Powered by Deep Web Technologies
Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Variable pressure thermal insulating jacket  

DOE Patents (OSTI)

A device for controlled insulation of a thermal device. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communcation with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket.

Nelson, Paul A. (Wheaton, IL); Malecha, Richard F. (Naperville, IL); Chilenskas, Albert A. (Chicago, IL)

1994-01-01T23:59:59.000Z

2

Variable pressure thermal insulating jacket  

DOE Patents (OSTI)

A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

1994-09-20T23:59:59.000Z

3

Method of preventing leakage of a fluid along and through an insulating jacket of a thermocouple  

DOE Patents (OSTI)

A thermocouple assembly includes a thermocouple; a plurality of lead wires extending from the thermocouple; an insulating jacket extending along and enclosing the plurality of leads; and at least one internally sealed area within the insulating jacket to prevent fluid leakage along and within the insulating jacket. The invention also provides a method of preventing leakage of a fluid along and through an insulating jacket of a thermocouple including the steps of a) attaching a plurality of lead wires to a thermocouple; b) adding a heat sensitive pseudo-wire to extend along the plurality of lead wires; c) enclosing the lead wires and pseudo-wire inside an insulating jacket; d) locally heating axially spaced portions of the insulating jacket to a temperature which melts the pseudo-wire and fuses it with an interior surface of the jacket.

Thermos, Anthony Constantine (Greer, SC); Rahal, Fadi Elias (Easley, SC)

2002-01-01T23:59:59.000Z

4

Variable pressure insulating jackets for high-temperature batteries  

DOE Green Energy (OSTI)

A new method is proposed for controlling the temperature of high-temperature batteries namely, varying the hydrogen pressure inside of multifoil insulation by varying the temperature of a reversible hydrogen getter. Calculations showed that the rate of heat loss through 1.5 cm of multifoil insulation between a hot-side temperature of 425[degrees]C and a cold-side temperature of 25[degrees]C could be varied between 17.6 W/m[sup 2] and 7,000 W/m[sup 2]. This change in heat transfer rate can be achieved by varying the hydrogen pressure between 1.0 Pa and 1,000 Pa, which can be done with an available hydrogen gettering alloy operating in the range of 50[degrees]C to 250[degrees]C. This approach to battery cooling requires cylindrical insulating jackets, which are best suited for bipolar batteries having round cells approximately 10 to 18 cm in diameter.

Nelson, P.A.; Chilenskas, A.A.; Malecha, R.F.

1992-01-01T23:59:59.000Z

5

Variable pressure insulating jackets for high-temperature batteries  

DOE Green Energy (OSTI)

A new method is proposed for controlling the temperature of high-temperature batteries namely, varying the hydrogen pressure inside of multifoil insulation by varying the temperature of a reversible hydrogen getter. Calculations showed that the rate of heat loss through 1.5 cm of multifoil insulation between a hot-side temperature of 425{degrees}C and a cold-side temperature of 25{degrees}C could be varied between 17.6 W/m{sup 2} and 7,000 W/m{sup 2}. This change in heat transfer rate can be achieved by varying the hydrogen pressure between 1.0 Pa and 1,000 Pa, which can be done with an available hydrogen gettering alloy operating in the range of 50{degrees}C to 250{degrees}C. This approach to battery cooling requires cylindrical insulating jackets, which are best suited for bipolar batteries having round cells approximately 10 to 18 cm in diameter.

Nelson, P.A.; Chilenskas, A.A.; Malecha, R.F.

1992-12-31T23:59:59.000Z

6

Experimental Investigation on Thermal Properties of a Steel-jacketed Steam Heating Pipeline with Vacuum Insulation  

E-Print Network (OSTI)

The steel-jacketed steam heating pipeline employs vacuum insulation to improve the insulating effect and reduce the corrosion, and hence increases the heat transfer efficiency of the heating network and building energy efficiency. It is important in improving the thermal insulation to investigate the impact of factors that insulate the effects and thermal properties of the pipeline. The thermal insulation of this pipeline comprises the vacuum layer and the insulating material layer. Experiments were performed to measure the combined heat transfer and equivalent thermal conductivities of the insulating material in the vacuum and rarefied air employed in the pipeline's insulation. The thermal properties of this type of insulation at vacuum pressures of 0.5~1013mbar, employing thermal media temperatures of 343~573K and with different thicknesses of vacuum layer, are discussed for this pipeline, for which diameters of inner steel pipe/steel jacket are DN50/DN250, DN100/DN300, DN200/DN500 and DN500/DN850, respectively. The results show that reduction in vacuum pressure reduces the heat loss in the pipeline. The equivalent thermal conductivity of the insulating material layer is distinctively lower than the vacuum layer, but decreasing the vacuum pressure improves the insulating effect of vacuum layer substantially more than insulating the material layer. As the vacuum pressure decreases from 1013mbar (atmospheric pressure) to 10mbar at the thermal media temperature of 523K e.g., the reduction of equivalent thermal conductivities of vacuum layer is approximately three times greater than that of insulating material layer. The equivalent thermal conductivities of the vacuum layer are lower and decease faster as the vacuum pressure is lower than 100mbar, but the equivalent thermal conductivities of insulating material layer are lower and decease faster as the vacuum pressure is lower than 50mbar. The pressure in vacuum insulation should be controlled lower than 20mbar to achieve desirable insulating effects. Every 10mm addition of thickness of insulating material layer (every 10mm reduction of thickness of vacuum layer) decreases the heat loss of approximately 6.8 percent at the vacuum pressure of 0.5mbar.

Na, W.; Zou, P.

2006-01-01T23:59:59.000Z

7

Initial Acceptance Criteria Concepts and Data for Assessing Longevity of Low-Voltage Cable Insulations and Jackets  

Science Conference Proceedings (OSTI)

The cables installed in nuclear plants have long lives in most applications. However, the service conditions for some applications can cause the jackets and insulations of cables to age more rapidly than normal. It is desirable to have acceptance criteria for continued service of those cables experiencing significant aging. This report establishes a basis for acceptance criteria, provides a method for estimating remaining cable life, and provides aging profiles under various thermal and radiation conditi...

2005-03-28T23:59:59.000Z

8

Metal-insulator transition in holography  

E-Print Network (OSTI)

We exhibit an interaction-driven metal-insulator quantum phase transition in a holographic model. Use of a helical lattice enables us to break translation invariance while preserving homogeneity. The metallic phase is characterized by a sharp Drude peak and a d.c. resistivity that increases with temperature. In the insulating phase the Drude spectral weight is transferred into a `mid-infrared' peak and to energy scales of order the chemical potential. The d.c. resistivity now decreases with temperature. In the metallic phase, operators breaking translation invariance are irrelevant at low energy scales. In the insulating phase, translation symmetry breaking effects are present at low energies. We find the near horizon extremal geometry that captures the insulating physics.

Aristomenis Donos; Sean A. Hartnoll

2012-12-12T23:59:59.000Z

9

X-ray diffraction study of residual stresses in metal-matrix composite-jacketed steel cylinders subjected to internal pressure. Final report  

Science Conference Proceedings (OSTI)

The study of aluminum/silicon carbide metal matrix composite (MMC)-jacketed steel structural components was made because of their light weight and high stiffness. Steel 'liner' cylinders were wrapped with MMC 'jackets' with an all-hoop layup and put through various degrees of hydraulic autofrettage and thermal soak. In this report, the results from our x-ray diffraction residual stress measurements on cylinders using a position-sensitive scintillation detection system are discussed. Our experimental results are compared with theoretical predictions from a model based on the elastic-plastic analysis of a thick-walled cylinder subjected to internal pressure. Interpretation of the interference effect caused by the MMC jacket on the steel liner is also discussed.

Lee, S.L.; Doxbeck, M.; Capsimalis, G.

1992-03-01T23:59:59.000Z

10

Development of insulating coatings for liquid metal blankets  

SciTech Connect

It is shown that self-cooled liquid metal blankets are feasible only with electrically insulating coatings at the duct walls. The requirements on the insulation properties are estimated by simple analytical models. Candidate insulator materials are selected based on insulating properties and thermodynamic consideration. Different fabrication technologies for insulating coatings are described. The status of the knowledge on the most crucial feasibility issue, the degradation of the resisivity under irradiation, is reviewed.

Malang, S.; Borgstedt, H.U. [Kernforschungszentrum Karlsruhe GmbH (Germany); Farnum, E.H. [Los Alamos National Lab., NM (United States); Natesan, K. [Argonne National Lab., IL (United States); Vitkovski, I.V. [Efremov Inst., St. Petersburg (Russian Federation). MHD-Machines Lab.

1994-07-01T23:59:59.000Z

11

METHOD OF JACKETING FISSIONABLE MATERIALS  

DOE Patents (OSTI)

An improvement is presented in the jacketing of a metal body accomplished by electroplating upon that portion of the metal container to be protected from the bonding material a niatcrial such as Cr which is impermeable to the bonding material. After the bonding operation the electroplate is removed and the metal container surfuce, unimpaired, may be welded to a cap which effects a closure. Generally in such an operation the metal body is U, the metal container is Al and the bonding material is a Zn alloy.

Foster, L.M.

1959-02-01T23:59:59.000Z

12

Tuning of the Metal-Insulator Transition via Alkali Adsorption  

NLE Websites -- All DOE Office Websites (Extended Search)

Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature,...

13

WELDED JACKETED URANIUM BODY  

DOE Patents (OSTI)

A fuel element is presented for a neutronic reactor and is comprised of a uranium body, a non-fissionable jacket surrounding sald body, thu jacket including a portion sealed by a weld, and an inclusion in said sealed jacket at said weld of a fiux having a low neutron capture cross-section. The flux is provided by combining chlorine gas and hydrogen in the intense heat of-the arc, in a "Heliarc" welding muthod, to form dry hydrochloric acid gas.

Gurinsky, D.H.

1958-08-26T23:59:59.000Z

14

Tuning of the Metal-Insulator Transition via Alkali Adsorption  

NLE Websites -- All DOE Office Websites (Extended Search)

Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature, pressure, or doping-such intriguing control of a material's electronic properties is possible by exploiting strongly interacting or "correlated" electrons. Now a team of researchers from the University of Kiel in Germany and the ALS has found a novel, surprising way to continuously transform a layered metallic transition-metal compound, TaS2, into an insulator. Using angle-resolved photoemission spectroscopy (ARPES), they have demonstrated that adsorption of alkali atoms onto this material's surface gradually makes it more insulating, although in general, alkali adsorption should lead to more metallic behavior, as alkali atoms easily give away their loosely bound outermost electron.

15

Splice connector with internal heat transfer jacket  

DOE Patents (OSTI)

A heat transfer jacket is placed over the terminal portions of the conductors of a pair of high voltage cables which are connected in a splice connection wherein a housing surrounds the connected conductor portions, the heat transfer jacket extending longitudinally between the confronting ends of a pair of adaptor sleeves placed upon the insulation of the cables to engage and locate the adaptor sleeves relative to one another, and laterally between the conductors and the housing to provide a path of relatively high thermal conductivity between the connected conductor portions and the housing.

Silva, Frank A. (Basking Ridge, NJ); Mayer, Robert W. (Hackettstown, NJ)

1977-01-01T23:59:59.000Z

16

Tuning of the Metal-Insulator Transition via Alkali Adsorption  

NLE Websites -- All DOE Office Websites (Extended Search)

Tuning of the Metal-Insulator Tuning of the Metal-Insulator Transition via Alkali Adsorption Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Wednesday, 29 March 2006 00:00 Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature, pressure, or doping-such intriguing control of a material's electronic properties is possible by exploiting strongly interacting or "correlated" electrons. Now a team of researchers from the University of Kiel in Germany and the ALS has found a novel, surprising way to continuously transform a layered metallic transition-metal compound, TaS2, into an insulator. Using angle-resolved photoemission spectroscopy (ARPES), they have demonstrated that adsorption of alkali atoms onto this material's surface gradually makes it more insulating, although in general, alkali adsorption should lead to more metallic behavior, as alkali atoms easily give away their loosely bound outermost electron.

17

Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition...  

NLE Websites -- All DOE Office Websites (Extended Search)

to study the photoinduced metal-insulator phase transition in vanadium dioxide (VO2). Ultrafast X-Ray Science Only a moment's reflection is enough to confirm that the world around...

18

Jacketed lamp bulb envelope  

DOE Patents (OSTI)

A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.

MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD); Gitsevich, Aleksandr (Gaithersburg, MD); Bass, Gary K. (Mt. Airy, MD); Dolan, James T. (Frederick, MD); Kipling, Kent (Gaithersburg, MD); Kirkpatrick, Douglas A. (Great Falls, VA); Leng, Yongzhang (Damascus, MD); Levin, Izrail (Silver Spring, MD); Roy, Robert J. (Frederick, MD); Shanks, Bruce (Gaithersburg, MD); Smith, Malcolm (Alexandria, VA); Trimble, William C. (Columbia, MD); Tsai, Peter (Olney, MD)

2001-01-01T23:59:59.000Z

19

Impact of TiN post-treatment on metal insulator metal capacitor performances  

Science Conference Proceedings (OSTI)

When deposited by chemical vapor deposition (CVD), TiN layers must be post-treated with N"2/H"2 plasma. Metal-insulator-metal (MIM) capacitors using CVD-TiN as electrodes and Al"2O"3 as insulator are studied from both electrical and physico-chemical ... Keywords: EELS analysis, Electrical characteristics, MIM capacitors, TiN post-treatment

A. Bajolet; J-P. Manceau; S. Bruyère; R. Clerc; M. Proust; N. Gaillard; J-C. Giraudin; P. Delpech; L. Montès; G. Ghibaudo

2006-11-01T23:59:59.000Z

20

Metal-Insulator Transitions in Degenerate Hubbard Models and  

E-Print Network (OSTI)

Mott-Hubbard metal-insulator transitions in N-fold degenerate Hubbard models are studied within the Gutzwiller approximation. For any rational filling with x (integer) electrons per site it is found that metal-insulator transition occurs at a critical correlation energy Uc(N,x) = Uc(N,2N ? x) = ?(N,x)|¯?(N,x)|, where ¯? is the band energy per particle for the uncorrelated Fermi-liquid state and ?(N,x) is a geometric factor which increases linearly with x. We propose that the alkali metal doped fullerides AxC60 can be described by a 3-fold degenerate Hubbard model. Using the current estimate of band width and correlation energy this implies that most of AxC60, at integer x, are Mott-Hubbard insulators and A3C60 is a strongly correlated metal. PACS numbers: 71.10.+x,71.30.+h,74.70.W 1 Typeset using REVTEXThe discovery of superconductivity in A3C60 [1] has spurred great interest in alkali metal doped fullerides [2]. Beside A3C60, stable phases such as Rb1C60, Na2C60, K4C60 were

Jian Ping Lu

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Buoyant Granular Ceramic Insulation for the Liquid Metal Cooled ...  

Science Conference Proceedings (OSTI)

Previous work showed that the buoyant granular insulation (floating baffle) used to insulate the liquid bath from the mold heater strongly influences the curvature ...

22

Novel Way to Characterize Metal-Insulator-Metal Devices via Nanoindentation: Preprint  

DOE Green Energy (OSTI)

Metal-Insulator-Metal (MIM) devices are crucial components for applications ranging from optical rectennas for harvesting sunlight to infrared detectors. To date, the relationship between materials properties and device performance in MIM devices is not fully understood, partly due to the difficulty in making and reproducing reliable devices. One configuration that is popular due to its simplicity and ease of fabrication is the point-contact diode where a metal tip serves as one of the metals in the MIM device. The intrinsic advantage of the point-contact configuration is that it is possible to achieve very small contact areas for the device thereby allowing very high-frequency operation. In this study, precise control over the contact area and penetration depth of an electrically conductive tip into a metal/insulator combination is achieved using a nanoindenter with in-situ electrical contact resistance measurement capabilities. A diamond probe tip, doped (degeneratively) with boron for conductivity, serves as the point contact and second 'metal' (b-Diamond) of the MIM diode. The base layer consists of Nb/Nb2O5 thin films on Si substrates and serves as the first metal /insulator combination of the MIM structure. The current-voltage response of the diodes is measured under a range of conditions to assess the validity and repeatability of the technique. Additionally, we compare the results of this technique to those acquired using a bent-wire approach and find that Nb/Nb2O5/b-Diamond MIM devices show an excellent asymmetry (60-300) and nonlinearity values (~6-9). This technique shows great promise for screening metal-insulator combinations for performance without the uncertainty that stems from a typical bent-wire point-contact.

Periasamy, P.; Packard, C. E.; O?Hayre, R. P.; Berry, J. J.; Parilla, P. A.; Ginley, D. S.

2011-07-01T23:59:59.000Z

23

METHOD OF JACKETING URANIUM BODIES  

DOE Patents (OSTI)

An improved process is presented for providing uranium slugs with thin walled aluminum jackets. Since aluminum has a slightiy higher coefficient of thermal expansion than does uraaium, both uranium slugs and aluminum cans are heated to an elevated temperature of about 180 C, and the slug are inserted in the cans at that temperature. During the subsequent cooling of the assembly, the aluminum contracts more than does the uranium and a tight shrink fit is thus assured.

Maloney, J.O.; Haines, E.B.; Tepe, J.B.

1958-08-26T23:59:59.000Z

24

Block entanglement of the Gutzwiller state and metal-insulator transition in nanochains  

E-Print Network (OSTI)

The block entanglement entropy is investigated in the Gutzwiller state as a function of the correlation projection parameter. A chain of $N$ sites is partitioned into two equal blocks. The entanglement entropy follows the conformal field theory (CFT) prediction of a logarithmic divergence with the size of the block in both the insulating limit (g=0) with central charge c=1, and the metallic limit (g=1) with c=2. In the metal-insulator crossover regime, it deviates from the CFT result. A scaling form is proposed that gives a good data collapse, exhibiting a metal-insulator crossover at g*N^(1/3) ~ 0.24. The entanglement spectrum also shows noticeable deviation, from the CFT prediction, in the crossover regime, thus it can also track a metal-insulator transition. The spacing distribution of the eigenvalues of the block reduced density matrix is investigated as a function of g, and is seen to exhibit a weak signature of the metal-insulator crossover. These results compare well with recent experiments on metal-insulator transitions in Ni nanochains.

Archak Purkayastha; V. Subrahmanyam

2013-07-06T23:59:59.000Z

25

Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition in VO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Femtosecond NEXAFS of Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition in VO2 Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition in VO2 Print Wednesday, 28 September 2005 00:00 The grand goal motivating femtosecond studies of condensed-matter dynamics is to directly measure the structural pathways that connect different crystallographic, electronic, and magnetic phases of solids, as well as the short-lived transition states between reactants and products in chemical and biochemical reactions. Researchers from Berkeley Lab and the Université du Québec have taken a big step forward by adding femtosecond x-ray spectroscopy to the experimental toolkit with their first use of the laser-slicing technique to study the photoinduced metal-insulator phase transition in vanadium dioxide (VO2).

26

Thin-film metal coated insulation barrier in a Josephson tunnel junction. [Patent application  

DOE Patents (OSTI)

A highly stable, durable, and reproducible Josephson tunnel junction consists of a thin-film electrode of a hard superconductor, a thin oxide insulation layer over the electrode constituting a Josephson tunnel junction barrier, a thin-film layer of stabilizing metal over the barrier, and a second thin-film hard superconductive electrode over the stabilizing film. The thin stabilizing metal film is made only thick enough to limit penetration of the electrode material through the insulation layer so as to prevent a superconductive short.

Hawkins, G.A.; Clarke, J.

1975-10-31T23:59:59.000Z

27

Transport through quantum spin Hall insulator/metal junctions in graphene ribbons  

Science Conference Proceedings (OSTI)

Quantum spin Hall insulator/metal interfaces are formed in graphene ribbons with intrinsic spin-orbit coupling by selectively doping two regions creating a potential step. For a clean graphene ribbon, the transmission of the topological edge states through ... Keywords: Graphene ribbons, Quantum spin Hall effect, Quantum transport, pn Junctions

Elsa Prada, Georgo Metalidis

2013-06-01T23:59:59.000Z

28

Discharge lamp with reflective jacket  

DOE Patents (OSTI)

A discharge lamp includes an envelope, a fill which emits light when excited disposed in the envelope, a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed around the envelope and defining an opening, the reflector being configured to reflect some of the light emitted by the fill back into the fill while allowing some light to exit through the opening. The reflector may be made from a material having a similar thermal index of expansion as compared to the envelope and which is closely spaced to the envelope. The envelope material may be quartz and the reflector material may be either silica or alumina. The reflector may be formed as a jacket having a rigid structure which does not adhere to the envelope. The lamp may further include an optical clement spaced from the envelope and configured to reflect an unwanted component of light which exited the envelope back into the envelope through the opening in the reflector. Light which can be beneficially recaptured includes selected wavelength regions, a selected polarization, and selected angular components.

MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD); Kipling, Kent (Gaithersburg, MD)

2001-01-01T23:59:59.000Z

29

Carrier Localization, Metal-Insulator Transitions and Stripe Formation in Inhomogeneous Hole-Doped Cuprates  

E-Print Network (OSTI)

We propose a unified approach for describing the carrier localization, metal-insulator transitions (MITs) and stripe formation in high-$T_c$ cuprates. The ground-state energy of a carrier interacting with a defect and with lattice vibrations is calculated within the continuum model and adiabatic approximation. At low doping levels, hole carriers in $\\rm{La}$-based systems with large-radius dopants are localized near the dopants with the formation of hydrogenic impurity centers.

S. Dzhumanov; O. K. Ganiev; Z. S. Khudayberdiev

2010-08-13T23:59:59.000Z

30

Design and construction of a radiation resistant quadrupole using metal oxide insulated CICC  

SciTech Connect

The construction of a engineering test model of a radiation resistant quadrupole is described. The cold-iron quadrupole uses coils fabricated from metal-oixide (synthetic spinel) insulated Cable-In-Conduit-Conductor (CICC). The superconductor is NbTi in a copper matrix. The quadrupole is designed to produce a pole-tip field of 2 T with an operating current of 7,000 A.

Albert F. Zeller

2012-12-28T23:59:59.000Z

31

Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition in VO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition in VO2 Print Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition in VO2 Print The grand goal motivating femtosecond studies of condensed-matter dynamics is to directly measure the structural pathways that connect different crystallographic, electronic, and magnetic phases of solids, as well as the short-lived transition states between reactants and products in chemical and biochemical reactions. Researchers from Berkeley Lab and the Université du Québec have taken a big step forward by adding femtosecond x-ray spectroscopy to the experimental toolkit with their first use of the laser-slicing technique to study the photoinduced metal-insulator phase transition in vanadium dioxide (VO2). Ultrafast X-Ray Science Only a moment's reflection is enough to confirm that the world around us is in constant flux. That change is everywhere and ever present yields the conclusion that extracting the full story requires time-resolved experiments in which one can trace in detail on the time scale on which atoms move the pathways (including transient intermediate states) by which matter changes from one form to another (phase transitions). For example, the making and breaking of chemical bonds and the rearrangement of atoms, which occur on the fundamental time scale of a vibrational period (about 100 femtoseconds), ultimately determine the course of phase transitions in solids, the kinetic pathways of chemical reactions, and even the efficiency and function of biological processes.

32

Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition in VO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition in VO2 Print Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition in VO2 Print The grand goal motivating femtosecond studies of condensed-matter dynamics is to directly measure the structural pathways that connect different crystallographic, electronic, and magnetic phases of solids, as well as the short-lived transition states between reactants and products in chemical and biochemical reactions. Researchers from Berkeley Lab and the Université du Québec have taken a big step forward by adding femtosecond x-ray spectroscopy to the experimental toolkit with their first use of the laser-slicing technique to study the photoinduced metal-insulator phase transition in vanadium dioxide (VO2). Ultrafast X-Ray Science Only a moment's reflection is enough to confirm that the world around us is in constant flux. That change is everywhere and ever present yields the conclusion that extracting the full story requires time-resolved experiments in which one can trace in detail on the time scale on which atoms move the pathways (including transient intermediate states) by which matter changes from one form to another (phase transitions). For example, the making and breaking of chemical bonds and the rearrangement of atoms, which occur on the fundamental time scale of a vibrational period (about 100 femtoseconds), ultimately determine the course of phase transitions in solids, the kinetic pathways of chemical reactions, and even the efficiency and function of biological processes.

33

Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition in VO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition in VO2 Print Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition in VO2 Print The grand goal motivating femtosecond studies of condensed-matter dynamics is to directly measure the structural pathways that connect different crystallographic, electronic, and magnetic phases of solids, as well as the short-lived transition states between reactants and products in chemical and biochemical reactions. Researchers from Berkeley Lab and the Université du Québec have taken a big step forward by adding femtosecond x-ray spectroscopy to the experimental toolkit with their first use of the laser-slicing technique to study the photoinduced metal-insulator phase transition in vanadium dioxide (VO2). Ultrafast X-Ray Science Only a moment's reflection is enough to confirm that the world around us is in constant flux. That change is everywhere and ever present yields the conclusion that extracting the full story requires time-resolved experiments in which one can trace in detail on the time scale on which atoms move the pathways (including transient intermediate states) by which matter changes from one form to another (phase transitions). For example, the making and breaking of chemical bonds and the rearrangement of atoms, which occur on the fundamental time scale of a vibrational period (about 100 femtoseconds), ultimately determine the course of phase transitions in solids, the kinetic pathways of chemical reactions, and even the efficiency and function of biological processes.

34

Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition in VO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition in VO2 Print Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition in VO2 Print The grand goal motivating femtosecond studies of condensed-matter dynamics is to directly measure the structural pathways that connect different crystallographic, electronic, and magnetic phases of solids, as well as the short-lived transition states between reactants and products in chemical and biochemical reactions. Researchers from Berkeley Lab and the Université du Québec have taken a big step forward by adding femtosecond x-ray spectroscopy to the experimental toolkit with their first use of the laser-slicing technique to study the photoinduced metal-insulator phase transition in vanadium dioxide (VO2). Ultrafast X-Ray Science Only a moment's reflection is enough to confirm that the world around us is in constant flux. That change is everywhere and ever present yields the conclusion that extracting the full story requires time-resolved experiments in which one can trace in detail on the time scale on which atoms move the pathways (including transient intermediate states) by which matter changes from one form to another (phase transitions). For example, the making and breaking of chemical bonds and the rearrangement of atoms, which occur on the fundamental time scale of a vibrational period (about 100 femtoseconds), ultimately determine the course of phase transitions in solids, the kinetic pathways of chemical reactions, and even the efficiency and function of biological processes.

35

Scaling at the Energy-driven Metal-Insulator Transition and  

E-Print Network (OSTI)

The electronic properties of disordered systems at the Anderson metal-insulator transition (MIT) have been the subject of intense study for several decades. Thermoelectric properties at the MIT, such as thermopower and thermal conductivity, however, have been relatively neglected. Using the recursive Green’s function method and the Chester-Thellung-Kubo-Greenwood formalism, we calculate numerically the low temperature behaviour of all kinetic coefficients Lij. From these we can deduce for example the electrical conductivity ? and the thermopower S at finite temperatures. Here we present results for the case of completely coherent transport in cubic 3D systems. Copyright line will be provided by the publisher 1 Introduction The Anderson model [1] is widely used to investigate the phenomenon of localisation in disordered materials. Especially the possibility of a quantum phase transition driven by disorder from an insulating phase, where all states are localised, to a metallic phase with extended states has lead to extensive analytical and numerical investigations of the critical properties of this metal-insulator transition (MIT) [2].

The Thermoelectric Power; Er Croy; Rudolf A. Römer

2005-01-01T23:59:59.000Z

36

The chemical control of high-TC superconductivity: metal-superconductor-insulator transition in (Tl1-yPby)Sr2(Ca1-xYx)Cu2O7  

Science Conference Proceedings (OSTI)

Keywords: (Tl,Pb)-1212, Hall effect, Mott criterion, metal-insulator transition, resistivity, strontium, yttrium

R. S. Liu; P. P. Edwards; S. F. Hu; D. A. Jefferson; Y. T. Huang; S. F. Wu; M.-J. Tsai

1993-10-01T23:59:59.000Z

37

Metallic Interface Emerging at Magnetic Domain Wall of Antiferromagnetic Insulator---Fate of Extinct Weyl Electrons  

E-Print Network (OSTI)

Topological insulators, in contrast to ordinary semiconductors, accompany protected metallic surfaces described by Dirac-type fermions. Here, we theoretically show another emergent two-dimensional metal embedded in the bulk insulator is realized at a magnetic domain wall. The domain wall has long been studied as ingredients of both old-fashioned and leading-edge spintronics. The domain wall here, as an interface of seemingly trivial antiferromagnetic insulators, emergently realizes a functional interface preserved by zero modes with robust two-dimensional Fermi surfaces, where pyrochlore iridium oxides proposed to host condensed-matter realization of Weyl fermions offer such examples at low temperatures. The existence of ingap states pinned at domain walls, theoretically resembling spin/charge solitons in polyacetylene, solves experimental puzzles observed in R2Ir2O7 with rare earth elements R. The domain wall realizes a novel quantum confinement of electrons and embosses a net uniform magnetization, which enables magnetic control of electronic interface transports beyond semiconductor paradigm.

Youhei Yamaji; Masatoshi Imada

2013-06-09T23:59:59.000Z

38

METHOD OF MAKING JACKETED FISSIONABLE SLUG  

DOE Patents (OSTI)

BS>A method is described for fabricating a jacketed fissionable body or slug to provide an effective leak-proof seal between the jacket and the end closure. A housing for the fissionable slug is first formed and then tinned on the interior. The fissionable slug is coated on its exterior surface with the same material used to tin the interior of the housing. The coated slug is then inserted into the housing. A disc shaped end closure for the housing, coated with the tinning material, is inserted into the open end of the housing while the tinning material is still liquid. The end of the housing is then swaged into good contact with the periphery of the closure.

Young, G.J.; Ohlinger, L.A.

1959-02-10T23:59:59.000Z

39

Subject: Results of Test 5 on Bonded Jacket Electric Cables Dear Satish:  

E-Print Network (OSTI)

As you know, we have recently completed the fifth test in our research program on low-voltage electric cables (JCN W-6465). The objective of this test was to determine if bonded jacket cables have any unique failure mechanisms that are not present in unbondedjacket cables. To achieve this objective, EPR insulated cables with both a bonded and unbonded CSPE jacket were preaged and accident tested. The cables were manufactured by Okonite, Samuel Moore, and Anaconda. As a result of this test, one of the two Okonite cables preaged to simulate 20 years of qualified life, and three of the three Okonite cables preaged to simulate 40 years of qualified life failed catastrophically by splitting open. These results call into question the qualification basis for these cables. The Samuel Moore and Anaconda cables performed acceptably. The enclosed letter report documents the findings of this test. If you have any questions on this, please contact me. Sincerely,

Mr. Satish; K. Aggarwal; Robert J. Lofaro; S. Carfagno; E. Grove

2000-01-01T23:59:59.000Z

40

Metal-insulator transition by isovalent anion substitution in Ga1-xMnxAs: Implications to ferromagnetism  

SciTech Connect

We have investigated the effect of partial isovalent anion substitution in Ga1-xMnxAs on electrical transport and ferromagnetism. Substitution of only 2.4percent of As by P induces a metal-insulator transition at a constant Mn doping of x=0.046 while the replacement of 0.4 percent As with N results in the crossover from metal to insulator for x=0.037. This remarkable behavior is consistent with a scenario in which holes located within an impurity band are scattered by alloy disorder in the anion sublattice. The shorter mean free path of holes, which mediate ferromagnetism, reduces the Curie temperature TC from 113 K to 60 K (100 K to 65 K) upon the introduction of 3.1 percent P (1percent N) into the As sublattice.

Stone, P.R.; Alberi, K.; Tardif, S.K.Z.; Beeman, J.W.; Yu, K.M.; Walukiewicz, W.; Dubon, O.D.

2008-02-07T23:59:59.000Z

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same  

DOE Patents (OSTI)

A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

Wrenn, Jr., George E. (Clinton, TN); Holcombe, Jr., Cressie E. (Farragut, TN)

1988-01-01T23:59:59.000Z

42

Metal-Insulator Transition Revisited for Cold Atoms in Non-Abelian Gauge Potentials  

E-Print Network (OSTI)

We discuss the possibility of realizing metal-insulator transitions with ultracold atoms in two-dimensional optical lattices in the presence of artificial gauge potentials. Such transitions have been extensively studied for magnetic fields corresponding to Abelian gauges; they occur when the magnetic flux penetrating the lattice plaquette is an irrational multiple of the magnetic flux quantum. Here we present the first study of these transitions for non-Abelian U(2) gauge fields, which can be realized with atoms with two pairs of degenerate internal states. In contrast to the Abelian case, the spectrum and localization transition in the non-Abelian case is strongly influenced by atomic momenta. In addition to determining the localization boundary, the momentum fragments the spectrum and the minimum energy viewed as a function of momentum exhibits a step structure. Other key characteristics of the non-Abelian case include the absence of localization for certain states and satellite fringes around the Bragg peaks in the momentum distribution and an interesting possibility that the transition can be tuned by the atomic momenta.

Indubala I. Satija; Daniel C. Dakin; Charles W. Clark

2006-07-10T23:59:59.000Z

43

Semi-metal-insulator transition on the surface of a topological insulator with in-plane magnetization  

E-Print Network (OSTI)

A thin film of ferromagnetically ordered material proximate to the surface of a three-dimensional topological insulator explicitly breaks the time-reversal symmetry of the surface states. For an out-of-plane ferromagnetic order parameter on the surface, the parity is also broken, since the Dirac fermions become massive. This leads in turn to the generation of a topological Chern-Simons term by quantum fluctuations. On the other hand, for an in-plane magnetization the surface states remain gapless for the non-interacting Dirac fermions. In this work we study the possibility of spontaneous breaking of parity due to a dynamical gap generation on the surface in the presence of a local, Hubbard-like, interaction of strength $g$ between the Dirac fermions. A gap and a Chern-Simons term are generated for $g$ larger than some critical value, g_c, provided the number of Dirac fermions, $N$, is odd. For an even number of Dirac fermions the masses are generated in pairs having opposite signs, and no Chern-Simons term is generated. We discuss our results in the context of recent experiments in EuS/Bi_2Se_3 heterostructures.

