Powered by Deep Web Technologies
Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Method for improving the oxidation-resistance of metal substrates coated with thermal barrier coatings  

DOE Patents [OSTI]

A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

Thompson, Anthony Mark (Niskayuna, NY); Gray, Dennis Michael (Delanson, NY); Jackson, Melvin Robert (Niskayuna, NY)

2002-01-01T23:59:59.000Z

2

Method For Improving The Oxidation Resistance Of Metal Substrates Coated With Thermal Barrier Coatings  

DOE Patents [OSTI]

A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described. A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

Thompson, Anthony Mark (Niskayuna, NY); Gray, Dennis Michael (Delanson, NY); Jackson, Melvin Robert (Niskayuna, NY)

2003-05-13T23:59:59.000Z

3

Oxidation Resistant, Cr Retaining, Electrically Conductive Coatings on Metallic Alloys for SOFC Interconnects  

SciTech Connect (OSTI)

This report describes significant results from an on-going, collaborative effort to enable the use of inexpensive metallic alloys as interconnects in planar solid oxide fuel cells (SOFCs) through the use of advanced coating technologies. Arcomac Surface Engineering, LLC, under the leadership of Dr. Vladimir Gorokhovsky, is investigating filtered-arc and filtered-arc plasma-assisted hybrid coating deposition technologies to promote oxidation resistance, eliminate Cr volatility, and stabilize the electrical conductivity of both standard and specialty steel alloys of interest for SOFC metallic interconnect (IC) applications. Arcomac has successfully developed technologies and processes to deposit coatings with excellent adhesion, which have demonstrated a substantial increase in high temperature oxidation resistance, stabilization of low Area Specific Resistance values and significantly decrease Cr volatility. An extensive matrix of deposition processes, coating compositions and architectures was evaluated. Technical performance of coated and uncoated sample coupons during exposures to SOFC interconnect-relevant conditions is discussed, and promising future directions are considered. Cost analyses have been prepared based on assessment of plasma processing parameters, which demonstrate the feasibility of the proposed surface engineering process for SOFC metallic IC applications.

Vladimir Gorokhovsky

2008-03-31T23:59:59.000Z

4

Metal Oxides  

Science Journals Connector (OSTI)

Metal oxides are the class of materials having the widest application in gas sensors. This chapter presents information related to the application of various metal oxides in gas sensors designed on different p...

Ghenadii Korotcenkov

2013-01-01T23:59:59.000Z

5

Life Prediction of Coated and Uncoated Metallic Interconnect for Solid Oxide Fuel Cell Applications  

SciTech Connect (OSTI)

Oxidation reaction of the ferritic stainless interconnects in a typical SOFC working environment is unavoidable and the thickness of the oxide scale will continue to grow with operating time, even with protective coatings. The interfacial strength of the various interfaces for the uncoated and coated ferritic interconnects is crucial to long term performance of SOFCs. In this paper, we employ an integrated experimental/modeling approach to quantify the interfacial strength and to further predict the life of Crofer 22 APU as SOFC interconnect under isothermal cooling condition. The life of Crofer 22 APU was predicted by comparing the predicted interfacial strength, interfacial stresses induced by the cooling process from the operating temperature to room temperature, together with the growth kinetics of oxide scale with and without spinel coating. It was found that the interfacial strength between the oxide scale and Crofer 22 APU substrate decreases with the growth of the oxide scale. The interfacial strength of the oxide scale and spinel coating is much higher than that of the oxide scale and Crofer 22 APU substrate. With the spinel coating, the predicted life of the Crofer 22 APU is significantly longer than that of the uncoated Crofer 22 APU.

Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

2009-04-15T23:59:59.000Z

6

Method for synthesis of high T[sub c] superconducting materials by oxidation and press coating of metallic precursor alloys  

DOE Patents [OSTI]

A superconductor oxide composite is prepared using a press coating technique. The coated layers on various substrates exhibit good adhesion, textured microstructure, and improved J[sub c].

Gao, W.; Vander Sande, J.B.

1993-01-19T23:59:59.000Z

7

Metal oxide coating on first mirror in fusion reactor with carbon wall  

Science Journals Connector (OSTI)

Abstract The lifetime of diagnostic equipment in a fusion reactor is typically very short. The first mirror used to reflect optical signals for diagnostics plays a crucial role in the reactor, and it is highly important to develop a more durable first mirror which can survive in the hostile environment. In this work, by conducting electron beam deposition on molybdenum substrates, metallic oxide mirrors are prepared and studied in the simulated environment. The multi-layered metal oxide mirror exhibits much higher reflectivity than the original molybdenum one and the in situ technique to monitor the performance of the first mirror is developed and described.

Xirui Hou; Zhengwei Wu; Paul K. Chu

2014-01-01T23:59:59.000Z

8

PVP-functionalized nanometre scale metal oxide coatings for cathode materials: successful application to LiMn2O4 spinel nanoparticlesw  

E-Print Network [OSTI]

PVP-functionalized nanometre scale metal oxide coatings for cathode materials: successful-MnO2, may react with the electrolyte, leading to passivating structural changes of the active material retention compared to the bare counterpart. Spinel LiMn2O4 cathodes have been studied for possible use in Li

Cho, Jaephil

9

Metallic Interconnects for Solid Oxide Fuel Cell: Performance of Reactive Element Oxide Coating During 10, 20 and 30Months Exposure  

Science Journals Connector (OSTI)

One of challenges in improving the performance and cost-effectiveness of SOFCs (Solid Oxide Fuel Cells) is the development of suitable interconnect materials. Chromia-forming alloys and especially ferritic sta...

S. Fontana; S. Chevalier; G. Caboche

2012-12-01T23:59:59.000Z

10

Metal oxide films on metal  

DOE Patents [OSTI]

A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

1995-01-01T23:59:59.000Z

11

Method of making a catalytic metal oxide selective for the conversion of a gas and a coating system for the selective oxidation of hydrocarbons and carbon monoxide  

SciTech Connect (OSTI)

A method is described of making a catalytic metal oxide selective to catalyzing the conversion of given gas species, comprising: intimately supporting a solid film of catalytic metal oxide on an electrically conducting material, said film having an exposed outer surface spaced no greater than 1,000 angstroms from said conducting material and said conducting material being matched to the composition of said oxide to change the electron state of the exposed outer surface to promote a reaction between given gas species and said oxide, said metal oxide being selected from the group consisting of TiO[sub 2], SnO[sub 2], FeO, SrTiO[sub 3], and CoO, and said conducting material being selected from the group consisting of Au, Pt, TiN, Pd, Rh, Ni, and Co.

Logothetis, E.M.; Soltis, R.E.

1993-07-20T23:59:59.000Z

12

Method of measuring metal coating adhesion  

DOE Patents [OSTI]

A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

Roper, John R. (Northglenn, CO)

1985-01-01T23:59:59.000Z

13

Coated metal fiber coalescing cell  

SciTech Connect (OSTI)

A cell is described for coalescing oil droplets dispersed in a water emulsion including an elongated perforated tube core into which the emulsion is injected, layers of oleophilic plastic covered metal mat wound about the core through which the emulsion is forced to pass, the fibers of the metal mat being covered by oleophilic plastic such as vinyl, acrylic, polypropylene, polyethylene, polyvinyl chloride, the metal being in the form of layers of expanded metal or metal fibers, either aluminum or stainless steel. In manufacturing the cell a helix wound wire is formed around the cylindrical plastic coated metal to retain it in place and resist pressure drop of fluid flowing through the metal fibers. In addition, the preferred arrangement includes the use of an outer sleeve formed of a mat of fibrous material such as polyester fibers, acrylic fibers, modacrylic fibers and mixtures thereof.

Rutz, W.D.; Swain, R.J.

1980-12-23T23:59:59.000Z

14

Coated Metal Articles and Method of Making  

DOE Patents [OSTI]

The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.

Boller, Ernest R.; Eubank, Lowell D.

2004-07-06T23:59:59.000Z

15

Corrosion protective coating for metallic materials  

DOE Patents [OSTI]

Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds.

Buchheit, Rudolph G. (Albuquerque, NM); Martinez, Michael A. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

16

Corrosion protective coating for metallic materials  

DOE Patents [OSTI]

Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

Buchheit, R.G.; Martinez, M.A.

1998-05-26T23:59:59.000Z

17

Using CrAIN Multilayer Coatings to Improve Oxidation Resistance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coatings to Improve Oxidation Resistance of Steel Interconnects for Solid Oxide Fuel Cell Stacks. Using CrAIN Multilayer Coatings to Improve Oxidation Resistance of Steel...

18

Metallic Bipolar Plates with Composite Coatings  

Broader source: Energy.gov (indexed) [DOE]

Bipolar Plates with Composite Coatings Jennifer Mawdsley Argonne National Laboratory Fuel Cell Projects Kickoff Meeting Washington DC October 1, 2009 2 Metallic Bipolar Plates with...

19

Durability of Metallic Interconnects and Protective Coatings  

SciTech Connect (OSTI)

To build up a useful voltage, a number of solid oxide fuel cells (SOFCs) are electrically connected into series in a stack via interconnects, which are placed between adjacent cells. In addition to functioning as a bi-polar electrical connector, the interconnect also acts as a separator plate that separates the fuel at the anode side of one cell from the air at the cathode side on an adjacent cell. During SOFC operation at the high temperatures, the interconnects are thus simultaneously exposed to the oxidizing air at one side and a reducing fuel that can be either hydrogen or hydrocarbon at the other. Besides, they are in contact with adjacent components, such as electrodes or electrical contacts, seals, etc. With steady reduction in SOFC operating temperatures into the low or intermediate range 600-850oC, oxidation resistant alloys are often used to construct interconnects. However, the metallic interconnects may degrade via interactions at their interfaces with surrounding environments or adjacent components, potentially affecting the stability and performance of interconnects and the SOFC stacks. Thus protection layers are applied to metallic interconnects that also intend to mitigate or prevent chromium migration into cells and the cell poisoning. This chapter provides a comprehensive review of materials for metallic interconnects, their degradation and coating protection.

Yang, Zhenguo; Stevenson, Jeffry W.

2009-12-15T23:59:59.000Z

20

Delamination of Ceramic Coatings with Embedded Metal Layers Matthew R. Begleyw  

E-Print Network [OSTI]

sili- con-based ceramic matrix composites from oxidation and evap- orative hydrolysis at elevatedDelamination of Ceramic Coatings with Embedded Metal Layers Matthew R. Begleyw Mechanical zirconica coating; the crack ERR for the composite coating is shown to be 30% lower than that for a uniform

Wadley, Haydn

Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Metal alloy coatings and methods for applying  

DOE Patents [OSTI]

A method of coating a substrate comprises plasma spraying a prealloyed feed powder onto a substrate, where the prealloyed feed powder comprises a significant amount of an alloy of stainless steel and at least one refractory element selected from the group consisting of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The plasma spraying of such a feed powder is conducted in an oxygen containing atmosphere and forms an adherent, corrosion resistant, and substantially homogenous metallic refractory alloy coating on the substrate.

Merz, Martin D. (Richland, WA); Knoll, Robert W. (Kennewick, WA)

1991-01-01T23:59:59.000Z

22

High Temperature Oxidation Performance of Aluminide Coatings  

SciTech Connect (OSTI)

Aluminide coatings are of interest for many high temperature applications because of the possibility of improving the oxidation resistance of structural alloys by forming a protective external alumina scale. Steam and exhaust gas environments are of particular interest because alumina is less susceptible to the accelerated attack due to hydroxide formation observed for chromia- and silica-forming alloys and ceramics. For water vapor testing, one ferritic (Fe-9Cr-1Mo) and one austenitic alloy (304L) have been selected as substrate materials and CVD coatings have been used in order to have a well-controlled, high purity coating. It is anticipated that similar aluminide coatings could be made by a higher-volume, commercial process such as pack cementation. Previous work on this program has examined as-deposited coatings made by high and low Al activity CVD processes and the short-term performance of these coatings. The current work is focusing on the long term behavior in both diffusion tests16 and oxidation tests of the thicker, high Al activity coatings. For long-term coating durability, one area of concern has been the coefficient of thermal expansion (CTE) mismatch between coating and substrate. This difference could cause cracking or deformation that could reduce coating life. Corrosion testing using thermal cycling is of particular interest because of this potential problem and results are presented where a short exposure cycle (1h) severely degraded aluminide coatings on both types of substrates. To further study the potential role of aluminide coatings in fossil energy applications, several high creep strength Ni-base alloys were coated by CVD for testing in a high pressure (20atm) steam-CO{sub 2} environment for the ZEST (zero-emission steam turbine) program. Such alloys would be needed as structural and turbine materials in this concept. For Ni-base alloys, CVD produces a {approx}50{mu}m {beta}-NiAl outer layer with an underlying interdiffusion zone. Specimens of HR160, alloy 601 and alloy 230 were tested with and without coatings at 900 C and preliminary post-test characterization is reported.

Pint, Bruce A [ORNL; Zhang, Ying [Tennessee Technological University; Haynes, James A [ORNL; Wright, Ian G [ORNL

2004-01-01T23:59:59.000Z

23

Uranium Oxide as a Highly Reflective Coating from 150-350 eV  

E-Print Network [OSTI]

of depleted uranium metal (less than 0.2% U-235). After sputtering, the uranium was allowed to oxidize1 Uranium Oxide as a Highly Reflective Coating from 150-350 eV Richard L. Sandberg, David D. Allred.byu.edu ABSTRACT We present the measured reflectances (beamline 6.3.2, ALS at LBNL) of naturally oxidized uranium

Hart, Gus

24

Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings  

E-Print Network [OSTI]

SAW Amorphous metal and ceramic thermal spray coatings havefor Thermal Spray Amorphous Metal and Ceramic Coatings J.

Blink, J.; Farmer, J.; Choi, J.; Saw, C.

2009-01-01T23:59:59.000Z

25

METAL OXIDE NANOPARTICLES  

SciTech Connect (OSTI)

This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

2007-10-01T23:59:59.000Z

26

Polymer-coated iron oxide nanoparticles for medical imaging  

E-Print Network [OSTI]

One of the most versatile and safe materials used in medicine are polymer-coated iron oxide nanoparticles. This dissertation describes several formulations for in vivo imaging applications. The paramagnetic polymer-coated ...

Chen, Suelin, Ph.D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

27

On Coating Durability of Polymer Coated Sheet Metal under Plastic Deformation  

E-Print Network [OSTI]

process. Thus, the effect of plastic deformation on coating adhesion is of primary interest to many engineers and researchers. This research aims at developing a methodology to predict the adhesion of coating after metal forming processes. A pull...

Huang, Yu-Hsuan

2011-08-08T23:59:59.000Z

28

Metallic coatings on silicon substrates, and methods of forming metallic coatings on silicon substrates  

DOE Patents [OSTI]

The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.

Branagan, Daniel J. (Idaho Falls, ID); Hyde, Timothy A. (Idaho Falls, ID); Fincke, James R. (Los Alamos, NM)

2008-03-11T23:59:59.000Z

29

Lithium metal reduction of plutonium oxide to produce plutonium metal  

DOE Patents [OSTI]

A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

Coops, Melvin S. (Livermore, CA)

1992-01-01T23:59:59.000Z

30

Assessment of ceramic coatings for metal fuel melting crucible  

SciTech Connect (OSTI)

The objective of this study is to develop a coating method and material for crucibles to prevent material interactions with the U-Zr/U-TRU-Zr fuels during the manufacturing of SFR fuels. Refractory coatings were applied to niobium substrates by vacuum plasma-spray coating method. Melt dipping tests conducted were the coated rods lowered into the fuel melt at 1600 C. degrees, and withdrawn and cooled outside the crucible in the inert atmosphere of the induction furnace. Melt dipping tests of the coated Nb rods indicated that plasma-sprayed Y{sub 2}O{sub 3} coating doesn't form significant reaction layer between fuel melt and coating layer. Melt dipping tests of the coated Nb rods showed that TiC, TaC, and Y{sub 2}O{sub 3} coatings exhibited the promising performance among other ceramic coatings. These materials could be promising candidate materials for the reusable melt crucible of metal fuel for SFR. In addition, in order to develop the vacuum plasma-spray coating method for re-usable crucible of metal fuel slugs to be overcome the issue of thermal expansion mismatch between coating material and crucible, various combinations of coating conditions were investigated to find the bonding effect on the substrate in pursuit of more effective ways to withstand the thermal stresses. It is observed that most coating methods maintained sound coating state in U-Zr melt. (authors)

Kim, Ki-Hwan; Song, Hoon; Kim, Jong-Hwan; Oh, Seok-Jin; Kim, Hyung-Tae; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Yuseong, Daejeon 305-600 (Korea, Republic of)

2013-07-01T23:59:59.000Z

31

Method of Applying a Cerium Diffusion Coating to a Metallic Alloy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applying a Cerium Diffusion Applying a Cerium Diffusion Coating to a Metallic Alloy Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 7,553,517 entitled "Method of Applying a Cerium Diffusion Coating to a Metallic Alloy." This invention is applicable to advanced, next-generation power plant components; solid oxide fuels cells; heaters and heat exchangers; or any other application where oxidation-resistant metals are needed. Disclosed in this patent is NETL's robust, inexpensive process for increasing the oxidation resistance of nickel-based superalloys, as well as ferritic and austenitic stainless steels. The process involves applying a cerium oxide (CeO

32

NANO - "Green" metal oxides ... | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NANO - "Green" metal oxides ... Water and nano-sized particles isolated from trees, plants and algae are the ingredients of a new recipe for low-cost metal oxides that are widely...

33

Arsenic remediation of drinking water using iron-oxide coated coal bottom ash  

E-Print Network [OSTI]

using Iron-oxide Coated Coal Ash. In Arsenic Contaminationwaterusing iron?oxidecoatedcoalbottomash JohannaL. using iron-oxide coated coal bottom ash JOHANNA L. MATHIEU

MATHIEU, JOHANNA L.

2010-01-01T23:59:59.000Z

34

Process for forming a metal compound coating on a substrate  

DOE Patents [OSTI]

A method of coating a substrate with a thin layer of a metal compound by forming a dispersion of an electrophoretically active organic colloid and a precursor of the metal compound in an electrolytic cell in which the substrate is an electrode. Upon application of an electric potential, the electrode is coated with a mixture of the organic colloid and the precursor to the metal compound, and the coated substrate is then heated in the presence of an atmosphere or vacuum to decompose the organic colloid and form a coating of either a combination of metal compound and carbon, or optionally forming a porous metal compound coating by heating to a temperature high enough to chemically react the carbon.

Sharp, Donald J. (Albuquerque, NM); Vernon, Milton E. (Albuquerque, NM); Wright, Steven A. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

35

Process for forming a metal compound coating on a substrate  

DOE Patents [OSTI]

A method of coating a substrate with a thin layer of a metal compound by forming a dispersion of an electrophoretically active organic colloid and a precursor of the metal compound in an electrolytic cell in which the substrate is an electrode. Upon application of an electric potential, the electrode is coated with a mixture of the organic colloid and the precursor to the metal compound, and the coated substrate is then heated in the presence of an atmosphere or vacuum to decompose the organic colloid and form a coating of either a combination of metal compound and carbon, or optionally forming a porous metal compound coating by heating to a temperature high enough to chemically react the carbon.

Sharp, D.J.; Vernon, M.E.; Wright, S.A.

1988-06-29T23:59:59.000Z

36

Process for coating tungsten carbide with cobalt metal  

SciTech Connect (OSTI)

A process is described for coating tungsten carbide with cobalt metal, the process comprising: (a) forming an aqueous slurry of tungsten carbide having a particle size of no greater than - 100 mesh, and zinc metal powder; (b) adding ammonia to the slurry with the amount of the ammonia being sufficient so that the slurry is basic after the subsequent addition of cobalt chloride in step c; (c) adding to the resulting ammoniated slurry, a solution of cobalt chloride with agitation, to form a coating of partially reduced cobalt on the tungsten carbide; (d) removing the resulting cobalt coated tungsten carbide from the resulting liquor; and (e) heating the cobalt coated tungsten carbide in a reducing atmosphere to effect the essentially complete reduction of the cobalt and to produce a cobalt metal coating on the tungsten carbide, the coating making up no greater than about 15% of weight of the tungsten carbide.

Ritsko, J.E.; Lee, J.S.

1989-01-31T23:59:59.000Z

37

Electrodes synthesized from carbon nanostructures coated with a smooth and conformal metal adlayer  

DOE Patents [OSTI]

High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by a surface preparation process involving immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing a suitable quantity of non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means. The nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. The process can be controlled and repeated to obtain a desired film coverage. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

Adzic, Radoslav; Harris, Alexander

2014-04-15T23:59:59.000Z

38

Micro-arc oxidation coatings on Mg-Li alloys  

Science Journals Connector (OSTI)

Micro-arc oxidation (MAO) method was used for the...in-situ fabricated on the Mg-Li alloy. The morphology feature, phase composition, and corrosion-resistance of the formed ceramic coatings were studied by SEM, X...

Yongjun Xu; Kang Li; Zhongping Yao; Zhaohua Jiang; Milin Zhang

2009-04-01T23:59:59.000Z

39

Zn Sorption Mechanisms onto Sheathed Leptothrix Discophora and the Impact of the Nanoparticulate Biogenic Mn Oxide Coating  

SciTech Connect (OSTI)

Zinc sorption on sheathed Leptothrix discophora bacterium, the isolated extracellular polymeric substances (EPS) sheath, and Mn oxide-coated bacteria was investigated with macroscopic and spectroscopic techniques. Complexation with L. discophora was dominated by the outer membrane phosphoryl groups of the phospholipid bilayer while sorption to isolated EPS was dominated by carboxyl groups. Precipitation of nanoparticulate Mn oxide coatings on the cell surface increased site capacity by over twenty times with significant increase in metal sorption. XAS analysis of Zn sorption in the coated system showed Mn oxide phase contributions of 18 to 43% through mononuclear inner-sphere complexes. The coordination environments in coprecipitation samples were identical to those of sorption samples, indicating that, even in coprecipitation, Zn is not incorporated into the Mn oxide structure. Rather, through enzymatic oxidation by L. discophora, Mn(II) is oxidized and precipitated onto the biofilm providing a large surface for metal sequestration. The nanoparticulate Mn oxide coating exhibited significant microporosity (75%) suggesting contributions from intraparticle diffusion. Transient studies conducted over 7 months revealed a 170% increase in Zn loading. However, the intraparticle diffusivity of 10{sup -19} cm{sup 2} s{sup -1} is two orders of magnitude smaller than that for abiotic Mn oxide which we attribute to morphological changes such as reduced pore sizes in the nanoparticulate oxide. Our results demonstrate that the cell-bound Mn oxide particles can sorb significant amounts of Zn over long periods of time representing an important surface for sequestration of metal contaminants.

Boonfueng, T.; Axe, L; Yee, N; Hahn, D; Ndiba, P

2009-01-01T23:59:59.000Z

40

Aerosol chemical vapor deposition of metal oxide films  

DOE Patents [OSTI]

A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

Ott, K.C.; Kodas, T.T.

1994-01-11T23:59:59.000Z

Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

METAL COATING OF POROUS SILICON GAS SENSORS FOR IMPROVED SENSITIVITY & SELECTIVITY Thomas Osburn, Georgia Tech Physics, MSE SURF 2009 Fellow  

E-Print Network [OSTI]

METAL COATING OF POROUS SILICON GAS SENSORS FOR IMPROVED SENSITIVITY & SELECTIVITY Thomas Osburn Introduction Gas sensors on the market today have many limitations that prevent real world applications. The current standard, metal oxide sensors, are highly temperature dependant and work at high temperatures

Li, Mo

42

High Temperature Thermal Stability and Oxidation Resistance of Magnetron-sputtered Homogeneous CrAlON Coatings on 430 Steel  

SciTech Connect (OSTI)

The requirements of low cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigated the performance of steel plates with homogenous coatings of CrAlON (oxynitrides). The coatings were deposited using RF magnetron sputtering, with Ar as a sputtering gas. Oxygen in these coatings was not intentionally added. Oxygen might have come through contaminated nitrogen gas bottle, leak in the chamber or from the partial pressure of water vapors. Nitrogen was added during the growth process to get oxynitride coating. The Cr/Al composition ratio in the coatings was varied in a combinatorial approach. The coatings were subsequently annealed in air for up to 25 hours at 800 deg. C. The composition of the coated plates and the rate of oxidation were characterized using Rutherford backscattering (RBS) and nuclear reaction analysis (NRA). From our results, we conclude that Al rich coatings are more susceptible to oxidation than Cr rich coatings.

Kayani, A.; Wickey, K. J.; Nandasiri, M. I.; Moore, A.; Garratt, E.; AlFaify, S.; Gao, X. [Western Michigan University-Kalamazoo, MI 49008 (United States); Smith, R. J.; Buchanan, T. L.; Priyantha, W.; Kopczyk, M.; Gannon, P. E. [Montana State University-Bozeman, MT 59717 (United States); Gorokhovsky, V. I. [Arcomac Surface Engineering, LLC-Bozeman, MT 59715 (United States)

2009-03-10T23:59:59.000Z

43

Oxidation resistant coatings for CoSb3  

Science Journals Connector (OSTI)

Doped cobalt antimonides are used as components of thermoelectric devices at temperatures not exceeding 450 C because of poor thermal and chemical stability. In absence of oxygen they degrade by sublimation of antimony while in air they easily oxidize to form volatile antimony oxides and non-volatile thick double oxide scales [1]. In both cases protective coatings are indispensable to ensure safe performance of thermoelectric devices over extended times. The most promising solution reported so far is a thick aerogel coating which practically stops antimony loss by sublimation. The assessment of coating effectiveness is generally based on thermogravimetric tests in vacuum so permeability of oxygen and protection from oxidation cannot be evaluated. The paper presents investigations on the development of protective coatings which would prevent oxidation of CoSb3. Two types of coatings were applied: magnetron sputtered Cr-Si thin layers [2] and thick enamel layers. Testing involved interrupted oxidation in air for 20-80 h at 500 C and 600 C. The Cr-Si thin layers appeared oxygen-tight at 500 C while the enamel layers - even at 600 C.

2012-01-01T23:59:59.000Z

44

Oxidation resistant nanocrystalline MCrAl(Y) coatings and methods of forming such coatings  

DOE Patents [OSTI]

The present disclosure relates to an oxidation resistant nanocrystalline coating and a method of forming an oxidation resistant nanocrystalline coating. An oxidation resistant coating comprising an MCrAl(Y) alloy may be deposited on a substrate, wherein M, includes iron, nickel, cobalt, or combinations thereof present greater than 50 wt % of the MCrAl(Y) alloy, chromium is present in the range of 15 wt % to 30 wt % of the MCrAl(Y) alloy, aluminum is present in the range of 6 wt % to 12 wt % of the MCrAl(Y) alloy and yttrium, is optionally present in the range of 0.1 wt % to 0.5 wt % of the MCrAl(Y) alloy. In addition, the coating may exhibit a grain size of 200 nm or less as deposited.

Cheruvu, Narayana S.; Wei, Ronghua

2014-07-29T23:59:59.000Z

45

Nanocomposite of graphene and metal oxide materials  

SciTech Connect (OSTI)

Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

2012-09-04T23:59:59.000Z

46

Methods of producing adsorption media including a metal oxide  

DOE Patents [OSTI]

Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

Mann, Nicholas R; Tranter, Troy J

2014-03-04T23:59:59.000Z

47

Three-Electrode Metal Oxide Reduction Cell  

DOE Patents [OSTI]

A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

Dees, Dennis W. (Downers Grove, IL); Ackerman, John P. (Downers Grove, IL)

2005-06-28T23:59:59.000Z

48

Three-electrode metal oxide reduction cell  

DOE Patents [OSTI]

A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

Dees, Dennis W. (Downers Groves, IL); Ackerman, John P. (Downers Grove, IL)

2008-08-12T23:59:59.000Z

49

Direct electrochemical reduction of metal-oxides  

DOE Patents [OSTI]

A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

Redey, Laszlo I. (Downers Grove, IL); Gourishankar, Karthick (Downers Grove, IL)

2003-01-01T23:59:59.000Z

50

Development of insulating coatings for liquid metal blankets  

SciTech Connect (OSTI)

It is shown that self-cooled liquid metal blankets are feasible only with electrically insulating coatings at the duct walls. The requirements on the insulation properties are estimated by simple analytical models. Candidate insulator materials are selected based on insulating properties and thermodynamic consideration. Different fabrication technologies for insulating coatings are described. The status of the knowledge on the most crucial feasibility issue, the degradation of the resisivity under irradiation, is reviewed.

Malang, S.; Borgstedt, H.U. [Kernforschungszentrum Karlsruhe GmbH (Germany); Farnum, E.H. [Los Alamos National Lab., NM (United States); Natesan, K. [Argonne National Lab., IL (United States); Vitkovski, I.V. [Efremov Inst., St. Petersburg (Russian Federation). MHD-Machines Lab.

1994-07-01T23:59:59.000Z

51

Graphene/metal Oxide Nanocomposites for Li-ion Batteries  

Science Journals Connector (OSTI)

Our work focuses on preparing the graphene/metal oxide nanocomposites by facile methold and exploring the graphene/metal oxide composites with unique structural or compositions for...

Liang, Junfei; Li, Lidong; Guo, Lin

52

Understanding Atom Probe Tomography of Oxide-Supported Metal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic Resolution Electron Understanding Atom Probe Tomography of Oxide-Supported Metal...

53

Pentek metal coating removal system: Baseline report  

SciTech Connect (OSTI)

The Pentek coating removal technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The Pentek coating removal system consisted of the ROTO-PEEN Scaler, CORNER-CUTTER{reg_sign}, and VAC-PAC{reg_sign}. They are designed to remove coatings from steel, concrete, brick, and wood. The Scaler uses 3M Roto Peen tungsten carbide cutters while the CORNER-CUTTER{reg_sign} uses solid needles for descaling activities. These hand tools are used with the VAC-PAC{reg_sign} vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure minimal, but noise exposure was significant. Further testing for each exposure is recommended because of the environment where the testing demonstration took place. It is feasible that the dust and noise levels will be higher in an enclosed operating environment of different construction. In addition, other areas of concern found were arm-hand vibration, whole-body, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

NONE

1997-07-31T23:59:59.000Z

54

Recent trends in the microwave-assisted synthesis of metal oxide nanoparticles supported on carbon nanotubes and their applications  

Science Journals Connector (OSTI)

The study of coating carbon nanotubes with metal/oxides nanoparticles is now becoming a promising and challenging area of research. To optimize the use of carbon nanotubes in various applications, it is necessary to attach functional groups or other ...

Sarah C. Motshekga; Sreejarani K. Pillai; Suprakas Sinha Ray; Kalala Jalama; Rui. W. M. Krause

2012-01-01T23:59:59.000Z

55

Catalytic production of metal carbonyls from metal oxides  

DOE Patents [OSTI]

This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.

Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.

1984-01-06T23:59:59.000Z

56

High surface area, electrically conductive nanocarbon-supported metal oxide  

DOE Patents [OSTI]

A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

Worsley, Marcus A; Han, Thomas Yong-Jin; Kuntz, Joshua D; Cervanted, Octavio; Gash, Alexander E; Baumann, Theodore F; Satcher, Jr., Joe H

2014-03-04T23:59:59.000Z

57

Metal current collect protected by oxide film  

DOE Patents [OSTI]

Provided are low-cost, mechanically strong, highly electronically conductive current collects and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical devices having as current interconnects a ferritic steel felt or screen coated with a protective oxide film.

Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2004-05-25T23:59:59.000Z

58

Coated metal sintering carriers for fuel cell electrodes  

DOE Patents [OSTI]

A carrier is described for conveying components of a fuel cell to be sintered through a sintering furnace. The carrier comprises a metal sheet coated with a water-based carbon paint, the water-based carbon paint comprising water, powdered graphite, an organic binder, a wetting agent, a dispersing agent and a defoaming agent.

Donelson, R.; Bryson, E.S.

1998-11-10T23:59:59.000Z

59

Effect of Micro Arc Oxidation Coatings on Corrosion Resistance of 6061-Al Alloy  

Science Journals Connector (OSTI)

In the present study, the corrosion behavior of micro arc oxidation (MAO) coatings deposited at two current...

Nitin P. Wasekar; A. Jyothirmayi

2008-10-01T23:59:59.000Z

60

Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles  

E-Print Network [OSTI]

Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles W. Brullot a in revised form 20 December 2011 Available online 3 February 2012 Keywords: Ferrofluid Polyethylene glycol Magneto-optics Magnetite Rheology a b s t r a c t Versatile ferrofluids based on polyethylene glycol

Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Oxidation resistance of composite silicide coatings on niobium  

SciTech Connect (OSTI)

This paper reports the oxidation of NbSi/sub 2/-MoSi/sub 2/ composite silicide coatings produced by diffusive siliconizing of molybdenum films on a niobium surface. Molybdenum-coated niobium was siliconized and an x-ray microspectral analysis of the composite silicide coating showed the phase composition to be an ca 80-um-thick outer molybdenum disilicide film with a characteristic coarsely crystalline columnar structure, and inner ca 20-um film of niobium disilicide consisting of the tiny columnar crystals, and a substrate/coating interface comprising a thin, 2-3 um film of lower silicide, i.e., Nb/sub 5/Si/sub 3/. The average grain sizes, unit cell parameters, and x-ray determined densities of the Mo films obtained by various methods are shown.

Gloshko, P.I.; Kurtsev, N.F.; Lisichenko, V.I.; Nadtoka, V.N.; Petrenko, M.I.; Zmii, V.I.

1986-07-01T23:59:59.000Z

62

Lithium metal oxide electrodes for lithium batteries  

DOE Patents [OSTI]

An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

Thackeray, Michael M. (Naperville, IL); Kim, Jeom-Soo (Naperville, IL); Johnson, Christopher S. (Naperville, IL)

2008-01-01T23:59:59.000Z

63

Process for etching mixed metal oxides  

DOE Patents [OSTI]

An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.

Ashby, Carol I. H. (Edgewood, NM); Ginley, David S. (Evergreen, CO)

1994-01-01T23:59:59.000Z

64

INELASTIC CONTACT DEFORMATION OF METAL COATED FIBERS  

E-Print Network [OSTI]

16 April 1997; accepted 23 June 1997) AbstractÐMetal matrix composites (MMCs) can be synthesized deposition of the matrix onto a ceramic reinforcing ®ber (e.g. SiC, Al2O3) held at a relatively low and ®ber microbending/damage during the consolidation of titanium matrix composite (TMC) monotapes produced

Wadley, Haydn

65

Aerogel-Coated Metal Nanoparticle Colloids as Novel Entities for the Synthesis of Defined Supported Metal Catalysts  

Science Journals Connector (OSTI)

Aerogel-Coated Metal Nanoparticle Colloids as Novel Entities for the Synthesis of Defined Supported Metal Catalysts ... Nanometer metal particles of tailored size (3?5 nm) and composition prepared via inverse microemulsion were encapsulated by ultrathin coatings (aerogels covered with surface ?OH groups. ... Thus, the product and technology described may be suitable to synthesize these precursor entities of defined metal sizes (as inks) for wash coat/impregnation applications in catalysis. ...

Kai Man K. Yu; Connie M. Y. Yeung; David Thompsett; Shik Chi Tsang

2003-04-10T23:59:59.000Z

66

Preparation and oxidation resistance of mullite/SiC coating for carbon materials at 1150 C  

Science Journals Connector (OSTI)

To protect carbon materials from oxidation, mullite/SiC coatings were prepared on graphite by chemical vapor reaction (CVR) and slurry sintering. The XRD analyses show that the phase of the outer-layer coating is composed of SiO2 and mullite, and the inner-layer coating is mainly composed of ?-SiC. The anti-oxidation behavior of the coating and the Rockwell hardness (HRB) of the coating after oxidation were investigated. The oxidation test shows that the as-prepared multi-layer coating exhibits excellent anti-oxidation and thermal shock resistance at high temperature. After oxidation at 1150 C for 109 h and thermal shock cycling between 1150 C and room temperature for 12 times, the mass gain of the coated sample is 0.085%. Meanwhile, the indentation tests also demonstrate that the as-prepared coating has good bonding ability between the layers.

Xin YANG; Zhe-an SU; Qi-zhong HUANG; Li-yuan CHAI

2012-01-01T23:59:59.000Z

67

Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves  

DOE Patents [OSTI]

A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

Holcombe, C.E.; Dykes, N.L.; Tiegs, T.N.

1992-10-13T23:59:59.000Z

68

Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves  

DOE Patents [OSTI]

A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Tiegs, Terry N. (Lenoir City, TN)

1992-01-01T23:59:59.000Z

69

Thermal stability and oxidation resistance of TiCrAlYO coatings...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

stability and oxidation resistance of TiCrAlYO coatings on SS430 for solid oxide fuel cell interconnect applications. Thermal stability and oxidation resistance of TiCrAlYO...

70

Preparation, properties and chemistry of glass- and glass-ceramic-to-metal seals and coatings  

Science Journals Connector (OSTI)

An overview is given outlining the materials and technologies that have been employed in the preparation of glass- and glass-ceramic-to-metal seals and coatings. Metal/non-metal bonding theories are summarized...

I. W. Donald

1993-06-01T23:59:59.000Z

71

Mesoporous metal oxide microsphere electrode compositions and their methods of making  

SciTech Connect (OSTI)

Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (.mu.m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m.sup.2/g and 500 m.sup.2/g, and wherein the composition has an electrical conductivity of at least 1.times.10.sup.-7 S/cm at 25.degree. C. and 60 MPa. The methods of making comprise forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least one method selected from the group consisting of: (i) annealing in a reducing atmosphere, (ii) doping with an aliovalent element, and (iii) coating with a coating composition.

Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A; Brown, Gilbert M

2014-12-16T23:59:59.000Z

72

Thermal barrier coatings  

DOE Patents [OSTI]

This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

Alvin, Mary Anne (Pittsburg, PA)

2010-06-22T23:59:59.000Z

73

Reactor process using metal oxide ceramic membranes  

DOE Patents [OSTI]

A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques. 2 figures.

Anderson, M.A.

1994-05-03T23:59:59.000Z

74

Long-term evaluation of solid oxide fuel cell candidate materials in a 3-cell generic stack test fixture, part III: Stability and microstructure of Ce-(Mn,Co)-spinel coating, AISI441 interconnect, alumina coating, cathode and anode  

Science Journals Connector (OSTI)

Abstract A generic solid oxide fuel cell stack test fixture was developed to evaluate candidate materials and processing under realistic conditions. Part III of the work investigated the stability of Ce-(Mn,Co) spinel coating, AISI441 metallic interconnect, alumina coating, and cell's degradation. After 6000h test, the spinel coating showed densification with some diffusion of Cr. At the metal interface, segregation of Si and Ti was observed, however, no continuous layer formed. The alumina coating for perimeter sealing areas appeared more dense and thick at the air side than the fuel side. Both the spinel and alumina coatings remained bonded. EDS analysis of Cr within the metal showed small decrease in concentration near the coating interface and would expect to cause no issue of Cr depletion. Inter-diffusion of Ni, Fe, and Cr between spot-welded Ni wire and AISI441 interconnect was observed and Cr-oxide scale formed along the circumference of the weld. The microstructure of the anode and cathode was discussed relating to degradation of the top and middle cells. Overall, the Ce-(Mn,Co) spinel coating, alumina coating, and AISI441 steel showed the desired long-term stability and the developed generic stack fixture proved to be a useful tool to validate candidate materials for SOFC.

Yeong-Shyung Chou; Jeffry W. Stevenson; Jung-Pyung Choi

2014-01-01T23:59:59.000Z

75

Chapter 14 - Metal oxide nanopowder  

Science Journals Connector (OSTI)

Research into soft chemical techniques has gained an importance for the synthesis of high quality advanced nanosized materials with desired properties at the low crystallization temperature. The closer interaction between the material chemists and alkoxide chemists has led to the molecular design of more suitable precursors, for fabrication of functional material has resulted in synergetic developments in both the fields. Metal alkoxide is a versatile precursor and is used for the synthesis of functional gradient nanomaterials, and characterization of materials was carried out in term of composition, microstructure and specific surface area. The write-up provides simple and convenient routes to many building blocks for assembling the structure with novel properties and its functional use in nanotechnology.

