal CdS and CdSe/CdS Semiconductor Nanostructures

    SciTech Connect (OSTI)

    Dukovic, Gordana; Merkle, Maxwell G.; Nelson, James H.; Hughes, Steven M.; Alivisatos, A. Paul

    2008-08-06

    Semiconductor photocatalysis has been identified as a promising avenue for the conversion of solar energy into environmentally friendly fuels, most notably by the production of hydrogen from water.[1-5] Nanometer-scale materials in particular have attracted considerable scientific attention as the building blocks for light-harvesting applications.[6,7] Their desirable attributes include tunability of the optical properties with size, amenability to relatively inexpensive low-temperature processing, and a high degree of synthetic sophistication leading to increasingly complex and multi-functional architectures. For photocatalysis in particular, the high surface-to-volume ratios in nanoscale materials should lead to an increased availability of carriers for redox reactions on the nanoparticle surface. Recombination of photoexcited carriers directly competes with photocatalytic activity.[3] Charge separation is often achieved with multi-component heterostructures. An early example is the case of TiO2 powders functionalized with Pt and RuO2 particles, where photoexcited electrons are transferred to Pt (the reduction site) and holes to RuO2 (the oxidation site).[8] More recently, many colloidally synthesized nanometer-scale metal-semiconductor heterostructures have been reported.[7,9,10] A majority of these structures are made by thermal methods.[7,10] We have chosen to study photochemical formation of metal-semiconductor heterostructures. The detailed understanding of the mechanisms involved in photodeposition of metals on nanometer-scale semiconductors is necessary to enable a high degree of synthetic control. At the same time, because the results of metal deposition can be directly observed by electron microscopy, it can be used to understand how factors such as nanocrystal composition, shape, carrier dynamics, and surface chemistry influence the photochemical properties of semiconductor nanocrystals. In this communication, we report on the photodeposition of Pt on colloidal CdS and CdSe/CdS core/shell nanocrystals. Among the II-VI semiconductors, CdS is of particular interest because it has the correct band alignment for water photolysis[2] and has been demonstrated to be photocatalytically active.[11-16] We have found that the photoexcitation of CdS and CdSe/CdS in the presence of an organometallic Pt precursor leads to deposition of Pt nanoparticles on the semiconductor surface. Stark differences are observed in the Pt nanoparticle location on the two substrates, and the photodeposition can be completely inhibited by the modification of the semiconductor surface. Our results suggest that tuning of the semiconductor band structure, spatial organization and surface chemistry should be crucial in the design of photocatalytic nanostructures.

  19. Comprehensive study and design of scaled metal/high-k/Ge gate stacks with ultrathin aluminum oxide interlayers

    SciTech Connect (OSTI)

    Asahara, Ryohei; Hideshima, Iori; Oka, Hiroshi; Minoura, Yuya; Hosoi, Takuji Shimura, Takayoshi; Watanabe, Heiji; Ogawa, Shingo; Yoshigoe, Akitaka; Teraoka, Yuden

    2015-06-08

    Advanced metal/high-k/Ge gate stacks with a sub-nm equivalent oxide thickness (EOT) and improved interface properties were demonstrated by controlling interface reactions using ultrathin aluminum oxide (AlO{sub x}) interlayers. A step-by-step in situ procedure by deposition of AlO{sub x} and hafnium oxide (HfO{sub x}) layers on Ge and subsequent plasma oxidation was conducted to fabricate Pt/HfO{sub 2}/AlO{sub x}/GeO{sub x}/Ge stacked structures. Comprehensive study by means of physical and electrical characterizations revealed distinct impacts of AlO{sub x} interlayers, plasma oxidation, and metal electrodes serving as capping layers on EOT scaling, improved interface quality, and thermal stability of the stacks. Aggressive EOT scaling down to 0.56?nm and very low interface state density of 2.4?×?10{sup 11?}cm{sup ?2}eV{sup ?1} with a sub-nm EOT and sufficient thermal stability were achieved by systematic process optimization.

  20. Ultra-stable Molecule-Surface Architectures at Metal Oxides: Structure, Bonding, and Electron-transfer Processes

    SciTech Connect (OSTI)

    Hamers, Robert John

    2013-12-07

    Research funded by this project focused on the development of improved strategies for functionalization of metal oxides to enhance charge?transfer processes relevant to solar energy conversion. Initial studies included Fe2O3, WO3, TiO2, SnO2, and ZnO as model oxide systems; these systems were chosen due to differences in metal oxidation state and chemical bonding types in these oxides. Later studies focused largely on SnO2 and ZnO, as these materials show particularly promising surface chemistry, have high electron mobility, and can be readily grown in both spherical nanoparticles and as elongated nanorods. New molecules were synthesized that allowed the direct chemical assembly of novel nanoparticle ?dyadic? structures in which two different oxide materials are chemically joined, leading to an interface that enhances the separation of of charge upon illumination. We demonstrated that such junctions enhance photocatalytic efficiency using model organic compounds. A separate effort focused on novel approaches to linking dye molecules to SnO2 and ZnO as a way to enhance solar conversion efficiency. A novel type of surface binding through

  1. High-Temperature Zirconia Oxygen Sensor with Sealed Metal/Metal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference...

  2. Doped palladium containing oxidation catalysts

    DOE Patents [OSTI]

    Mohajeri, Nahid

    2014-02-18

    A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.

  3. SURFACE DAMAGE OF OXIDIZED METAL MATRIX COMPOSITE LAMINATES UNDER TRANSVERSE TENSION

    E-Print Network [OSTI]

    of surface cracks in the oxide layer is assumed. The critical value of the applied mechanical load, which the oxide layer, caused by the diffusion of oxygen, on the stress field is considered. 1. INTRODUCTION a brittle oxide layer on the titanium alloy develops. This oxide layer initiates and accelerates damage

  4. Wafer-fused semiconductor radiation detector

    DOE Patents [OSTI]

    Lee, Edwin Y. (Livermore, CA); James, Ralph B. (Livermore, CA)

    2002-01-01

    Wafer-fused semiconductor radiation detector useful for gamma-ray and x-ray spectrometers and imaging systems. The detector is fabricated using wafer fusion to insert an electrically conductive grid, typically comprising a metal, between two solid semiconductor pieces, one having a cathode (negative electrode) and the other having an anode (positive electrode). The wafer fused semiconductor radiation detector functions like the commonly used Frisch grid radiation detector, in which an electrically conductive grid is inserted in high vacuum between the cathode and the anode. The wafer-fused semiconductor radiation detector can be fabricated using the same or two different semiconductor materials of different sizes and of the same or different thicknesses; and it may utilize a wide range of metals, or other electrically conducting materials, to form the grid, to optimize the detector performance, without being constrained by structural dissimilarity of the individual parts. The wafer-fused detector is basically formed, for example, by etching spaced grooves across one end of one of two pieces of semiconductor materials, partially filling the grooves with a selected electrical conductor which forms a grid electrode, and then fusing the grooved end of the one semiconductor piece to an end of the other semiconductor piece with a cathode and an anode being formed on opposite ends of the semiconductor pieces.

  5. Investigation of Some Transparent Metal Oxides as Damp Heat Protective Coating for CIGS Solar Cells: Preprint

    SciTech Connect (OSTI)

    Pern, F. J.; Yan, F.; Zaaunbrecher, B.; To, B.; Perkins, J.; Noufi, R.

    2012-10-01

    We investigated the protective effectiveness of some transparent metal oxides (TMO) on CIGS solar cell coupons against damp heat (DH) exposure at 85oC and 85% relative humidity (RH). Sputter-deposited bilayer ZnO (BZO) with up to 0.5-um Al-doped ZnO (AZO) layer and 0.2-um bilayer InZnO were used as 'inherent' part of device structure on CdS/CIGS/Mo/SLG. Sputter-deposited 0.2-um ZnSnO and atomic layer deposited (ALD) 0.1-um Al2O3 were used as overcoat on typical BZO/CdS/CIGS/Mo/SLG solar cells. The results were all negative -- all TMO-coated CIGS cells exhibited substantial degradation in DH. Combining the optical photographs, PL and EL imaging, SEM surface micro-morphology, coupled with XRD, I-V and QE measurements, the causes of the device degradations are attributed to hydrolytic corrosion, flaking, micro-cracking, and delamination induced by the DH moisture. Mechanical stress and decrease in crystallinity (grain size effect) could be additional degrading factors for thicker AZO grown on CdS/CIGS.

  6. Synthesis of Metal Oxide Nanomaterials for Chemical Sensors by Molecular Beam Epitaxy

    SciTech Connect (OSTI)

    Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T; Thevuthasan, Suntharampillai

    2013-12-01

    Since the industrial revolution, detection and monitoring of toxic matter, chemical wastes, and air pollutants has become an important environmental issue. Thus, it leads to the development of chemical sensors for various environmental applications. The recent disastrous oil spills over the near-surface of ocean due to the offshore drilling emphasize the use of chemical sensors for prevention and monitoring of the processes that might lead to these mishaps.1, 2 Chemical sensors operated on a simple principle that the sensing platform undergoes a detectable change when exposed to the target substance to be sensed. Among all the types of chemical sensors, solid state gas sensors have attracted a great deal of attention due to their advantages such as high sensitivity, greater selectivity, portability, high stability and low cost.3, 4 Especially, semiconducting metal oxides such as SnO2, TiO2, and WO3 have been widely used as the active sensing platforms in solid state gas sensors.5 For the enhanced properties of solid state gas sensors, finding new sensing materials or development of existing materials will be needed. Thus, nanostructured materials such as nanotubes,6-8 nanowires,9-11 nanorods,12-15 nanobelts,16, 17 and nano-scale thin films18-23 have been synthesized and studied for chemical sensing applications.