Flavio S. Nogueira; Ilya Eremin

2013-04-10T23:59:59.000Z

44

Insulation Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE/CE-0180 DOE/CE-0180 2008 Department of Energy Assistant Secretary Energy Efficiency and Renewable Energy Contents: Introduction Why Insulate Your House? How Insulation Works Which Kind of Insulation is Best? What Is an R-Value? Reading the Label Insulation Product Types Insulating a New House Where and How Much Air Sealing Moisture Control and Ventilation Installation Issues Precautions Attics Walls Design Options Crawlspaces and Slabs Advanced Wall Framing Metal Framing Insulating Concrete Forms Massive Walls Structural Insulated Panels External Insulation Finish System Attic Ventilation or a Cathedralized Attic Adding Insulation to an Existing House Where and How Much How Much Insulation Do I Already Have? Air Sealing Moisture Control and Ventilation Insulation Installation, the Retrofit Challenge

45

Development of a Hydrogen, Metal-Insulator-Semiconductor (MIS) Sensor for Use in the Headspace of Distribution Transformers: Feasibility Study  

Science Conference Proceedings (OSTI)

This report describes metal-insulator-semiconductor (MIS) chemical sensors used to detect hydrogen in transformer headspaces and discusses their design, operating characteristics, and response to hydrogen in mixed-gas environments. It addresses several technical issues regarding MIS sensor fabrication and the use of MIS sensors to monitor hydrogen fault-gas levels in the headspace of transformers. A new design overcomes problems encountered in some earlier attempts to fabricate a reliable MIS hydrogen se...

2003-09-29T23:59:59.000Z

46

Investigation of Jacketed Rope for Live Work  

Science Conference Proceedings (OSTI)

Since the early 1990s, insulating tools have been used for live work (LW). Initially tools were made of wood and had homemade attachments, but fiberglass reinforced plastic (FRP) tools were introduced in late 1950s and replaced essentially all wooden tools. In view of the long time span since the previous major innovation in LW tools, the EPRI advisory task force of the LW project requested that research be performed on new tools, materials, and ropes that could serve as substitutes for some of the ...

2013-12-14T23:59:59.000Z

47

Direct probe of Mott-Hubbard to charge-transfer insulator transition and electronic structure evolution in transition-metal systems  

DOE Green Energy (OSTI)

We report the most direct experimental verification of Mott-Hubbard and charge-transfer insulators through x-ray emission spectroscopy in transition-metal (TM) fluorides. The p-d hybridization features in the spectra allow a straightforward energy alignment of the anion-2p and metal-3d valence states, which visually shows the difference between the two types of insulators. Furthermore, in parallel with the theoretical Zaanen-Sawatzky-Allen diagram, a complete experimental systematics of the 3d Coulomb interaction and the 2p-3d charge-transfer energy is reported and could serve as a universal experimental trend for other TM systems including oxides.

Olalde-Velasco, P; Jimenez-Mier, J; Denlinger, JD; Hussain, Z; Yang, WL

2011-07-11T23:59:59.000Z

48

Measuring topology in a laser-coupled honeycomb lattice: From Chern insulators to topological semi-metals  

E-Print Network (OSTI)

Ultracold fermions trapped in a honeycomb optical lattice constitute a versatile setup to experimentally realize the Haldane model [Phys. Rev. Lett. 61, 2015 (1988)]. In this system, a non-uniform synthetic magnetic flux can be engineered through laser-induced methods, explicitly breaking time-reversal symmetry. This potentially opens a bulk gap in the energy spectrum, which is associated with a non-trivial topological order, i.e., a non-zero Chern number. In this work, we consider the possibility of producing and identifying such a robust Chern insulator in the laser-coupled honeycomb lattice. We explore a large parameter space spanned by experimentally controllable parameters and obtain a variety of phase diagrams, clearly identifying the accessible topologically non-trivial regimes. We discuss the signatures of Chern insulators in cold-atom systems, considering available detection methods. We also highlight the existence of topological semi-metals in this system, which are gapless phases characterized by non-zero winding numbers, not present in Haldane's original model.

N. Goldman; E. Anisimovas; F. Gerbier; P. Ohberg; I. B. Spielman; G. Juzeliunas

2012-09-05T23:59:59.000Z

49

ITER Central Solenoid Coil Insulation Qualification  

Science Conference Proceedings (OSTI)

An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4x4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.

Martovetsky, Nicolai N [ORNL; Mann Jr, Thomas Latta [ORNL; Miller, John L [ORNL; Freudenberg, Kevin D [ORNL; Reed, Richard P [Cryogenic Materials, Inc.; Walsh, Robert P [Florida State University; McColskey, J D [National Institute of Standards and Technology (NIST), Boulder; Evans, D [Advanced Cryogenic Materials

2010-01-01T23:59:59.000Z

50

ITER CENTRAL SOLENOID COIL INSULATION QUALIFICATION  

Science Conference Proceedings (OSTI)

An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4 x 4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.

Martovetsky, N N; Mann, T L; Miller, J R; Freudenberg, K D; Reed, R P; Walsh, R P; McColskey, J D; Evans, D

2009-06-11T23:59:59.000Z

51

NMR Study of the Magnetic and Metal-Insulator Transitions in Na0:5CoO2: A Nesting Scenario J. Bobroff,1  

E-Print Network (OSTI)

NMR Study of the Magnetic and Metal-Insulator Transitions in Na0:5CoO2: A Nesting Scenario J, France (Received 22 July 2005; published 13 March 2006) Co and Na NMR are used to probe the local have performed a 59Co and 23Na NMR study which allows us to differentiate the two Co sites and to give

Paris-Sud 11, Université de

52

Structurally-driven metal-insulator transition in Ca{sub 2}Ru{sub 1-x}Cr{sub x}O{sub 4} (0{<=}x<0.14): A single crystal X-ray diffraction study  

Science Conference Proceedings (OSTI)

Correlation between structure and transport properties are investigated in high-quality single-crystals of Ca{sub 2}Ru{sub 1-x}Cr{sub x}O{sub 4} with 013.5% and the system behaves as an insulator. Such a large, sharp metal-insulator transition and tuneable transition temperature may have potential applications in electronic devices. -- Graphical abstract: The metal-insulator transition temperature (T{sub MI}) was drastically reduced by Cr doping, and is closely related to the distortion of structure. Display Omitted Research highlights: {yields} The metal-insulator transition temperature (T{sub MI}) was drastically reduced by doping Cr into Ca{sub 2}RuO{sub 4} single crystal. {yields} Detailed single crystal structural analysis provided important insight into this structurally-driven metal-insulator transition. {yields} Negative Volume Thermal Expansion (NVTE) was observed with increasing temperature.

Qi, T.F., E-mail: tqi2@uky.ed [Center for Advanced Materials, University of Kentucky, Lexington, KY 40506 (United States); Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); Ge, M. [Center for Advanced Materials, University of Kentucky, Lexington, KY 40506 (United States); High Magnetic Field Laboratory, University of Science and Technology of China, Hefei, Anhui 230026 (China); Korneta, O.B. [Center for Advanced Materials, University of Kentucky, Lexington, KY 40506 (United States); Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); Parkin, S. [Center for Advanced Materials, University of Kentucky, Lexington, KY 40506 (United States); Department of Chemistry, University of Kentucky, Lexington, KY 40506 (United States); De Long, L.E.; Cao, G. [Center for Advanced Materials, University of Kentucky, Lexington, KY 40506 (United States); Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States)

2011-04-15T23:59:59.000Z

53

Peg supported thermal insulation panel  

DOE Patents (OSTI)

A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

1985-01-01T23:59:59.000Z

54

Peg supported thermal insulation panel  

DOE Patents (OSTI)

A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

Nowobilski, J.J.; Owens, W.J.

1985-04-30T23:59:59.000Z

55

Modeling of FRP-jacketed RC columns subject to combined axial and lateral loads  

E-Print Network (OSTI)

Prisms Strengthened Using Carbon Fiber Reinforced PolymerStrengthening Effects with Carbon Fiber Sheet for ConcreteColumns with Continuous Carbon Fiber Jackets: Volume II,

Lee, Chung-Sheng

2006-01-01T23:59:59.000Z

56

Insitu expanding foam based carbon/epoxy sandwich jackets for column retrofit  

E-Print Network (OSTI)

RC Columns with Continuous Carbon Fiber Jackets, Journal ofC. Pantelides, J. Gergely, Carbon Fiber Reinforced Polymerand processing type (i.e. carbon fiber reinforced epoxy with

Danyeur, Alicia

2008-01-01T23:59:59.000Z

57

Equation of State and Material Property Measurements of Hydrogen Isotopes at the High-Pressure, High-Temperature, Insulator-Metal Transition  

Science Conference Proceedings (OSTI)

A high-intensity laser was used to shock compress liquid deuterium to pressures between 0.22 and 3.4 megabars (Mbar). Shock density, pressure, and temperature were determined using a variety of experimental techniques and diagnostics. This pressure regime spans the transformation of deuterium from an insulating molecular fluid to an atomic metallic fluid. Data reveal a significant increase in compressibility and a temperature inflection near 1 Mbar, both indicative of such a transition. Single-wavelength reflectivity measurements of the shock front demonstrated that deuterium shocked above {approx}0.5 Mbar is indeed metallic. (c) 2000 The American Astronomical Society.

Cauble, R.; Celliers, P. M.; Collins, G. W.; Silva, L. B. da; Gold, D. M.; Foord, M. E.; Budil, K. S.; Wallace, R. J.; Ng, A.

2000-04-01T23:59:59.000Z

58

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 - 5312011 NETL: Morgantown, WV (main chiller) Install Metal Jacketing, Insulation, and Safety Labels The main chiller for the Morgantown NETL site has insulation installed....

59

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Main Chiller MGN NETL Site Install Metal Jacketing, Insulation, and Safety Labels The main chiller for the Morgantown NETL site has insulation installed. However, there needs to be...

60

Thermal shock resistance ceramic insulator  

DOE Patents (OSTI)

Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor for no longer than 30 minutes and to a temperature sufficiently above the decomposition temperature to cause the selective decomposition of the metal precursor to the metal to provide a second solid phase mixture comprising particles of ceramic having discrete metal particles adhering to their surfaces, said metal particles having a mean diameter no more than 1/2 the mean diameter of the ceramic particles, and (c) densifying the second solid phase mixture to provide a cermet insulator having 0.1-20 volume % metal present as a dispersed phase.

Morgan, Chester S. (Oak Ridge, TN); Johnson, William R. (Maynardville, TN)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Window insulation  

SciTech Connect

Insulating apparatus consisting of a plurality of low thermal conductivity panels slidably carried in a conventional window frame is described. 13 claims.

Saucier, E.

1980-01-01T23:59:59.000Z

62

Charge transport and magnetization profile at the interface between the correlated metal CaRuO{sub3} and the antiferromagnetic insulator CaMnO{sub3}.;  

Science Conference Proceedings (OSTI)

A combination of spectroscopic probes was used to develop a detailed experimental description of the transport and magnetic properties of superlattices composed of the paramagnetic metal CaRuO{sub 3} and the antiferromagnetic insulator CaMnO{sub 3}. The charge-carrier density and Ru valence state in the superlattices are not significantly different from those of bulk CaRuO{sub 3}. The small charge transfer across the interface implied by these observations confirms predictions derived from density-functional calculations. However, a ferromagnetic polarization due to canted Mn spins penetrates 3-4 unit cells into CaMnO{sub 3}, far exceeding the corresponding predictions. The discrepancy may indicate the formation of magnetic polarons at the interface.

Freeland, J. W.; Chakhalian, J.; Boris, A. V.; Tonnerre, J-M.; Kavich, JJ.; Yordanov, P.; Grenier,S.; Zschack, P.; Karapetrova, E.; Popovich, P.; Lee, H. N.; Keimer, B. (X-Ray Science Division); ( PSC-USR); (Univ. of Arkansas); (Max Planck Inst. for Solid State Research); (Loughborough Univ.); (CNRS and Univ. Joseph Fourier); (Univ. of Illinois); (ORNL)

2010-01-01T23:59:59.000Z

63

Insulative laser shell coupler  

DOE Patents (OSTI)

A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dialectric break ring, and a pair of threaded ring sections. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections.

Arnold, Phillip A. (Livermore, CA); Anderson, Andrew T. (Livermore, CA); Alger, Terry W. (Tracy, CA)

1994-01-01T23:59:59.000Z

64

Compact vacuum insulation embodiments  

DOE Patents (OSTI)

An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

Benson, D.K.; Potter, T.F.

1992-04-28T23:59:59.000Z

65

Compact vacuum insulation  

DOE Patents (OSTI)

An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

Benson, D.K.; Potter, T.F.

1993-01-05T23:59:59.000Z

66

Compact vacuum insulation embodiments  

DOE Patents (OSTI)

An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

1992-01-01T23:59:59.000Z

67

Compact vacuum insulation  

DOE Patents (OSTI)

An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

1993-01-01T23:59:59.000Z

68

Compact vacuum insulation  

DOE Patents (OSTI)

Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

1992-01-01T23:59:59.000Z

69

Compact vacuum insulation  

DOE Patents (OSTI)

Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

Benson, D.K.; Potter, T.F.

1992-10-27T23:59:59.000Z

70

Transport properties in the vicinity of Mott insulators  

E-Print Network (OSTI)

Understanding the states in the vicinity of the Mott insulator is crucial to understanding both the physics of the transition between a Mott insulating phase and a metallic phase and the physics of the cuprate high-temperature ...

Nave, Cody Patrick, 1980-

2007-01-01T23:59:59.000Z

71

Window insulator  

SciTech Connect

An insulator for mounting to a window. A pair of plastic layers including a plurality of partitions positioned therebetween form air pockets between the layers. A plurality of suction cups and suction grooves arranged in rows on one outer surface of the sheet removably secure the sheet to a window. The sheet includes a circumferentially extending recessed portion receiving the window frame.

Nesbitt, W. A.

1985-10-01T23:59:59.000Z

72

High pressure electrical insulated feed thru connector  

DOE Patents (OSTI)

A feed-thru type hermetic electrical connector including at least one connector pin feeding through an insulator block within the metallic body of the connector shell. A compression stop arrangement coaxially disposed about the insulator body is brazed to the shell, and the shoulder on the insulator block bears against this top in a compression mode, the high pressure or internal connector being at the opposite end of the shell. Seals between the pin and an internal bore at the high pressure end of the insulator block and between the insulator block and the metallic shell at the high pressure end are hermetically brazed in place, the first of these also functioning to transfer the axial compressive load without permitting appreciable shear action between the pin and insulator block.

Oeschger, Joseph E. (Palo Alto, CA); Berkeland, James E. (San Jose, CA)

1979-11-13T23:59:59.000Z

73

Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Insulation Insulation Where to Insulate Learn where to insulate in a home to save money and improve comfort. Read more Insulation Get the facts about how insulation works. Read more Estimate the Payback Period for Insulation Adding insulation to your home will likely have an attractive payback. Read more You can reduce your home's heating and cooling costs through proper insulation and air sealing techniques. These techniques will also make your home more comfortable. Any air sealing efforts will complement your insulation efforts, and vice versa. Proper moisture control and ventilation strategies will improve the effectiveness of air sealing and insulation, and vice versa. Featured Insulation for New Home Construction Planning carefully for insulation results in reduced utility bills and superior comfort during the life of the home. In this house, raised heel trusses accommodate R-60 insulation. | Credit: Paul Norton, NREL.

74

Aerogel: a transparent insulator for solar applications  

SciTech Connect

Aerogel is a transparent, low density, insulating material suitable for a variety of solar applications. Significant energy savings can be realized by using aerogel for a window glazing material. Other possible applications include solar collector covers, transparent insulating jackets for direct gain passive solar devices, and situations that require both transparency and good insulation. Because silica aerogel has a low density (2 to 10% solid), it has a thermal conductivity as low as 0.014 W/m/sup 0/K without evacuation, and if evacuated, lower than 0.006 W/m/sup 0/K. It provides a clear view with only slight coloring due to its weak and nearly isotropic scattering of light. This paper describes significant progress made in the past year at our laboratory in the development of aerogel. We have improved the transparency, developed new preparation methods using less toxic materials, and initiated successful experiments in drying alcogels at near ambient temperature. Optical transmission, light scattering, and electron microscopy data show that CO/sub 2/ supercritical drying of alcogels produces aerogels similar in quality to those produced by high temperature supercritical drying. These advances make the commercial production of aerogel much more feasible.

Hunt, A.J.; Russo, R.E.; Tewari, P.H.; Lofftus, K.D.

1985-06-01T23:59:59.000Z

75

Insulated pipe clamp design  

SciTech Connect

Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. The design considerations and methods along with the development tests are presented. Special considerations to guard against adverse cracking of the insulation material, to maintain the clamp-pipe stiffness desired during a seismic event, to minimize clamp restraint on the pipe during normal pipe heatup, and to resist clamp rotation or spinning on the pipe are emphasized.

Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

1980-01-01T23:59:59.000Z

76

Detailed mapping of the local Ir{sup 4+} dimers through the metal-insulator transitions of CuIr{sub 2}S{sub 4} thiospinel by x-ray atomic pair distribution function measurements.  

SciTech Connect

The evolution of the short-range structural signature of the Ir{sup 4+} dimer state in CuIr{sub 2}S{sub 4} thiospinel has been studied across the metal-insulator phase transitions as the metallic state is induced by temperature, Cr doping, and x-ray fluence. An atomic pair distribution function (PDF) approach reveals that there are no local dimers that survive into the metallic phase when this is invoked by temperature and doping. The PDF shows Ir{sup 4+} dimers when they exist, regardless of whether or not they are long-range ordered. At 100 K, exposure to a 98 keV x-ray beam melts the long-range dimer order within a few seconds, though the local dimers remain intact. This shows that the metallic state accessed on warming and doping is qualitatively different from the state obtained under x-ray irradiation.

Bozin, E. S.; Masadeh, A. S.; Hor, Y. S.; Mitchell, J. F.; Billinge, S. J. L.; Materials Science Division; BNL; Michigan State Univ.; Univ. of Jordan; Columbia Univ.

2011-01-24T23:59:59.000Z

77

CX-005606: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-005606: Categorical Exclusion Determination Install Metal Jacketing, Insulation, and Safety Labels CX(s) Applied: B1.5 Date: 04122011 Location(s): Morgantown,...

78

CX-001586: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-001586: Categorical Exclusion Determination Install Metal Jacketing, Insulation, and Safety Labels CX(s) Applied: B1.4 Date: 04152010 Location(s): Morgantown,...

79

Properties of Carbonized Corn Straw as Thermal Insulating ... - TMS  

Science Conference Proceedings (OSTI)

May 1, 2007 ... Properties of Carbonized Corn Straw as Thermal Insulating Agent of Liquid Metal by Nan Wang, Min Chen, Yang Wang, Weiwei Leng, Yulong ...

80

A Probabilistic Deformation Demand Model and Fragility Estimates for Asymmetric Offshore Jacket Platforms  

E-Print Network (OSTI)

Interest in evaluating the performance and safety of offshore oil and gas platforms has been expanding due to the growing world energy supply and recent offshore catastrophes. In order to accurately assess the reliability of an offshore platform, all relevant uncertainties must be properly accounted for. This necessitates the development of a probabilistic demand model that accounts for the relevant uncertainties and model errors. In this study, a probabilistic demand model is developed to assess the deformation demand on asymmetric offshore jacket platforms subject to wave and current loadings. The probabilistic model is constructed by adding correction terms and a model error to an existing deterministic deformation demand model. The correction terms are developed to capture the bias inherent in the deterministic model. The model error is developed to capture the accuracy of the model. The correction terms and model errors are estimated through a Bayesian approach using simulation data obtained from detailed dynamic analyses of a set of representative asymmetric offshore platform configurations. The proposed demand model provides accurate and unbiased estimates of the deformation demand on offshore jacket platforms. The developed probabilistic demand model is then used to assess the reliability of a typical offshore platform considering serviceability and ultimate performance levels. In addition, a sensitivity analysis is conducted to assess the effect of key parameters on the results of the analyses. The proposed demand model can be used to assess the reliability of different design options and for the reliability-based optimal design of offshore jacket platforms.

Fallon, Michael

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Interim evaluation of nickel plate on aluminum-jacketed fuel elements  

SciTech Connect

Nickel plating on the coolant contacting surfaces of aluminum-jacketed fuel elements is highly attractive for increasing resistance. Potential benefits include a highly corrosion-resistant coating for severe localized conditions, reduction of mechanical damage to fuel element jackets, improved fuel element alignment (by reducing friction between fuel element and process tube ribs) and probably lower overfall surface temperatures to reduction in corrosion product film with improved corrosion resistance, neutron economy might also be realized. For example, substitution of a 0.5 mil thick nickel plate for 15-mils thickness of aluminum jacket would result in no reactivity loss and permit a concomitant increase in uranium volume, or in coolant flow annulus. Attendant problems include providing an adherent continuous plate of uniform thickness and possibly contamination of reactor effluent by radio-nickel-cobalt, and phosphorous and it was found that gross sloughing of the nickel plate had occurred. Development and testing work was carried out to determine the cause and a solution to the Greece problem. Studies were limited to the behavior of chemically-deposited nickel because of the unique capability of the process to deposit a coating of uniform thickness in the 0.1 - 0.2 mils thick range, regardless of the geometry of the plated piece. Based on ex- reactor tests, a readily applicable method for significantly improving plate adherence has been developed, as summarized in this report.

Jacky, G.F.

1960-02-08T23:59:59.000Z

82

Charge Friedel oscillations in a Mott insulator  

E-Print Network (OSTI)

When a metal undergoes a transition to an insulator it will lose its electronic Fermi surface. Interestingly, in some situations a “ghost” Fermi surface of electrically neutral spin carrying fermions may survive into the ...

Mross, David Fabian

83

Thermally insulated windows and doors  

SciTech Connect

Complete thermal insulation of metal rails and stiles in vertically or horizontally sliding or rolling windows or doors is provided by including in the frame thereof centered rigid plastic shapes which extend between panels of the windows or doors. All rails and stiles of each panel are thereby exposed only to either interior or exterior ambient temperatures.

Schmidt, D.F.

1979-05-01T23:59:59.000Z

84

Panelized wall system with foam core insulation  

DOE Patents (OSTI)

A wall system includes a plurality of wall members, the wall members having a first metal panel, a second metal panel, and an insulating core between the first panel and the second panel. At least one of the first panel and the second panel include ridge portions. The insulating core can be a foam, such as a polyurethane foam. The foam can include at least one opacifier to improve the k-factor of the foam.

Kosny, Jan (Oak Ridge, TN); Gaskin, Sally (Houston, TX)

2009-10-20T23:59:59.000Z

85

SUPPORTING AND HEAT INSULATING MEANS  

DOE Patents (OSTI)

A method is described for simultaneously supporting inner and outer members spaced from each other and heat insulating them from each other comprising an inner and outer member together defining an annular cavity. Each member carries a shoulder projecting towards the other member. A stack of annular metal plates in the cavity is held between the shoulder of the outer member and the shoulder of the inner member. The edges of the metal plate forming the stack are exposed to the cavity and to evacuation conditions which may exist within thc cavity. The stack of metal plates acts to both support one of the members with respect to the other and as a heat insulator.

Birmingham, B.W.; Brown, H.; Scott, R.B.; Vander-arend, P.C.

1959-01-27T23:59:59.000Z

86

Process for making ceramic insulation  

SciTech Connect

A method is provided for producing insulation materials and insulation for high temperature applications using novel castable and powder-based ceramics. The ceramic components produced using the proposed process offers (i) a fine porosity (from nano-to micro scale); (ii) a superior strength-to-weight ratio; and (iii) flexibility in designing multilayered features offering multifunctionality which will increase the service lifetime of insulation and refractory components used in the solid oxide fuel cell, direct carbon fuel cell, furnace, metal melting, glass, chemical, paper/pulp, automobile, industrial heating, coal, and power generation industries. Further, the ceramic components made using this method may have net-shape and/or net-size advantages with minimum post machining requirements.

Akash, Akash (Salt Lake City, UT); Balakrishnan, G. Nair (Sandy, UT)

2009-12-08T23:59:59.000Z

87

Calcium silicate insulation structure  

DOE Patents (OSTI)

An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

Kollie, Thomas G. (Oak Ridge, TN); Lauf, Robert J. (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

88

Multiple density layered insulator  

DOE Patents (OSTI)

A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

Alger, T.W.

1994-09-06T23:59:59.000Z

89

Multiple density layered insulator  

DOE Patents (OSTI)

A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

Alger, Terry W. (Tracy, CA)

1994-01-01T23:59:59.000Z

90

Membranes Improve Insulation Efficiency  

E-Print Network (OSTI)

It has been determined from extensive tests involving test models and home attics that loose fill and fiber batt insulation does not function as expected by the industry. The reason for this deficiency is current test methods do not accurately predict the magnitude of air infiltration into fiber insulation as used in home attics, radiant heat infiltration into the insulation during summer, or radiant heat loss through the insulation during winter conditions. The use of (1) moisture permeable membranes over the insulation, and (2) layered membranes between fiber batts to form closed cells in the insulation both dramatically improve the efficiency of the fiber insulation. The efficiency of this insulation will be improved to an even greater degree if these membranes reflect radiant heat as well as reduce convection air currents. Extensive tests have also been conducted which show that if moisture permeable membranes are used over fiber insulation, the moisture content of the insulation will be reduced.

Bullock, C. A.

1986-01-01T23:59:59.000Z

91

Vacuum Insulator Development for the Dielectric Wall Accelerator  

Science Conference Proceedings (OSTI)

At Lawrence Livermore National Laboratory, we are developing a new type of accelerator, known as a Dielectric Wall Accelerator, in which compact pulse forming lines directly apply an accelerating field to the beam through an insulating vacuum boundary. The electrical strength of this insulator may define the maximum gradient achievable in these machines. To increase the system gradient, we are using 'High Gradient Insulators' composed of alternating layers of dielectric and metal for the vacuum insulator. In this paper, we present our recent results from experiment and simulation, including the first test of a High Gradient Insulator in a functioning Dielectric Wall Accelerator cell.

Harris, J R; Blackfield, D; Caporaso, G J; Chen, Y; Hawkins, S; Kendig, M; Poole, B; Sanders, D M; Krogh, M; Managan, J E

2008-03-17T23:59:59.000Z

92

Insulator Reference Book: Chapter 1: Insulator Fundamentals  

Science Conference Proceedings (OSTI)

This technical update report presents a draft first chapter of the Electric Power Research Institute (EPRI) Insulator Reference Book, which is being developed to give utility transmission engineers a comprehensive information resource on all aspects of high-voltage insulators.BackgroundHigh-voltage insulators are an essential part of the power delivery system. They ensure the safe transmission of electricity from generating stations to substations, where the ...

2013-12-19T23:59:59.000Z

93

Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Insulation Insulation May 30, 2012 - 9:14am Addthis Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Foam core structural insulated panels are built in a factory, shipped to the jobsite, and assembled. | Photo courtesy of Michael Baechler. Foam core structural insulated panels are built in a factory, shipped to the jobsite, and assembled. | Photo courtesy of Michael Baechler. Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Foam core structural insulated panels are built in a factory, shipped to the jobsite, and assembled. | Photo courtesy of Michael Baechler.

94

Insulator coating for high temperature alloys method for producing insulator coating for high temperature alloys  

DOE Patents (OSTI)

A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound. This invention has applications to breeding blankets for fusion reactors as well as to alkali metal thermal to electric converters.

Park, J.H.

1994-12-31T23:59:59.000Z

95

Insulation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

planning to do the job yourself. How does it work? Insulation slows heat flow through the building envelope of your home. Insulation in your home provides resistance to heat flow....

96

Insulating polymer concrete  

DOE Patents (OSTI)

A lightweight insulating polymer concrete formed from a lightweight closed cell aggregate and a water resistance polymeric binder.

Schorr, H. Peter (Douglaston, NY); Fontana, Jack J. (Shirley, NY); Steinberg, Meyer (Melville, NY)

1987-01-01T23:59:59.000Z

97

Polymer Insulator Vintage Guide  

Science Conference Proceedings (OSTI)

For more than 30 years, polymer long rod suspension insulators have been available and used on transmission lines. The primary functions of polymer insulatorsalso called composite insulators or nonceramic insulatorsare to provide 1) mechanical strength to attach the conductors to the structures and 2) electrical insulation between the conductors and the structure. Initially, the use of polymer insulators was limited because utilities had limited experience; however, today, the use is more widespread. Con...

2011-12-12T23:59:59.000Z

98

Thermal Insulation Materials  

Science Conference Proceedings (OSTI)

... IN. Knauf Insulation Product Testing Laboratory, Shelbyville, IN [200883- 0] MI. Dow Chemical Building Solutions Product Perf. ...

2014-01-03T23:59:59.000Z

99

Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer  

SciTech Connect

Amorphous silicon Schottky barrier solar cells which incorporate a thin insulating layer and a thin doped layer adjacent to the junction forming metal layer exhibit increased open circuit voltages compared to standard rectifying junction metal devices, i.e., Schottky barrier devices, and rectifying junction metal insulating silicon devices, i.e., MIS devices.

Carlson, David E. (Yardley, PA)

1980-01-01T23:59:59.000Z

100

Radiation-controlled dynamic vacuum insulation  

DOE Patents (OSTI)

A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

Benson, D.K.; Potter, T.F.

1995-07-18T23:59:59.000Z

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Variably insulating portable heater/cooler  

DOE Patents (OSTI)

A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

Potter, T.F.

1998-09-29T23:59:59.000Z

102

Material-controlled dynamic vacuum insulation  

DOE Patents (OSTI)

A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

Benson, D.K.; Potter, T.F.

1996-10-08T23:59:59.000Z

103

Material-controlled dynamic vacuum insulation  

DOE Green Energy (OSTI)

A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

Benson, David K. (14154 W. First Dr., Golden, CO 80401); Potter, Thomas F. (515 S. Magnolia La., Denver, CO 80224)

1996-10-08T23:59:59.000Z

104

Radiation-controlled dynamic vacuum insulation  

DOE Green Energy (OSTI)

A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

1995-01-01T23:59:59.000Z

105

Variably insulating portable heater/cooler  

DOE Green Energy (OSTI)

A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

Potter, Thomas F. (Denver, CO)

1998-01-01T23:59:59.000Z

106

Loose-fill insulations  

SciTech Connect

Whether you are increasing the insulation levels in your current home or selecting insulation for a new home, choosing the right insulation material can be challenging. Fibrous loose-fill insulations such as cellulose, fiberglass, and rock wool are options you may wish to consider. This publication will introduce you to these materials--what they are, how they are applied, how they compare with each other, and other considerations regarding their use--so that you can decide whether loose fills are right for your home.

1995-05-01T23:59:59.000Z

107

Reflective Insulation Handbook.  

Science Conference Proceedings (OSTI)

When reflective-foil insulation manufacturers wanted the Bonneville Power Administration (BPA) to include their products in the Residential Weatherization Program, they lacked conclusive test data to prove that their products met program specifications. Reflective foils lacked widespread acceptance because of uncertainty about their insulation values. BPA discovered that the Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL) was preparing a study to test how well reflective foils reduced horizontal heat flow. Because the insulation value of reflective foils depends upon the direction of heat flow, BPA provided additional funding to test their effectiveness in reducing upward and downward heat flow and to produce this Handbook. The objectives of this study were to develop acceptable test and evaluation methods, produce an initial data base of idealized reflective-foil insulation systems, extend this data base to a limited number of commercially available products to develop and test analytical models to predict thermal performance and develop a Reflective Insulation Handbook for homeowners and insulation contractors. This handbook describes how heat is transferred; the function of an insulation; what reflective insulation is; types of reflective insulation; where it can be used; installation procedures; thermal performance; and useful sources of information. 10 figs., 2 tabs.

Desjarlais, Andre O.; Tye, Ronald P.

1990-08-01T23:59:59.000Z

108

Thermal Insulation Systems  

E-Print Network (OSTI)

Thermal insulation systems are receiving a high degree of attention in view of increasing energy cost. Industrial, commercial and residential energy users are all well aware of energy cost increases and great emphasis is being directed to energy cost reduction programs. One of the best places to start with energy conservation is to employ proper insulation systems. This article discusses the significant properties of thermal insulation materials primarily for industrial application. Some of the information is applicable to commercial and residential insulation. Only hot service conditions will be covered.

Stanley, T. F.

1982-01-01T23:59:59.000Z

109

Seismic Performance Evaluation of the Jacket Type Offshore Platforms through Incremental Dynamic Analysis considering Soil-Pile-Structure Interaction  

Science Conference Proceedings (OSTI)

Of great interest in Performance-Based Earthquake Engineering (PBEE) is the accurate estimation of the seismic performance of structures. A performance prediction and evaluation procedure is based on nonlinear dynamics and reliability theory. In this method, a full integration over the three key stochastic models is as follow: ground motion hazard curve, nonlinear dynamic displacement demand, and displacement capacity. Further, both epistemic and aleatory uncertainties are evaluated and carried through the analysis.In this paper, jacket and soil-pile system have been modeled using Finite Element program (OpenSees) and the incremental dynamic analysis (IDA) are performed to investigate nonlinear behavior of offshore platforms. The system demand is determined by performing time history response analyses of the jacket under a suite of FEMA/SAC uniform hazard ground motions. The system capacity in terms of the drift ratio against incipient collapse is generally difficult to predict since the structural response goes into nonlinear range before collapse. All the analyses are performed in two directions and the results are compared with each others. The confidence level of a jacket in each direction for a given hazard level is calculated using the procedure described.