Taimur Athar

2015-01-01T23:59:59.000Z

76

Pentek metal coating removal system: Baseline report; Summary  

SciTech Connect (OSTI)

The Pentek metal coating removal system consists of the ROTO-PEEN Scaler, CORNER-CUTTER(R), and VAC-PAC(R). The system is designed to remove coatings from steel, concrete, brick, and wood. The Scaler uses 3M ROTO-PEEN tungsten carbide cutters, while the CORNER-CUTTER(R) uses solid needles for descaling activities. These are used with the VAC-PAC(R) vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure was minimal, but noise exposure was significant. Further testing for each exposure is recommended, since the outdoor environment where the testing demonstration took place may skew the results. It is feasible that dust and noise levels will be higher in an enclosed operating environment. Other areas of concern found were arm-hand vibration, whole-body vibration, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

NONE

1997-07-31T23:59:59.000Z

77

Indium doped zinc oxide nanowire thin films for antireflection and solar absorber coating applications  

SciTech Connect (OSTI)

Indium doped ZnO nanowire thin films were prepared by thermal oxidation of Zn-In metal bilayer films at 500C. The ZnO:In nanowires are 20-100 nm in diameter and several tens of microns long. X-ray diffraction patterns confirm the formation of oxide and indicate that the films are polycrystalline, both in the as deposited and annealed states. The transmission which is <2% for the as deposited Zn-In films increases to >90% for the ZnO:In nanowire films. Significantly, the reflectance for the as deposited films is < 10% in the region between 200 to 1500 nm and < 2% for the nanowire films. Thus, the as deposited films can be used solar absorber coatings while the nanowire films are useful for antireflection applications. The growth of nanowires by this technique is attractive since it does not involve very high temperatures and the use of catalysts.

Shaik, Ummar Pasha [ACRHEM, University of Hyderabad, Hyderabad-500046 (India); Krishna, M. Ghanashyam, E-mail: mgksp@uohyd.ac.in [ACRHEM and School of Physics, University of Hyderabad, Hyderabad-500046 (India)

2014-04-24T23:59:59.000Z

78

Method of applying a cerium diffusion coating to a metallic alloy  

DOE Patents [OSTI]

A method of applying a cerium diffusion coating to a preferred nickel base alloy substrate has been discovered. A cerium oxide paste containing a halide activator is applied to the polished substrate and then dried. The workpiece is heated in a non-oxidizing atmosphere to diffuse cerium into the substrate. After cooling, any remaining cerium oxide is removed. The resulting cerium diffusion coating on the nickel base substrate demonstrates improved resistance to oxidation. Cerium coated alloys are particularly useful as components in a solid oxide fuel cell (SOFC).

Jablonski, Paul D. (Salem, OR); Alman, David E. (Benton, OR)

2009-06-30T23:59:59.000Z

79

Evolution of residual stresses in micro-arc oxidation ceramic coatings on 6061 Al alloy  

Science Journals Connector (OSTI)

Most researches on micro-arc oxidation mainly focus on the application rather than ... dimensional stability and corrosion resistance, etc. The micro-arc oxidation ceramic coatings are produced on the surfaces .....

Dejiu Shen; Jingrui Cai; Changhong Guo

2013-11-01T23:59:59.000Z

80

Amorphous metal formulations and structured coatings for corrosion and wear resistance  

DOE Patents [OSTI]

A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

Farmer, Joseph C. (Tracy, CA)

2011-12-13T23:59:59.000Z

Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Amorphous metal formulations and structured coatings for corrosion and wear resistance  

DOE Patents [OSTI]

A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

Farmer, Joseph C.

2014-07-15T23:59:59.000Z

82

Oxidation studies of CrAlON nanolayered coatings on steel plates...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks have directed attention to the use of metal plates with oxidation...

83

Influence of Electrolyte Chemistry on Morphology and Corrosion Resistance of Micro Arc Oxidation Coatings Deposited on Magnesium  

Science Journals Connector (OSTI)

In the present work, micro arc oxidation (MAO) coatings were synthesized on magnesium...2SiO3), potassium hydroxide (KOH), and sodium aluminate (NaAlO2). The resultant coatings were subjected to coating thickness...

L. Rama Krishna; G. Poshal; G. Sundararajan

2010-12-01T23:59:59.000Z

84

High-temperature oxidation of an alumina-coated Ni-base alloy  

SciTech Connect (OSTI)

Alumina coatings were applied to Ni-20Cr (wt%) using combustion chemical vapor deposition (combustion CVD). Combustion CVD is an open air deposition technique performed in a flame. The oxidation kinetics of coated and uncoated specimens were measured by isothermal oxidation tests carried out in pure flowing air at temperatures of 800, 900, 1,000 and 1,100 C. The alumina coatings reduced the oxidation kinetics at all temperatures. The morphologies and compositions of the alumina coatings were characterized by transmission and scanning electron microscopy, energy dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy.

Hendrick, M.R.; Hampikian, J.M.; Carter, W.B.

1996-06-01T23:59:59.000Z

85

P-7 / D. R. Cairns P-7: Wear Resistance of Indium Tin Oxide Coatings on Polyethylene  

E-Print Network [OSTI]

P-7 / D. R. Cairns P-7: Wear Resistance of Indium Tin Oxide Coatings on Polyethylene Terephthalate The wear mechanisms of the Indium Tin Oxide (ITO) coated Polyethylene Terephthalate (PET) topsheet). The bottom substrate is typically glass and the top sheet a polyester such as Polyethylene Terephthalate (PET

Cairns, Darran

86

Atomic Layer Deposition of Uniform Metal Coatings on Highly Porous Aerogel Substrates  

Science Journals Connector (OSTI)

Atomic Layer Deposition of Uniform Metal Coatings on Highly Porous Aerogel Substrates ... Figure 1 Bright-field transmission electron micrographs of the (a) uncoated and (b) W-coated alumina aerogel (6 ALD cycles), and the (c) uncoated and (b) W-coated germania aerogel (6 ALD cycles). ... For the alumina aerogel, the coating consists of crystalline W nanoparticles, ?2 nm in diameter, uniformly deposited on the surfaces of the nanoleaflets (Figure 1b). ...

Theodore F. Baumann; Juergen Biener; Yinmin M. Wang; Sergei O. Kucheyev; Erik J. Nelson; Joe H. Satcher, Jr.; Jeffrey W. Elam; Michael J. Pellin; Alex V. Hamza

2006-11-18T23:59:59.000Z

87

Metal matrix coated fiber composites and the methods of manufacturing such composites  

DOE Patents [OSTI]

A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.

Weeks, J.K. Jr.; Gensse, C.

1993-09-14T23:59:59.000Z

88

Insulator coating for high temperature alloys method for producing insulator coating for high temperature alloys  

DOE Patents [OSTI]

A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound. 2 figs.

Park, J.H.

1998-06-23T23:59:59.000Z

89

Determination of Interfacial Adhesion Strength between Oxide Scale and Substrate for Metallic SOFC Interconnects  

SciTech Connect (OSTI)

The interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of metallic interconnects in SOFC operating environments. It is necessary, therefore, to establish a methodology to quantify the interfacial adhesion strength between the oxide scale and the metallic interconnect substrate, and furthermore to design and optimize the interconnect material as well as the coating materials to meet the design life of an SOFC system. In this paper, we present an integrated experimental/analytical methodology for quantifying the interfacial adhesion strength between oxide scale and a ferritic stainless steel interconnect. Stair-stepping indentation tests are used in conjunction with subsequent finite element analyses to predict the interfacial strength between the oxide scale and Crofer 22 APU substrate.

Sun, Xin; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

2008-01-21T23:59:59.000Z

90

Designing Semiconductor Metal Oxides for Photoelectrochemical Energy Conversion  

Science Journals Connector (OSTI)

Innovative materials hold the key for renewable energy conversion. In this talk, we will introduce our recent progress in semiconducting metal oxides, which underpin a number of...

Wang, Lianzhou

91

Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs  

SciTech Connect (OSTI)

Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 degrees C showed that HfN, TiC, ZrC, and Y2O3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 degrees C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y2O3 do not form significant reaction layer between U20 wt.% Zr melt and the coating layer. Plasma-sprayed Y2O3 coating exhibited the most promising characteristics among HfN, TiC, ZrC, and Y2O3 coating.

K.H. Kim; C.T. Lee; C.B. Lee; R.S. Fielding; J.R. Kennedy

2013-10-01T23:59:59.000Z

92

Thermodynamic stability of oxide, nitride, and carbide coating materials in liquid Sn25Li  

E-Print Network [OSTI]

Thermodynamic stability of oxide, nitride, and carbide coating materials in liquid Sn­25Li S of various oxides, carbides, and nitrides in Sn­Li is estimated as a function of lithium composition K most of the studied nitrides, carbides, and some oxides were found to be stable (DrG > 0). However

Ghoniem, Nasr M.

93

Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for  

E-Print Network [OSTI]

Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology April 2013 Accepted 27 September 2013 Available online 8 October 2013 A B S T R A C T Graphene oxide (GO and uncoated Ti substrate. ? 2013 Elsevier Ltd. All rights reserved. 1. Introduction Graphene oxide (GO

Zheng, Yufeng

94

Arsenic remediation of drinking water using iron-oxide coated coal bottom ash  

E-Print Network [OSTI]

using Iron-oxide Coated Coal Ash. In Arsenic Contaminationarea to volume ratio of coal ash is 200 times greater than1 mm diameters and spherical coal ash particles with 5 ?m

MATHIEU, JOHANNA L.

2010-01-01T23:59:59.000Z

95

MCrAlY/TaC metal matrix composite coatings produced by electrospark deposition  

Science Journals Connector (OSTI)

MCrAlY/TaC metal matrix composite coatings with 10, 20 and 30 wt.% TaC have been successfully produced by electrospark deposition (ESD). The effects of TaC content...? columnar dendrite and large...

Yujiang Xie; Yanhong Yang; Mingsheng Wang

2013-04-01T23:59:59.000Z

96

Production of hard metal-like wear protection coatings by CO2 laser cladding  

Science Journals Connector (OSTI)

Protective coatings with hard metal-like wear properties could be obtained by laser beam surfacing of powder mixtures consisting of coarse-grained tungsten carbide and a nickel or cobalt hard alloy. The micros...

A. Techel; A. Luft; A. Mller; S. Nowotny

1995-12-01T23:59:59.000Z

97

Thermal contact conductance of metallic coated superconductor/copper interfaces at cryogenic temperatures  

E-Print Network [OSTI]

THERMAL CONTACT CONDUCTANCE OF METALLIC COATED SUPERCONDUCTOR/COPPER INTERFACES AT CRYOGENIC TEMPERATURES A Thesis by JAY MATTHEW OCHTERBECK Submitted to the 0%ce of Graduate Studies of Texas AJrM IJniversity in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1990 Major Subject: Mechanical Engineering THERMAL CONTACT CONDUCTANCE OF METALLIC COATED SUPERCONDUCTOR/COPPER INTERFACES AT CRYOGENIC TEMPERATURES A Thesis JA'r '(IATTHEW OCHTERBECK Approved...

Ochterbeck, Jay Matthew

2012-06-07T23:59:59.000Z

98

Structure, adhesion, and stability of metal/oxide and oxide/oxide interfaces  

SciTech Connect (OSTI)

Studies of structural, electronic, and chemical properties of metal/oxide and oxide/oxide interfaces were performed on well-defined interfaces that created by depositing ultra-thin potassium and aluminum films and their oxides onto single crystal TiO[sub 2] and NiO surfaces. Work focused on determining the structure, growth mechanisms, and morphologies of metal and oxide films as they are deposited an single crystal oxide surfaces using RHEED and atomic force microscopy probing electronic structure, bonding and chemical interactions at the interfaces using x-ray and uv photoelectron spectroscopies (XPS, UPS) and Auger electron spectroscopy (AES), and understanding factors affecting stability and reactivity of the interface regions including the role of defects and impurities. Results indicate that kinetic effects have an important influence on interface structure and composition, and they also show that defects in the oxide substrate induce new electronic states at the interface which play a major role in cation-anion bonding and interface interactions. The results establish a link between electronic and chemical bonding properties and the interface structure and morphology, which is required to successfully manipulate the interfacial properties of advanced ceramic materials.

Lad, R.J.

1992-11-01T23:59:59.000Z

99

Transition metal-promoted oxygen ion conductors as oxidation catalyst  

SciTech Connect (OSTI)

A novel metal oxide composite catalyst for the complete oxidation of carbon monoxide and hydrocarbons was prepared by combining oxygen ion conducting materials with active transition metals. The oxygen ion conductors used were typical fluorite-type oxides, such as ceria, zirconia, and others. Active base metal catalysts, such as copper, were used as additives to promote the catalytic properties of oxygen ion conductors. The intimate contact of the two kinds of materials gave rise to a highly active oxidation catalyst. On Cu-Ce-O composite catalysts, 95% of carbon monoxide was oxidized by air at {approximately} 100 C. Complete methane oxidation on the same catalyst took place at {approximately} 550 C. When the stoichiometric amount of sulfur dioxide was sued to oxidize carbon monoxide, 96% of sulfur dioxide was reduced to elemental sulfur at temperatures above 460 C with 99% of sulfur dioxide conversion. This type of composite catalyst also showed excellent resistance to water poisoning.

Liu, W.; Sarofim, A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Chemical Engineering; Flytzani-Stephanopoulos, M. [Tufts Univ., Medford, MA (United States). Dept. of Chemical Engineering

1994-12-31T23:59:59.000Z

100

Examination of the platinum effect on the oxidation behavior ofnickel-aluminide coatings  

SciTech Connect (OSTI)

Oxidation resistant nickel-aluminide coatings are designed to develop a protective alumina scale during high temperature exposure. It is well established that platinum additions, typically about 6-8 at%, provide substantial improvements in oxidation resistance of such coatings, yet the nature of the platinum effect is still not fully understood. In this work, the oxidation behavior of two commercial NiAl and NiPtAl coatings deposited on the same Ni-base single crystal alloy CMSX-4 was analyzed. Cyclic and isothermal oxidation tests were conducted at 1150 C in air. Microstructure development and alumina/coating interface chemistry were studied as a function of oxidation time. Numerous voids developed at the Al{sub 2}O{sub 3}/NiAl interface, and sulfur was found to segregate at the void surfaces and at the contact interface, leading to spallation of the scale over the convex areas along ridges on the coating surface. The presence of platinum prevented sulfur segregation and void formation at the Al{sub 2}O{sub 3}/NiPtAl interface. As a result, the Al{sub 2}O{sub 3} scale on the NiPtAl coating remained adherent and virtually no spallation was observed even after prolonged cyclic oxidation.

Hou, Peggy Y.; Tolpygo, V.K.

2007-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Route to transition metal carbide nanoparticles through cyanamide and metal oxides  

SciTech Connect (OSTI)

We have designed an efficient route to the synthesis of transition metal carbide nanoparticles starting from an organic reagent cyanamide and transition metal oxides. Four technologically important metal carbide nanoparticles such as tungsten carbide, niobium carbide, tantalum carbide and vanadium carbide were synthesized successfully at moderate temperatures. It is found that cyanamide is an efficient carburization reagent and that the metal oxides are completely transmitted into the corresponding carbide nanoparticles. A possible mechanism is proposed to explain the results of the reaction between cyanamide and the metal oxides.

Li, P.G. [Department of Physics, Center for Optoelectronics Materials and Devices, Zhejiang Sci-Tech University, Xiasha College Park, Hangzhou 310018 (China)], E-mail: peigangiphy@yahoo.com.cn; Lei, M.; Tang, W.H. [Department of Physics, Center for Optoelectronics Materials and Devices, Zhejiang Sci-Tech University, Xiasha College Park, Hangzhou 310018 (China)

2008-12-01T23:59:59.000Z

102

Structure, adhesion, and stability of metal/oxide and oxide/oxide interfaces  

SciTech Connect (OSTI)

During the past six months, we have begun our studies of the fundamental properties of metal/oxide and oxide/oxide heterogeneous interfaces which are being prepared by epitaxial growth of ultra-thin-films on single crystal TiO{sub 2} and NiO surfaces. A new ultra-high vacuum film growth chamber was assembled and coupled to an existing surface analysis chamber; a sample transfer system, metal deposition sources, and a RHEED systems with microchannel plate detection were constructed and implemented. Atomic Force Microscopy was used to characterize and refine the preparation procedures for the single crystal surfaces. The electronic structure of stoichiometric, oxygen-deficient, and potassium-covered TiO{sub 2} (110) surfaces was investigated. Preliminary results on the Al/TiO{sub 2} (110) system have been obtained. Two graduate students have begun thesis research on the project. 6 figs.

Lad, R.J.

1991-01-01T23:59:59.000Z

103

Wear-resistant coatings formed on Zircaloy-2 by plasma electrolytic oxidation in sodium aluminate electrolytes  

Science Journals Connector (OSTI)

Abstract Plasma electrolytic oxidation of Zircaloy-2 has been investigated in dilute and concentrated aluminate electrolytes, under a pulsed-bipolar current regime, in order to develop coatings of high wear resistance. Coating growth kinetics, cell potential-time responses and discharging behaviours depend significantly on the electrolyte concentration. The coatings formed in dilute aluminate electrolyte reveal a three-layered structure, with pancake structures at the coating surfaces. Soft sparks occur during PEO in dilute aluminate electrolyte, causing a relatively fast growth of the inner layer and resulting in a large amount of alumina-enriched material beneath the pancake structures, and hence an increased wear resistance of the coating. In contrast, more homogenous coatings, free of pancakes, result with the concentrated electrolyte. The main phase in the coatings is t-ZrO2, with ?-Al2O3 also present in coatings formed in the latter electrolyte. The coatings formed in the concentrated electrolyte display a high wear resistance, even for thin coatings formed for short times, which is attributed to the relatively high alumina content of the coatings.

Yingliang Cheng; Jinhui Cao; Zhaomei Peng; Qun Wang; E. Matykina; P. Skeldon; G.E. Thompson

2014-01-01T23:59:59.000Z

104

Wear Behavior of Plasma-Sprayed Carbon Nanotube-Reinforced Aluminum Oxide Coating in Marine and High-Temperature Environments  

Science Journals Connector (OSTI)

Plasma-sprayed aluminum oxide (Al2O3) coatings offer excellent wear resistance, corrosion resistance, heat, and thermal...1-6...). These coatings have to operate under severe conditions, such as high load, high s...

Anup Kumar Keshri; Arvind Agarwal

2011-12-01T23:59:59.000Z

105

Graphene-coated tapered nanowire infrared probe: a comparison with metal-coated probes  

Science Journals Connector (OSTI)

We propose in this paper a graphene-coated tapered nanowire probe providing strong field enhancement in the infrared regimes. The analytical field distributions and characteristic...

Zhu, Bofeng; Ren, Guobin; Gao, Yixiao; Yang, Yang; Lian, Yudong; Jian, Shuisheng

2014-01-01T23:59:59.000Z

106

Method and apparatus for the production of metal oxide powder  

DOE Patents [OSTI]

The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Byers, Charles H. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

107

Method and apparatus for the production of metal oxide powder  

DOE Patents [OSTI]

The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Byers, Charles H. (Oak Ridge, TN)

1992-01-01T23:59:59.000Z

108

Method and apparatus for the production of metal oxide powder  

DOE Patents [OSTI]

The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed. 2 figs.

Harris, M.T.; Scott, T.C.; Byers, C.H.

1992-06-16T23:59:59.000Z

109

Reduction of Sintering during Annealing of FePt Nanoparticles Coated with Iron Oxide  

E-Print Network [OSTI]

are first obtained by reduction of iron(III) acetylacetonate and platinum(II) acetylacetonateReduction of Sintering during Annealing of FePt Nanoparticles Coated with Iron Oxide Chao LiuVised Manuscript ReceiVed October 12, 2004 FePt/iron oxide core/shell nanoparticles are synthesized by a two step

Laughlin, David E.

110

Solution Ionic Strength Engineering as a Generic Strategy to Coat Graphene Oxide (GO)  

E-Print Network [OSTI]

Solution Ionic Strength Engineering as a Generic Strategy to Coat Graphene Oxide (GO) on Various Functional Particles and Its Application in High-Performance Lithium- Sulfur (Li-S) Batteries Jiepeng Rong Angeles, California 90089, United States Graphene oxide (GO) synthesis GO used in this study was prepared

Zhou, Chongwu

111

Developing TiAIN Coatings for Intermediate Temperature-Solid Oxide Fuel Cell Interconnect Applications  

SciTech Connect (OSTI)

TiN-type coatings have potential to be used as SOFC interconnect coatings SOFC because of their low resistance and high temperature stability. In this research, various (Ti,Al)N coatings were deposited on stainless steels by filtered-arc method. ASR and XRD tests were conducted on these coatings, and SEM/EDAX analysis were conducted after ASR and XRD tests. SEM/EDAX analyses show that (Ti,Al)N remains stable at temperature up to 700C. It is also indicated that Al has beneficial effect on the stability of TiN type coatings. At 900C, (Ti-30Al)N is fully oxidized and some of (Ti-50Al)N coating still remains as nitride. The analyses on cross-sectional samples show that these coatings are effective barrier to the Cr migration. In summary, (Ti.Al)N coatings are good candidates for the SOFC interconnect applications at 700C. The future directions of this research are to improve the stability of these coatings by alloy-doping and to develop multi-layer coatings.

Liu, X. (West Virginia University); Johnson, C.D.; Li, C. (West Virginia University); Xu, J. (West Virginia University); Cross, C.

2007-02-01T23:59:59.000Z

112

Method of physical vapor deposition of metal oxides on semiconductors  

DOE Patents [OSTI]

A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

Norton, David P. (Knoxville, TN)

2001-01-01T23:59:59.000Z

113

Plutonium metal and oxide container weld development and qualification  

SciTech Connect (OSTI)

Welds were qualified for a container system to be used for long-term storage of plutonium metal and oxide. Inner and outer containers are formed of standard tubing with stamped end pieces gas-tungsten-arc (GTA) welded onto both ends. The weld qualification identified GTA parameters to produce a robust weld that meets the requirements of the Department of Energy standard DOE-STD-3013-94, ``Criteria for the Safe Storage of Plutonium Metals and Oxides.``

Fernandez, R.; Horrell, D.R.; Hoth, C.W.; Pierce, S.W.; Rink, N.A.; Rivera, Y.M.; Sandoval, V.D.

1996-01-01T23:59:59.000Z

114

Inert electrode containing metal oxides, copper and noble metal  

DOE Patents [OSTI]

A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

2001-01-01T23:59:59.000Z

115

Inert electrode containing metal oxides, copper and noble metal  

DOE Patents [OSTI]

A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

2000-01-01T23:59:59.000Z

116

Enhanced Half-Metallicity in Edge-Oxidized Zigzag Graphene  

E-Print Network [OSTI]

Enhanced Half-Metallicity in Edge-Oxidized Zigzag Graphene Nanoribbons Oded Hod,* Vero´nica Barone theoretical study of the electronic properties and relative stabilities of edge-oxidized zigzag graphene with nanometer scale dimen- sions. Recently, a new type of graphene-based material was experimentally realized.12

Hod, Oded

117

Metal-oxide-based energetic materials and synthesis thereof  

DOE Patents [OSTI]

A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite. Other ingredients may be added to this basic nanostructure to change physical and chemical properties, which include organic constituents for binders or gas generators during reactions, burn rate modifiers, or spectral emitters.

Tillotson, Thomas M. (Tracy, CA), Simpson; Randall L. (Livermore, CA); Hrubesh, Lawrence W. (Pleasanton, CA)

2006-01-17T23:59:59.000Z

118

Coated graphite articles useful in metallurgical processes and method for making same  

DOE Patents [OSTI]

Graphite articles including crucibles and molds used in metallurgical processes involving the melting and the handling of molten metals and alloys that are reactive with carbon when in a molten state and at process temperatures up to about 2000.degree. C. are provided with a multiple-layer coating for inhibiting carbon diffusion from the graphite into the molten metal or alloys. The coating is provided by a first coating increment of a carbide-forming metal on selected surfaces of the graphite, a second coating increment of a carbide forming metal and a refractory metal oxide, and a third coating increment of a refractory metal oxide. The second coating increment provides thermal shock absorbing characteristics to prevent delamination of the coating during temperature cycling. A wash coat of unstabilized zirconia or titanium nitride can be applied onto the third coating increment to facilitate release of melts from the coating.

Holcombe, Cressie E. (Knoxville, TN); Bird, Eugene L. (Knoxville, TN)

1995-01-01T23:59:59.000Z

119

Improving oxidation resistance and fracture strength of MgOC refractory material through precursor coating  

Science Journals Connector (OSTI)

Abstract An Al precursor was coated onto the surface of graphite in a MgOC refractory material to improve the oxidation resistance and the fracture strength by controlling the amount of antioxidant and the coating thickness. To enhance the coating efficiency, the surface of the graphite used as the carbon source was treated with an acid. In oxidation tests, the Al-coated graphite showed a smaller weight loss than the pristine graphite. The MgOC refractory material with the Al-coated graphite showed a similar fracture strength to that with commercial graphite, despite the use of a smaller amount of antioxidant. The highest fracture strength of the MgOC refractory material was about 17MPa; it was obtained with the Al-coated graphite. The increase in fracture strength was a result of the homogeneos coating of Al precursor in the modified MgO-C refractory material. Based on the properties observed, we discuss the relationship between fracture strength and process parameters.

Geun-Ho Cho; Eun-Hee Kim; Yeon-Gil Jung; Yun-Ki Byeun

2014-01-01T23:59:59.000Z

120

Pentek metal coating removal system: Baseline report; Greenbook (chapter)  

SciTech Connect (OSTI)

The Pentek coating removal technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The Pentek coating removal system consisted of the ROTO-PEEN Scaler, CORNER-CUTTER{reg_sign}, and VAC-PAC{reg_sign}. They are designed to remove coatings from steel, concrete, brick, and wood. The Scaler uses 3M Roto Peen tungsten carbide cutters while the CORNER-CUTTER{reg_sign} uses solid needles for descaling activities. These hand tools are used with the VAC-PAC{reg_sign} vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure minimal, but noise exposure was significant. Further testing for each exposure is recommended because of the environment where the testing demonstration took place. It is feasible that the dust and noise levels will be higher in an enclosed operating environment of different construction. In addition, other areas of concern found were arm-hand vibration, whole-body, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

NONE

1997-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

MOS solar cells with oxides deposited by sol-gel spin-coating techniques  

SciTech Connect (OSTI)

The metal-oxide-semiconductor (MOS) solar cells with sol-gel derived silicon dioxides (SiO{sub 2}) deposited by spin coating are proposed in this study. The sol-gel derived SiO{sub 2} layer is prepared at low temperature of 450 Degree-Sign C. Such processes are simple and low-cost. These techniques are, therefore, useful for largescale and large-amount manufacturing in MOS solar cells. It is observed that the short-circuit current (I{sub sc}) of 2.48 mA, the open-circuit voltage (V{sub os}) of 0.44 V, the fill factor (FF) of 0.46 and the conversion efficiency ({eta}%) of 2.01% were obtained by means of the current-voltage (I-V) measurements under AM 1.5 (100 mW/cm{sup 2}) irradiance at 25 Degree-Sign C in the MOS solar cell with sol-gel derived SiO{sub 2}.

Huang, Chia-Hong, E-mail: chhuang@nknu.edu.tw [National Kaohsiung Normal University, Department of Electronic Engineering, Taiwan (China); Chang, Chung-Cheng [National Taiwan Ocean University, Department of Electrical Engineering, Taiwan (China); Tsai, Jung-Hui [National Kaohsiung Normal University, Department of Electronic Engineering, Taiwan (China)

2013-06-15T23:59:59.000Z

122

Silica coated magnetite nanoparticles for removal of heavy metal ions from polluted waters  

E-Print Network [OSTI]

Magnetic removal of Hg2+ and other heavy metal ions like Cd2+, Pb2+ etc. using silica coated magnetite particles from polluted waters is a current topic of active research to provide efficient water recycling and long term high quality water. The technique used to study the bonding characteristics of such kind of nanoparticles with the heavy metal ions is a very sensitive hyperfine specroscopy technique called the perturbed angular correlation technique (PAC).

Dash, Monika

2013-01-01T23:59:59.000Z

123

Metallic Materials in Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

Fe-Cr alloys with variations in chromium content and additions of different elements were studied for potential application in intermediate temperature Solid Oxide Fuel Cell (SOFC). Recently, a new type of FeC...

V. Shemet; J. Piron-Abellan; W.J. Quadakkers

2005-01-01T23:59:59.000Z

124

Corrosion behavior of TiZrNiCuBe metallic glass coatings synthesized by electrospark deposition  

Science Journals Connector (OSTI)

Abstract Electrospark deposition was applied to successfully deposit TiZrNiCuBe metallic glass coating on 304L stainless steel. The coating was fully amorphous with the thickness of ?380?m. The corrosion behavior was investigated in 1, 6 and 11.5mol/L HNO3. The optimal corrosion resistance was achieved in 6mol/L HNO3 for the coating. The corrosion mechanism was discussed based on the effect of the structural heterogeneity on the corrosion resistance. It was found that the heterogeneous surface structure deteriorated the corrosion resistance. We believe that the coating will find a wide range of applications for protecting working parks in corrosive environments.

Congbo Li; Dehua Chen; Weiwei Chen; Lu Wang; Dawei Luo

2014-01-01T23:59:59.000Z

125

Directed Assembly of PEGylated-Peptide Coatings for Infection-Resistant Titanium Metal  

E-Print Network [OSTI]

*, Departments of Biomedical Engineering and Chemistry, Boston UniVersity, Boston, Massachusetts 02215, Affinergy integration and performance of any implant, whether metal, plastic, or ceramic. A robust peptide-based coating) bacterial colonization. At the same time, the facile one-step modification process will facilitate the point

126

High emissivity coatings on titanium alloy prepared by micro-arc oxidation for high temperature application  

Science Journals Connector (OSTI)

Micro-arc oxidation coatings were prepared on Ti6Al4V alloy in...3PO4-based electrolyte with different additives such as FeSO4, Co(CH3COO)2, Ni(CH3COO)2, and K2ZrF6. The composition, structure, surface morphology...

H. Tang; Q. Sun; C. G. Yi; Z. H. Jiang; F. P. Wang

2012-03-01T23:59:59.000Z

127

Flame Synthesis of One-Dimensional Metal Oxide Nanomaterials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Synthesis of One-Dimensional Metal Oxide Nanomaterials Synthesis of One-Dimensional Metal Oxide Nanomaterials Alexei V. Saveliev Dept. of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA Robust, scalable, and energy efficient methods of nanomaterial synthesis are needed to meet the demands of current and potential applications. Flames have been successfully applied for the synthesis of metal oxide and ceramic nanopowders largely composed of spherical particles and their aggregates. In recent years, premixed and diffusion flames have been employed for the synthesis of 1-D carbon nanoforms such as carbon fibers and carbon nanotubes. The extension of flame methods to gas phase and solid support synthesis of 1-D inorganic nanoforms is of great interest and significance. This talk presents

128

Fabrication of Metal/Oxide Nanostructures by Anodization Processes for Biosensor, Drug Delivery and Supercapacitor Applications  

E-Print Network [OSTI]

applications of micro/nano structures; (2) novel processes to innovate anodic aluminum oxide nanotube template; (3) the supercapacitor applications of anodic titanium oxide. First, the extremely high surface area AAO coated microneedle and microneedle array...

Chen, Po-Chun

2014-01-13T23:59:59.000Z

129

Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof  

DOE Patents [OSTI]

Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

Perkins, John (Boulder, CO); Van Hest, Marinus Franciscus Antonius Maria (Lakewood, CO); Ginley, David (Evergreen, CO); Taylor, Matthew (Golden, CO); Neuman, George A. (Holland, MI); Luten, Henry A. (Holland, MI); Forgette, Jeffrey A. (Hudsonville, MI); Anderson, John S. (Holland, MI)

2010-07-13T23:59:59.000Z

130

Long-term oxidation behavior of spinel-coated ferritic stainless steel for solid oxide fuel cell interconnect applications  

SciTech Connect (OSTI)

Long-term tests (>8,000 hours) indicate that AISI 441 ferritic stainless steel coated with a Mn-Co spinel protection layer is a promising candidate material system for IT-SOFC interconnect applications. While uncoated AISI 441 showed a substantial increase in area-specific electrical resistance (ASR), spinel-coated AISI 441 exhibited much lower ASR values (11-13 mOhm-cm2). Formation of an insulating silica sublayer beneath the native chromia-based scale was not observed, and the spinel coatings reduced the oxide scale growth rate and blocked outward diffusion of Cr from the alloy substrate. The structure of the scale formed under the spinel coatings during the long term tests differed from that typically observed on ferritic stainless steels after short term oxidation tests. While short term tests typically indicate a dual layer scale structure consisting of a chromia layer covered by a layer of Mn-Cr spinel, the scale grown during the long term tests consisted of a chromia matrix with discrete regions of Mn-Cr spinel distributed throughout the matrix. The presence of Ti in the chromia scale matrix and/or the presence of regions of Mn-Cr spinel within the scale may have increased the scale electrical conductivity, which would explain the fact that the observed ASR in the tests was lower than would be expected if the scale consisted of pure chromia.

Stevenson, Jeffry W.; Yang, Zhenguo (Gary) [Gary; Xia, Guanguang; Nie, Zimin; Templeton, Joshua D.

2013-06-01T23:59:59.000Z

131

Nonprecious Metal Catalysts for Low Temperature Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

Nonprecious Metal Catalysts for Low Temperature Solid Oxide Fuel Cells ... Initial and final state geometries are found with standard geometry optimization, then a number of intermediate states are generated by interpolation of atomic positions. ... A special "metric" and a special "preconditioning" optimized for a plane-wave basis set will be introduced. ...

Timothy P. Holme; Fritz B. Prinz

2011-05-24T23:59:59.000Z

132

Metal complexes of substituted Gable porphyrins as oxidation catalysts  

DOE Patents [OSTI]

Transition metal complexes of Gable porphyrins having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

Lyons, James E. (Wallingford, PA); Ellis, Jr., Paul E. (Downingtown, PA); Wagner, Richard W. (Murrysville, PA)

1996-01-01T23:59:59.000Z

133

Metal complexes of substituted Gable porphyrins as oxidation catalysts  

DOE Patents [OSTI]

Transition metal complexes of Gable porphyrins are disclosed having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

Lyons, J.E.; Ellis, P.E. Jr.; Wagner, R.W.

1996-01-02T23:59:59.000Z

134

High Temperature Oxidation Behavior of gamma-Ni+gamma'-Ni3Al Alloys and Coatings Modified with Pt and Reactive Elements  

SciTech Connect (OSTI)

Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000 C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455 C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain {beta}-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al{sub 2}O{sub 3} scale at elevated temperatures. The drawbacks to the currently-used {beta}-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt + Hf-modified {gamma}-Ni + {gamma}-Ni{sub 3}Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase {gamma}-Ni and {gamma}{prime}-Ni{sub 3}Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al{sub 2}O{sub 3} formation by suppressing the NiO growth on both {gamma}-Ni and {gamma}{prime}Ni{sub 3}Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at lower temperatures ({approx}970 C) in the very early stage of oxidation. It was also inferred that Pt enhances the diffusive flux of aluminum from the substrate to the scale/alloy interface. Relatively low levels of hafnium addition to Pt-free {gamma}{prime}-Ni{sub 3}Al increased the extent of external NiO formation due to non-protective HfO{sub 2} formation. Accordingly, this effect intensified with increasing Hf content from 0.2 to 0.5 at.%.

Nan Mu

2007-12-01T23:59:59.000Z

135

Metal Oxide Nanoparticles as Bactericidal Agents  

Science Journals Connector (OSTI)

8 Magnesium oxide prepared through an aerogel procedure (AP-MgO)9 yields square and polyhedral shaped nanoparticles with diameters varying slightly around 4 nm, arranged in an extensive porous structure with considerable pore volume. ... Approximately 106 CFU (colony forming units) of bacteria or spores were deposited on water filtration membranes with pore size 0.45 ?m (Millipore Corp.). ... The filters were dried at ambient conditions for 30 min and then completely covered with 0.25 g of AP-MgO/X2 (X = Cl, Br, none). ...

Peter K. Stoimenov; Rosalyn L. Klinger; George L. Marchin; Kenneth J. Klabunde

2002-07-04T23:59:59.000Z

136

Reduction of Metal Oxides by Microwave Heating of Multi-walled...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reduction of Metal Oxides by Microwave Heating of Multi-walled Carbon Nanotubes Microwave heating of a metal oxide in the presence of multi-walled carbon nanotubes may result in...

137

Electrical excitation of colloidally synthesized quantum dots in metal oxide structures  

E-Print Network [OSTI]

This thesis develops methods for integrating colloidally synthesized quantum dots (QDs) and metal oxides in optoelectronic devices, presents three distinct light emitting devices (LEDs) with metal oxides surrounding a QD ...

Wood, Vanessa Claire

2010-01-01T23:59:59.000Z

138

Coatings for hot section gas turbine components  

Science Journals Connector (OSTI)

Components in the hot section of gas turbines are protected from the environment by oxidation-resistant coatings while thermal barrier coatings are applied to reduce the metal operating temperature of blades and vanes. The integrity of these protective coatings is an issue of major concern in current gas turbine designs. Premature cracking of the protective layer in oxidation-resistant coatings and of the interface in thermal barrier coating systems has become one of the life limiting factors of coated components in gas turbines. Following a brief overview of the state-of-the-art of coated material systems with respect to coating types and their status of application, the fracture mechanisms and mechanics of coated systems are presented and discussed.

J. Bressers; S. Peteves; M. Steen

2000-01-01T23:59:59.000Z

139

Effect of Micro-arc Oxidation Time on the Ca-P Coating Layer Properties Formed on Commercially Pure Titanium  

Science Journals Connector (OSTI)

In the present study, the Ca-P coating layer on commercially pure titanium was fabricated using Micro-arc oxidation (MAO) method in electrolyte for osteointegrative ... size of micropores have increased with an i...

P. Katekaew; W. Veerasai; A. Aeimbhu

2010-01-01T23:59:59.000Z

140

Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings  

DOE Patents [OSTI]

A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J

2013-09-03T23:59:59.000Z

Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings  

DOE Patents [OSTI]

A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Ji, Xiaoyan (Jane); Day, Sumner D.; Blue, Craig A.; Rivard, John D. K.; Aprigliano, Louis F.; Kohler, Leslie K.; Bayles, Robert; Lemieux, Edward J.; Yang, Nancy; Perepezko, John H.; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J.

2013-07-09T23:59:59.000Z

142

Characterization of ceramic coating on ZK60 magnesium alloy prepared in a dual electrolyte system by micro-arc oxidation  

Science Journals Connector (OSTI)

Micro-arc oxidation (MAO) process was carried out in...2O4 and MgO are the main phases of ceramic coating obtained in the dual electrolyte system. The corrosion rate of coating prepared in the optimized dual elec...

Ze-Xin Wang; Wei-Gang Lv; Jing Chen; Sheng Lu

2013-10-01T23:59:59.000Z

143

Preparation of Al2O3/TiO2-containing Coating on Aluminium Alloys by Micro-arc Oxidation  

Science Journals Connector (OSTI)

TiO2-containing ceramic coatings were deposited on the surface of aluminium alloys by micro-arc oxidition. Surface and cross-section topograph of ceramic coating were observed using scanning electron microscopy (SEM). The phase composition of ceramic ... Keywords: Micro-arc oxidation, TiO2 additive, Al2O3/TiO2 phase, antiwear behavior

Cheng Gao; Jinyong Xu; Yusheng Lan; Yonghui Ma; Weixiang Su; Yajuan Liu

2010-03-01T23:59:59.000Z

144

Improved 3-omega measurement of thermal conductivity in liquid, gases, and powders using a metal-coated optical fiber  

Science Journals Connector (OSTI)

A novel 3?thermal conductivitymeasurement technique called metal-coated 3? is introduced for use with liquids gases powders and aerogels. This technique employs a micron-scale metal-coated glass fiber as a heater/thermometer that is suspended within the sample. Metal-coated 3? exceeds alternate 3? based fluid sensing techniques in a number of key metrics enabling rapid measurements of small samples of materials with very low thermal effusivity (gases) using smaller temperature oscillations with lower parasitic conduction losses. Its advantages relative to existing fluid measurement techniques including transient hot-wire steady-state methods and solid-wire 3? are discussed. A generalized n-layer concentric cylindrical periodic heating solution that accounts for thermal boundary resistance is presented. Improved sensitivity to boundary conductance is recognized through this model. Metal-coated 3? was successfully validated through a benchmark study of gases and liquids spanning two-orders of magnitude in thermal conductivity.

Scott N. Schiffres; Jonathan A. Malen

2011-01-01T23:59:59.000Z

145

On-line coating of glass with tin oxide by atmospheric pressure chemical vapor deposition.  