  7. Final LDRD report : metal oxide films, nanostructures, and heterostructures for solar hydrogen production.

    SciTech Connect (OSTI)

    Kronawitter, Coleman X.; Antoun, Bonnie R.; Mao, Samuel S.

    2012-01-01

    The distinction between electricity and fuel use in analyses of global power consumption statistics highlights the critical importance of establishing efficient synthesis techniques for solar fuels-those chemicals whose bond energies are obtained through conversion processes driven by solar energy. Photoelectrochemical (PEC) processes show potential for the production of solar fuels because of their demonstrated versatility in facilitating optoelectronic and chemical conversion processes. Tandem PEC-photovoltaic modular configurations for the generation of hydrogen from water and sunlight (solar water splitting) provide an opportunity to develop a low-cost and efficient energy conversion scheme. The critical component in devices of this type is the PEC photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with the electrochemical scale for its charge carriers to have sufficient potential to drive the hydrogen and oxygen evolution reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions.

  8. Improved layered mixed transition metal oxides for Li-ion batteries

    SciTech Connect (OSTI)

    Doeff, Marca M.; Conry, Thomas; Wilcox, James

    2010-03-05

    Recent work in our laboratory has been directed towards development of mixed layered transition metal oxides with general composition Li[Ni, Co, M, Mn]O2 (M=Al, Ti) for Li ion battery cathodes. Compounds such as Li[Ni1/3Co1/3Mn1/3]O2 (often called NMCs) are currently being commercialized for use in consumer electronic batteries, but the high cobalt content makes them too expensive for vehicular applications such as electric vehicles (EV), plug-in hybrid electric vehicles (PHEVs), or hybrid electric vehicles (HEVs). To reduce materials costs, we have explored partial or full substitution of Co with Al, Ti, and Fe. Fe substitution generally decreases capacity and results in poorer rate and cycling behavior. Interestingly, low levels of substitution with Al or Ti improve aspects of performance with minimal impact on energy densities, for some formulations. High levels of Al substitution compromise specific capacity, however, so further improvements require that the Ni and Mn content be increased and Co correspondingly decreased. Low levels of Al or Ti substitution can then be used offset negative effects induced by the higher Ni content. The structural and electrochemical characterization of substituted NMCs is presented in this paper.

  9. Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur

    SciTech Connect (OSTI)

    Ziomek-Moroz, M.; Hawk, Jeffrey A.

    2005-01-01

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 ºC to ~750 ºC may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

  10. Close-To-Practice Assessment Of Meat Freshness With Metal Oxide Sensor Microarray Electronic Nose

    SciTech Connect (OSTI)

    Musatov, V. Yu.; Sysoev, V. V.; Sommer, M.; Kiselev, I.

    2009-05-23

    In this report we estimate the ability of KAMINA e-nose, based on a metal oxide sensor (MOS) microarray and Linear Discriminant Analysis (LDA) pattern recognition, to evaluate meat freshness. The received results show that, 1) one or two exposures of standard meat samples to the e-nose are enough for the instrument to recognize the fresh meat prepared by the same supplier with 100% probability; 2) the meat samples of two kinds, stored at 4 deg. C and 25 deg. C, are mutually recognized at early stages of decay with the help of the LDA model built independently under the e-nose training to each kind of meat; 3) the 3-4 training cycles of exposure to meat from different suppliers are necessary for the e-nose to build a reliable LDA model accounting for the supplier factor. This study approves that the MOS e-nose is ready to be currently utilised in food industry for evaluation of product freshness. The e-nose performance is characterized by low training cost, a confident recognition power of various product decay conditions and easy adjustment to changing conditions.

  11. Light-induced hysteresis and recovery behaviors in photochemically activated solution-processed metal-oxide thin-film transistors

    SciTech Connect (OSTI)

    Jo, Jeong-Wan; Park, Sung Kyu E-mail: skpark@cau.ac.kr; Kim, Yong-Hoon E-mail: skpark@cau.ac.kr

    2014-07-28

    In this report, photo-induced hysteresis, threshold voltage (V{sub T}) shift, and recovery behaviors in photochemically activated solution-processed indium-gallium-zinc oxide (IGZO) thin-film transistors (TFTs) are investigated. It was observed that a white light illumination caused negative V{sub T} shift along with creation of clockwise hysteresis in electrical characteristics which can be attributed to photo-generated doubly ionized oxygen vacancies at the semiconductor/gate dielectric interface. More importantly, the photochemically activated IGZO TFTs showed much reduced overall V{sub T} shift compared to thermally annealed TFTs. Reduced number of donor-like interface states creation under light illumination and more facile neutralization of ionized oxygen vacancies by electron capture under positive gate potential are claimed to be the origin of the less V{sub T} shift in photochemically activated TFTs.

  12. Time-Resolved XAFS Spectroscopic Studies of B-H and N-H Oxidative Addition to Transition Metal Catalysts Relevant to Hydrogen Storage

    SciTech Connect (OSTI)

    Bitterwolf, Thomas E.

    2014-12-09

    Successful catalytic dehydrogenation of aminoborane, H3NBH3, prompted questions as to the potential role of N-H oxidative addition in the mechanisms of these processes. N-H oxidative addition reactions are rare, and in all cases appear to involve initial dative bonding to the metal by the amine lone pairs followed by transfer of a proton to the basic metal. Aminoborane and its trimethylborane derivative block this mechanism and, in principle, should permit authentic N-H oxidative attrition to occur. Extensive experimental work failed to confirm this hypothesis. In all cases either B-H complexation or oxidative addition of solvent C-H bonds dominate the chemistry.

  13. Semiconductor switch geometry with electric field shaping

    DOE Patents [OSTI]

    Booth, R.; Pocha, M.D.

    1994-08-23

    An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium. 10 figs.

  14. Semiconductor switch geometry with electric field shaping

    DOE Patents [OSTI]

    Booth, Rex (Livermore, CA); Pocha, Michael D. (Livermore, CA)

    1994-01-01

    An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium.

  15. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOE Patents [OSTI]

    Wrenn, G.E. Jr.; Holcombe, C.E. Jr.

    1988-09-13

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  16. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOE Patents [OSTI]

    Wrenn, Jr., George E. (Clinton, TN); Holcombe, Jr., Cressie E. (Farragut, TN)

    1988-01-01

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  17. Identifying the Role of N-Heteroatom Location in the Activity of Metal Catalysts for Alcohol Oxidation

    SciTech Connect (OSTI)

    Chan-Thaw, Carine E. [Universita di Milano, Italy; Veith, Gabriel M [ORNL; Villa, Alberto [Universita di Milano, Italy; Prati, Laura [Universita di Milano, Italy

    2015-01-01

    This work focuses on understanding how the bonding of nitrogen heteroatoms contained on/in a activated carbon support influence the stability and reactivity of a supported Pd catalyst for the oxidation of alcohols in solution. The results show that simply adding N groups via solution chemistry is insufficient to improve catalytic properties. Instead a strongly bound N moiety is required to activate the catalyst and stabilize the metal particles.

  18. Synthesis of Mixed Metal Oxides for Hydrodeoxygenation of Pyrolysis Oil for Alternative Fuels Sarah McNew, Tiorra Ross and Carsten Sievers

    E-Print Network [OSTI]

    Das, Suman

    Synthesis of Mixed Metal Oxides for Hydrodeoxygenation of Pyrolysis Oil for Alternative Fuels Sarah alternative feedstocks · Alternative fuels must be: · Compatible with current infrastructure · Sustainable to traditional petroleum based fuels · Differences associated with oxygen · Removal of some oxygen is necessary

  19. Validation of MCNP6.1 for Criticality Safety of Pu-Metal, -Solution, and -Oxide Systems

    SciTech Connect (OSTI)

    Kiedrowski, Brian C.; Conlin, Jeremy Lloyd; Favorite, Jeffrey A.; Kahler, III, Albert C.; Kersting, Alyssa R.; Parsons, Donald K.; Walker, Jessie L.

    2014-05-13

    Guidance is offered to the Los Alamos National Laboratory Nuclear Criticality Safety division towards developing an Upper Subcritical Limit (USL) for MCNP6.1 calculations with ENDF/B-VII.1 nuclear data for three classes of problems: Pu-metal, -solution, and -oxide systems. A benchmark suite containing 1,086 benchmarks is prepared, and a sensitivity/uncertainty (S/U) method with a generalized linear least squares (GLLS) data adjustment is used to reject outliers, bringing the total to 959 usable benchmarks. For each class of problem, S/U methods are used to select relevant experimental benchmarks, and the calculational margin is computed using extreme value theory. A portion of the margin of sub criticality is defined considering both a detection limit for errors in codes and data and uncertainty/variability in the nuclear data library. The latter employs S/U methods with a GLLS data adjustment to find representative nuclear data covariances constrained by integral experiments, which are then used to compute uncertainties in keff from nuclear data. The USLs for the classes of problems are as follows: Pu metal, 0.980; Pu solutions, 0.973; dry Pu oxides, 0.978; dilute Pu oxide-water mixes, 0.970; and intermediate-spectrum Pu oxide-water mixes, 0.953.