Asgarian, Behrouz [K.N. Toosi University of Technology Tehran Iran (Iran, Islamic Republic of); Shokrgozar, Hamed R.; Talarposhti, Ali Shakeri [K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)

2008-07-08T23:59:59.000Z

110

Sheath insulator final test report, TFE Verification Program  

DOE Green Energy (OSTI)

The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications.

Not Available

1994-07-01T23:59:59.000Z

111

Gas insulated transmission line with insulators having field controlling recesses  

DOE Patents (OSTI)

A gas insulated transmission line having a novel insulator for supporting an inner conductor concentrically within an outer sheath. The insulator has a recess contiguous with the periphery of one of the outer and inner conductors. The recess is disposed to a depth equal to an optimum gap for the dielectric insulating fluid used for the high voltage insulation or alternately disposed to a large depth so as to reduce the field at the critical conductor/insulator interface.

Cookson, Alan H. (Pittsburgh, PA); Pederson, Bjorn O. (Chelmsford, MA)

1984-01-01T23:59:59.000Z

112

Tips: Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Insulation Tips: Insulation May 2, 2012 - 6:03pm Addthis Where to Insulate. Adding insulation in the areas shown here may be the best way to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or basement insulation. Where to Insulate. Adding insulation in the areas shown here may be the best way to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or basement insulation. Insulation is made from a variety of materials, and it usually comes in four types: rolls and batts, loose-fill, rigid foam, and foam-in-place. Rolls and Batts Rolls and batts -- or blankets -- are flexible products made from mineral

113

18 December 2006 BUILDING INSULATION  

E-Print Network (OSTI)

18 December 2006 07200-1 BUILDING INSULATION CONSTRUCTION STANDARD SPECIFICATION SECTION 07200 BUILDING INSULATION PART 1 - GENERAL 1.01 Summary.....................................................................................5 2.04 Pre-Engineered Building Insulation

114

Comparison of Thermal Insulation Materials.  

E-Print Network (OSTI)

??This thesis is about comparing of different thermal insulation materials of different manufactures. In our days there are a lot of different thermal insulation materials… (more)

Chaykovskiy, German

2010-01-01T23:59:59.000Z

115

Equipment Insulation | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Equipment Insulation Jump to: navigation, search TODO: Add description List of Equipment Insulation...

116

Building Insulation | Open Energy Information  

Open Energy Info (EERE)

Building Insulation Jump to: navigation, search TODO: Add description List of Building Insulation Incentives Retrieved from "http:en.openei.orgwindex.php?titleBuildingInsulat...

117

Pipe Insulation Economies  

E-Print Network (OSTI)

Pipe Insulation Economies is a computer program written in IBM basic to simplify the economic insulation thickness for an insulated pipe. Many articles have been written on this subject, from simple nomographs to a small book written in 1976 by the Federal Energy Administration, called "Economic Thickness for Industrial Insulation (ETI)." This paper is meant to fall somewhere between these extremes without sacrificing the accuracy necessary for economic considerations. Within this text, insulation is dealt with not as a material but as a method to slow heat transfer. To simplify the various mechanisms by which heat is transferred, the variable "thermal conductivity" is used. This is modeled for average insulation temperature. Another variable which has caused problems in the past is the ambient air film coefficient, or surface resistance. This program deals with this coefficient by making an initial assumption, then using an iterative process to refine the actual values before making the economic calculations. The program will use the input data to determine first of all the heat loss in BTU per hr/ft. of pipe. Using this result the lowest annual cost, therefore the most economical insulation thickness, is determined.

Schilling, R. E.

1986-06-01T23:59:59.000Z

118

Insulation fact sheet  

SciTech Connect

Electricity bills, oil bills, gas bills - all homeowners pay for one or more of these utilities, and wish they paid less. Often many of us do not really know how to control or reduce our utility bills. We resign ourselves to high bills because we think that is the price we have to pay for a comfortable home. We encourage our children to turn off the lights and appliances, but may not recognize the benefits of insulating the attic. This publication provides facts relative to home insulation. It discusses where to insulate, what products to use, the decision making process, installation options, and sources of additional information.

1997-08-01T23:59:59.000Z

119

Vehicular Storage of Hydrogen in Insulated Pressure Vessels  

DOE Green Energy (OSTI)

This paper describes the development of an alternative technology for storing hydrogen fuel onboard automobiles. Insulated pressure vessels are cryogenic-capable pressure vessels that can accept cryogenic liquid fuel, cryogenic compressed gas or compressed gas at ambient temperature. Insulated pressure vessels offer advantages over conventional H{sub 2} storage approaches. Insulated pressure vessels are more compact and require less carbon fiber than GH{sub 2} vessels. They have lower evaporative losses than LH{sub 2} tanks, and are much lighter than metal hydrides. After outlining the advantages of hydrogen fuel and insulated pressure vessels, the paper describes the experimental and analytical work conducted to verify that insulated pressure vessels can be used safely for vehicular H{sub 2} storage. The paper describes tests that have been conducted to evaluate the safety of insulated pressure vessels. Insulated pressure vessels have successfully completed a series of DOT, ISO and SAE certification tests. A draft procedure for insulated pressure vessel certification has been generated to assist in a future commercialization of this technology. An insulated pressure vessel has been installed in a hydrogen fueled truck and it is currently being subjected to extensive testing.

Aceves, S M; Berry, G D; Martinez-Frias, J; Espinosa-Loza, F

2005-01-03T23:59:59.000Z

120

Flipping Photoelectron Spins in Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Flipping Photoelectron Spins in Topological Insulators Print Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel. These electronic states already promise many uses, but ALS researchers working at Beamline 4.0.3 with a team from Berkeley Lab and the University of California, Berkeley have just made an unexpected discovery about TIs that will broaden their possible range of applications: when hit with a photon beam, the spin polarization of the electrons they emit (in a process called photoemission) can be completely controlled in three dimensions, simply by tuning the polarization of the incident light. This strong effect was not what had been assumed about photoemission from topological insulators, or any other material. Controlling the interaction of polarized light and photoelectron spin opens a wide range of possibilities for TIs.

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Flipping Photoelectron Spins in Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Flipping Photoelectron Spins in Topological Insulators Print Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel. These electronic states already promise many uses, but ALS researchers working at Beamline 4.0.3 with a team from Berkeley Lab and the University of California, Berkeley have just made an unexpected discovery about TIs that will broaden their possible range of applications: when hit with a photon beam, the spin polarization of the electrons they emit (in a process called photoemission) can be completely controlled in three dimensions, simply by tuning the polarization of the incident light. This strong effect was not what had been assumed about photoemission from topological insulators, or any other material. Controlling the interaction of polarized light and photoelectron spin opens a wide range of possibilities for TIs.

122

Flipping Photoelectron Spins in Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Flipping Photoelectron Spins in Topological Insulators Print Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel. These electronic states already promise many uses, but ALS researchers working at Beamline 4.0.3 with a team from Berkeley Lab and the University of California, Berkeley have just made an unexpected discovery about TIs that will broaden their possible range of applications: when hit with a photon beam, the spin polarization of the electrons they emit (in a process called photoemission) can be completely controlled in three dimensions, simply by tuning the polarization of the incident light. This strong effect was not what had been assumed about photoemission from topological insulators, or any other material. Controlling the interaction of polarized light and photoelectron spin opens a wide range of possibilities for TIs.

123

Flipping Photoelectron Spins in Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Flipping Photoelectron Spins in Flipping Photoelectron Spins in Topological Insulators Flipping Photoelectron Spins in Topological Insulators Print Tuesday, 23 April 2013 10:00 Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel. These electronic states already promise many uses, but ALS researchers working at Beamline 4.0.3 with a team from Berkeley Lab and the University of California, Berkeley have just made an unexpected discovery about TIs that will broaden their possible range of applications: when hit with a photon beam, the spin polarization of the electrons they emit (in a process called photoemission) can be completely controlled in three dimensions, simply by tuning the polarization of the incident light. This strong effect was not what had been assumed about photoemission from topological insulators, or any other material. Controlling the interaction of polarized light and photoelectron spin opens a wide range of possibilities for TIs.

124

Flipping Photoelectron Spins in Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Flipping Photoelectron Spins in Topological Insulators Print Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. This new phase of condensed matter is an insulator in the bulk, yet behaves like a metal on its surface, even at room temperature. The electrons that flow swiftly across the surfaces of TIs are "spin polarized", meaning the electron's spin is locked to its momentum, perpendicular to the direction of travel. These electronic states already promise many uses, but ALS researchers working at Beamline 4.0.3 with a team from Berkeley Lab and the University of California, Berkeley have just made an unexpected discovery about TIs that will broaden their possible range of applications: when hit with a photon beam, the spin polarization of the electrons they emit (in a process called photoemission) can be completely controlled in three dimensions, simply by tuning the polarization of the incident light. This strong effect was not what had been assumed about photoemission from topological insulators, or any other material. Controlling the interaction of polarized light and photoelectron spin opens a wide range of possibilities for TIs.

125

Body Fat as Insulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Body Fat as Insulation Name: Bulza Location: NA Country: NA Date: NA Question: Does the fat layer under the skinkeep an animal warm? Replies: Some animals, yes. Polar bears and...

126

Insulation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

comfort during the life of the home. In this house, raised heel trusses accommodate R-60 insulation. | Credit: Paul Norton, NREL. Building a new energy-efficient home requires...

127

An analytical study and systematic monitoring procedure developed for the load-out operation of the North Rankin Jacket 'A'  

SciTech Connect

The loadout of the 22,000 tonnes North Rankin Jacket 'A' onto a floating barge was successfully accomplished in April, 1982. During the loadout the barge ballast was continually adjusted to compensate for both jacket weight transfer onto the barge and full tide variation. The preparation for the loadout and the operation itself was characterized by newly developed integrated techniques. The techniques included: the development of a barge, jacket and quayside three-dimensional computer model to check the validity of conventional and simple ballast system software. The model was also used to evaluate the control parameters of the operation in a series of analyses which determine the sensitivity of critical steps of the operation to human or equipment errors: the development and operation of an integrated control system for jacket load transfer that relates jacket position to barge level and ballast pump requirements; the development and operation of a tide-expectation computer programme and associated ballast pump time scheduling software to compensate for differences between actual water level and that determined from standard tide tables, and to minimize the effect of short-term, local tide variations that are not forecast; and the incorporation of fail-safe concepts and measures into the operation.

Ferguson, N.; Inokoshi, O.; Kitani, T.; Masuda, S.; Zarate, H.

1983-05-01T23:59:59.000Z

128

Vacuum foil insulation system  

DOE Patents (OSTI)

In a multifoil thermal insulation package having a plurality of concentric cylindrical cups, means are provided for reducing heat loss from the penetration region which extends through the cups. At least one cup includes an integral skirt extending from one end of the cup to intersection with the penetration means. Assembly of the insulation package with the skirted cup is facilitated by splitting the cup to allow it to be opened up and fitted around the other cups during assembly.

Hanson, John P. (White Oak Boro, PA); Sabolcik, Rudolph E. (Carroll Township, PA); Svedberg, Robert C. (Elizabeth Township, PA)

1976-11-16T23:59:59.000Z

129

Heat insulating system for a fast reactor shield slab  

DOE Patents (OSTI)

Improved thermal insulation for a nuclear reactor deck comprising many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

Kotora, Jr., James (LaGrange Park, IL); Groh, Edward F. (Naperville, IL); Kann, William J. (Park Ridge, IL); Burelbach, James P. (Glen Ellyn, IL)

1986-01-01T23:59:59.000Z

130

Heat insulating system for a fast reactor shield slab  

DOE Patents (OSTI)

Improved thermal insulation for a nuclear reactor deck comprises many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

Kotora, J. Jr.; Groh, E.F.; Kann, W.J.; Burelbach, J.P.

1984-04-10T23:59:59.000Z

131

Surprising Control over Photoelectrons from a Topological Insulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Surprising Control over Photoelectrons Surprising Control over Photoelectrons from a Topological Insulator Surprising Control over Photoelectrons from a Topological Insulator Print Tuesday, 12 March 2013 00:00 Topological insulators are insulators in the bulk but metals on the surface, and the electrons that flow swiftly across their surfaces are "spin polarized." Surface-electron spin and momentum are locked, offering new ways to control electron flow and distribution in spintronic devices. A Nature Physics paper by first author Chris Jozwiak of the Advanced Light Source and a large team led by Alessandra Lanzara and Zahid Hussain describes surprising results counter to previous assumptions: the spin polarization of photoemitted electrons from the surface of a topological insulator is wholly determined in three dimensions by the polarization of the incident light beam.

132

Surprising Control over Photoelectrons from a Topological Insulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Surprising Control over Surprising Control over Photoelectrons from a Topological Insulator Surprising Control over Photoelectrons from a Topological Insulator Print Tuesday, 12 March 2013 00:00 Topological insulators are insulators in the bulk but metals on the surface, and the electrons that flow swiftly across their surfaces are "spin polarized." Surface-electron spin and momentum are locked, offering new ways to control electron flow and distribution in spintronic devices. A Nature Physics paper by first author Chris Jozwiak of the Advanced Light Source and a large team led by Alessandra Lanzara and Zahid Hussain describes surprising results counter to previous assumptions: the spin polarization of photoemitted electrons from the surface of a topological insulator is wholly determined in three dimensions by the polarization of the incident light beam.

133

Examination of insulation wear modes in geothermal logging cables  

DOE Green Energy (OSTI)

The wear mode of the Tetrafluorethylene (TFE) insulation used on an electrical logging cable is described. The cable examined in this study was used repeatedly in various harsh geothermal environments. Considering the amount of abuse the cable was subjected to, the TFE performed very well. Grooves were formed on the outside of the insulation as a result of the fluid pressure and the loading from the inner layer of metal armor. Also, indentations on the inside of the insulation were caused by the insulation molding to the conductor strands. If this mode of wear were to continue, the conductors would eventually protrude from the insulation and short out against each other or the cable armor. 4 refs., 5 figs.

Grant, T.

1985-01-01T23:59:59.000Z

134

Design of a variable-conductance vacuum insulation  

DOE Green Energy (OSTI)

This paper describes one approach to the design of a variable-conductance vacuum insulation. In this design, the vacuum insulation consists of a permanently sealed, thin sheet steel, evacuated envelope of whatever geometry is required for the application. The steel envelope is supported internally against the atmospheric pressure loads by an array of discrete, low-conductance, ceramic supports, and radiative heat transfer is blocked by layers of thin metal radiation shields. Thermal conductance through this insulation is controlled electronically by changing the temperature of a small metal hydride connected to the vacuum envelope. The hydride reversibly absorbs/desorbs hydrogen to produce a hydrogen pressure typically within the range from less than 10{sup {minus}6} to as much as 1 torr. Design calculations are compared with results from laboratory tests of bench scale samples, and some possible automotive applications for this variable-conductance vacuum insulation are suggested.

Benson, D K; Potter, T F; Tracy, C E

1994-01-01T23:59:59.000Z

135

Insulation Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Materials Insulation Materials Insulation Materials May 30, 2012 - 10:08am Addthis Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Rigid foam board adds R-value to this wall in a Florida home. | Photo courtesy of FSEC/IBACOS. Rigid foam board adds R-value to this wall in a Florida home. | Photo

136

Electoral Competition, Political Uncertainty and Policy Insulation  

E-Print Network (OSTI)

Uncertainty and Policy Insulation Horn, Murray. 1995. TheUncertainty and Policy Insulation United States Congress.UNCERTAINTY AND POLICY INSULATION Rui J. P. de Figueiredo,

de Figueiredo, Rui J. P. Jr.

2001-01-01T23:59:59.000Z

137

Thermal insulated glazing unit  

SciTech Connect

An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

1991-01-01T23:59:59.000Z

138

Thermal insulated glazing unit  

DOE Patents (OSTI)

An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

1988-04-05T23:59:59.000Z

139

Highly Insulating Window Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Technology Window Technology Temperature differentials across a window, particularly with cold exterior environments in residential buildings, can lead to significant energy losses. Currently available low-emissivity coatings, gas-fills, and insulating frames provide significant energy savings over typical single or double glazed products. The EWC website provides information on how double glazed low-e gas-filled windows work as well as information on commercially available superwindows (three layer, multiple low-e coatings, high performance gas-fills). The next generation of highly insulating window systems will benefit from incremental improvements being made to current components (i.e. more insulating spacers and frame materials/designs, low-e coatings with improved performance properties). LBNL uses its experimental facilities and software tools to collaborate with window and glass industry representatives to better understand the impacts of new components on overall product performance.

140

THERMAL INSULATION MATERIALS TEST METHOD ...  

Science Conference Proceedings (OSTI)

... _____ 01/W01 CAN/CGSB-51.2-M88 Thermal Insulation, Calcium Silicate, for Piping, Machinery and Boilers _____ ...

2012-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NVLAP Thermal Insulation Materials LAP  

Science Conference Proceedings (OSTI)

... for thermal insulation materials. The final report for Round 31 was released in February 2010. Proficiency testing is on hold ...

2013-07-18T23:59:59.000Z

142

Owens Corning Acoustic & Insulation Product Testing ...  

Science Conference Proceedings (OSTI)

... Insulation. [01/T10] ASTM C687 Thermal Resistance of Loose-Fill Building Insulation. Acoustical Testing Services. Accreditation ...

2014-01-03T23:59:59.000Z

143

Thermoelectric Power of Insulators and Reconsideration of Kelvin’s Relations at Low  

E-Print Network (OSTI)

Thermoelectric effects in Kondo insulators are attracting interests because of the emerging possibility of developping better thermoelectric materials for a portable refrigerator without liquid coolant. In this article, the theory of thermoelectric effects are reinvestigated for insulators or semiconductors at low temperatures. It is found that the famous relations established by Lord Kelvin for metals in 1851 must be modified for insulators in order to be consistent with the third law of the thermodynamics. Effects of strong correlation are discussed. 1

T Saso

2003-01-01T23:59:59.000Z

144

Porous insulation in HVAC systems  

Science Conference Proceedings (OSTI)

Porous insulation used to line the air stream surfaces of HVAC equipment provides a locus for the accumulation of dirt and debris. Dirt and debris are hydrophilic and the insulation on the air stream surfaces of mechanical cooling systems thus provides a niche for mold growth. The mold growing on porous insulation unlike moldy debris on a hard surface such as sheetmetal cannot be removed by duct cleaning. Actions for proactively preventing biocontamination of HVAC insulation include the following. (1) Porous insulation shall not be used to line the air stream surfaces of HVAC plenums where wetting is likely such as in the vicinity of cooling coils

Philip R. Morey

1995-01-01T23:59:59.000Z

145

Features of electron mobility in a thin silicon layer in an insulator-silicon-insulator structure  

Science Conference Proceedings (OSTI)

Electron mobility in a thin silicon layer of a metal-insulator-semiconductor-insulator-metal system is studied as a function of longitudinal and transverse electric fields (in wide ranges of their values), temperature in the range 1.7 to 400 K, and changes in {gamma}-ray irradiation conditions. It is shown that, in the temperature range 400 to {approx}100 K, electron mobility increases in accordance with the mechanism of electron scattering at an acoustic phonon, while, with a subsequent decrease in temperature to the temperature of liquid helium, mobility drops because the Coulomb scattering of electrons at charged surface centers starts to dominate. It is demonstrated that as a result of {gamma}-ray irradiation, electron mobility decreases and the degree of this decrease strongly depends on the electrical mode of the sensor during irradiation.

Leonov, A. V., E-mail: lave@sci.lebedev.ru; Mokrushin, A. D.; Omeljanovskaja, N. M. [Russian Academy of Sciences, Institute for Microelectronics Technology and High-Purity Materials (Russian Federation)

2012-04-15T23:59:59.000Z

146

Insulation Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Materials Insulation Materials May 30, 2012 - 10:08am Addthis Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Rigid foam board adds R-value to this wall in a Florida home. | Photo courtesy of FSEC/IBACOS. Rigid foam board adds R-value to this wall in a Florida home. | Photo

147

Highly Insulating Windows - Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Cost The following is an estimate of the cost effective incremental cost of highly-insulating windows (U-factor=0.20 Btu/hr-ft2-F) compared to regular ENERGY STAR windows (U-factor 0.35 Btu/hr-ft2-F). Energy savings from lower U-factors were simulated with RESFEN over an assumed useful window life of 25 years. To determine the maximum incremental cost at which highly-insulating windows would still be cost-effective, we used a formula used by many utility companies to calculate the cost of saved energy from energy efficiency programs, based on the programs' cost and savings. We turned this formula around so that the cost of saved energy equals the present energy prices in the studied locations, whereas the program cost (the incremental cost of the windows) is the dependent variable. By entering 5%

148

Consider insulation reliability  

SciTech Connect

This paper reports that when calcium silicate and two brands of mineral wool were compared in a series of laboratory tests, calcium silicate was more reliable. And in-service experience with mineral wool at a Canadian heavy crude refinery provided examples of many of the lab's findings. Lab tests, conducted under controlled conditions following industry accepted practices, showed calcium silicate insulation was stronger, tougher and more durable than the mineral wools to which it was compared. For instance, the calcium silicate insulation exhibited only some minor surface cracking when heated to 1,200[degrees]F (649[degrees]C), while the mineral wools suffered binder burnout resulting in sagging, delamination and a general loss of dimensional stability.

Gamboa (Manville Mechanical Insulations, a Div. of Schuller International Inc., Denver, CO (United States))

1993-01-01T23:59:59.000Z

149

Gas filled panel insulation  

DOE Patents (OSTI)

A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.

Griffith, Brent T. (Berkeley, CA); Arasteh, Dariush K. (Oakland, CA); Selkowitz, Stephen E. (Piedmont, CA)

1993-01-01T23:59:59.000Z

150

Gas filled panel insulation  

DOE Patents (OSTI)

A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

1993-12-14T23:59:59.000Z

151

Highly Insulating Windows - Fram  

NLE Websites -- All DOE Office Websites (Extended Search)

Frames Frames Research performed at the Norwegian University of Science and Technology and LBNL has identified various highly insulating frame solutions. A report was released in 2007 describing some of these frames. This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m2K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC.

152

Superconducting Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Superconducting Topological Insulators Print Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly resist scattering from defects, naturally achieving some of the most desirable traits for computing components and next-generation "spintronics" technologies. More recent angle-resolved photoemission spectroscopy (ARPES) studies performed at ALS Beamlines 10.0.1 and 12.0.1 by the same collaboration have paved a way for these novel material properties to be taken even further. Their studies showed that by doping the TI, bismuth selenide, with copper, it's possible to make the topologically ordered electrons superconducting, dropping electrical resistance in the surface states all the way to zero.

153

Superconducting Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Superconducting Topological Insulators Print Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly resist scattering from defects, naturally achieving some of the most desirable traits for computing components and next-generation "spintronics" technologies. More recent angle-resolved photoemission spectroscopy (ARPES) studies performed at ALS Beamlines 10.0.1 and 12.0.1 by the same collaboration have paved a way for these novel material properties to be taken even further. Their studies showed that by doping the TI, bismuth selenide, with copper, it's possible to make the topologically ordered electrons superconducting, dropping electrical resistance in the surface states all the way to zero.

154

Superconducting Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Superconducting Topological Insulators Print Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly resist scattering from defects, naturally achieving some of the most desirable traits for computing components and next-generation "spintronics" technologies. More recent angle-resolved photoemission spectroscopy (ARPES) studies performed at ALS Beamlines 10.0.1 and 12.0.1 by the same collaboration have paved a way for these novel material properties to be taken even further. Their studies showed that by doping the TI, bismuth selenide, with copper, it's possible to make the topologically ordered electrons superconducting, dropping electrical resistance in the surface states all the way to zero.

155

Improved DC Gun Insulator  

SciTech Connect

Many user facilities such as synchrotron light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic, creating a buildup of charge and causing eventual puncture. A novel ceramic manufacturing process is proposed. It will incorporate bulk resistivity in the region where it is needed to bleed off accumulated charge caused by highly energetic electrons. This process will be optimized to provide an appropriate gradient in bulk resistivity from the vacuum side to the air side of the HV standoff ceramic cylinder. A computer model will be used to determine the optimum cylinder dimensions and required resistivity gradient for an example RF gun application. A ceramic material example with resistivity gradient appropriate for use as a DC gun insulator will be fabricated by glazing using doping compounds and tested.

M.L. Neubauer, K.B. Beard, R. Sah, C. Hernandez-Garcia, G. Neil

2009-05-01T23:59:59.000Z

156

En jämförelse mellan vakuumisolering och traditionell isolering; A comparison between vacuum insulation and traditional insulation.  

E-Print Network (OSTI)

?? The purpose of this thesis is to investigate if vacuum insulation panels are a competitive alternative to traditional insulation. Vacuum insulation has been used… (more)

Gustafsson, Johanna

2012-01-01T23:59:59.000Z

157

Electrically insulating phosphate coatings for iron powder based electromagnetic core applications  

E-Print Network (OSTI)

Powdered metals, such as iron, are a common building block for electromagnetic cores. An iron powder was reacted with phosphoric acid to create a layer of iron phosphate on each particle. This electrically insulating ...

Nolan, William Rane

2009-01-01T23:59:59.000Z

158

Möbius Graphene Strip as Topological Insulator  

E-Print Network (OSTI)

We study the electronic properties of M\\"{o}bius graphene strip with a zigzag edge. We show that such graphene strip behaves as a topological insulator with a gapped bulk and a robust metallic surface, which enjoys some features due to its nontrivial topology of the spatial configuration, such as the existence of edge states and the non-Abelian induced gauge field. We predict that the topological properties of the M\\"{o}bius graphene strip can be experimentally displayed by the destructive interference in the transmission spectrum, and the robustness of edge states under certain perturbations.

Z. L. Guo; Z. R. Gong; H. Dong; C. P. Sun

2009-06-09T23:59:59.000Z

159

High voltage variable diameter insulator  

DOE Patents (OSTI)

A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

Vanecek, David L. (Martinez, CA); Pike, Chester D. (Pinole, CA)

1984-01-01T23:59:59.000Z

160

Thermal insulations using vacuum panels  

DOE Patents (OSTI)

Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

1991-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Increase Duct and Plenum Insulation  

NLE Websites -- All DOE Office Websites (Extended Search)

changes to the commercial provisions of the 2012 IECC: Increase Duct and Plenum Insulation R Hart Pacific Northwest National Laboratory December 2012 Proposal Description This...

162

Corrosion of Steel under Insulation  

Science Conference Proceedings (OSTI)

...H.S. Ahluwalia, Corrosion under Insulation, Corrosion: Environments and Industries, Vol 13C, ASM Handbook, ASM International, 2006, p 654â??658...

163

Insulation Materials | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

requires no moisture barrier and, when installed at proper densities, cannot settle in a building cavity. Cellulose insulation is used in both new and existing homes, as...

164

Humidity effects on wire insulation breakdown strength.  

SciTech Connect

Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

Appelhans, Leah

2013-08-01T23:59:59.000Z

165

SECONDARY ELECTRON TRAJECTORIES IN HIGH-GRADIENT VACUUM INSULATORS WITH FAST HIGH-VOLTAGE PULSES  

Science Conference Proceedings (OSTI)

Vacuum insulators composed of alternating layers of metal and dielectric, known as high-gradient insulators (HGIs), have been shown to withstand higher electric fields than conventional insulators. Primary or secondary electrons (emitted from the insulator surface) can be deflected by magnetic fields from external sources, the high-current electron beam, the conduction current in the transmission line, or the displacement current in the insulator. These electrons are deflected either toward or away from the insulator surface and this affects the performance of the vacuum insulator. This paper shows the effects of displacement current from short voltage pulses on the performance of high gradient insulators. Generally, vacuum insulator failure is due to surface flashover, initiated by electrons emitted from a triple junction. These electrons strike the insulator surface thus producing secondary electrons, and can lead to a subsequent electron cascade along the surface. The displacement current in the insulator can deflect electrons either toward or away from the insulator surface, and affects the performance of the vacuum insulator when the insulator is subjected to a fast high-voltage pulse. Vacuum insulators composed of alternating layers of metal and dielectric, known as high-gradient insulators (HGIs), have been shown to withstand higher electric fields than conventional insulators. HGIs, being tolerant of the direct view of high-current electron and ion beams, and having desirable RF properties for accelerators, are a key enabling technology for the dielectric-wall accelerators (DWA) being developed at Lawrence Livermore National Laboratory (LLNL). Characteristically, insulator surface breakdown thresholds go up as the applied voltage pulse width decreases. To attain the highest accelerating gradient in the DWA, short accelerating voltage pulses are only applied locally, along the HGI accelerator tube, in sync with the charged particle bunch, and the effects of displacement current on trajectories of electrons emitted from HGI surface are particularly interesting. This paper presents simulated electron trajectories experiencing either constant or short-duration applied voltage pulses. Comparisons of these trajectories clearly indicate the importance of the voltage pulse shape, especially the rise time, in the flashover initiation process for HGIs.

Chen, Y; Blackfield, D; Nelson, S D; Poole, B

2010-04-21T23:59:59.000Z

166

COMPARATIVE COST STUDY OF PROCESSING STAINLESS STEEL-JACKETED UO$sub 2$ FUEL: MECHANICAL SHEAR-LEACH VS SULFEX-CORE DISSOLUTION  

SciTech Connect

The economics of mechanical shear-leach and Sulfex decladding-core dissolution head end treatments for processing typical tubular bundles of stainless steel-jacketed UO/sub 2/ nuclear fuels were compared. A 2.66 metric ton U/day head end portion of a plant was designed for each process and capital and operating costs were developed. For plants of this size and larger, mechanical shear-leach processing has the advantage of ~20% lower capital cost and 50% lower operating cost. Processing costs of stainless steel-jacketed UO/ sub 2/ by the Sulfex and shear-leach methods, including amortization and waste disposal but excluding solvent extraction, were .78 and 7l/kg U, respectively. Storage of stainless steel waste produced by the shear-leach method is less costly by a factor of 20 than for Sulfex. (auth)

Adams, J.B.; Benis, A.M.; Watson, C.D.

1962-04-23T23:59:59.000Z

167

Ceramic electrical insulation for electrical coils, transformers, and magnets  

DOE Patents (OSTI)

A high temperature electrical insulation is described, which is suitable for electrical windings for any number of applications. The inventive insulation comprises a cured preceramic polymer resin, which is preferably a polysiloxane resin. A method for insulating electrical windings, which are intended for use in high temperature environments, such as superconductors and the like, advantageously comprises the steps of, first, applying a preceramic polymer layer to a conductor core, to function as an insulation layer, and second, curing the preceramic polymer layer. The conductor core preferably comprises a metallic wire, which may be wound into a coil. In the preferred method, the applying step comprises a step of wrapping the conductor core with a sleeve or tape of glass or ceramic fabric which has been impregnated by a preceramic polymer resin. The inventive insulation system allows conducting coils and magnets to be fabricated using existing processing equipment, and maximizes the mechanical and thermal performance at both elevated and cryogenic temperatures. It also permits co-processing of the wire and the insulation to increase production efficiencies and reduce overall costs, while still remarkably enhancing performance.

Rice, John A. (Longmont, CO); Hazelton, Craig S. (Lafayette, CO); Fabian, Paul E. (Broomfield, CO)

2002-01-01T23:59:59.000Z

168

FIBERGLASS INSULATION 1. INTRODUCTION TO WARM AND FIBERGLASS INSULATION  

E-Print Network (OSTI)

This chapter describes the methodology used in EPA’s Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for fiberglass insulation beginning at the waste generation reference point. 1 The WARM GHG emission factors are used to compare the net emissions associated with fiberglass insulation in the following two waste management alternatives: source reduction and landfilling.

unknown authors

2012-01-01T23:59:59.000Z

169

Nanoantenna couplers for metal-insulator-metal waveguide interconnects  

E-Print Network (OSTI)

State-of-the-art copper interconnects suffer from increasing spatial power dissipation due to chip downscaling and RC delays reducing operation bandwidth. Wide bandwidth, minimized Ohmic loss, deep sub-wavelength confinement ...

Onbasli, Mehmet Cengiz

170

Wall Insulation; BTS Technology Fact Sheet  

SciTech Connect

Properly sealed, moisture-protected, and insulated walls help increase comfort, reduce noise, and save on energy costs. This fact sheet addresses these topics plus advanced framing techniques, insulation types, wall sheathings, and steps for effective wall construction and insulation.

Southface Energy Institute; Tromly, K.

2000-11-07T23:59:59.000Z

171

Electrical wire insulation and electromagnetic coil  

DOE Patents (OSTI)

An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

Bich, George J. (Penn Hills, PA); Gupta, Tapan K. (Monroeville, PA)

1984-01-01T23:59:59.000Z

172

Excavationless Exterior Foundation Insulation Exploratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Excavationless Exterior Foundation Excavationless Exterior Foundation Insulation Exploratory Study NorthernSTAR Building America Team Garrett Mosiman Technical Approach The project begins with the concept of an "excavationless" exterior foundation insulation upgrade that is cost-competitive with current methods, and involves little impact to existing landscape and site features. Process: 1. Literature review to establish the building science case for the advantages of exterior foundation insulation vs. interior insulation 2. Presentation and analysis of two exterior, full-excavation exterior insulation upgrades to establish a base case for costs 3. Survey of five typical twin-cities neighborhoods to categorize and quantify typical obstructions 4. Web-based search to identify available materials and technologies that have

173

Reentrant Insulating State in Ultrathin Manganite Films  

SciTech Connect

The transport and magnetic properties of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin-films grown by pulsed laser deposition on (LaAlO{sub 3}){sub 0.3}(SrAl{sub 0.5}Ta{sub 0.5}O{sub 3}){sub 0.7} single crystal substrates have been investigated. A systematic series with various thicknesses of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} was used to establish a phase diagram - which showed a clear difference compared to films grown on SrTiO{sub 3} substrates, highlighting the importance of film thickness and substrate strain. At 8 unit cells, the boundary between the metallic and insulating ground states, a second abrupt metal-insulator transition was observed at low temperatures, which could be tuned with by magnetic field, and is interpreted as a signature of electronic phase separation.