SciTech Connect (OSTI)

Atmospheric pressure chemical vapor deposition (APCVD) of tin oxide is a very important manufacturing technique used in the production of low-emissivity glass. It is also the primary method used to provide wear-resistant coatings on glass containers. The complexity of these systems, which involve chemical reactions in both the gas phase and on the deposition surface, as well as complex fluid dynamics, makes process optimization and design of new coating reactors a very difficult task. In 2001 the U.S. Dept. of Energy Industrial Technologies Program Glass Industry of the Future Team funded a project to address the need for more accurate data concerning the tin oxide APCVD process. This report presents a case study of on-line APCVD using organometallic precursors, which are the primary reactants used in industrial coating processes. Research staff at Sandia National Laboratories in Livermore, CA, and the PPG Industries Glass Technology Center in Pittsburgh, PA collaborated to produce this work. In this report, we describe a detailed investigation of the factors controlling the growth of tin oxide films. The report begins with a discussion of the basic elements of the deposition chemistry, including gas-phase thermochemistry of tin species and mechanisms of chemical reactions involved in the decomposition of tin precursors. These results provide the basis for experimental investigations in which tin oxide growth rates were measured as a function of all major process variables. The experiments focused on growth from monobutyltintrichloride (MBTC) since this is one of the two primary precursors used industrially. There are almost no reliable growth-rate data available for this precursor. Robust models describing the growth rate as a function of these variables are derived from modeling of these data. Finally, the results are used to conduct computational fluid dynamic simulations of both pilot- and full-scale coating reactors. As a result, general conclusions are reached concerning the factors affecting the growth rate in on-line APCVD reactors. In addition, a substantial body of data was generated that can be used to model many different industrial tin oxide coating processes. These data include the most extensive compilation of thermochemistry for gas-phase tin-containing species as well as kinetic expressions describing tin oxide growth rates over a wide range of temperatures, pressures, and reactant concentrations.

Allendorf, Mark D.; Sopko, J.F. (PPF Industries, Pittsburgh, PA); Houf, William G.; Chae, Yong Kee; McDaniel, Anthony H.; Li, M. (PPF Industries, Pittsburgh, PA); McCamy, J.W. (PPF Industries, Pittsburgh, PA)

2006-11-01T23:59:59.000Z

146

Cyclic catalytic upgrading of chemical species using metal oxide materials  

DOE Patents [OSTI]

Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01metal oxides.

White, James H; Schutte, Erick J; Rolfe, Sara L

2013-05-07T23:59:59.000Z

147

Influence of uranium hydride oxidation on uranium metal behaviour  

SciTech Connect (OSTI)

This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

2013-07-01T23:59:59.000Z

148

Preparation and evaluation of novel hydrous metal oxide (HMO)-supported noble metal catalysts  

SciTech Connect (OSTI)

Hydrous Metal Oxides (HMOs) are chemically synthesized materials that, because of their high cation exchange capacity, possess a unique ability to allow the preparation of highly dispersed supported-metal catalyst precursors with high metal loadings. This study evaluates high weight loading Rh/HMO catalysts with a wide range of HMO support compositions, including hydrous titanium oxide (HTO), silica-doped hydrous titanium oxide (HTO:Si), hydrous zirconium oxide (HZO), and silica-doped hydrous zirconium oxide (HZO:Si), against conventional oxide-supported Rh catalysts with similar weight loadings and support chemistries. Catalyst activity measurements for a structure-sensitive model reaction (n-butane hydrogenolysis) as a function of catalyst activation conditions show superior activity and stability for the ZrO{sub 2}, HZO, and HZO:Si supports, although all of the Rh/HMO catalysts have high ethane selectivity indicative of high Rh dispersion. For the TiO{sub 2}-, HTO-, and HTO:Si supported Rh catalysts, a significant loss of both catalyst activity and Rh dispersion is observed at more aggressive activation conditions, consistent with TiO{sub x} migration associated with SMSI phenomena. Of all the Rh/HMO catalysts, the Rh/HZO:Si catalysts appear to offer the best tradeoff in terms of high Rh dispersion, high activity, and high selectivity.

Gardner, T.J.; McLaughlin, L.I.; Evans, L.R. [Sandia National Labs., Albuquerque, NM (United States). Catalysis and Chemical Technologies Dept.; Datye, A.K. [Univ. of New Mexico, Albuquerque, NM (United States)

1998-04-01T23:59:59.000Z

149

Reaction, transformation and delamination of samarium zirconate thermal barrier coatings  

E-Print Network [OSTI]

cycling between 100 and 1100 °C. This cycling eventually led to delamination of the coatings, with failure thick (50­100 m) metallic "bond coat" applied to the turbine airfoil alloy to slow the kinetics of oxidation and promote TGO adherence. The bond coat has a high aluminum concentration to promote slow

Wadley, Haydn

150

Mechanism for high hydrogen storage capacity on metal-coated carbon nanotubes: A first principle analysis  

SciTech Connect (OSTI)

The hydrogen adsorption and binding mechanism on metals (Ca, Sc, Ti and V) decorated single walled carbon nanotubes (SWCNTs) are investigated using first principle calculations. Our results show that those metals coated on SWCNTs can uptake over 8 wt% hydrogen molecules with binding energy range -0.2--0.6 eV, promising potential high density hydrogen storage material. The binding mechanism is originated from the electrostatic Coulomb attraction, which is induced by the electric field due to the charge transfer from metal 4s to 3d. Moreover, we found that the interaction between the H{sub 2}-H{sub 2} further lowers the binding energy. - Graphical abstract: Five hydrogen molecules bound to individual Ca decorated (8, 0) SWCNT : a potential hydrogen-storage material. Highlights: Black-Right-Pointing-Pointer Each transition metal atom can adsorb more than four hydrogen molecules. Black-Right-Pointing-Pointer The interation between metal and hydrogen molecule is electrostatic coulomb attraction. Black-Right-Pointing-Pointer The electric field is induced by the charge transfer from metal 4s to metal 3d. Black-Right-Pointing-Pointer The adsorbed hydrogen molecules which form supermolecule can further lower the binding energy.

Lu, Jinlian; Xiao, Hong [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)] [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China); Cao, Juexian, E-mail: jxcao@xtu.edu.cn [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)] [Department of Physics and Institute for nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan Province 411105 (China)

2012-12-15T23:59:59.000Z

151

Strengthening of metallic alloys with nanometer-size oxide dispersions  

DOE Patents [OSTI]

Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.

Flinn, John E. (Idaho Falls, ID); Kelly, Thomas F. (Madison, WI)

1999-01-01T23:59:59.000Z

152

Strengthening of metallic alloys with nanometer-size oxide dispersions  

DOE Patents [OSTI]

Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains. 20 figs.

Flinn, J.E.; Kelly, T.F.

1999-06-01T23:59:59.000Z

153

Lithium Metal Oxide Electrodes For Lithium Cells And Batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

2004-01-20T23:59:59.000Z

154

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Oakbrook, IL)

2008-12-23T23:59:59.000Z

155

Performance and degradation of metal-supported solid oxide fuel cells with impregnated electrodes  

Science Journals Connector (OSTI)

Abstract Metal-supported solid oxide fuel cells (MS-SOFCs) containing porous 430L stainless steel supports, YSZ electrolytes and porous YSZ cathode backbones are fabricated by tape casting, laminating and co-firing in a reducing atmosphere. Nano-scale Ni and La0.6Sr0.4Fe0.9Sc0.1O3?? (LSFSc) coatings are impregnated onto the internal surfaces of porous 430L and YSZ, acting as the anode and the cathode catalysts, respectively. The resulting MS-SOFCs exhibit maximum power densities of 193, 418, 636 and 907mWcm?2 at 650, 700, 750 and 800C, respectively. Nevertheless, a continuous degradation in the fuel cell performance is observed at 650C and 0.7V during a 200-hdurability measurement. Possible degradation mechanisms were discussed in detail.

Yucun Zhou; Xianshuang Xin; Junliang Li; Xiaofeng Ye; Changrong Xia; Shaorong Wang; Zhongliang Zhan

2014-01-01T23:59:59.000Z

156

Oxidation of Metals, Vol. 61, Nos. 3/4, April 2004 ( 2004) Thermal Conductivity, Phase Stability, and Oxidation  

E-Print Network [OSTI]

, and Oxidation Resistance of Y3Al5O12 (YAG)/Y2O3­ZrO2 (YSZ) Thermal-Barrier Coatings Y. J. Su, R. W. Trice,# K oxidation resistance while maintaining low thermal conductivity and good phase stability. Padture) is proposed. The objective of this work is to quantify the effect of YAG on thermal resistance, long

Trice, Rodney W.

157

Coatings  

Science Journals Connector (OSTI)

Microemulsification polymerization of styrene stabilized by a nonionic surfactant and reactive cosurfactant (E39), the measurement of ethoxylation in nonionic systems (E40), and the study of anionic polyurethane ionomer dispersants in water-soluble baking enamels (E41) were also reported during this period. ... Other applications of SEM included the characterization of paper coatings (J11), the degradation of epoxy aerosol can linings when exposed to fluorocarbon propellants (J12), the use of stainless steel as a protective pigment for steel structures (J13), the adhesion of an acrylic primer to pine (J14), and the wear behavior of coatings applied using accelerated electrospark deposition (J15). ...

Dennis G. Anderson

1999-03-09T23:59:59.000Z

158

Fretting Wear Study on Micro-Arc Oxidation TiO2 Coating on TC4 Titanium Alloys in Simulated Body Fluid  

Science Journals Connector (OSTI)

Tribological properties of TiO2 coatings synthesized by micro-arc oxidation (MAO) on the surface of TC4...2 coatings presented good tribological properties with lower friction coefficient in SBF. Less wear volume...

Guanghong Zhou; Hongyan Ding; Yue Zhang; Aihui Liu; Yuebin Lin

2010-12-01T23:59:59.000Z

159

METAL-MATRIX COMPOSITES AND THERMAL SPRAY COATINGS FOR EARTH MOVING MACHINES  

SciTech Connect (OSTI)

In the ninth quarter, investigations in steel matrix composites focused on characterization of abrasive wear and fracture test coupons in order to gain a better understanding of the material attributes contributing to the observed behavior in each test. Both the wear and fracture work found that the performance of the carbide cermet based composites was significantly affected by the dissolution of the hard particles and the elements added in hopes of discouraging dissolution. both thrusts focused on abrasive wear characterization. In abrasive wear this led to increase matrix hardness which increased wear resistance, however the fracture toughness of the composites were significantly reduced. In contrast, the oxide based composites demonstrated good fracture characteristics and the oxide particles provided superior protection to the high stress gouging wear imparted by pin-abrasion testing. For the thermal spray coating effort, modified coatings and fusing parameters were explored on simulated components. Significant improvements appear to have been achieved, and are demonstrated in the lack of observable cracking in the coatings. The abrasive wear characteristics of these components will be explored in the 10th quarter. An overview of the progress during the 9th quarter of this project is given below. Additional research details are provided in the limited rights appendix to this report.

D. Trent Weaver; Frank W. Zok; Carlos G. Levi; Matthew T. Kiser

2003-04-01T23:59:59.000Z

160

Rate-dependent deformation behavior of Zr-based metallic-glass coatings examined by nanoindentation.  

SciTech Connect (OSTI)

Zr-based metallic-glass coatings with micrometer-scale thickness are prepared by the radio-frequency magnetron-sputtering technique on silicon substrates. Using the load- and displacement-sensing nanoindentation technique, we have examined the dependence of their deformation behavior, especially the indentation hardness, on the strain rate and maximum indentation depth. For shallow indentation in which the substrate effect can be neglected, the increase of the penetration rate leads to the decrease of the hardness. This seemingly "negative" strain-rate-sensitivity is actually a result of the dependence of the degree of elastic deformation on the effective strain rate. The coating interface will block the shear-band propagation and promote the shear-band multiplication, so that the plastic flow is much easier to occur as the increase of the maximum penetration depth from a few percent of, to that comparable to, the coating thickness. We use a power-law viscoplastic constitutive relationship to illustrate key issues related to the indentation response of rate-dependent materials, while a phenomenological viscoplastic model with strain softening behavior is used to understand the unique features of the inhomogeneous deformation in metallic glasses. The scanning electron microscopy and atomic force microscopy are used to examine the shear bands and pileup around the indents.

Liu, F. X. [University of Tennessee, Knoxville (UTK); Gao, Yanfei [ORNL; Liaw, Peter K [University of Tennessee, Knoxville (UTK)

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Solution Ionic Strength Engineering As a Generic Strategy to Coat Graphene Oxide (GO) on Various Functional Particles and Its  

E-Print Network [OSTI]

in improving the properties of particle materials. KEYWORDS: Graphene oxide, sulfur, lithium-sulfur batteriesSolution Ionic Strength Engineering As a Generic Strategy to Coat Graphene Oxide (GO) on Various Functional Particles and Its Application in High-Performance Lithium-Sulfur (Li-S) Batteries Jiepeng Rong

Zhou, Chongwu

162

Mechanism-Based Testing Methodology for Improving the Oxidation, Hot Corrosion and Impact Resistance of High-Temperature Coatings for Advanced Gas Turbines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pittsburgh Pittsburgh University of Pittsburgh PIs: F. S. Pettit, G. H. Meier Subcontractor: J. L. Beuth SCIES Project 02- 01- SR101 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (05/01/02, 36 Month Duration + 6 mo No-Cost Extension) $ 458,420 Total Contract Value ($ 412,695 DOE) Mechanism-Based Testing Methodology For Improving the Oxidation, Hot Corrosion and Impact Resistance of High- Temperature Coatings for Advanced Gas Turbines University of Pittsburgh - Carnegie Mellon University University of Pittsburgh University of Pittsburgh In the next generation gas turbine, resistance to thermal cycling damage may be as important as resistance to long isothermal exposures. Moreover, metallic coatings and Thermal Barrier

163

ADVANCED ELECTRON BEAM TECHNIQUES FOR METALLIC AND CERAMIC PROTECTIVE COATING SYSTEMS  

E-Print Network [OSTI]

cobalt and chromium. Ceramic or thermal barrier coatings canin fuel usage. Also, ceramic or thermal barrier coatings~n Oslo developed ceramic or thermal barrier coatings that

Boone, Donald H.

2013-01-01T23:59:59.000Z

164

Wavelength- and thickness-independent optical coatings for integrated circuit metallization layers  

SciTech Connect (OSTI)

Detailed measurements have been made of the optical properties of sputtered tantalum silicide films on aluminum layers used in integrated circuit fabrication. This new multicomponent conductor (TaSi/sub x/ on aluminum), which is currently in use because of its exceptional electrical, physical, and chemical properties, was also found to have superior optical properties compared to aluminum alone. The addition of the thin silicide layers reduces both the total hemispherical and diffuse reflectance properties by up to 45% over the 265--800-nm wavelength range with almost no dependence on film thickness. Unlike other optical coatings used on metal layers in integrated circuit manufacturing, the silicide films do not need to be removed after photolithography and pattern transfer processes are completed: aluminum wire bonding from the completed circuit (with silicide coating) to the package is highly reliable and reproducible.

Draper, B.L.; Mahoney, A.R.; Bailey, G.A.

1987-12-01T23:59:59.000Z

165

Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: Homogeneous/inhomogeneous transition of current distribution  

Science Journals Connector (OSTI)

Exotic features of a metal/oxide/metal sandwich, which will be the basis for a drastically innovative nonvolatile memory device, is brought to light from a physical point of view. Here the insulator is one of the ubiquitous and classic binary-transition-metal oxides (TMO), such as Fe2O3, NiO, and CoO. The sandwich exhibits a resistance that reversibly switches between two states: one is a highly resistive off state and the other is a conductive on state. Several distinct features were universally observed in these binary TMO sandwiches: namely, nonpolar switching, nonvolatile threshold switching, and current-voltage duality. From the systematic sample-size dependence of the resistance in on and off states, we conclude that the resistance switching is due to the formation of electric faucet at the interface, which shows up as a homogeneous to inhomogeneous transition of the current distribution.

I. H. Inoue; S. Yasuda; H. Akinaga; H. Takagi

2008-01-03T23:59:59.000Z

166

Isothermal oxidation behavior of electrospark deposited MCrAlX-type coatings on a Ni-based superalloy  

Science Journals Connector (OSTI)

A MCrAlX-type coating has been prepared by electrospark deposition (ESD) and its isothermal oxidation behavior studied. The results indicate that deposition rate and surface roughness of the coatings increase with increasing spark pulse energy. A splattered porous morphology was observed in the surface layer, and underneath this, a uniform superfine columnar ? phase structure with a column width of about 0.6?m. When exposed at 1000C, ?-Al2O3 formed rapidly in the early oxidation stage. After 100h oxidation, a large amount of ?-Al2O3 was still present, and a dense and adherent, thin ?-Al2O3 scale had formed beneath it.

Yu-jiang Xie; Mao-cai Wang

2009-01-01T23:59:59.000Z

167

A Quantitative study of polymeric dispersant adsorption onto oxide-coated titania pigments  

Science Journals Connector (OSTI)

Polyacrylic acid salts and similar copolymers are used extensively in the coatings industry to disperse oxide-coated titania pigments. The effect of polymer adsorption onto the pigment can vary widely depending on polymer composition, pigment surface treatment, and solution properties such as pH and ionic strength. This investigation examines the effect of molecular weight on the adsorbed layer thickness and stabilizing action of polyacrylic acid dispersants. In order to understand the stabilization mechanism, a DLVO model was used in which the surface treatment layer of the pigment and the adsorbed layer thickness of the dispersant were taken into account. It was found that only this level of detail could account for the degree of stability found in pigment suspensions. Layer thickness and adsorption isotherms indicate that the dispersant molecules do not adsorb completely flat to the pigment surface but with enough loops and tails to provide some electrosteric stabilization.

Mark A Banash; Stuart G Croll

1999-01-01T23:59:59.000Z

168

Transition metal oxides deposited on rhodium and platinum: Surface chemistry and catalysis  

SciTech Connect (OSTI)

The surface chemistry and catalytic reactivity of transition metal oxides deposited on Rh and Pt substrates has been examined in order to establish the role of oxide-metal interactions in influencing catalytic activity. The oxides investigated included titanium oxide (TiOx), vanadium oxide (VOx), iron oxide (FeOx), zirconium oxide (ZrOx), niobium oxide (NbOx), tantalum oxide (TaOx), and tungsten oxide (WOx). The techniques used to characterize the sample included AES, XPS, LEED, TPD, ISS, and STM. After characterization of the surface in UHV, the sample was enclosed in an atmospheric reaction cell to measure the influence of the oxide deposits on the catalytic activity of the pure metal for CO and CO{sub 2} hydrogenation. The oxide deposits were found to strongly enhance the reactivity of the Rh foil. The rates of methane formation were promoted by up to 15 fold with the maximum in rate enhancement occurring at oxide coverages of approximately 0.5 ML. TiOx TaOx, and NbOx were the most effective promoters and were stable in the highest oxidation states during both reactions (compared to VOx, WOx, and FeOx). The trend in promoter effectiveness was attributed to the direct relationship between oxidation state and Lewis acidity. Bonding at the metal oxide/metal interface between the oxygen end of adsorbed CO and the Lewis acidic oxide was postulated to facilitate C-O bond dissociation and subsequent hydrogenation. 192 refs.

Boffa, A.B. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; [Lawrence Berkeley Lab., CA (United States). Materials Sciences Div.

1994-07-01T23:59:59.000Z

169

Magnetic properties of carbon-coated, ferromagnetic nanoparticles produced by a carbon-arc method  

E-Print Network [OSTI]

to generate carbon-coated transition metal (TM) and TM-carbide nanocrystallites. The magnetic nanocrystallites report here on the synthesis and separation of carbon-coated ferromagnetic transition metal (TM) and TM of transition metal oxide (TM=Fe, Co, and Ni) powder and a combination of graphite powder and graphite cement

McHenry, Michael E.

170

Magnetic preferential orientation of metal oxide superconducting materials  

DOE Patents [OSTI]

A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) exhibits superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities. The highly anisotropic diamagnetic susceptibility of the polycrystalline metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state. 4 figs.

Capone, D.W.; Dunlap, B.D.; Veal, B.W.

1990-07-17T23:59:59.000Z

171

Magnetic preferential orientation of metal oxide superconducting materials  

DOE Patents [OSTI]

A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state.

Capone, Donald W. (Bolingbrook, IL); Dunlap, Bobby D. (Bolingbrook, IL); Veal, Boyd W. (Downers Grove, IL)

1990-01-01T23:59:59.000Z

172

Electrodepositionof Metal Alloyand Mixed Oxide Films Usinga Single-PrecursorTetranuclearCopper-NickelComplex  

E-Print Network [OSTI]

Compositionally uniform mixed metals, metal oxides, and alloys are used extensively as corrosion protective and catalysts. I-~For example, nickel-containing oxides and alloys are used for oxidative protection of very. Although Cu-Ni alloy deposition has been stud- ied for many years, none of the previous approaches has led

Kounaves, Samuel P.

173

Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with metal-phenolic networks  

E-Print Network [OSTI]

Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and biolabeling. In this work we demonstrate a robust approach to surface functionalize individual nanodiamonds with metal-phenolic networks that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation suppresses the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications

Bray, Kerem; Gibson, Brant C; Shimoni, Olga; Aharonovich, Igor

2015-01-01T23:59:59.000Z

174

Interfacial oxide re-growth in thin film metal oxide III-V semiconductor systems  

SciTech Connect (OSTI)

The Al{sub 2}O{sub 3}/GaAs and HfO{sub 2}/GaAs interfaces after atomic layer deposition are studied using in situ monochromatic x-ray photoelectron spectroscopy. Samples are deliberately exposed to atmospheric conditions and interfacial oxide re-growth is observed. The extent of this re-growth is found to depend on the dielectric material and the exposure temperature. Comparisons with previous studies show that ex situ characterization can result in misleading conclusions about the interface reactions occurring during the metal oxide deposition process.

McDonnell, S.; Dong, H.; Hawkins, J. M.; Brennan, B.; Milojevic, M.; Aguirre-Tostado, F. S.; Zhernokletov, D. M.; Hinkle, C. L.; Kim, J.; Wallace, R. M.

2012-04-02T23:59:59.000Z

175

Cyclic catalytic upgrading of chemical species using metal oxide materials  

DOE Patents [OSTI]

Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having one of the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, or Fe; B''=Cu; 0.01

White, James H. (Boulder, CO); Schutte, Erick J. (Thornton, CO); Rolfe, Sara L. (Loveland, CO)

2010-11-02T23:59:59.000Z

176

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

2004-01-13T23:59:59.000Z

177

Corrosion resistant coating  

DOE Patents [OSTI]

A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

1997-08-19T23:59:59.000Z

178

Corrosion resistant coating  

DOE Patents [OSTI]

A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

Wrobleski, Debra A. (Los Alamos, NM); Benicewicz, Brian C. (Los Alamos, NM); Thompson, Karen G. (Orlando, FL); Bryan, Coleman J. (Merritt Island, FL)

1997-01-01T23:59:59.000Z

179

A Low Temperature Fully Lithographic Process For MetalOxide Field-Effect Transistors  

E-Print Network [OSTI]

We report a low temperature ( ~ 100 °C) lithographic method for fabricating hybrid metal oxide/organic field-effect transistors (FETs) that combine a zinc-indium-oxide (ZIO) semiconductor channel and organic, parylene, ...

Sodini, Charles G.

180

E-Print Network 3.0 - alkaline-earth metal oxides Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

differ in the nature of the angle... ). Weidner and Hamaya (1983) observed that the transition-metal oxides and the alkaline-earth oxides fail... ... Source: Price, G. David -...

Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Direct preparation of CaTi4 (PO4)6 coatings on the surface of titanium substrate by micro arc oxidation  

Science Journals Connector (OSTI)

CaTi4 (PO4)6...coatings was prepared on the surface of CP (commercially pure) Titanium substrate via micro arc oxidation in a newly designed electrolyte system. The preparation method micro arc oxidation, as wel...

Zhongwei Zhao; Shimei Wen

2007-12-01T23:59:59.000Z

182

Improvement in corrosion resistance of micro arc oxidation coating formed on AZ91D magnesium alloy via applying a nano-crystalline solgel layer  

Science Journals Connector (OSTI)

Although magnesium is used in many industries, it is reactive and requires protection against aggressive environments. In this study, oxide coating was formed on AZ91D magnesium alloy using micro-arc oxidation (M...

M. Laleh; Farzad Kargar; A. Sabour Rouhaghdam

2011-08-01T23:59:59.000Z

183

Synthesis of reduced graphene oxide/ZnO nanorods composites on graphene coated PET flexible substrates  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: ZnO nanorods synthesized on CVD-graphene and rGO surfaces, respectively. ZnO/CVD-graphene and ZnO/rGO form a distinctive porous 3D structure. rGO/ZnO nanostructures possibility in energy storage devices. - Abstract: In this work, reduced graphene oxide (rGO)/ZnO nanorods composites were synthesized on graphene coated PET flexible substrates. Both chemical vapor deposition (CVD) graphene and reduced graphene oxide (rGO) films were prepared following by hydrothermal growth of vertical aligned ZnO nanorods. Reduced graphene sheets were then spun coated on the ZnO materials to form a three dimensional (3D) porous nanostructure. The morphologies of the ZnO/CVD graphene and ZnO/rGO were investigated by SEM, which shows that the ZnO nanorods grown on rGO are larger in diameters and have lower density compared with those grown on CVD graphene substrate. As a result of fact, the rough surface of nano-scale ZnO on rGO film allows rGO droplets to seep into the large voids of ZnO nanorods, then to form the rGO/ZnO hierarchical structure. By comparison of the different results, we conclude that rGO/ZnO 3D nanostructure is more desirable for the application of energy storage devices.

Huang, Lei, E-mail: leihuang@shnu.edu.cn; Guo, Guilue; Liu, Yang; Chang, Quanhong; Shi, Wangzhou

2013-10-15T23:59:59.000Z

184

Development of metallic substrate supported planar solid oxide fuel cells fabricated by atmospheric plasma spraying  

Science Journals Connector (OSTI)

A planar solid oxide fuel cell (SOFC) consisting of a cell supported with a porous metallic substrate and a metallic separator has been developed. In the fabrication of the cell, anodes and electrolytes were form...

Shunji Takenoiri; Naruaki Kadokawa; Kazuo Koseki

2000-09-01T23:59:59.000Z

185

Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell  

DOE Patents [OSTI]

Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection.

Isenberg, Arnold O. (Forest Hills Boro, PA)

1987-01-01T23:59:59.000Z

186

High-throughput synthesis and characterization of vanadium mixed metal oxide pigments using synchroton radiation.  

E-Print Network [OSTI]

??UNA range of inorganic vanadium mixed metal oxides, with potential applications as inorganic pigments, have been synthesised and characterised in terms of their crystal structure, (more)

Russu, Sergio

2008-01-01T23:59:59.000Z

187

E-Print Network 3.0 - active complementary metal-oxide-semiconductor...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ion-implanted p and n dopants in germanium Summary: wavelength spectrum allowing optoelectronic integra- tion to enhance complementary-metal-oxide- semiconductor... lim- its in...

188

E-Print Network 3.0 - area metal-oxide-semiconductor electron...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

inversion layer mobility Joo-Hiuk Son,a) Seongtae... measured absorption of terahertz radiation pulses by metal-oxide-semiconductor MOS inversion layers... of the...

189

Project Profile: Thermochemical Heat Storage for CSP Based on Multivalent Metal Oxides  

Broader source: Energy.gov [DOE]

General Atomics (GA), under the Thermal Storage FOA, is developing a high-density thermochemical heat storage system based on solid metal oxides.

190

Synergistic MetalMetal Oxide Nanoparticles Supported Electrocatalytic Graphene for Improved Photoelectrochemical Glucose Oxidation  

Science Journals Connector (OSTI)

Panels a and b in Figure 1 depict the schematic representation of mechanism of glucose oxidation at the grapheneWO3Au hybrid membrane modified with glucose oxidase (GOD) enzyme. ... The efficiency improvement seems to be due to (1) the enhancement of electron transport through the TiO2 layer by inter-particle necking of primary TiO2 particles and (2) an increase in the recombination resistance at TiO2/QD/electrolyte interfaces by healing the surface states or managing the oxygen vacancies upon N-ion doping. ...

Anitha Devadoss; P. Sudhagar; Santanu Das; Sang Yun Lee; C. Terashima; K. Nakata; A. Fujishima; Wonbong Choi; Yong Soo Kang; Ungyu Paik

2014-03-09T23:59:59.000Z

191

Enrichment of Fe and Ni at metal and oxide grain boundaries in corroded Zircaloy-2  

Science Journals Connector (OSTI)

Atom probe tomography has been used to study for the first time the metaloxide interface region in Zircaloy-2. Segregation of Fe and Ni to both deformation-induced sub-grain boundaries in the metal and planar features in the oxide has been found. Apparently, the oxide inherits the chemistry of the sub-grain boundaries as the material oxidizes, which may have implications for the waterside corrosion kinetics of the alloy.

G. Sundell; M. Thuvander; H.-O. Andrn

2012-01-01T23:59:59.000Z

192

High surface area silicon carbide-coated carbon aerogel  

SciTech Connect (OSTI)

A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicone carbide, improved the thermal stability of the carbon aerogel.

Worsley, Marcus A; Kuntz, Joshua D; Baumann, Theodore F; Satcher, Jr, Joe H

2014-01-14T23:59:59.000Z

193

Total oxidation of carbon monoxide and methane over transition metal-fluorite oxide composite catalysts. I. Catalyst composition and activity  

SciTech Connect (OSTI)

A novel metal oxide composite catalyst for the total oxidation of carbon monoxide and methane was prepared by combining fluorite oxides with active transition metals. The fluorite oxides, such as ceria and zirconia, are oxygen-ion-conducting materials having catalytic properties usually at high temperatures. Active base metal catalysts, such as copper, were used as additives to promote the catalytic properties of these oxides. The contact of the two types of materials gave rise to a high active oxidation catalyst. At a space velocity of about 42,000 h{sup {minus}1}, complete carbon monoxide oxidation in air occurred at room temperature on the Au{sub 0.05}[Ce(La)]{sub 0.95}L{sub x} catalyst and at ca. 100{degrees}C on Cu-Ce-O composite catalysts. At the same space velocity, total oxidation of methane on the Cu-Ce-O catalyst doped with La{sub 2}O{sub 3} or SrO took place at ca. 550{degrees}C. The specific carbon monoxide oxidation activity of the Cu-Ce-O catalyst was several orders of magnitude higher than that of conventional copper-based catalysts and comparable or superior to platinum catalysts. This type of composite catalyst also showed excellent resistance to water vapor poisoning. The enhanced catalyst activity and stability resulted from strong interaction of the transition metal and fluorite oxide materials. 44 refs., 14 figs., 5 tabs.

Liu, W.; Flytzani-Stephanopoulos, F. [Tufts Univ., Medford, MA (United States)] [Tufts Univ., Medford, MA (United States)

1995-05-01T23:59:59.000Z

194

Arsenic remediation of drinking water using iron-oxide coated coal bottom  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Arsenic remediation of drinking water using iron-oxide coated coal bottom Arsenic remediation of drinking water using iron-oxide coated coal bottom ash Title Arsenic remediation of drinking water using iron-oxide coated coal bottom ash Publication Type Journal Article Year of Publication 2010 Authors Mathieu, Johanna L., Ashok J. Gadgil, Susan E. Addy, and Kristin Kowolik Journal Environmental Science and Health Keywords airflow and pollutant transport group, arsenic, bangladesh, coal bottom ash, drinking water, indoor environment department, water contaminants, water treatment Abstract We describe laboratory and field results of a novel arsenic removal adsorbent called 'Arsenic Removal Using Bottom Ash' (ARUBA). ARUBA is prepared by coating particles of coal bottom ash, a waste material from coal fired power plants, with iron (hydr)oxide. The coating process is simple and conducted at room temperature and atmospheric pressure. Material costs for ARUBA are estimated to be low (~$0.08 per kg) and arsenic remediation with ARUBA has the potential to be affordable to resource-constrained communities. ARUBA is used for removing arsenic via a dispersal-and-removal process, and we envision that ARUBA would be used in community-scale water treatment centers. We show that ARUBA is able to reduce arsenic concentrations in contaminated Bangladesh groundwater to below the Bangladesh standard of 50 ppb. Using the Langmuir isotherm (R2 = 0.77) ARUBA's adsorption capacity in treating real groundwater is 2.6×10-6 mol/g (0.20 mg/g). Time-to-90% (defined as the time interval for ARUBA to remove 90% of the total amount of arsenic that is removed at equilibrium) is less than one hour. Reaction rates (pseudo-second-order kinetic model, R2 ≥ 0.99) increase from 2.4×105 to 7.2×105 g mol-1 min-1 as the groundwater arsenic concentration decreases from 560 to 170 ppb. We show that ARUBA's arsenic adsorption density (AAD), defined as the milligrams of arsenic removed at equilibrium per gram of ARUBA added, is linearly dependent on the initial arsenic concentration of the groundwater sample, for initial arsenic concentrations of up to 1600 ppb and an ARUBA dose of 4.0 g/L. This makes it easy to determine the amount of ARUBA required to treat a groundwater source when its arsenic concentration is known and less than 1600 ppb. Storing contaminated groundwater for two to three days before treatment is seen to significantly increase ARUBA's AAD. ARUBA can be separated from treated water by coagulation and clarification, which is expected to be less expensive than filtration of micron-scale particles, further contributing to the affordability of a community-scale water treatment center

195

Studies on supported metal oxide-oxide support interactions (an incorporation model)  

SciTech Connect (OSTI)

XRD, XPS, SSIMS, LRS, and FT-IR are used to explore the valency, composition and structure of the dispersed metal oxide species on supports with different structures, i.e., on ceria and {gamma}-alumina. The results indicated that the dispersion of various ionic compounds are proceeded by the incorporation of the metal cations into the surface vacant sites on the support provided that the loading amounts of the compounds are not higher than their dispersion capacities. The key factors determining the dispersion capacities of the ionic compounds are: (1) the surface structure of the support which determines the size and number of the vacant sites available. (2) the valency of the dispersed ionic compound and the size of the anion, from which the shielding effect of the capping anion(s) can be evaluated, and (3) the sizes of the dispersed cations and the vacant sites on the surface, from which the sites can be used for incorporation can be identified. The Quantitative results deduced from the incorporation model and from the independent experiments are consistent, providing further evidence that the model captures the essentials of the interactions between the dispersed metal oxide and support.

Yi Chen; Lin Dong; Y.S. Jin; Bing Xu; Weijie Ji [Nanjing Univ. (China)

1996-12-31T23:59:59.000Z

196

Oxidation catalysts comprising metal exchanged hexaaluminate wherein the metal is Sr, Pd, La, and/or Mn  

DOE Patents [OSTI]

The present invention provides metal-exchanged hexaaluminate catalysts that exhibit good catalytic activity and/or stability at high temperatures for extended periods with retention of activity as combustion catalysts, and more generally as oxidation catalysts, that make them eminently suitable for use in methane combustion, particularly for use in natural gas fired gas turbines. The hexaaluminate catalysts of this invention are of particular interest for methane combustion processes for minimization of the generation of undesired levels (less than about 10 ppm) of NOx species. Metal exchanged hexaaluminate oxidation catalysts are also useful for oxidation of volatile organic compounds (VOC), particularly hydrocarbons. Metal exchanged hexaaluminate oxidation catalysts are further useful for partial oxidation, particularly at high temperatures, of reduced species, particularly hydrocarbons (alkanes and alkenes).

Wickham, David (Boulder, CO); Cook, Ronald (Lakewood, CO)

2008-10-28T23:59:59.000Z

197

Self assembled multi-layer nanocomposite of graphene and metal oxide materials  

DOE Patents [OSTI]

Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

2013-10-22T23:59:59.000Z

198

Self assembled multi-layer nanocomposite of graphene and metal oxide materials  

SciTech Connect (OSTI)

Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

2014-09-16T23:59:59.000Z

199

Development of a Plasma Arc Manufacturing Process and Machine to Create Metal Oxide Particles in Water From Wire Feedstock.  

E-Print Network [OSTI]

??A plasma arc erosion process can be used to create metal and metal oxide particles in the ultra-fine size range (<70 um). An electric arc (more)

George, Jonathan Alan 1983-

2010-01-01T23:59:59.000Z

200

Stabilization of Electrocatalytic Metal Nanoparticles at Metal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points. Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene...

Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Spray coated indium-tin-oxide-free organic photodiodes with PEDOT:PSS anodes  

SciTech Connect (OSTI)

In this paper we report on Indium Tin Oxide (ITO)-free spray coated organic photodiodes with an active layer consisting of a poly(3-hexylthiophen) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend and patterned poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) electrodes. External quantum efficiency and current voltage characteristics under illuminated and dark conditions as well as cut-off frequencies for devices with varying active and hole conducting layer thicknesses were measured in order to characterize the fabricated devices. 60% quantum efficiency as well as nearly four orders of magnitude on-off ratios have been achieved. Those values are comparable with standard ITO devices.

Schmidt, Morten, E-mail: morten.schmidt@nano.ei.tum.de; Falco, Aniello; Loch, Marius; Lugli, Paolo; Scarpa, Giuseppe [Institute for Nanoelectronics, Technical University of Munich, Arcisstr. 21, 80333 Munich (Germany)

2014-10-15T23:59:59.000Z

202

Short Metal Capillary Columns Packed with Polymer-Coated Fibrous Materials in High-Temperature Gas Chromatography  

Science Journals Connector (OSTI)

......along with the subsequent commercialization. However, only a limited...After the deac- tivation process, a bundle of heat-resistant...followed by the polymer-coating process onto the packed filaments...capillary The metal deactivation process was carried out according......

Yoshihiro Saito; Mitsuhiro Ogawa; Motohiro Imaizumi; Kazuhiro Ban; Akira Abe; Tsutomu Takeichi; Hiroo Wada; Kiyokatsu Jinno

203

Compliant alkali silicate sealing glass for solid oxide fuel cell applications: the effect of protective alumina coating on electrical stability in dual environment  

SciTech Connect (OSTI)

An alkali-containing silicate glass was recently proposed as a potential sealant for solid oxide fuel cells (SOFC). The glass contains appreciable amount of alkalis and retains its glassy microstructure at elevated temperatures over time. It is more compliant as compared to conventional glass-ceramics sealants and could potentially heal cracks during thermal cycling. In previous papers the thermal cycle stability, thermal stability and chemical compatibility were reported with yttria-stabilized zirconia (YSZ) electrolyte and YSZ-coated ferritic stainless steel interconnect. In this paper, we report the electrical stability of the compliant glass with aluminized AISI441 interconnect material under DC load in dual environment at 700-800oC. Apparent electrical resistivity was measured with a 4-point method for the glass sealed between two aluminized AISI441 metal coupons as well as plain AISI441 substrates. The results showed good electrical stability with the aluminized AISI441 substrate, while unstable behavior was observed for un-coated substrates. In addition, interfacial microstructure was examined with scanning electron microscopy and correlated with the measured resistivity results. Overall, the alumina coating demonstrated good chemical stability with the alkali-containing silicate sealing glass under DC loading.

Chou, Y. S.; Choi, Jung-Pyung; Stevenson, Jeffry W.

2012-12-01T23:59:59.000Z

204

Superconductors and Complex Transition Metal Oxides for Tunable THz Plasmonic Metamaterials  

SciTech Connect (OSTI)

The outline of this presentation are: (1) Motivation - Non-tunability of metal metamaterials; (2) Superconductors for temperature tunable metamaterials; (3) Ultrafast optical switching in superconductor metamaterials; (4) Controlling the conductivity with infrared pump beam; (5) Complex metal oxides as active substrates - Strontium Titanate; and (6) Conclusion. Conclusions are: (1) High Tc superconductors good for tunable and ultrafast metamaterials; (2) Large frequency and amplitude tunability in ultrathin superconductor films; (3) Such tunable properties cannot be accessed using metals; (4) Complex metal oxides can be used as active substrates - large tunability; (5) Complex oxides fail to address the issue of radiation losses in THz metamaterials.