  20. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments

    SciTech Connect (OSTI)

    Glass, DR. Jennifer; Yu, DR. Hang; Steele, Joshua; Dawson, Katherine; Sun, S; Chourey, Karuna; Pan, Chongle; Hettich, Robert {Bob} L; Orphan, V

    2013-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyse important biogeochemical reactions. In anoxic methane- and sulphiderich environments, microbes may have unique adaptations for metal acquisition and utilization because of decreased bioavailability as a result of metal sulphide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulphidic (> 1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5 270 nM), cobalt (0.5 6 nM), molybdenum (10 5600 nM) and tungsten (0.3 8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalysing anaerobic oxidation of methane (AOM) utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulphate-reducing bacteria. Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrophilic microorganisms. Overall, our data suggest that AOM consortia use specialized biochemical strategies to overcome the challenges of metal availability in sulphidic environments.

  1. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulfidic marine sediments

    SciTech Connect (OSTI)

    Glass, DR. Jennifer; Yu, DR. Hang; Steele, Joshua; Dawson, Katherine; Sun, S; Chourey, Karuna; Hettich, Robert {Bob} L; Orphan, V

    2014-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyze important biogeochemical reactions. In anoxic methane- and sulfide-rich environments, microbes may have unique adaptations for metal acquisition and utilization due to decreased bioavailability as a result of metal sulfide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulfidic (>1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5-270 nM), cobalt (0.5-6 nM), molybdenum (10-5,600 nM) and tungsten (0.3-8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalyzing anaerobic oxidation of methane utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrotolerant microorganisms. Finally, our data suggest that chemical speciation of metals in highly sulfidic porewaters may exert a stronger influence on microbial bioavailability than total concentration

  2. New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors

    SciTech Connect (OSTI)

    Gash, A E; Tillotson, T M; Satcher Jr, J H; Hrubesh, L W; Simpson, R L

    2000-09-12

    We have developed a new sol-gel route to synthesize several transition and main-group metal oxide aerogels. The approach is straightforward, inexpensive, versatile, and it produces monolithic microporous materials with high surface areas. Specifically, we report the use of epoxides as gelation agents for the sol-gel synthesis of chromia aerogels and xerogels from simple Cr(III) inorganic salts. The dependence of both gel formation and its rate was studied by varying the solvent used, the Cr(III) precursor salt, the epoxide/Cr(III) ratio, as well as the type of epoxide employed. All of these variables were shown to affect the rate of gel formation and provide a convenient control of this parameter. Dried chromia aerogels were characterized by high-resolution transmission electron microscopy (HRTEM) and nitrogen adsorption/desorption analyses, results of which will be presented. Our studies have shown that rigid monolithic gels can be prepared from many different metal ions salts, provided the formal oxidation state of the metal ion is greater than or equal to +3. Conversely, when di-valent transition metal salts are used precipitated solids are the products.

  3. Synthesis of Functionalized Superparamagnetic Iron Oxide Nanoparticles from a Common Precursor and their Application as Heavy Metal and Actinide Sorbents

    SciTech Connect (OSTI)

    Warner, Marvin G.; Warner, Cynthia L.; Addleman, Raymond S.; Droubay, Timothy C.; Engelhard, Mark H.; Davidson, Joseph D.; Cinson, Anthony D.; Nash, Michael A.; Yantasee, Wassana

    2009-10-12

    We describe the use of a simple and versatile technique to generate a series of ligand stabilized iron oxide nanoparticles containing different ? functionalities with specificities toward heavy metals and actinides at the periphery of the stabilizing ligand shell from a common, easy to synthesize precursor nanoparticle. The resulting nanoparticles are designed to contain affinity ligands that make them excellent sorbent materials for a variety of heavy metals from contaminated aqueous systems such as river water and ground water as well as actinides from clinical samples such as blood and urine. Functionalized superparamagnetic nanoparticles make ideal reagents for extraction of heavy metal and actinide contaminants from environmental and clinical samples since they are easily removed from the media once bound to the contaminant by simply applying a magnetic field. In addition, these engineered nanomaterials have an inherently high active surface area (often > 100 m2/g) making them ideal sorbent materials for these types of applications

  4. High Activity of Ce1-xNixO2-y for H2 Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal-Oxide Interactions

    SciTech Connect (OSTI)

    G Zhou; L Barrio; S Agnoli; S Senanayake; J Evans; A Kubacka; M Estrella; J Hanson; A Martinez-Arias; et al.

    2011-12-31

    The importance of the oxide: Ce{sub 0.8}Ni{sub 0.2}O{sub 2-y} is an excellent catalyst for ethanol steam reforming. Metal-oxide interactions perturb the electronic properties of the small particles of metallic nickel present in the catalyst under the reaction conditions and thus suppress any methanation activity. The nickel embedded in ceria induces the formation of O vacancies, which facilitate cleavage of the OH bonds in ethanol and water.

  5. Operation of mixed conducting metal oxide membrane systems under transient conditions

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA)

    2008-12-23

    Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side, an oxidant feed surface, a permeate side, and a permeate surface, which method comprises controlling the differential strain between the permeate surface and the oxidant feed surface at a value below a selected maximum value by varying the oxygen partial pressure on either or both of the oxidant feed side and the permeate side of the membrane.

  6. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01

    Oxides Cathodes for Lithium-ion Batteries Kinson C. Kam andusing rechargeable lithium-ion batteries has become an

  7. Support shape effect in metal oxide catalysis: ceria nanoshapes supported vanadia catalysts for oxidative dehydrogenation of iso-butane

    SciTech Connect (OSTI)

    Wu, Zili; Schwartz, Viviane; Li, Meijun; Rondinone, Adam Justin; Overbury, Steven {Steve} H

    2012-01-01

    The activation energy of VOx/CeO2 catalysts in oxidative dehydrogenation of iso-butane was found dependent on the shape of ceria support: rods < octahedra, closely related to the surface oxygen vacancy formation energy and defects amount of the two ceria supports with different crystallographic surface planes.

  8. Removal of metal oxide defects through improved semi-anisotropic wet etching process

    E-Print Network [OSTI]

    Dave, Neha H. (Neha Hemang)

    2012-01-01

    Data recently collected from an industrial thin film manufacturer indicate that almost 8% of devices are rejected due to excess metal, or unwanted metal on the device surface. Experimentation and analysis suggest that ...

  9. Rapid thermal cycling of metal-supported solid oxide fuel cell membranes

    E-Print Network [OSTI]

    Matus, Yuriy B.; De Jonghe, Lutgard C.; Jacobson, Craig P.; Visco, Steven J.

    2004-01-01

    Metals. Proceedings of the 17th Riso International Symposiumon Materials Science. Riso Nat. Lab. 1996, pp.123-38.

  10. Oxidation energies of transition metal oxides within the GGA+U framework Lei Wang, Thomas Maxisch, and Gerbrand Ceder*

    E-Print Network [OSTI]

    Ceder, Gerbrand

    is computed using the generalized gradient approach GGA and GGA+U methods. Two substantial contributions, combustion, metal refining, electrochemical energy generation and storage, photosynthesis, and metabolism and generalized gradient approxima- tion GGA , two standard approximations to density func- tional theory DFT

  11. Photoactive Nitric Oxide Delivery Systems based on Metal Nitrosyl-Biomaterial Composites

    E-Print Network [OSTI]

    Heilman, Brandon James

    2015-01-01

    Addo, G.B. Legzdins, P. Metal Nitrosyls, Oxford UniversityFigure 1.5. Schematic of metal nitrosyls with PaPy 3- typeHCl to prepare the starting metal salt, RuCl 3 . 3H 2 O. The

  12. Laser Desorption/Ionization of Transition Metal Atoms and Oxides from Solid Argon Lester Andrews,*, Andreas Rohrbacher, Christopher M. Laperle, and Robert E. Continetti

    E-Print Network [OSTI]

    Continetti, Robert E.

    Laser Desorption/Ionization of Transition Metal Atoms and Oxides from Solid Argon Lester Andrews of the laser-ablated metal atoms and O2 in excess argon during condensation at 10 K, have been laser desorbed of organic acid typically used as a matrix in matrix- assisted laser desorption/ionization (MALDI) mass

  13. Sandia Energy - Semiconductor Revolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Semiconductor Revolution Home Energy Research EFRCs Solid-State Lighting Science EFRC Semiconductor Revolution Semiconductor RevolutionTara Camacho-Lopez2015-05-14T14:32:12+00:00...

  14. III-V Multigate Non-Planar Channel Transistor Simulations and Technologies

    E-Print Network [OSTI]

    Shih, Kun-Huan

    2012-01-01

    MOG Metal-oxide-graphene MESFET Metal-semiconductor field-Multilayer graphene MOSFET Metal-oxide-semiconductor field-contact the semiconductor (or zero bandgap graphene semi-

  15. Oxidation of Metals, Vol. 61, Nos. 3/4, April 2004 ( 2004) Thermal Conductivity, Phase Stability, and Oxidation

    E-Print Network [OSTI]

    Trice, Rodney W.