Bell, Christopher

2011-08-11T23:59:59.000Z

174

Project: Measurement Techniques for Advanced Insulation  

Science Conference Proceedings (OSTI)

... is through the use of thermal insulation [1] . Insulation in the building envelope and thermal devices, such as furnaces, boilers, refrigerators, and air ...

2012-12-27T23:59:59.000Z

175

Solar Decathlon Technology Spotlight: Structural Insulated Panels |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decathlon Technology Spotlight: Structural Insulated Panels Decathlon Technology Spotlight: Structural Insulated Panels Solar Decathlon Technology Spotlight: Structural Insulated Panels September 20, 2011 - 7:13am Addthis These structural insulated panels consist of foam insulation sandwiched between oriented strand boards. (Courtesy of Michael Bacchler) These structural insulated panels consist of foam insulation sandwiched between oriented strand boards. (Courtesy of Michael Bacchler) Alexis Powers EDITOR'S NOTE: Originally posted on the Solar Decathlon News Blog on September 19, 2011. Editor's Note: This post is one of a series of technology spotlights that introduces common technologies used in U.S. Department of Energy Solar Decathlon team houses. Structural insulated panels (SIPs) are prefabricated structural elements

176

Superconductivity and Ferromagnetism in Topological Insulators.  

E-Print Network (OSTI)

??Topological insulators, a new state of matter discovered recently, have attracted great interest due to their novel properties. They are insulating inside the bulk, but… (more)

Zhang, Duming

2012-01-01T23:59:59.000Z

177

Solar Decathlon Technology Spotlight: Structural Insulated Panels...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20, 2011 - 7:13am Addthis These structural insulated panels consist of foam insulation sandwiched between oriented strand boards. (Courtesy of Michael Bacchler) These...

178

Basement Insulation Techniques | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Basement Insulation Techniques Residential basement insulation levels should be selected in accordance with the International Energy Conservation Code, or the local energy code. Be...

179

Aerogel Impregnated Polyurethane Piping and Duct Insulation ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Polyurethane Piping and Duct Insulation Aerogel Impregnated Polyurethane Piping and Duct Insulation Emerging Technologies Project for the 2013 Building Technologies Office's...

180

SEALED INSULATOR BUSHING  

DOE Patents (OSTI)

The manufacture of electrode insulators that are mechanically strong, shock-proof, vacuum tight, and are capable of withstanding gas pressures of many atmospheres under intense neutron bombardment, such as may be needed in an ionization chamber, is described. The ansulator comprises a bolt within a quartz tube, surrounded by a bushing held in place by two quartz rings, and tightened to a pressure of 1,000 pounds per square inch by a nut and washer. Quartz is the superior material to meet these conditions, however, to withstand this pressure the quartz must be fire polished, lapped to form smooth and parallel surfaces, and again fire polished to form an extremely smooth and fracture resistant mating surface.

Carmichael, H.

1952-11-11T23:59:59.000Z

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Highly Insulating Windows - Publ  

NLE Websites -- All DOE Office Websites (Extended Search)

Highly Insulating Windows - Publications Future Advanced Windows for Zero-Energy Homes, J. Apte, D. Arasteh, J. Huang, 2003 ASHRAE Annual Meeting, 2002 Nine representative window products are examined in eight representative U.S. climates. Annual energy and peak demand impacts are investigated. We conclude that a new generation of window products is necessary for zero-energy homes if windows are not to be an energy drain on these homes. Performance Criteria for Residential Zero Energy Windows, D. Arasteh, H. Goudey, J. Huang, C. Kohler, R. Mitchell, 2006, submitted to ASHRAE Through the use of whole house energy modeling, typical efficient products are evaluated in five US climates and compared against the requirements for ZEHs. Products which meet these needs are defined as a function of climate.

182

Insulating window system  

SciTech Connect

An insulating window system is described for use with existing structural windows which consists of: a window track, the track secured to and outlining the structural windows and includes a jaw means, the jaw means includes a pair of spaced jaws, the jaws extending outward from the track and being concaved towards each other forming a semi-oval channel; a glazing frame means having a base member and a pane holder, the base member having two outwardly extending spaced arms, the arms being concaved towards each other forming a semi-oval channel and engaging the jaws when passed there against, for locking the window track and glazing frame means together; the pane holder extending from the glazing frame means and includes an end section and a face section, the face section overlaying the base member with the end section extending therebetween, all forming a glazing channel for securing a glazing pane.

Miller, W.

1986-04-15T23:59:59.000Z

183

Boron nitride insulating material  

DOE Patents (OSTI)

High temperature BN-insulated heaters for use as fuel pin simulators in reactor thermal hydraulic test facility studies comprise a cylindrical housing and a concentric heating element disposed within the housing and spaced apart from the housing to define an annular region therebetween. The annular region contains BN for providing electrical resistance and thermal conductivity between the housing and the heating element. The fabrication method of this invention comprises the steps of cold pressing BN powder at a pressure of 20 to 80,000 psig and a dwell time of at least 0.1-3 seconds to provide hollow cylindrical preforms of suitable dimensions for insertion into the annular region, the BN powder having a tap density of about 0.6-1.1 g/cm.sup.3 and an orientation ratio of at least about 100/3.5. The preforms are inserted into the annular region and crushed in place.

Morgan, Jr., Chester S. (Oak Ridge, TN); Cavin, O. Burl (Knoxville, TN); McCulloch, Reginald W. (Concord, TN); Clark, David L. (Clearwater, FL)

1978-01-01T23:59:59.000Z

184

Multiple layer insulation cover  

DOE Patents (OSTI)

A multiple layer insulation cover for preventing heat loss in, for example, a greenhouse, is disclosed. The cover is comprised of spaced layers of thin foil covered fabric separated from each other by air spaces. The spacing is accomplished by the inflation of spaced air bladders which are integrally formed in the cover and to which the layers of the cover are secured. The bladders are inflated after the cover has been deployed in its intended use to separate the layers of the foil material. The sizes of the material layers are selected to compensate for sagging across the width of the cover so that the desired spacing is uniformly maintained when the cover has been deployed. The bladders are deflated as the cover is stored thereby expediting the storage process and reducing the amount of storage space required.

Farrell, James J. (Livingston Manor, NY); Donohoe, Anthony J. (Ovid, NY)

1981-11-03T23:59:59.000Z

185

Black Mountain Insulation | Open Energy Information  

Open Energy Info (EERE)

Insulation Insulation Jump to: navigation, search Name Black Mountain Insulation Place United Kingdom Sector Carbon Product UK-based manufacturer of sheeps wool insulation which has a low carbon footprint than traditional glassfiber insulation. Website http://www.blackmountaininsula References Black Mountain Insulation Website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Black Mountain Insulation is a company located in United Kingdom. It was formerly known as Ochre Natural Insulation Company. [2] References ↑ "Black Mountain Insulation Website" ↑ http://www.companiesintheuk.co.uk/ltd/black-mountain-insulation Retrieved from "http://en.openei.org/w/index.php?title=Black_Mountain_Insulation&oldid=391648

186

Homeowners' demand for home insulation  

SciTech Connect

The survey was conducted to provide guidance based on the views and experience of a national sample of homeowners about the insulation of their homes. The telephone survey was conducted with 1,012 homeowners between January 12 and 22, 1978 in the East, Midwest, South, and West regions of the U.S. From the survey data were compiled on plans for installing home insulation with emphasis on attic insulation; how many homes now have various types of insulation; recent experiences in obtaining attic insulation--its cost, material used, when installed, whether installed by the homeowner or a contractor; the kinds of insulation thought to be needed--attic insulation, wall insulation, storm doors and windows; whether homeowners planning attic insulation feel that they have the necessary information to do the work themselves or if they feel they know enough to make the necessary arrangements with a contractor; the effect of higher fuel costs on likelihood of installing attic insulation; shortages of insulating materials; what sources of information are relied on when planning attic insulation; attitudes toward having utility companies install insulation to be paid for by means of utility bills; how much trust homeowners have in the advice of government, utility companies, insulation manufacturers, insulation installers, and retail stores about how much insulation is needed; the likely effect of a tax credit on plans to insulate the attic; and the concern about energy shortages.

1978-04-01T23:59:59.000Z

187

Exterior Insulation and Overclad Retrofits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exterior Insulation & Overclad Exterior Insulation & Overclad Retrofits Residential Energy Efficiency Stakeholder Meeting March 2, 2012 - Austin, TX Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 2  Incredible practical experience:  New construction - nearly a century  Retrofit applications - many decades Exterior Insulation Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 3 1980s ON - a "weird" builder Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 4 1990s ON - a "good" builder Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 5 2000s ON - a "typical" builder Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 6

188

Field Guide: Visual Inspection of Polymer Insulators  

Science Conference Proceedings (OSTI)

The Field Guide: Visual Inspection of Polymer Insulators visually catalogs the various condition issues that commonly affect transmission line polymer insulators (also known as composite or non-ceramic insulators (NCIs)). The guide is conveniently organized according to the portion of the polymer insulator affected, and includes a section on failure modes, indicating the key features and root ...

2013-10-28T23:59:59.000Z

189

STATE OF CALIFORNIA INSULATION STAGE CHECKLIST  

E-Print Network (OSTI)

on the building plans with diagrams and/or specific design drawings indicating the R-value of insulationSTATE OF CALIFORNIA INSULATION STAGE CHECKLIST CEC-CF-6R-ENV-22 (Revised 05/12) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-ENV-22 Quality Insulation Installation (QII) - Insulation Stage

190

Thermal insulation of window glass  

SciTech Connect

The thermal insulation of window glass can be increased by a factor of two using spray-on semiconductive SnO/sub 2/: Sb or IN/sub 2/O/sub 3/: Sn coatings. (auth)

Sievers, A.J.

1973-11-01T23:59:59.000Z

191

Measure Guideline: Basement Insulation Basics  

SciTech Connect

This guideline is intended to describe good practices for insulating basements in new and existing homes, and is intended to be a practical resources for building contractors, designers, and also to homeowners.

Aldrich, R.; Mantha, P.; Puttagunta, S.

2012-10-01T23:59:59.000Z

192

Correlation effects on topological insulator  

E-Print Network (OSTI)

The strong correlation effects on topological insulator are studied in a two-sublattice system with an onsite single-particle energy difference $\\Delta$ between two sublattices. At $\\Delta=0$, increasing the onsite interaction strength $U$ drives the transition from the quantum spin Hall insulating state to the non-topological antiferromagnetic Mott-insulating (AFMI) state. When $\\Delta$ is larger than a certain value, a topologically trivial band insulator or AFMI at small values of $U$ may change into a quantum anomalous Hall state with antiferromagnetic ordering at intermediate values of $U$. Further increasing $U$ drives the system back into the topologically trivial state of AFMI. The corresponding phenomena is observable in the solid state and cold atom systems. We also propose a scheme to realize and detect these effects in cold atom systems.

Xiong-Jun Liu; Yang Liu; Xin Liu

2010-11-23T23:59:59.000Z

193

Contaminated Outdoor High Voltage Insulators  

Science Conference Proceedings (OSTI)

The external insulation of power lines and outdoor substations is a weak point in transmission systems. The insulation is particularly susceptible to failure if proper attention has not been given to its design, condition monitoring, and maintenance. In regions with high contamination levels, regular maintenance and the application of palliative measures can be critical to ensure that the system meets its outage performance targets. This can involve pure maintenance measures such as cleaning the insulato...

2009-12-22T23:59:59.000Z

194

Fully synthetic taped insulation cables  

DOE Patents (OSTI)

A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.

Forsyth, Eric B. (Brookhaven, NY); Muller, Albert C. (Center Moriches, NY)

1984-01-01T23:59:59.000Z

195

Gas-controlled dynamic vacuum insulation with gas gate  

DOE Patents (OSTI)

Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.

Benson, D.K.; Potter, T.F.

1994-06-07T23:59:59.000Z

196

Gas-controlled dynamic vacuum insulation with gas gate  

DOE Patents (OSTI)

Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber.

Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

1994-06-07T23:59:59.000Z

197

High voltage capability electrical coils insulated with materials containing SF.sub.6 gas  

DOE Patents (OSTI)

A coil is made having a plurality of layers of adjacent metal conductor windings subject to voltage stress, where the windings have insulation therebetween containing a small number of minute disposed throughout its cross-section, where the voids are voids filled with SF.sub.6 gas to substitute for air or other gaseous materials in from about 60% to about 95% of the cross-sectional void volume in the insulation, thus incorporating an amount of SF.sub.6 gas in the cross-section of the insulation effective to substantially increase corona inception voltages.

Lanoue, Thomas J. (Muncie, IN); Zeise, Clarence L. (Penn Township, Allegheny County, PA); Wagenaar, Loren (Muncie, IN); Westervelt, Dean C. (Acme, PA)

1988-01-01T23:59:59.000Z

198

Saving Energy and Money with Aerogel Insulation | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving Energy and Money with Aerogel Insulation Saving Energy and Money with Aerogel Insulation June 7, 2012 - 11:45am Addthis Aspen Aerogel's innovative insulation material works...

199

Typical Clothing Ensemble Insulation Levels for Sixteen Body Parts  

E-Print Network (OSTI)

Thermal Comfort.1994 CLO Insulation Levels For Sixteen Bodya mesh arm chair whose insulation level was measured. FigureExperimental Conditions. CLO Insulation Levels For Sixteen

Lee, Juyoun; Zhang, Hui; Arens, Edward

2013-01-01T23:59:59.000Z

200

GROUND PLANE INSULATION FAILURE IN THE FIRST TPC SUPERCONDUCTING COIL  

E-Print Network (OSTI)

is WIUUTEO GROUND PLANE INSULATION FAILURE IN THE FIRST TPCOn August 27, 1980, an insulation failure occurred dt-ringby a failure uf ground plane insulation. ACKNOWLEDGMENTS The

Green, M.A.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Cavity and Continuous Insulation in REScheck | Building Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cavity and Continuous Insulation in REScheck Insulation should be installed to fill the entire cavity. REScheck(tm) uses nominal insulation R-values. The assemblies listed in...

202

Feasibility of SF6 Gas-Insulated Transformers  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-insulated transformers (GIT) Gas-insulated transformer benefits Gas-insulated transformer concerns Risks and Unknowns Questions? BUILDING STRONG PORTLAND...

203

Insulation and Air Sealing Products and Services | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

applications of structural insulated panels Types of Fiberglass and Rock and Slag Wool Building Insulation Products North American Insulation Manufacturers Association...

204

Foundation Insulation for Existing Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Do We Retrofit Tough Buildings? Foundation Insulation for Existing Homes Building America Technical Update April 29 & 30, 2013 Patrick H. Huelman Cold Climate Housing Coordinator University of Minnesota Extension Foundation Insulation for Existing Homes * Context - Focused on basements and crawlspaces. - Aimed at cold climates (Climate Zones 6 & 7). - Generally aimed at liquid active walls. * Approach - Managing risks - Current solutions & best practices - Evaluating new approaches * Primary focus is to reduce energy use by 30 to 50% with emphasis on existing homes. * Promote building science solutions using a systems engineering and integrated design approach. * "Do no harm" => must ensure that safety, health, and durability are maintained or improved.

205

Insulation board and process of making  

DOE Patents (OSTI)

Insulation board capable of bearing a load without significant loss of insulating capacity due to compression, produced by a method wherein the board is made in compliance with specified conditions of time, temperature and pressure.

Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

1985-01-01T23:59:59.000Z

206

Types of Insulation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Insulation Types of Insulation May 30, 2012 - 11:43am Addthis In existing homes, cellulose (here) or other loose-fill materials can be installed in building cavities through holes...

207

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Route to Nanoscale Conducting Channels in Insulating Oxides Print A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

208

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Route to Nanoscale Conducting Channels in Insulating Oxides Print A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

209

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Route to Nanoscale Conducting Channels in Insulating Oxides Print A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

210

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

New Route to Nanoscale Conducting Channels in Insulating Oxides Print New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

211

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Route to Nanoscale Conducting Channels in Insulating Oxides Print A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

212

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Route to Nanoscale Conducting Channels in Insulating Oxides Print A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

213

A New Route to Nanoscale Conducting Channels in Insulating Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Route to Nanoscale A New Route to Nanoscale Conducting Channels in Insulating Oxides A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Wednesday, 29 August 2012 00:00 Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic applications. Now, an international collaboration working at the ALS has shown that the interface is not required. Using only intense synchrotron light, the group has been able to create and control 2DEGs at the bare surfaces of the insulating oxides SrTiO3 and KTaO3. As well as suggesting a potential methodology to spatially pattern 2DEGs in a wide variety of complex oxides, this discovery opens a new avenue for spectroscopic investigation of these novel electronic systems.

214

Insulator Reference Book: Edition 1 Draft  

Science Conference Proceedings (OSTI)

High voltage insulators are a crucial part of ensuring that the electricity generated can be safely transmitted across the country to its destination, high voltage substations where the voltage is reduced and transmitted again to commercial and residential consumers. Insulators provide the mechanical means by which high voltage wires are suspended from transmission structures while providing the insulation to prevent a short circuit to ground.When insulators fail either in their ...

2012-12-20T23:59:59.000Z

215

Insulator Calculation Engine (ICE) Version 2.0: E-field on Porcelain/Glass Insulators  

Science Conference Proceedings (OSTI)

ICE determines the electric field (E-field) distribution on transmission line polymer insulators (also called NCI or composite insulators) and aids in the selection of the appropriate corona ring.Benefits & Value:Determine the appropriate application of corona rings on transmission line polymer insulators enabling life expectancy.Simple data entry of information selected from pre-populated structure, insulator and hardware ...

2013-12-20T23:59:59.000Z

216

Environmental design using dynamic insulation  

SciTech Connect

In conventional airtight buildings, the architect has considerable freedom to decide how much the external environment will influence the internal heating, cooling, and ventilation loads. The services engineer provides the plant and equipment required to deal with these loads. This division of labor could lead to undesirable consequences in the case of dynamic insulation, a form of air permeable construction where bulk air flow through the building envelope may be used to either enhance or restrict the conductive heat and mass diffusion fluxes. Small changes in temperature (indoor and out) and wind speed and direction will influence the behavior of a dynamically insulated envelope since the internal and external environments are much more intimately coupled. Buildings employing dynamic insulation thus require good environmental design principles to be applied. The objective of this paper is to lay down rigorous principles that will form the basis of guidelines to architects and building services engineers on how to take account of the ever changing external environment when designing durable and comfortable buildings employing dynamic insulation.

Taylor, B.J.; Imbabi, M.S.

2000-07-01T23:59:59.000Z

217

Vacuum-insulated catalytic converter  

DOE Patents (OSTI)

A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

Benson, David K. (Golden, CO)

2001-01-01T23:59:59.000Z

218

A Holographic Fractional Topological Insulator  

E-Print Network (OSTI)

We give a holographic realization of the recently proposed low energy effective action describing a fractional topological insulator. In particular we verify that the surface of this hypothetical material supports a fractional quantum Hall current corresponding to half that of a Laughlin state.

Carlos Hoyos-Badajoz; Kristan Jensen; Andreas Karch

2010-07-19T23:59:59.000Z

219

Modeling and simulation of power cable insulation  

Science Conference Proceedings (OSTI)

The use of power cables for transmission and distribution of electrical power have increased since the advent of suitable, reliable and economical polymeric insulating material; such as cross-linked polyethylene (XLPE). Power cables plays crucial role ... Keywords: cross-linked polyethylene (XLPE), imperfect insulation, local defects, lossy insulation, partial discharge (PD)

K. D. Patil; A. A. Bhole; W. Z. Gandhare

2010-02-01T23:59:59.000Z

220

New and Underutilized Technology: Aerogel Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aerogel Insulation Aerogel Insulation New and Underutilized Technology: Aerogel Insulation October 8, 2013 - 2:54pm Addthis The following information outlines key deployment considerations for aerogel insulation within the Federal sector. Benefits Aerogel insulation products displace current insulation materials. The thermal conductivity of aerogel is very low, allowing it to retain insulation properties at a much thinner thickness. Application Aerogel insulation is appropriate for deployment across piping, ducts, and within most building categories. It should be considered in building design, construction, or major renovation. Key Factors for Deployment Aerogel insulations are more expensive than typical insulations. However, they are ideal for special applications, such as translucent wall panels.

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

High temperature structural insulating material  

DOE Patents (OSTI)

A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

Chen, W.Y.

1984-07-27T23:59:59.000Z

222

Magnetically insulated transmission line oscillator  

DOE Patents (OSTI)

A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.

Bacon, Larry D. (Albuquerque, NM); Ballard, William P. (Albuquerque, NM); Clark, M. Collins (Albuquerque, NM); Marder, Barry M. (Albuquerque, NM)

1988-01-01T23:59:59.000Z

223

Magnetically insulated transmission line oscillator  

DOE Patents (OSTI)

A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

1987-05-19T23:59:59.000Z

224

Impact of Thermally Insulated Floors  

E-Print Network (OSTI)

Presently in Kuwait the code of practice for energy conservation in the air conditioned buildings implemented by the Ministry of Electricity and Water (MEW) which has been in effect since 1983 has no consideration taken for thermally insulating the floors of residential and commercial buildings with unconditioned basements. As a part of a comprehensive research program conducted by the Building and Energy Technologies Department of Kuwait Institute for Scientific Research for revision of the code this paper analyzes the effect of using un-insulated floors on the peak cooling demand and energy consumption of a middle income residential private villa and a onebedroom multi-story apartment building in Kuwait. These floors typically separate air-conditioned spaces with ambient environment or un-conditioned spaces. This was done using the ESP-r, a building's energy simulation program, in conjunction with typical meteorological year for Kuwait. The study compared such typical floors with three types of insulated floors. It was found that using an R- 10 floors in multi-story apartment buildings greatly reduce both the peak cooling demand as well as the energy consumption by about 15%, whereas only minimal savings (about 4%) were detected in the case of the residential villas.

Alghimlas, F.; Omar, E. A.

2004-01-01T23:59:59.000Z

225

A round robin evaluation of the corrosiveness of wet residential insulation by electrochemical measurements  

SciTech Connect

The results of a round cabin evaluation of the use of an electrochemical method of calculating the corrosion rate of low carbon steel in environments related to cellulosic building insulations are reported. Environments included the leachate from a wet cellulosic insulation and solutions based on pure and commercial grades of borax, ammonium sulfate and aluminum sulfate. The pH values of these environments were in the range of 2.5 to 9.5. Electrochemical measurements were made using a direct reading corrosion rate instrument. The calculated corrosion rates were compared with those determined directly by weight loss measurements. Electrochemical measurements were made over a period of 48 hours and weight loss exposures were for two weeks. Poor agreement was observed for the corrosion rates determined electrochemically and the values were consistently larger than those based on weight loss. Reasons proposed for these results included the complex nature of the corrosion product deposits and the control these deposits have on oxygen diffusion to the metal interface. Both factors influence the validity of the calculation of the corrosion rate by the direct reading instrument. It was concluded that development of a viable electrochemical method of general applicability to the evaluation of the corrosiveness of wet residential building thermal insulations were doubtful. Because of the controlling influence of dissolved oxygen on the corrosion rate in the insulation leachate, an alternate evaluation method is proposed in which a thin steel specimen is partially immersed in wet insulation for three weeks. The corrosiveness of the wet insulation is evaluated in terms of the severity of attack near the metal-air-wet insulation interface. With thin metal specimens, complete penetration along the interface is proposed as a pass/fail criterion. An environment of sterile cotton wet with distilled water is proposed as a comparative standard. 9 refs., 2 figs., 3 tabs.

Stansbury, E.E. (Stansbury (E.E.), Knoxville, TN (United States))

1991-10-01T23:59:59.000Z

226

Insulating shade assembly with removable cover  

SciTech Connect

An insulating window shade assembly is described which consists of: bracket means adapted to be mounted on the frame of a window; a first roller carrying an insulating shade and being disposed within the bracket means on the inside of the window, the shade being adapted to be drawn from the roller to cover the inside of the window and to be wound upon the roller to expose the window, a second roller carrying a removable cover fabric on the inside of the shade and being supported by the bracket means, the second roller being spaced from and disposed independently of the first roller, means disposed adjacent only the bottom edge of the insulating shade for connecting only the bottom edge of the cover fabric to the bottom only of the insulating shade so that the insulating shade and cover fabric may be drawn together over the inside of the window; guide means disposed adjacent the second roller and between the second roller and the insulating shade, the cover fabric passing over the guide means, for causing the cover fabric to hang closely adjacent the front of the insulating shade when the insulating shade is drawn over the window and when the insulating shade and cover fabric are connected together by the connecting means, and means for continually tensioning the cover fabric when the insulating shade is drawn and when the cover fabric is connected thereto so that the cover fabric lies smoothly over the shade.

Hausmann, S.; McLane, A. Jr.

1986-09-09T23:59:59.000Z

227

Types of Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Types of Insulation Types of Insulation Types of Insulation May 30, 2012 - 11:43am Addthis In existing homes, cellulose (here) or other loose-fill materials can be installed in building cavities through holes drilled (usually) on the exterior of the house. After the installation, the holes are plugged and finish materials replaced. | Photo courtesy of Cellulose Insulation Manufacturers Association. In existing homes, cellulose (here) or other loose-fill materials can be installed in building cavities through holes drilled (usually) on the exterior of the house. After the installation, the holes are plugged and finish materials replaced. | Photo courtesy of Cellulose Insulation Manufacturers Association. Icynene plastic insulation blown into the walls of a home near Denver. Icynene fills cracks and crevices and adheres to the framing. | Photo courtesy of Paul Norton, NREL.

228

Electrically detected interferometry of Majorana fermions in a topological insulator  

E-Print Network (OSTI)

We show how a chiral Dirac fermion (a massless electron or hole) can be converted into a pair of neutral chiral Majorana fermions (a particle equal to its own antiparticle). These two types of fermions exist on the metallic surface of a topological insulator, respectively, at a magnetic domain wall and at a magnet-superconductor interface. Interferometry of Majorana fermions is a key operation in topological quantum computation, but the detection is problematic since these particles have no charge. The Dirac-Majorana converter enables electrical detection of the interferometric signal.

A. R. Akhmerov; Johan Nilsson; C. W. J. Beenakker

2009-03-12T23:59:59.000Z

229

The Effects of Contamination on HVDC Insulators  

Science Conference Proceedings (OSTI)

EPRI is currently documenting the various issues that should be considered when converting existing AC lines to high voltage DC (HVDC) lines. One issue that has not yet been dealt with properly is the selection of external DC insulation with respect to contamination. Since the beginning of overhead power transmission, it has been recognized that the performance of external insulation is adversely affected when the insulating surface is contaminated with airborne deposits such as marine salt or industrial...

2010-12-13T23:59:59.000Z

230

Aerogel Impregnated Polyurethane Piping and Duct Insulation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aerogel Impregnated Polyurethane Aerogel Impregnated Polyurethane Piping and Duct Insulation David M. Hess InnoSense LLC david.hess@innosense.us, 310-530-2011 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Develop an efficient insulation system that will adhere to housing duct work and pipe structures while conforming to complex geometries. New insulations must increase the R-value of existing materials and be easy to apply or retrofit to existing structures.

231

Gas insulated substation equipment for industrial applications  

SciTech Connect

Until recently the only available method for construction of high voltage systems was to use exposed air insulated equipment supported on porcelain columns. The past decade has witnessed the introduction and wide acceptance of compressed gas insulated equipment as a viable alternative to the conventional substation system. The characteristics of gas insulated substations (GIS) and their application for industrial use at service voltages at 69 kV and above are discussed.

Kenedy, J.J.

1984-11-01T23:59:59.000Z

232

Porcelain Insulator Vintage Guide: 1st Edition  

Science Conference Proceedings (OSTI)

Insulators play an important role in transmission lines and are sometimes considered part of the structure. They are required to perform two functions, mechanically and electrically suspend the conductor from the structure. If the insulator fails at either task, the flow of electricity is interrupted. Insulators for high-voltage transmission (relative to the era) started around 1904. The technology using porcelain is more than 100 years old and has not significantly changed in the past 50 years. ...

2012-12-14T23:59:59.000Z

233

Silicon on insulator achieved using electrochemical etching  

DOE Patents (OSTI)

Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50 C or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense. 57 figs.

McCarthy, A.M.

1997-10-07T23:59:59.000Z

234

Silicon on insulator achieved using electrochemical etching  

DOE Patents (OSTI)

Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50.degree. C. or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense.

McCarthy, Anthony M. (Menlo Park, CA)

1997-01-01T23:59:59.000Z

235

Insulation and Air Sealing Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Insulation and Air Sealing Products and Services Insulation and Air Sealing Products and Services May 30, 2012 - 9:52am Addthis Insulation and Air Sealing Products and Services Use the following links to get product information and locate professional services for insulation and air sealing. Product Information Cellulose Facts Cellulose Insulation Manufacturers Association Information on cellulose insulation, including technical bulletins, special reports, and video Concrete Masonry Units Concrete Homes-Portland Cement Association Describes construction methods that use concrete block systems Cotton Insulation (PDF) Build it Green Information on cotton insulation and a comparison to conventional insulation Expanded Polystyrene Molders Association

236

Owens Corning Acoustic & Insulation Product Testing ...  

Science Conference Proceedings (OSTI)

... Plate Apparatus. [01/T05] ASTM C335 Steady-State Heat Transfer Properties of Horizontal Pipe Insulation. [01/T06] ASTM ...

2013-07-26T23:59:59.000Z

237

Degradation of Structural Alloys Under Thermal Insulation  

E-Print Network (OSTI)

Wet thermal insulation may actively degrade steel and stainless steel structures by general corrosion or stress-corrosion cracking. Two different mechanisms of water ingress into insulation are discussed; flooding from external sources, and migration from condensation of atmospheric moisture. The general corrosion rate of steels under insulation is predictable (within a broad scatter band) on the basis of temperature and oxygen content. This relationship is presented graphically based on plant case histories. Rainwater, washwater and the insulation itself are compared as potential sources of chloride to promote external SCC of stainless steels. Preventative measures will be discussed.

McIntyre, D. R.

1984-01-01T23:59:59.000Z

238

Corrosion of Stainless Steel under Insulation  

Science Conference Proceedings (OSTI)

...H.S. Ahluwalia, Corrosion under Insulation, Corrosion: Environments and Industries, Vol 13C, ASM Handbook, ASM International, 2006, p 654â??658...

239

Opacified, Reinforced Aerogel for Thermal Insulation of ...  

Science Conference Proceedings (OSTI)

Any insulation for thermoelectric devices must also be able to be cast into place around the thermoelectric legs, as well as mechanically robust to survive ...

240

Gas-Filled Panels, High Performance Insulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-Filled Panels high performance insulation Windows & Daylighting | Building Technologies | Environmental Energy Technologies Division | Berkeley Lab gfp4b.jpg (5624 bytes)...

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

From insulator to quantum Hall liquid at low magnetic fields  

E-Print Network (OSTI)

We have performed low-temperature transport measurements on a GaAs twodimensional electron system at low magnetic fields. Multiple temperatureindependent points and accompanying oscillations are observed in the longitudinal resistivity between the low-field insulator and the quantum Hall liquid. The amplitudes of these oscillations can be well described by conventional Shubnikov-de Haas theory, and our experimental results therefore support the existence of an intermediate metallic regime between the low-field insulator and quantum Hall liquid. 1 Two-dimensional (2D) phase transitions have attracted a great deal of interest recently [1–11]. To date, despite many existing experimental and theoretical studies on 2D phase transitions, there are still some interesting but unresolved issues. In particular, it is still under debate whether a direct transition from an insulator (I) to a high Landau level filling factor (? ? 3) quantum Hall (QH) state at low magnetic fields B is a genuine phase transition. Experimentally, a single approximately temperature (T)-independent point in

Tsai-yu Huanga; C. -t. Lianga; Gil-ho Kimb; C. F. Huangc; Chao-ping Huanga

2006-01-01T23:59:59.000Z

242

Electrically insulating and sealing frame  

DOE Patents (OSTI)

A combination gas seal and electrical insulator having a closed frame shape interconnects a fuel cell stack and a reactant gas plenum of a fuel cell generator. The frame can be of rectangular shape including at least one slidable spline connection in each side to permit expansion or contraction consistent with that of the walls of the gas plenum and fuel cell stack. The slidable spline connections in the frame sides minimizes lateral movement between the frame side members and sealing material interposed between the frame and the fuel cell stack or between the frame and the reactant gas plenum.

Guthrie, Robin J. (East Hartford, CT)

1983-11-08T23:59:59.000Z

243

Fully synthetic taped insulation cables  

DOE Patents (OSTI)

The present invention is a cable which, although constructed from inexpensive polyolefin tapes and using typical impregnating oils, furnishes high voltage capability up to 765 kV, and has such excellent dielectric characteristics and heat transfer properties that it is capable of operation at capacities equal to or higher than presently available cables at a given voltage. This is accomplished by using polyethylene, polybutene or polypropylene insulating tape which has been specially processed to attain properties which are not generally found in these materials, but are required for their use in impregnated electrical cables. Chief among these properties is compatibility with impregnating oil.

Forsyth, E.B.; Muller, A.C.