Singh, Ranjan [Los Alamos National Laboratory; Xiong, Jie [Los Alamos National Laboratory; Azad, Md A. [Los Alamos National Laboratory; Yang, Hao [Los Alamos National Laboratory; Trugman, Stuart A. [Los Alamos National Laboratory; Jia, Quanxi [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory

2012-07-13T23:59:59.000Z

205

Competitive adsorption of (phosphorylated) ethoxylated styrene oxide polymer and polyacrylic acid on silica coated iron oxide pigment  

Science Journals Connector (OSTI)

Abstract The colloidal stabilization in waterbased paint is poorly understood due to its complexity in composition, usually containing mixtures of particles and of surface active agents (dispersants). In this study we make a step forward by analyzing the competitive adsorption of a few widely used dispersants on a typical inorganic pigment (70nm sized Fe2O3-based red pigment; surface treated with silica; negative zetapotential at pH?7). The supposition is that any particle type in paint needs sufficient adsorbed dispersant in order to be stable. Thus, we investigate, for two combinations of two dispersants, how they mutually affect their adsorption at that pigment. Also the single adsorption of these dispersants was investigated, thus in the absence of the other. The dispersants are an anionic, polyacrylic acid sodium salt (PANa; MW=15,000Da) in combination with a MW=1500Da blockcopolymer of styrene oxide (SO) and ethoxylene (EO), either or not endcapped by a phosphate group (P). The adsorption behavior was analyzed by size exclusion chromatography of the processed supernatant of the pigment dispersion. \\{PANa\\} and SOEOP adsorb for electrostatic reasons while SOEO has affinity only to an organic surface. \\{PANa\\} and SOEOP show regular single adsorption with a plateau starting at the critical micelle concentration (cmc). SOEO shows single adsorption only beyond its cmc based on the adsorption of full micelles. When in competition, with SO-EP-P/PANa the adsorption of SOEOP is lowered by ?65% while that of \\{PANa\\} is unchanged. With SOEO/PANa the surface active species behave like in single adsorption below the cmc, but beyond the cmc a complicated phase separation occurs that cannot be based on mixed micelles. The adsorption data of \\{PANa\\} are compromised by depletion of \\{PANa\\} from interstices between particles. The anionic dispersants adsorb to the silicium oxide coated iron oxide pigment with negative surface potential because of the presence of a pH dependent relatively small number of positive iron oxide surface sites.

Wim K. Wijting; Alexander van Reenen; Jozua Laven; Rolf A.T.M. van Benthem; Gijsbertus de With

2014-01-01T23:59:59.000Z

206

Copper-induced oxidative stress in three-spined stickleback : relationship with hepatic metal levels  

E-Print Network [OSTI]

contamination of aquatic ecosystems by heavy metals. Among them, copper is a widespread pollutant found, 1999). Although this metal is a required element, high concentrations appear to be toxic to freshwater1 Copper-induced oxidative stress in three-spined stickleback : relationship with hepatic metal

Paris-Sud XI, Université de

207

Speciation study of the heavy metals in commercially available recharge cards coatings in Nigeria and the health implication  

Science Journals Connector (OSTI)

Abstract This work assessed levels of heavy metals exposure from silver coatings of mobile phones recharge cards of three major companies (designated as A, B and C) with price denominations 100, 200 and 400 from companies A, B and C respectively, which were carefully scratched using a plastic scraper into a glass tube. The coatings were acid digested for total metal concentration, while speciation experiment for Mn, Cu, Cd and Pb was carried out. Total metals and speciation analysis were done using AAS and XRF techniques. The total metal concentration from XRF analysis was in the range: Ca (702140?g/g), K (204930?g/g), Sc (80270?g/g), Ti (153012,580?g/g), Fe (506660?g/g), Ni (202040?g/g), Cu (20850?g/g) and Zn (40460?g/g). Cr had the lowest concentration (10?g/g) in A ( 400) while Ti had the highest concentration (12,580?g/g) in C ( 500) for all the coatings analyzed. AAS and XRF results agreed closely except for Fe with higher concentration. A ( 100) contained high concentration of the metals compared with others. Speciation study identified Mn as the most mobile element when present in the environment.

Abolanle S. Adekunle; John A.O. Oyekunle; Suliat O. Baruwa; Aderemi O. Ogunfowokan; Eno E. Ebenso

2014-01-01T23:59:59.000Z

208

Comparative study of polyoxometalates and semiconductor metal oxides as catalyst. Photochemical oxidative degradation of thioethers  

SciTech Connect (OSTI)

The photochemical degradation of thioether substrates catalyzed by representative semiconductor metal oxides and sulfides (anatase TiO{sub 2}, SnO{sub 2}, cubic WO{sub 3}, and CdS) and photoredox-active early-transition-metal polyometalates (W{sub 10}O{sub 32}{sup 4{minus}}, PMo{sub 12}O{sub 40}{sup 3{minus}}, PW{sub 12}O{sub 40}{sup 3{minus}}, SiMo{sub 12}O{sub 40}{sup 4{minus}}, PV{sub 2}Mo{sub 10}O{sub 10}{sup 5{minus}}, and P{sub 2}W{sub 18}O{sub 62}{sup 6{minus}}) have been examined under both anaerobic and aerobic conditions. Under anaerobic conditions, all the semiconductors are completely ineffective at photochemically oxidizing or degrading the exemplary thioether substrate tetrahydrothiophene (THT) in the oxidatively resistant solvent acetonitrile. In contrast, all the homogeneous polyoxometalate systems under the same reaction condition, except the neutral tetra-n-butylammonium (Q) salt of PW{sub 12}O{sub 40}{sup 3{minus}}, are quite effective. The latter systems generate products derived from the carbon-based radical {alpha} to the sulfur atom and not sulfoxide or sulfone, the usual products of thioether oxidation by oxometal species. The rate for the most active anaerobic system, that involving the photochemical degradation of THT by Q{sub 4}W{sub 10}O{sub 32}, under optically dilute conditions, is first order in W{sub 10}O{sub 32} {sup 4{minus}} and light intensity and variable order in THT substrate. A rate law consistent with these data is given. Upon addition of O{sub 2}, TiO{sub 2} (with or without Pt(O)) becomes highly active, SnO{sub 2} becomes active, but WO{sub 3} and CdS remain inactive. Reactivity in thioether oxidation is dominated by the interactions of the semiconductors with O{sub 2} and O{sub 2}-derived intermediates; there is no correlation between reactivity and semiconductor band gap. Upon addition of O{sub 2}, all the polyoxometalate systems become more active. 29 refs., 4 figs., 3 tabs.

Chambers, R.C.; Hill, C.L. (Emory Univ., Atlanta, GA (United States))

1991-06-26T23:59:59.000Z

209

Regenerable MgO promoted metal oxide oxygen carriers for chemical looping combustion  

DOE Patents [OSTI]

The disclosure provides an oxygen carrier comprised of a plurality of metal oxide particles in contact with a plurality of MgO promoter particles. The MgO promoter particles increase the reaction rate and oxygen utilization of the metal oxide when contacting with a gaseous hydrocarbon at a temperature greater than about 725.degree. C. The promoted oxide solid is generally comprised of less than about 25 wt. % MgO, and may be prepared by physical mixing, incipient wetness impregnation, or other methods known in the art. The oxygen carrier exhibits a crystalline structure of the metal oxide and a crystalline structure of MgO under XRD crystallography, and retains these crystalline structures over subsequent redox cycles. In an embodiment, the metal oxide is Fe.sub.2O.sub.3, and the gaseous hydrocarbon is comprised of methane.

Siriwardane, Ranjani V.; Miller, Duane D.

2014-08-19T23:59:59.000Z

210

Oxidation of Slurry Aluminide Coatings on Cast Stainless Steel Alloy CF8C-Plus at 800oC in Water Vapor  

SciTech Connect (OSTI)

A new, cast austenitic stainless steel, CF8C-Plus, has been developed for a wide range of high temperature applications, including diesel exhaust components, turbine casings and turbocharger housings. CF8C-Plus offers significant improvements in creep rupture life and creep rupture strength over standard CF8C steel. However, at higher temperatures and in more aggressive environments, such as those containing significant water vapor, an oxidation-resistant protective coating will be necessary. The oxidation behavior of alloys CF8C and CF8C-Plus with various aluminide coatings were compared at 800oC in air plus 10 vol% water vapor. Due to their affordability, slurry aluminides were the primary coating system of interest, although chemical vapor deposition (CVD) and pack cementation coatings were also compared. Additionally, a preliminary study of the low cycle fatigue behavior of aluminized CF8C-Plus was conducted at 800oC. Each type of coating provided substantial improvements in oxidation behavior, with simple slurry aluminides showing very good oxidation resistance after 4,000 h testing in water vapor. Preliminary low cycle fatigue results indicated that thicker aluminide coatings degraded high temperature fatigue properties of CF8C-Plus, whereas thinner coatings did not. Results suggest that appropriately designed slurry aluminide coatings are a viable option for economical, long-term oxidation protection of austenitic stainless steels in water vapor.

Haynes, James A [ORNL; Armstrong, Beth L [ORNL; Dryepondt, Sebastien N [ORNL; Kumar, Deepak [ORNL; Zhang, Ying [Tennessee Technological University

2013-01-01T23:59:59.000Z

211

Reactivity of biogenic manganese oxide for metal sequestration and photochemistry: Computational solid state physics study  

SciTech Connect (OSTI)

Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.

Kwon, K.D.; Sposito, G.

2010-02-01T23:59:59.000Z

212

Oxidative Dissolution of Nickel Metal in Hydrogenated Hydrothermal Solutions  

SciTech Connect (OSTI)

A platinum-lined, flowing autoclave facility is used to investigate the solubility behavior of metallic nickel in hydrogenated ammonia and sodium hydroxide solutions between 175 and 315 C. The solubility measurements were interpreted by means of an oxidative dissolution reaction followed by a sequence of Ni(II) ion hydrolysis reactions: Ni(s) + 2H+(aq) = Ni2+(aq) + H2(g) and Ni{sup 2+}(aq) + nH{sub 2}O = Ni(OH){sub n}{sup 2-n}(aq) + nH{sup +}(aq) where n = 1 and 2. Gibbs energies associated with these reaction equilibria were determined from a least-squares analysis of the data. The extracted thermochemical properties ({Delta}fG{sup 0}, {Delta}fH{sup 0} and S{sup 0}) for Ni2{sup +}(aq), Ni(OH){sup +}(aq) and Ni(OH){sub 2}(aq) were found to be consistent with those determined in a previous solubility study of NiO/Ni(OH){sub 2} conducted in our laboratory. The thermodynamic basis of the Ni/NiO phase boundary in aqueous solutions is examined to show that Ni(s) is stable relative to NiO(s) in solutions saturated at 25 C with 1 atm H{sub 2} for temperatures below 309 C.

Ziemniak SE, Guilmette PA, Turcotte RA, Tunison HM

2007-03-27T23:59:59.000Z

213

Corrosion behavior of an HVOF-sprayed Fe3Al coating in a high-temperature oxidizing/sulfidizing environment  

SciTech Connect (OSTI)

An iron aluminide (Fe3Al) intermetallic coating was deposited onto a F22 (2.25Cr-1Mo) steel substrate using a JP-5000 high velocity oxy-fuel (HVOF) thermal spray system. The as-sprayed coating was examined by electron microscopy and X-ray diffraction and was characterized in terms of oxidation and adhesion. Fe3Al-coated steel specimens were exposed to a mixed oxidizing/sulfidizing environment at 500, 600, 700, and 800DGC for approximately seven days. The gaseous environment consisted of N2-10%CO-5%CO2-2%H2O-0.12%H2S (by volume). All specimens gained mass after exposure to the environment and the mass gains were found to be inversely proportional to temperature increases. Representative specimens exposed at each temperature were cross-sectioned and subjected to examination under a scanning electron microscope (SEM) and X-ray mapping. Results are presented in terms of corrosion weight gain and corrosion product formation. The purpose of the research presented here was to evaluate the effectiveness of an HVOF-sprayed Fe3Al coating in protecting a steel substrate exposed to a fossil energy environment.

Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, Margaret; Shrestha, S. (TWI Ltd.); Harvey, D. (TWI Ltd.)

2005-01-01T23:59:59.000Z

214

Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains  

DOE Patents [OSTI]

Transition metal complexes of meso-haloalkylporphyrins are disclosed, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides. 7 figs.

Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.; Bhinde, M.V.

1998-06-23T23:59:59.000Z

215

Near-infrared photodetector consisting of J-aggregating cyanine dye and metal oxide thin films  

E-Print Network [OSTI]

We demonstrate a near-infrared photodetector that consists of a thin film of the J-aggregating cyanine dye, U3, and transparent metal-oxide charge transport layers. The high absorption coefficient of the U3 film, combined ...

Osedach, Timothy P.

216

Low temperature lithographically patterned metal oxide transistors for large area electronics  

E-Print Network [OSTI]

Optically transparent, wide bandgap metal oxide semiconductors are a promising candidate for large-area electronics technologies that require lightweight, temperature-sensitive flexible substrates. Because these thin films ...

Wang, Annie I. (Annie I-Jen), 1981-

2011-01-01T23:59:59.000Z

217

Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains  

DOE Patents [OSTI]

Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides.

Wijesekera, Tilak (Glen Mills, PA); Lyons, James E. (Wallingford, PA); Ellis, Jr., Paul E. (Downingtown, PA); Bhinde, Manoj V. (Boothwyn, PA)

1998-01-01T23:59:59.000Z

218

A Study on the Deposition of Al2O3 Coatings on Polymer Substrates by a Plasma Spray/Micro-Arc Oxidation Two-Step Method  

Science Journals Connector (OSTI)

To increase the wear resistance of polymer matrix composites, alumina coatings were deposited on polymer substrates by a two-step method combining plasma spraying and micro-arc oxidation. The microstructures and ...

Guanhong Sun; Xiaodong He; Jiuxing Jiang; Yue Sun

2013-02-01T23:59:59.000Z

219

A study of the physical, chemical and biological properties of TiO2 coatings produced by micro-arc oxidation in a CaP-based electrolyte  

Science Journals Connector (OSTI)

In this work, a porous and homogeneous titanium dioxide layer was grown on commercially pure titanium substrate using a micro-arc oxidation (MAO) process and CaP-based...2 coatings were characterized by X-ray di...

Amanda dos Santos; Joyce R. Araujo

2014-07-01T23:59:59.000Z

220

Relative performance of alumina coatings prepared by micro arc oxidation and detonation gun spray on AA 6063 under plain fatigue and fretting fatigue loading  

Science Journals Connector (OSTI)

The present study compares the performance of alumina coatings prepared by two different methods (micro arc oxidation (MAO) and detonation gun (D-gun...2O3 and ?-Al2O3, D-gun sprayed coating contained ?-Al2O3 wit...

S. Ganesh Sundara Raman; B. Rajasekaran

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Method for estimation of the average local working temperatures and the residual resource of metal coatings of gas-turbine blades  

Science Journals Connector (OSTI)

A new method is proposed for estimation of the average local operating temperatures and the residual service life (resource) of protective MCrAlY metal coatings of gas-turbine blades after a certain time of opera...

P. G. Krukovskii; K. A. Tadlya

2007-05-01T23:59:59.000Z

222

Application of Neutron-Absorbing Structural-Amorphous metal (SAM) Coatings for Spent Nuclear Fuel (SNF) Container to Enhance Criticality Safety Controls  

E-Print Network [OSTI]

material amorphous an essential property for corrosion resistance andcorrosion resistance. Many of these materials can be appliedMaterial (HPCRM) 1 can be thermally applied as coating onto base metal to provide for corrosion resistance

2006-01-01T23:59:59.000Z

223

Inclined-substrate deposition of biaxially textured magnesium oxide thin films for YBCO coated conductors.  

SciTech Connect (OSTI)

Highly textured MgO films were grown by the inclined-substrate deposition (ISD) technique at a high deposition rate. A columnar grain with a roofing-tile-shaped surface was observed in these MgO films. X-ray pole figure, and {phi}- and {omega}-scan were used to characterize in-plane and out-of-plane textures. MgO films deposited when the incline angle {alpha} was 55 and 30 degrees exhibited the best in-plane and out-of-plane texture, respectively. High-quality YBCO films were epitaxially grown on ISD-MgO-buffered Hastelloy C substrates by pulsed laser deposition. {Tc}=88 K, with sharp transition, and j{sub c} values of {approx}2x10{sup 5} A/cm{sup 2} at 77 K in zero field were observed on films 5 mm wide and 1 cm long. This work has demonstrated that biaxially textured ISD MgO buffer layers deposited on metal substrates are excellent candidates for fabrication of high-quality YBCO coated conductors.

Ma, B.; Li, M.; Jee, Y. A.; Koritala, R. E.; Fisher, B. L.; Balachandran, U.; Energy Technology

2002-02-01T23:59:59.000Z

224

Synthesis and Oxidation Behavior of Nanocrystalline MCrA1Y Bond Coats  

E-Print Network [OSTI]

spraying gun passes can be critical for the oxidation behavior because of the inter-pass oxidation presence in HVOF

Ajdelsztajn, Leonardo; Tang, Feng; Picas, Josep; Kim, Geoge E.; Provenzano, Virgil; Schoenung, Julie M.

2002-01-01T23:59:59.000Z

225

Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators  

SciTech Connect (OSTI)

The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

1985-04-01T23:59:59.000Z

226

Emerging Applications of Liquid Metals Featuring Surface Oxides  

Science Journals Connector (OSTI)

Figure 4. 3D printing of free-standing liquid metal structures. ... Ladd, C.; So, J.-H.; Muth, J.; Dickey, M. D.3D Printing of Free Standing Liquid Metal Microstructures Adv. ... 3D Printing of Free Standing Liquid Metal Microstructures ...

Michael D. Dickey

2014-10-06T23:59:59.000Z

227

Characterization of metal oxide layers grown on CVD graphene  

SciTech Connect (OSTI)

Growth of a fully oxidized aluminum oxide layer with low surface roughness on graphene grown by chemical vapor deposition is demonstrated. This is accomplished by the deposition of a 0.2 nm thick titanium seed layer on the graphene prior to the deposition of the aluminum under ultra high vacuum conditions, which was subsequently oxidized. The stoichiometry and surface roughness of the oxide layers were measured for a range of titanium and aluminum depositions utilizing ex situ x-ray photoelectron spectrometry and atomic force microscopy. These fully oxidized films are expected to produce good dielectric layers for use in graphene based electronic devices.

Matsubayashi, Akitomo; Abel, Joseph; Prasad Sinha, Dhiraj; Lee, Ji Ung; LaBella, Vincent P. [College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, New York 12203 (United States)

2013-03-15T23:59:59.000Z

228

Arsenic remediation of drinking water using iron-oxide coated coal bottom ash  

SciTech Connect (OSTI)

We describe laboratory and field results of a novel arsenic removal adsorbent called 'Arsenic Removal Using Bottom Ash' (ARUBA). ARUBA is prepared by coating particles of coal bottom ash, a waste material from coal fired power plants, with iron (hydr)oxide. The coating process is simple and conducted at room temperature and atmospheric pressure. Material costs for ARUBA are estimated to be low (~;;$0.08 per kg) and arsenic remediation with ARUBA has the potential to be affordable to resource-constrained communities. ARUBA is used for removing arsenic via a dispersal-and-removal process, and we envision that ARUBA would be used in community-scale water treatment centers. We show that ARUBA is able to reduce arsenic concentrations in contaminated Bangladesh groundwater to below the Bangladesh standard of 50 ppb. Using the Langmuir isotherm (R2 = 0.77) ARUBA's adsorption capacity in treating real groundwater is 2.6x10-6 mol/g (0.20 mg/g). Time-to-90percent (defined as the time interval for ARUBA to remove 90percent of the total amount of arsenic that is removed at equilibrium) is less than one hour. Reaction rates (pseudo-second-order kinetic model, R2>_ 0.99) increase from 2.4x105 to 7.2x105 g mol-1 min-1 as the groundwater arsenic concentration decreases from 560 to 170 ppb. We show that ARUBA's arsenic adsorption density (AAD), defined as the milligrams of arsenic removed at equilibrium per gram of ARUBA added, is linearly dependent on the initial arsenic concentration of the groundwater sample, for initial arsenic concentrations of up to 1600 ppb and an ARUBA dose of 4.0 g/L. This makes it easy to determine the amount of ARUBA required to treat a groundwater source when its arsenic concentration is known and less than 1600 ppb. Storing contaminated groundwater for two to three days before treatment is seen to significantly increase ARUBA's AAD. ARUBA can be separated from treated water by coagulation and clarification, which is expected to be less expensive than filtration of micron-scale particles, further contributing to the affordability of a community-scale water treatment center.

MATHIEU, JOHANNA L.; GADGIL, ASHOK J.; ADDY, SUSAN E.A.; KOWOLIK, KRISTIN

2010-06-01T23:59:59.000Z

229

Thermal resistance of contact with oxidized metal surfaces  

Science Journals Connector (OSTI)

A model of an elementary heat channel is analyzed which simulates the ... is derived which describes the increment of contact resistance due to the presence of an oxide...

V. M. Popov; A. I. Krasnoborod'ko

1973-10-01T23:59:59.000Z

230

Inclined substrate deposition of magnesium oxide for YBCO-coated conductors.  

SciTech Connect (OSTI)

Thin films of YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) were grown on MgO buffered metallic substrates by pulsed laser deposition (PLD). The MgO buffer films, which provide the initial biaxial texture, had been grown on polished Hastelloy C276 (HC) tapes using inclined substrate deposition (ISD). The ISD process is promising for the fabrication of coated superconductor wires because it produces biaxially textured template films on nontextured substrate at high deposition rates. Biaxially aligned MgO films were deposited at deposition rates of 20 to 100 {angstrom}/sec. The buffer films were deposited on these template films before ablation of the YBCO films by PLD. The microstructure was studied by scanning electron microscopy and atomic force microscopy. X-ray pole figure analysis and {phi}- and {omega}-scans were used for texture characterization. Good in- and out-of-plane textures were observed on the ISD MgO films ({approx}1.5 {micro}m thick). The full width at half maximums were 9.2{sup o} for the MgO (002) {phi}-scan and 5.4{sup o} for the {omega}-scan. Cube-on-cube epitaxial growth of yttria-stabilized zirconia (YSZ) and ceria (CeO{sub 2}) films on the ISD MgO films was also achieved by PLD. A superconducting critical temperature of 90 K, with a sharp transition, and transport critical current density of >2.5 x 10{sup 5} A/cm{sup 2} were obtained on a 0.5-{micro}m-thick, 0.5-cm-wide, and 1-cm-long YBCO film with MgO buffer layer at 77 K in self-field.

Ma, B.; Li, M.; Fisher, B. L.; Koritala, R. E.; Dorris, S. E.; Maroni, V. A.; Balachandran, U.

2002-04-26T23:59:59.000Z

231

Plasmonic transparent conducting metal oxide nanoparticles and films for optical sensing applications  

DOE Patents [OSTI]

The disclosure relates to a method of detecting a change in a chemical composition by contacting a doped oxide material with a monitored stream, illuminating the doped oxide material with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The doped metal oxide has a carrier concentration of at least 10.sup.18/cm.sup.3, a bandgap of at least 2 eV, and an electronic conductivity of at least 10.sup.1 S/cm, where parameters are specified at a temperature of 25.degree. C. The optical response of the doped oxide materials results from the high carrier concentration of the doped metal oxide, and the resulting impact of changing gas atmospheres on that relatively high carrier concentration. These changes in effective carrier densities of conducting metal oxide nanoparticles are postulated to be responsible for the change in measured optical absorption associated with free carriers. Exemplary doped metal oxides include but are not limited to Al-doped ZnO, Sn-doped In.sub.2O.sub.3, Nb-doped TiO.sub.2, and F-doped SnO.sub.2.

Ohodnicki, Jr., Paul R; Wang, Congjun; Andio, Mark A

2014-01-28T23:59:59.000Z

232

Electronically conducting metal oxide nanoparticles and films for optical sensing applications  

DOE Patents [OSTI]

The disclosure relates to a method of detecting a change in a chemical composition by contacting a conducting oxide material with a monitored stream, illuminating the conducting oxide material with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The conducting metal oxide has a carrier concentration of at least 10.sup.17/cm.sup.3, a bandgap of at least 2 eV, and an electronic conductivity of at least 10.sup.-1 S/cm, where parameters are specified at the gas stream temperature. The optical response of the conducting oxide materials is proposed to result from the high carrier concentration and electronic conductivity of the conducting metal oxide, and the resulting impact of changing gas atmospheres on that relatively high carrier concentration and electronic conductivity. These changes in effective carrier densities and electronic conductivity of conducting metal oxide films and nanoparticles are postulated to be responsible for the change in measured optical absorption associated with free carriers. Exemplary conducting metal oxides include but are not limited to Al-doped ZnO, Sn-doped In.sub.2O.sub.3, Nb-doped TiO.sub.2, and F-doped SnO.sub.2.

Ohodnicki, Jr., Paul R.; Wang, Congjun; Andio, Mark A

2014-09-16T23:59:59.000Z

233

Photoelectron Imaging Spectroscopic Investigations of Transition Metal Silicides and Oxides.  

E-Print Network [OSTI]

??This dissertation presents the experimental progress in the use of photoelectron imaging spectroscopy to probe the electronic structure of negatively charged transition metal silicides and (more)

Gunaratne, K. Don

2012-01-01T23:59:59.000Z

234

Development of Cu1.3Mn1.7O4 spinel coating on ferritic stainless steel for solid oxide fuel cell interconnects  

Science Journals Connector (OSTI)

Abstract To protect solid oxide fuel cells (SOFCs) from chromium poisoning and to improve area specific resistance (ASR), Cu1.3Mn1.7O4 is thermally grown on AISI 430 ferritic stainless steel. The samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy equipped with energy dispersive spectroscopy (FESEM-EDS) and 4-probe ASR tests. The results show that the coating not only decreases the ASR considerably, but also acts as a barrier to mitigate the sub-scale growth and to prevent chromium migration through the coating and the cathode. The EDS analysis reveals that a mixed spinel region is formed between the coating and oxide scale after 500h oxidation at 750C causing a noticeable decrease in oxygen diffusivity through this layer and subsequent decline in sub-scale growth rate. The ASR of uncoated sample is measured to be 63.5m?cm2 after 500h oxidation, while the Cu1.3Mn1.7O4 spinel coated sample shows a value of 19.3m?cm2 representing ?70% reduction compared to the uncoated sample. It is proposed that the high electrical conductivity of Cu1.3Mn1.7O4 (140Scm?1), reduction of oxide scale growth, and good bonding between the coating and substrate contribute to the substantial ASR reduction for the coated sample.

N. Hosseini; M.H. Abbasi; F. Karimzadeh; G.M. Choi

2015-01-01T23:59:59.000Z

235

Hydrotreating studies involving NiMo/silica-doped hydrous titanium oxide (HTO:Si)-coated alumina catalysts  

SciTech Connect (OSTI)

For hydrotreating a petroleum-derived liquid feed at 400 C, LHSV = 2. 5 g/g{sub cat}/h, and 1500 psig hydrogen (H) pressure, both HDS and HDN activities were roughly equivalent for a name/TO:Si-coated Amocat catalyst and a commercial alumina-supported name catalyst (Amocat 1C). Superior HDN performance was exhibited by the name/TO: Si-coated Amocat catalyst at low H pressure (500 psig) and after H pressure cycling (1500-500-1500 psig) relative to Amocat 1C. Consistent with previous results obtained on a coal-derived liquid feed, the HDS/HDN results with the petroleum-derived liquid showed that the performance of the name/TO:Si-coated Amocat catalyst on an active metals weight basis exceeded the performance of Amocat 1C at all test conditions. The name/TO:Si-coated Amocat catalyst also showed potentially increased hydrogenation activity, increased resistance to deactivation, and increased yields of lower boiling point distillate fractions, although further work is needed.

Gardner, T.J.; Miller, J.E.; McLaughlin, L.I.; Trudell, D.E.

1996-07-01T23:59:59.000Z

236

Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content (HHC) - Fueled Turbines  

SciTech Connect (OSTI)

The overarching goal of this research program has been to evaluate the potential impacts of coal-derived syngas and high-hydrogen content fuels on the degradation of turbine hot-section components through attack of protective oxides and thermal barrier coatings. The primary focus of this research program has been to explore mechanisms underpinning the observed degradation processes, and connections to the combustion environments and characteristic non-combustible constituents. Based on the mechanistic understanding of how these emerging fuel streams affect materials degradation, the ultimate goal of the program is to advance the goals of the Advanced Turbine Program by developing materials design protocols leading to turbine hot-section components with improved resistance to service lifetime degradation under advanced fuels exposures. This research program has been focused on studying how: (1) differing combustion environments relative to traditional natural gas fired systems affect both the growth rate of thermally grown oxide (TGO) layers and the stability of these oxides and of protective thermal barrier coatings (TBCs); and (2) how low levels of fuel impurities and characteristic non-combustibles interact with surface oxides, for instance through the development of molten deposits that lead to hot corrosion of protective TBC coatings. The overall program has been comprised of six inter-related themes, each comprising a research thrust over the program period, including: (i) evaluating the role of syngas and high hydrogen content (HHC) combustion environments in modifying component surface temperatures, heat transfer to the TBC coatings, and thermal gradients within these coatings; (ii) understanding the instability of TBC coatings in the syngas and high hydrogen environment with regards to decomposition, phase changes and sintering; (iii) characterizing ash deposition, molten phase development and infiltration, and associated corrosive/thermo-chemical attack mechanisms; (iv) developing a mechanics-based analysis of the driving forces for crack growth and delamination, based on molten phase infiltration, misfit upon cooling, and loss of compliance; (v) understanding changes in TGO growth mechanisms associated with these emerging combustion product streams; and (vi) identifying degradation resistant alternative materials (including new compositions or bi-layer concepts) for use in mitigating the observed degradation modes. To address the materials stability concerns, this program integrated research thrusts aimed at: (1) Conducting tests in simulated syngas and HHC environments to evaluate materials evolution and degradation mechanisms; assessing thermally grown oxide development unique to HHC environmental exposures; carrying out high-resolution imaging and microanalysis to elucidate the evolution of surface deposits (molten phase formation and infiltration); exploring thermo-chemical instabilities; assessing thermo-mechanical drivers and thermal gradient effects on degradation; and quantitatively measuring stress evolution due to enhanced sintering and thermo-chemical instabilities induced in the coating. (2) Executing experiments to study the melting and infiltration of simulated ash deposits, and identifying reaction products and evolving phases associated with molten phase corrosion mechanisms; utilizing thermal spray techniques to fabricate test coupons with controlled microstructures to study mechanisms of instability and degradation; facilitating thermal gradient testing; and developing new materials systems for laboratory testing; (3) Correlating information on the resulting combustion environments to properly assess materials exposure conditions and guide the development of lab-scale simulations of material exposures; specification of representative syngas and high-hydrogen fuels with realistic levels of impurities and contaminants, to explore differences in heat transfer, surface degradation, and deposit formation; and facilitating combustion rig testing of materials test coupons.

Mumm, Daniel

2013-08-31T23:59:59.000Z

237

CHEMISTRY OF SO{sub 2} ON MODEL METAL AND OXIDE CATALYSTS: PHOTOEMISSION AND XANES STUDIES  

SciTech Connect (OSTI)

High-resolution synchrotron based photoemission and x-ray absorption spectroscopy have been used to study the interaction of SO{sub 2} with a series of metals and oxides. The chemistry of SO{sub 2} on metal surfaces is rich. At low coverages, the molecule fully decomposes into atomic S and O. At large coverages, the formation of SO{sub 3} and SO{sub 4} takes place. The following sequence was found for the reactivity of the metals towards SO{sub 2}: Pt {approx} Rh < Ru < Mo << Zn, Sn, Cs. Alloying can be useful for reducing the chemical affinity of a metal for SO{sub 2} and controlling S poisoning. Pd atoms bonded to Rh and Pt atoms bonded to Sn interact weakly with SO{sub 2}. In general, SO{sub 2} mainly reacts with the O centers of metal oxides. SO{sub 4} is formed on CeO{sub 2} and SO{sub 3} on ZnO. On these systems there is no decomposition of SO{sub 2}. Dissociation of the molecule is observed after introducing a large amount of Ce{sup 3+} sites in ceria, or after depositing Cu or alkali metals on the oxide surfaces. These promote the catalytic activity of the oxides during the destruction of SO{sub 2}.

RODRIGUEZ,J.A.; JIRSAK,T.; CHATURVEDI,S.; HRBEK,J.; FREITAG,A.; LARESE,J.Z.

2000-07-09T23:59:59.000Z

238

Fabrication of superconducting metal-oxide textiles by heating impregnated polymeric material in a weakly oxidizing atmosphere  

SciTech Connect (OSTI)

A process is described for producing crystalline fibers, textiles or shapes comprised of YBa[sub 2]Cu[sub 3]O[sub 7[minus]x] where x varies from about 0 to about 0.4, said process comprising: (a) impregnating a preformed organic polymeric material with three metal compounds to provide metal elements in said material in substantially the atomic ratio occurring in said YBa[sub 2]Cu[sub 3]O[sub 7[minus]x]; (b) heating said impregnated material in a weakly oxidizing atmosphere containing from about 0.05% to about 2% oxygen by volume to a temperature sufficiently high to at least partially pyrolize and oxidize said organic material and at least partially oxidize said metal compounds substantially without ignition of said organic material and without formation of a molten phase or reaching a decomposition temperature of said YBa[sub 2]Cu[sub 3]O[sub 7[minus]x]; and (c) cooling the resulting material in at least a moderately oxidizing atmosphere to room temperature so as to obtain said fibers, textiles or shapes.

Van den Sype, J.S.

1993-07-13T23:59:59.000Z

239

Perspectives on the metallic interconnects for solid oxide fuel cells  

Science Journals Connector (OSTI)

The various stages and progress in the development of interconnect materials for solid oxide fuel cells (SOFCs) over the last two decades are reviewed. The criteria for the application of materials as intercon...

Wei-zhong Zhu; Mi Yan

2004-12-01T23:59:59.000Z

240

Electrostatic Cooperativity of Hydroxyl Groups at Metal Oxide...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxide Surfaces. Abstract: The O-H bond distribution of hydroxyl groups at the 110 goethite (R-FeOOH) surface was investigated by molecular dynamics. This distribution was...

Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

High-temperature phase stability and tribological properties of laser clad Mo{sub 2}Ni{sub 3}Si/NiSi metal silicide coatings  

SciTech Connect (OSTI)

Mo{sub 2}Ni{sub 3}Si/NiSi wear-resistant metal silicide composite coatings consisting of Mo{sub 2}Ni{sub 3}Si primary dendrite and interdendritic Mo{sub 2}Ni{sub 3}Si/NiSi eutectic were fabricated on substrate of an austenitic stainless steel AISI321 by laser cladding using Ni-Mo-Si elemental powder blends. The high-temperature structural stability of the coating was evaluated by aging at 800 deg. C for 1-50 h. High-temperature sliding wear resistance of the as-laser clad and aged coatings was evaluated at 600 deg. C. Results indicate that the Mo{sub 2}Ni{sub 3}Si/NiSi metal silicides coating has excellent high temperature phase stability. No phase transformation except the dissolution of the eutectic Mo{sub 2}Ni{sub 3}Si and the corresponding growth of the Mo{sub 2}Ni{sub 3}Si primary dendrite and no elemental diffusion from the coating into the substrate were detected after aging the coating at 800 deg. C for 50 h. Aging of the coating at 800 deg. C leads to gradual dissolution of the interdendritic eutectic Mo{sub 2}Ni{sub 3}Si and subsequent formation of a dual-phase structure with equiaxed Mo{sub 2}Ni{sub 3}Si primary grains distributed in the NiSi single-phase matrix. Because of the strong covalent-dominated atomic bonds and high volume fraction of the ternary metal silicide Mo{sub 2}Ni{sub 3}Si, both the original and the aged Mo{sub 2}Ni{sub 3}Si/NiSi coating has excellent wear resistance under pin-on-disc high-temperature sliding wear test conditions, although hardness of the aged coating is slightly lower than that of the as-clad coating.

Lu, X.D. [Laboratory of Laser Materials Processing and Surface Engineering, School of Materials Science and Engineering, Beihang University (China); Wang, H.M. [Laboratory of Laser Materials Processing and Surface Engineering, School of Materials Science and Engineering, Beihang University (China)]. E-mail: wanghuaming@263.net

2004-10-18T23:59:59.000Z

242

The evaluation of the corrosion resistance of metallic substrates protected by a hydrophobic coating  

E-Print Network [OSTI]

. Consequently, one particular use for hydrophobic materials is in the area of corrosion protection. When applied as a coating material, hydrophobic polymers, theoretically, should provide excellent protection against corrosive environments. In order to ascertain...

Lee, Daniel G

2012-06-07T23:59:59.000Z

243

Structure, adhesion, and stability of metal/oxide and oxide/oxide interfaces. Technical progress report, August 1, 1992--July 31, 1993  

SciTech Connect (OSTI)

Studies of structural, electronic, and chemical properties of metal/oxide and oxide/oxide interfaces were performed on well-defined interfaces that created by depositing ultra-thin potassium and aluminum films and their oxides onto single crystal TiO{sub 2} and NiO surfaces. Work focused on determining the structure, growth mechanisms, and morphologies of metal and oxide films as they are deposited an single crystal oxide surfaces using RHEED and atomic force microscopy probing electronic structure, bonding and chemical interactions at the interfaces using x-ray and uv photoelectron spectroscopies (XPS, UPS) and Auger electron spectroscopy (AES), and understanding factors affecting stability and reactivity of the interface regions including the role of defects and impurities. Results indicate that kinetic effects have an important influence on interface structure and composition, and they also show that defects in the oxide substrate induce new electronic states at the interface which play a major role in cation-anion bonding and interface interactions. The results establish a link between electronic and chemical bonding properties and the interface structure and morphology, which is required to successfully manipulate the interfacial properties of advanced ceramic materials.

Lad, R.J.

1992-11-01T23:59:59.000Z

244

Development of Low-Oxide MCrAlY Coatings for Gas Turbine Applications  

Science Journals Connector (OSTI)

Advanced high-energy plasma systems are being used to achieve the benefits of the high-velocity oxy-fuel (HVOF) system without losing the inherent advantages of plasma for coating of gas turbine parts. MCrAlY ...

Bharat K. Pant; Vivek Arya; B. S. Mann

2007-06-01T23:59:59.000Z

245

Low refractive index silicon oxide coatings at room temperature using atmospheric-pressure very high-frequency plasma  

Science Journals Connector (OSTI)

Low refractive index silicon oxide films were deposited using atmospheric-pressure He/SiH4/CO2 plasma excited by a 150-MHz very high-frequency power. Significant increase in deposition rate at room temperature could prevent the formation of dense SiO2 network, decreasing refractive index of the resulting film effectively. As a result, a silicon oxide film with the lowest refractive index, n=1.24 at 632.8nm, was obtained with a very high deposition rate of 235nm/s. The reflectance and transmittance spectra showed that the low refractive index film functioned as a quarter-wave anti-reflection coating of a glass substrate.

H. Kakiuchi; H. Ohmi; Y. Yamaguchi; K. Nakamura; K. Yasutake

2010-01-01T23:59:59.000Z

246

Tar Reforming in Model Gasifier Effluents: Transition Metal/Rare Earth Oxide Catalysts  

Science Journals Connector (OSTI)

Tar Reforming in Model Gasifier Effluents: Transition Metal/Rare Earth Oxide Catalysts ... So in this work we investigated the action of transition metal oxides (TMOs) other than Ni (e.g., Fe, Mn) mixed with REOs for tar reforming, at a medium temperature range (9231073 K) and under conditions where direct reforming would dominate. ... The heated gas mixture passed through a 1/2 stainless steel tube containing 0.21 g of catalyst (4060 mesh size) diluted with mullite and positioned between beds of ?-Al2O3. ...

Rui Li; Amitava Roy; Joseph Bridges; Kerry M. Dooley

2014-04-24T23:59:59.000Z

247

Chemicl-looping combustion of coal with metal oxide oxygen carriers  

SciTech Connect (OSTI)

The combustion and reoxidation properties of direct coal chemical-looping combustion (CLC) over CuO, Fe2O3, Co3O4, NiO, and Mn2O3 were investigated using thermogravimetric analysis (TGA) and bench-scale fixed-bed flow reactor studies. When coal is heated in either nitrogen or carbon dioxide (CO2), 50% of weight loss was observed because of partial pyrolysis, consistent with the proximate analysis. Among various metal oxides evaluated, CuO showed the best reaction properties: CuO can initiate the reduction reaction as low as 500 C and complete the full combustion at 700 C. In addition, the reduced copper can be fully reoxidized by air at 700 C. The combustion products formed during the CLC reaction of the coal/metal oxide mixture are CO2 and water, while no carbon monoxide was observed. Multicycle TGA tests and bench-scale fixed-bed flow reactor tests strongly supported the feasibility of CLC of coal by using CuO as an oxygen carrier. Scanning electron microscopy (SEM) images of solid reaction products indicated some changes in the surface morphology of a CuO-coal sample after reduction/oxidation reactions at 800 C. However, significant surface sintering was not observed. The interactions of fly ash with metal oxides were investigated by X-ray diffraction and thermodynamic analysis. Overall, the results indicated that it is feasible to develop CLC with coal by metal oxides as oxygen carriers.