    . INTRODUCTION Thermal-barrier coatings (TBCs) have been used to protect gas-turbine- engine components since, and Oxidation Resistance of Y3Al5O12 (YAG)/Y2O3­ZrO2 (YSZ) Thermal-Barrier Coatings Y. J. Su, R. W. Trice,# K­aluminum garnet (YAG) into a typical YSZ TBC system. The thermal conductivity of as-sprayed YAG/YSZ coatings

  16. Control of differential strain during heating and cooling of mixed conducting metal oxide membranes

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA)

    2007-12-25

    Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side and a permeate side, which method comprises controlling the differential strain between the oxidant feed side and the permeate side by varying either or both of the oxygen partial pressure and the total gas pressure on either or both of the oxidant feed side and the permeate side of the membrane while changing the temperature of the membrane from a first temperature to a second temperature.

  17. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1998-06-30

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card. 8 figs.

  18. Electrodepositionof Metal Alloyand Mixed Oxide Films Usinga Single-PrecursorTetranuclearCopper-NickelComplex

    E-Print Network [OSTI]

    Kounaves, Samuel P.

    coatings, nanostructurally designed materials with unique mechanical and electronic properties, methanol oxidation, and coal liquefactionJ '2The syn- thesis of bimetallic alloys and oxides is much more-known catalysts for some useful chemical processes ~'2'5and have superior corrosion properties when compared

  19. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer

    SciTech Connect (OSTI)

    Bacon, Diana H. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Dai, Zhenxue [Los Alamos National Laboratory, Los Alamos, NM (United States); Zheng, Liange [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2014-12-31

    An important risk at CO2 storage sites is the potential for groundwater quality impacts. As part of a system to assess the potential for these impacts a geochemical scaling function has been developed, based on a detailed reactive transport model of CO2 and brine leakage into an unconfined, oxidizing carbonate aquifer. Stochastic simulations varying a number of geochemical parameters were used to generate a response surface predicting the volume of aquifer that would be impacted with respect to regulated contaminants. The brine was assumed to contain several trace metals and organic contaminants. Aquifer pH and TDS were influenced by CO2 leakage, while trace metal concentrations were most influenced by the brine concentrations rather than adsorption or desorption on calcite. Organic plume sizes were found to be strongly influenced by biodegradation.

  20. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bacon, Diana H.; Dai, Zhenxue; Zheng, Liange

    2014-12-31

    An important risk at CO2 storage sites is the potential for groundwater quality impacts. As part of a system to assess the potential for these impacts a geochemical scaling function has been developed, based on a detailed reactive transport model of CO2 and brine leakage into an unconfined, oxidizing carbonate aquifer. Stochastic simulations varying a number of geochemical parameters were used to generate a response surface predicting the volume of aquifer that would be impacted with respect to regulated contaminants. The brine was assumed to contain several trace metals and organic contaminants. Aquifer pH and TDS were influenced by CO2more »leakage, while trace metal concentrations were most influenced by the brine concentrations rather than adsorption or desorption on calcite. Organic plume sizes were found to be strongly influenced by biodegradation.« less

  1. Base metal alloys with self-healing native conductive oxides for electrical contact materials

    E-Print Network [OSTI]

    Alpay, S. Pamir

    growth. Such coatings can be applied readily by electroplating but this adds significantly to the cost be ameliorated by the application of a noble metal coating to the contact sur- face, thereby inhibiting scale wear and fretting can compromise the integrity of the coating, expos- ing the bare base metal

  2. Method for forming metal contacts

    DOE Patents [OSTI]

    Reddington, Erik; Sutter, Thomas C; Bu, Lujia; Cannon, Alexandra; Habas, Susan E; Curtis, Calvin J; Miedaner, Alexander; Ginley, David S; Van Hest, Marinus Franciscus Antonius Maria

    2013-09-17

    Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.

  3. Method of producing stable metal oxides and chalcogenides and power source

    DOE Patents [OSTI]

    Doddapaneni, N.; Ingersoll, D.

    1996-10-22

    A method is described for making chemically and electrochemically stable oxides or other chalcogenides for use as cathodes for power source applications, and of making batteries comprising such materials. 6 figs.

  4. The detection of nitric oxide and its reactivity with transition metal thiolate complexes

    E-Print Network [OSTI]

    Tennyson, Andrew Gregory

    2008-01-01

    Nitric oxide (NO) is a molecule that is essential for life and regulates both beneficial and harmful processes. Because this gaseous radical influences many aspects of health and disease, we wish to explore the relationship ...

  5. Mechanism of oxygen reduction reaction on transition metal oxide catalysts for high temperature fuel cells

    E-Print Network [OSTI]

    La O', Gerardo Jose Cordova

    2008-01-01

    The solid oxide fuel cell (SOFC) with its high energy conversion efficiency, low emissions, silent operation and its ability to utilize commercial fuels has the potential to create a large impact on the energy landscape. ...

  6. Effect of hydrothermal condition on the formation of multi-component oxides of Ni-based metallic glass under high temperature water near the critical point

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, J. S.; Kim, S. Y.; Kim, D. H.; Ott, R. T.; Kim, H. G.; Lee, M. H.

    2015-07-01

    The specific feature of multi-component oxides synthesized by hydrothermal process under high temperature (633 K) and highly pressurized water (18.9 MPa) near critical point. Effects of hydrothermal processing duration times 24 hours and 72 hours, respectively, on the oxide formation of the Ni59Zr20Ti16Si2Sn3 metallic glass synthesized by powder metallurgy process were characterized by X-ray diffractometer, differential scanning calorimeter along with the particle size, morphology and crystalline phase of the oxides. The crystallization of the needle-shape NiTiO3, ZrTiO4 and ZrSnO4 ternary oxide phases observed on the surface of metallic glass at below glass transition temperature and the morphology of oxide phasesmore »changed to plate-shape around 2 ?m in diameter by the increase processing time. This hydrothermal processing in subcritical water provides accelerated dense metal oxide crystals due to the reaction medium being at higher pressure than conventional oxidation processing.« less

  7. High Catalytic Activity of Au/CeOx/TiO2(110) Controlled by the Nature of the Mixed Metal Oxide at the Nanometer Level

    SciTech Connect (OSTI)

    Park, J.; Graciani, J; Evans, J; Stacchiola, D; Ma, S; Liu, P; Nambu, A; Sanz, J; Hrbek, J; et. al.

    2009-01-01

    Mixed-metal oxides play a very important role in many areas of chemistry, physics, materials science, and geochemistry. Recently, there has been a strong interest in understanding phenomena associated with the deposition of oxide nanoparticles on the surface of a second (host) oxide. Here, scanning tunneling microscopy, photoemission, and density-functional calculations are used to study the behavior of ceria nanoparticles deposited on a TiO2(110) surface. The titania substrate imposes nontypical coordination modes on the ceria nanoparticles. In the CeOx/TiO2(110) systems, the Ce cations adopt an structural geometry and an oxidation state (+3) that are quite different from those seen in bulk ceria or for ceria nanoparticles deposited on metal substrates. The increase in the stability of the Ce3+ oxidation state leads to an enhancement in the chemical and catalytic activity of the ceria nanoparticles. The codeposition of ceria and gold nanoparticles on a TiO2(110) substrate generates catalysts with an extremely high activity for the production of hydrogen through the water-gas shift reaction (H2O + CO ? H2 + CO2) or for the oxidation of carbon monoxide (2CO + O2 ? 2CO2). The enhanced stability of the Ce3+ state is an example of structural promotion in catalysis described here on the atomic level. The exploration of mixed-metal oxides at the nanometer level may open avenues for optimizing catalysts through stabilization of unconventional surface structures with special chemical activity.

  8. Interplay between electronic structure and catalytic activity in transition metal oxide model system

    E-Print Network [OSTI]

    Suntivich, Jin

    2012-01-01

    The efficiency of many energy storage and conversion technologies, such as hydrogen fuel cells, rechargeable metal-air batteries, and hydrogen production from water splitting, is limited by the slow kinetics of the oxygen ...

  9. The design of new ligands and transition metal compounds for the oxidation of organic compounds 

    E-Print Network [OSTI]

    Grill, Joseph Michael

    2009-06-02

    A review of metal-mediated epoxidation is given. Jacobsen's catalyst and the Sharpless asymmetric epoxidation catalyst are discussed. The origins of enantioselectivity are explained using stereochemical models. Several new ...

  10. A micromechanical model of oxidation effects in SiC/Ti metal matrix composites 

    E-Print Network [OSTI]

    Wittig, Laurrie Ann

    1993-01-01

    Residual stresses develop in metal matrix composites (NMC) during cool down from processing temperatures and subsequent thermal fatigue loading due to a material mismatch between the fiber and the matrix. These residual stresses often initiate...

  11. Investigation of zinc oxide doped with metal impurities for use as thin film conductive phosphors 

    E-Print Network [OSTI]

    Evatt, Steven R.

    1994-01-01

    in which metal dopants were introduced in ZnO. This survey has revealed tungsten doped ZnO to be a previously unreported brilliant blue phosphor with high resistivity. Additional experiments indicated aluminum could be introduced in conjunction...

  12. Investigation of mixed metal sorbent/catalysts for the simultaneous removal of sulfur and nitrogen oxides

    SciTech Connect (OSTI)

    Akyurtlu, A.; Akyurtlu, J.F.

    1999-03-31

    Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4}-air mixtures.