1983-07-15T23:59:59.000Z

244

Heat-sound insulating wall  

SciTech Connect

The wall comprises a closed acoustic box-structure which is defined by a slightly ribbed sheet and a flat sheet. The boxstructure has lateral ribs which extend beyond the sheet. A panel of high-density mineral wool which is of small thickness is enclosed inside the box-structure. A heat insulator covers the box-structure and the ribs of the box-structure and is protected by an outer trough which has ribs or corrugations perpendicular to the ribs of the box-structure.

Ovaert, F.; Reneault, P.

1980-10-21T23:59:59.000Z

245

Gauge Dynamics and Topological Insulators  

E-Print Network (OSTI)

A non-abelian magnetic field in Yang-Mills theory induces the formation of a "W-boson" vortex lattice. We study the propagation of fundamental fermions in the presence of this lattice in 2+1 dimensions. We show that the spectrum for massless fermions contains four topologically-protected Dirac points with non-zero Bloch momentum. For massive fermions, we compute topological invariants of the band structure and show that it is possible to realise a Z2 topological insulator within Yang-Mills theory.

Benjamin Béri; David Tong; Kenny Wong

2013-05-10T23:59:59.000Z

246

A review of vacuum insulation research and development in the Building Materials Group of the Oak Ridge National Laboratory  

SciTech Connect

This report is a summary of the development work on flat-vacuum insulation performed by the Building Materials Group (BMG) in the Metals and Ceramics Division of the Oak Ridge National Laboratory (ORNL) during the last two years. A historical review of the technology of vacuum insulation is presented, and the role that ORNL played in this development is documented. The ORNL work in vacuum insulation has been concentrated in Powder-filled Evacuated Panels (PEPs) that have a thermal resistivity over 2.5 times that of insulating foams and seven times that of many batt-type insulations, such as fiberglass. Experimental results of substituting PEPs for chlorofluorocarbon (CFC) foal insulation in Igloo Corporation ice coolers are summarized. This work demonstrated that one-dimensional (1D) heat flow models overestimated the increase in thermal insulation of a foam/PEP-composite insulation, but three-dimensional (3D) models provided by a finite-difference, heat-transfer code (HEATING-7) accurately predicted the resistance of the composites. Edges and corners of the ice coolers were shown to cause the errors in the 1D models as well as shunting of the heat through the foam and around the PEPs. The area of coverage of a PEP in a foam/PEP composite is established as an important parameter in maximizing the resistance of such composites. 50 refs., 27 figs,. 22 tabs.

Kollie, T.G.; McElroy, D.L.; Fine, H.A.; Childs, K.W.; Graves, R.S.; Weaver, F.J.

1991-09-01T23:59:59.000Z

247

Orbital disc insulator for SF.sub.6 gas-insulated bus  

DOE Patents (OSTI)

An insulator for supporting a high voltage conductor within a gas-filled grounded housing consists of radially spaced insulation rings fitted to the exterior of the bus and the interior of the grounded housing respectively, and the spaced rings are connected by trefoil type rings which are integrally formed with the spaced insulation rings.

Bacvarov, Dosio C. (Greensburg, PA); Gomarac, Nicholas G. (West Newton, PA)

1977-01-01T23:59:59.000Z

248

Low-cost exterior insulation process and structure  

DOE Patents (OSTI)

A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value.

Vohra, Arun (Bethesda, MD)

1999-01-01T23:59:59.000Z

249

Low-cost exterior insulation process and structure  

DOE Patents (OSTI)

A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value. 2 figs.

Vohra, A.

1999-03-02T23:59:59.000Z

250

Experimental evaluation of gas filled plenum (GFP) insulation for ducts  

E-Print Network (OSTI)

Gas Filled Plenum (GFP) Insulation for Ducts LBNL 52084 Iaina flexible duct. Most duct insulation has an R-value of 4.2,used. With glass fiber insulation being about R4 per inch (

Walker, Iain S.; Guillot, Cyril

2003-01-01T23:59:59.000Z

251

Uniform insulation applied-B ion diode  

DOE Patents (OSTI)

An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, and ions may be focused at a point on the z axis.

Seidel, D.B.; Slutz, S.A.

1986-04-11T23:59:59.000Z

252

Kingspan Insulated Panels: Order (2013-CE-5353)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered Kingspan Insulated Panels, Inc. to pay a $8,000 civil penalty after finding Kingspan Insulated Panels had failed to certify that any basic models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

253

Uniform insulation applied-B ion diode  

DOE Patents (OSTI)

An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

Seidel, David B. (Albuquerque, NM); Slutz, Stephen A. (Albuquerque, NM)

1988-01-01T23:59:59.000Z

254

Insulation board and process of making  

DOE Patents (OSTI)

Insulation board is described which is capable of bearing a load without significant loss of insulating capacity due to compression, produced by a method wherein the board is made in compliance with specified conditions of time, temperature and pressure. 2 figs.

Nowobilski, J.J.; Owens, W.J.

1985-08-27T23:59:59.000Z

255

Storing, Transporting, and Installing Polymer Insulators: A Practical Guide  

Science Conference Proceedings (OSTI)

Since the first use of polymer insulators, great strides have been made in understanding insulator design and application. Polymer insulatorsalso called composite or non-ceramic insulators (NCI)offer some distinct advantages compared to ceramic insulators, including the fact that they are lightweight, not easily vandalized, and resistant to contamination. However, the greatest concern still remains the question of life expectancy. During service life, polymer insulators insulate the line conductor from t...

2007-10-30T23:59:59.000Z

256

A Guide to Insulation Selection for Industrial Applications  

E-Print Network (OSTI)

In the wake of rapidly rising energy costs, insulation systems are receiving much attention from design engineers and owners in the industrial market. This paper discusses the significant properties of the primary industrial insulations as well as the application requirements which lead to proper insulation usage. In addition, the basic reasons for insulating are discussed in terms of how they affect the determination of insulation thickness. The discussion concentrates on piping and equipment insulations and does not deal with refractory materials or usage.

Harrison, M. R.

1979-01-01T23:59:59.000Z

257

Building Technologies Office: Vacuum Insulation Panels Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacuum Insulation Vacuum Insulation Panels Research Project to someone by E-mail Share Building Technologies Office: Vacuum Insulation Panels Research Project on Facebook Tweet about Building Technologies Office: Vacuum Insulation Panels Research Project on Twitter Bookmark Building Technologies Office: Vacuum Insulation Panels Research Project on Google Bookmark Building Technologies Office: Vacuum Insulation Panels Research Project on Delicious Rank Building Technologies Office: Vacuum Insulation Panels Research Project on Digg Find More places to share Building Technologies Office: Vacuum Insulation Panels Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research

258

Surprising Control over Photoelectrons from a Topological Insulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Surprising Control over Photoelectrons from a Topological Insulator Surprising Control over Photoelectrons from a Topological Insulator Print Tuesday, 12 March 2013 00:00...

259

Figure 6. Type of Homes by Insulation, 2001  

U.S. Energy Information Administration (EIA)

Home >>Residential Home Page>>Insulation > Figure 6. Type of Homes by Insulation, 2001. To Top. Contacts: Specific questions may be directed to:

260

A study of Nanofilled Silicone Dielectrics for Outdoor Insulation.  

E-Print Network (OSTI)

??Polymeric insulators are now a common replacement for conventional porcelain and glass string insulators on overhead distribution and transmission lines. The use of this mature… (more)

Ramirez Vazquez, Isaias

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Application of Spray Foam Insulation Under Plywood and OSB Roof...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Under Plywood and OSB Roof Sheathing (Fact Sheet) Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing (Fact Sheet), Building America Case Study:...

262

Expert Meeting Report: Interior Insulation Retrofit of Mass Masonry...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Retrofit of Mass Masonry Wall Assembliesessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such...

263

Affordable Cold Climate Infill Housing with Hybrid Insulation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with Hybrid Insulation Approach Affordable Cold Climate Infill Housing with Hybrid Insulation Approach, Wyandotte, Michigan (Fact Sheet), Building America Case Study:...

264

Topological Insulator Nanowires and Nanoribbons  

SciTech Connect

Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi{sub 2}Se{sub 3} material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi{sub 2}Se{sub 3} nanomaterials with a variety of morphologies. The synthesis of Bi{sub 2}Se{sub 3} nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [11-20] direction with a rectangular crosssection and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with {approx}1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitals to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states.

Kong, D.S.

2010-06-02T23:59:59.000Z

265

Sensitivity of forced air distribution system efficiency to climate, duct location, air leakage and insulation  

E-Print Network (OSTI)

Location, Air Leakage and Insulation Iain S. Walker Energy4 Duct Insulation, Location and Leakageinsulation

Walker, Iain

2001-01-01T23:59:59.000Z

266

A discussion on the application and production of metal ion beams  

SciTech Connect

Metal ion beams, which are used in surface modification of metals and alloys as ion beam micrometallurgy, are promising candidates for advanced applications in semiconductors and insulators. Doping with transition metal and rare-earth metal ions in semiconductors and insulators to form metallic nanoclusters attracted much more attention recently, since their applications in diluted magnetic semiconductors, electroluminescent devices, giant magnetic resistance, etc. In this paper, some experiments for metal ion beams will be presented, and various methods and technologies for the production of metal ion beams will be discussed.

Ren Xiaotang; Zhao Ziqiang; Zhao Weijiang [Institute of Heavy Ion Physics, Peking University, Beijing, 100871 (China) and Key Laboratory of Heavy Ion Physics (Peking University), Ministry of Education, Beijing 100871 (China)

2008-02-15T23:59:59.000Z

267

Labeling and advertising of home insulation  

SciTech Connect

This staff report, prepared by the F.T.C.'s Bureau of Consumer Protection for Commission review, includes recommendations as to the final form of a trade regulation rule relating to the labeling and advertising of home insulation. Because of marketing abuses which accompanied the rising demand for home insulation, there has been broad support for a rule requiring information disclosures to help purchasers of home insulation to make an informed decision. The Commission, to provide such rule as quickly as possible, undertook its rulemaking proceeding under its new expedited rulemaking procedure. The rule was proposed on November 18, 1977, and, following a two-month period for written comments, four weeks of hearings were held in Washington, D.C. in February 1978. The record, contributed to by a variety of interests, shows that consumers do not know how to shop for home insulation. The staff-recommended rule, among other things, would require that insulation be tested and R-values (a measure of insulation's ability to retain heat) disclosed on labels and in advertising. To facilitate comparison shopping, the industry would also be required to furnish consumers with fact sheets describing, on a product-to-product basis, factors that can reduce the R-value of insulation.

1978-07-01T23:59:59.000Z

268

Measure Guideline: Hybrid Foundation Insulation Retrofits  

Science Conference Proceedings (OSTI)

This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a 'partial drainage' detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

Ueno, K.; Lstiburek, J.

2012-05-01T23:59:59.000Z

269

KSI's Cross Insulated Core Transformer Technology  

Science Conference Proceedings (OSTI)

Cross Insulated Core Transformer (CCT) technology improves on Insulated Core Transformer (ICT) implementations. ICT systems are widely used in very high voltage, high power, power supply systems. In an ICT transformer ferrite core sections are insulated from their neighboring ferrite cores. Flux leakage is present at each of these insulated gaps. The flux loss is raised to the power of stages in the ICT design causing output voltage efficiency to taper off with increasing stages. KSI's CCT technology utilizes a patented technique to compensate the flux loss at each stage of an ICT system. Design equations to calculate the flux compensation capacitor value are presented. CCT provides corona free operation of the HV stack. KSI's CCT based High Voltage power supply systems offer high efficiency operation, high frequency switching, low stored energy and smaller size over comparable ICT systems.

Uhmeyer, Uwe [Kaiser Systems, Inc, 126 Sohier Road, Beverly, MA 01915 (United States)

2009-08-04T23:59:59.000Z

270

Issue 5: Optimizing High Levels of Insulation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issue 5: Optimizing High Levels of Insulation NREL, Ren Anderson Building America Technical Update Meeting July 25 th , 2012 Issue 5 - How Much Insulation is Too Much? How do we define the cost-effective limit for improvements in enclosure efficiency? Key Factors to Consider: -Cost of savings vs. cost of grid-supplied energy -Cost of efficiency savings vs. cost of savings from renewable generation. -Savings from envelope improvements vs. other efficiency options Context * It is widely believed that code-specified insulation levels also represent cost-effective limits. * However, the cost-effective insulation levels exceed IECC values in many climates. * The homeowner-driven value of modest increases in enclosure performance can create economies of scale that will reduce

271

Insulate Steam Distribution and Condensate Return Lines  

Science Conference Proceedings (OSTI)

This revised ITP tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

272

Thermal conductivity of thermal-battery insulations  

DOE Green Energy (OSTI)

The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

Guidotti, R.A.; Moss, M.

1995-08-01T23:59:59.000Z

273

Insulated dipole antennas for heating oil shale  

Science Conference Proceedings (OSTI)

Insulated dipole antennas in the HF band are potentially useful in heating shale i n s i t u to extract oil. To help evaluate the efficiency of such antennas

John P. Casey; Rajeev Bansal

1987-01-01T23:59:59.000Z

274

Use of movable insulation for energy conservation  

SciTech Connect

This study examines the opinions of homeowners and renters who used Moveable Night Insulation for one heating season. In addition a study of the energy savings was performed concurrently.

Holcomb, S.; Lillemo, K.W.

1982-01-01T23:59:59.000Z

275

THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS  

E-Print Network (OSTI)

PERFORMANCE VALUES FOR SEVERAL WINDOW DESIGNS XBL 796-10098IN MINNEAPOLIS AS A FUNCTION OF WINDOW AREA AND GLAZING/Thermal Performance of Insulating Window Systems Stephen E.

Selkowitz, Stephen E.

2011-01-01T23:59:59.000Z

276

Aerogel Impregnated Polyurethane Piping and Duct Insulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerogel Impregnated Polyurethane Piping and Duct Insulation David M. Hess InnoSense LLC david.hess@innosense.us, 310-530-2011 April 4, 2013 2 | Building Technologies Office...

277

Phosphorylation based insulation devices design and implementation  

E-Print Network (OSTI)

This thesis presents the analysis of a phosphorylation based insulation device implemented in Saccharomyces cerevisae and the minimization of the retroactivity to the input and retroactivity to the output of a single cycle ...

Rivera Ortiz, Phillip M. (Phillip Michael)

2013-01-01T23:59:59.000Z

278

Nonlinear boundary value problem of magnetic insulation  

E-Print Network (OSTI)

On the basis of generalization of upper and lower solution method to the singular two point boundary value problems, the existence theorem of solutions for the system, which models a process of magnetic insulation in plasma is proved.

A. V. Sinitsyn

2000-09-09T23:59:59.000Z

279

Install Removable Insulation on Valves and Fittings  

Science Conference Proceedings (OSTI)

This revised ITP tip sheet on installing removable insulation on valves and fittings provides how-to advice for improving the system using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

280

Air leakage of Insulated Concrete Form houses  

E-Print Network (OSTI)

Air leakage has been shown to increase building energy use due to additional heating and cooling loads. Although many construction types have been examined for leakage, an exploration of a large number of Insulated Concrete ...

Durschlag, Hannah (Hanna Rebekah)

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Measure Guideline: Internal Insulation of Masonry Walls  

Science Conference Proceedings (OSTI)

This measure guideline provides recommendations for interior insulation assemblies that control interstitial condensation and durability risks; recommendations for acceptable thermal performance are also provided. An illustrated guide of high-risk exterior details (which concentrate bulk water), and recommended remediation details is provided. This is followed by a recommended methodology for risk assessment of a masonry interior insulation project: a series of steps are suggested to assess the risks associated with this retrofit, with greater certainty with added steps.

Straube, J. F.; Ueno, K.; Schumacher, C. J.

2012-07-01T23:59:59.000Z

282

Urea formaldehyde foam insulation: defusing a timebomb  

SciTech Connect

With the onset of the energy crisis in the 1970's, thousands of homeowners insulated their homes with Urea Formaldehyde Foam Insulation (UFFI). The discovery that UFFI releases formaldehyde, a carcinogen and irritant, prompted various state and federal responses to this problem. This Note reviews those responses and concludes that a ban on the sale of UFFI, coupled with a removal and repurchase program, is the most effective solution from the standpoint of consumer health.

Fox, E.M.

1985-01-01T23:59:59.000Z

283

Savings Project: Insulate Your Water Heater Tank | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savings Project: Insulate Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Addthis Project Level medium Energy Savings $20-$45 annually Time to Complete 1.5 hours Overall Cost $30 Insulate your hot water tank to save energy and money. | Photo courtesy of iStockphoto.com/glennebo Insulate your hot water tank to save energy and money. | Photo courtesy of iStockphoto.com/glennebo Just like insulating your walls or roof, insulating your hot water tank is an easy and inexpensive way to improve energy efficiency and save you money each month. If your water tank is new, it is likely already insulated. If you have an older hot water tank, check to see if it has insulation with an R-value of at least 24. If not, consider insulating your water tank, which

284

Insulation for New Home Construction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation for New Home Construction Insulation for New Home Construction Insulation for New Home Construction June 20, 2012 - 7:59pm Addthis Planning carefully for insulation results in reduced utility bills and superior comfort during the life of the home. In this house, raised heel trusses accommodate R-60 insulation. | Credit: Paul Norton, NREL. Planning carefully for insulation results in reduced utility bills and superior comfort during the life of the home. In this house, raised heel trusses accommodate R-60 insulation. | Credit: Paul Norton, NREL. What does this mean for me? Adding extra insulation in a new home is more cost-effective than retrofitting insulation after the home is completed. Insulation is a key component of the systems that work together to create a comfortable, energy-efficient home that is affordable to heat and

285

Design Tool for Cryogenic Thermal Insulation Systems  

Science Conference Proceedings (OSTI)

Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed. The approach is to apply thermal analysis to standard shapes (plane walls, cylinders, spheres) that are relatively simple to characterize with a one-dimensional analytical or numerical model. The user describes the system hot and cold boundary geometry and the operating environment. Basic outputs such as heat load and temperature profiles are determined. The user can select from a built-in insulation material database or input user defined materials. Existing information has been combined with the new experimental thermal conductivity data produced by the Cryogenics Test Laboratory for cryogenic and vacuum environments, including high vacuum, soft vacuum, and no vacuum. Materials in the design tool include multilayer insulation, aerogel blankets, aerogel bulk-fill, foams, powders, composites, and other insulation system constructions. A comparison of the design tool to a specific composite thermal insulation system is given.

Demko, Jonathan A [ORNL; Fesmire, J. E. [NASA Kennedy Space Center, Kennedy Space Center, Florida; Augustynowicz, S. D. [Sierra Lobo Inc., Kennedy Space Center, Florida

2008-01-01T23:59:59.000Z

286

Topological Insulators and Superconductors from String Theory  

E-Print Network (OSTI)

Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and supercondutors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K-theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K-theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the $\\theta$-term in various dimensions. This sheds light on topological insulators and superconductors beyond non-interacting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).

Shinsei Ryu; Tadashi Takayanagi

2010-07-24T23:59:59.000Z

287

An Insulating Glass Knowledge Base  

SciTech Connect

This report will discuss issues relevant to Insulating Glass (IG) durability performance by presenting the observations and developed conclusions in a logical sequential format. This concluding effort discusses Phase II activities and focuses on beginning to quantifying IG durability issues while continuing the approach presented in the Phase I activities (Appendix 1) which discuss a qualitative assessment of durability issues. Phase II developed a focus around two specific IG design classes previously presented in Phase I of this project. The typical box spacer and thermoplastic spacer design including their Failure Modes and Effect Analysis (FMEA) and Fault Tree diagrams were chosen to address two currently used IG design options with varying components and failure modes. The system failures occur due to failures of components or their interfaces. Efforts to begin quantifying the durability issues focused on the development and delivery of an included computer based IG durability simulation program. The focus/effort to deliver the foundation for a comprehensive IG durability simulation tool is necessary to address advancements needed to meet current and future building envelope energy performance goals. This need is based upon the current lack of IG field failure data and the lengthy field observation time necessary for this data collection. Ultimately, the simulation program is intended to be used by designers throughout the current and future industry supply chain. Its use is intended to advance IG durability as expectations grow around energy conservation and with the growth of embedded technologies as required to meet energy needs. In addition the tool has the immediate benefit of providing insight for research and improvement prioritization. Included in the simulation model presentation are elements and/or methods to address IG materials, design, process, quality, induced stress (environmental and other factors), validation, etc. In addition, acquired data is presented in support of project and model assumptions. Finally, current and suggested testing protocol and procedure for future model validation and IG physical testing are discussed.

Michael L. Doll; Gerald Hendrickson; Gerard Lagos; Russell Pylkki; Chris Christensen; Charlie Cureija

2005-08-01T23:59:59.000Z

288

Integration of organic insulator and self-assembled gold nanoparticles on Si MOSFET for novel non-volatile memory cells  

Science Conference Proceedings (OSTI)

We have fabricated a hybrid non-volatile gold nanoparticle floating-gate memory metal insulator semiconductor field effect transistor (MISFET) device combining silicon technology and organic thin film deposition. The nanoparticles are deposited by chemical ... Keywords: hybrid Silicon-organic memory, nanocrystal memory, nanoparticles, non-volatile memory

S. Kolliopoulou; P. Dimitrakis; P. Normand; H.-L. Zhang; N. Cant; S. D. Evans; S. Paul; C. Pearson; A. Molloy; M. C. Petty; D. Tsoukalas

2004-06-01T23:59:59.000Z

289

Validation of the thermal effect of roof with the Spraying and green plants in an insulated building  

E-Print Network (OSTI)

of the insulation efficiency of the RC building. Windfor an RC building with a high degree of insulation in thebuildings have insulating material to provide thermal insulation

Zhou, Nan; Gao, Weijun; Nishida, Masaru; Ojima, Toshio

2004-01-01T23:59:59.000Z

290

The Insulation Energy Appraisal Assessing the True Value of Insulated System  

E-Print Network (OSTI)

Insulation remains a seriously under-utilized technology in the manufacturing and industrial sectors of the economy even though its role in energy efficiency and environmental preservation is clear. The objective of the presentation is to educate the audience about the enormous savings potential of insulation in terms of reduced energy costs, improved process control, reduced greenhouse gas emissions, noise control and personnel protection. In addition, the presentation will introduce the audience to a new energy management tool designed to help facility/energy managers understand the true dollar and performance value of insulation- the Insulation Energy Appraisal Program. The program has achieved tremendous success with all classes sold out to date. The presentation will highlight various components of the intensive 2-day training program which teaches an appraiser how to: evaluate the thermal performance of insulated versus uninsulated piping and equipment; translate Btu losses into actual dollars; and calculate greenhouse gas emissions.

Schell, S.

2002-04-01T23:59:59.000Z

291

Adding Insulation to an Existing Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Adding Insulation to an Existing Home Adding Insulation to an Existing Home Adding Insulation to an Existing Home May 23, 2013 - 1:44pm Addthis Adding insulation in an existing home saves money and improves comfort. | Photo courtesy of Dennis Schroeder, NREL. Adding insulation in an existing home saves money and improves comfort. | Photo courtesy of Dennis Schroeder, NREL. What does this mean for me? Adding insulation to your home saves money and improves comfort. Adding insulation to your home is a sound investment that is likely pay for itself quickly in reduced utility bills. Insulation inhibits heat flow through the building envelope of your home, saving money and improving comfort. Unless your home was specially constructed for energy efficiency, you can probably reduce your energy bills by adding more insulation. Many older

292

ZIP. Economic Insulation Levels for Houses  

SciTech Connect

ZIP was developed to support the calculations and database used to estimate the economic levels of insulation published in the U.S. Department of Energy`s Insulation Fact Sheet. The program allows the user to estimate economic levels of insulation for attics, exterior walls, floors over unheated areas, slab floors, and basement and crawlspace walls for new and existing houses in any 3-digit zip code location in the U.S., based on local climate data, local prices for energy and insulation, and the type and estimated efficiency of its heating and cooling system. ZIP recognizes five different heating systems: natural gas, oil furnaces, electric furnaces, electric baseboard, and electric heat pump and two cooling systems: central and window electric air conditioners. An evaporative cooling system can also be specified, but this is not treated as a true air-conditioning system. In addition, the user can specify the approximate operating efficiency of the heating and cooling systems (low, medium, high, or very high). ZIP can be run for a single zip code and specified heating and cooling system or in a batch mode for any number of consecutive zip codes to provide a table of economic insulation levels for use at the state or national level.

McElroy, D. [Oak Ridge National Lab., TN (United States)

1989-01-01T23:59:59.000Z

293

ZIP. Economic Insulation Levels for Houses  

SciTech Connect

ZIP was developed to support the calculations and database used to estimate the economic levels of insulation published in the U.S. Department of Energy's Insulation Fact Sheet. The program allows the user to estimate economic levels of insulation for attics, exterior walls, floors over unheated areas, slab floors, and basement and crawlspace walls for new and existing houses in any 3-digit zip code location in the U.S., based on local climate data, local prices for energy and insulation, and the type and estimated efficiency of its heating and cooling system. ZIP recognizes five different heating systems: natural gas, oil furnaces, electric furnaces, electric baseboard, and electric heat pump and two cooling systems: central and window electric air conditioners. An evaporative cooling system can also be specified, but this is not treated as a true air-conditioning system. In addition, the user can specify the approximate operating efficiency of the heating and cooling systems (low, medium, high, or very high). ZIP can be run for a single zip code and specified heating and cooling system or in a batch mode for any number of consecutive zip codes to provide a table of economic insulation levels for use at the state or national level.

McElroy, D. (Oak Ridge National Lab., TN (United States))

1989-01-01T23:59:59.000Z

294

Tool for cutting insulation from electrical cables  

DOE Patents (OSTI)

This invention is an efficient hand tool for precisely slitting the sheath of insulation on an electrical cable--e.g., a cable two inches in diameter--in a manner facilitating subsequent peeling or stripping of the insulation. The tool includes a rigid frame which is slidably fitted on an end section of the cable. The frame carries a rigidly affixed handle and an opposed, elongated blade-and-handle assembly. The blade-and-handle assembly is pivotally supported by a bracket which is slidably mounted on the frame for movement toward and away from the cable, thus providing an adjustment for the depth of cut. The blade-and-handle assembly is mountable to the bracket in two pivotable positions. With the assembly mounted in the first position, the tool is turned about the cable to slit the insulation circumferentially. With the assembly mounted in the second position, the tool is drawn along the cable to slit the insulation axially. When cut both circumferentially and axially, the insulation can easily be peeled from the cable.

Harless, Charles E. (Metropolis, IL); Taylor, Ward G. (Vienna, IL)

1978-01-01T23:59:59.000Z

295

Buildings Energy Data Book: 5.1 Building Materials/Insulation  

Buildings Energy Data Book (EERE)

2 Industry Use Shares of Mineral Fiber (GlassWool) Insulation (1) 1997 1999 2001 2003 2004 2005 Insulating Buildings (2) Industrial, Equipment, and Appliance Insulation Unknown...

296

Method for minimizing contaminant particle effects in gas-insulated electrical apparatus  

DOE Patents (OSTI)

Electrical breakdown of a gas insulator in high voltage apparatus is preved by placing an electrical insulative coating on contaminant particles in the gas insulator.

Pace, Marshall O. (Knoxville, TN); Adcock, James L. (Knoxville, TN); Christophorou, Loucas G. (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

297

Predictive clothing insulation model based on outdoor air and indoor operative temperatures  

E-Print Network (OSTI)

2012) Predictive clothing insulation model based on outdoorPredictive clothing insulation model based on outdoor airpredictive models of clothing insulation have been developed

Schiavon, Stefano; Lee, Kwang Ho

2012-01-01T23:59:59.000Z

298

Influence of two dynamic predictive clothing insulation models on building energy performance  

E-Print Network (OSTI)

Predictive Clothing Insulation Models on Building Energyunnecessarily higher clothing insulation and lower heatingthat the constant clothing insulation assumption lead to the

Lee, Kwang Ho; Schiavon, Stefano

2013-01-01T23:59:59.000Z

299

Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures  

E-Print Network (OSTI)

predictive clothing insulation models based on outdoor airrange of the clothing insulation calculated for eachbuilding). Figure 8 Clothing insulation versus dress code [

Schiavon, Stefano; Lee, Kwang Ho

2012-01-01T23:59:59.000Z

300

Influence of two dynamic predictive clothing insulation models on building energy performance  

E-Print Network (OSTI)

Clothing Insulation Models on Building Energy Use, HVACClothing Insulation Models on Building Energy Performance K.insulation variation should be captured during the building

Lee, Kwang Ho; Schiavon, Stefano

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

China Marches West: Jacket cover  

E-Print Network (OSTI)

The China we know today is the product of vast frontier conquests of the seventeenth and eighteenth centuries by the expanding Qing empire. China Marches West tells the story of this unprecedented expansion and explores ...

Perdue, Peter C.

302

Hornets, Wasps and Yellow Jackets  

NLE Websites -- All DOE Office Websites (Extended Search)

of the built-in-automatic features of their behavior which many people mistake for intelligence. Their elaborate ways of housing and feeding their young, or the division of labor...

303

An Insulating Breakthrough | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Highlights Archives: 2013 | 2012 | 2011 | 2010 Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed An Insulating Breakthrough JANUARY 8, 2007 Bookmark and Share Tungsten Diselenide A new insulating material with the lowest thermal conductivity ever measured for a fully dense solid has been created at the University of Oregon (UO) and tested at the XOR/UNI 33-BM beamline at the U.S. Department of Energy's Advanced Photon Source (APS) at Argonne. The research was carried out by collaborators from the UO, the University of Illinois at Urbana-Champaign, the Rensselaer Polytechnic Institute, and Argonne. While far from having immediate application, the principles involved, once understood, could lead to improved insulation for a wide variety of uses,

304

Studies Bolster Promise of Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Studies Bolster Promise of Studies Bolster Promise of Topological Insulators Studies Bolster Promise of Topological Insulators Print Tuesday, 27 November 2012 00:00 A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they provide a fascinating medium for possibly observing still-theoretical particles that could play a major role in quantum computing. Two angle-resolved photoemission spectroscopy (ARPES) studies recently performed at ALS Beamline 12.0.1 improve the prospects for the practical application of TIs in advanced devices.

305

Studies Bolster Promise of Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Studies Bolster Promise of Topological Insulators Print Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they provide a fascinating medium for possibly observing still-theoretical particles that could play a major role in quantum computing. Two angle-resolved photoemission spectroscopy (ARPES) studies recently performed at ALS Beamline 12.0.1 improve the prospects for the practical application of TIs in advanced devices.

306

Vacuum Glazing; A Thermally Insulating Window Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacuum Glazing; A Thermally Insulating Window Technology Vacuum Glazing; A Thermally Insulating Window Technology Speaker(s): Cenk Kocer Date: May 31, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Sunnie Lim The vacuum glazing consists of two panes of glass separated by a sub-millimetre vacuum gap. Under the action of atmospheric pressure the separation of the panes is maintained by an array of high strength spacers in the gap. The glass panes are hermetically sealed at the edge using a low melting point glass frit (solder glass). Since 1913 many have worked on a practical implementation of such a flat insulating glass structure, with success finally being reported in 1989 by Collins et al. at the University of Sydney. The purpose of this talk is to present a brief history of the vacuum glazing research at the University of Sydney, and outline in detail

307

Studies Bolster Promise of Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Studies Bolster Promise of Topological Insulators Print Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they provide a fascinating medium for possibly observing still-theoretical particles that could play a major role in quantum computing. Two angle-resolved photoemission spectroscopy (ARPES) studies recently performed at ALS Beamline 12.0.1 improve the prospects for the practical application of TIs in advanced devices.

308

Frostbite Theater - Liquid Nitrogen Experiments - Insulators!  

NLE Websites -- All DOE Office Websites (Extended Search)

Popping Film Canisters! Popping Film Canisters! Previous Video (Popping Film Canisters!) Frostbite Theater Main Index Next Video (Liquid Nitrogen Show!) Liquid Nitrogen Show! Insulators! Cups full of water are placed into bowls of liquid nitrogen! Which cup will insulate the best? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a container of liquid nitrogen! Steve: And these are two plastic cups! Joanna: Let's see which cup is the better insulator! Steve: Okay! So, um, how do we do that? Joanna: Well, we'll pour water into each of the cups and then we'll pour the liquid nitrogen into each of the bowls. If we then place the cup in the bowl, the heat from the water will try to pass through the cup into the

309

Studies Bolster Promise of Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Studies Bolster Promise of Topological Insulators Print Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First theorized and then discovered by researchers at Berkeley Lab and their colleagues in other institutions, these "strong 3D topological insulators"-TIs for short-are seemingly mundane semiconductors with startling properties. Not only are they promising materials for energy-conserving electronic applications, they provide a fascinating medium for possibly observing still-theoretical particles that could play a major role in quantum computing. Two angle-resolved photoemission spectroscopy (ARPES) studies recently performed at ALS Beamline 12.0.1 improve the prospects for the practical application of TIs in advanced devices.

310

Electrical insulator assembly with oxygen permeation barrier  

DOE Patents (OSTI)

A high-voltage electrical insulator for electrically insulating a thermoelectric module in a spacecraft from a niobium-1% zirconium alloy wall of a heat exchanger filled with liquid lithium while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator has a single crystal alumina layer (SxAl[sub 2]O[sub 3], sapphire) with a niobium foil layer bonded thereto on the surface of the alumina crystal facing the heat exchanger wall, and a molybdenum layer bonded to the niobium layer to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface. 3 figures.

Van Der Beck, R.R.; Bond, J.A.

1994-03-29T23:59:59.000Z

311

Electrical insulator assembly with oxygen permeation barrier  

DOE Patents (OSTI)

A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.