Siriwardane, R.; Tian, H.; Richards, G.; Simonyi, T.; Poston, J.

2009-01-01T23:59:59.000Z

248

High temperature solar selective coatings  

DOE Patents [OSTI]

Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

Kennedy, Cheryl E

2014-11-25T23:59:59.000Z

249

Novel, band-controlled metal oxide compositions for semiconductor-mediated photocatalytic splitting of water to produce H{sub 2}  

SciTech Connect (OSTI)

Semiconductor-mediated photo-catalytic dissociation of water offers a unique opportunity for the production of H{sub 2}, a sustainable source of energy. More efficient and chemically stable photo-catalysts, however, remain a vital requirement for commercial viability of this process. The recent research in my group has focused on the synthesis of several new metal oxide (MO) photo-catalysts, such as: LaInO{sub 3}, GaFeO{sub 3}, InVO{sub 4}, In{sub 2}TiO{sub 5} and nanotubular TiO{sub 2}. These samples of controlled grain morphology have been synthesized by using different synthesis protocols and with and without coating of a noble metal co-catalyst. The doping of an impurity, either at cationic or at anionic lattice site, has helped in the tailoring of band structure and making these oxides visible-light-sensitive. Our study has revealed that the surface characteristics, grain morphology, band structure, and doping-induced lattice imperfections control the photo-physical properties and overall photo-catalytic water splitting activity of these metal/MO composites [1-6]. We have demonstrated that, besides promoting certain charge-transfer steps, metal-semiconductor interfaces influence the adsorption of water molecules and their subsequent interaction with photo-generated electron-hole pair at the catalyst surface. The role played by the above-mentioned micro-structural properties in photo-catalytic water splitting process will be discussed.

Gupta, Narendra M. [Catalysis Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune - 411008 (India)

2013-02-05T23:59:59.000Z

250

Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content-Fueled Turbines - University of California, Irvine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanisms Underpinning Degradation Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content-Fueled Turbines-University of California, Irvine Background Thermal barrier coatings (TBCs) and components in the hot section of gas turbines are degraded by coal-derived high hydrogen content (HHC) synthesis gas (syngas). In this project the University of California, Irvine (UCI) will provide an improved mechanistic understanding of the degradation of critical turbine system materials in HHC-fueled

251

Improved oxidation resistance of organic/inorganic composite atomic layer deposition coated cellulose nanocrystal aerogels  

Science Journals Connector (OSTI)

Cellulose nanocrystal (CNC) aerogels are coated with thin conformal layers of Al2O3 using atomic layer deposition to form hybrid organic/inorganic nanocomposites. Electron probe microanalysis and scanning electron microscopy analysis indicated the Al2O3 penetrated more than 1500??m into the aerogel for extended precursor pulse and exposure/purge times. The measured profile of coated fiber radius versus depth from the aerogel surface agrees well with simulations of precursor penetration depth in modeled aerogel structures. Thermogravimetric analysis shows that Al2O3 coated CNC aerogel nanocomposites do not show significant thermal degradation below 295?C as compared with 175?C for uncoated CNC aerogels an improvement of over 100?C.

2014-01-01T23:59:59.000Z

252

THE ROLE OF ACTIVE ELEMENTS AND OXIDE DISPERSIONS IN THE DEVELOPMENT OF OXIDATION-RESISTANT ALLOYS AND COATINGS  

E-Print Network [OSTI]

was not confined to rare earth element additions. In fact,o-ca1led "rare-earth effect," Y being the particular elementrare earth metals as a melt deoxidant to Nichrome (Ni-20% Cr) he~ting elements

Allam, I.M.

2010-01-01T23:59:59.000Z

253

Characteristics of two thermionic converters with oxide collectors  

SciTech Connect (OSTI)

Thermionic converters built with selected metal oxide coatings on their collectors have given enhanced performance at interelectrode spacings greater than 0.25 mm. The capability of such converters to operate efficiently at large interelectrode spacings is of interest for in-core thermionic power systems. Performance data are reported from one converter built with a collector having a coating of molybdenum sublimed in oxygen and a second converter containing an oxidized zirconium collector. The molybdenum oxide collector converter demonstrated enhanced performance.

Smith, E.A.; Huffman, F.N.

1984-08-01T23:59:59.000Z

254

Metal oxide/organic interface investigations for photovoltaic devices  

E-Print Network [OSTI]

summarises work I have carried out as a PhD student of the Optoelectronics Group at Cavendish Laboratory of the University of Cambridge since October 2010. I am thankful to the Engineering and Physical Sciences Research Council and the A.G. Leventis... are often used in many other optoelectronic devices such as photovoltaics and light emitting diodes. Sufficiently conducting oxides with the appropriate electron affinities and ionisation potentials, can be employed as charge transport and injection layers...

Pachoumi, Olympia

2014-10-07T23:59:59.000Z

255

Transition metal oxide improves overall efficiency and maintains performance with inexpensive metals.  

E-Print Network [OSTI]

of a typical device (middle); schematic energy diagram of interfacial layers PbS/MoOx, indicating carrier metals. A research team at the National Renewable Energy Laboratory (NREL) has demonstrated the overall conversion efficiency. This allows for inexpensive metals such as Al to be employed without loss

256

Deposition and characterization of metal sulfide dielectric coatings for hollow glass waveguides  

E-Print Network [OSTI]

by chemical bath deposition for solar energy related applications," Solar Energy Materials and Solar Cells 52 coatings for Ag/dielectric hollow glass waveguides," in Optical Fibers and Sensors for Medical Applications for hollow glass waveguides," in Optical Fibers and Sensors for Medical Applications III, Proc. SPIE 4957, 97

257

Criteria for Preparing and Packaging Plutonium Metals and Oxides for Long-Term Storage  

SciTech Connect (OSTI)

This Standard provides criteria for packaging of plutonium metals and stabilized oxides for storage periods of at least 50 years. To meet the criteria, plutonium-bearing materials must be in stable forms and be packaged in containers designed to maintain their integrity both under normal storage conditions and during anticipated handling accidents.

NONE

1994-12-01T23:59:59.000Z

258

Understanding the NMR shifts in paramagnetic transition metal oxides using density functional theory calculations  

E-Print Network [OSTI]

obvious. In this paper, we show by means of density functional theory DFT calcula- tions that a rationalUnderstanding the NMR shifts in paramagnetic transition metal oxides using density functional functional theory DFT calculations in the generalized gradient approximation. For each compound, we calculate

Ceder, Gerbrand

259

Nanotube Formation: Researchers Learn To Control The Dimensions Of Metal Oxide Nanotubes  

E-Print Network [OSTI]

Nanotube Formation: Researchers Learn To Control The Dimensions Of Metal Oxide Nanotubes ScienceDaily (Aug. 29, 2007) -- Moving beyond carbon nanotubes, researchers are developing insights-walled inorganic nanotubes could be useful in a range of nanotechnology applications that require precise control

Nair, Sankar

260

Evaluation of Novel Ceria-Supported Metal Oxides As Oxygen Carriers for Chemical-Looping Combustion  

E-Print Network [OSTI]

Evaluation of Novel Ceria-Supported Metal Oxides As Oxygen Carriers for Chemical-Looping Combustion and examined as oxygen carrier materials for chemical-looping combustion (CLC). Unlike conventional support agglomeration. 1. INTRODUCTION 1.1. Chemical-Looping Combustion. Chemical-looping combustion (CLC

Azad, Abdul-Majeed

Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory  

E-Print Network [OSTI]

Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory Ricardo B. Metz Department of Chemistry, University of Massachusetts, Amherst, MA 01003 USA Abstract Gas such as methanol has attracted great experimental and theoretical interest due to its importance as an industrial

Metz, Ricardo B.

262

Transition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget  

E-Print Network [OSTI]

of the oxygen-17 excess (D17 O) of sulfate in the Arctic to quantify the sulfate source from aqueous SO2 (S concentrations, respectively. The solubility and oxidation state of these metals is determined by cloud liquid discrepancies with surface SO2 and sulfate observations in Europe. Oxygen isotope measurements of sulfate

Alexander, Becky

263

Self-assembly of oxide-supported metal clusters into ring-like Kristoffer Meinander,  

E-Print Network [OSTI]

Self-assembly of oxide-supported metal clusters into ring-like structures Kristoffer Meinander, Kai, Finland Abstract Self-assembly is a phenomenon that continuously occurs at the nanoscale, as atoms form of these organized systems, but the precise mechanism, with which this self-assembly progresses, is seldom known

Nordlund, Kai

264

Electrochromic nickel oxide simultaneously doped with lithium and a metal dopant  

DOE Patents [OSTI]

An electrochromic device comprising a counter electrode layer comprised of lithium metal oxide which provides a high transmission in the fully intercalated state and which is capable of long-term stability, is disclosed. Methods of making an electrochromic device comprising such a counter electrode are also disclosed.

Gillaspie, Dane T; Weir, Douglas G

2014-04-01T23:59:59.000Z

265

AC conductivity of nanoporous metal-oxide photoanodes for solar energy conversion  

E-Print Network [OSTI]

AC conductivity of nanoporous metal-oxide photoanodes for solar energy conversion Steven J. Konezny% solar-to-electric energy conversion efficiency) exploited the large surface area of nanoporous thin of nanoporous thin films without increasing the recombination rate. To ensure efficient charge carrier

Konezny, Steven J.

266

Borohydride reduction: A technique to synthesize nanosize transition metal oxides and nanocomposites  

SciTech Connect (OSTI)

This paper summarizes recent studies of using borohydride reduction to synthesize W, transition metal oxides such as WO{sub 2} and MoO{sub 2}, and Fe-Al{sub x}B{sub y}O{sub z}

Zhu, Yuntian T.; Lowe, T.C.; Stout, M.G. [Los Alamos National Lab., NM (United States); Manthiram, A.; Guggilla, S. [Texas Univ., Austin, TX (United States). Center for Materials Science and Engineering

1996-06-01T23:59:59.000Z

267

High density adsorbed oxygen on Rh,,111... and enhanced routes to metallic oxidation using atomic oxygen  

E-Print Network [OSTI]

High density adsorbed oxygen on Rh,,111... and enhanced routes to metallic oxidation using atomic oxygen K. D. Gibson, Mark Viste, Errol C. Sanchez, and S. J. Sibener The James Franck Institute; accepted 30 November 1998 Exposure of Rh 111 to atomic oxygen leads to the facile formation of a full

Sibener, Steven

268

Surfactant Organic Molecules Restore Magnetism in Metal-Oxide Nanoparticle Surfaces  

E-Print Network [OSTI]

Surfactant Organic Molecules Restore Magnetism in Metal-Oxide Nanoparticle Surfaces Juan Salafranca, Nashville, Tennessee 37235, United States *S Supporting Information ABSTRACT: The properties of magnetic nanoparticles tend to be depressed by the unavoidable presence of a magnetically inactive surface layer. However

Pennycook, Steve

269

Thermal barrier coating for alloy systems  

DOE Patents [OSTI]

An alloy substrate is protected by a thermal barrier coating formed from a layer of metallic bond coat and a top coat formed from generally hollow ceramic particles dispersed in a matrix bonded to the bond coat.

Seals, Roland D. (Oak Ridge, TN); White, Rickey L. (Harriman, TN); Dinwiddie, Ralph B. (Knoxville, TN)

2000-01-01T23:59:59.000Z

270

Laser-induced dehydration of graphite oxide coatings on polymer substrates  

SciTech Connect (OSTI)

Nanosized graphite has been oxidized by the Hummers method to give high quality graphite oxide. This reaction is characterized by a very fast kinetic behavior and a high yield. The produced graphite oxide has been conveniently used to pattern graphene by using a standard photolithographic method, and the resulting systems have been characterized by optical microscopy (OM), scanning electron microscopy (SEM) and by Fourier transform infrared spectroscopy (FT-IR) and Visible-Near Infrared spectroscopy (Vis-NIR)

Longo, Angela, E-mail: angela.longo@cnr.it; Palomba, Mariano; Carotenuto, Gianfranco; Nicolais, Luigi [Institute for Composite and Biomedical Materials, National Research Council, Viale Kennedy, 54, Mostra d'Oltremare Padiglione 20, 80125 Napoli (Italy); Orabona, Emanuele; Maddalena, Pasqualino [Department of Physics, University of Naples, Federico II, via cintia, 80126, Naples, Italy and SPIN Institute, National Research Council, UOS Naples, via cintia, 80126, Naples (Italy); Ambrosio, Antonio [SPIN Institute, National Research Council, UOS Naples, via cintia, 80126, Naples (Italy)

2014-05-15T23:59:59.000Z

271

Effect on Intimal Hyperplasia of Dexamethasone Released from Coated Metal Stents Compared with Non-Coated Stents in Canine Femoral Arteries  

SciTech Connect (OSTI)

Purpose: Polymer-coated, dexamethasone (DXM)-releasing stents were tested in order to assess the efficacy of DXM released locally for the prevention of stent restenosis due to intimal hyperplasia. Methods: Strecker stents coated with a biodegradable membrane containing DXM were implanted percutaneously into the femoral artery in 14 dogs. The contralateral artery received a conventional non-coated stent serving as control. The drugs are eluted by degradation of the carrier membrane. Follow-up intraarterial digital subtraction angiography (DSA) was obtained at 3, 6, 9, 12, and 24 weeks with subsequent autopsy. Specimens for gross and microscopic pathology were obtained and histomorphometry was performed. Results: Four of 14 DXM-coated stents showed thrombotic occlusion within the first 3 weeks; ten DXM-coated stents remained patent. At follow-up DSA, DXM-coated stents showed a significantly wider lumen than the non-coated stents. At morphometry there was less intimal hyperplasia over DXM-coated stents than over non-coated stents (p < 0.05). Conclusion: DXM-coated stents reduce neointimal hyperplasia in dogs when compared with non-coated stents.

Strecker, Ernst-Peter [Department of Radiology, Diakonissen-Hospital, Diakonissenstrasse 28, D-76199 Karlsruhe (Germany); Gabelmann, Andreas [Department of Radiology, University Hospital, Hugstetter Strasse 55, D-79106 Freiburg (Germany); Boos, Irene [Department of Radiology, Diakonissen-Hospital, Diakonissenstrasse 28, D-76199 Karlsruhe (Germany); Lucas, Christopher [Department of Pharmaceutical Technology and Biopharmacy, University Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg (Germany); Xu, Zhongying [Department of Radiology, Diakonissen-Hospital, Diakonissenstrasse 28, D-76199 Karlsruhe (Germany); Haberstroh, Joerg [Department of Surgical Research, University Hospital, Breisacher Strasse 64, D-79108 Freiburg (Germany); Freudenberg, Nicolaus [Department of Pathology, University Hospital, Albertstrasse 19, D-79002 Freiburg (Germany); Stricker, Helmut [Department of Pharmaceutical Technology and Biopharmacy, University Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg (Germany); Langer, Mathias [Department of Radiology, University Hospital, Hugstetter Strasse 55, D-79106 Freiburg (Germany); Betz, Eberhard [Department of Physiology, University Tuebingen, Gmelinstrasse 5, D-72076 Tuebingen (Germany)

1998-11-15T23:59:59.000Z

272

Electrospun and oxidized cellulose materials for environmental remediation of heavy metals in groundwater  

SciTech Connect (OSTI)

This chapter focuses on the use of modified cellulosic materials in the field of environmental remediation. Two different chemical methods were involved in fabricating oxidized cellulose (OC), which has shown promise as a metal ion chelator in environmental applications. Electrospinning was utilized to introduce a more porous structure into an oxidized cellulose matrix. FTIR and Raman spectroscopy were used to study both the formation of OC and its surface complexation with metal ions. IR and Raman spectroscopic data demonstrate the formation of characteristic carboxylic groups in the structure of the final products and the successful formation of OC-metal complexes. Subsequent field tests at the Field Research Site at Oak Ridge National Laboratory confirmed the value of OC for sorption of both U and Th ions.

Han, Dong [Stony Brook University (SUNY); Halada, Gary P. [Stony Brook University (SUNY); Spalding, Brian Patrick [ORNL; Brooks, Scott C [ORNL

2009-12-01T23:59:59.000Z

273

ESS 2012 Peer Review - Architectural Diversity of Metal Oxide Nanostructures - Esther Takeuchi, Stony Brook University  

Broader source: Energy.gov (indexed) [DOE]

Architectural Diversity of Metal Oxide Nanostructures: Architectural Diversity of Metal Oxide Nanostructures: An Opportunity for the Rational Optimization of Group II Cation Based Batteries. Esther S. Takeuchi, Kenneth J. Takeuchi, Amy C. Marschilok esther.takeuchi@stonybrook.edu, kenneth.takeuchi.1@stonybrook.edu, amy.marschilok@stonybrook.edu Utilize earth abundant, low cost elements with minimal environmental impact as battery materials. Exploit magnesium due to air stability and ~1,000X higher natural abundance than lithium and ~5,000X higher abundance than lead. Cathode materials feature Mn, Fe or V metal centers. Strategy Results Results This project targets some of the unique needs of large scale power storage: 1) reduced cost 2) low environmental impact 3) scalability 4) reversibility

274

Evaluation of reaction mechanism of coal-metal oxide interactions in chemical-looping combustion  

SciTech Connect (OSTI)

The knowledge of reaction mechanism is very important in designing reactors for chemical-looping combustion (CLC) of coal. Recent CLC studies have considered the more technically difficult problem of reactions between abundant solid fuels (i.e. coal and waste streams) and solid metal oxides. A definitive reaction mechanism has not been reported for CLC reaction of solid fuels. It has often been assumed that the solid/solid reaction is slow and therefore requires that reactions be conducted at temperatures high enough to gasify the solid fuel, or decompose the metal oxide. In contrast, data presented in this paper demonstrates that solid/solid reactions can be completed at much lower temperatures, with rates that are technically useful as long as adequate fuel/metal oxide contact is achieved. Density functional theory (DFT) simulations as well as experimental techniques such as thermo-gravimetric analysis (TGA), flow reactor studies, in situ X-ray photo electron spectroscopy (XPS), in situ X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to evaluate how the proximal interaction between solid phases proceeds. The data indicate that carbon induces the Cu-O bond breaking process to initiate the combustion of carbon at temperatures significantly lower than the spontaneous decomposition temperature of CuO, and the type of reducing medium in the vicinity of the metal oxide influences the temperature at which the oxygen release from the metal oxide takes place. Surface melting of Cu and wetting of carbon may contribute to the solid-solid contacts necessary for the reaction. (author)

Siriwardane, Ranjani; Richards, George; Poston, James [US Department of Energy, National Energy Technology Laboratory, 3610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507-0880 (United States); Tian, Hanjing; Miller, Duane; Simonyi, Thomas [US Department of Energy, National Energy Technology Laboratory, 3610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507-0880 (United States); URS, 3610 Collins Ferry Road, Morgantown, WV 26505 (United States)

2010-11-15T23:59:59.000Z

275

FARADAYIC ElectroPhoretic Deposition of YSZ for Use in Thermal Barrier Coatings - Faraday Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FARADAYIC ElectroPhoretic Deposition FARADAYIC ElectroPhoretic Deposition of YSZ for Use in Thermal Barrier Coatings-Faraday Technology Background Thermal barrier coatings (TBCs) are employed to protect gas turbine engine components. These coating systems provide thermal, oxidation, and mechanical protection; reduce thermal gradients; and lower the metal substrate surface temperature, extending the life of the engine components. Faraday Technology, Inc. (Faraday) is developing a new manufacturing process, the

276

Metal oxide catalysts for the low temperature selective oxidation of propane to iso-propanol.  

E-Print Network [OSTI]

??A range of Ga203/Mo03 and C03O4 catalysts have been prepared and tested for the oxidative dehydrogenation of propane to propene. The Ga2(VMo03 physical mixture demonstrated (more)

Davies, Thomas Edward.

2006-01-01T23:59:59.000Z

277

Abstract No. pan0505 Sorption of Heavy Metal Contaminants onto Hydrated Ferric Oxides: Mechanistic Modeling using X-ray  

E-Print Network [OSTI]

Abstract No. pan0505 Sorption of Heavy Metal Contaminants onto Hydrated Ferric Oxides: Mechanistic. Hence, to understand the mobility and bioavailability of these metal contaminants, these sorption suggesting that sorption of these metal ions onto ferrihydrite can be described by one average type of site

Sparks, Donald L.

278

The Velocity of Oxidation of the Metals and the Structure of Coloured Oxide Films  

Science Journals Connector (OSTI)

... The simplest explanation of these facts would appear to be that the treatment causes a roughening of the surface, whereby the effective area of the metal is increased. If this ...

D. H. BANGHAM; J. STAFFORD

1925-01-17T23:59:59.000Z

279

Development of High Temperature Superconductor Coated Metal Fiber and Multifilamentary Wire  

Science Journals Connector (OSTI)

Long superconductor fibers have been continuously produced by electrophoretically...2Cu3O7?x...powder onto a metal substrate fiber and sintering, then eletrophoreticaly depositing silver and sintering. After coll...

L. D. Woolf; F. E. Elsner; W. A. Raggio; S. S. Pak

1992-01-01T23:59:59.000Z

280

FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings  

SciTech Connect (OSTI)

New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer or inhibitor. Comparable metallic alloys such as SAM2X5 and SAM1651 may also experience crevice corrosion under sufficiently harsh conditions. Accelerated crevice corrosion tests are now being conducted to intentionally induce crevice corrosion, and to determine those environmental conditions where such localized attack occurs. Such materials are extremely hard, and provide enhanced resistance to abrasion and gouges (stress risers) from backfill operations, and possibly even tunnel boring. The hardness of Type 316L Stainless Steel is approximately 150 VHN, that of Alloy C-22 is approximately 250 VHN, and that of HVOF SAM2X5 ranges from 1100-1300 VHN. These new materials provide a viable coating option for repository engineers. SAM2X5 and SAM1651 coatings can be applied with thermal spray processes without any significant loss of corrosion resistance. Both Alloy C-22 and Type 316L stainless lose their resistance to corrosion during thermal spraying. Containers for the transportation, storage and disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) with corrosion resistant coatings are envisioned. For example, an enhanced multi-purpose container (MPC) could be made with such coatings, leveraging existing experience in the fabrication of such containers. These coating materials could be used to protect the final closure weld on SNF/HLW disposal containers, eliminate need for stress mitigation. Integral drip shield could be produced by directly spraying it onto the disposal container, thereby eliminating the need for an expensive titanium drip shield. In specific areas where crevice corrosion is anticipated, such as the contact point between the disposal container and pallet, HVOF coatings could be used to buildup thickness, thereby selectively adding corrosion life where it is needed. Both SAM2X5 & SAM1651 have high boron content which enable them to absorb neutrons and therefore be used for criticality control in baskets. Alloy C-22 and 316L have no neutron absorber, and cannot be used for such functions. Borated stainless steel and G

Farmer, J; Choi, J; Haslam, J; Day, S; Yang, N; Headley, T; Lucadamo, G; Yio, J; Chames, J; Gardea, A; Clift, M; Blue, G; Peters, W; Rivard, J; Harper, D; Swank, D; Bayles, R; Lemieux, E; Brown, R; Wolejsza, T; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Lavernia, E; Schoenung, J; Ajdelsztajn, L; Dannenberg, J; Graeve, O; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Boudreau, J

2007-09-20T23:59:59.000Z

Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

In Situ Stabilization of Metal-Contaminated Groundwater by Hydrous Ferric Oxide:? An Experimental and Modeling Investigation  

Science Journals Connector (OSTI)

A potential method is investigated for remediation of metal-contaminated groundwater by in-situ emplacement of an adsorptive coating on the aquifer matrix. ... The conceptual remedial method presented in this investigation involves injecting a series of soluble components into the aquifer, where they react and precipitate as they mix in situ, coating the aquifer with an insoluble, nontoxic substrate that has a high affinity for trace-metal contaminants. ... (5)?Evaluation of Groundwater Extraction Remedies:? Phase II; U.S. Environmental Protection Agency, Office of Emergency and Remedial Response:? Washington, DC, 1992b. ...

Todd A. Martin; J. Houston Kempton

2000-06-23T23:59:59.000Z

282

Microstructure and Properties of Nanostructured Calcium Phosphate/Titania Porous Coatings via Micro Arc Oxidation  

Science Journals Connector (OSTI)

Crystalline Calcium Phosphate-TiO2 nanostructured porous layers were fabricated via micro arc oxidation technique under different times to investigate how...2 inner layer during the MAO growth. Based on XRD patte...

Sakine Abbasi; Hamid Reza Rezaie

2013-01-01T23:59:59.000Z

283

Kinetics and Properties of Micro Arc Oxidation Coatings Deposited on Commercial Al Alloys  

Science Journals Connector (OSTI)

The micro arc oxidation (MAO) technique is being increasingly recognized...6Si2O13 (mullite) is observed to form. With increasing Si content, the corresponding mullite phase also increases. Increasing mullite con...

L. Rama krishna; A. Sudha Purnima

2007-02-01T23:59:59.000Z

284

Chemical-looping combustion of coal with metal oxide oxygen carriers  

SciTech Connect (OSTI)

The combustion and reoxidation properties of direct coal chemical-looping combustion (CLC) over CuO, Fe{sub 2}O{sub 3}, CO{sub 3}O{sub 4}, NiO, and Mn{sub 2}O{sub 3} were investigated using thermogravimetric analysis (TGA) and bench-scale fixed-bed flow reactor studies. When coal is heated in either nitrogen or carbon dioxide (CO{sub 2}), 50% of weight loss was observed because of partial pyrolysis, consistent with the proximate analysis. Among various metal oxides evaluated, CuO showed the best reaction properties: CuO can initiate the reduction reaction as low as 500{sup o}C and complete the full combustion at 700{sup o}C. In addition, the reduced copper can be fully reoxidized by air at 700{sup o}C. The combustion products formed during the CLC reaction of the coal/metal oxide mixture are CO{sub 2} and water, while no carbon monoxide was observed. Multicycle TGA tests and bench-scale fixed-bed flow reactor tests strongly supported the feasibility of CLC of coal by using CuO as an oxygen carrier. Scanning electron microscopy (SEM) images of solid reaction products indicated some changes in the surface morphology of a CuO-coal sample after reduction/oxidation reactions at 800 {sup o}C. However, significant surface sintering was not observed. The interactions of fly ash with metal oxides were investigated by X-ray diffraction and thermodynamic analysis. Overall, the results indicated that it is feasible to develop CLC with coal by metal oxides as oxygen carriers. 22 refs., 12 figs., 2 tabs.

Ranjani Siriwardane; Hanjing Tian; George Richards; Thomas Simonyi; James Poston [United States Department of Energy, Morgantown, WN (United States). National Energy Technology Laboratory

2009-08-15T23:59:59.000Z

285

Manufacturing Analysis of SOFC Interconnect Coating Processes - NexTech Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Analysis of SOFC Manufacturing Analysis of SOFC Interconnect Coating Processes- NexTech Materials Background The adoption of high-temperature metal alloys as alternatives to traditional ceramic interconnect materials provides a cost effective path for the production of solid oxide fuel cells (SOFCs). Low-cost and effective protective coatings must be developed for the metallic system and stack components for SOFCs to be economical. Since current

286

Electrical conductivity in oxygen-deficient phases of transition metal oxides from first-principles calculations.  

SciTech Connect (OSTI)

Density-functional theory calculations, ab-initio molecular dynamics, and the Kubo-Greenwood formula are applied to predict electrical conductivity in Ta2Ox (0x5) as a function of composition, phase, and temperature, where additional focus is given to various oxidation states of the O monovacancy (VOn; n=0,1+,2+). Our calculations of DC conductivity at 300K agree well with experimental measurements taken on Ta2Ox thin films and bulk Ta2O5 powder-sintered pellets, although simulation accuracy can be improved for the most insulating, stoichiometric compositions. Our conductivity calculations and further interrogation of the O-deficient Ta2O5 electronic structure provide further theoretical basis to substantiate VO0 as a donor dopant in Ta2O5 and other metal oxides. Furthermore, this dopant-like behavior appears specific to neutral VO cases in both Ta2O5 and TiO2 and was not observed in other oxidation states. This suggests that reduction and oxidation reactions may effectively act as donor activation and deactivation mechanisms, respectively, for VO0 in transition metal oxides.

Bondi, Robert James; Desjarlais, Michael Paul; Thompson, Aidan Patrick; Brennecka, Geoffrey L.; Marinella, Matthew

2013-09-01T23:59:59.000Z

287

Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material  

DOE Patents [OSTI]

An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

Doeff, Marca M. (Hayward, CA); Peng, Marcus Y. (Cupertino, CA); Ma, Yanping (Albany, CA); Visco, Steven J. (Berkeley, CA); DeJonghe, Lutgard C. (Lafayette, CA)

1996-01-01T23:59:59.000Z

288

Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material  

DOE Patents [OSTI]

An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

1996-09-24T23:59:59.000Z

289

Final Report: Catalytic Hydrocarbon Reactions over Supported Metal Oxides, August 1, 1995 - July 31, 1999  

SciTech Connect (OSTI)

The research program focused on the catalysis of hydrodesulfurization (HDS) over molybdenum-based catalysts and how catalyst composition, redox ability, structure and neighboring sites control the catalytic properties of metal oxides. We sought to understand the catalytic features/sites that control hydrogenation, hydrogenolysis, and isomerization during HDS. Unprompted silica-supported molybdenum oxides and molybdenum sulfides were studied. Model catalyst systems were prepared from organometallic precursors or cluster compounds to generate supported structures that feature Mo(II) and Mo(IV) cations that are isolated or in ensembles and that have either Mo-O or Mo-S bonds. Conventional MOS{sub 2} catalysts, which contain both edge and rim sites, were be studied. Finally, single-layer MOS{sub 2} structures were also prepared from 2H-MoS{sub 2} powder so that the model systems could be compared against a disulfide catalyst that only involves rim sites. Catalytic reactions for thiophene and tetrahydrothione were studied over the various catalysts. Oxidation states were determined using X-ray photoelectron spectroscopy. X-ray crystallography was used to characterize and follow changes in the MOS{sub 2} structures. The program on metal oxides prepared supported oxides that have a specific structure and oxidation state to serve as model templates for the more complex commercial catalysts and then employed these structures in reaction studies. This focus area examined the relationships between structure and cation redox characteristics in oxidation catalysis. Infrared and Raman spectroscopy were used to characterize the cations and reaction intermediates.

Ekerdt, John G.

1999-07-31T23:59:59.000Z

290

Nanopatterning of metal-coated silicon surfaces via ion beam irradiation: Real time x-ray studies reveal the effect of silicide bonding  

SciTech Connect (OSTI)

We investigated the effect of silicide formation on ion-induced nanopatterning of silicon with various ultrathin metal coatings. Silicon substrates coated with 10 nm Ni, Fe, and Cu were irradiated with 200 eV argon ions at normal incidence. Real time grazing incidence small angle x-ray scattering (GISAXS) and x-ray fluorescence (XRF) were performed during the irradiation process and real time measurements revealed threshold conditions for nanopatterning of silicon at normal incidence irradiation. Three main stages of the nanopatterning process were identified. The real time GISAXS intensity of the correlated peaks in conjunction with XRF revealed that the nanostructures remain for a time period after the removal of the all the metal atoms from the sample depending on the binding energy of the metal silicides formed. Ex-situ XPS confirmed the removal of all metal impurities. In-situ XPS during the irradiation of Ni, Fe, and Cu coated silicon substrates at normal incidence demonstrated phase separation and the formation of different silicide phases that occur upon metal-silicon mixing. Silicide formation leads to nanostructure formation due the preferential erosion of the non-silicide regions and the weakening of the ion induced mass redistribution.

El-Atwani, Osman [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Gonderman, Sean; Suslova, Anastassiya; Fowler, Justin; El-Atwani, Mohamad [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); DeMasi, Alexander; Ludwig, Karl [Physics Department, Boston University, Boston, Massachusetts 02215 (United States); Paul Allain, Jean [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

2013-03-28T23:59:59.000Z

291

Study of metallic materials for solid oxide fuel cell interconnect applications.  

SciTech Connect (OSTI)

Metallic interconnect acts as a gas separator and a gas distributor and therefore, it needs to function adequately in two widely different environments. The interconnect material will be exposed to air on one side and natural gas or coal-derived synthesis gas on the other side. The viable material for the interconnect application must be resistant not only to oxidation but also carburization in hydrocarbon containing low-oxygen environments. In addition, the scales that develop on the exposed surfaces must possess adequate electrical conductivity for them to function as current leads over long service life of the fuel cell. This report addresses five topics of interest for the development of metallic interconnects with adequate performance in fuel cells for long service life. The research conducted over the years and the conclusions reached were used to identify additional areas of research on materials for improved performance of components, especially metallic interconnects, in the complex fuel cell environments. This report details research conducted in the following areas: measurement of area specific electrical resistivity, corrosion performance in dual gas environments by experiments using alloy 446, long term corrosion performance of ferritic and austenitic alloys in hydrogen and methane-reformed synthesis fuel-gas environments, approaches to reduce the area resistance of metallic interconnect, and reduction of electrical resistivity of alumina scales on metallic interconnect. Based on the key requirements for metallic interconnects and the data developed on the corrosion behavior of candidate materials in meeting those requirements, several areas are recommended for further research to develop metallic interconnects with acceptable and reliable long-term performance in solid oxide fuel cells.

Natesan, K.; Zeng, Z.; Nuclear Engineering Division

2009-04-24T23:59:59.000Z

292

Composite materials with metal oxide attached to lead chalcogenide nanocrystal quantum dots with linkers  

DOE Patents [OSTI]

Composite materials useful for devices such as photoelectrochemical solar cells include a substrate, a metal oxide film on the substrate, nanocrystalline quantum dots (NQDs) of lead sulfide, lead selenide, and lead telluride, and linkers that attach the NQDs to the metal oxide film. Suitable linkers preserve the 1s absorption peak of the NQDs. A suitable linker has a general structure A-B-C where A is a chemical group adapted for binding to a MO.sub.x and C is a chemical group adapted for binding to a NQD and B is a divalent, rigid, or semi-rigid organic spacer moiety. Other linkers that preserve the 1s absorption peak may also be used.

Fuke, Nobuhiro; Koposov, Alexey Y; Sykora, Milan; Hoch, Laura

2014-12-16T23:59:59.000Z

293

Inert anode containing oxides of nickel iron and cobalt useful for the electrolytic production of metals  

DOE Patents [OSTI]

An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and CoO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and CoO: 0.15 to 0.99 NiO; 0.0001 to 0.85 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.45 CoO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA)

2002-01-01T23:59:59.000Z

294

Inert anode containing oxides of nickel, iron and zinc useful for the electrolytic production of metals  

DOE Patents [OSTI]

An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and ZnO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and ZnO: 0.2 to 0.99 NiO; 0.0001 to 0.8 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.3 ZnO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

Ray, Siba P. (Murrysville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA); Liu, Xinghua (Monroeville, PA)

2002-01-01T23:59:59.000Z

295

Oxidative dehydrogenation (ODH) of ethane with O[subscript 2] as oxidant on selected transition metal-loaded zeolites  

SciTech Connect (OSTI)

Ni-, Cu-, and Fe-loaded acidic and basic Y zeolites were synthesized, and their catalytic properties for oxidative dehydrogenation of ethane (ODHE) to ethylene were characterized. Acidic Ni-loaded Y zeolite exhibits an ethylene productivity of up to 108 g{sub C{sub 2}H{sub 4}}g{sub cat}{sup -1} h{sup -1} with a selectivity of {approx}75%. Acidic Cu- and Fe-loaded Y zeolites have an ethylene productivity of up to 0.37 g{sub C{sub 2}H{sub 4}}g{sub cat}{sup -1} h{sup -1} and a selectivity of {approx}50%. For the same metal, the acidity of the zeolite favors both ODHE productivity and ethylene selectivity. Extended X-ray absorption fine structure (EXAFS) studies show that Ni, present in particles on Ni/HY during the ODHE catalytic process, contains both Ni-Ni and Ni-O bonds, and that the ratio of oxidized Ni versus metallic Ni increases with the temperature. The insights these studies provide into the ODHE reaction mechanism are discussed.

Lin, Xufeng; Hoel, Cathleen A.; Sachtler, Wolfgang M.H.; Poeppelmeier, Kenneth R.; Weitz, Eric; (NWU)

2009-09-14T23:59:59.000Z

296

The steady-state thermal-hydraulic performance of 3500 MWth metal and oxide fueled LMRs  

SciTech Connect (OSTI)

The thermal-hydraulic performance of a 3500 MWth metal and oxide fueled LMR is reported. Orifice zones are defined and coolant flowrates are given for use in safety analyses. The flux calculations were carried out in three-dimensional hexagonal-Z geometry using a finite differenced diffusion theory code. The heating calculations included the transport and deposition of gamma energy. The assembly temperature calculations were performed using a subchannel code.

Vilim, R.B.; Hill, R.N.

1989-03-01T23:59:59.000Z

297

Surface Science Letters Bulk-defect dependent adsorption on a metal oxide surface  

E-Print Network [OSTI]

-6028(01)01067-6 #12;Titanium dioxide is a wide-band gap semicon- ductor (Egap 3 eV) that can easily be reducedSurface Science Letters Bulk-defect dependent adsorption on a metal oxide surface: S/TiO2(1 1 0) E Abstract The adsorption of molecular sulfur on TiO2(1 1 0)(1 ? 1) has been studied with scanning tunneling

Diebold, Ulrike

298

The interactions between transition metal nanoparticles and their metal-oxide supports are often critical for heterogeneous metal nanoparticle  

E-Print Network [OSTI]

for selective hydrogenations (2, 3), oxidations (3­5), and the water-gas shift (WGS) reaction (3, 6). Several to saturation kinetics, with added water affecting the kinetics of the RDS. We explored potential mechanistic oxygen from the support (21, 27). Perhaps most importantly, as Fig. 1A shows, water dramatically

Napp, Nils

299

Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Print Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Print "Ferroelectricity," by analogy to ferromagnetism, is defined as the presence of spontaneous electrical polarization in a material, often arising from distortions in the material's crystal structure. In oxides of the metals lead and bismuth, such distortions were for many years attributed to the existence of "lone pair" electrons: pairs of chemically inert, nonbonding valence electrons in hybrid orbitals that leave noticeable voids in the crystal structure. At the ALS, researchers from the U.K., Ireland, and the U.S. have now obtained definitive experimental evidence that this lone-pair model must be revised. High-resolution x-ray photoemission spectroscopy (XPS) and soft x-ray emission spectroscopy (XES) have clarified the subtle electronic origins of the prototypical distortions in these crystal structures. The results have important implications for the tantalizing possibility of spintronic or superconducting devices combining ferroelectric and ferromagnetic properties.

300

Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Print Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Print "Ferroelectricity," by analogy to ferromagnetism, is defined as the presence of spontaneous electrical polarization in a material, often arising from distortions in the material's crystal structure. In oxides of the metals lead and bismuth, such distortions were for many years attributed to the existence of "lone pair" electrons: pairs of chemically inert, nonbonding valence electrons in hybrid orbitals that leave noticeable voids in the crystal structure. At the ALS, researchers from the U.K., Ireland, and the U.S. have now obtained definitive experimental evidence that this lone-pair model must be revised. High-resolution x-ray photoemission spectroscopy (XPS) and soft x-ray emission spectroscopy (XES) have clarified the subtle electronic origins of the prototypical distortions in these crystal structures. The results have important implications for the tantalizing possibility of spintronic or superconducting devices combining ferroelectric and ferromagnetic properties.

Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Plasmonic transparent conducting metal oxide nanoparticles and nanoparticle films for optical sensing applications  

SciTech Connect (OSTI)

The ability to monitor gas species selectively, sensitively, and reliably in extreme temperatures and harsh conditions is critically important for more efficient energy production using conventional fossil energy based production technologies, enabling advanced technologies for fossil based power plants of the future, and improving efficiency in domestic manufacturing industries. Optical waveguide based sensing platforms have become increasingly important but a need exists for materials that exhibit useful changes in optical properties in response to changing gas atmospheres at high temperatures. In this manuscript, the onset of a near-IR absorption associated with an increase in free carrier density in doped metal oxide nanoparticles to form so-called conducting metal oxides is discussed in the context of results obtained for undoped and Al-doped ZnO nanoparticle based films. Detailed film characterization results are presented along with measured changes in optical absorption resulting from various high temperature treatments in a range of gas atmospheres. Optical property changes are also discussed in the context of a simple model for optical absorption in conducting metal oxide nanoparticles and thin films. The combination of experimental results and theoretical modeling presented here suggests that such materials have potential for high temperature optical gas sensing applications. Simulated sensing experiments were performed at 500 C and a useful, rapid, and reproducible near-IR optical sensing response to H{sub 2} confirms that this class of materials shows great promise for optical gas sensing.