  13. CsSnI[subscript 3]: Semiconductor or Metal? High Electrical Conductivity and Strong Near-Infrared Photoluminescence from a Single Material. High Hole Mobility and Phase-Transitions

    SciTech Connect (OSTI)

    Chung, In; Song, Jung-Hwan; Im, Jino; Androulakis, John; Malliakas, Christos D.; Li, Hao; Freeman, Arthur J.; Kenney, John T.; Kanatzidis, Mercouri G. (NWU); (OmniPV)

    2012-10-29

    CsSnI{sub 3} is an unusual perovskite that undergoes complex displacive and reconstructive phase transitions and exhibits near-infrared emission at room temperature. Experimental and theoretical studies of CsSnI{sub 3} have been limited by the lack of detailed crystal structure characterization and chemical instability. Here we describe the synthesis of pure polymorphic crystals, the preparation of large crack-/bubble-free ingots, the refined single-crystal structures, and temperature-dependent charge transport and optical properties of CsSnI{sub 3}, coupled with ab initio first-principles density functional theory (DFT) calculations. In situ temperature-dependent single-crystal and synchrotron powder X-ray diffraction studies reveal the origin of polymorphous phase transitions of CsSnI{sub 3}. The black orthorhombic form of CsSnI{sub 3} demonstrates one of the largest volumetric thermal expansion coefficients for inorganic solids. Electrical conductivity, Hall effect, and thermopower measurements on it show p-type metallic behavior with low carrier density, despite the optical band gap of 1.3 eV. Hall effect measurements of the black orthorhombic perovskite phase of CsSnI{sub 3} indicate that it is a p-type direct band gap semiconductor with carrier concentration at room temperature of {approx} 10{sup 17} cm{sup -3} and a hole mobility of {approx} 585 cm{sup 2} V{sup -1} s{sup -1}. The hole mobility is one of the highest observed among p-type semiconductors with comparable band gaps. Its powders exhibit a strong room-temperature near-IR emission spectrum at 950 nm. Remarkably, the values of the electrical conductivity and photoluminescence intensity increase with heat treatment. The DFT calculations show that the screened-exchange local density approximation-derived band gap agrees well with the experimentally measured band gap. Calculations of the formation energy of defects strongly suggest that the electrical and light emission properties possibly result from Sn defects in the crystal structure, which arise intrinsically. Thus, although stoichiometric CsSnI{sub 3} is a semiconductor, the material is prone to intrinsic defects associated with Sn vacancies. This creates highly mobile holes which cause the materials to appear metallic.

  14. Photo-oxidation catalysts

    DOE Patents [OSTI]

    Pitts, J. Roland (Lakewood, CO); Liu, Ping (Irvine, CA); Smith, R. Davis (Golden, CO)

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  15. Characterization of a Fe/Y{sub 2}O{sub 3} metal/oxide interface using neutron and x-ray scattering

    SciTech Connect (OSTI)

    Watkins, E. B.; Majewski, J. E-mail: jarek@lanl.gov; Kashinath, A.; Wang, P.; Baldwin, J. K.; Demkowicz, M. J. E-mail: jarek@lanl.gov

    2014-07-28

    The structure of metal/oxide interfaces is important to the radiation resistance of oxide dispersion-strengthened steels. We find evidence of gradual variations in stoichiometry and magnetization across a Fe/Y{sub 2}O{sub 3} metal/oxide heterophase interface using neutron and x-ray reflectometry. These findings suggest that the Fe/Y{sub 2}O{sub 3} interface is a transitional zone approximately ?64?Å-thick containing mixtures or compounds of Fe, Y, and O. Our results illustrate the complex chemical and magnetic nature of Fe/oxide interfaces and demonstrate the utility of combined neutron and x-ray techniques as tools for characterizing them.

  16. 6.720J / 3.43J Integrated Microelectronic Devices, Fall 2002

    E-Print Network [OSTI]

    Del Alamo, Jesus

    The physics of microelectronic semiconductor devices for silicon integrated circuit applications. Topics: semiconductor fundamentals, p-n junction, metal-oxide semiconductor structure, metal-semiconductor junction, MOS ...

  17. 2010 Defects in Semiconductors GRC

    SciTech Connect (OSTI)

    Shengbai Zhang

    2011-01-06

    Continuing its tradition of excellence, this Gordon Conference will focus on research at the forefront of the field of defects in semiconductors. The conference will have a strong emphasis on the control of defects during growth and processing, as well as an emphasis on the development of novel defect detection methods and first-principles defect theories. Electronic, magnetic, and optical properties of bulk, thin film, and nanoscale semiconductors will be discussed in detail. In contrast to many conferences, which tend to focus on specific semiconductors, this conference will deal with point and extended defects in a broad range of electronic materials. This approach has proved to be extremely fruitful for advancing fundamental understanding in emerging materials such as wide-band-gap semiconductors, oxides, sp{sup 2} carbon based-materials, and photovoltaic/solar cell materials, and in understanding important defect phenomena such as doping bottleneck in nanostructures and the diffusion of defects and impurities. The program consists of about twenty invited talks and a number of contributed poster sessions. The emphasis should be on work which has yet to be published. The large amount of discussion time provides an ideal forum for dealing with topics that are new and/or controversial.

  18. Fe3-xTixO4 Nanoparticles as Tunable Probes of Microbial Metal Oxidation

    SciTech Connect (OSTI)

    Liu, Juan; Pearce, Carolyn I.; Liu, Chongxuan; Wang, Zheming; Shi, Liang; Arenholz, Elke; Rosso, Kevin M.

    2013-05-14

    Present and emerging biotechnological applications for iron (oxyhydr)oxide nanomaterials depend on their interaction with microorganisms, as do their toxicity, transport, and fate in biological and environmental systems. However, mass or electron transfer along key molecular pathways at microbe-nanomaterial interfaces is extremely difficult to quantify because of system complexity. Inspired by Fe(II)-oxidizing microbes widespread in nature, we isolate and characterize one such pathway by examining the oxidation of Fe3-xTixO4 (magnetite-titanomagnetite) nanoparticles by the bacterial electron transfer enzyme MtoA, a decaheme c-type cytochrome. Oxidation by MtoA was studied as a function of the thermodynamic driving force for electron transfer by controlling the Ti(IV) doping content (x), which tunes the solid-state Fe(II)/Fe(III) ratio built into the nanoparticles. A higher Fe(II)/Fe(III) ratio appears to proportionally increase the electron transfer kinetics to the cytochrome. In situ x-ray diffraction indicated that during oxidation the spinel ferrite lattice remains intact while structural Fe(II) is progressively depleted. Surface and atomic site specific Fe L2,3-edge x-ray magnetic circular dichroism indicated that MtoA directly accesses magnetically-ordered B-sublattice Fe(II) at the interface. This study provides first quantitative insights into an isolated molecular pathway for biotransformation of iron (oxyhydr)oxide nanomaterials. And, more generally, it also illustrates new techniques for probing these pathways in detail, featuring use of tailored nanoparticles, purified metalloenzyme, and synchrotron x-ray absorption spectroscopies.

  19. PHYSICAL REVIEW E 87, 043012 (2013) Impact dynamics of oxidized liquid metal drops

    E-Print Network [OSTI]

    Jaeger, Heinrich M.

    2013-01-01

    . At low impact velocity (or low Weber number), eGaIn droplets display strong recoil and rebound from velocity. This suggests that the initial kinetic energy is mostly damped by bulk viscous dissipation of the direct consequences is that the oxide layer consumes a portion of kinetic energy and causes deviation

  20. Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same

    DOE Patents [OSTI]

    Comanzo, Holly Ann; Setlur, Anant Achyut; Srivastava, Alok Mani

    2006-04-04

    Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.

  1. Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same

    DOE Patents [OSTI]

    Comanzo, Holly Ann; Setlur, Anant Achyut; Srivastava, Alok Mani; Manivannan, Venkatesan

    2004-07-13

    Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.

  2. Use of impure inert gases in the controlled heating and cooling of mixed conducting metal oxide materials

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA); Bernhart, John Charles (Fleetwood, PA)

    2012-08-21

    Method for processing an article comprising mixed conducting metal oxide material. The method comprises contacting the article with an oxygen-containing gas and either reducing the temperature of the oxygen-containing gas during a cooling period or increasing the temperature of the oxygen-containing gas during a heating period; during the cooling period, reducing the oxygen activity in the oxygen-containing gas during at least a portion of the cooling period and increasing the rate at which the temperature of the oxygen-containing gas is reduced during at least a portion of the cooling period; and during the heating period, increasing the oxygen activity in the oxygen-containing gas during at least a portion of the heating period and decreasing the rate at which the temperature of the oxygen-containing gas is increased during at least a portion of the heating period.

  3. Functionalized Graphene Sheets as Molecular Templates for Controlled Nucleation and Self-Assembly of Metal Oxide-Graphene Nanocomposites

    SciTech Connect (OSTI)

    Li, Xiaolin; Qi, Wen N.; Mei, Donghai; Sushko, Maria L.; Aksay, Ilhan A.; Liu, Jun

    2012-09-25

    Graphene sheets have been extensively studied as a key functional component of graphene-based nanocomposites for electronics, energy, catalysis,and sensing applications. However, fundamental understanding of the interfacial binding and nucleation processes at graphene surfaces remains lacking, and the range of controlled structures that can be produced are limited. Here, by using a combination of theoretical and experimental approaches, we demonstrate that functionalized graphene sheets (FGS) can function as a new class of molecular templates to direct nucleation and self-assembly and produce novel, three-dimensional nanocomposite materials. Two key aspects are demonstrated: First, the functional groups on FGS surface determine the nucleation energy, and thus control the nucleation sites and nucleation density, as well as the preferred crystalline phases. Second, FGS can function as a template to direct the self-assembly of surfactant micelles and produce ordered, mesoporous arrays of crystalline metal oxides and composites.