Van Der Beck, Roland R. (Lansdale, PA); Bond, James A. (Exton, PA)

1994-01-01T23:59:59.000Z

312

Gaseous insulators for high voltage electrical equipment  

DOE Patents (OSTI)

Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

Christophorou, Loucas G. (Oak Ridge, TN); James, David R. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Pai, Robert Y. (Concord, TN)

1981-01-01T23:59:59.000Z

313

Gaseous insulators for high voltage electrical equipment  

DOE Patents (OSTI)

Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

Christophorou, Loucas G. (Oak Ridge, TN); James, David R. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Pai, Robert Y. (Concord, TN)

1979-01-01T23:59:59.000Z

314

Multilayer insulation blanket, fabricating apparatus and method  

DOE Patents (OSTI)

An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel. 7 figs.

Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

1992-09-01T23:59:59.000Z

315

Method of fabricating a multilayer insulation blanket  

DOE Patents (OSTI)

An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

1993-07-06T23:59:59.000Z

316

Nuclear reactor vessel fuel thermal insulating barrier  

DOE Patents (OSTI)

The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

2013-03-19T23:59:59.000Z

317

Method of fabricating a multilayer insulation blanket  

DOE Patents (OSTI)

An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

1993-01-01T23:59:59.000Z

318

Is graphene in vacuum an insulator?  

E-Print Network (OSTI)

We present evidence, from Lattice Monte Carlo simulations of the phase diagram of graphene as a function of the Coulomb coupling between quasiparticles, that graphene in vacuum is likely to be an insulator. We find a semimetal-insulator transition at $\\alpha_g^\\text{crit} = 1.11 \\pm 0.06$, where $\\alpha_g^{} \\simeq 2.16$ in vacuum, and $\\alpha_g^{} \\simeq 0.79$ on a SiO$_2^{}$ substrate. Our analysis uses the logarithmic derivative of the order parameter, supplemented by an equation of state. The insulating phase disappears above a critical number of four-component fermion flavors $4 < N_f^{\\text{crit}} < 6$. Our data are consistent with a second-order transition.

Joaquín E. Drut; Timo A. Lähde

2008-07-05T23:59:59.000Z

319

Multilayer insulation blanket, fabricating apparatus and method  

DOE Patents (OSTI)

An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

1992-01-01T23:59:59.000Z

320

Metal Aminoboranes  

Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be ...

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Test Report: Cost Effective Foundation Insulation  

SciTech Connect

A field experiment was conducted to demonstrate and quantify the thermal effectiveness of rigid insulation board when installed on the exterior of a buried concrete foundation wall. A heated, insulated box was constructed along one wall of an existing, unheated building to simulate the living space of a home. The crawl space beneath the living space was divided into two sections. One featured external foundation insulation, while the other side had none. 36 temperature and heat flux sensors were installed at predetermined locations to measure the temperature profile and heat flow out of the living space. The temperature profile through the foundation was then used to calculate the total heat flow out of the foundation for both cases. This experiment showed that a significant energy savings is available with exterior foundation insulation. Over the course of 3 months, the heat-loss differential between the insulated and non-insulated foundations was 4.95 kilowatt-hours per lineal foot of foundation wall, for a ratio of 3:1. For a 2200 sq. ft home with a foundation perimeter 200 ft. long, this would amount to a savings of 990 kW-hrs in just 3 months, or 330 kW-hrs per month. Extrapolating to an 8-month heating year, we would expect to save over 2640 kW-hrs per year for such a home. The savings for a basement foundation, rather than a crawlspace, would be approach twice that amount, nearing 5280 kW-hr per year. Because these data were not collected during the coldest months of the year, they are conservative, and greater savings may be expected during colder periods.

Jeffrey M. Lacy; T. E. Rahl; G. A. Twitchell; R. G. Kobbe

2003-06-01T23:59:59.000Z

322

When wall insulation doesn`t save  

Science Conference Proceedings (OSTI)

A recent study in Florida concluded that while wall insulation clearly saves heating energy, it is less effective at saving cooling energy. The study focused on concrete block houses on slab foundations, and determined that whether insulation saves cooling energy depends significantly on the interior thermostat setpoint, the lower the thermostat below outside temperature, the more likely wall installation was to save energy. This article describes the design of the study and compares it to other studies. Results in their entirety are described. 1 fig.

Johnson, D.

1997-05-01T23:59:59.000Z

323

Development and Testing of Insulated Drill Pipe  

DOE Green Energy (OSTI)

This project has comprised design, analysis, laboratory testing, and field testing of insulated drill pipe (IDP). This paper will briefly describe the earlier work, but will focus on results from the recently-completed field test in a geothermal well. Field test results are consistent with earlier analyses and laboratory tests, all of which support the conclusion that insulated drill pipe can have a very significant effect on circulating fluid temperatures. This will enable the use of downhole motors and steering tools in hot wells, and will reduce corrosion, deterioration of drilling fluids, and heat-induced failures in other downhole components.

Champness, T.; Finger, J.; Jacobson, R.

1999-07-07T23:59:59.000Z

324

Savings Project: Insulate Hot Water Pipes for Energy Savings...  

NLE Websites -- All DOE Office Websites (Extended Search)

the insulation done during new construction of a home, during other work on your water heater or pipes, or insulating the pipes yourself, is well worth the effort. In special...

325

Estimating the Payback Period of Additional Insulation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Payback Period of Additional Insulation the Payback Period of Additional Insulation Estimating the Payback Period of Additional Insulation June 24, 2012 - 1:17pm Addthis Adding insulation in the attic of an existing home often results in a favorable payback. | Photo courtesy of Lieko Earle, NREL PIX 19612. Adding insulation in the attic of an existing home often results in a favorable payback. | Photo courtesy of Lieko Earle, NREL PIX 19612. What does this mean for me? Even if you hire a contractor to do the work, adding insulation to your home will likely have an attractive payback. If you can gather the information and plug it into an equation, you can determine the payback of adding insulation to your home. Use the equation below to estimate the cost effectiveness of adding insulation in terms of the "years to payback" for savings in heating costs.

326

Better Buildings Neighborhood Program: EI2 Insulation Helps Anxious Pooch  

NLE Websites -- All DOE Office Websites (Extended Search)

EI2 Insulation EI2 Insulation Helps Anxious Pooch Find Calm in the Storm to someone by E-mail Share Better Buildings Neighborhood Program: EI2 Insulation Helps Anxious Pooch Find Calm in the Storm on Facebook Tweet about Better Buildings Neighborhood Program: EI2 Insulation Helps Anxious Pooch Find Calm in the Storm on Twitter Bookmark Better Buildings Neighborhood Program: EI2 Insulation Helps Anxious Pooch Find Calm in the Storm on Google Bookmark Better Buildings Neighborhood Program: EI2 Insulation Helps Anxious Pooch Find Calm in the Storm on Delicious Rank Better Buildings Neighborhood Program: EI2 Insulation Helps Anxious Pooch Find Calm in the Storm on Digg Find More places to share Better Buildings Neighborhood Program: EI2 Insulation Helps Anxious Pooch Find Calm in the Storm on AddThis.com...

327

Section 4.2.2 Insulation: Greening Federal Facilities; Second...  

NLE Websites -- All DOE Office Websites (Extended Search)

can easily be added to attics or under floors, but retrofitting cavity insulation in walls is usually expensive and disruptive. It is less disruptive to add wall insulation on...

328

Local Insulation Rebate Programs (Colorado) | Open Energy Information  

Open Energy Info (EERE)

called Insulate Colorado, provides rebates of 20% of the cost, up to 300, to homeowners who increase the insulation andor air sealing of their homes. This is not a...

329

Observation of a Macroscopically Quantum-Entangled Insulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new...

330

Insulated laser tube structure and method of making same  

DOE Patents (OSTI)

An insulated high temperature ceramic laser tube having substantially uniform insulation along the length of the tube is disclosed having particulate ceramic insulation positioned between the outer wall of the ceramic laser tube and the inner surface of tubular ceramic fiber insulation which surrounds the ceramic laser tube. The particulate ceramic insulation is preferably a ceramic capable of sintering to the outer surface of the ceramic laser tube and to the inner surface of the tubular ceramic fiber insulation. The addition of the particulate ceramic insulation to fill all the voids between the ceramic laser tube and the fibrous ceramic insulation permits the laser tube to be operated at a substantially uniform temperature throughout the length of the laser tube.

Dittbenner, Gerald R. (4353 Findlay Way, Livermore, CA 94550)

1999-01-01T23:59:59.000Z

331

Estimating the Payback Period of Additional Insulation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating the Payback Period of Additional Insulation Estimating the Payback Period of Additional Insulation Estimating the Payback Period of Additional Insulation June 24, 2012 - 1:17pm Addthis Adding insulation in the attic of an existing home often results in a favorable payback. | Photo courtesy of Lieko Earle, NREL PIX 19612. Adding insulation in the attic of an existing home often results in a favorable payback. | Photo courtesy of Lieko Earle, NREL PIX 19612. What does this mean for me? Even if you hire a contractor to do the work, adding insulation to your home will likely have an attractive payback. If you can gather the information and plug it into an equation, you can determine the payback of adding insulation to your home. Use the equation below to estimate the cost effectiveness of adding insulation in terms of the "years to payback" for savings in heating costs.

332

Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)  

SciTech Connect

In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

Not Available

2013-10-01T23:59:59.000Z

333

Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles  

E-Print Network (OSTI)

An experimental apparatus was designed to measure the effective thermal conductivity of various high temperature insulations subject to large temperature gradients representative of typical launch vehicle reentry aerodynamic heating conditions. The insulation sample cold side was maintained around room temperature, while the hot side was heated to temperatures as high as 1800°F. The environmental pressure was varied from 1 x 10 -4 to 760 torr. All the measurements were performed in a dry gaseous nitrogen environment. The effective thermal conductivity of the following insulation samples were measured: Saffilä at 1.5, 3, 6 lb/ft 3 , Q-Fiberä felt at 3, 6 lb/ft 3 , Cerachromeä at 6, 12 lb/ft 3 , and three multi-layer insulation configurations at 1.5 and 3 lb/ft 3 .. Introduction Metallic and refractory-composite thermal protection systems are being considered for a new generation of reusable launch vehicles (RLV). The main function of the thermal protection system (TPS) is to...

Kamran Daryabeigi

1999-01-01T23:59:59.000Z

334

Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles  

E-Print Network (OSTI)

An experimental apparatus was designed to measure the effective thermal conductivity of various high temperature insulations subject to large temperature gradients representative of typical launch vehicle reentry aerodynamic heating conditions. The insulation sample cold side was maintained around room temperature, while the hot side was heated to temperatures as high as 1800F. The environmental pressure was varied from 1 x 10 -4 to 760 torr. All the measurements were performed in a dry gaseous nitrogen environment. The effective thermal conductivity of the following insulation samples were measured: Saffil at 1.5, 3, 6 lb/ft 3 , Q-Fiber felt at 3, 6 lb/ft 3 , Cerachrome at 6, 12 lb/ft 3 , and three multi-layer insulation configurations at 1.5 and 3 lb/ft 3 .. Introduction Metallic and refractory-composite thermal protection systems are being considered for a new generation of reusable launch vehicles (RLV). The main function of the thermal protection system (TPS) is to mai...

Kamran Daryabeigi Langley

1999-01-01T23:59:59.000Z

335

CA Dept of Consumer Affairs, BEARHFTI - Thermal Insulation  

Science Conference Proceedings (OSTI)

... Density). Thermal Resistance. [01/T05] ASTM C335 Steady-State Heat Transfer Properties of Horizontal Pipe Insulation. [01 ...

2013-07-26T23:59:59.000Z

336

Gas insulated transmission line having tapered particle trapping ring  

DOE Patents (OSTI)

A gas-insulated transmission line includes an outer sheath, an inner conductor, insulating supports and an insulating gas. A particle-trapping ring is secured to each insulating support, and it is comprised of a central portion and two tapered end portions. The ends of the particle trapping ring have a smaller diameter than the central portion of the ring, so as to enable the use of the particle trapping ring in a curved transmission line.

Cookson, Alan H. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

337

The Private Life of Electrons in Amorphous Insulators  

Science Conference Proceedings (OSTI)

... The Private Life of Electrons in Amorphous Insulators. Since the twenties, it has been known that the stationary electron ...

338

Environmental Cycling of Cellulosic Thermal Insulation and Its ...  

Science Conference Proceedings (OSTI)

... cellulosic insulation industry, lengthy conditioning cycles and testing -8- ... energy using a flux profile generated during test ... and Technology, Vol. ...

2008-04-29T23:59:59.000Z

339

Corrugated outer sheath gas-insulated transmission line  

DOE Patents (OSTI)

A gas-insulated transmission line includes two transmission line sections each of which are formed of a corrugated outer housing enclosing an inner high-voltage conductor disposed therein, with insulating support means supporting the inner conductor within the outer housing and an insulating gas providing electrical insulation therebetween. The outer housings in each section have smooth end sections at the longitudinal ends thereof which are joined together by joining means which provide for a sealing fixed joint.

Kemeny, George A. (Pittsburgh, PA); Cookson, Alan H. (Churchill Boro, PA)

1981-01-01T23:59:59.000Z

340

SynFoam Structural Insulators - Programmaster.org  

Science Conference Proceedings (OSTI)

Currently, most non-pyrolyzing insulation materials have poor mechanical properties and only modest temperature capabilities. Powdermet's optimized ...

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ASBESTOS PIPE-INSULATION REMOVAL ROBOT SYSTEM  

SciTech Connect

This final topical report details the development, experimentation and field-testing activities for a robotic asbestos pipe-insulation removal robot system developed for use within the DOE's weapon complex as part of their ER and WM program, as well as in industrial abatement. The engineering development, regulatory compliance, cost-benefit and field-trial experiences gathered through this program are summarized.

Unknown

2000-09-15T23:59:59.000Z

342

Laminated insulators having heat dissipation means  

DOE Patents (OSTI)

A laminated body is provided with heat dissipation capabilities. The insulator body is formed by dielectric layers interleaved with heat conductive layers, and bonded by an adhesive to form a composite structure. The heat conductive layers include provision for connection to an external thermal circuit.

Niemann, R.C.; Mataya, K.F.; Gonczy, J.D.

1980-04-24T23:59:59.000Z

343

Effects of foam insulation ban far reaching  

SciTech Connect

The government ban on urea-formaldehyde foam as an insulation material for homes is discussed. Resultant economic hardships are projected not only for the primary industry but for other industries using formaldehyde in their products. The loss of realty value for homeowners who used the foam is also a topic. Criteria for making the controversial ban are given. (PSB)

Hanson, D.J.

1982-03-29T23:59:59.000Z

344

Insulation refit kit for domestic water heaters  

SciTech Connect

The development, testing, and marketing of an insulation kit which homeowners could apply to gas or electric hot water heaters in order to conserve energy in water heating are described. The kit, being marketed at $20, should save 450 kWh or 3600 ft/sup 3/ of gas per year. (LCL)

1977-03-23T23:59:59.000Z

345

Experience with 113 Retrofit Insulation Surveys  

E-Print Network (OSTI)

We have surveyed 113 plants for thirteen clients. The results of 21 recent surveys at today's average fuel price, show an average project scope generation of $151,000 while saving about 5MMBTU/hour with a 72% DCF rate of return. The size of the retrofit project generated, or scope, is of course sensitive to the fuel price. This is an important consideration because of the variability of fuel price. A study of the effect of fuel price on project scope generation and on return has been made using sophisticated computer programs designed for this purpose. These results indicate that scope generation may vary from $50,000 for $3.00 fuel up to $80,000 for $6.00 fuel. When this happens, the project return will increase from 100% up to 165% per year. The main problem that we have found with retrofit insulation surveys is the processing of detail in existing plants. The solution is the preparation or selection of the right system for approaching the problem utilizing computer programs. The time required to generate systematic approaches to insulation surveys and the generation of retrofit projects are sizable. The continued heat losses while studying the project are also significant. Thus, the heat losses suffered while deciding how to insulate can be sufficient to pay for an insulation survey.

Webber, W. O.

1985-05-01T23:59:59.000Z

346

Nonlocal Edge State Transport in Topological Insulators  

E-Print Network (OSTI)

We use the N-terminal scheme for studying the edge state transportin in two-dimensional topological insulators. We find the universal nonlocal response in the ballistic transport approach. This macroscopic exhibition of the topological order offers new areas for applications.

Alexander P. Protogenov; Evgueni V. Chulkov; Valery A. Verbus

2013-06-25T23:59:59.000Z

347

Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures  

E-Print Network (OSTI)

Clothing Insulation Models on Building Energy Use, HVACinsulation for mechanically conditioned buildings andclothing insulation calculated for each building). Figure 8

Schiavon, Stefano; Lee, Kwang Ho

2012-01-01T23:59:59.000Z

348

Method and apparatus for filling thermal insulating systems  

DOE Patents (OSTI)

A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air.

Arasteh, Dariush K. (Oakland, CA)

1992-01-01T23:59:59.000Z

349

Method and apparatus for filling thermal insulating systems  

DOE Patents (OSTI)

A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air. 3 figs.

Arasteh, D.K.

1992-01-14T23:59:59.000Z

350

STATE OF CALIFORNIA QUALITY INSULATION INSTALLATION FRAMING STAGE CHECKLIST  

E-Print Network (OSTI)

be accepted by the building department or HERS rater. SPF insulation can be considered an air barrier when be insulated. These areas shall be called out on the building plans with diagrams and/or specific designSTATE OF CALIFORNIA QUALITY INSULATION INSTALLATION ­ FRAMING STAGE CHECKLIST CEC-CF-4R-ENV-21

351

Thermal Performance Evaluation of Innovative Metal Building Roof Assemblies  

Science Conference Proceedings (OSTI)

In order to meet the coming energy codes, multiple layers of various insulation types will be required. The demand for greater efficiency has pushed insulation levels beyond the cavity depth. These experiments show the potential for improving metal building roof thermal performance. Additional work is currently being done by several stakeholders, so the data is expanding. These experiments are for research and development purposes, and may not be viable for immediate use.

Walker, Daniel James [ORNL; Zaltash, Abdolreza [ORNL; Atchley, Jerald Allen [ORNL

2011-01-01T23:59:59.000Z

352

Metal-Semiconductor Transitions in Nanoscale Vanadium Dioxide - Thin Films, Subwavelength Holes, and Nanoparticles.  

E-Print Network (OSTI)

??Large-volume (bulk) vanadium dioxide (VO2) is an unusual material that undergoes a critical transition from insulating-like to metal-like when the temperature is raised above approximately… (more)

Donev, Eugenii U.

2008-01-01T23:59:59.000Z

353

List of Equipment Insulation Incentives | Open Energy Information  

Open Energy Info (EERE)

Insulation Incentives Insulation Incentives Jump to: navigation, search The following contains the list of 242 Equipment Insulation Incentives. CSV (rows 1 - 242) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Central Air conditioners Chillers Custom/Others pending approval Energy Mgmt. Systems/Building Controls Equipment Insulation Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Programmable Thermostats Refrigerators Yes AEP Public Service Company of Oklahoma - Residential Efficiency Rebate Program (Oklahoma) Utility Rebate Program Oklahoma Residential Building Insulation

354

Lightning overvoltage protection of the paddock 362-145 kV Gas-Insulated Substation  

SciTech Connect

Backflashovers close to the Paddiock 362-145 kV Gas-Insulated Substation (GIS) have been analyzed with the Electro-Magnetic Transient Program (EMTP) using a frequency dependent multi-conductor system. The severity of the lightning stroke currents were derived based on recent recordings in the eastern United States. Impacts of corona attenuation and distortion were accounted for using a shunt linear model approach. Turn-up effects of both line insulator flashover voltages and surge arrester protective characteristics were represented based on manufacturer's volt-time curves. Wave shaping effects of substation capacitances (ie., PT's transformers, CCPD's) were also modeled. Results show the importance of various modeling details in determining the overvoltages inside the GIS due to close backflashovers, which are caused by lightning strokes with varying intensity. These results are aimed at better evaluation of lightning protection requirements for GIS protected by metal-oxide surge arresters.

Elahi, H.; Sublich, M. (GE Industry and Utility Sales, Schenectady, NY (US)); Anderson, M.E.; Nelson, B.D. (Wisconsin Power and Light Co., Madison, WI (USA))

1990-01-01T23:59:59.000Z

355

Building Technologies Office: Advanced Insulation for High Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Insulation for Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project to someone by E-mail Share Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Facebook Tweet about Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Twitter Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Google Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Delicious Rank Building Technologies Office: Advanced Insulation for High

356

Where to Insulate in a Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Where to Insulate in a Home Where to Insulate in a Home Where to Insulate in a Home November 26, 2013 - 1:34pm Addthis Examples of where to insulate. 1. In unfinished attic spaces, insulate between and over the floor joists to seal off living spaces below. (1A) attic access door 2. In finished attic rooms with or without dormer, insulate (2A) between the studs of "knee" walls, (2B) between the studs and rafters of exterior walls and roof, (2C) and ceilings with cold spaces above. (2D) Extend insulation into joist space to reduce air flows. 3. All exterior walls, including (3A) walls between living spaces and unheated garages, shed roofs, or storage areas; (3B) foundation walls above ground level; (3C) foundation walls in heated basements, full wall either interior or exterior.

357

Savings Project: Insulate Hot Water Pipes for Energy Savings | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulate Hot Water Pipes for Energy Savings Insulate Hot Water Pipes for Energy Savings Savings Project: Insulate Hot Water Pipes for Energy Savings Addthis Project Level Medium Energy Savings $8-$12 annually Time to Complete 3 hours for a small house Overall Cost $10-$15 Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating your hot water pipes reduces heat loss and can raise water temperature 2°F-4°F hotter than uninsulated pipes can deliver, allowing for a lower water temperature setting. You also won't have to wait as long for hot water when you turn on a faucet or showerhead, which helps conserve water. Paying for someone to insulate your pipes-as a project on its own-may

358

Where to Insulate in a Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Where to Insulate in a Home Where to Insulate in a Home Where to Insulate in a Home November 26, 2013 - 1:34pm Addthis Examples of where to insulate. 1. In unfinished attic spaces, insulate between and over the floor joists to seal off living spaces below. (1A) attic access door 2. In finished attic rooms with or without dormer, insulate (2A) between the studs of "knee" walls, (2B) between the studs and rafters of exterior walls and roof, (2C) and ceilings with cold spaces above. (2D) Extend insulation into joist space to reduce air flows. 3. All exterior walls, including (3A) walls between living spaces and unheated garages, shed roofs, or storage areas; (3B) foundation walls above ground level; (3C) foundation walls in heated basements, full wall either interior or exterior.

359

AEP Appalachian Power - Residential Home Retrofit Program (West...  

Open Energy Info (EERE)

Programs Amount HVAC Maintenance: 50% of cost Insulation: 0.30sq ft Air Source Heat Pump (replacing electric furnace): 100 or 200 Water Heater Insulation Jacket: 10...

360

Emerging Weak Localization Effects on Topological Insulator-Insulating Ferromagnet (Bi_2Se_3-EuS) Interface  

E-Print Network (OSTI)

Thin films of topological insulator Bi_2Se_3 were deposited directly on insulating ferromagnetic EuS. Unusual negative magnetoresistance was observed near the zero field below the Curie temperature (T_C), resembling the weak localization effect; whereas the usual positive magnetoresistance was recovered above T_C. Such negative magnetoresistance was only observed for Bi_2Se_3 layers thinner than t~4nm, when its top and bottom surfaces are coupled. These results provide evidence for a proximity effect between a topological insulator and an insulating ferromagnet, laying the foundation for future realization of the half-integer quantized anomalous Hall effect in three-dimensional topological insulators.

Qi I. Yang; Merav Dolev; Li Zhang; Jinfeng Zhao; Alexander D. Fried; Elizabeth Schemm; Min Liu; Alexander Palevski; Ann F. Marshall; Subhash H. Risbud; Aharon Kapitulnik

2013-06-09T23:59:59.000Z

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Nuclear reactor insulation and preheat system  

DOE Patents (OSTI)

An insulation and preheat system for preselected components of a fluid cooled nuclear reactor. A gas tight barrier or compartment of thermal insulation surrounds the selected components and includes devices to heat the internal atmosphere of the compartment. An external surface of the compartment or enclosure is cooled, such as by a circulating fluid. The heating devices provide for preheating of the components, as well as maintenance of a temperature sufficient to ensure that the reactor coolant fluid will not solidify during shutdown. The external cooling limits the heat transferred to other plant structures, such as supporting concrete and steel. The barrier is spaced far enough from the surrounded components so as to allow access for remote or manual inspection, maintenance, and repair.

Wampole, Nevin C. (Latrobe, PA)

1978-01-01T23:59:59.000Z

362

Edge Excitations in Fractional Chern Insulators  

E-Print Network (OSTI)

Recent theoretical works have demonstrated the realization of fractional quantum anomalous Hall states (also called fractional Chern insulators) in topological flat band lattice models without an external magnetic field. Such newly proposed lattice systems play a vital role to obtain a large class of fractional topological phases. Here we report the exact numerical studies of edge excitations for such systems in a disk geometry loaded with hard-core bosons, which will serve as a more viable experimental probe for such topologically ordered states. We find convincing numerical evidence of a series of edge excitations characterized by the chiral Luttinger liquid theory for the bosonic fractional Chern insulators in both the honeycomb disk Haldane model and the kagom\\'{e}-lattice disk model. We further verify these current-carrying chiral edge states by inserting a central flux to test their compressibility.

Wei-Wei Luo; Wen-Chao Chen; Yi-Fei Wang; Chang-De Gong

2013-04-16T23:59:59.000Z

363

Apparatus for insulating windows and the like  

DOE Patents (OSTI)

Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in "kit" form.

Mitchell, Robert A. (R.D. #1, Box 462-A, Voorheesville, NY 12186)

1984-01-01T23:59:59.000Z

364

Apparatus for insulating windows and the like  

DOE Patents (OSTI)

Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in kit'' form. 11 figs.

Mitchell, R.A.

1984-06-19T23:59:59.000Z

365

Repulsive Casimir Effect with Chern insulators  

E-Print Network (OSTI)

We theoretically predict that the Casimir force in vacuum between two Chern insulator plates can be repulsive (attractive) at long distances whenever the sign of the Chern numbers characterizing the two plates are opposite (equal) and can be further tuned to attraction by electrostatic doping. We calculate and take into account the full optical response of the plates and argue that such repulsion is a general phenomena for these systems as it relies on the quantized zero frequency Hall conductivity. We discuss the possibility of achieving repulsion with thin films of Cr-doped (Bi,Sb)$_2$Te$_3$, that were recently discovered to be Chern insulators with quantized Hall conductivity and point towards multi-orbital systems as a route to realize this novel phenomenon.

Pablo Rodriguez-Lopez; Adolfo G. Grushin

2013-10-09T23:59:59.000Z

366

Development of a Leave-in-Place Slab Edge Insulating Form System  

DOE Green Energy (OSTI)

Concrete slabs represent the primary foundation type in residential buildings in the fast-growing markets throughout the southern and southwestern United States. Nearly 75% of the 2005 U.S. population growth occurred in these southern tier states. Virtually all of these homes have uninsulated slab perimeters that transfer a small, but steady, flow of heat from conditioned space to outdoors during the heating season. It is estimated that new home foundations constructed each year add 0.016 quads annually to U.S. national energy consumption; we project that roughly one quarter of this amount can be attributed to heat loss through the slab edge and the remaining three quarters to deep ground transfers, depending upon climate. With rising concern over national energy use and the impact of greenhouse gas emissions, it is becoming increasingly imperative that all cost-effective efforts to improve building energy efficiency be implemented. Unlike other building envelope components that have experienced efficiency improvements over the years, slab edge heat loss has largely been overlooked. From our vantage point, a marketable slab edge insulation system would offer significant benefits to homeowners, builders, and the society as a whole. Conventional slab forming involves the process of digging foundation trenches and setting forms prior to the concrete pour. Conventional wood form boards (usually 2 x 10's) are supported by vertical stakes on the outer form board surface, and by supporting 'kickers' driven diagonally from the top of the form board into soil outside the trench. Typically, 2 x 10's can be used only twice before they become waste material, contributing to an additional 400 pounds of construction waste per house. Removal of the form boards and stakes also requires a follow-up trip to the jobsite by the concrete subcontractor and handling (storage/disposal) of the used boards. In the rare cases where the slab is insulated (typically custom homes with radiant floor heating), the most practical insulation strategy is to secure rigid foam insulation, such as Dow Styrofoam{trademark}, to the inside of the wooden slab edge forms. An alternative is to clad insulation to the perimeter of the slab after the slab has been poured and cured. In either case, the foam must have a 'termite strip' that prevents termites from creating hidden tunnels through or behind the foam on their way to the wall framing above. Frequently this termite strip is a piece of sheet metal that must be fabricated for each project. The above-grade portion of the insulation also needs to be coated for appearance and to prevent damage from construction and UV degradation. All these steps add time, complexity, and expense to the insulating process.

Marc Hoeschele; Eric Lee

2009-08-31T23:59:59.000Z

367

Excavationless Exterior Foundation Insulation Exploratory Study  

Science Conference Proceedings (OSTI)

The key objective of this exploratory study was to investigate the feasibility of the development or adoption of technologies that would enable a large percentage of existing homes in cold climates to apply a combination 'excavationless' soil removal process with appropriate insulation and water management on the exterior of existing foundations at a low cost. Our approach was to explore existing excavation and material technologies and systems to discover whether potential successful combinations existed.

Mosiman, G.; Wagner, R.; Schirber, T.

2013-02-01T23:59:59.000Z

368

Surge propagation in gas insulated substation  

SciTech Connect

Surge propagation performance in a 550 kV gas insulated substation is studied experimentally and by computer simulation using the Electro-Magnetic Transients Program. Extra capacitance added to the system by the components of GIS such as potential devices, branch buses, circuit breakers deform the wave shape of the travelling surges. A simple modeling technique to represent GIS in surge analysis is proposed and its applicability is proved. Paper No. 80 SM 658-5.

Matsumura, S.; Nitta, T.

1981-06-01T23:59:59.000Z

369

Storing, Transporting and Installing Polymer Insulators: Viewing Guide for Educational Video  

Science Conference Proceedings (OSTI)

Although polymer insulators (alternatively called non-ceramic insulators (NCIs) or composite insulators) are very durable, they are not indestructible. Unlike glass or ceramic insulators, damage on polymer insulators is not only difficult to identify, it's likely to get worse over time. Therefore, the storing, transporting, and installation of polymer insulators must be done with care. EPRI has developed a video specifically to educate line crews in the proper techniques for handling polymer insulators, ...

2001-11-21T23:59:59.000Z

370

Metal Aminoboranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Metal Aminoboranes Metal Aminoboranes Metal Aminoboranes Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. June 25, 2013 Metal Aminoboranes Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Available for thumbnail of Feynman Center (505) 665-9090 Email Metal Aminoboranes Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit. U.S. Patent No.: 7,713,506 (DOE S-112,798)

371

Low-leakage MIS structures with 1.5-6 nm CaF2 insulating layer on Si(11 1)  

Science Conference Proceedings (OSTI)

Thin high-quality calcium fluorite films are grown on (111) silicon in the low- and middle- temperature molecular-beam epitaxy processes followed by annealing. Metal-insulator-semiconductor structures with such films exhibit much smaller leakage currents ... Keywords: Breakdown field, Calcium fluorite, Current-voltage characteristic, Effective mass, MIS tunnel structure

N. S. Sokolov; I. V. Grekhov; S. Ikeda; A. K. Kaveev; A. V. Krupin; K. Saiki; K. Tsutsui; S. E. Tyaginov; M. I. Vexler

2007-09-01T23:59:59.000Z

372

Observation of a Macroscopically Quantum-Entangled Insulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Observation of a Macroscopically Observation of a Macroscopically Quantum-Entangled Insulator Observation of a Macroscopically Quantum-Entangled Insulator Print Wednesday, 27 May 2009 00:00 It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES. Their results constitute the first direct experimental evidence of a topological insulator in nature that is fully quantum entangled. In the future, a detailed study of topological order and quantum entanglement using their method can potentially pave the way for fault-tolerant (topological) quantum computing.

373

Observation of a Macroscopically Quantum-Entangled Insulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Observation of a Macroscopically Quantum-Entangled Insulator Print Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES. Their results constitute the first direct experimental evidence of a topological insulator in nature that is fully quantum entangled. In the future, a detailed study of topological order and quantum entanglement using their method can potentially pave the way for fault-tolerant (topological) quantum computing.

374

Observation of a Macroscopically Quantum-Entangled Insulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Observation of a Macroscopically Quantum-Entangled Insulator Print Observation of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES. Their results constitute the first direct experimental evidence of a topological insulator in nature that is fully quantum entangled. In the future, a detailed study of topological order and quantum entanglement using their method can potentially pave the way for fault-tolerant (topological) quantum computing.

375

Expert Meeting Report: Cladding Attachment Over Exterior Insulation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cladding Attachment Over Exterior Insulation Cladding Attachment Over Exterior Insulation Expert Meeting Report: Cladding Attachment Over Exterior Insulation The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment over exterior insulation with a specific focus on: 1.

376

Super Building Insulation by CO2 Foaming Process Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Super Building Insulation by CO2 Foaming Emerging Technologies » Super Building Insulation by CO2 Foaming Process Research Project Super Building Insulation by CO2 Foaming Process Research Project The Department of Energy is currently researching the development of building superinsulation through a carbon dioxide (CO2) foaming process. Project Description This project seeks to develop building super insulation through a carbon dioxide foaming process that does not use hydrofluorocarbons (HFCs), and which produces insulation with a high R-value. Project Partners Research is being undertaken between the Department of Energy and The Industrial Science & Technology Network. Project Goals The goal of this project is to develop advanced insulation without HFC, and to achieve a competitive processing cost for CO2 foaming technology.