Ohodnicki, Paul R., Jr.; Wang, Congjun; Andio, Mark

2013-07-31T23:59:59.000Z

302

Preparation and performances of CoMn spinel coating on a ferritic stainless steel interconnect material for solid oxide fuel cell application  

Science Journals Connector (OSTI)

Abstract Ferritic stainless steels have become the candidate materials for interconnects of intermediate temperature solid oxide fuel cell (SOFC). The present issues to be solved urgently for the application of ferritic stainless steel interconnects are their rapid increase in contact resistance and Cr poisoning. In the present study, a chloride electrolyte suspension has been developed to electro-deposit a CoMn alloy on a type 430 stainless steel, followed by heat treatment at 750C in argon and at 800C in air to obtain CoMn spinel coatings. The experimental results indicate that an adhesive and compact CoMn alloy layer can be deposited in the chloride solution. After heat treatment, a complex coating composed of an external MnCo2O4 layer and an inner Cr-rich oxide layer has been formed on 430SS. The coating improves the oxidation resistance of the steel at 800C in air, especially in wet air, and inhibits the outward diffusion of Cr from the Cr-rich scale. Moreover, a low contact resistance has been achieved with the application of the spinel coatings.

H.H. Zhang; C.L. Zeng

2014-01-01T23:59:59.000Z

303

Activation of Noble Metals on Metal-Carbide Surfaces: Novel Catalysts for CO Oxidation, Desulfurization and Hydrogenation Reactions  

SciTech Connect (OSTI)

This perspective article focuses on the physical and chemical properties of highly active catalysts for CO oxidation, desulfurization and hydrogenation reactions generated by depositing noble metals on metal-carbide surfaces. To rationalize structure-reactivity relationships for these novel catalysts, well-defined systems are required. High-resolution photoemission, scanning tunneling microscopy (STM) and first-principles periodic density-functional (DF) calculations have been used to study the interaction of metals of Groups 9, 10 and 11 with MC(001) (M = Ti, Zr, V, Mo) surfaces. DF calculations give adsorption energies that range from 2 eV (Cu, Ag, Au) to 6 eV (Co, Rh, Ir). STM images show that Au, Cu, Ni and Pt grow on the carbide substrates forming two-dimensional islands at very low coverage, and three-dimensional islands at medium and large coverages. In many systems, the results of DF calculations point to the preferential formation of admetal-C bonds with significant electronic perturbations in the admetal. TiC(001) and ZrC(001) transfer some electron density to the admetals facilitating bonding of the adatom with electron-acceptor molecules (CO, O{sub 2}, C{sub 2}H{sub 4}, SO{sub 2}, thiophene, etc.). For example, the Cu/TiC(001) and Au/TiC(001) systems are able to cleave both S-O bonds of SO{sub 2} at a temperature as low as 150 K, displaying a reactivity much larger than that of TiC(001) or extended surfaces of bulk copper and gold. At temperatures below 200 K, Au/TiC is able to dissociate O{sub 2} and perform the 2CO + O{sub 2} {yields} 2CO{sub 2} reaction. Furthermore, in spite of the very poor hydrodesulfurization performance of TiC(001) or Au(111), a Au/TiC(001) surface displays an activity for the hydrodesulfurization of thiophene higher than that of conventional Ni/MoS{sub x} catalysts. In general, the Au/TiC system is more chemically active than systems generated by depositing Au nanoparticles on oxide surfaces. Thus, metal carbides are excellent supports for enhancing the chemical reactivity of noble metals.

Rodriguez J. A.; Illas, F.

2012-01-01T23:59:59.000Z

304

Catalytic activity of tetravalent metal phosphates and phosphonates on the oxidation of (+)-3-carene  

Science Journals Connector (OSTI)

Tetravalent metal phosphates and phosphonates form highly insoluble inorganic polymers and can act as good catalysts in some oxidative reactions. In the present work, zirconium phosphate amorphous (ZrPA), scandium exchanged zirconium phosphate amorphous (ScZrPA), sodium exchanged zirconium phosphate amorphous (NaZrPA), potassium exchanged zirconium phosphate amorphous (KZrPA), zirconium phenylphosphonate amorphous (ZrPPA) and zirconium phenylphosphonate phosphate amorphous (ZrPA/ZrPPA), were prepared and evaluated as catalysts for the oxidation of 3,7,7-trimethylbicyclo[4.1.0]hept-3-ene [(+)-3-carene)] by hydrogen peroxide, in different solvents. It was found that the oxidation reaction of (+)-3-carene yielded three major products, namely ?-3,4-epoxycarane, carane-3?,4?-diol and 3?-acetoxycaran-4?-ol, depending on the catalyst and solvent conditions. No ?-3,4-epoxycarane was detected in the studied conditions.

Graa M.S.R.O. Rocha; Rui M.A. Domingues; Mrio M.Q. Simes; Artur M.S. Silva

2009-01-01T23:59:59.000Z

305

Modelling of thermo-mechanical and irradiation behavior of metallic and oxide fuels for sodium fast reactors  

E-Print Network [OSTI]

A robust and reliable code to model the irradiation behavior of metal and oxide fuels in sodium cooled fast reactors is developed. Modeling capability was enhanced by adopting a non-empirical mechanistic approach to the ...

Karahan, Aydin

2009-01-01T23:59:59.000Z

306

Life cycle cost study for coated conductor manufacture by metal organic chemical vapor deposition  

SciTech Connect (OSTI)

The purpose of this report is to calculate the cost of producing high temperature superconducting wire by the Metal Organic Chemical Vapor Deposition (MOCVD) process. The technology status is reviewed from the literature and a plant conceptual design is assumed for the cost calculation. The critical issues discussed are the high cost of the metal organic precursors, the material utilization efficiency and the capability of the final product as measured by the critical current density achieved. Capital, operating and material costs are estimated and summed as the basis for calculating the cost per unit length of wire. Sensitivity analyses of key assumptions are examined to determine their effects on the final wire cost. Additionally, the cost of wire on the basis of cost per kiloampere per meter is calculated for operation at lower temperatures than the liquid nitrogen boiling temperature. It is concluded that this process should not be ruled out on the basis of high cost of precursors alone.

Chapman, J.N.

1999-07-13T23:59:59.000Z

307

Two dimensional metallic photonic crystals for light trapping and anti-reflective coatings in thermophotovoltaic applications  

SciTech Connect (OSTI)

We report the development of a front-side contact design for thermophotovoltaics that utilizes metallic photonic crystals (PhCs). While this front-side grid replacement covers more surface area of the semiconductor, a higher percentage of photons is shown to be converted to usable power in the photodiode. This leads to a 30% increase in the short-circuit current of the gallium antimonide thermophotovoltaic cell.

Shemelya, Corey; DeMeo, Dante F.; Vandervelde, Thomas E. [The Renewable Energy and Applied Photonics Laboratories, Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155 (United States)

2014-01-13T23:59:59.000Z

308

Synthesis and structural, magnetic, thermal, and transport properties of several transition metal oxides and aresnides  

SciTech Connect (OSTI)

Oxide compounds containing the transition metal vanadium (V) have attracted a lot of attention in the field of condensed matter physics owing to their exhibition of interesting properties including metal-insulator transitons, structural transitions, ferromagnetic and antiferromagnetic orderings, and heavy fermion behavior. Binary vanadium oxides V{sub n}O{sub 2n-1} where 2 {le} n {le} 9 have triclinic structures and exhibit metal-insulator and antiferromagnetic transitions. The only exception is V{sub 7}O{sub 13} which remains metallic down to 4 K. The ternary vanadium oxide LiV{sub 2}O{sub 4} has the normal spinel structure, is metallic, does not undergo magnetic ordering and exhibits heavy fermion behavior below 10 K. CaV{sub 2}O{sub 4} has an orthorhombic structure with the vanadium spins forming zigzag chains and has been suggested to be a model system to study the gapless chiral phase. These provide great motivation for further investigation of some known vanadium compounds as well as to explore new vanadium compounds in search of new physics. This thesis consists, in part, of experimental studies involving sample preparation and magnetic, transport, thermal, and x-ray measurements on some strongly correlated eletron systems containing the transition metal vanadium. The compounds studied are LiV{sub 2}O{sub 4}, YV{sub 4}O{sub 8}, and YbV{sub 4}O{sub 8}. The recent discovery of superconductivity in RFeAsO{sub 1-x}F{sub x} (R = La, Ce, Pr, Gd, Tb, Dy, Sm, and Nd), and AFe{sub 2}As{sub 2} (A = Ba, Sr, Ca, and Eu) doped with K, Na, or Cs at the A site with relatively high T{sub c} has sparked tremendous activities in the condensed matter physics community and a renewed interest in the area of superconductivity as occurred following the discovery of the layered cuprate high T{sub c} superconductors in 1986. To discover more superconductors with hopefully higher T{sub c}'s, it is extremely important to investigate compounds having crystal structures related to the compounds showing high T{sub c} superconductivity. Along with the vanadium oxide compounds described before, this thesis describes our investigations of magnetic, structural, thermal and transport properties of EuPd{sub 2}Sb{sub 2} single crystals which have a crystal structure closely related to the AFe{sub 2}As{sub 2} compounds and also a study of the reaction kinetics of the formation of LaFeAsO{sub 1-x}F{sub x}.

Das, Supriyo

2010-05-16T23:59:59.000Z

309

Modifications of the surface properties of metals by oxide overlayers: 1, Oxidized zirconium deposited on the Pt(100) single crystal surface  

SciTech Connect (OSTI)

Metallic zirconium was deposited on a single crystal Pt(100) surface by thermal evaporation in UHV conditions. The deposit was oxidized by exposure to oxygen immediately after deposition. Oxidized zirconium was found to grow on the platinum ace by the layer-by-layer mechanism. The adsorption of carbon monoxide on the surface was studied as a function of the zirconium coverage. The results show that oxidized zirconium forms a chemically inert layer which blocks the adsorptive sites of the underlying platinum substrate. The properties of the free Pt surface were unaffected by the presence of the oxidized zirconium layer.

Bardi, U.; Ross, P.N.

1986-06-01T23:59:59.000Z

310

The Influence of Ni-Coated TiC on Laser-Deposited IN625 Metal Matrix Composites  

E-Print Network [OSTI]

The In?uence of Ni-Coated TiC on Laser-Deposited IN625 Metalwith Ni-coated and uncoated TiC reinforcement particles toand spatial distribution of TiC particles in the deposited

2010-01-01T23:59:59.000Z

311

Zinc phosphate conversion coatings  

DOE Patents [OSTI]

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

Sugama, Toshifumi (Wading River, NY)

1997-01-01T23:59:59.000Z

312

Zinc phosphate conversion coatings  

DOE Patents [OSTI]

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

Sugama, T.

1997-02-18T23:59:59.000Z

313

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 10, NO. 3, MAY 2011 499 TiSi2 Nanocrystal Metal Oxide Semiconductor Field  

E-Print Network [OSTI]

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 10, NO. 3, MAY 2011 499 TiSi2 Nanocrystal Metal Oxide memory window, faster writing and erasing, and longer retention lifetime as a result of the metallic property of the silicide NCs. Due to thermally stable, CMOS compatible properties, TiSi2 NCs are highly

Yang, Zheng

314

Solar selective absorption coatings  

DOE Patents [OSTI]

A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

Mahoney, Alan R. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Martinez, F. Edward (Horseheads, NY)

2003-10-14T23:59:59.000Z

315

Solar selective absorption coatings  

DOE Patents [OSTI]

A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

Mahoney, Alan R. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Martinez, F. Edward (Horseheads, NY)

2004-08-31T23:59:59.000Z

316

Synthesis of zinc oxide particles coated multiwalled carbon nanotubes: Dielectric properties, electromagnetic interference shielding and microwave absorption  

SciTech Connect (OSTI)

Graphical abstract: A resistorcapacitor model could well describe the relationships between the structure and the dielectric properties, electromagnetic interference shielding and microwave-absorption of the composites in the frequency range of 218 GHz. The resonant behavior associated with the multiwalled carbon nanotubes/zinc oxide (MWCNTs/ZnO) interface greatly broadens the absorption band. Highlights: ? ZnO-immobilized on multiwalled carbon nanotubes (MWCNTs/ZnO) have resonant behavior. ? A resistorcapacitor model describes the relation between the structure and properties. ? The composite with 40 wt% MWCNTs/ZnO has good electromagnetic interference shielding. ? Two different types of absorption peaks are found in the MWCNTs/ZnO composites. ? The existence of MWCNTs/ZnO interface broadens the absorption band. -- Abstract: Zinc oxide (ZnO) nanoparticles were coated on the surfaces of multiwalled carbon nanotubes (MWCNTs). High resolution transmission electron microscopy images show that the wurtzite ZnO immobilized on the MWCNTs is single-crystalline with a preferential [0 0 0 2] growth direction. A capacitor was generated by the interface of ZnO and MWCNTs, and a resistorcapacitor model could well describe the relationships between the structure and the dielectric properties, electromagnetic interference shielding and microwave-absorption of the composites in the frequency range of 218 GHz. The network built by ZnO-immobilized MWCNTs could contribute to the improvement of electrical properties. Resonant peaks associated with the capacitor formed by the interface were observed in the microwave absorption spectra, which suggest that reflectionloss peaks greatly broadens the absorption bandwidth.

Song, Wei-Li [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)] [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Cao, Mao-Sheng, E-mail: caomaosheng@bit.edu.cn [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)] [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Wen, Bo; Hou, Zhi-Ling; Cheng, Jin [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)] [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Yuan, Jie, E-mail: yuanjie4000@sina.com [School of Information Engineering, Central University for Nationality, Beijing 100081 (China)] [School of Information Engineering, Central University for Nationality, Beijing 100081 (China)

2012-07-15T23:59:59.000Z

317

REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS  

SciTech Connect (OSTI)

Uses for structured catalytic supports, such as ceramic straight-channel monoliths and ceramic foams, have been established for a long time. One of the most prominent examples is the washcoated ceramic monolith as a three-way catalytic converter for gasoline-powered automobiles. A distinct alternative to the ceramic monolith is the metal foam, with potential use in fuel cell-powered automobiles. The metal foams are characterized by their pores per inch (ppi) and density ({rho}). In previous research, using 5 wt% platinum (Pt) and 0.5 wt% iron (Fe) catalysts, washcoated metal foams, 5.08 cm in length and 2.54 cm in diameter, of both varying and similar ppi and {rho} were tested for their activity (X{sub CO}) and selectivity (S{sub CO}) on a CO preferential oxidation (PROX) reaction in the presence of a H{sub 2}-rich gas stream. The variances in these metal foams' activity and selectivity were much larger than expected. Other structured supports with 5 wt% Pt, 0-1 wt% Fe weight loading were also examined. A theory for this phenomenon states that even though these structured supports have a similar nominal catalyst weight loading, only a certain percentage of the Pt/Fe catalyst is exposed on the surface as an active site for CO adsorption. We will use two techniques, pulse chemisorption and temperature programmed desorption (TPD), to characterize our structured supports. Active metal count, metal dispersion, and other calculations will help clarify the causes for the activity and selectivity variations between the supports. Results on ceramic monoliths show that a higher Fe loading yields a lower dispersion, potentially because of Fe inhibition of the Pt surface for CO adsorption. This theory is used to explain the reason for activity and selectivity differences for varying ppi and {rho} metal foams; less active and selective metal foams have a lower Fe loading, which justifies their higher metal dispersion. Data on the CO desorption temperature and average metal crystallite size for TPD are also collected.

Paul Chin; George W. Roberts; James J. Spivey

2003-12-31T23:59:59.000Z

318

High temperature low friction surface coating  

DOE Patents [OSTI]

A high temperature, low friction, flexible coating for metal surfaces which are subject to rubbing contact includes a mixture of three parts graphite and one part cadmium oxide, ball milled in water for four hours, then mixed with thirty percent by weight of sodium silicate in water solution and a few drops of wetting agent. The mixture is sprayed 12-15 microns thick onto an electro-etched metal surface and air dried for thirty minutes, then baked for two hours at 65.degree. C. to remove the water and wetting agent, and baked for an additional eight hours at about 150.degree. C. to produce the optimum bond with the metal surface. The coating is afterwards burnished to a thickness of about 7-10 microns.

Bhushan, Bharat (Watervliet, NY)

1980-01-01T23:59:59.000Z

319

The Effects of Content of Zr(NO3)4 on Formation and Characteristics of Micro-arc Oxidation Coatings Formed on ZAlSi12Cu2Mg1 Surface  

Science Journals Connector (OSTI)

The aims of this work are to prepare micro-arc oxidation coatings on the surface of ZAlSi12Cu2Mg1 aluminum alloy in Na2SiO3+NaOH+Na2EDTA electrolytes with and without Zr(NO3)4 and study their formation and characteristics. The phase constituent, surface ... Keywords: Zr(NO3)4, ZAlSi12Cu2Mg1 micro-arc oxidation, ceramic coating

Ren Yanru; Liu Xiangdong; Ao Dongwei; Lu Kai; Che Guangdong

2011-01-01T23:59:59.000Z

320

Channel cracks in atomic-layer and molecular-layer deposited multilayer thin film coatings  

SciTech Connect (OSTI)

Metal oxide thin film coatings produced by atomic layer deposition have been shown to be an effective permeation barrier. The primary failure mode of such coatings under tensile loads is the propagation of channel cracks that penetrate vertically into the coating films. Recently, multi-layer structures that combine the metal oxide material with relatively soft polymeric layers produced by molecular layer deposition have been proposed to create composite thin films with desired properties, including potentially enhanced resistance to fracture. In this paper, we study the effects of layer geometry and material properties on the critical strain for channel crack propagation in the multi-layer composite films. Using finite element simulations and a thin-film fracture mechanics formalism, we show that if the fracture energy of the polymeric layer is lower than that of the metal oxide layer, the channel crack tends to penetrate through the entire composite film, and dividing the metal oxide and polymeric materials into thinner layers leads to a smaller critical strain. However, if the fracture energy of the polymeric material is high so that cracks only run through the metal oxide layers, more layers can result in a larger critical strain. For intermediate fracture energy of the polymer material, we developed a design map that identifies the optimal structure for given fracture energies and thicknesses of the metal oxide and polymeric layers. These results can facilitate the design of mechanically robust permeation barriers, an important component for the development of flexible electronics.

Long, Rong, E-mail: rlongmech@gmail.com [Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2G8 (Canada); Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Dunn, Martin L. [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Singapore University of Technology and Design, Singapore 138682 (Singapore)

2014-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Correlation effects in (111) bilayers of perovskite transition-metal oxides  

SciTech Connect (OSTI)

We investigate the correlation-induced Mott, magnetic, and topological phase transitions in artificial (111) bilayers of perovskite transition-metal oxides LaAuO3 and SrIrO3 for which the previous density-functional theory calculations predicted topological insulating states. Using the dynamical-mean-field theory with realistic band structures and Coulomb interactions, LaAuO3 bilayer is shown to be far away from a Mott insulating regime, and a topological-insulating state is robust. On the other hand, SrIrO3 bilayer is on the verge of an orbital-selective topological Mott transition and turns to a trivial insulator by an antiferromagnetic ordering. Oxide bilayers thus provide a novel class of topological materials for which the interplay between the spin-orbit coupling and electron-electron interactions is a fundamental ingredient.

Okamoto, Satoshi [ORNL] [ORNL; Zhu, Wenguang [University of Science and Technology of China] [University of Science and Technology of China; Nomura, Yusuke [University of Tokyo, Japan] [University of Tokyo, Japan; Arita, R. [University of Tokyo, Japan] [University of Tokyo, Japan; Xiao, Di [Carnegie Mellon University (CMU)] [Carnegie Mellon University (CMU); Nagaosa, Naoto [University of Tokyo, Japan] [University of Tokyo, Japan

2014-01-01T23:59:59.000Z

322

Ptmetal oxide aerogel catalysts: X-ray photoemission investigation  

Science Journals Connector (OSTI)

X-ray photoemission spectroscopy was used to study Ptmetal oxide aerogel catalysts that have been developed to respond to increased NO x emissions of lean-burn engines. Lean-burn engines critical components of low and zero emission vehicles produce much higher levels of engine-out NO x and current three-way catalytic converters are not sufficient to meet Clean Air Act standards. Platinum catalysts were formed by the reaction of modified Pt coordination compounds with selected transitionmetal alkoxides through solgel techniques into aerogels. Photoemission measurements of the Pt 4f Si 2p Ti 2p O 1s and C 1s core lines were used to evaluate the chemistry of the material after each processing step. Results indicate PtO bonding and reduced Pt disbursed in the aerogel. In addition Si 2p Ti 2p and O 1s binding energies indicate an oxo-bridged network structure.

A. J. Nelson; John G. Reynolds; R. D. Sanner; P. R. Coronado; L. M. Hair

2001-01-01T23:59:59.000Z

323

Strain induced electronic structure changes in magnetic transition metal oxides thin films  

SciTech Connect (OSTI)

We show that the angular dependence of x-ray magnetic circular dichroism (XMCD) is strongly sensitive to strain-induced electronic structure changes in magnetic transition metal oxides. We observe a pronounced dependence of the XMCD spectral shape on the experimental geometry as well as nonvanishing XMCD with distinct spectral features in transverse geometry in compressively strained MnCr{sub 2}O{sub 4} films. The angular dependent XMCD can be described as a sum over an isotropic and anisotropic contribution, the latter linearly proportional to the axial distortion due to strain. The XMCD spectra are well reproduced by atomic multiplet calculations.

van der Laan, G.; Chopdekar, R.V.; Suzuki, Y.; Arenholz, E.

2010-07-08T23:59:59.000Z

324

Atomic polar tensors and acid-base properties of metal-oxide building blocks  

SciTech Connect (OSTI)

The sensitivity of the atomic polar tensor to compositional substituents is reported for the alkali silicate series. Rotational invariants, effective atomic charge (GAPT) and charge normalized anisotropy and dipole ({alpha}{sub n} and {gamma}{sub n}) are used to characterize the charge distribution and chemical environment of the atomic sites. Comparison of {alpha}{sub n} and {gamma}{sub n} with a series of known Bronsted and Lewis acids and bases suggests that these rotational invariants may act as indicators for metal-oxide site acidities. Basis set and electron correlation particularly affect the determined effective charge, but show minimal effect on {alpha} and {gamma} quantities.

Ferris, K.F.

1993-02-01T23:59:59.000Z

325

Atomic polar tensors and acid-base properties of metal-oxide building blocks  

SciTech Connect (OSTI)

The sensitivity of the atomic polar tensor to compositional substituents is reported for the alkali silicate series. Rotational invariants, effective atomic charge (GAPT) and charge normalized anisotropy and dipole ([alpha][sub n] and [gamma][sub n]) are used to characterize the charge distribution and chemical environment of the atomic sites. Comparison of [alpha][sub n] and [gamma][sub n] with a series of known Bronsted and Lewis acids and bases suggests that these rotational invariants may act as indicators for metal-oxide site acidities. Basis set and electron correlation particularly affect the determined effective charge, but show minimal effect on [alpha] and [gamma] quantities.

Ferris, K.F.

1993-02-01T23:59:59.000Z

326

REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS  

SciTech Connect (OSTI)

Hydrocarbon fuels must be reformed in a series of steps to provide hydrogen for use in proton exchange membrane fuel cells (PEMFCs). Preferential oxidation (PROX) is one method to reduce the CO concentration to less than 10 ppm in the presence of {approx}40% H{sub 2}, CO{sub 2}, and steam. This will prevent CO poisoning of the PEMFC anode. Structured supports, such as ceramic monoliths, can be used for the PROX reaction. Alternatively, metal foams offer a number of advantages over the traditional ceramic monolith.

Paul Chin; Xiaolei Sun; George W. Roberts; Amornmart Sirijarhuphan; Sourabh Pansare; James G. Goodwin Jr; Richard W. Rice; James J. Spivey

2005-06-01T23:59:59.000Z

327

Synthesis of transition metal nitride by nitridation of metastable oxide precursor  

SciTech Connect (OSTI)

Metastable transition metal oxides were used as precursors to synthesize transition metal nitrides at low temperature. Amorphous MoO{sub 2} was prepared by reduction of (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24} solution with hydrazine. As-synthesized amorphous MoO{sub 2} was transformed into fcc {gamma}-Mo{sub 2}N at 400 Degree-Sign C and then into hexagonal {delta}-MoN by further increasing the temperature to 600 Degree-Sign C under a NH{sub 3} flow. The nitridation temperature employed here is much lower than that employed in nitridation of crystalline materials, and the amorphous materials underwent a unique nitridation process. Besides this, the bimetallic nitride Ni{sub 2}Mo{sub 3}N was also synthesized by nitridating amorphous bimetallic precursor. These results suggested that the nitridation of amorphous precursor possessed potential to be a general method for synthesizing many interstitial metallic compounds, such as nitrides and carbides at low temperature. - graphical abstract: Amorphous oxide was used as new precursor to prepare nitride at low temperature. Pure {gamma}-Mo{sub 2}N and {delta}-MoN were obtained at 400 Degree-Sign C and at 600 Degree-Sign C, respectively. Highlights: Black-Right-Pointing-Pointer We bring out a new method to synthesize transition metal nitrides at low temperature. Black-Right-Pointing-Pointer Both mono- and bimetallic molybdenum nitrides were synthesized at a mild condition. Black-Right-Pointing-Pointer The formation of two different molybdenum nitrides {gamma}-Mo{sub 2}N and {delta}-MoN can be controlled from the same metastable precursor. Black-Right-Pointing-Pointer The nitridation temperature was much lower than that reported from crystalline precursors. Black-Right-Pointing-Pointer The metastable precursor had different reaction process in comparison with crystalline precursor.

Wang, Huamin; Wu, Zijie; Kong, Jing [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China)] [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China); Wang, Zhiqiang, E-mail: zqwang@mail.nankai.edu.cn [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China) [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China); Tianjin Key Laboratory of Water Environment and Resources, Tianjin Normal University, No. 393 Binshui Road, Xiqing Dist., Tianjin 300387 (China); Zhang, Minghui, E-mail: zhangmh@nankai.edu.cn [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China)] [Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071 (China)

2012-10-15T23:59:59.000Z

328

Partial oxidation of lower alkanes by active lattice oxygen of metal oxide systems: 2. Synthesis of solid contacts and syngas production in a pilot plant with a riser reactor  

Science Journals Connector (OSTI)

Metal oxide systems with a high lattice-oxygen content, which exhibit reversibility of oxidationreduction transitions, have been synthesized and characterized. Oxidant Solid Contacts have been prepared using t...

I. M. Gerzeliev; N. Ya. Usachev; A. Yu. Popov; S. N. Khadzhiev

2012-09-01T23:59:59.000Z

329

Method of nitriding refractory metal articles  

DOE Patents [OSTI]

A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

Tiegs, Terry N. (Lenoir City, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Omatete, Ogbemi O. (Lagos, NG); Young, Albert C. (Flushing, NY)

1994-01-01T23:59:59.000Z

330

Method of nitriding refractory metal articles  

DOE Patents [OSTI]

A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

Tiegs, T.N.; Holcombe, C.E.; Dykes, N.L.; Omatete, O.O.; Young, A.C.

1994-03-15T23:59:59.000Z

331

A method for characterizing and improving the damage resistance of the outer metallic coating on IFE Targets  

E-Print Network [OSTI]

64 Etch or Roughenmuch cleaner. VI.2 Etch or Roughen Coating The next idea forand the PAMS shell was to roughen the surface of the shell

Carlson, Landon J.

2009-01-01T23:59:59.000Z

332

Broadband omnidirectional antireflection coatings for metal-backed solar cells optimized using simulated annealing algorithm incorporated with solar spectrum  

Science Journals Connector (OSTI)

Broadband omnidirectional antireflection (AR) coatings for solar cells optimized using simulated annealing (SA) algorithm incorporated with the solar (irradiance) spectrum at Earths...

Chang, Yin-Jung; Chen, Yu-Ting

2011-01-01T23:59:59.000Z

333

Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect  

SciTech Connect (OSTI)

A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two ferritic stainless steel coupons for strength evaluation. The steel coupons were pre-oxidized at elevated temperatures to promote thick oxide layers to simulate long-term exposure conditions. In addition, seals to as-received metal coupons were also tested after aging in oxidizing or reducing environments to simulate the actual SOFC environment. Room temperature tensile testing showed strength degradation when using pre-oxidized coupons, and more extensive degradation after aging in air. Fracture surface and microstructural analysis confirmed that the cause of degradation was formation of SrCrO4 at the outer sealing edges exposed to air.

Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

2008-09-15T23:59:59.000Z

334

Effect of hydrogen sulfide on chemical looping combustion of coal-derived synthesis gas over bentonite-supported metal-oxide oxygen carriers  

SciTech Connect (OSTI)

The effect of hydrogen sulfide (H{sub 2}S) on the chemical looping combustion of coal-derived synthesis gas with bentonite-supported metal oxides - such as iron oxide, nickel oxide, manganese oxide, and copper oxide - was investigated by thermogravimetric analysis, mass spectrometry, and X-ray photoelectron spectroscopy (XPS). During the reaction with synthesis gas containing H{sub 2}S, metal-oxide oxygen carriers were first reduced by carbon monoxide and hydrogen, and then interacted with H{sub 2}S to form metal sulfide, which resulted in a weight gain during the reduction/sulfidation step. The reduced/sulfurized compounds could be regenerated to form sulfur dioxide and oxides during the oxidation reaction with air. The reduction/oxidation capacities of iron oxide and nickel oxide were not affected by the presence of H{sub 2}S, but both manganese oxide and copper oxide showed decreased reduction/oxidation capacities. However, the rates of reduction and oxidation decreased in the presence of H{sub 2}S for all four metal oxides.

Tian, H.J.; Simonyi, T.; Poston, J.; Siriwardane, R. [US DOE, Morgantown, WV (United States). National Energy Technology Laboratory

2009-09-15T23:59:59.000Z

335

Water growth on metals and oxides: binding, dissociation and role of hydroxyl groups  

SciTech Connect (OSTI)

The authors discuss the role of the presence of dangling H bonds from water or from surface hydroxyl species on the wetting behavior of surfaces. Using Scanning Tunneling and Atomic Force Microscopies, and Photoelectron Spectroscopy, they have examined a variety of surfaces, including mica, oxides, and pure metals. They find that in all cases, the availability of free, dangling H-bonds at the surface is crucial for the subsequent growth of wetting water films. In the case of mica electrostatic forces and H-bonding to surface O atoms determine the water orientation in the first layer and also in subsequent layers with a strong influence in its wetting characteristics. In the case of oxides like TiO{sub 2}, Cu{sub 2}O, SiO{sub 2} and Al{sub 2}O{sub 3}, surface hydroxyls form readily on defects upon exposure to water vapor and help nucleate the subsequent growth of molecular water films. On pure metals, such as Pt, Pd, and Ru, the structure of the first water layer and whether or not it exhibits dangling H bonds is again crucial. Dangling H-bonds are provided by molecules with their plane oriented vertically, or by OH groups formed by the partial dissociation of water. By tying the two II atoms of the water molecules into strong H-bonds with pre-adsorbed O on Ru can also quench the wettability of the surface.

Salmeron, M.; Bluhm, H.; Tatarkhanov, M.; Ketteler, G.; Shimizu, T.K.; Mugarza, A.; Deng, Xingyi; Herranz, T.; Yamamoto, S.; Nilsson, A.

2008-09-01T23:59:59.000Z

336

Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides M. K. Aydinol, A. F. Kohan, and G. Ceder  

E-Print Network [OSTI]

-metal-oxides due to their application potential as rechargeable battery electrodes1 and electrochromic displays.2. In electrochromic applications, band filling is used to adjust the electronic and optical properties.3 Figure 1-potential difference between cathode and anode is desirable as this leads to a high OCV. For electrochromic

Ceder, Gerbrand

337

Disposition of Uranium -233 (sup 233U) in Plutonium Metal and Oxide at the Rocky Flats Environmental Technology Site  

SciTech Connect (OSTI)

This report documents the position that the concentration of Uranium-233 ({sup 233}U) in plutonium metal and oxide currently stored at the DOE Rocky Flats Environmental Technology Site (RFETS) is well below the maximum permissible stabilization, packaging, shipping and storage limits. The {sup 233}U stabilization, packaging and storage limit is 0.5 weight percent (wt%), which is also the shipping limit maximum. These two plutonium products (metal and oxide) are scheduled for processing through the Building 371 Plutonium Stabilization and Packaging System (PuSPS). This justification is supported by written technical reports, personnel interviews, and nuclear material inventories, as compiled in the ''History of Uranium-233 ({sup 233}U) Processing at the Rocky Flats Plant In Support of the RFETS Acceptable Knowledge Program'' RS-090-056, April 1, 1999. Relevant data from this report is summarized for application to the PuSPS metal and oxide processing campaigns.

Freiboth, Cameron J.; Gibbs, Frank E.

2000-03-01T23:59:59.000Z

338

Gate Metal-Induced Diffusion and Interface Reactions in Hf Oxide Films on Si  

SciTech Connect (OSTI)

When metal electrodes are deposited on a high-{kappa} metal-oxide/SiO{sub 2}/Si stack, chemical interactions may occur both at the metal/high-{kappa} and the high-{kappa}/Si interfaces, causing changes in electrical performance. We report here results from medium energy ion scattering (MEIS) and x-ray photoelectron (XPS) studies of oxygen and silicon transport and interfacial layer reactions in multilayer gate stacks. Our results show that Ti deposition on HfO{sub 2}/SiO{sub 2}/Si stacks causes reduction of the SiO{sub 2} interfacial layer and (to a lesser extent) the HfO{sub 2} layer. Silicon atoms initially present in the interfacial SiO{sub 2} layer incorporate into the bottom of the high-{kappa} layer. Some evidence for titanium-silicon interdiffusion through the high-{kappa} film in the presence of a titanium gate in crystalline HfO{sub 2} films is also reported.

Goncharova, Lyudmila V.; Dalponte, Mateus; Celik, Ozgur; Garfunkel, Eric; Gustafsson, Torgny [Departments of Physics and Chemistry, and Laboratory for Surface Modification, Rutgers University, Piscataway, NJ 08854 (United States); Lysaght, Pat S.; Bersuker, Gennadi I. [Sematech, Austin, Texas 78741 (United States)

2007-09-26T23:59:59.000Z

339

Method and apparatus for preparation of spherical metal carbonates and lithium metal oxides for lithium rechargeable batteries  

DOE Patents [OSTI]

A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling. Another aspect of the invention includes materials with the composition Li.sub.1+xNi.sub..alpha.Co.sub..beta.Mn.sub..gamma.M'.sub..delta.O.sub.yF- .sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti), where the x is between 0 and 0.2, the .alpha. between 0 and 1, the .beta. between 0 and 1, the .gamma. between 0 and 2, the .delta. between about 0 and about 0.2, the y is between 2 and 4, and the z is between 0 and 0.5.

Kang, Sun-Ho (Naperville, IL); Amine, Khalil (Downers Grove, IL)

2008-10-14T23:59:59.000Z

340

Use of high-temperature gas-tight electrochemical cells to measure electronic transport and thermodynamics in metal oxides  

SciTech Connect (OSTI)

By using a gas-tight electrochemical cell, the authors can perform high-temperature coulometric titration and measure electronic transport properties to determine the electronic defect structure of metal oxides. This technique reduces the time and expense required for conventional thermogravimetric measurements. The components of the gas-tight coulometric titration cell are an oxygen sensor, Pt/yttria stabilized zirconia (YSZ)/Pt, and an encapsulated metal oxide sample. Based on cell design, both transport and thermodynamic measurements can be performed over a wide range of oxygen partial pressures (pO{sub 2} = 10{sup {minus}35} to 1 atm). This paper describes the high-temperature gas-tight electrochemical cells used to determine electronic defect structures and transport properties for pure and doped-oxide systems, such as YSZ, doped and pure ceria (Ca-CeO{sub 2} and CeO{sub 2}), copper oxides, and copper-oxide-based ceramic superconductors, transition metal oxides, SrFeCo{sub 0.5}O{sub x}, and BaTiO{sub 3}.

Park, J.H.; Ma, B.; Park, E.T. [Argonne National Lab., IL (United States). Energy Technology Div.

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-air Batteries  

SciTech Connect (OSTI)

The prohibitive cost and scarcity of the noble-metal catalysts needed for catalysing the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries limit the commercialization of these clean-energy technologies. Identifying a catalyst design principle that links material properties to the catalytic activity can accelerate the search for highly active and abundant transition-metal-oxide catalysts to replace platinum. Here, we demonstrate that the ORR activity for oxide catalysts primarily correlates to {sigma}*-orbital (e{sub g}) occupation and the extent of B-site transition-metal-oxygen covalency, which serves as a secondary activity descriptor. Our findings reflect the critical influences of the {sigma}* orbital and metal-oxygen covalency on the competition between O{sub 2}{sup 2-}/OH{sup -} displacement and OH{sup -} regeneration on surface transition-metal ions as the rate-limiting steps of the ORR, and thus highlight the importance of electronic structure in controlling oxide catalytic activity.

J Suntivich; H Gasteiger; N Yabuuchi; H Nakanishi; J Goodenough; Y Shao-Horn

2011-12-31T23:59:59.000Z

342

Effect of hydrogen sulfide on chemical looping of coal-derived synthesis gas over bentonite-supported metal---oxide oxygen carriers  

SciTech Connect (OSTI)

The effect of hydrogen sulfide (H2S) on the chemical looping combustion of coal-derived synthesis gas with bentonite-supported metal oxidesssuch as iron oxide, nickel oxide, manganese oxide, and copper oxideswas investigated by thermogravimetric analysis, mass spectrometry, and X-ray photoelectron spectroscopy (XPS). During the reaction with synthesis gas containing H2S, metal-oxide oxygen carriers were first reduced by carbon monoxide and hydrogen, and then interacted with H2S to form metal sulfide, which resulted in a weight gain during the reduction/sulfidation step. The reduced/sulfurized compounds could be regenerated to form sulfur dioxide and oxides during the oxidation reaction with air. The reduction/oxidation capacities of iron oxide and nickel oxide were not affected by the presence of H2S, but both manganese oxide and copper oxide showed decreased reduction/oxidation capacities. However, the rates of reduction and oxidation decreased in the presence of H2S for all four metal oxides.

Tian, H.; Simonyi, T.; Poston, J.; Siriwardane, R.

2009-01-01T23:59:59.000Z

343

HEU to LEU conversion and blending facility: Metal blending alternative to produce LEU oxide for disposal  

SciTech Connect (OSTI)

US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form more proliferation- resistant than the original form. Blending HEU (highly enriched uranium) with less-enriched uranium to form LEU has been proposed as a disposition option. Five technologies are being assessed for blending HEU. This document provides data to be used in environmental impact analysis for the HEU-LEU disposition option that uses metal blending with an oxide waste product. It is divided into: mission and assumptions, conversion and blending facility descriptions, process descriptions and requirements, resource needs, employment needs, waste and emissions from plant, hazards discussion, and intersite transportation.

NONE

1995-09-01T23:59:59.000Z

344

Spectroscopic Studies of O-Vacancy Defects in Transition Metal Oxides  

SciTech Connect (OSTI)

Dielectrics comprised of nano-crystalline HfO{sub 2} in gate stacks with thin SiO{sub 2}/SiON interfacial transition regions display significant asymmetries with respect to trapping of Si substrate injected holes and electrons. Based on spectroscopic studies, and guided by ab initio theory, electron and hole traps in HfO{sub 2} and other transition metal elemental oxides are assigned to O-atom divacancies clustered at internal grain boundaries of nano-crystalline films. Engineering solutions in which grain boundary defects are suppressed include: (i) ultra-thin, <2 nm, HfO{sub 2} fims, (ii) chemically phase separated high HfO2 content silicate films, and (iii) non-crystalline Zr/Hf Si oxynitride films.

Lucovsky, G.; Luning, J.; Fleming, L.B.; Ulrich, M.D.; Rowe, J.E.; Seo, H.; Lee, S.; Lysaght, P.; Bersuker, G.