  4. Impurity gettering in semiconductors

    DOE Patents [OSTI]

    Sopori, B.L.

    1995-06-20

    A process for impurity gettering in a semiconductor substrate or device such as a silicon substrate or device is disclosed. The process comprises hydrogenating the substrate or device at the back side thereof with sufficient intensity and for a time period sufficient to produce a damaged back side. Thereafter, the substrate or device is illuminated with electromagnetic radiation at an intensity and for a time period sufficient to cause the impurities to diffuse to the back side and alloy with a metal there present to form a contact and capture the impurities. The impurity gettering process also can function to simultaneously passivate defects within the substrate or device, with the defects likewise diffusing to the back side for simultaneous passivation. Simultaneously, substantially all hydrogen-induced damage on the back side of the substrate or device is likewise annihilated. Also taught is an alternate process comprising thermal treatment after hydrogenation of the substrate or device at a temperature of from about 500 C to about 700 C for a time period sufficient to cause the impurities to diffuse to the damaged back side thereof for subsequent capture by an alloying metal. 1 fig.

  5. Inductive crystal field control in layered metal oxides with correlated electrons

    SciTech Connect (OSTI)

    Balachandran, P. V.; Cammarata, A.; Rondinelli, J. M.; Nelson-Cheeseman, B. B.; Bhattacharya, A.

    2014-07-01

    We show that the NiO{sub 6} crystal field energies can be tailored indirectly via heterovalent A cation ordering in layered (La,A)NiO{sub 4} Ruddlesden–Popper (RP) oxides, where A = Sr, Ca, or Ba, using density functional calculations. We leverage as a driving force the electrostatic interactions between charged [LaO]{sup 1+} and neutral [AO]{sup 0} planes to inductively tune the Ni–O bond distortions, without intentional doping or epitaxial strain, altering the correlated d-orbital energies. We use this strategy to design cation ordered LaCaNiO{sub 4} and LaBaNiO{sub 4} with distortions favoring enhanced Ni e{sub g} orbital polarization, and find local electronic structure signatures analogous to those in RP La-cuprates, i.e., parent phases of the high-temperature superconducting oxides.

  6. Study of thin metal films and oxide materials for nanoelectronics applications

    E-Print Network [OSTI]

    De Los Santos Valladares, Luis

    2012-01-10

    ions in a solution are moved by an electric field to coat a surface (Schlesinger & Paunovic, 2010). The process uses an electrical current to reduce cations of a desired material from a solution and coat a conductive object with a metal. Electroplating... ??Controlled electroplating and electromigration in nickel electrodes for nanogap formation�, Nanotechnology 21 (2010) 445304. 6. Luis De Los Santos V., Angel Bustamante D., Justin Llandro, Seiichi Suzuki, Thanos Mitrelias, Richard Bellido Q., Crispin H.W. Barnes and Yutaka...

  7. Design and construction of a radiation resistant quadrupole using metal oxide insulated CICC

    SciTech Connect (OSTI)

    Albert F. Zeller

    2012-12-28

    The construction of a engineering test model of a radiation resistant quadrupole is described. The cold-iron quadrupole uses coils fabricated from metal-oixide (synthetic spinel) insulated Cable-In-Conduit-Conductor (CICC). The superconductor is NbTi in a copper matrix. The quadrupole is designed to produce a pole-tip field of 2 T with an operating current of 7,000 A.

  8. Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases

    DOE Patents [OSTI]

    Ayala, Raul E. (Clifton Park, NY)

    1993-01-01

    This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

  9. In situ metal-organic chemical vapor deposition atomic-layer deposition of aluminum oxide on GaAs using trimethyaluminum

    E-Print Network [OSTI]

    In situ metal-organic chemical vapor deposition atomic-layer deposition of aluminum oxide on Ga 26 June 2008; published online 21 July 2008 In situ atomic-layer deposition ALD of Al2O3 on p­4 Recently, many ex situ methods such as atomic-layer deposition ALD of high-k on GaAs have achieved success

  10. 215High performance gas sensing materials based on nanostructed metal oxide films Corresponding author: G. Kiriakidis, e-mail: kiriakid@iesl.forth.gr

    E-Print Network [OSTI]

    . Nanostructured InOx and ZnOx films and their sensing properties are presented with respect of their surface for O3 and bellow 80 ppb for NO2 . 1. INTRODUCTION Metal oxides such as InOx and ZnOx are very inter

  11. Highly stable and high power efficiency tandem organic light-emitting diodes with transition metal oxide-based charge generation layers

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    efficiency improvement Transition metal oxide a b s t r a c t Tandem organic light-emitting diodes (OLEDs. Ó 2015 Elsevier B.V. All rights reserved. 1. Introduction Organic light-emitting diodes (OLEDs) [1 displays and lighting panels. However, before mass production of OLEDs for the consumer market can start

  12. Nanostructured europium oxide thin films deposited by pulsed laser ablation of a metallic target in a He buffer atmosphere

    SciTech Connect (OSTI)

    Luna, H.; Franceschini, D. F.; Prioli, R.; Guimaraes, R. B.; Sanchez, C. M.; Canal, G. P.; Barbosa, M. D. L.; Galvao, R. M. O. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Cx. Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); Instituto de Fisica, Universidade Federal Fluminense, Niteroi, RJ 24210-346 (Brazil); Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, Rua Marques de Sao Vicente 225, 22453-970, Rio de Janeiro, RJ (Brazil); Instituto de Fisica, Universidade Federal Fluminense, Niteroi, RJ 24210-346 (Brazil); Centro Brasileiro de Pesquisas Fisicas, Laboratorio de Plasmas Aplicados, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil); Instituto de Fisica, Departamento de Fisica Nuclear, Universidade de Sao Paulo, Caixa Postal 66328, 05315-970, Sao Paulo, SP (Brazil); Centro Brasileiro de Pesquisas Fisicas, Laboratorio de Plasmas Aplicados, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil)

    2010-09-15

    Nanostrucured europium oxide and hydroxide films were obtained by pulsed Nd:YAG (532 nm) laser ablation of a europium metallic target, in the presence of a 1 mbar helium buffer atmosphere. Both the produced film and the ambient plasma were characterized. The plasma was monitored by an electrostatic probe, for plume expansion in vacuum or in the presence of the buffer atmosphere. The time evolution of the ion saturation current was obtained for several probe to substrate distances. The results show the splitting of the plume into two velocity groups, being the lower velocity profile associated with metal cluster formation within the plume. The films were obtained in the presence of helium atmosphere, for several target-to-substrate distances. They were analyzed by Rutherford backscattering spectrometry, x-ray diffraction, and atomic force microscopy, for as-deposited and 600 deg. C treated-in-air samples. The results show that the as-deposited samples are amorphous and have chemical composition compatible with europium hydroxide. The thermally treated samples show x-ray diffraction peaks of Eu{sub 2}O{sub 3}, with chemical composition showing excess oxygen. Film nanostructuring was shown to be strongly correlated with cluster formation, as shown by velocity splitting in probe current versus time plots.

  13. Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic Resolution Electron Microscopy and Field Evaporation Simulation

    SciTech Connect (OSTI)

    Devaraj, Arun; Colby, Robert J.; Vurpillot, F.; Thevuthasan, Suntharampillai

    2014-03-26

    Metal-dielectric composite materials, specifically metal nanoparticles supported on or embedded in metal oxides, are widely used in catalysis. The accurate optimization of such nanostructures warrants the need for detailed three-dimensional characterization. Atom probe tomography is uniquely capable of generating sub-nanometer structural and compositional data with part-per-million mass sensitivity, but there are reconstruction artifacts for composites containing materials with strongly differing fields of evaporation, as for oxide-supported metal nanoparticles. By correlating atom probe tomography with scanning transmission electron microscopy for Au nanoparticles embedded in an MgO support, deviations from an ideal topography during evaporation are demonstrated directly, and correlated with compositional errors in the reconstructed data. Finite element simulations of the field evaporation process confirm that protruding Au nanoparticles will evolve on the tip surface, and that evaporation field variations lead to an inaccurate assessment of the local composition, effectively lowering the spatial resolution of the final reconstructed dataset. Cross-correlating the experimental data with simulations results in a more detailed understanding of local evaporation aberrations during APT analysis of metal-oxide composites, paving the way towards a more accurate three-dimensional characterization of this technologically important class of materials.

  14. Unitary lens semiconductor device

    DOE Patents [OSTI]

    Lear, Kevin L. (Albuquerque, NM)

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  15. MEMSNANO-2005 International conference on MEMS and Semiconductor Nanotechnology

    E-Print Network [OSTI]

    Mishra, Prabhat

    in place of polycrystalline metal oxide lead to large increase of free surface energy which in turn leads-22,2005,IIT Kharagpur,India MEMS BASED NANOCRYSTALLINE METAL OXIDE GAS SENSORS FOR COALMINE ENVIRONMENT P Metal Oxide gas sensors commonly used for sensing inflammable hydrocarbon gases and other toxic gases

  16. Preparation of III-V semiconductor nanocrystals

    DOE Patents [OSTI]

    Alivisatos, A.P.; Olshavsky, M.A.

    1996-04-09

    Nanometer-scale crystals of III-V semiconductors are disclosed. They are prepared by reacting a group III metal source with a group V anion source in a liquid phase at elevated temperature in the presence of a crystallite growth terminator such as pyridine or quinoline. 4 figs.