377

Window insulation: how to sort through the options  

SciTech Connect

Options available for residential settings are discussed, including: how to identify window insulating devices that can save a significant amount of energy, including a discussion of components and types; how operating window insulating devices compares with using conventional, non-insulating window coverings; how to choose a product that can serve all the functions traditionally required of window coverings; how to avoid problems with do-it-yourself projects; and how to estimate costs and savings with window insulation. In addition, this publication provides information on window choices for new construction, and an overview of current research in window insulation. The appendices provide summaries of selected grant projects, and a reading list is presented for those who want more information on window insulation.

Miller, B.A.

1984-03-01T23:59:59.000Z

378

Explosion resistant insulator and method of making same  

DOE Patents (OSTI)

An electrical insulator assembly and method of manufacturing same, having a generally cylindrical or conical body portion formed of a breakable cast solid insulation system and a reinforcing member having a corrugated configuration and formed of a web or mesh type reinforcing fabric. When the breakable body member has been broken, the corrugated configured reinforcing web member provides a path of escape for pressurized insulating fluid while limiting the movement of body member fragments in the direction of escape of the pressurized fluid.

Meyer, Jeffry R. (Penn Hills, PA); Billings, Jr., John S. (Trafford, PA); Spindle, Harvey E. (Wilkins Township, Allegheny County, PA); Hofmann, Charles F. (Export, PA)

1983-01-01T23:59:59.000Z

379

The Impact of Contaminated Environment on Insulator Performance  

Science Conference Proceedings (OSTI)

A particular weakness of outdoor substations is the external insulation. The insulation is particularly susceptible to failure if proper attention has not been given to its design, condition monitoring, and maintenance. In regions characterized by high contamination levels, regular maintenance and the application of palliative measures can be critical to ensure that the system meets its outage performance targets. This can involve pure maintenance measures such as insulator cleaning or performance-enhanc...

2011-12-14T23:59:59.000Z

380

Electric Field Modeling of Polymer Insulators in Substations  

Science Conference Proceedings (OSTI)

The use of transmission line suspension class polymer insulators is increasing for a wide range of reasons including lower cost, availability, their lightweight nature, and contamination performance. The expected use of these polymer insulators is on transmission lines; thus this is the application for which manufacturers design and test the recommended corona rings. Numerous suspension polymer insulators are being applied in substations in configurations which have different geometries to the transmissi...

2005-11-23T23:59:59.000Z

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Ladders of Insulating Material for Live Working: Research Plan  

Science Conference Proceedings (OSTI)

This report outlines a planned research and test program aimed at addressing concerns from field crews regarding undesirable mechanical behavior of insulating ladders used for live work, in particular regarding ladders that have been in service for some time.  Long and spliced ladders can flex and twist, which could pose difficulties or safety issues to the worker on the ladder. BackgroundInsulating ladders for live work are made of insulating ...

2012-12-14T23:59:59.000Z

382

Expansion Joint Concepts for High Temperature Insulation Systems  

E-Print Network (OSTI)

As high temperature steam and process piping expands with heat, joints begin to open between the insulation sections, resulting in increased energy loss and possible unsafe surface temperatures. Many different expansion joint designs are presently in use for both single and double layer insulation construction. However, due to the installation cost reduction associated with single layer systems and increased thickness capabilities of insulation manufacturers, much attention is being given to utilizing single layer construction as much as possible.

Harrison, M. R.

1980-01-01T23:59:59.000Z

383

Highly Insulating Windows Volume Purchase Program Final Report  

SciTech Connect

This report summarizes the Highly Insulating Windows Volume Purchase Program, conduced by PNNL for DOE-BTP, including a summary of outcomes and lessons learned.

Parker, Graham B.; Mapes, Terry S.; Zalis, WJ

2013-02-01T23:59:59.000Z

384

Feasibility of SF6 Gas-Insulated Transformers  

NLE Websites -- All DOE Office Websites (Extended Search)

Feasibility of SF 6 Gas-Insulated Transformers Brandon Bouwman, P.E. Electrical Engineer, Generation Equipment Section Hydroelectric Design Center 14 June 2012 BUILDING STRONG ...

385

Electrically Addressable Carbon Nanofibers on (Non)Insulating ...  

Addressable Carbon Nanofibers on (Non)Insulating Substrates ... •Field emission from a large area of VACNF with nanoscale tips - MIT. 6 Managed by UT-Battelle

386

Expert Meeting Report: Cladding Attachment Over Exterior Insulation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

regarding cladding attachment over exterior insulation with a specific focus on: 1. Gravity load resistance, 2. Wind load resistance. The presentations explore these topics from...

387

Failure of railhead material of insulated rail joints.  

E-Print Network (OSTI)

??"Aim of this research is to examine the impact fatigue failure of the railhead of the IRJ [insulated rail joints] and determine actions that can… (more)

Mandal, Nirmal Kumar.

2011-01-01T23:59:59.000Z

388

List of Building Insulation Incentives | Open Energy Information  

Open Energy Info (EERE)

Program (Ohio) Utility Rebate Program Ohio Residential Building Insulation Ceiling Fan Central Air conditioners CustomOthers pending approval DuctAir sealing Heat pumps...

389

Optimization of Energy Saving Materials and Compressed Insulating ...  

Science Conference Proceedings (OSTI)

Sep 16, 2007 ... Optimization of Energy Saving Materials and Compressed Insulating Layers in the Automotive Chemical Converters by E. Litovsky, V. Issoupov, ...

390

An analytical and experimental investigation for an interstitial insulation technology.  

E-Print Network (OSTI)

??An insulation technique has been developed which contains a single or combination of materials to help minimize heat loss in actual industrial applications. For the… (more)

Kim, Dong Keun

2009-01-01T23:59:59.000Z

391

Measuring Thermal Conductivity of Powder Insulation at Cryogenic Temperatures.  

E-Print Network (OSTI)

?? A device to measure bulk effective thermal conductivity of powder insulation at cryogenic temperatures has been designed and tested. The design consists of two… (more)

Barrios, Matthew Nicklas

2006-01-01T23:59:59.000Z

392

High-temperature Foam-reinforced Thermal Insulation  

Science Conference Proceedings (OSTI)

Symposium, Advanced Materials for Harsh Environments. Presentation Title, High-temperature Foam-reinforced Thermal Insulation. Author(s), Jacob J. Stiglich, ...

393

Glass fiber composition. [for use as thermal insulation  

DOE Patents (OSTI)

The invention relates to a glass fiber composition useful for thermal insulation having a low melting temperature and high chemical durability.

Wolf, G.A.; Kupfer, M.J.

1980-12-19T23:59:59.000Z

394

Electrical and capacitive methods for detecting degradation in wire insulation.  

E-Print Network (OSTI)

??Motivated by a need within the aerospace industry to detect and characterize degradation in the insulation of onboard wires, this thesis reports testing of several… (more)

Sheldon, Robert Thomas

2012-01-01T23:59:59.000Z

395

Insulation for New Home Construction | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

of your home by resisting heat flow through the building envelope. State and local building codes typically include minimum insulation requirements, but your...

396

Where to Insulate in a Home | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

the interior of a building. Half-inch drywall is usually sufficient, but check with local building officials before installing. Exterior Wall Insulation In an existing home,...

397

Partial discharges in low-voltage cables - Electrical Insulation ...  

Science Conference Proceedings (OSTI)

... Conference Record of the 1990 IEEE International Symposium on Electrical Insulation, Toronto ... to the con- ductor using a #60 twist drill in two of the ...

2013-05-17T23:59:59.000Z

398

Contoured insulation window for evacuated solar collector  

SciTech Connect

An insulating contoured window is provided for use with an enclosed chamber such as an evacuated flat plate solar heat collector with the contoured solar window being of minimum thickness and supported solely about its peripheral edge portions. The window is contoured in both its longitudinal and transverse directions, such that in its longitudinal direction the window is composed of a plurality of sinusoidal corrugations whereas in its transverse direction the peaks of such corrugations are contoured in the form of paraboloids so that the structure may withstand the forces generated thereon by the atmosphere.

Coppola, F. T.; Lentz, W. P.; Vandewoestine, R. V.

1980-02-05T23:59:59.000Z

399

Influence Of Three Dynamic Predictive Clothing Insulation Models On Building Energy Use, HVAC Sizing And Thermal Comfort  

E-Print Network (OSTI)

Predictive Clothing Insulation Models based on Outdoor AirPREDICTIVE CLOTHING INSULATION MODELS ON BUILDING ENERGYthat the clothing insulation is equal to a constant value of

Schiavon, Stefano; Lee, Kwang Ho

2013-01-01T23:59:59.000Z

400

Influence Of Three Dynamic Predictive Clothing Insulation Models On Building Energy Use, HVAC Sizing And Thermal Comfort  

E-Print Network (OSTI)

CLOTHING INSULATION MODELS ON BUILDING ENERGY USE, HVACClothing Insulation Model; Clothing; Building Energy;clothing insulation models on the building simulation is

Schiavon, Stefano; Lee, Kwang Ho

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Molten metal holder furnace and casting system incorporating the molten metal holder furnace  

DOE Patents (OSTI)

A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

Kinosz, Michael J. (Apollo, PA); Meyer, Thomas N. (Murrysville, PA)

2003-02-11T23:59:59.000Z

402

Prospects for highly insulating window systems  

SciTech Connect

Windows and other fenestration systems are often considered the weakest links in energy-efficient residences. This opinion is reinforced by building standards, audit guidelines, and standard window performance evaluation techniques geared toward sizing building HVAC equipment. In this paper we show that it should be possible to design highly insulating windows (U < 0.12 Btu/hr-ft/sup 2/-F) with high solar transmittances (SC > 0.6). If we then view annual window performance from the basic perspective of control of energy flows, we conclude that it should thus be possible to develop a new generation of ''super window'' that will outperform the best insulated wall or roof for any orientation even in a northern climate. We review several technical approaches that suggest how such a window system might be designed and built. These include multiglazed windows having one or more low-emittance coatings and gas-filled or evacuated cavities. Another approach uses a layer of transparent silica aerogel, a microporus material having a conductivity in air of about R7 per inch. We conclude by presenting data on annual energy performance in a cold climate for a range of ''super windows''. 8 refs., 6 figs.

Arasteh, D.; Selkowitz, S.

1985-04-01T23:59:59.000Z

403

Cold climate foundation insulation retrofit performance  

SciTech Connect

The effectiveness of foundation insulation retrofits in 15 Minnesota houses was evaluated using a before-after experimental method. Nine houses received interior retrofits; six, exterior retrofits. Foundation air leaks were sealed before the preretrofit heating season to control for inadvertent sealing during retrofit. Basement heating supply and return registers were closed in most houses for the 21-month monitoring period, and for all houses the basement was an uncontrolled zone without a thermostat. Homeowners recorded gas and electricity meter readings and furnace and water heater on-times weekly. A load vs. outdoor temperature was used to evaluate changes in energy use. The average whole-house energy savings for the interior and exterior cases were 92 and 24 therm per year, or 7.9% (range - 0.6% to 17.8%) and 3.0% (range -2.9% to 8.3%), respectively. Minimum payback periods for the interior and exterior cases were 12 and 37 years, respectively. For all houses the basement temperature increased between the pre- and post-retrofit periods, and all homeowners reported increased comfort in their basements. Average measured savings were about one-third of those predicted. The results show that the application of insulation in an uncontrolled zone produces highly variable results and has the principal effect of increasing the temperature and comfort of the basement rather than producing cost-effective whole-house energy savings.

Robinson, D.A. (Robinson Technical Services, St. Paul, MN (US)); Goldberg, L.F.; Shen, L.S. (Univ. of Minnesota, Minneapolis, MN (US)); Nelson, G.D. (Energy Conservatory, Minneapolis, MN (US)); Hewett, M.J. (Center for Energy and the Urban Environment, Minneapolis, MN (US)); Noble, M.T. (Natural Resources Corp., Minneapolis, MN (US))

1990-01-01T23:59:59.000Z

404

Topological insulators and superconductors Xiao-Liang Qi  

E-Print Network (OSTI)

, California 94305, USA (Received 2 August 2010; published 14 October 2011) Topological insulators are new and semiconductors. They are characterized by a full insulating gap in the bulk and gapless edge or surface states and gapless surface states consisting of Majorana fermions. The theory of topological superconductors

Wu, Zhigang

405

October 15, 2001 PRE-INSULATED UNDERGROUND PIPE FOR STEAM  

E-Print Network (OSTI)

SERVICE PART 1 ­ GENERAL 1.01 SUMMARY Underground steam and condensate distribution systems includingOctober 15, 2001 02558-1 PRE-INSULATED UNDERGROUND PIPE FOR STEAM AND CONDENSATE SERVICE CONSTRUCTION STANDARD SPECIFICATION SECTION 02558 PRE-INSULATED UNDERGROUND PIPE FOR STEAM AND CONDENSATE

406

High voltage gas insulated transmission line with continuous particle trapping  

DOE Patents (OSTI)

This invention provides a novel high voltage gas insulated transmission line utilizing insulating supports spaced at intervals with snap-in means for supporting a continuous trapping apparatus and said trapping apparatus having perforations and cutouts to facilitate trapping of contaminating particles and system flexibility.

Cookson, Alan H. (Pittsburgh, PA); Dale, Steinar J. (Monroeville, PA)

1983-01-01T23:59:59.000Z

407

Leakage resilient strong key-insulated signatures in public channel  

Science Conference Proceedings (OSTI)

Key-insulation aims at minimizing (i.e., compartmentalizing) the damage of users from key exposures, and traditionally requires a private channel of communication between a user and a semi-trusted party called a helper to refresh the private keys. The ... Keywords: continual key leakage, key-insulation, public channel, signatures

Le Trieu Phong; Shin'ichiro Matsuo; Moti Yung

2010-12-01T23:59:59.000Z

408

Montana Slab Edge Insulation Analysis for IECC 2006 Adoption  

Science Conference Proceedings (OSTI)

This is a letter report summarizing the energy analysis of slab insulation requirements which are no longer in IECC 2006 for Montana climate zone. Based on energy analysis using Equest, we calculated energy consumption and annual energy cost for various insulation configurations. This information will be used by the Montana Energy office during the upcoming code hearings.

Gowri, Krishnan

2007-05-01T23:59:59.000Z

409

Thermal Effects of Moisture in Rigid Insulation Board  

E-Print Network (OSTI)

The impact of moisture in rigid roof insulation upon energy consumption is often assumed to be a simple function of the conductance. This paper will show that there are complex interactions between conductance, thermal mass, and climate. The energy performance can not be predicted from only the conductance. These results affect removal criteria for wet insulation board.

Crow, G. W.

1992-05-01T23:59:59.000Z

410

Organic thin film transistors with double insulator layers  

Science Conference Proceedings (OSTI)

We have investigated a double-layer structured gate dielectric for the organic thin films transistor (OTFT) with the purpose of improving the performance of the SiO"2 gate insulator. A 50nm PMMA layer was coated on top of the SiO"2 gate insulator as ... Keywords: Mobility, On/off ratio, Organic thin film transistor, PMMA

X. Liu; Y. Bai; L. Chen; F. X. Wei; X. B. Zhang; X. Y. Jiang; Zh. L. Zhang

2007-08-01T23:59:59.000Z

411

Acoustic detection of partial discharges in insulation oil  

Science Conference Proceedings (OSTI)

In this paper, we performed an insulation diagnosis technique for oil-immersed power transformers by an acoustic detection method. Electrode system such as needle to plane electrode was fabricated to simulate a defect of power transformers. In addition, ... Keywords: acoustic detection, frequency component, insulation diagnostic, partial discharge, positioning

Dae-Won Park; Sang-Wook Cha; Gyung-Suk Kil

2011-03-01T23:59:59.000Z

412

An innovative and sustainable building system using structural insulated panels  

E-Print Network (OSTI)

An innovative and sustainable building system using structural insulated panels Researcher: Mrst October 2010 Funding bodies: EPSRC and ErgoHome Ltd. Introduction Structural Insulated Panels (SIPs) are high performance building panels which are considered to be the next generation of timber

Birmingham, University of

413

Transport through a band insulator with Rashba spin-orbit coupling: Metal-insulator transition and spin-filtering effects  

E-Print Network (OSTI)

Institute of Physics, Tamarashvili Str. 6, 0177 Tbilisi, Georgia 3Ilia State University, Kakutsa Cholokashvili Avenue 3-5, 0162 Tbilisi, Georgia 4Université de la Mediterranée, Campus de Luminy, 13288

Jonckheere, Thibaut

414

Insulation Strategies to Meet Upcoming Code and Above Code Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Strategies to Meet Insulation Strategies to Meet Upcoming Code and Above Code Programs 1 Christopher Little, BASF Corporation, Center for Building Excellence 3/2/2012 Presentation Overview Innovative insulating & wall assembly strategies  Typical assembly  New innovations  Features & benefits of each 2 3/2/2012 Typical Site Built Residential Wall Concept: Site built wood frame wall with exterior sheathing and batt insulation Components:  Exterior Finish (bulk moisture control)  Building wrap  Exterior sheathing 2x4 Studs @16" O.C.  Batt Insulation (+/- 3.7 R per inch)  Gypsum board Benefits: Relatively low cost ICF Site-built 3 3/2/2012 Typical Site Built Residential Wall Key performance deficiencies  Low effective R-value  Difficulty meeting IECC 2012 R-value

415

Experiments Provide First Direct Signatures of a Topological Insulator - a  

NLE Websites -- All DOE Office Websites (Extended Search)

Experiments Provide First Direct Experiments Provide First Direct Signatures of a Topological Insulator - a New Phase of Quantum Matter It has recently been proposed that insulators with large band gap and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator [1,2]. This exotic phase of matter is a subject of intense research because it is predicted to give rise to dissipationless spin currents [3], quantum entanglements and novel macroscopic behavior that obeys axionic electrodynamics rather than Maxwell's equations [4]. Unlike ordinary quantum phases of matter such as superconductors, magnets or superfluids, topological insulators are not described by a local order parameter associated with a spontaneously broken symmetry but rather by a quantum entanglement of its wave function, dubbed topological order. In a topological insulator this quantum entanglement survives over the macroscopic dimensions of the crystal and leads to surface states that have unusual spin textures.

416

Gas insulated transmission line having low inductance intercalated sheath  

DOE Patents (OSTI)

A gas insulated transmission line including an outer sheath, an inner conductor disposed within the outer sheath, and an insulating gas between the inner conductor and the outer sheath. The outer sheath comprises an insulating tube having first and second ends, and having interior and exterior surfaces. A first electrically conducting foil is secured to the interior surface of the insulating tube, is spirally wound from one tube end to the second tube end, and has a plurality of overlapping turns. A second electrically conducting foil is secured to the exterior surface of the insulating tube, and is spirally wound in the opposite direction from the first electrically conducting foil. By winding the foils in opposite directions, the inductances within the intercalated sheath will cancel each other out.

Cookson, Alan H. (Southboro, MA)

1978-01-01T23:59:59.000Z

417

Kingspan Insulated Panels: Proposed Penalty (2013-CE-5353) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kingspan Insulated Panels: Proposed Penalty (2013-CE-5353) Kingspan Insulated Panels: Proposed Penalty (2013-CE-5353) Kingspan Insulated Panels: Proposed Penalty (2013-CE-5353) March 26, 2013 DOE alleged in a Notice of Proposed Civil Penalty that Kingspan Insulated Panels, Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Kingspan Insulated Panels: Proposed Penalty (2013-CE-5353) More Documents & Publications

418

Alkali metal protective garment and composite material  

DOE Patents (OSTI)

A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

Ballif, III, John L. (Salt Lake City, UT); Yuan, Wei W. (Seattle, WA)

1980-01-01T23:59:59.000Z

419

Thermocouple assembly  

DOE Patents (OSTI)

A thermocouple assembly includes a thermocouple; a plurality of lead wires extending from the thermocouple; an insulating jacket extending along and enclosing the plurality of leads; and at least one internally sealed area within the insulating jacket to prevent fluid leakage along and within the insulating jacket. The invention also provides a method of preventing leakage of a fluid along and through an insulating jacket of a thermocouple including the steps of a) attaching a plurality of lead wires to a thermocouple; b) adding a heat sensitive pseudo-wire to extend along the plurality of lead wires; c) enclosing the lead wires and pseudo-wire inside an insulating jacket; d) locally heating axially spaced portions of the insulating jacket to a temperature which melts the pseudo-wire and fuses it with an interior surface of the jacket.

Thermos, Anthony Constantine (Greer, SC); Rahal, Fadi Elias (Easley, SC)

2002-01-01T23:59:59.000Z

420

Crawlspace Insulation: Technology Fact Sheet; Office of Building Technology, State and Community Programs (BTS)  

SciTech Connect

Fact sheet for homeowners and contractors on how to manage moisture in the crawlspace, insulate crawlspace walls, insulate underflooring, handle ventilation, and manage radon.

Southern Energy Institute

2000-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The use of coated micropowders to reduce radiation heat transfer in foam insulation  

E-Print Network (OSTI)

Polyurethane foam is the most effective insulation currently available for buildings. Chlorofluorocarbon (CFC) blowing agents, which have low thermal conductivities, contribute highly to the effectiveness of this insulation. ...

Marge, Arlene Lanciani

1991-01-01T23:59:59.000Z

422

The Investigation of Newly Designed Transformer Windings with Reduced Thickness of Oil-Impregnated Paper Insulation.  

E-Print Network (OSTI)

??For determining the insulation dimensions, Smit Transformers uses a so called “design curve”. As the oil-impregnated paper insulation of the windings has been improved, a… (more)

Singuran, A.I.

2012-01-01T23:59:59.000Z

423

The Effect of Green Insulation Standards on Moisture Accumulation within Framing of Residential Structures.  

E-Print Network (OSTI)

??Green building standards recommend use of a variety of new thermal insulation products. However, durability of wooden framing used in conjunction with new insulation materials… (more)

Knight, Kevin Brian

2012-01-01T23:59:59.000Z

424

Self Assembly of Nano Metric Metallic Particles for Realization of Photonic and Electronic Nano Transistors  

E-Print Network (OSTI)

Abstract: In this paper, we present the self assembly procedure as well as experimental results of a novel method for constructing well defined arrangements of self assembly metallic nano particles into sophisticated nano structures. The self assembly concept is based on focused ion beam (FIB) technology, where metallic nano particles are self assembled due to implantation of positive gallium ions into the insulating material (e.g., silica as in silicon on insulator wafers) that acts as intermediary layer between the substrate and the negatively charge metallic nanoparticles.

Asaf Shahmoon; Ofer Limon; Olga Girshevitz; Zeev Zalevsky

2010-01-01T23:59:59.000Z

425

An alternative method for metallization by laser and ion beam irradiation  

Science Conference Proceedings (OSTI)

A scanning Ar+ laser beam and a focused 30 keV Ga+ ion beam (FIB) have been used to transform an insulating (or high-resistivity semiconducting) noble metal oxide film to a conducting layer, Resulting from these experiments we propose ... Keywords: interconnects, ion irradiation, laser application, metallization

F. Machalett; K. Edinger; M. Diegel; K. Steenbeck

2002-04-01T23:59:59.000Z

426

Topological Insulators Avoid the Parity Anomaly  

E-Print Network (OSTI)

The surface of a 3+1d topological insulator hosts an odd number of gapless Dirac fermions when charge conjugation and time-reversal symmetries are preserved. Viewed as a purely 2+1d system, this surface theory would necessarily explicitly break parity and time-reversal when coupled to a fluctuating gauge field. Here we explain why such a state can exist on the boundary of a 3+1d system without breaking these symmetries, even if the number of boundary components is odd. This is accomplished from two complementary perspectives: topological quantization conditions and regularization. We first discuss the conditions under which (continuous) large gauge transformations may exist when the theory lives on a boundary of a higher-dimensional spacetime. Next, we show how the higher-dimensional bulk theory is essential in providing a parity-invariant regularization of the theory living on the lower-dimensional boundary or defect.

Michael Mulligan; F. J. Burnell

2013-01-17T23:59:59.000Z

427

High temperature superconductivity in metallic region near Mott transition  

E-Print Network (OSTI)

The spin-singlet superconductivity without phonons is examined in consideration of correlations on an extended Hubbard model. It is shown that the superconductivity requires not only the total correlation should be strong enough but also the density of state around Fermi energy should be large enough, which shows that the high temperature superconductivity could only be found in the metallic region near the Mott metal insulator transition (MIT). Other properties of superconductors are also discussed on these conclusions.

Tian De Cao

2009-06-11T23:59:59.000Z

428

Analysis and testing of multilayer and aerogel insulation configurations  

Science Conference Proceedings (OSTI)

Multilayer insulation systems that have robust operational characteristics have long been a goal of many research projects. Such thermal insulation systems may need to offer some degree of structural support and/or mechanical integrity during loss of vacuum scenarios while continuing to provide insulative value to the vessel. Aerogel-based composite blankets can be the best insulation materials in ambient pressure environments; in high vacuum, the thermal performance of aerogel improves by about one order of magnitude. Standard multilayer insulation (MLI) is typically 50% worse at ambient pressure and at soft vacuum, but as much as two or three orders of magnitude better at high vacuum. Different combinations of aerogel blanket and multilayer insulation materials have been tested at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Analysis performed at Oak Ridge National Laboratory showed an importance to the relative location of the MLI and aerogel blankets. Apparent thermal conductivity testing under cryogenicvacuum conditions was performed to verify the analytical conclusion. Tests results are shown to be in agreement with the analysis which indicated that the best performance is obtained with aerogel layers located in the middle of the blanket insulation system.

Johnson, W L [NASA Kennedy Space Center, Kennedy Space Center, Florida; Demko, Jonathan A [ORNL; Fesmire, J. E. [NASA Kennedy Space Center, Kennedy Space Center, Florida

2010-01-01T23:59:59.000Z

429

Multifoil insulation study for weight reduction. Technical information report  

DOE Green Energy (OSTI)

The purpose of the present task is to develop high temperature multi-foil insulation suitable for use in the SP-100 thermoelectric converter project. Part of this task involves careful examination of alternative foil and foil spacing materials with the goal of effecting significant weight savings over current state-of-the-art foil insulation. This task involved the determination of the state-of-the-art foils, ascertaining what data is available, what additional data is required, preliminary assessment of the suitability of alternate foil and spacer materials, and specific recommendations for additional tests required to qualify new and existing insulation designs for use in the SP-100.

Glazer, S.D.

1984-01-01T23:59:59.000Z

430

Outdoor polymeric insulators long-term exposed to HVDC  

SciTech Connect

Field experience from outdoor polymeric insulators exposed to HVDC under natural contamination conditions is presented. This paper summarizes the peak leakage current statistics, the hydrophobicity and the surface material conditions studied by electron spectroscopy for chemical analysis (ESCA) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The results show a strong interrelation between the surface conditions and the performance with respect to leakage currents. Moreover, the results show that the surface conditions and the performance of the insulators exposed to HVDC are rather similar to those of the insulators exposed to HVAC.

Soerqvist, T.; Vlastos, A.E. [Chalmers Univ. of Technology, Gothenburg (Sweden)

1997-04-01T23:59:59.000Z

431

Insulation of Pipe Bends Improves Efficiency of Hot Oil Furnaces  

E-Print Network (OSTI)

Thermodynamic analyses of processes indicated low furnace efficiencies on certain hot oil furnaces. Further investigation, which included Infrared (IR) thermography testing of several furnaces, identified extremely hot surfaces on the outside of the convective sections. Consultation with the furnace manufacturer then revealed that furnaces made in the 1960's tended to not insulate the pipe bends in the convective section. When insulation was added within the covers of the pipe bends on one furnace, the energy efficiency improved by approximately 11%. The total savings are approximately 14,000 Million Btu/yr on one furnace. Insulation will be applied to several other furnaces at the site.

Haseltine, D. M.; Laffitte, R. D.

1999-05-01T23:59:59.000Z

432

New particle-control techniques for gas-insulated apparatus  

SciTech Connect

The feasibilities of two new methods of controlling contaminating particles in gas-insulated apparatus have been experimentally investigated. The first method is to coat the particles with an insulating layer: for the first time it was found that (1) coatings can render harmless particles that would otherwise lower the withstand voltage by factors of 2 to 5 and (2) coatings can be formed on particles residing in the system. The second method, trapping particles in an insulating material, was found effective also, and suitable materials were compounded for different temperature ranges.

Pace, M.O.; Adcock, J.L.; Christophorou, L.G.

1983-01-01T23:59:59.000Z

433

Metallic hydrogen research  

DOE Green Energy (OSTI)

Theoretical studies predict that molecular hydrogen can be converted to the metallic phase at very high density and pressure. These conditions were achieved by subjecting liquid hydrogen to isentropic compression in a magnetic-flux compression device. Hydrogen became electrically conducting at a density of about 1.06 g/cm/sup 3/ and a calculated pressure of about 2 Mbar. In the experimental device, a cylindrical liner, on implosion by high explosive, compresses a magnetic flux which in turn isentropically compresses a hydrogen sample; coaxial conical anvils prevent escape of the sample during compression. One anvil contains a coaxial cable that uses alumina ceramic as an insulator; this probe allows continuous measurement of the electrical conductivity of the hydrogen. A flash x-ray radiograph exposed during the experiment records the location of the sample-tube boundaries and permits calculation of the sample density. The theoretical underpinnings of the metallic transition of hydrogen are briefly summarized, and the experimental apparatus and technique, analytical methods, and results are described. 9 figures.

Burgess, T.J.; Hawke, R.S.

1978-11-16T23:59:59.000Z

434

Light Metals  

Science Conference Proceedings (OSTI)

Alternative processes; Anode design and operation; Cell fundamentals and ... Hot-rolling technologies; Deformation of materials; Primary metal production.

435

PRE-SW Insulator Calculation Engine (ICE) Version 2.0, Beta  

Science Conference Proceedings (OSTI)

ICE determines the electric field (E-field) distribution on transmission line polymer insulators (also called NCI or composite insulators) and aids in the selection of the appropriate corona ring.Benefits & Value:Determine the appropriate application of corona rings on transmission line polymer insulators enabling life expectancy.Simple data entry of information selected from pre-populated structure, insulator and hardware ...

2013-09-08T23:59:59.000Z

436

Insulator Calculation Engine (ICE) 1.00 (for funders of Program 35.012)  

Science Conference Proceedings (OSTI)

ICE determines the electric field (E-field) distribution on transmission line polymer insulators (also called NCI or composite insulators) and aids in the selection of the appropriate corona ring.Benefits & ValueDetermine the appropriate application of corona rings on transmission line polymer insulators enabling life expectancy.Simple data entry of information selected from pre-populated structure, insulator and hardware ...

2012-12-10T23:59:59.000Z

437

Study on Online Insulation Monitoring System for Working DC Power of Power Plants and Substations  

Science Conference Proceedings (OSTI)

The measurement of insulation resistance between DC power supply and ground is important in a DC operating power supply system. We proved a new model for measuring insulating resistance between ground and DC system. A lots of actual application shows ... Keywords: Insulation resistance, DC power system, Insulation monitor, Leakage current

Yunqing Liu; Xichao Wang

2010-06-01T23:59:59.000Z

438

Transient Behaviour and Helium Discharge in Cryogenic Distribution Line (QRL) Headers Following Breakdown of Insulation Vacuum  

E-Print Network (OSTI)

Transient Behaviour and Helium Discharge in Cryogenic Distribution Line (QRL) Headers Following Breakdown of Insulation Vacuum

Chorowski, M

1997-01-01T23:59:59.000Z

439

Detection of partial discharges by a monopole antenna in insulation oil  

Science Conference Proceedings (OSTI)

This paper dealt with the measurement and analysis of electromagnetic waves generated by partial discharge (PD) in insulation oil to develop insulation diagnostic techniques for oil-immersed transformers. Two types of narrow-band monopole antennas with ... Keywords: electromagnetic wave, insulation diagnosis, insulation oil, monopole antenna, partial discharge (PD), resonant frequency

Chang-Hwan Jin; Jung-Yoon Lee; Dae-Won Park; Gyung-Suk Kil

2012-04-01T23:59:59.000Z

440

Commercial Air Barrier Requirements for Insulated Ceilings - Code Notes |  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Barrier Requirements for Insulated Ceilings - Code Notes Air Barrier Requirements for Insulated Ceilings - Code Notes The 2009 International Energy Conservation Code requires openings in the building envelope to be sealed to prevent air leakage into and out of the space, including an air barrier at insulation installations. Publication Date: Wednesday, June 22, 2011 cn_commercial_air_barrier_requirements_for_insulated_ceilings.pdf Document Details Prepared by: Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program Focus: Compliance Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-2007 2009 IECC Document type: Code Notes Target Audience: Architect/Designer Builder Code Official Contractor Engineer Contacts Web Site Policies U.S. Department of Energy USA.gov Last Updated: Thursday, September 20, 2012 - 17:25

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Carpe Diem: Install Insulated Roman Shades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carpe Diem: Install Insulated Roman Shades Carpe Diem: Install Insulated Roman Shades Carpe Diem: Install Insulated Roman Shades March 16, 2010 - 11:44am Addthis John Lippert As I mentioned in yesterday's blog, I had insulated window quilts installed on most of my home's windows. I should have bought window quilts for all of our windows, but I refrained from doing so on two downstairs windows to save money (which, in the long run, I didn't). There were window shades already there; they didn't do much from a thermal perspective, but they did provide privacy and room darkening. Well, they need to be replaced now, and I'm looking again at high efficiency thermal window shades. This time I'm considering thermal Roman shades. About a dozen years ago my wife and I went on the Tour of Solar Homes, the local component of the annual National Solar Tour sponsored by the American

442

Farmers RECC - Residential Insulation Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmers RECC - Residential Insulation Rebate Program Farmers RECC - Residential Insulation Rebate Program Farmers RECC - Residential Insulation Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Maximum Rebate $200 Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Free energy audit at Farmers RECC members residence and up to $200 depending on amount of energy which can be saved. Provider Farmers RECC The Farmers Rural Electric Cooperative (RECC) Button-Up Program provides free energy audits and rebates for insulation upgrades to its residential customers. Farmers RECC's energy advisor will visit the customer's home, conduct an energy audit, and calculate the heat gain/heat loss for the home. If needed, customers can then receive up to $200 to increase the

443

Savings Project: Insulate Your Water Heater Tank | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Your Water Heater Tank Addthis Project Level medium Energy Savings 20-45 annually Time to Complete 1.5 hours Overall Cost 30 Insulate your hot water tank to save energy and...