2009-06-03T23:59:59.000Z

345

Process for producing a corrosion-resistant solid lubricant coating  

SciTech Connect (OSTI)

A corrosion-resistant surface formed of a sulfide-forming metal, in particular nickel, is first subjected to an electric plasma in an atmosphere containing hydrogen sulfide to form an adherent sulfide on said surface. The sulfided surface is then exposed to simultaneous cathodic sputtering of at least one solid lubricant which is a chalcogen compound of layer structure, in particular MoS/sub 2/, and at least one hydrophobic solid polymer, in particular PTFE. The coating thus formed is a composite coating in which the particles of the chalcogen compound are coated by the polymer. When the surface of the part to be coated does not consist of a corrosion-resistant sulfide-forming metal, a layer of such a metal is first deposited by cathodic sputtering. The composite coating withstands a wet oxidizing atmosphere, contrary to a coating of MoS/sub 2/ alone, and the method is applicable to any mechanical part intended to rub on other surfaces, such as a watch balance wheel staff and ball or roller bearings.

Niederhaeuser, P.; Hintermann, H.E.; Maillat, M.

1983-11-15T23:59:59.000Z

346

Corrosion and Protection of Metallic Interconnects in Solid Oxide Fuel Cells  

SciTech Connect (OSTI)

Energy security and increased concern over environmental protection have spurred a dramatic world-wide growth in research and development of fuel cells, which electrochemically convert incoming fuel into electricity with no or low pollution. Fuel cell technology has become increasingly attractive to a number of sectors, including utility, automotive, and defense industries. Among the various types of fuel cells, solid oxide fuel cells (SOFCs) operate at high temperature (typically 650-1,000 C) and have advantages in terms of high conversion efficiency and the flexibility of using hydrocarbon fuels, in addition to hydrogen. The high temperature operation, however, can lead to increased mass transport and interactions between the surrounding environment and components that are required to be stable during a lifetime of thousands of hours and up to hundreds of thermal cycles. For stacks with relatively low operating temperatures (<800 C), the interconnects that are used to electrically connect a number of cells in series are typically made from cost-effective metals or alloys. The metallic interconnects must demonstrate excellent stability in a very challenging environment during SOFC operation, as they are simultaneously exposed to both an oxidizing (air) environment on the cathode side and a reducing environment (hydrogen or a reformed hydrocarbon fuel) on the anode side. Other challenges include the fact that water vapor is likely to be present in both of these environments, and the fuel is likely to contain impurities, such as sulfides. Since the fuel is usually a reformed hydrocarbon fuel, such as natural gas, coal gas, biogas, gasoline, etc., the interconnect is exposed to a wet carbonaceous environment at the anode side. Finally, the interconnect must be stable towards any adjacent components, such as electrodes, seals and electrical contact materials, with which it is in physical contact.

Yang, Z Gary; Stevenson, Jeffry W.; Singh, Prabhakar

2007-12-09T23:59:59.000Z

347

HIGH-PERFORMANCE COATING MATERIALS  

SciTech Connect (OSTI)

Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

SUGAMA,T.

2007-01-01T23:59:59.000Z

348

AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors using barium strontium titanate  

E-Print Network [OSTI]

AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors using barium strontium-effect transistors have been formed by incorporating barium strontium titanate (BST) deposited by rf magnetron in increased leakage. Due to its large dielectric constant, barium strontium ti- tanate [Ba1-xSrxTiO3, (BST

York, Robert A.

349

High-temperature corrosion of metallic alloys in an oxidizing atmosphere containing NaCl  

SciTech Connect (OSTI)

A particular heat-exchanger application involved metallic alloys exposed to flue gases of an aluminum remelt furnace. Because the flue gases might contain NaCl and other halides, the corrosion behavior of the alloys was to be investigated. Planned direct exposure of candidate alloys to the flue gases, however, was not conducted because of premature termination of the project. Complementary laboratory testing was conducted on seven commercially available alloys and two nickel aluminides. These materials were exposed to an oxidizing atmosphere containing 0.06 wt % NaCl for 1100 h at 1000/degree/C. Most of the alloy exhibited grain-boundary attack, which resulted in complete oxidation of enveloped grains. The alloys Incoloy MA-956, Incoloy 800, Inconel 625, Inconel 601, Hastelloy X, Haynes 188, and nickel aluminide IC-50 were substantially more corroded than Alloy 214 and nickel aluminide IC-221. The latter two alloys, therefore, would probably be superior to the others in application involving flue gases containing NaCl. Strength fabricability, and weldability, which are briefly discussed, would also affect selection of materials. 8 refs., 12 figs., 5 tabs.

Federer, J.I.

1989-02-01T23:59:59.000Z

350

Metal-gate-induced reduction of the interfacial layer in Hf oxide gate stacks  

SciTech Connect (OSTI)

The properties of high-{kappa} metal oxide gate stacks are often determined in the final processing steps following dielectric deposition. We report here results from medium energy ion scattering and x-ray photoelectron spectroscopy studies of oxygen and silicon diffusion and interfacial layer reactions in multilayer gate stacks. Our results show that Ti metallization of HfO{sub 2}/SiO{sub 2}/Si stacks reduces the SiO{sub 2} interlayer and (to a more limited extent) the HfO{sub 2} layer. We find that Si atoms initially present in the interfacial SiO{sub 2} layer incorporate into the bottom of the high-{kappa} layer. Some evidence for Ti-Si interdiffusion through the high-{kappa} film in the presence of a Ti gate in the crystalline HfO{sub 2} films is also reported. This diffusion is likely to be related to defects in crystalline HfO{sub 2} films, such as grain boundaries. High-resolution transmission electron microscopy and corresponding electron energy loss spectroscopy scans show aggressive Ti-Si intermixing and oxygen diffusion to the outermost Ti layer, given high enough annealing temperature. Thermodynamic calculations show that the driving forces exist for some of the observed diffusion processes.

Goncharova, L. V.; Dalponte, M.; Gustafsson, T.; Celik, O.; Garfunkel, E.; Lysaght, P. S.; Bersuker, G. [Department of Physics and Astronomy, and Laboratory for Surface Modification, Rutgers University, 136 Frelinghuysen Rd., Piscataway, New Jersey 08854 (United States); Department of Chemistry and Chemical Biology, and Laboratory for Surface Modification, Rutgers University, 610 Taylor Rd., Piscataway, New Jersey 08854 (United States); SEMATECH, 2705 Montopolis Dr., Austin, Texas 78741 (United States)

2007-03-15T23:59:59.000Z

351

INFLUENCE OF OXIDE GROWTH AND METAL CREEP ON STRAIN DEVELOPMENT IN THE STEAM-SIDE OXIDE IN BOILER TUBES  

SciTech Connect (OSTI)

This effort is concerned with developing a quantitative description of the exfoliation behavior of oxide scales grown inside steam tubes in a pressure boiler. Consideration of the development of stress/strain in growing oxides has included expansion mismatch-induced strains during thermal cycling as well as inelastic mechanical effects from oxide/alloy creep phenomena and volume change from oxide growth. The magnitude of the parameters used has been closely matched to actual boiler operating practice. The creep model used was validated against published data. Representation of oxide growth-induced strain was found to be a difficult challenge because the processes involved are not fully understood. In addition to the traditional uniaxial (radial) and dilatational models, lateral growth models are discussed in the context of experimentally-derived criteria, such as the level of elastic strains involved in oxide exfoliation. It was found that strain variation in the oxide cannot be neglected.

Sabau, Adrian S [ORNL; Wright, Ian G [ORNL

2010-01-01T23:59:59.000Z

352

Method for producing electricity from a fuel cell having solid-oxide ionic electrolyte  

DOE Patents [OSTI]

Stabilized quadrivalent cation oxide electrolytes are employed in fuel cells at elevated temperatures with a carbon and/or hydrogen containing fuel anode and an oxygen cathode. The fuel cell is operated at elevated temperatures with conductive metallic coatings as electrodes and desirably having the electrolyte surface blackened. Of particular interest as the quadrivalent oxide is zirconia.

Mason, David M. (Los Altos, CA)

1984-01-01T23:59:59.000Z

353

Nanoindentation and adhesion of sol-gel-derived hard coatings on polyester  

E-Print Network [OSTI]

. Fong, and M. Sarikaya Department of Materials Science and Engineering, University of Washington component and adding transition metal oxides. These modifications resulted in tailored thermal, optical on the plastic surface. Nanoindentation analysis revealed that the coatings have a surface hardness up to 2.5 ± 0

Cao, Guozhong

354

Method for providing uranium with a protective copper coating  

DOE Patents [OSTI]

The present invention is directed to a method for providing uranium metal with a protective coating of copper. Uranium metal is subjected to a conventional cleaning operation wherein oxides and other surface contaminants are removed, followed by etching and pickling operations. The copper coating is provided by first electrodepositing a thin and relatively porous flash layer of copper on the uranium in a copper cyanide bath. The resulting copper-layered article is then heated in an air or inert atmosphere to volatilize and drive off the volatile material underlying the copper flash layer. After the heating step an adherent and essentially non-porous layer of copper is electro-deposited on the flash layer of copper to provide an adherent, multi-layer copper coating which is essentially impervious to corrosion by most gases.

Waldrop, Forrest B. (Powell, TN); Jones, Edward (Knoxville, TN)

1981-01-01T23:59:59.000Z

355

Introduction of Artificial Pinning Center into PLD-YBCO Coated Conductor on IBAD and Self-Epitaxial CeO2 Buffered Metal Substrate  

SciTech Connect (OSTI)

In order to fabricate YBa2Cu3O7-x (YBCO) coated conductors with high critical current density Jc in magnetic fields, we fabricated YBCO coated conductors with artificial pinning centers by the pulsed laser deposition (PLD) method on a self epitaxial PLD-CeO2 layer and ion-beam assisted deposition (IBAD)-Gd2Zr2O7 (GZO) buffered Hastelloy tape. Artificial pinning centers were introduced by the PLD deposition using the yttria-stabilized zirconia (YSZ) oxide target (nano-dot method) and YBCO target including YSZ particles (mixed target method). In the experiments using YSZ oxide target, YSZ nano-dots were observed. They were approximately 15 nm in height and 10 nm to 70 nm in diameter. We found that the density of nano-dots was controlled by the number of laser pulses. These samples exhibited higher Jc than YBCO films in magnetic fields. Furthermore, a similar improvement of Jc was observed in the experiments using YBCO target including YSZ particles. TEM observation revealed that columnar nano-structure made of BaZrO3 was formed during YBCO deposition and it was effective for pinning. We call this new epitaxial nano-structure 'bamboo structure' from its anisotropic growth and morphology.

Kobayashi, H.; Yamada, Y.; Ishida, S.; Takahashi, K.; Konishi, M.; Ibi, A.; Miyata, S. [Superconductivity Research Laboratory, ISTEC, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, 456-8587 (Japan); Kato, T.; Hirayama, T. [Materials R and D Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587 (Japan); Shiohara, Y. [Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto-ku, Tokyo 135-0062 (Japan)

2006-03-31T23:59:59.000Z

356

The Vapor Deposition and Oxidation of Platinum-and Yttria-Stabilized Zirconia Multilayers  

E-Print Network [OSTI]

rates by disrupting thermal transport processes. Novel metal­ceramic multilayer's combining thin metal layers with low thermal conductivity oxide ceramics offer a potential approach for impeding both­200-mm-thick low thermal conductivity ceramic outer layer (the top coat), a 10­20-mm-thick, aluminum

Wadley, Haydn

357

Final Scientific/Technical Report "Arc Tube Coating System for Color Consistency"  

SciTech Connect (OSTI)

DOE has enabled the use of coating materials using low cost application methods on light sources to positively affect the output of those sources. The coatings and light source combinations have shown increased lumen output of LED fixtures (1.5%-2.0%), LED arrays (1.4%) and LED powered remote phosphor systems ?? Philips L-Prize lamp (0.9%). We have also demonstrated lifetime enhancements (3000 hrs vs 8000 hrs) and shifting to higher CRI (51 to 65) in metal halide high intensity discharge lamps with metal oxide coatings. The coatings on LEDs and LED products are significant as the market is moving increasingly more towards LED technology. Enhancements in LED performance are demonstrated in this work through the use of available materials and low cost application processes. EFOI used low refractive index fluoropolymers and low cost dipping processes for application of the material to surfaces related to light transmission of LEDs and LED products. Materials included Teflon AF, an amorphous fluorinated polymer and fluorinated acrylic monomers. The DOE SSL Roadmap sets goals for LED performance moving into the future. EFOI??s coating technology is a means to shift the performance curve for LEDs. This is not limited to one type of LED, but is relevant across LED technologies. The metal halide work included the use of sol-gel solutions resulting in silicon dioxide and titanium dioxide coatings on the quartz substrates of the metal halide arc tubes. The coatings were applied using low cost dipping processes.

Buelow, Roger; Jenson, Chris; Kazenski, Keith

2013-03-21T23:59:59.000Z

358

Promises and problems with metallic interconnects for reduced temperature solid oxide fuel cells  

E-Print Network [OSTI]

Symposium on Solid Oxide Fuel Cells (SOFC-VI) ed. S. C.FOR REDUCED TEMPERATURE SOLID OXIDE FUEL CELLS Peggy Y. Hou,for low temperature solid oxide fuel cell is discussed in

Hou, Peggy Y.; Huang, Keqin; Bakker, Wate T.

1999-01-01T23:59:59.000Z

359

Rapid thermal cycling of metal-supported solid oxide fuel cell membranes  

E-Print Network [OSTI]

effect of pressure on solid oxide fuel cell performance," inand flat plate solid oxide fuel cells," in Proceedings ofSymposium on Solid Oxide Fuel Cells. Electrochem. Soc. 1993,

Matus, Yuriy B.; De Jonghe, Lutgard C.; Jacobson, Craig P.; Visco, Steven J.

2004-01-01T23:59:59.000Z

360

Solution-mediated strategies for synthesizing metal oxides, borates and phosphides using nanocrystals as reactive precursors  

E-Print Network [OSTI]

substrates can be transformed into their corresponding phosphides. Furthermore, this strategy is applicable towards the conversion of supported metal nanocrystals into metal phosphides. Supported metal phosphides are used as hydrotreating catalysts...

Henkes, Amanda Erin

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Novel Non Chrome Processes for the Protection of Metal For commercial applications, specially formulated conversion coating treatments based  

E-Print Network [OSTI]

industries. Chromate coatings are favored due to their barrier and corrosion resistance properties. Chromium deposition is obtained from hexavalent Cr salt baths, which are subject to stringent regulations. Due is a temporary solution and it also toxic. Silica is a white, crystalline solid with a tetrahedral crystalline

Popov, Branko N.

362

Ultra-high vacuum fabrication and electrical characterization of environmentally sensitive metal oxide semiconductor capacitors  

SciTech Connect (OSTI)

We describe an integrated, ultra-high vacuum system for metal oxide semiconductor (MOS) device fabrication and characterization. Such a system is advantageous for electrical property measurements of electronic devices consisting of environmentally sensitive materials especially as device dimensions approach the nanoscale. Without exposure to atomosphere, MOS capacitors were fabricated by evaporating gate metal on molecular-beam-epitaxy (MBE) grown dielectrics on 3 inch-diameter substrates through a shadow mask in a UHV electrode-patterning chamber. The finished device is transferred in vacuum to an in-situ, UHV electrical characterization probe station that was designed with standard UHV coaxial feedthroughs and UHV-compatible, Kapton-insulated coaxial cable. The probe station also includes a heated sample stage that allows for annealing and measurements in a controlled ambient. We obtained excellent agreement between air-ambient ex-situ and in-situ probe station measurements utilizing a capacitor standard compatible with UHV based on single crystal sapphire as the dielectric. The measurements show less than 0.3 % dispersion for frequencies from 20 Hz to 1 MHz. We have successfully measured MOS capacitors and are sensitive to a density of interface states of 1x1010 states cm-2 eV-1. These measurements also show 0.5 % dispersion for measurement frequencies from 20 Hz to 1 kHz and less than 0.1 % from 1 kHz to 1 MHz. The integrated system presented here is one where complex, MBE-grown MOS heterostructures can be synthesized and tested rapidly to elucidate new field-effect-device physics and functionality.

Billman, Curt [Oak Ridge National Laboratory (ORNL); Walker, Frederick Joseph [ORNL

2007-01-01T23:59:59.000Z

363

Safety and core design of large liquid-metal cooled fast breeder reactors  

E-Print Network [OSTI]

Absorption Metal (Zr) Metal (Mo) Carbide Nitride Oxidef /? a k ? Metal (Zr) Metal (Mo) Carbide Nitride Oxide Table? a k ? Metal (Zr) Metal (Mo) Carbide Nitride Oxide CHAPTER

Qvist, Staffan Alexander

2013-01-01T23:59:59.000Z

364

High-Temperature Zirconia Oxygen Sensor with Sealed Metal/Metal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference...

365

Erosion of hard material coating systems  

Science Journals Connector (OSTI)

The use of coating systems to protect structural metal surfaces from elevated temperature, small solid particle erosion and erosion-corrosion can extend component life and permit operation in more severe environments. The room and elevated temperature erosion behavior of several hard material coating systems, i.e. carbides, borides and nitrides, were determined over a range of test conditions. Particle velocities from 70 to 150 m s?1 and test temperatures from 25 to 540C were used. Mechanisms of erosion were established and related to erosion rates in a manner that defined the requirements of composition, morphology and defect levels of coating systems for long-term performance. It was determined that small grain size, low porosity and absence of cracks were the microstructural features that enhanced erosion resistance. Hardness levels and the composition and distribution of second phase, hard particles had less effect on coating performance. Angular SiC particles were considerably more erosive than either Al2O3 or chromite-mixed oxide round-shaped particles and the rankings of the coatings' performance were different for each erodent and set of test conditions.

Alan V. Levy; Wang Buqian

1988-01-01T23:59:59.000Z

366

Growth of SiC thin films on graphite for oxidation-protective coating J.-H. Boo,a)  

E-Print Network [OSTI]

, it is necessary to improve its resistance to oxidation. SiC is used as a semiconductor material for high of the SiC layers compared to those grown by thermal MOCVD. The mechanical and oxidation-resistant-2101 00 18204-1 I. INTRODUCTION Graphite, with its advantages of high thermal conductiv- ity, low-thermal

Boo, Jin-Hyo

367

Isothermal and thermal cycling oxidation of hot-dip aluminide coating on flake/spheroidal graphite cast iron  

E-Print Network [OSTI]

as engineering materials in high temperature applications, such as furnace parts, turbocharger housings and exhaust manifolds that require high-temperature oxidation resistance and mechanical strength [1 been aluminized by hot-dipping, and then their oxidation and thermal fatigue resistance were evaluated

Volinsky, Alex A.

368

Improved layered mixed transition metal oxides for Li-ion batteries  

SciTech Connect (OSTI)

Recent work in our laboratory has been directed towards development of mixed layered transition metal oxides with general composition Li[Ni, Co, M, Mn]O2 (M=Al, Ti) for Li ion battery cathodes. Compounds such as Li[Ni1/3Co1/3Mn1/3]O2 (often called NMCs) are currently being commercialized for use in consumer electronic batteries, but the high cobalt content makes them too expensive for vehicular applications such as electric vehicles (EV), plug-in hybrid electric vehicles (PHEVs), or hybrid electric vehicles (HEVs). To reduce materials costs, we have explored partial or full substitution of Co with Al, Ti, and Fe. Fe substitution generally decreases capacity and results in poorer rate and cycling behavior. Interestingly, low levels of substitution with Al or Ti improve aspects of performance with minimal impact on energy densities, for some formulations. High levels of Al substitution compromise specific capacity, however, so further improvements require that the Ni and Mn content be increased and Co correspondingly decreased. Low levels of Al or Ti substitution can then be used offset negative effects induced by the higher Ni content. The structural and electrochemical characterization of substituted NMCs is presented in this paper.

Doeff, Marca M.; Conry, Thomas; Wilcox, James

2010-03-05T23:59:59.000Z

369

Final LDRD report : metal oxide films, nanostructures, and heterostructures for solar hydrogen production.  

SciTech Connect (OSTI)

The distinction between electricity and fuel use in analyses of global power consumption statistics highlights the critical importance of establishing efficient synthesis techniques for solar fuels-those chemicals whose bond energies are obtained through conversion processes driven by solar energy. Photoelectrochemical (PEC) processes show potential for the production of solar fuels because of their demonstrated versatility in facilitating optoelectronic and chemical conversion processes. Tandem PEC-photovoltaic modular configurations for the generation of hydrogen from water and sunlight (solar water splitting) provide an opportunity to develop a low-cost and efficient energy conversion scheme. The critical component in devices of this type is the PEC photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with the electrochemical scale for its charge carriers to have sufficient potential to drive the hydrogen and oxygen evolution reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions.

Kronawitter, Coleman X. [Lawrence Berkeley National Laboratory, Berkeley, CA; Antoun, Bonnie R.; Mao, Samuel S. [Lawrence Berkeley National Laboratory, Berkeley, CA

2012-01-01T23:59:59.000Z

370

Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur  

SciTech Connect (OSTI)

Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 C to ~750 C may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

Ziomek-Moroz, M.; Hawk, Jeffrey A.

2005-01-01T23:59:59.000Z

371

Synthesis of Metal Oxide Nanomaterials for Chemical Sensors by Molecular Beam Epitaxy  

SciTech Connect (OSTI)

Since the industrial revolution, detection and monitoring of toxic matter, chemical wastes, and air pollutants has become an important environmental issue. Thus, it leads to the development of chemical sensors for various environmental applications. The recent disastrous oil spills over the near-surface of ocean due to the offshore drilling emphasize the use of chemical sensors for prevention and monitoring of the processes that might lead to these mishaps.1, 2 Chemical sensors operated on a simple principle that the sensing platform undergoes a detectable change when exposed to the target substance to be sensed. Among all the types of chemical sensors, solid state gas sensors have attracted a great deal of attention due to their advantages such as high sensitivity, greater selectivity, portability, high stability and low cost.3, 4 Especially, semiconducting metal oxides such as SnO2, TiO2, and WO3 have been widely used as the active sensing platforms in solid state gas sensors.5 For the enhanced properties of solid state gas sensors, finding new sensing materials or development of existing materials will be needed. Thus, nanostructured materials such as nanotubes,6-8 nanowires,9-11 nanorods,12-15 nanobelts,16, 17 and nano-scale thin films18-23 have been synthesized and studied for chemical sensing applications.

Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T; Thevuthasan, Suntharampillai

2013-12-01T23:59:59.000Z

372

Growth of monodisperse mesoscopic metal-oxide colloids under constant monomer supply  

Science Journals Connector (OSTI)

In closed systems, control over the size of monodisperse metal-oxide colloids is generally limited to submicrometric dimensions. To overcome this difficulty, we explore the formation and growth of silica particles under constant monomer supply. The monomer source is externally driven by the progressive addition into the system of one of the precursors. Monodisperse spherical particles are produced up to a mesoscopic size. We analyze their growth versus the monomer addition rate at different temperatures. Our results show that in the presence of a continuous monomer addition, growth is limited by diffusion over the investigated temporal window. Using the temperature variation of the growth rate, we prove that rescaling leads to a data reduction onto a single master curve. Contrary to the growth process, the final particles size reached after the end of the reagent supply strongly depends on the addition rate. The variation of the final particle size versus addition rate can be deduced from an analogy with crystal formation in jet precipitation. Within this framework, and using the temperature dependences of both the particle growth law and the final size, we determine the value of the molecular heat of dissolution associated to the silica solubility. These observations support the fact that classical theories of phase-ordering dynamics can be extended to the synthesis of inorganic particles. The emergence of a master behavior in the presence of continuous monomer addition also suggests the extension of these theories to open systems.

Koh Nozawa; Marie-Hlne Delville; Hideharu Ushiki; Pascal Panizza; Jean-Pierre Delville

2005-07-11T23:59:59.000Z

373

Doped palladium containing oxidation catalysts  

DOE Patents [OSTI]

A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.

Mohajeri, Nahid

2014-02-18T23:59:59.000Z

374

Time-Resolved XAFS Spectroscopic Studies of B-H and N-H Oxidative Addition to Transition Metal Catalysts Relevant to Hydrogen Storage  

SciTech Connect (OSTI)

Successful catalytic dehydrogenation of aminoborane, H3NBH3, prompted questions as to the potential role of N-H oxidative addition in the mechanisms of these processes. N-H oxidative addition reactions are rare, and in all cases appear to involve initial dative bonding to the metal by the amine lone pairs followed by transfer of a proton to the basic metal. Aminoborane and its trimethylborane derivative block this mechanism and, in principle, should permit authentic N-H oxidative attrition to occur. Extensive experimental work failed to confirm this hypothesis. In all cases either B-H complexation or oxidative addition of solvent C-H bonds dominate the chemistry.

Bitterwolf, Thomas E. [University of Idaho

2014-12-09T23:59:59.000Z

375

Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same  

DOE Patents [OSTI]

A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

Wrenn, Jr., George E. (Clinton, TN); Holcombe, Jr., Cressie E. (Farragut, TN)

1988-01-01T23:59:59.000Z

376

Electric pulse induced resistance change effect in manganites due to polaron localization at the metal-oxide interfacial region  

Science Journals Connector (OSTI)

Combining pulse-probe measurements as well as local transport measurements in an electron microscope system by a simultaneous monitoring of the structural changes, we show that the nonvolatile electric pulse induced resistance change in Ca-doped praseodymium manganite is related to a polaron order-disorder transition, modified by electronic band bending in the vicinity of an interface to a metallic electrode. A pronounced resistance change requires a critical distance between the two electrode and/or oxide interfaces to form an insulating incommensurate polaron-ordered phase during the initialization of the device. Based on these observations, a qualitative model for the electronic structure of the metal-oxide interface is developed.

Ch. Jooss, J. Hoffmann, J. Fladerer, M. Ehrhardt, T. Beetz, L. Wu, and Y. Zhu

2008-04-23T23:59:59.000Z

377

Enhanced rate capability of LiMn0.9Mg0.1PO4 nanoplates by reduced graphene oxide/carbon double coating for Li-ion batteries  

E-Print Network [OSTI]

March 2014 Available online 12 March 2014 Keywords: Li-ion battery LiMnPO4 Reduced graphene oxide ChargeEnhanced rate capability of LiMn0.9Mg0.1PO4 nanoplates by reduced graphene oxide/carbon double coating for Li-ion batteries Sungun Wi a , Jaewon Kim a , Seunghoon Nam a , Joonhyeon Kang a , Sangheon

Park, Byungwoo

378

Scaling properties in the adsorption of ionic polymeric surfactants on generic nanoparticles of metallic oxides by mesoscopic simulation  

E-Print Network [OSTI]

We study the scaling of adsorption isotherms of polyacrylic dispersants on generic surfaces of metallic oxides $XnOm$ as a function of the number of monomeric units, using Electrostatic Dissipative Particle Dynamics simulations. The simulations show how the scaling properties in these systems emerge and how the isotherms rescale to a universal curve, reproducing reported experimental results. The critical exponent for these systems is also obtained, in perfect agreement with the scaling theory of deGennes. Some important applications are mentioned.

E. Mayoral; E. Nahmad-Achar

2014-02-11T23:59:59.000Z

379

Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulfidic marine sediments  

SciTech Connect (OSTI)

Microbes have obligate requirements for trace metals in metalloenzymes that catalyze important biogeochemical reactions. In anoxic methane- and sulfide-rich environments, microbes may have unique adaptations for metal acquisition and utilization due to decreased bioavailability as a result of metal sulfide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulfidic (>1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5-270 nM), cobalt (0.5-6 nM), molybdenum (10-5,600 nM) and tungsten (0.3-8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalyzing anaerobic oxidation of methane utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrotolerant microorganisms. Finally, our data suggest that chemical speciation of metals in highly sulfidic porewaters may exert a stronger influence on microbial bioavailability than total concentration

Glass, DR. Jennifer [California Institute of Technology, Pasadena; Yu, DR. Hang [California Institute of Technology, Pasadena; Steele, Joshua [California Institute of Technology, Pasadena; Dawson, Katherine [California Institute of Technology, Pasadena; Sun, S [University of California, San Diego; Chourey, Karuna [ORNL; Hettich, Robert {Bob} L [ORNL; Orphan, V [California Institute of Technology, Pasadena

2014-01-01T23:59:59.000Z

380

Growth of CrO[subscript 2] coated single crystalline (SnO[subscript 2]) tin oxide nanowires  

E-Print Network [OSTI]

Single crystalline tin oxide (SnO[subscript 2]) nanowires have been synthesized by carbothermal reduction of SnO[subscript 2] nanopowder followed by thermal evaporation of the reduced precursor and growth via the ...

Miao, Guo-Xing

Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Effects of micro-arc oxidation coating on corrosion behavior of Mg-Y-Zn in simulated body fluid  

Science Journals Connector (OSTI)

The application of magnesium and its alloy as degradable biomaterials is mainly confined due to its high degradation rate in physiological environment. This research focused on the effects of micro-arc oxidation ...

Tian-feng Lu ???; Kai-yang Yin ???

2012-12-01T23:59:59.000Z

382

Product/metal ratio (PMR): A novel criterion for the evaluation of electrolytes on micro-arc oxidation (MAO) of Mg and its alloys  

Science Journals Connector (OSTI)

Product/metal ratio (PMR...) was introduced as a novel criterion for the evaluation of electrolytes on micro-arc oxidation (MAO) of Mg and its alloys....PBR), focused on the roles of electrolytes for the compactn...

LaiWen Song; YingWei Song; DaYong Shan; GuoYi Zhu

2011-10-01T23:59:59.000Z

383

Single crystal flow reactor for studying reactivities on metal oxide model catalysts at atmospheric pressure to bridge the pressure gap to the adsorption properties determined under UHV conditions  

Science Journals Connector (OSTI)

A flow reactor for the investigation of heterogeneous catalytic reactions on single crystalline metal oxide model catalysts has been designed. It is located in a high pressure cell attached to an UHV analysis cha...

C. Kuhrs; M. Swoboda; W. Weiss

2001-01-01T23:59:59.000Z

384

Investigation on edge fringing effect and oxide thickness dependence of inversion current in metal-oxide-semiconductor tunneling diodes with comb-shaped electrodes  

SciTech Connect (OSTI)

A particular edge-dependent inversion current behavior of metal-oxide-semiconductor (MOS) tunneling diodes was investigated utilizing square and comb-shaped electrodes. The inversion tunneling current exhibits the strong dependence on the tooth size of comb-shaped electrodes and oxide thickness. Detailed illustrations of current conduction mechanism are developed by simulation and experimental measurement results. It is found that the electron diffusion current and Schottky barrier height lowering for hole tunneling current both contribute on inversion current conduction. In MOS tunneling photodiode applications, the photoresponse can be improved by decreasing SiO{sub 2} thickness and using comb-shaped electrodes with smaller tooth spacing. Meantime, the high and steady photosensitivity can also be approached by introducing HfO{sub 2} into dielectric stacks.

Lin, Chien-Chih; Hsu, Pei-Lun; Lin, Li; Hwu, Jenn-Gwo, E-mail: jghwu@ntu.edu.tw [Graduate Institute of Electronics Engineering, Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

2014-03-28T23:59:59.000Z

385

High Activity of Ce1-xNixO2-y for H2 Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal-Oxide Interactions  

SciTech Connect (OSTI)

The importance of the oxide: Ce{sub 0.8}Ni{sub 0.2}O{sub 2-y} is an excellent catalyst for ethanol steam reforming. Metal-oxide interactions perturb the electronic properties of the small particles of metallic nickel present in the catalyst under the reaction conditions and thus suppress any methanation activity. The nickel embedded in ceria induces the formation of O vacancies, which facilitate cleavage of the OH bonds in ethanol and water.

G Zhou; L Barrio; S Agnoli; S Senanayake; J Evans; A Kubacka; M Estrella; J Hanson; A Martinez-Arias; et al.

2011-12-31T23:59:59.000Z

386

Modified cermet fuel electrodes for solid oxide electrochemical cells  

DOE Patents [OSTI]

An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.

Ruka, Roswell J. (Churchill Boro, PA); Spengler, Charles J. (Murrysville, PA)

1991-01-01T23:59:59.000Z

387

Operation of mixed conducting metal oxide membrane systems under transient conditions  

DOE Patents [OSTI]

Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side, an oxidant feed surface, a permeate side, and a permeate surface, which method comprises controlling the differential strain between the permeate surface and the oxidant feed surface at a value below a selected maximum value by varying the oxygen partial pressure on either or both of the oxidant feed side and the permeate side of the membrane.

Carolan, Michael Francis (Allentown, PA)

2008-12-23T23:59:59.000Z

388

E-Print Network 3.0 - alkali metal oxides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

, sodium carbide, turpentine, finely divided metals Calcium water, carbon dioxide, carbon tetrachloride... , and chlorinated hydrocarbons Carbon, activated calcium...

389

Low Temperature Deposition of Metal Oxide Thin Films in Supercritical Carbon Dioxide using Metal-organic Precursors  

E-Print Network [OSTI]

and are driven by the energy provided by a heated substrate. Both these vacuum-based techniques require in the precursor adsorption, oxidation and by-product desorption. [5] Use of solvation energy may provide a viable. Pressurized CO2 was delivered using an ISCO 260D syringe pump through a high- pressure manifold. Resistive

Gougousi, Theodosia

390

Hydrolysis of Naptalam and Structurally Related Amides: Inhibition by Dissolved Metal Ions and Metal (Hydr)Oxide Surfaces  

E-Print Network [OSTI]

. INTRODUCTION Several important classes of agrochemicals possess amide and anilide functional groups. Naptalam). Agrochemicals often possess functional groups in the vicinity of amide and anilide linkages; participation and anilide agrochemicals. Granados et al. (1995) reported no significant effects of dissolved divalent metal

Huang, Ching-Hua

391

Consistent LDA' + DMFT approach to the electronic structure of transition metal oxides: Charge transfer insulators and correlated metals  

SciTech Connect (OSTI)

We discuss the recently proposed LDA' + DMFT approach providing a consistent parameter-free treatment of the so-called double counting problem arising within the LDA + DMFT hybrid computational method for realistic strongly correlated materials. In this approach, the local exchange-correlation portion of the electron-electron interaction is excluded from self-consistent LDA calculations for strongly correlated electronic shells, e.g., d-states of transition metal compounds. Then, the corresponding double-counting term in the LDA' + DMFT Hamiltonian is consistently set in the local Hartree (fully localized limit, FLL) form of the Hubbard model interaction term. We present the results of extensive LDA' + DMFT calculations of densities of states, spectral densities, and optical conductivity for most typical representatives of two wide classes of strongly correlated systems in the paramagnetic phase: charge transfer insulators (MnO, CoO, and NiO) and strongly correlated metals (SrVO{sub 3} and Sr{sub 2}RuO{sub 4}). It is shown that for NiO and CoO systems, the LDA' + DMFT approach qualitatively improves the conventional LDA + DMFT results with the FLL type of double counting, where CoO and NiO were obtained to be metals. Our calculations also include transition-metal 4s-states located near the Fermi level, missed in previous LDA + DMFT studies of these monoxides. General agreement with optical and the X-ray experiments is obtained. For strongly correlated metals, the LDA' + DMFT results agree well with the earlier LDA + DMFT calculations and existing experiments. However, in general, LDA' + DMFT results give better quantitative agreement with experimental data for band gap sizes and oxygen-state positions compared to the conventional LDA + DMFT method.

Nekrasov, I. A., E-mail: nekrasov@iep.uran.ru; Pavlov, N. S.; Sadovskii, M. V. [Russian Academy of Sciences, Institute for Electrophysics, Ural Branch (Russian Federation)

2013-04-15T23:59:59.000Z

392

Synthesis of Mixed Metal Oxides for Hydrodeoxygenation of Pyrolysis Oil for Alternative Fuels Sarah McNew, Tiorra Ross and Carsten Sievers  

E-Print Network [OSTI]

· Flash pyrolysis on biomass [1] · Short residence times and flexible feed · Bio-oils produced are close to dissociate hydrogen Goal: synthesize metal free, sulfur free, catalysts for HDO Biomass Pyrolysis OilSynthesis of Mixed Metal Oxides for Hydrodeoxygenation of Pyrolysis Oil for Alternative Fuels Sarah

Das, Suman

393

Plastic coating of microsphere substrates  

Science Journals Connector (OSTI)

Microsphere coating techniques and results are described together with the criteria that must be met for successful production of targets. An overview of the work at Lawrence Livermore Laboratory the University of Rochester Laboratory for Laser Energetics KMS Fusion Inc. Sandia Laboratory and RockwellRocky Flats Division is presented. A detailed overview of Los Alamos Scientific Laboratory work describes thick coatings smooth?surface coatings organometallic graded?density and graded?Z coatings; as well as difficult to deposit metal?upon?plastic coatings.

R. Liepins; M. Campbell; J. S. Clements; J. Hammond; R. J. Fries

1981-01-01T23:59:59.000Z

394

CuZnAl mixed metal oxides derived from hydroxycarbonate precursors for H2S removal at low temperature  

Science Journals Connector (OSTI)

One series of CuZn and two series of CuZnAl hydroxycarbonate precursors with varying metal molar ratios were prepared via co-precipitation or multi-precipitation method, and the mixed metal oxides obtained by calcination of the precursor materials were used as adsorbents for H2S removal in the range of 25100C. The results of H2S adsorption tests showed that these mixed oxides, especially two series of CuZnAl mixed metal oxides exhibited markedly high breakthrough sulfur capacities (ranging from 4.4 to 25.7gS/100g-sorbent with increase of Cu/Zn molar ratio) at 40C. Incorporation Cu and/or Al decreased the mean crystalline sizes of ZnO and CuO species in the CuZn and CuZnAl mixed metal oxide adsorbents by decreasing of mean crystalline sizes of hydroxycarbanate phases mainly including hydrozincite, aurichalcite and malachite, segregation of Al phase, etc. Higher breakthrough sulfur capacity of each adsorbent in two ternary series than that of the corresponding adsorbent in binary series should be ascribed to the enhancement of the dispersion of ZnO and/or CuO species with incorporation of aluminum, thereby increasing the overall rate of reaction between the adsorbent and H2S by reducing the thickness of potential sulfide shell on the outer layer of the oxide crystalline grains and increasing the area of the interface for the exchange of HS?/S2? and O2?. For each series of adsorbents, the breakthrough sulfur capacity increased with the increase of Cu/Zn molar ratio regardless of changes of the dispersion of CuO and/or ZnO. This phenomenon might be mainly attributed to faster rate of the lattice diffusion of HS?, S2? and O2? or exchange of HS?/S2? and O2? during the sulfidation of CuO than that during the sulfidation of ZnO due to less rearrangement of the anion lattice.

Dahao Jiang; Lianghu Su; Lei Ma; Nan Yao; Xiaoliang Xu; Haodong Tang; Xiaonian Li

2010-01-01T23:59:59.000Z

395

High Temperature coatings based on {beta}-NiAI  

SciTech Connect (OSTI)

High temperature alloys are reviewed, focusing on current superalloys and their coatings. The synthesis, characerization, and oxidation performance of a NiAlTiB{sub 2} composite are explained. A novel coating process for MoNiAl alloys for improved oxidation performance is examined. The cyclic oxidation performance of coated and uncoated MoNiAl alloys is discussed.

Severs, Kevin

2012-07-10T23:59:59.000Z

396

Solid-gel precursor solutions and methods for the fabrication of polymetallicsiloxane coating films  

DOE Patents [OSTI]

Solutions and preparation methods necessary for the fabrication of metal oxide cross-linked polysiloxane coating films are disclosed. The films are useful in provide heat resistance against oxidation, wear resistance, thermal insulation, and corrosion resistance of substrates. The sol-gel precursor solution comprises a mixture of a monomeric organoalkoxysilane, a metal alkoxide M(OR).sub.n (wherein M is Ti, Zr, Ge or Al; R is CH.sub.3, C.sub.2 H.sub.5 or C.sub.3 H.sub.7 ; and n is 3 or 4), methanol, water, HCl and NaOH. The invention provides a sol-gel solution, and a method of use thereof, which can be applied and processed at low temperatures (i.e., <1000.degree. C.). The substrate can be coated by immersing it in the above mentioned solution at ambient temperature. The substrate is then withdrawn from the solution. Next, the coated substrate is heated for a time sufficient and at a temperature sufficient to yield a solid coating. The coated substrate is then heated for a time sufficient, and temperature sufficient to produce a polymetallicsiloxane coating.