  17. Helicon wave excitation to produce energetic electrons for manufacturing semiconductors

    DOE Patents [OSTI]

    Molvik, A.W.; Ellingboe, A.R.

    1998-10-20

    A helicon plasma source is controlled by varying the axial magnetic field or rf power controlling the formation of the helicon wave. An energetic electron current is carried on the wave when the magnetic field is 90 G; but there is minimal energetic electron current when the magnetic field is 100 G in one particular plasma source. Similar performance can be expected from other helicon sources by properly adjusting the magnetic field and power to the particular geometry. This control for adjusting the production of energetic electrons can be used in the semiconductor and thin-film manufacture process. By applying energetic electrons to the insulator layer, such as silicon oxide, etching ions are attracted to the insulator layer and bombard the insulator layer at higher energy than areas that have not accumulated the energetic electrons. Thus, silicon and metal layers, which can neutralize the energetic electron currents will etch at a slower or non-existent rate. This procedure is especially advantageous in the multilayer semiconductor manufacturing because trenches can be formed that are in the range of 0.18--0.35 mm or less. 16 figs.

  18. Helicon wave excitation to produce energetic electrons for manufacturing semiconductors

    DOE Patents [OSTI]

    Molvik, Arthur W. (Livermore, CA); Ellingboe, Albert R. (Fremont, CA)

    1998-01-01

    A helicon plasma source is controlled by varying the axial magnetic field or rf power controlling the formation of the helicon wave. An energetic electron current is carried on the wave when the magnetic field is 90 G; but there is minimal energetic electron current when the magnetic field is 100 G in one particular plasma source. Similar performance can be expected from other helicon sources by properly adjusting the magnetic field and power to the particular geometry. This control for adjusting the production of energetic electrons can be used in the semiconductor and thin-film manufacture process. By applying energetic electrons to the insulator layer, such as silicon oxide, etching ions are attracted to the insulator layer and bombard the insulator layer at higher energy than areas that have not accumulated the energetic electrons. Thus, silicon and metal layers, which can neutralize the energetic electron currents will etch at a slower or non-existent rate. This procedure is especially advantageous in the multilayer semiconductor manufacturing because trenches can be formed that are in the range of 0.18-0.35 mm or less.

  19. INVESTIGATION OF MIXED METAL SORBENT/CATALYSTS FOR THE SIMULTANEOUS REMOVAL OF SULFUR AND NITROGEN OXIDES

    SciTech Connect (OSTI)

    Ates Akyurtlu; Jale F. Akyurtle

    2001-08-01

    Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}.

  20. Development of carbon-metal oxide supercapacitors from sol-gel derived carbon-ruthenium xerogels

    SciTech Connect (OSTI)

    Lin, C.; Ritter, J.A.; Popov, B.N.

    1999-09-01

    There has been increasing interest in electrochemical capacitors as energy storage systems because of their high power density and long cycle life, compared to battery devices. According to the mechanism of energy storage, there are two types of electrochemical capacitors. One type is based on double layer (dl) formation due to charge separation, and the other type is based on a faradaic process due to redox reactions. Sol-gel derived high surface area carbon-ruthenium xerogels were prepared from carbonized resorcinol-formaldehyde resins containing an electrochemically active form of ruthenium oxide. The electrochemical capacitance of these materials increased with an increase in the ruthenium content indicating the presence of pseudocapacitance associated with the ruthenium oxide undergoing reversible faradaic redox reactions. A specific capacitance of 256 F/g (single electrode) was obtained from a carbon xerogel containing 14 wt% Ru, which corresponded to more than 50% utilization of the ruthenium. The double layer accounted for 40% of this capacitance. This material was also electrochemically stable, showing no change in a cyclic voltammogram for over 2,000 cycles.

  1. Characterization of illuminated semiconductor/solid-electrolyte junctions. photoelectrochemical investigation of a poly(ethylene oxide) cell. Interim technical report 1 Mar-30 Apr 83

    SciTech Connect (OSTI)

    Sammells, A.F.; Ang, P.G.P.

    1983-05-01

    Photoelectrochemical effects have been observed with solid-state cells using a poly(ethylene oxide) .NaSCN solid polymer electrolyte containing a Na2S/S redox couple. Photoeffects were observed at the interface of this electrolyte with p-InP, n-GaAs, and in a two-photoelectrode cell of configuration p-InP/PEO-NaSCN, Na2S,S/n-CdS. In this latter cell, photopotentials of 540 mV were generated using 100 mW/cm2 quartz iodine illumination.

  2. Chapter 5.5 Tystar5 MOS Oxidation Atmospheric Furnace (4",6", 8")

    E-Print Network [OSTI]

    Healy, Kevin Edward

    Instruction Manual (copy in Office). 4.2 Dry and wet Oxide Growth Charts, Semiconductor Technology Handbook

  3. The relationship between hydroxyl groups on oxide surfaces and the properties of supported metals. Progress report, June 1, 1992--January 31, 1994

    SciTech Connect (OSTI)

    Schwarz, J.A.

    1994-05-01

    Supported metal catalysts are commonly prepared by depositing catalytic precursors from aqueous solutions of electrolytes onto high surface area oxides. A general conclusion of our previous studies was that the performance of the finished catalyst depends on the characteristic properties of the hydroxyl inventory on the surface of the oxide support, both in wet and in (pseudo)-dry conditions. Hydroxyl groups serve as adsorption or exchange sites during catalyst preparation. On the other hand, the configuration of hydroxyl groups still remaining on oxides after dehydration determines the acid-base characteristics of the catalyst, which is an important catalytic property. The purpose of the investigation is to characterize the relationship between the complex inventory of hydroxyl groups at oxide surfaces, the acid-base properties of oxides (both in aqueous solution and in the pseudo-dry state) and the resultant effects on the properties of catalytic materials formed by adsorption/impregnation onto these hydroxylated supports during catalyst preparation. We use a common crystallographic model to describe the local configuration of hydroxyl groups on both the pseudo-dry surface and -the oxide/aqueous solution interface. This allows us to extend the concept of structurally determined intrinsic heterogeneity of pseudo-dry surfaces (as already known from the IR spectra of isolated surface hydroxyls) to the oxide/solution interface. We examine the consequences of that heterogeneity upon the impregnation step during catalyst preparation.

  4. STUDY MAGNETIC EXCITATIONS IN DOPED TRANSITION METAL OXIDES USING INELASTIC NEUTRON SCATTERING

    SciTech Connect (OSTI)

    Dai, Pengcheng

    2014-02-18

    Understanding the interplay between magnetism and superconductivity continues to be a “hot” topic in modern condensed matter physics. The discovery of high-temperature superconductivity in iron-based materials in 2008 provided an unique opportunity to compare and contrast these materials with traditional high-Tc copper oxide superconductors. Neutron scattering plays an important role in determining the dynamical spin properties in these materials. This proposal is a continuation of previous DOE supported proposal. This report summarizes the final progress we have made over from May 2005 till Aug. 2013. Overall, we continue to carry out extensive neutron scattering experiments on Fe-based materials, focusing on understanding their magnetic properties. In addition, we have established a materials laboratory at UT that has allowed us to grow these superconductors. Because neutron scattering typically demands a large amount of samples, by growing these materials in our own laboratory, we can now pursuit neutron scattering experiments over the entire electronic phase diagram, focusing on regions of interests. The material synthesis laboratory at UT was established entirely with the support of DOE funding. This not only allowed us to carry out neutron scattering experiments, but also permit us to provide samples to other US/International collaborators for studying these materials.

  5. Selective Catalytic Oxidation (SCO) of NH3 to N2 for Hot Exhaust Treatment

    Broader source: Energy.gov [DOE]

    Investigation of a series of transition metal oxides and precious metal based catalysts for ammonia selective oxidation at low temperatures

  6. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Trending: Metal Oxo Bonds Print Wednesday, 29 May 2013 00:00 Metal oxides are important for scientific and technical applications in a variety of...

  7. Plasmonic Based Sensing Using an Array of Au-Metal Oxide Thin Films

    SciTech Connect (OSTI)

    Joy, N.; Rogers, Phillip H.; Nandasiri, Manjula I.; Thevuthasan, Suntharampillai; Carpenter, Michael A.

    2012-12-04

    An optical plasmonic-based sensing array has been developed and tested for the selective and sensitive detection of H2, CO, and NO2 at a temperature of 500°C in an oxygen-containing background. The three element sensing array used Au nanoparticles embedded in separate thin films of yttria stabilized zirconia (YSZ), CeO2, and TiO2. A peak in the absorbance spectrum due to a localized surface plasmon resonance (LSPR) on the Au nanoparticles was monitored for each film during gas exposures and showed a blue shift in the peak positions for the reducing gases, H2 and CO, and a red shift for the oxidizing gas NO2. A more in-depth look at the sensing response was performed using the multivariate methods of principal component analysis (PCA) analysis and linear discriminant analysis (LDA) on data from across the entire absorbance spectrum range. Qualitative results from both methods showed good separation between the three analytes for both the full array and the Au-TiO2 sample. Quantification of LDA cluster separation using the Mahalanobis distance showed better cluster separation for the array, but there were some instances with the lowest concentrations where the single Au-TiO2 film had better separation than the array. A second method to quantify cluster separation in LDA space was developed using multidimensional volume analysis of the individual cluster volume, overlapped cluster volume and empty volume between clusters. Compared to the individual sensing elements, the array showed less cluster overlap, smaller cluster volumes, and more space between clusters, all of which were expected for improved separability between the analytes.