444

Manipulation of bacteria using three dimensional insulator based dielectrophoresis  

E-Print Network (OSTI)

Insulator-based dielectrophoresis (iDEP) is a very promising technique for sorting microparticles based on their electrical properties. By using constrictions in a microchannel to generate large electric field gradients, ...

Braff, William Allan

2011-01-01T23:59:59.000Z

445

Exchange-Coupling-Induced Symmetry Breaking in Topological Insulators  

E-Print Network (OSTI)

An exchange gap in the Dirac surface states of a topological insulator (TI) is necessary for observing the predicted unique features such as the topological magnetoelectric effect as well as to confine Majorana fermions. ...

Wei, Peng

446

System for increasing corona inception voltage of insulating oils  

DOE Patents (OSTI)

The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil.

Rohwein, Gerald J. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

447

Moisture Control in Insulated Raised Floor Systems in Southern Louisiana  

E-Print Network (OSTI)

polyisocyanurate foam, open-cell sprayed polyurethane foams of vary- ing vapor permeance, closed-cell sprayed in guidance for insulating raised floors in the hot and humid climate of the Gulf Houses with pier foundations

448

Measure Guideline: Sealing and Insulating of Ducts in Existing Homes  

SciTech Connect

This document begins with a discussion on potential cost and performance benefits of duct sealing and insulating. It continues with a review of typical duct materials and components and the overall procedures for assessing and improving the duct system.

Aldrich, R.; Puttagunta, S.

2011-12-01T23:59:59.000Z

449

Replacement of Damaged Electrical Insulators on Live Cross-Over ...  

Science Conference Proceedings (OSTI)

Abstract Scope, With amperage creep, the cross-over busbars electrical insulation of this smelter was ... Compact Filter Design for Gas Treatment Centers ... Gas-Solid Flow Applications for Powder Handling in Aluminum Smelters Processes.

450

Aerogel-Based Insulation for Industrial Steam Distribution Systems  

SciTech Connect

Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energy’s Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT®, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspen’s best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XT’s commercial success has been driven by it’s 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

John Williams

2011-03-30T23:59:59.000Z

451

SiGe-On-Insulator (SGOI) Technology and MOSFET Fabrication  

E-Print Network (OSTI)

In this work, we have developed two different fabrication processes for relaxed Si??xGex-on-insulator (SGOI) substrates: (1) SGOI fabrication by etch-back approach, and (2) by "smart-cut" approach utilizing ...

Cheng, Zhiyuan

452

Radiative transfer and thermal performance levels in foam insulation boardstocks  

E-Print Network (OSTI)

The validity of predictive models for the thermal conductivity of foam insulation is established based on the fundamental geometry of the closed-cell foam. The extinction coefficient is experimentally and theoretically ...

Moreno, John David

1991-01-01T23:59:59.000Z

453

Adding Insulation to an Existing Home | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

is a sound investment that is likely pay for itself quickly in reduced utility bills. Insulation inhibits heat flow through the building envelope of your home, saving money and...

454

Development and testing of insulated drillpipe  

DOE Green Energy (OSTI)

The Geothermal Research Department at Sandia National Laboratories, in collaboration with Drill Cool Systems, Inc., has worked to develop and test insulated drillpipe (IDP). IDP will allow much cooler drilling fluid to reach the bottom of the hole, making possible the use of downhole motors, electronics, and steering tools that are now unusable in high-temperature formations. Other advantages of cooler fluid include reduced degradation of drilling fluid, longer bit life, and reduced corrosion rates. The paper describes the theoretical background, laboratory testing, and field testing of IDP. Structural and thermal laboratory testing procedures and results are described. Results are given for a field test in a geothermal well, in which circulating temperatures in IDP are compared with those in conventional drillpipe (CDP) at different flow rates. A brief description of the software used to model wellbore temperature and to calculate sensitivity to IDP design differences is included, along with a comparison of calculated and measured wellbore temperatures in the field test. Analysis of mixed (IDP and CDP) drill strings and discussion of where IDP should be placed in a mixed string are presented.

FINGER,JOHN T.; JACOBSON,RONALD D.; CHAMPNESS,A.T.

2000-01-26T23:59:59.000Z

455

Methods of making glass wool blowing insulation  

SciTech Connect

A process is described of making pieces of glass wool, suitable to be blown into attics as thermal insulation, from an elongated generally laminar resiliently compressible glass wool blanket having an original thickness in an unrestrained condition and made of glass fibers bonded with thermoset resin. The process comprises feeding the blanket longitudinally through a compressing station where it is resiliently compressed from its original thickness to a smaller thickness, and feeding the compressed blanket longitudinally between a rotating backup roll and a cooperative rotating cutting roll from one side of the rolls, the cutting roll including a supporting cylinder. A plywood blade-mounting cylinder is mounted on the supporting cylinder, circular cutting blades each have shank portions spaced from each other and disposed substantially completely around an inner periphery of the blade. Straight cutting blades have shank portions spaced from each other and disposed substantially completely along a length of the blade. Resiliently compressible plugs, the circular cutting blades respectively are separately mounted on the plywood cylinder circumferentially distributed substantially throughout the length spaced equally from each other axially by a distance smaller than the original thickness of the blanket, and having their shank portions mounted respectively in slits extending substantially all the way through a wall thickness of the plywood cylinder. The straight cutting blades respectively are separatedly mounted on the plywood cylinder axially distributed throughout the circumference.

Johnson, A.R.; Yawberg, R.C.

1987-07-28T23:59:59.000Z

456

Dimensioning Guidelines for Applying Insulators in Contaminated Environments  

Science Conference Proceedings (OSTI)

A particular weakness of outdoor substations is the external insulation. The insulation is particularly susceptible to failure if proper attention has not been given to its design, condition monitoring, and maintenance. In regions characterized by high contamination levels, appropriate dimensioning, regular maintenance, and the application of palliative measures can be critical to ensure that the system meets its outage performance targets. This can involve pure maintenance measures such as ...

2013-12-17T23:59:59.000Z

457

Insulating gathering lines; Contractor overcomes obstacles on California oil pipelines  

Science Conference Proceedings (OSTI)

Isotherm Co. Inc., installed more than 1 million linear ft of fiberglass pipe insulation on 2- and 3-in. crude oil gathering lines at the Belridge oil field in Kern County, Calif. The project, which involved insulating 200 miles of pipeline, was completed in 7 months. In addition to the size of the project and time constraints, the contractor was faced with several other challenges, including scheduling. The way in which these challenges were met are described in this paper.

Not Available

1988-03-01T23:59:59.000Z

458

Net Solar radiation: passive systems with moveable insulation  

Science Conference Proceedings (OSTI)

Heat loss from uninsulated glazings of passive solar collectors can be checked by use of movable insulation. Five passivehybrid solar energy systems are studied in this paper. The buildings are monitored by the National Solar Data Network (NSDN) whose system is shown schematically. Tests show that no high cost direct gain solar systems were economically viable without movable insulation. Monitored seasonal performance of the five sites showed three good, and two poor performances. Each case is specified in detail.

Howard, B.D.

1982-06-01T23:59:59.000Z

459

Insulating Behavior of a Trapped Ideal Fermi Gas  

E-Print Network (OSTI)

We investigate theoretically and experimentally the center-of-mass motion of an ideal Fermi gas in a combined periodic and harmonic potential. We find a crossover from a conducting to an insulating regime as the Fermi energy moves from the first Bloch band into the bandgap of the lattice. The conducting regime is characterized by an oscillation of the cloud about the potential minimum, while in the insulating case the center of mass remains on one side of the potential.

L. Pezze'; L. Pitaevskii; A. Smerzi; S. Stringari; G. Modugno; E. DeMirandes; F. Ferlaino; H. Ott; G. Roati; M. Inguscio

2004-01-30T23:59:59.000Z

460

Partition Functions and Stability Criteria of Topological Insulators  

E-Print Network (OSTI)

The non-chiral edge excitations of quantum spin Hall systems and topological insulators are described by means of their partition function. The stability of topological phases protected by time-reversal symmetry is rediscussed in this context and put in relation with the existence of discrete anomalies and the lack of modular invariance of the partition function. The $\\Z_2$ characterization of stable topological insulators is extended to systems with interacting and non-Abelian edge excitations.

Andrea Cappelli; Enrico Randellini

2013-09-09T23:59:59.000Z

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Development of a Leave-in-Place Slab Edge Insulating Form System  

SciTech Connect

Concrete slabs represent the primary foundation type in residential buildings in the fast-growing markets throughout the southern and southwestern United States. Nearly 75% of the 2005 U.S. population growth occurred in these southern tier states. Virtually all of these homes have uninsulated slab perimeters that transfer a small, but steady, flow of heat from conditioned space to outdoors during the heating season. It is estimated that new home foundations constructed each year add 0.016 quads annually to U.S. national energy consumption; we project that roughly one quarter of this amount can be attributed to heat loss through the slab edge and the remaining three quarters to deep ground transfers, depending upon climate. With rising concern over national energy use and the impact of greenhouse gas emissions, it is becoming increasingly imperative that all cost-effective efforts to improve building energy efficiency be implemented. Unlike other building envelope components that have experienced efficiency improvements over the years, slab edge heat loss has largely been overlooked. From our vantage point, a marketable slab edge insulation system would offer significant benefits to homeowners, builders, and the society as a whole. Conventional slab forming involves the process of digging foundation trenches and setting forms prior to the concrete pour. Conventional wood form boards (usually 2 x 10's) are supported by vertical stakes on the outer form board surface, and by supporting 'kickers' driven diagonally from the top of the form board into soil outside the trench. Typically, 2 x 10's can be used only twice before they become waste material, contributing to an additional 400 pounds of construction waste per house. Removal of the form boards and stakes also requires a follow-up trip to the jobsite by the concrete subcontractor and handling (storage/disposal) of the used boards. In the rare cases where the slab is insulated (typically custom homes with radiant floor heating), the most practical insulation strategy is to secure rigid foam insulation, such as Dow Styrofoam{trademark}, to the inside of the wooden slab edge forms. An alternative is to clad insulation to the perimeter of the slab after the slab has been poured and cured. In either case, the foam must have a 'termite strip' that prevents termites from creating hidden tunnels through or behind the foam on their way to the wall framing above. Frequently this termite strip is a piece of sheet metal that must be fabricated for each project. The above-grade portion of the insulation also needs to be coated for appearance and to prevent damage from construction and UV degradation. All these steps add time, complexity, and expense to the insulating process.

Marc Hoeschele; Eric Lee

2009-08-31T23:59:59.000Z

462

External Insulation of Masonry Walls and Wood Framed Walls  

Science Conference Proceedings (OSTI)

The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

Baker, P.

2013-01-01T23:59:59.000Z

463

ZIP: Zip-code Insulation Program (for microcomputers). Software  

SciTech Connect

ZIP (the ZIP-code Insulation Program) is a computer program developed to support the DoE Insulation Fact Sheet by providing users with customized estimates of economic levels of residential insulation for any location in the United States, keyed to the first three digits of its ZIP Code. The ZIP program currently calculates economic levels of insulation for attic floors, exterior wood-frame and masonry walls, floors over unheated areas, slab floors, and basement and crawlspace walls. The economic analysis can be conducted for either new or existing houses. Climate parameters are contained in a file on the ZIP diskette and automatically retrieved when the program is run. Regional energy and insulation price data are also retrieved from the ZIP diskette, but these can be overridden to more closely correspond to local prices. ZIP can be run for a single ZIP Code and specified heating and cooling system. It can also be run in a batch mode for any number of consecutive ZIP Codes in order to provide a table of economic insulation levels for use at the state or national level. Software Description: The software is written in the Basic programming language for implementation on the COMPAQ Portable II or compatible machines using MS DOS operating system.

Petersen, S.R.

1989-01-01T23:59:59.000Z

464

Settling of loose-fill insulations due to vibration  

SciTech Connect

Vibration and impact testing of loose-fill cellulosic, fiberglass, and rock wool insulations has been carried out to provide a data base for settled density tests. The ratio of final density to initial density for the three materials has been determined for repeated 19-mm (0.75-in.) drops, repeated 152-mm (6.0-in.) drops, and vibrations at frequencies from 10 to 60 Hz with displacements from 0.1 mm (0.004 in.) to 6.35 mm (0.25 in.). Repeated 19-mm or 152-mm drops increased the density ratio for rock wool insulation specimens the most, while the cellulosic insulation specimens were affected the least. Density ratios after 200 19-mm drops averaged 1.75 for loose-fill rock wool, 1.45 for loose-fill fiberglass, and 1.27 for loose-fill cellulosic insulations. Vibration tests for 7200 s at 0.1-mm displacement and 15 Hertz produced negligible changes in the densities of all three loose-fill insulations. An 1800-s vibration test at 2.5 mm (0.1 in.) and 10 Hz resulted in average density ratios of 1.05, 1.11, and 1.18 for specimens of loose-fill cellulosic, rock wool, and fiberglass insulations, respectively. Changes in either frequency of vibration, displacement, or test duration can be used to achieve a wide range of laboratory results. Efforts to correlate laboratory results with in situ density measurements are presented.

Yarbrough, D.W.; McElroy, D.L.; Wright, J.W.

1981-12-01T23:59:59.000Z

465

Settling of loose-fill insulations due to vibration  

SciTech Connect

Vibration and impact testing of loose-fill cellulosic, fiberglass, and rock wool insulations has been carried out to provide a data base for settled density tests. The ratio of final density to initial density for the three materials has been determined for repeated 19-mm (0.75-in.) drops, repeated 152-mm (6.0-in.) drops, and vibrations at frequencies from 10 to 60 Hz with displacements from 0.1 mm (0.004 in.) to 6.35 mm (0.25 in.). Repeated 19-mm or 152-mm drops increased the density ratio for rock wool insulation specimens the most, while the cellulosic insulation specimens were affected the least. Density ratios after 200 19-mm drops averaged 1.75 for loose-fill rock wool, 1.45 for loose-fill fiberglass, and 1.27 for loose-fill cellulosic insulations. Vibration tests for 7200 s at 0.1-mm displacement and 15 Hertz produced negligible changes in the densities of all three loose-fill insulations. An 1800-s vibration test at 2.5 mm (0.1 in.) and 10 Hz resulted in average density ratios of 1.05, 1.11, and 1.18 for specimens of loose-fill cellulosic, rock wool, and fiberglass insulations, respectively. Changes in either frequency of vibration, displacement, or test duration can be used to achieve a wide range of laboratory results. Efforts to correlate laboratory results with in situ density measurements are presented.

Yarbrough, D.W.; Wright, J.H.; McElroy, D.L.; Scanlan, T.F.

1983-01-01T23:59:59.000Z

466

Energy and global warming impacts of CFC alternative technologies for foam building insulations  

Science Conference Proceedings (OSTI)

Chlorofluorocarbons (CFCS) have been used as blowing agents in foam insulation, as the working fluids in cooling and refrigeration equipment, and as solvents in general and precision cleaning applications since their introduction in the 1930s. The number of applications and volumes of CFCs used grew at a tremendous pace during the 1960s and 1970s, but in the mid-1980s it was confirmed that these extremely useful chemicals contribute to the destruction of stratospheric zone and that they are the primary cause of the CFCs have also been found to be second only to carbon dioxide as a factor causing increased greenhouse warming. These chemicals are being phased out of use rapidly to protect the ozone layer and it is very important that the replacements for CFCs do not result in a net increase in global warming by introducing less efficient processes that lead to higher energy use and increased carbon dioxide emissions. A study was conducted to identify those alternative chemicals and technologies that could replace CFCs in energy related applications before the year 2000, and to assess the total potential impact of those alternatives on global warming. The analysis for this project included an estimate of the direct effects from the release of blowing agents, refrigerants, and solvents into the atmosphere and the indirect effects of carbon dioxide emissions resulting from energy use for commercial and residential building insulation, household and commercial refrigeration, building and automobile air conditioning, and general metal and electronics solvent cleaning. This paper focuses on those aspects of the study relevant to building insulation. In general the hydrofluorocarbon (HFC) and hydrochlorofluorocarbon alternatives for CFCs lead to large and sometimes dramatic reductions in total equivalent warming impact, lifetime equivalent C0{sub 2} emissions (TEWI). Most of the reductions result from decreased direct effects without significant changes in energy use.

Fischer, S.K.; Fairchild, P.D.; Hughes, P.J.

1992-09-01T23:59:59.000Z

467

Energy and global warming impacts of CFC alternative technologies for foam building insulations  

SciTech Connect

Chlorofluorocarbons (CFCS) have been used as blowing agents in foam insulation, as the working fluids in cooling and refrigeration equipment, and as solvents in general and precision cleaning applications since their introduction in the 1930s. The number of applications and volumes of CFCs used grew at a tremendous pace during the 1960s and 1970s, but in the mid-1980s it was confirmed that these extremely useful chemicals contribute to the destruction of stratospheric zone and that they are the primary cause of the CFCs have also been found to be second only to carbon dioxide as a factor causing increased greenhouse warming. These chemicals are being phased out of use rapidly to protect the ozone layer and it is very important that the replacements for CFCs do not result in a net increase in global warming by introducing less efficient processes that lead to higher energy use and increased carbon dioxide emissions. A study was conducted to identify those alternative chemicals and technologies that could replace CFCs in energy related applications before the year 2000, and to assess the total potential impact of those alternatives on global warming. The analysis for this project included an estimate of the direct effects from the release of blowing agents, refrigerants, and solvents into the atmosphere and the indirect effects of carbon dioxide emissions resulting from energy use for commercial and residential building insulation, household and commercial refrigeration, building and automobile air conditioning, and general metal and electronics solvent cleaning. This paper focuses on those aspects of the study relevant to building insulation. In general the hydrofluorocarbon (HFC) and hydrochlorofluorocarbon alternatives for CFCs lead to large and sometimes dramatic reductions in total equivalent warming impact, lifetime equivalent C0{sub 2} emissions (TEWI). Most of the reductions result from decreased direct effects without significant changes in energy use.

Fischer, S.K.; Fairchild, P.D.; Hughes, P.J.

1992-01-01T23:59:59.000Z

468

Investigation of the fire performance of building insulation in full-scale and laboratory fire tests  

SciTech Connect

Twenty-two insulations are exposed to fire tests including the 25 ft Tunnel test, the Attic Floor Radiant Panel test and actual fire conditions of a simulated attic configuration. The insulations consisted of a number of cellulose fiber insulations, utilizing various chemical treatments, glass fiber and mineral fiber insulations. The fire performance characteristics of the insulations were measured in each of the three test scenarios and the report compares their results.

Kleinfelder, W.A.

1984-04-01T23:59:59.000Z

469

Insulating Structural Ceramics Program, Final Report  

Science Conference Proceedings (OSTI)

New materials and corresponding manufacturing processes are likely candidates for diesel engine components as society and customers demand lower emission engines without sacrificing power and fuel efficiency. Strategies for improving thermal efficiency directly compete with methodologies for reducing emissions, and so the technical challenge becomes an optimization of controlling parameters to achieve both goals. Approaches being considered to increase overall thermal efficiency are to insulate certain diesel engine components in the combustion chamber, thereby increasing the brake mean effective pressure ratings (BMEP). Achieving higher BMEP rating by insulating the combustion chamber, in turn, requires advances in material technologies for engine components such as pistons, port liners, valves, and cylinder heads. A series of characterization tests were performed to establish the material properties of ceramic powder. Mechanical chacterizations were also obtained from the selected materials as a function of temperature utilizing ASTM standards: fast fracture strength, fatique resistance, corrosion resistance, thermal shock, and fracture toughness. All ceramic materials examined showed excellent wear properties and resistance to the corrosive diesel engine environments. The study concluded that the ceramics examined did not meet all of the cylinder head insert structural design requirements. Therefore we do not recommend at this time their use for this application. The potential for increased stresses and temperatures in the hot section of the diesel engine combined with the highly corrosive combustion products and residues has driven the need for expanded materials capability for hot section engine components. Corrosion and strength requirements necessitate the examination of more advanced high temperture alloys. Alloy developments and the understanding of processing, structure, and properties of supperalloy materials have been driven, in large part, by the gas turbine community over the last fifty years. Characterization of these high temperature materials has, consequently, concentrated heavily upon application conditions similiar to to that encountered in the turbine engine environment. Significantly less work has been performed on hot corrosion degradation of these materials in a diesel engine environment. This report examines both the current high temperature alloy capability and examines the capability of advanced nickle-based alloys and methods to improve production costs. Microstructures, mechanical properties, and the oxidation/corrosion behavior of commercially available silicon nitride ceramics were investigated for diesel engine valve train applications. Contact, sliding, and scratch damage mechanisms of commercially available silicon nitride ceramics were investigated as a function of microstructure. The silicon nitrides with a course microstructure showed a higher material removal rate that agrees with a higher wear volume in the sliding contact tests. The overall objective of this program is to develop catalyst materials systems for an advanced Lean-NOx aftertreatment system that will provide high NOx reduction with minimum engine fuel efficiency penalty. With Government regulations on diesel engine NOx emissions increasingly becoming more restrictive, engine manufacturers are finding it difficult to meet the regulations solely with engine design strategies (i.e. improved combustion, retarded timing, exhaust gas recirculation, etc.). Aftertreatment is the logical technical approach that will be necessary to achieve the required emission levels while at the same time minimally impacting the engine design and its associated reliability and durability concerns.

Andrews, Mark J.; Tandon, Raj; Ott, Eric; Hind, Abi Akar; Long, Mike; Jensen, Robert; Wheat, Leonard; Cusac, Dave; Lin, H. T.; Wereszczak, Andrew A.; Ferber, Mattison K.; Lee, Sun Kun; Yoon, Hyung K.; Moreti, James; Park, Paul; Rockwood, Jill; Boyer, Carrie; Ragle, Christie; Balmer-Millar, Marilou; Aardahl, Chris; Habeger, Craig; Rappe, Ken; Tran, Diana; Koshkarian, Kent; Readey, Michael

2005-11-22T23:59:59.000Z

470

CERTIFICATE OF FIELD VERIFICATION AND DIAGNOSTIC TESTING CF-4R-ENV-22 Quality Insulation Installation (QII) -Insulation Stage Checklist (Page 1 of 3)  

E-Print Network (OSTI)

of the CBC are allowed and must be insulated. These areas shall be called out on the building plansCERTIFICATE OF FIELD VERIFICATION AND DIAGNOSTIC TESTING CF-4R-ENV-22 Quality Insulation Installation (QII) - Insulation Stage Checklist (Page 1 of 3) Site Address: Enforcement Agency: Permit Number

471

Precious Metals  

Science Conference Proceedings (OSTI)

"Advances in the Extractive Metallurgy of Selected Rare and Precious Metals" ( 1991 Review of Extractive Metallurgy), J.E. Hoffmann, April 1991, pp. 18-23.

472

Performance of Thermal Insulation Containing Microencapsulated Phase Change Material  

SciTech Connect

The objective of this study is dynamic thermal performance microencapsulated phase change material (PCM) blended with loose-fill cellulose insulation. Dynamic hot-box testing and heat-flux measurements have been made for loose-fill cellulose insulation with and without uniformly distributed microencapsulated PCM. The heat flux measurements were made with a heat-flow-meter (HFM) apparatus built in accordance with ASTM C 518. Data were obtained for 1.6 lb{sub m}/ft{sup 3} cellulose insulation containing 0 to 40 wt% PCM. Heat-flux data resulting from a rapid increase in the temperature on one side of a test specimen initially at uniform temperature were analyzed to access the effect of PCM on total heat flow. The heat flux was affected by the PCM for about 100 minutes after the temperature increase. The total heat flow during this initial period decreased linearly with PCM content from 6.5 Btu/ft{sup 2} at 0% PCM to 0.89 Btu/ft{sup 2} for 40 wt% PCM. The cellulose insulation with PCM discharged heat faster than the untreated cellulose when the hot-side temperature of the test specimen was reduced. In addition, hot-box apparatus built in accordance with ASTM C 1363 was utilized for dynamic hot-box testing of a wood stud wall assembly containing PCM-enhanced cellulose insulation. Experimental data obtained for wood-frame wall cavities containing cellulose insulation with PCM was compared with results obtained from cavities containing only cellulose insulation.

Kosny, Jan [ORNL; Yarbrough, David [R & D Services; Syed, Azam M [ORNL

2007-01-01T23:59:59.000Z

473

Cellular glass insulation keeps liquefied gas from vaporizing  

SciTech Connect

The North West Shelf Project, located on the Burrup Peninsula in Western Australia, supplies much of that vast state with natural gas for domestic and industrial applications. Some of the gas is also exported to Japan as liquefied natural gas (LNG). While awaiting shipment to Japan, the LNG is stored at {minus}322 F in four storage tanks, each with a capacity of 2.5 million ft{sup 3}. When Woodside Offshore Petroleum Pty Ltd., operator of the LNG facility, selected insulation material for the storage tanks, it went in search of a material with more than just insulating value. Since the insulation is installed inside the tanks, it must be able to resist wicking or absorbing the LNG. Also, it had to have sufficient strength to withstand the weight of the 2.5 million ft{sup 3} of LNG without being crushed or losing its insulting properties. And, as a safety precaution, the selected materials should neither burn nor support combustion. Ultimately, Woodside selected a cellular glass insulation called Foamglas, from Pittsburgh Corning Corp., that met all the performance criteria and was cost competitive with the lesser-performing alternatives. Foamglas is produced from strong, inert borosilicate glass. Its insulating capability is provided by the tiny, closed cells of air encapsulated within the foam-like structure of the glass. Since the cells are closed,neither liquid nor vapor can enter the structure of the insulation. The inert glass itself will not absorb or react with LNG, nor will it burn or support a fire. The cellular structure provides effective insulation in both not and cold applications, and offers a fire barrier.

NONE

1995-11-01T23:59:59.000Z

474

Three-Dimensional Topological Insulators in I-III-VI2 and II-IV-V2 Chalcopyrite Semiconductors  

SciTech Connect

The recent discovery of topological insulators with exotic metallic surface states has garnered great interest in the fields of condensed matter physics and materials science.1 A number of spectacular quantum phenomena have been predicted when the surface states are under the influence of magnetism and superconductivity,2 5 which could open up new opportunities for technological applications in spintronics and quantum computing. To achieve this goal, material realization of topological insulators with desired physical properties is of crucial importance. Based on first-principles calculations, here we show that a large number of ternary chalcopyrite compounds of composition I-III-VI2 and II-IV-V2 can realize the topological insulating phase in their native states. The crystal structure of chalcopyrites is derived from the frequently used zinc-blende structure, and many of them possess a close lattice match to important mainstream semiconductors, which is essential for a smooth integration into current semiconductor technology. The diverse optical, electrical and structural properties of chalcopyrite semiconductors,6 and particularly their ability to host room-temperature ferromagnetism,7 9 make them appealing candidates for novel spintronic devices.

Feng, wanxiang [Chinese Academy of Sciences; Ding, Jun [Beijing National Laboratory for Condensed Matter Physics/Chinese Academy of Scie; Xiao, Di [ORNL; Yao, yugui [Chinese Academy of Sciences

2011-01-01T23:59:59.000Z

475

Method for producing metal oxide aerogels  

DOE Patents (OSTI)

A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm{sup 3} and greater than 0.27g/cm{sup 3}. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods. 8 figs.

Tillotson, T.M.; Poco, J.F.; Hrubesh, L.W.; Thomas, I.M.

1995-04-25T23:59:59.000Z

476

Method for producing metal oxide aerogels  

SciTech Connect

A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm.sup.3 and greater than 0.27g/cm.sup.3. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods.

Tillotson, Thomas M. (Tracy, CA); Poco, John F. (Livermore, CA); Hrubesh, Lawrence W. (Pleasanton, CA); Thomas, Ian M. (Livermore, CA)

1995-01-01T23:59:59.000Z

477

Sound insulation of pipe lagging. An experimental study with airborne sound excitation  

SciTech Connect

Steam pipes in the Swedish power industry are commonly heat insulated with 100 to 200 mm wire net reinforced mineral wool (RW441) plus an outer cover of 0.7 mm aluminium. The aim of the project has been to determine whether thicker heat insulations also increase the sound insulation as theory predicts; whether a two step cover will improve the sound insulation, what supports between the pipe and the outer cover do for the sound insulation; and how sprayed materials like the Cafco behave in comparison and connection with traditional sound insulating materials like mineral wool.

Westerberg, G.

1982-01-01T23:59:59.000Z

478

Characterization of thermal performance of fibrous insulations subject to a humid environment  

SciTech Connect

The insulating capability of a typical Fiberglas insulation slab exposed to different types of environment on each side of the slab was evaluated, based on theory that takes into account heat conduction, natural convection, phase changes, and gas infiltration. The results are analyzed and combined with recent theoretical work to find useful heat transfer characteristics for each of the material studied. These included RA-24 insulation, high-density wool; R-11 Batt insulation, low-density wool; RA-22 insulation, low-density board; and roof deck insulation, high-density board. 5 refs.

Vafai, K. (Ohio State Univ., Columbus (United States))

1993-03-01T23:59:59.000Z

479

Reduce Your Heating Bills with Better Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation October 3, 2008 - 11:09am Addthis John Lippert If you pay your own energy bills, you don't need to be reminded that energy prices are escalating. Energy price projections for this coming winter are not encouraging. According to the Energy Information Administration, residential natural gas prices during the upcoming heating season (October though March) are projected to average $14.93 per Mcf, an increase of about 17% compared to last year's heating season. Residential heating oil prices are projected to average $4.13 per gallon this winter, an increase of about 25%. What if you live in an all-electric house? Many utilities are continuing to pursue retail electricity rate increases in response to power generation

480

Reduce Your Heating Bills with Better Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation October 3, 2008 - 11:09am Addthis John Lippert If you pay your own energy bills, you don't need to be reminded that energy prices are escalating. Energy price projections for this coming winter are not encouraging. According to the Energy Information Administration, residential natural gas prices during the upcoming heating season (October though March) are projected to average $14.93 per Mcf, an increase of about 17% compared to last year's heating season. Residential heating oil prices are projected to average $4.13 per gallon this winter, an increase of about 25%. What if you live in an all-electric house? Many utilities are continuing to pursue retail electricity rate increases in response to power generation

Note: This page contains sample records for the topic "metal jacketing insulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Concept for the intrinsic dielectric strength of electrical insulation materials  

DOE Green Energy (OSTI)

A concept is described for a possible definition of the intrinsic dielectric strength of insulating materials, which can be considered as a fundamental material property similar to other material properties, such as Young's modulus, index of refraction, and expansion coefficients. The events leading to the recognition of this property are reported, and the property is defined. This intrinsic dielectric strength concept should facilitate interpretation of results from accelerated and/or natural aging programs intended to predict electrical insulation service life of encapsulants in photovoltaic modules. As a practical application, this new concept enabled a possible explanation of the cause of failures in buried high-voltage cables with polyethylene insulation, and a possible explanation of the causes of electrical trees in polyethylene; these also are described.

Cuddihy, E.F.

1985-04-15T23:59:59.000Z

482

Topological Flat Band Models and Fractional Chern Insulators  

E-Print Network (OSTI)

Topological insulators and their intriguing edge states can be understood in a single-particle picture and can as such be exhaustively classified. Interactions significantly complicate this picture and can lead to entirely new insulating phases, with an altogether much richer and less explored phenomenology. Most saliently, lattice generalizations of fractional quantum Hall states, dubbed fractional Chern insulators, have recently been predicted to be stabilized by interactions within nearly dispersionless bands with non-zero Chern number, $C$. Contrary to their continuum analogues, these states do not require an external magnetic field and may potentially persist even at room temperature, which make these systems very attractive for possible applications such as topological quantum computation. This review recapitulates the basics of tight-binding models hosting nearly flat bands with non-trivial topology, $C\

Emil J. Bergholtz; Zhao Liu

2013-08-01T23:59:59.000Z

483

Investigating The Use Of Ultrasound For Evaluating Aging Wiring Insulation  

E-Print Network (OSTI)

This paper reviews our initial efforts to investigate the use of ultrasound to evaluate wire insulation. Our initial model was a solid conductor with heat shrink tubing applied. In this model, various wave modes were identified. Subsequently, several aviation classes of wires (MIL-W81381, MIL-W-22759/34, and MIL-W-22759/87) were measured. The wires represented polyimide and ethylene-tetraflouroethylene insulations, and combinations of polyimide and flouropolymer plastics. Wire gages of 12, 16, and 20 AWG sizes were measured. Finally, samples of these wires were subjected to high temperatures for short periods of time to cause the insulation to degrade. Subsequent measurements indicated easily detectable changes.

Eric I. Madaras; Robert F. Anastasi

2001-01-01T23:59:59.000Z

484

Wool fiberglass insulation manufacturing industry - background information for proposed standards  

SciTech Connect

A Standard of Performance for the control of emissions from wool fiberglass insulation manufacturing facilities is being proposed under authority of Section 111 of the Clean Air Act. This standard would apply to new, modified, or reconstructed wool fiberglass insulation manufacturing lines that utilize the rotary spin forming process and that commence construction on or after the date of proposal of the regulation. This document contains background information and environmental and economic impact assessments of the regulatory alternatives considered in developing the proposed standard. 79 references, 280 tables.

Not Available

1983-12-01T23:59:59.000Z