Sugama, Toshifumi (Mastic Beach, NY)

1992-01-01T23:59:59.000Z

397

Solid-gel precursor solutions and methods for the fabrication of polymetallicsiloxane coating films  

DOE Patents [OSTI]

Solutions and preparation methods necessary for the fabrication of metal oxide cross-linked polysiloxane coating films are disclosed. The films are useful in provide heat resistance against oxidation, wear resistance, thermal insulation, and corrosion resistance of substrates. The sol-gel precursor solution comprises a mixture of a monomeric organoalkoxysilane, a metal alkoxide M(OR).sub.n (wherein M is Ti, Zr, Ge or Al; R is CH.sub.3, C.sub.2 H.sub.5 or C.sub.3 H.sub.7 ; and n is 3 or 4), methanol, water, HCl and NaOH. The invention provides a sol-gel solution, and a method of use thereof, which can be applied and processed at low temperatures (i.e., <1000.degree. C.). The substrate can be coated by immersing it in the above mentioned solution at ambient temperature. The substrate is then withdrawn from the solution. Next, the coated substrate is heated for a time sufficient and at a temperature sufficient to yield a solid coating. The coated substrate is then heated for a time sufficient, and temperature sufficient to produce a polymetallicsiloxane coating.

Sugama, Toshifumi (Mastic Beach, NY)

1993-01-01T23:59:59.000Z

398

Final Technical Report CONDUCTIVE COATINGS FOR SOLAR CELLS USING CARBON NANOTUBES  

SciTech Connect (OSTI)

US Department of Energy (DOE) awarded a grant for Eikos Inc. to investigate the feasibility of developing and utilizing Transparent Conducting Coatings (TCCs) based on carbon nanotubes (CNT) for solar cell applications. Conventional solar cells today employ metal oxide based TCCs with both Electrical Resistivity (R) and Optical Transparency (T), commonly referred to as optoelectronic (RT) performance significantly higher than with those possible with CNT based TCCs available today. Transparent metal oxide based coatings are also inherently brittle requiring high temperature in vacuum processing and are thus expensive to manufacture. One such material is indium tin oxide (ITO). Global demand for indium has recently increased rapidly while supply has diminished causing substantial spikes in raw material cost and availability. In contrast, the raw material, carbon, needed for CNT fabrication is abundantly available. Transparent Conducting Coatings based on CNTs can overcome not only cost and availability constraints while also offering the ability to be applied by existing, low cost process technologies under ambient conditions. Processes thus can readily be designed both for rigid and flexible PV technology platforms based on mature spray or dip coatings for silicon based solar cells and continuous roll to roll coating processes for polymer solar applications.

Paul J Glatkowski; Jorma Peltola; Christopher Weeks; Mike Trottier; David Britz

2007-09-30T23:59:59.000Z

399

Control of differential strain during heating and cooling of mixed conducting metal oxide membranes  

DOE Patents [OSTI]

Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side and a permeate side, which method comprises controlling the differential strain between the oxidant feed side and the permeate side by varying either or both of the oxygen partial pressure and the total gas pressure on either or both of the oxidant feed side and the permeate side of the membrane while changing the temperature of the membrane from a first temperature to a second temperature.

Carolan, Michael Francis (Allentown, PA)

2007-12-25T23:59:59.000Z

400

High Temperature Oxidation Resistance and Surface Electrical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plates with oxidation resistant coatings. Candidate coatings must exhibit chemical and thermal-mechanical stability and high electrical conductivity during long-term...

Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Molten Metal Anodes for Direct Carbon-Solid Oxide Fuel Cells.  

E-Print Network [OSTI]

??The aim of this thesis was to enable the direct utilization of solid carbonaceous fuels like coal and biomass, in solid oxide fuel cells (SOFC). (more)

Jayakumar, Abhimanyu

2012-01-01T23:59:59.000Z

402

Inhibition of Crystallite Growth in the Sol-Gel Synthesis of Nanocrystalline Metal Oxides  

Science Journals Connector (OSTI)

...for 1 hour, whereas the U-aerogel has an SSA of only ?70 m 2...of the CO 2 -dried SnO 2 U-aerogel (?) and H-aerogel (?) versus the gel-firing...were prepared by first spin-coating...

Nae-Lih Wu; Sze-Yen Wang; I. A. Rusakova

1999-08-27T23:59:59.000Z

403

Experimental Study of Electron Transport through Nanometer-Scale Metal-Oxide Junctions  

E-Print Network [OSTI]

-annealing. The resistive bistability effect has been observed for all these materials, with particularly high switching, crested barrier, rapid thermal annealing, endurance, resistive bistability, reproducibility. #12;v List properties of Nb/Al/Nb junctions fabricated using thermal oxidation or rf-plasma oxidation at various

404

Metal-free mild oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran  

Science Journals Connector (OSTI)

The potential of 4-hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl (4-hydroxy-TEMPO radical) as an oxidant with [bis(acetoxy)-iodo]benzene (BAIB) and acetic acid (CH3COOH) as co-oxidants to convert 5-hydroxymethylfurfural

Neha Mittal; Grace M. Nisola; Lenny B. Malihan

2014-08-01T23:59:59.000Z

405

Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector  

SciTech Connect (OSTI)

This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

Smith, Richard J.; Light, Roger A.; Johnston, Nicholas S.; Pitter, Mark C.; Somekh, Mike G. [Institute of Biophysics, Imaging and Optical Science, University of Nottingham, Nottinghamshire NG7 2RD (United Kingdom); Sharples, Steve D. [Applied Optics Group, Electrical Systems and Optics Research Division, University of Nottingham, Nottinghamshire NG7 2RD (United Kingdom)

2010-02-15T23:59:59.000Z

406

Mechanism of oxygen reduction reaction on transition metal oxide catalysts for high temperature fuel cells  

E-Print Network [OSTI]

The solid oxide fuel cell (SOFC) with its high energy conversion efficiency, low emissions, silent operation and its ability to utilize commercial fuels has the potential to create a large impact on the energy landscape. ...

La O', Gerardo Jose Cordova

2008-01-01T23:59:59.000Z

407

Suitability of Metallic Materials for Interconnects in Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

FeCr model alloys with variation of chromium content, reactive element addition and spinel forming elements were studied in respect to oxidation resistance at 800C. Additionally, in-situ studies were carried ...

W. J. Quadakkers; J. Piron-Abellan

2002-01-01T23:59:59.000Z

408

Autothermal oxidative pyrolysis of biomass feedstocks over noble metal catalysts to liquid products.  

E-Print Network [OSTI]

??Two thermal processing technologies have emerged for processing biomass into renewable liquid products: pyrolysis and gasification/Fischer-Tropsch processing. The work presented here will demonstrate oxidative pyrolysis (more)

Balonek, Christine Marie

2011-01-01T23:59:59.000Z

409

Nonlinear response of the surface electrostatic potential formed at metal oxide/electrolyte interfaces. A Monte Carlo simulation study  

SciTech Connect (OSTI)

An analysis of surface potential nonlinearity at metal oxide/electrolyte interfaces is presented. By using Grand Canonical Monte Carlo simulations of a simple lattice model of an interface, we show a correlation exists between ionic strength as well as surface site densities and the non-Nernstian response of a metal oxide electrode. We propose two approaches to deal with the 0-nonlinearity: one based on perturbative expansion of the Gibbs free energy and another based on assumption of the pH-dependence of surface potential slope. The theoretical anal ysis based on our new potential form gives excellent performance at extreme pH regions, where classical formulae based on the Poisson-Boltzmann equation fail. The new formula is general and independent of any underlying assumptions. For this reason, it can be directly applied to experimental surface potential measurements, including those for individual surfaces of single crystals, as we present for data reported by Kallay and Preocanin [Kallay, Preocanin J. Colloid and Interface20 Sci. 318 (2008) 290].

Zarzycki, Piotr P.; Rosso, Kevin M.

2010-01-01T23:59:59.000Z

410

High-temperature desulfurization of gasifier effluents with rare earth and rare earth/transition metal oxides  

SciTech Connect (OSTI)

We have improved the application of mixed rare-earth oxides (REOs) as hot gas desulfurization adsorbents by impregnating them on stable high surface area supports and by the inclusion of certain transition metal oxides. We report comparative desulfurization experiments at high temperature (900 K) using a synthetic biomass gasifier effluent containing 0.1 vol % H{sub 2}S, along with H{sub 2}, CO{sub 2}, and water. More complex REO sorbents outperform the simpler CeO{sub 2}/La{sub 2}O{sub 3} mixtures, in some cases significantly. Supporting REOs on Al{sub 2}O{sub 3} (?20 wt % REO) or ZrO{sub 2} actually increased the sulfur capacities found after several cycles on a total weight basis. Another major increase in sulfur capacity took place when MnO{sub x} or FeO{sub x} is incorporated. Apparently most of the Mn or Fe is dispersed on or near the surface of the mixed REOs because the capacities with REOs greatly exceeded those of Al{sub 2}O{sub 3}-supported MnO{sub x} or FeO{sub x} alone at these conditions. In contrast, incorporating Cu has little effect on sulfur adsorption capacities. Both the REO and transition metal/REO adsorbents could be regenerated completely using air for at least five repetitive cycles.

Dooley, Kerry M.; Kalakota, Vikram; Adusumilli, Sumana

2011-01-01T23:59:59.000Z

411

Aluminium depletion in NiCrAlY bond coatings by hot corrosion as a function of projection system  

Science Journals Connector (OSTI)

Three different projection system are used to prepare NiCrAlY bond coats over metallic substrates: atmospheric plasma spray (APS), high velocity oxyfuel (HVOF) and high frequency pulse detonation (HFPD). These coatings were tested in hot corrosion experiments with sprayed Na2SO4 at 1000C for 20 and 100h experiments in air. Coatings surface composition after thermal treatment was characterised by XRD and SEM. Cross section of coatings were analysed by SEM-EDX. A relationship between microstructural characteristics of initial coatings and final performance in hot corrosion was found in terms of porosity percentage: plasma sprayed coatings present higher percentage of porosity compared to HVOF and HFPD projection systems for the same composition and Al is heavily consumed in interparticle oxidation. This Al depletion in turn involves intrinsic chemical failure and surface layer is comprised by a porous spinel of mixed oxides. On the other hand, high energy projection systems produce dense coatings allowing the Al migration to external alumina layer, particularly in the case of HVOF coating.

M.C. Mayoral; J.M. Andrs; M.T. Bona; V. Higuera; F.J. Belzunce

2008-01-01T23:59:59.000Z

412

Interplay between electronic structure and catalytic activity in transition metal oxide model system  

E-Print Network [OSTI]

The efficiency of many energy storage and conversion technologies, such as hydrogen fuel cells, rechargeable metal-air batteries, and hydrogen production from water splitting, is limited by the slow kinetics of the oxygen ...

Suntivich, Jin

2012-01-01T23:59:59.000Z

413

Biomonitoring on Carcinogenic Metals and Oxidative DNA Damage in a Cross-Sectional Study  

Science Journals Connector (OSTI)

...result of human activities such as mining, smelting, fossil fuel combustion, and industrial application of metals. The highest...production of stainless steel, high-nickel alloys, Ni-Cd batteries, and electronic components. A major fraction of nickel absorbed...

Hiltrud Merzenich; Andrea Hartwig; Wolfgang Ahrens; Detmar Beyersmann; Regina Schlepegrell; Martin Scholze; Jrgen Timm; and Karl-Heinz Jckel

2001-05-01T23:59:59.000Z

414

8 - Corrosion/Coatings  

Science Journals Connector (OSTI)

Publisher Summary This chapter presents some tips and suggestions on corrosion and coatings used in pipelines. Corrosion failures at compressor stations result from carelessness on the part of the user, or poor choice of material/configuration by the designer. Thus, design engineers should coat everything underground, except ground rods, with a coating properly selected for the conditions; should use proper coating application and inspection; and should use ground rods anodic to steel and insulated (coated) ground wires. Coatings are one of the most important considerations for controlling underground corrosion. Generally, all underground metallic structures, except ground rods, should be coated. This includes gas piping, control lines, tubing, water lines, conduit, air lines, and braces. For gas discharge lines, temperature is a dominant consideration and so one has to make sure to get a coating that withstands gas discharge temperature and should be careful, as sag temperatures listed in coating literature are not maximum operating temperatures. Each water system should have corrosion monitoring provisions designed into the system, such as coupons or corrosion rate probes. If there is a gas treating plant in conjunction with the compressor station, corrosion monitoring provisions should be designed into that system also. Water treatment for corrosion control is considered, depending on individual circumstances and provisions should be considered for cathodic protection of the internal surfaces of storage tanks and water softeners. The Pearson survey is an aboveground technique used to locate coating defects on buried pipelines. In this technique, the defect may be recorded on a preprepared record sheet complete with a measured distance from a fixed reference point or indicated by a marker peg or non-toxic paint.

2005-01-01T23:59:59.000Z

415

Compliant alkali silicate sealing glass for solid oxide fuel cell applications: Combined stability in isothermal ageing and thermal cycling with YSZ coated ferritic stainless steels  

SciTech Connect (OSTI)

An alkali-containing silicate glass (SCN-1) is currently being evaluated as a candidate sealing glass for solid oxide fuel cell (SOFC) applications. The glass contains about 17 mole% alkalis (K+Na) and has low glass transition and softening temperatures. It remains vitreous and compliant around 750-800oC after sealing without substantial crystallization, as contrary to conventional glass-ceramic sealants, which experience rapid crystallization after the sealing process. The glassy nature and low characteristic temperatures can reduce residual stresses and result in the potential for crack healing. In a previous study, the glass was found to have good thermal cycle stability and was chemically compatible with YSZ coating during short term testing. In the current study, the compliant glass was further evaluated in a more realistic way in that the sealed glass couples were first isothermally aged for 1000h followed by thermal cycling. High temperature leakage was measured. The chemical compatibility was also investigated with powder mixtures at 700 and 800oC to enhance potential interfacial reaction. In addition, interfacial microstructure was examined with scanning electron microscopy and evaluated with regard to the leakage and chemical compatibility results.

Chou, Y. S.; Thomsen, Edwin C.; Choi, Jung-Pyung; Stevenson, Jeffry W.

2012-01-01T23:59:59.000Z

416

Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells  

Science Journals Connector (OSTI)

Abstract Improving anode performance is of great significance to scale up benthic microbial fuel cells (BMFCs) for its marine application to drive oceanography instruments. In this study, manganese oxide (MnO2)/multiwall carbon nanotubes (MWCNTs) composites are prepared to be as novel anodes in the \\{BMFCs\\} via a direct redox reaction between permanganate ions (MnO4?) and MWCNTs. The results indicate that the MnO2/MWCNTs anode has a better wettability, greater kinetic activity and higher power density than that of the plain graphite (PG) anode. It is noted that the MnO2 (50% weight percent)/MWCNTs anode shows the highest electrochemical performance among them and will be a promising material for improving bioelectricity production of the BMFCs. Finally, a synergistic mechanism of electron transfer shuttle of Mn ions and their redox reactions in the interface between modified anode and bacteria biofilm are proposed to explain its excellent electrochemical performance.

Yubin Fu; Jian Yu; Yelong Zhang; Yao Meng

2014-01-01T23:59:59.000Z

417

E-Print Network 3.0 - aluminum strand coating Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

evaporate nickel and aluminum and then reactively deposit NiAl bond coats... coat's oxidation resistance is achieved by the use of sufficient aluminum to result in the...

418

Reduction of NOx emission on NiCrAl-Titanium Oxide coated direct injection diesel engine fuelled with radish (Raphanus sativus) biodiesel  

Science Journals Connector (OSTI)

The main aim of this study is the experimental investigation of single cylinder DI diesel engine with and without coating. Diesel and radish (Raphanus sativus) oil Methyl Ester are used as fuels and the results are compared to find the effect of biodiesel in a thermal barrier coating engine. For this purpose engine cylinder head valves and piston crown are coated with 100??m of nickel-chrome-aluminium bond coat and 450??m of TiO2 by the plasma spray method. Radish oil methyl ester is produced by the transesterification process method. From the experimental investigation slight increase in specific fuel consumption in thermal barrier coating engine is observed when compared with the uncoated engine whereas NOx HC Smoke and CO emissions decreased with coated engine for all test fuels used in the coated engine when compared with that of the uncoated engine.

V. Ravikumar; D. Senthilkumar

2013-01-01T23:59:59.000Z

419

Improvement in Oxidation Behavior of Nanostructured CoNiCrA1Y Bond Coat Dispersed with Nano-size Alumina Particles  

E-Print Network [OSTI]

spraying gun passes can be critical for the oxidation behavior because of the inter-pass oxidation presence in HVOF

Tang, Feng; Ajdelsztajn, Leonardo; Kim, Geoge E.; Provenzano, Virgil; Schoenung, Julie M.

2002-01-01T23:59:59.000Z

420

Development of a plasma coating system for induction melting zirconium in a graphite crucible  

SciTech Connect (OSTI)

A plasma coating system has been developed for induction melting zirconium at 1900 C using a graphite crucible. This laminated coating system consists of plasma spraying the following materials onto the graphite: (1) molybdenum or tungsten, (2) a 50% blend by weight of the metal powder and calcia-stabilized zirconium oxide, and (3) calcia-stabilized zirconia followed by painting a final coating of nonstabilized zirconia on top of the plasma-sprayed coating system. Zirconium was melted in argon using both laminating systems without any degradation of the graphite crucible and with only a minimal amount of carbon absorption. This novel approach that is being proposed as an alternative method of melting zirconium alloys offers substantial cost savings over the standard practice of electric arc melting using a consumable electrode.

Bird, E.L.; Holcombe, C.E. Jr.

1993-05-26T23:59:59.000Z

Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Ultrathin aluminum oxide films: Al-sublattice structure and the effect of substrate on ad-metal adhesion  

SciTech Connect (OSTI)

First principles density-functional slab calculations are used to study 5 {angstrom} (two O-layer) Al{sub 2}O{sub 3} films on Ru(0001) and Al(111). Using larger unit cells than in a recent study, it is found that the lowest energy stable film has an even mix of tetrahedral (t) and octahedral (o) site Al ions, and thus most closely resembles the {kappa}-phase of bulk alumina. Here, alternating zig-zag rows of t and o occur within the surface plane, resulting in a greater average lateral separation of the Al-ions than with pure t or o. A second structure with an even mix of t and o has also been found, consisting of alternating stripes. These patterns mix easily, can exist in three equivalent directions on basal substrates, and can also be displaced laterally, suggesting a mechanism for a loss of long-range order in the Al-sublattice. While the latter would cause the film to appear amorphous in diffraction experiments, local coordination and film density are little affected. On a film supported by rigid Ru(0001), overlayers of Cu, Pd, and Pt bind similarly as on bulk truncated {alpha}-Al{sub 2}O{sub 3}(0001). However, when the film is supported by soft Al(111), the adhesion of Cu, Pd, and Pt metal overlayers is significantly increased: Oxide-surface Al atoms rise so only they contact the overlayer, while substrate Al metal atoms migrate into the oxide film. Thus the binding energy of metal overlayers is strongly substrate dependent, and these numbers for the above Pd-overlayer systems bracket a recent experimentally derived value for a film on NiAl(110).

JENNISON,DWIGHT R.; BOGICEVIC,ALEXANDER

2000-03-06T23:59:59.000Z

422

INVESTIGATION OF MIXED METAL SORBENT/CATALYSTS FOR THE SIMULTANEOUS REMOVAL OF SULFUR AND NITROGEN OXIDES  

SciTech Connect (OSTI)

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4}-air mixtures.

Ates Akyurtlu; Jale F. Akyurtlu

2000-04-10T23:59:59.000Z

423

INVESTIGATION OF MIXED METAL SORBENT/CATALYSTS FOR THE SIMULTANEOUS REMOVAL OF SULFUR AND NITROGEN OXIDES  

SciTech Connect (OSTI)

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded research of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4} air mixtures.

Ates Akyurtlu; Jale F. Akyurtlu

1999-11-30T23:59:59.000Z

424

Investigation of mixed metal sorbent/catalysts for the simultaneous removal of sulfur and nitrogen oxides  

SciTech Connect (OSTI)

Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4}-air mixtures.

Akyurtlu, A.; Akyurtlu, J.F.

1999-03-31T23:59:59.000Z

425

Extending surface-enhanced Raman spectroscopy to transition-metal surfaces: carbon monoxide adsorption and electrooxidation on platinum- and palladium-coated gold electrodes  

SciTech Connect (OSTI)

Thin (ca. one to three monolayers) films of platinum and palladium electrodeposited on electrochemically roughened gold are observed to yield surface-enhanced Raman (SER) spectra for adsorbed carbon monoxide. The major vibrational band(s) on these surfaces are diagnosed from their frequencies as arising from C-O stretching vibrations, nu/sub CO/ bound to the transition-metal overlayers rather than to residual gold sites. The observed SFR nu/sub CO/ frequencies are closely similar to (within ca. 10 cm/sup -1/ of) those obtained for these systems from potential-difference infrared (PDIR) spectra. The major SERS and PDIR nu/sub CO/ features for the platinum and palladium surfaces appear at 2060-2090 and 1965-1985 cm/sup -1/, respectively, consistent with the presence of terminal and bridging CO on these two electrodes. The infrared as well as electrochemical properties of these systems are closely similar to those for the corresponding polycrystalline bulk electrodes. A difference between the SER- and IR-active adsorbed CO, however, is that the former undergoes electrooxidation on both surfaces at 0.2-0.3 V higher overpotentials than the latter form. Examination of the potential-dependent SERS bands for metal oxide vibrations, nu/sub PtO/, on the platinum surface shows that the electrooxidation potential for the SERS-active adsorbed CO coincides with that for the appearance of the nu/sub PtO/ band. Some broader implications to the utilization of SERS for examining transition-metal surfaces are pointed out.

Leung, L.W.H.; Weaver, M.J.

1987-08-19T23:59:59.000Z

426

Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)  

SciTech Connect (OSTI)

The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate?¢????the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

Sridharan, Kumar; Allen, Todd; Cole, James

2013-02-27T23:59:59.000Z

427

Kinetics of oxygen reduction at IrO{sub 2}-coated titanium electrode in alkaline solution  

SciTech Connect (OSTI)

Oxygen reduction is an industrially important electrochemical reaction, for fuel cells, electrochemical caustic concentrators, air depolarized cathodes, metal-air batteries, and oxidant production. Oxygen reduction at IrO{sub 2}-coated titanium electrodes fabricated by thermal decomposition was investigated by employing cyclic voltammetry and rotating-disk electrode techniques. Cyclic voltammetric results indicated that oxygen reduction begins during the Ir(III)/Ir(IV) transition on an IrO{sub 2} electrode. On the basis of measurements using a rotating disk electrode together with polarization curves, Tafel slopes, and stoichiometric number determinations, a mechanism for oxygen reduction on an IrO{sub 2}-coated titanium electrode is proposed.

Chang, C.C.; Wen, T.C. [National Cheng Kung Univ., Tainan (Taiwan, Province of China). Dept. of Chemical Engineering

1996-05-01T23:59:59.000Z

428

Laser Desorption/Ionization of Transition Metal Atoms and Oxides from Solid Argon Lester Andrews,*, Andreas Rohrbacher, Christopher M. Laperle, and Robert E. Continetti  

E-Print Network [OSTI]

, approximately 10% of the gas sample condensed on the 10K copper plate. For ablation a focused (10 cm f of the laser-ablated metal atoms and O2 in excess argon during condensation at 10 K, have been laser desorbed spectrometry. Adding the C6H5Br chromophore to the Ar/O2 gas mixture also enhanced the metal and oxide ion

Continetti, Robert E.

429

Investigation of zinc oxide doped with metal impurities for use as thin film conductive phosphors  

E-Print Network [OSTI]

of a viable flat panel display, low voltage, conductive phosphors which emit blue, red, and green light will be required for the field emission technology. This thesis examines zinc oxide (ZnO) based thin ( ) phosphors for such an application. ZnO is a...

Evatt, Steven R.

1994-01-01T23:59:59.000Z

430

Method of producing highly oxidized superconductors containing barium, copper, and a third metal  

DOE Patents [OSTI]

Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed. 16 figs.

Morris, D.E.

1996-02-20T23:59:59.000Z

431

Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting  

Science Journals Connector (OSTI)

...system that uses a carbon cathode to reduce protons and a...SiW 12 O 40 ] at a carbon cathode. Alternatively, starting from the fully oxidized...Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction . J...electrocatalysis to stack development . Int. J. Hydrogen Energy...

Benjamin Rausch; Mark D. Symes; Greig Chisholm; Leroy Cronin

2014-09-12T23:59:59.000Z

432

Giant and switchable surface activity of liquid metal via surface oxidation  

Science Journals Connector (OSTI)

...recent developments . Adv Colloid Interface Sci 159 ( 2 ): 198 212 . 27 Ladd C So J-H Muth J Dickey MD ( 2013 ) 3D printing of free standing liquid metal microstructures . Adv Mater 25 ( 36 ): 5081 5085 . 28 Regan MJ ( 1997 ) X-ray reflectivity...

Mohammad Rashed Khan; Collin B. Eaker; Edmond F. Bowden; Michael D. Dickey

2014-01-01T23:59:59.000Z

433

Selective Separation of Thiols from a Model Fuel by Metal Oxides  

Science Journals Connector (OSTI)

These fossil fuels typically contain sulfur compounds on the order of a few percent. ... The authors have found that sulfur-loaded coals adsorb heavy metals in aqueous solutions. ... methods for fuel oils in relation to demand of low-sulfur fuel oils for air pollution control. ...

Yuuki Mochizuki; Katsuyasu Sugawara

2008-10-14T23:59:59.000Z

434

Recent Development of SOFC Metallic Interconnect  

SciTech Connect (OSTI)

Interest in solid oxide fuel cells (SOFC) stems from their higher eciencies and lower levels of emitted pollu- tants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i:e:, to maintain high elec- trical conductivity, good stability in both reducing and oxidizing atmospheres, and close coecient of thermal expansion (CTE) match and good compatibility with other SOFC ceramic components. The paper reviewed the interconnect materials, and coatings for metallic interconnect materials.

Wu JW, Liu XB

2010-04-01T23:59:59.000Z

435

The effect of Mn on the oxidation behavior and electrical conductivity of Fe17Cr alloys in solid oxide fuel cell cathode atmosphere  

Science Journals Connector (OSTI)

Four Fe17Cr alloys with various Mn contents between 0.0 and 3.0wt.% are prepared for investigation of the effect of Mn content on the oxidation behavior and electrical conductivity of the FeCr alloys for the application of metallic interconnects in solid oxide fuel cells (SOFCs). During the initial oxidation stage (within 1min) at 750C in air, Cr is preferentially oxidized to form a layer of Cr2O3 type oxide in all the alloys, regardless the Mn content, with similar oxidation rate and oxide morphology. The subsequent oxidation of the Mn containing alloys is accelerated caused by the fast outward diffusion of Mn ions across the Cr2O3 type oxide layer to form Mn-rich (Mn, Cr)3O4 and Mn2O3 oxides on the top. After 700h oxidation a multi-layered oxide scale is observed in the Mn containing alloys, which corresponds to a multi-stage oxidation kinetics in the alloys containing 0.5 and 1.0wt.% of Mn. The oxidation rate and ASR of the oxide scale increase with the Mn content in the alloy changes from 0.0 to 3.0wt.%. For the application of metallic interconnects in SOFCs, Mn-free Fe17Cr alloy with conducting Cr free spinel coatings is preferred.

Bin Hua; Yonghong Kong; Wenying Zhang; Jian Pu; Bo Chi; Li Jian

2011-01-01T23:59:59.000Z

436

Functionalized Graphene Sheets as Molecular Templates for Controlled Nucleation and Self-Assembly of Metal Oxide-Graphene Nanocomposites  

SciTech Connect (OSTI)

Graphene sheets have been extensively studied as a key functional component of graphene-based nanocomposites for electronics, energy, catalysis,and sensing applications. However, fundamental understanding of the interfacial binding and nucleation processes at graphene surfaces remains lacking, and the range of controlled structures that can be produced are limited. Here, by using a combination of theoretical and experimental approaches, we demonstrate that functionalized graphene sheets (FGS) can function as a new class of molecular templates to direct nucleation and self-assembly and produce novel, three-dimensional nanocomposite materials. Two key aspects are demonstrated: First, the functional groups on FGS surface determine the nucleation energy, and thus control the nucleation sites and nucleation density, as well as the preferred crystalline phases. Second, FGS can function as a template to direct the self-assembly of surfactant micelles and produce ordered, mesoporous arrays of crystalline metal oxides and composites.

Li, Xiaolin; Qi, Wen N.; Mei, Donghai; Sushko, Maria L.; Aksay, Ilhan A.; Liu, Jun

2012-09-25T23:59:59.000Z

437

Use of impure inert gases in the controlled heating and cooling of mixed conducting metal oxide materials  

DOE Patents [OSTI]

Method for processing an article comprising mixed conducting metal oxide material. The method comprises contacting the article with an oxygen-containing gas and either reducing the temperature of the oxygen-containing gas during a cooling period or increasing the temperature of the oxygen-containing gas during a heating period; during the cooling period, reducing the oxygen activity in the oxygen-containing gas during at least a portion of the cooling period and increasing the rate at which the temperature of the oxygen-containing gas is reduced during at least a portion of the cooling period; and during the heating period, increasing the oxygen activity in the oxygen-containing gas during at least a portion of the heating period and decreasing the rate at which the temperature of the oxygen-containing gas is increased during at least a portion of the heating period.

Carolan, Michael Francis (Allentown, PA); Bernhart, John Charles (Fleetwood, PA)

2012-08-21T23:59:59.000Z

438

Au/MxOy/TiO2 catalysts for CO oxidation: promotional effect of main-group, transition, and rare-earth metal oxide additives.  

SciTech Connect (OSTI)

Au/TiO2 catalysts are active for CO oxidation, but they suffer from high-temperature sintering of the gold particles, and few attempts have been made to promote or stabilize Au/TiO2. Our recent communication addressed these issues by loading gold onto Al2O3/TiO2 prepared via surface-sol-gel processing of Al(sec-OC4H9)3 on TiO2. In our current full paper, Au/Al2O3/TiO2 catalysts were prepared alternatively by thermal decomposition of Al(NO3)3 on TiO2 followed by loading gold, and the influences of the decomposition temperature and Al2O3 content were systematically surveyed. This facile method was subsequently extended to the preparation of a battery of metal oxide-modified Au/TiO2 catalysts virtually not reported. It was found that Au/TiO2 modified by CaO, NiO, ZnO, Ga2O3, Y2O3, ZrO2, La2O3, Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Dy2O3, Ho2O3, Er2O3, or Yb2O3 could retain significant activity at ambient temperature even after aging in O2-He at 500 C, whereas unmodified Au/TiO2 lost its activity. Moreover, some 200 C-calcined promoted catalysts showed high activity even at about -100 C. The deactivation and regeneration of some of these new catalysts were studied. This work furnished novel catalysts for further fundamental and applied research.

Ma, Zhen [ORNL; Overbury, Steven {Steve} H [ORNL; Dai, Sheng [ORNL

2007-01-01T23:59:59.000Z

439

Design and construction of a radiation resistant quadrupole using metal oxide insulated CICC  

SciTech Connect (OSTI)

The construction of a engineering test model of a radiation resistant quadrupole is described. The cold-iron quadrupole uses coils fabricated from metal-oixide (synthetic spinel) insulated Cable-In-Conduit-Conductor (CICC). The superconductor is NbTi in a copper matrix. The quadrupole is designed to produce a pole-tip field of 2 T with an operating current of 7,000 A.

Albert F. Zeller

2012-12-28T23:59:59.000Z

440

Sorption Capacity of Mesoporous Metal Oxides for the Removal of MCPA from Polluted Waters  

Science Journals Connector (OSTI)

where qe and q are the amount of herbicide sorbed (?mol kg?1) at equilibrium and at time t, respectively, Ka is the rate constant of sorption (min?1) and t is the time (min). ... The sorbing capacity for Zn and Cu was strongly influenced by Cr(III), whereas the sorbing capacity of for(III) was not affected by the presence of the other two metals. ...

Veria Addorisio; Serena Esposito; Filomena Sannino

2010-03-24T23:59:59.000Z

Note: This page contains sample records for the topic "metal oxide coatings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Tribology and coatings  

SciTech Connect (OSTI)

The future use of fuel-efficient, low-emission, advanced transportation systems (for example, those using low-heat-rejection diesel engines or advanced gas turbines) presents new challenges to tribologists and materials scientists. High service temperatures, corrosive environments, and extreme contact pressures are among the concerns that make necessary new tribological designs, novel materials, and effective lubrication concepts. Argonne is working on methods to reduce friction, wear and corrosion, such as soft metal coatings on ceramics, layered compounds, diamond coatings, and hard surfaces.

NONE

1995-06-01T23:59:59.000Z

442

Sorptive extraction using polydimethylsiloxane/metalorganic framework coated stir bars coupled with high performance liquid chromatography-fluorescence detection for the determination of polycyclic aromatic hydrocarbons in environmental water samples  

Science Journals Connector (OSTI)

Abstract In this work, metalorganic frameworks (MOFs, Al-MIL-53-NH2) were synthesized via the hydrothermal method, and novel polydimethylsiloxane/metalorganic framework (PDMS/MOFs, PDMS/Al-MIL-53-NH2)-coated stir bars were prepared by the solgel technique. The preparation reproducibility of the PDMS/MOFs-coated stir bar was good, with relative standard deviations (RSDs) ranging from 4.8% to 14.9% (n=7) within one batch and from 6.2% to 16.9% (n=6) among different batches. Based on this fact, a new method of PDMS/MOFs-coated stir bar sorptive extraction (SBSE) and ultrasonic-assisted liquid desorption (UALD) coupled with high performance liquid chromatography-fluorescence detection (HPLC-FLD) was developed for the determination of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. To obtain the best extraction performance for PAHs, several parameters affecting SBSE, such as extraction time, stirring rate, and extraction temperature, were investigated. Under optimal experimental conditions, wide linear ranges and good \\{RSDs\\} (n=7) were obtained. With enrichment factors (EFs) of 16.1- to 88.9-fold (theoretical EF, 142-fold), the limits of detection (LODs, S/N=3) of the developed method for the target \\{PAHs\\} were found to be in the range of 0.052.94ng/L. The developed method was successfully applied to the analysis of \\{PAHs\\} in Yangtze River and East Lake water samples.

Cong Hu; Man He; Beibei Chen; Cheng Zhong; Bin Hu

2014-01-01T23:59:59.000Z

443

Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases  

DOE Patents [OSTI]

This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

Ayala, Raul E. (Clifton Park, NY)

1993-01-01T23:59:59.000Z

444

Noble Metal-Free Reduced Graphene Oxide-ZnxCd1-xS Nanocomposite with Enhanced Solar Photocatalytic H2Production  

E-Print Network [OSTI]

solar energy by production of hydrogen from water splitting is of great importance from both theoretical strategy for solving simultaneously the incoming energy and environmental problems.2 So far, numerousNoble Metal-Free Reduced Graphene Oxide-ZnxCd1-xS Nanocomposite with Enhanced Solar Photocatalytic

Gong, Jian Ru

445

Preparation of iron oxide thin film by metal organic deposition from Fe(III)-acetylacetonate: a study of photocatalytic properties  

Science Journals Connector (OSTI)

Iron oxide thin films have been deposited over fused quartz substrate by simple metal organic deposition from Fe-(III) acetylacetonate as the organic precursor. The decomposition of Fe-acetylacetonate is characterised by its distinct transition temperatures and thermogravimetric loss rates, which have been measured by thermal gravimetric analysis. As-deposited films were sintered in the temperature range 365800C and the structural changes of the iron oxide thin films as they transform into different crystalline phases have been studied by X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy and scanning electron microscopy techniques. Mainly amorphous ?-Fe2O3 is formed at an annealing temperature of approximately 365400C, which transforms to ?-Fe2O3 phase with a further increase (600800C) in sintering temperature. The film sintered at 800C consists of mainly crystalline ?-Fe2O3 phase, which shows photocatalytic degradation of an oxygenated aqueous solution of phenol upon visible light illumination.

Bonamali Pal; Maheshwar Sharon

2000-01-01T23:59:59.000Z

446

Nanostructured europium oxide thin films deposited by pulsed laser ablation of a metallic target in a He buffer atmosphere  

SciTech Connect (OSTI)

Nanostrucured europium oxide and hydroxide films were obtained by pulsed Nd:YAG (532 nm) laser ablation of a europium metallic target, in the presence of a 1 mbar helium buffer atmosphere. Both the produced film and the ambient plasma were characterized. The plasma was monitored by an electrostatic probe, for plume expansion in vacuum or in the presence of the buffer atmosphere. The time evolution of the ion saturation current was obtained for several probe to substrate distances. The results show the splitting of the plume into two velocity groups, being the lower velocity profile associated with metal cluster formation within the plume. The films were obtained in the presence of helium atmosphere, for several target-to-substrate distances. They were analyzed by Rutherford backscattering spectrometry, x-ray diffraction, and atomic force microscopy, for as-deposited and 600 deg. C treated-in-air samples. The results show that the as-deposited samples are amorphous and have chemical composition compatible with europium hydroxide. The thermally treated samples show x-ray diffraction peaks of Eu{sub 2}O{sub 3}, with chemical composition showing excess oxygen. Film nanostructuring was shown to be strongly correlated with cluster formation, as shown by velocity splitting in probe current versus time plots.

Luna, H.; Franceschini, D. F.; Prioli, R.; Guimaraes, R. B.; Sanchez, C. M.; Canal, G. P.; Barbosa, M. D. L.; Galvao, R. M. O. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Cx. Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); Instituto de Fisica, Universidade Federal Fluminense, Niteroi, RJ 24210-346 (Brazil); Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, Rua Marques de Sao Vicente 225, 22453-970, Rio de Janeiro, RJ (Brazil); Instituto de Fisica, Universidade Federal Fluminense, Niteroi, RJ 24210-346 (Brazil); Centro Brasileiro de Pesquisas Fisicas, Laboratorio de Plasmas Aplicados, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil); Instituto de Fisica, Departamento de Fisica Nuclear, Universidade de Sao Paulo, Caixa Postal 66328, 05315-970, Sao Paulo, SP (Brazil); Centro Brasileiro de Pesquisas Fisicas, Laboratorio de Plasmas Aplicados, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil)

2010-09-15T23:59:59.000Z

447

Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic Resolution Electron Microscopy and Field Evaporation Simulation  

SciTech Connect (OSTI)

Metal-dielectric composite materials, specifically metal nanoparticles supported on or embedded in metal oxides, are widely used in catalysis. The accurate optimization of such nanostructures warrants the need for detailed three-dimensional characterization. Atom probe tomography is uniquely capable of generating sub-nanometer structural and compositional data with part-per-million mass sensitivity, but there are reconstruction artifacts for composites containing materials with strongly differing fields of evaporation, as for oxide-supported metal nanoparticles. By correlating atom probe tomography with scanning transmission electron microscopy for Au nanoparticles embedded in an MgO support, deviations from an ideal topography during evaporation are demonstrated directly, and correlated with compositional errors in the reconstructed data. Finite element simulations of the field evaporation process confirm that protruding Au nanoparticles will evolve on the tip surface, and that evaporation field variations lead to an inaccurate assessment of the local composition, effectively lowering the spatial resolution of the final reconstructed dataset. Cross-correlating the experimental data with simulations results in a more detailed understanding of local evaporation aberrations during APT analysis of metal-oxide composites, paving the way towards a more accurate three-dimensional characterization of this technologically important class of materials.

Devaraj, Arun; Colby, Robert J.; Vurpillot, F.; Thevuthasan, Suntharampillai

2014-03-26T23:59:59.000Z

448

Study of the Nucleation and Growth of YBCO on Oxide Buffered Metallic Tapes  

SciTech Connect (OSTI)

The CRADA collaboration concentrated on developing the scientific understanding of the factors necessary for commercialization of high temperature superconductors (HTS) based on the YBCO coated conductor technology for electric power applications. The project pursued the following objectives: 1. Establish the correlations between the YBCO nuclei density and the properties of the CeO{sub 2} layer of the RABiTS{trademark} template; 2. Compare the nucleation and growth of e-beam and MOD based precursors on the buffered RABiTS{trademark} templates and clarify the materials science behind the difference; and 3. Explore routes for the optimization of the nucleation and growth of thick film MOD precursors in order to achieve high critical current densities in thick films. The CRADA work proceeded in two steps: 1. Detailed characterization of epitaxial ceria layers on model substrates, such as (001) YSZ and on RABiTS tapes; and 2. Study of YBCO nucleation on well-defined substrates and on long-length RABiTS.

Solovyov, Vyacheslav

2009-04-10T23:59:59.000Z

449

Determining the Behavior of RuO(x) Nanoparticles in Mixed-Metal Oxides:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanism of Ethanol Synthesis from Syngas on Rh(111) Understanding of Mechanism of Ethanol Synthesis from Syngas on Rh(111) Understanding of ethanol decomposition on Rh(1 1 1) from density functional theory and kinetic Monte Carlo simulations Theoretical perspective of alcohol decomposition and synthesis from CO2 hydrogenation