  8. Interconnected semiconductor devices

    DOE Patents [OSTI]

    Grimmer, Derrick P. (White Bear Lake, MN); Paulson, Kenneth R. (North St. Paul, MN); Gilbert, James R. (St. Paul, MN)

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  9. Semiconductor bridge (SCB) detonator

    DOE Patents [OSTI]

    Bickes, Jr., Robert W. (Albuquerque, NM); Grubelich, Mark C. (Albuquerque, NM)

    1999-01-01

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  10. Semiconductor bridge (SCB) detonator

    DOE Patents [OSTI]

    Bickes, R.W. Jr.; Grubelich, M.C.

    1999-01-19

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.

  11. Impact of Fission Products Impurity on the Plutonium Content of Metal- and Oxide- Fuels in Sodium Cooled Fast Reactors

    SciTech Connect (OSTI)

    Hikaru Hiruta; Gilles Youinou

    2013-09-01

    This short report presents the neutronic analysis to evaluate the impact of fission product impurity on the Pu content of Sodium-cooled Fast Reactor (SFR) metal- and oxide- fuel fabrication. The similar work has been previously done for PWR MOX fuel [1]. The analysis will be performed based on the assumption that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate SFR fuels. Only non-gaseous FPs have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1 of Reference 1). Throughout of this report, we define the mixture of Pu and FPs as PuFP. The main objective of this analysis is to quantify the increase of the Pu content of SFR fuels necessary to maintain the same average burnup at discharge independently of the amount of FP in the Pu stream, i.e. independently of the PuFP composition. The FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

  12. Mössbauer study of metallic iron and iron oxide nanoparticles having environmental purifying ability

    SciTech Connect (OSTI)

    Kubuki, Shiro Watanabe, Yuka Akiyama, Kazuhiko; Risti?, Mira; Krehula, Stjepko; Homonnay, Zoltán; Kuzmann, Ern?; Nishida, Tetsuaki

    2014-10-27

    A relationship between local structure and methylene blue (MB) decomposing ability of nanoparticles (NPs) of metallic iron (Fe{sup 0}) and maghemite (??Fe{sub 2}O{sub 3}) was investigated by {sup 57}Fe Mössbauer spectroscopy, X-ray diffractometry and UV-visible light absorption spectroscopy. ??Fe{sub 2}O{sub 3} NPs were successfully prepared by mixing (NH{sub 4}){sub 2}Fe(SO{sub 4}){sub 2}?6H{sub 2}O (Mohr's salt) and (NH{sub 4}){sub 3}Fe(C{sub 2}O{sub 4}){sub 3}?3H{sub 2}O aqueous solution at 30 °C for 1 h, while those of Fe{sup 0} were obtained by the reduction of Mohr's salt with NaBH{sub 4}. From the Scherrer's equation, the smallest crystallite sizes of ??Fe{sub 2}O{sub 3} NPs and Fe{sup 0} NPs were determined to be 9.7 and 1.5 nm, respectively. {sup 57}Fe Mössbauer spectrum of ??Fe{sub 2}O{sub 3} NPs consists of a relaxed sextet with isomer shift (?) of 0.33{sub ±0.01} mm s{sup ?1}, internal magnetic field (H{sub int}) of 25.8{sub ±0.5} T, and linewidth (?) of 0.62{sub ±0.04} mm s{sup ?1}. {sup 57}Fe Mössbauer spectrum of Fe{sup 0} NP is mainly composed of a sextet having ?, ?, and H{sub int} of 0.00{sub ±0.01} mm s{sup ?1} 0.45{sub ±0.01} mm s{sup ?1}, and 22.8{sub ±0.1} T, respectively. A bleaching test of the mixture of Fe{sup 0} and ??Fe{sub 2}O{sub 3} NPs (3:7 ratio, 100 mg) in MB aqueous solution (20 mL) for 6 h showed a remarkable decrease of MB concentration with the first-order rate constant (k{sub MB}) of 6.7 × 10{sup ?1} h{sup ?1}. This value is larger than that obtained for the bleaching test using bulk Fe{sup 0}+??Fe{sub 2}O{sub 3} (3:7) mixture (k{sub MB}?=?6.5×10{sup ?3}h{sup ?1}). These results prove that MB decomposing ability is enhanced by the NPs mixture of Fe{sub 0} and ??Fe{sub 2}O{sub 3}.

  13. Mismatched semiconductor nanowires: growth and characterization

    E-Print Network [OSTI]

    Yim, Joanne Wing Lan

    2011-01-01

    of Semiconductors: Physics and Materials Properties (system Material properties Zn-VI compound semiconductors (

  14. Advanced Electrical Characterization of Semiconductor Nanowires

    E-Print Network [OSTI]

    Khanal, Devesh Raj

    2010-01-01

    extracting materials properties from semiconductors is theimportant material properties of semiconductors are the free

  15. Photoelectrochemistry of Semiconductor Nanowire Arrays

    SciTech Connect (OSTI)

    Mallouk, Thomas E; Redwing, Joan M

    2009-11-10

    This project supported research on the growth and photoelectrochemical characterization of semiconductor nanowire arrays, and on the development of catalytic materials for visible light water splitting to produce hydrogen and oxygen. Silicon nanowires were grown in the pores of anodic aluminum oxide films by the vapor-liquid-solid technique and were characterized electrochemically. Because adventitious doping from the membrane led to high dark currents, silicon nanowire arrays were then grown on silicon substrates. The dependence of the dark current and photovoltage on preparation techniques, wire diameter, and defect density was studied for both p-silicon and p-indium phosphide nanowire arrays. The open circuit photovoltage of liquid junction cells increased with increasing wire diameter, reaching 350 mV for micron-diameter silicon wires. Liquid junction and radial p-n junction solar cells were fabricated from silicon nano- and microwire arrays and tested. Iridium oxide cluster catalysts stabilized by bidentate malonate and succinate ligands were also made and studied for the water oxidation reaction. Highlights of this project included the first papers on silicon and indium phosphide nanowire solar cells, and a new procedure for making ligand-stabilized water oxidation catalysts that can be covalently linked to molecular photosensitizers or electrode surfaces.

  16. Radiation and bias switch-induced charge dynamics in Al{sub 2}O{sub 3}-based metal-oxide-semiconductor structures

    SciTech Connect (OSTI)

    Sambuco Salomone, L. Kasulin, A.; Carbonetto, S. H.; Garcia-Inza, M. A.; Redin, E. G.; Berbeglia, F.; Lipovetzky, J.; Faigón, A.; Campabadal, F.

    2014-11-07

    Charge trapping dynamics induced by exposition to ?-ray ({sup 60}Co) radiation and bias switching in MOS capacitors with atomic layer deposited Al{sub 2}O{sub 3} as insulating layer was studied. Electrical characterization prior to irradiation showed voltage instabilities due to electron tunneling between the substrate and preexisting defects inside the dielectric layer. Real-time capacitance-voltage (C-V) measurements during irradiation showed two distinct regimes: For short times, the response is strongly bias dependent and linear with log(t), consistent with electron trapping/detrapping; for long times, the voltage shift is dominated by the radiation-induced hole capture being always negative and linear with dose. A simple model that takes into account these two phenomena can successfully reproduce the observed results.

  17. Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor

    E-Print Network [OSTI]

    Lipson, Michal

    Engineering, Cornell University, Ithaca, New York 14853 (Received 22 June 2004; accepted 16 September 2004) We modulation. The main methods to alter the refractive index in Si are the thermo-optic effect and the plasma not exhibit linear electro-optic (Pockels) effect and the refractive index changes due to the Franz

  18. Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment

    SciTech Connect (OSTI)

    Yang, Chan-Shan [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Tang, Tsung-Ta [Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan (China); Pan, Ru-Pin [Department of Electrophysics, National Chiao Tung University, Hsinchu 30078, Taiwan (China); Yu, Peichen [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Pan, Ci-Ling, E-mail: clpan@phys.nthu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Frontier Research Center on Fundamental and Applied Science of Matters, Hsinchu 30013, Taiwan (China)

    2014-04-07

    Indium Tin Oxide (ITO) nanowhiskers (NWhs) obliquely evaporated by electron-beam glancing-angle deposition can serve simultaneously as transparent electrodes and alignment layer for liquid crystal (LC) devices in the terahertz (THz) frequency range. To demonstrate, we constructed a THz LC phase shifter with ITO NWhs. Phase shift exceeding ?/2 at 1.0 THz was achieved in a ?517??m-thick cell. The phase shifter exhibits high transmittance (?78%). The driving voltage required for quarter-wave operation is as low as 5.66?V (rms), compatible with complementary metal-oxide-semiconductor (CMOS) and thin-film transistor (TFT) technologies.

  19. Conductive layer for biaxially oriented semiconductor film growth

    DOE Patents [OSTI]

    Findikoglu, Alp T. (Los Alamos, NM); Matias, Vladimir (Santa Fe, NM)

    2007-10-30

    A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.

  20. Creating Metal Nanostructures at Metal Surfaces Using Growth Kinetics

    E-Print Network [OSTI]

    Brune, Harald

    -1015 Lausanne, Switzerland © 2008 Elsevier B.V. Handbook of Surface Science All rights reserved Volume to oxide and semiconductor substrates. We start with the preparation and stability of the smallest islands