Sample records for metal jacketing insulation

  1. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

    1994-09-20T23:59:59.000Z

    A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

  2. Method of preventing leakage of a fluid along and through an insulating jacket of a thermocouple

    DOE Patents [OSTI]

    Thermos, Anthony Constantine (Greer, SC); Rahal, Fadi Elias (Easley, SC)

    2002-01-01T23:59:59.000Z

    A thermocouple assembly includes a thermocouple; a plurality of lead wires extending from the thermocouple; an insulating jacket extending along and enclosing the plurality of leads; and at least one internally sealed area within the insulating jacket to prevent fluid leakage along and within the insulating jacket. The invention also provides a method of preventing leakage of a fluid along and through an insulating jacket of a thermocouple including the steps of a) attaching a plurality of lead wires to a thermocouple; b) adding a heat sensitive pseudo-wire to extend along the plurality of lead wires; c) enclosing the lead wires and pseudo-wire inside an insulating jacket; d) locally heating axially spaced portions of the insulating jacket to a temperature which melts the pseudo-wire and fuses it with an interior surface of the jacket.

  3. Tubing carried perforating gun with insulation jacket

    SciTech Connect (OSTI)

    Donovan, J.F.; Yates, D.N.

    1991-05-21T23:59:59.000Z

    This patent describes a method of insulating a tubing carried perforating gun which is run through a subterranean wellbore. It includes making up at the well surface a tubing string for introduction within the well, the tubing string carrying a perforating gun assembly.

  4. Experimental Investigation on Thermal Properties of a Steel-jacketed Steam Heating Pipeline with Vacuum Insulation 

    E-Print Network [OSTI]

    Na, W.; Zou, P.

    2006-01-01T23:59:59.000Z

    The steel-jacketed steam heating pipeline employs vacuum insulation to improve the insulating effect and reduce the corrosion, and hence increases the heat transfer efficiency of the heating network and building energy efficiency. It is important...

  5. Superconducting ``metals'' and ``insulators'' Smitha Vishveshwara

    E-Print Network [OSTI]

    Superconducting ``metals'' and ``insulators'' Smitha Vishveshwara Department of Physics, University to the distinction between normal metals and insulators: the superconducting ``metal'' with delocalized qua- siparticle excitations and the superconducting ``insulator'' with localized quasiparticles. We describe

  6. Approximating Metal-Insulator Transitions

    E-Print Network [OSTI]

    C. Danieli; K. Rayanov; B. Pavlov; G. Martin; S. Flach

    2014-05-06T23:59:59.000Z

    We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate metal-insulator transitions (MIT) at the finite iteration steps. We also report evidence on mobility edges which are at variance to the celebrated Aubry-Andre model. The dynamics near the MIT shows a critical slowing down of the ballistic group velocity in the metallic phase similar to the divergence of the localization length in the insulating phase.

  7. Experimental Investigation on Thermal Properties of a Steel-jacketed Steam Heating Pipeline with Vacuum Insulation

    E-Print Network [OSTI]

    Na, W.; Zou, P.

    2006-01-01T23:59:59.000Z

    . Vacuum insulation panel [J]. Vacuum. v46,1995: 839?842 [4] R. E. COLLINS, T. M. SIMKO. Current status of the science and technology of vacuum glazing [J]. Solar Energy. V62, 1998(3):189?213 [5] Douglas M. Smith, Alok Maskar, Ulrich Boes. Aerogel...

  8. Graphene physics and insulator-metal transition in compressed...

    Office of Scientific and Technical Information (OSTI)

    Graphene physics and insulator-metal transition in compressed hydrogen Citation Details Title: Graphene physics and insulator-metal transition in compressed hydrogen Authors:...

  9. TRANSITION DE MOTT METAL-INSULATOR TRANSITIONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    TRANSITION DE MOTT METAL-INSULATOR TRANSITIONS IN TRANSITION METAL OXIDES by D. B. McWHAN, A. MENTH oxydes de metaux de transition on observe une transition d'isolant a metal puis de metal a isolant de type Mott lorsque l'on augmentelenombre d'electrons d. Danslesysthe(V1-~Cr~)203une transition de Mott

  10. Metal-insulator transition in holography

    E-Print Network [OSTI]

    Aristomenis Donos; Sean A. Hartnoll

    2013-01-19T23:59:59.000Z

    We exhibit an interaction-driven metal-insulator quantum phase transition in a holographic model. Use of a helical lattice enables us to break translation invariance while preserving homogeneity. The metallic phase is characterized by a sharp Drude peak and a d.c. resistivity that increases with temperature. In the insulating phase the Drude spectral weight is transferred into a `mid-infrared' peak and to energy scales of order the chemical potential. The d.c. resistivity now decreases with temperature. In the metallic phase, operators breaking translation invariance are irrelevant at low energy scales. In the insulating phase, translation symmetry breaking effects are present at low energies. We find the near horizon extremal geometry that captures the insulating physics.

  11. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or...

  12. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Wednesday, 29 March 2006 00:00 Turning a...

  13. Metallization and insulization during impact

    SciTech Connect (OSTI)

    Gilman, J.J.

    1992-10-01T23:59:59.000Z

    It is pointed out that the large strains produced by hypervelocity impacts can be expected to produce dramatic changes in the chemical bonding (electronic structures) of materials. This will change the mechanical behavior towards increased ductility when a semiconductor is compressed until it becomes metallic; and towards increased brittleness when a transition metal is expanded so as to localize its d-band electrons. Both isotropic compression (expansion) and shear strains can cause these transformations. Critical deformation criteria are given based on the observed cubic to tetragonal transformations in compressed semiconductors.

  14. Metal-Insulator Photocathode Heterojunction for Directed Electron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and low-intrinsic emittance electron pulses have been predicted for hybrid metal-insulator photocathode designs constructed from three to four monolayer MgO films on...

  15. Novel metals and insulators from holography

    E-Print Network [OSTI]

    Aristomenis Donos; Jerome P. Gauntlett

    2014-06-02T23:59:59.000Z

    Using simple holographic models in $D=4$ spacetime dimensions we construct black hole solutions dual to $d=3$ CFTs at finite charge density with a Q-lattice deformation. At zero temperature we find new ground state solutions with broken translation invariance, either in one or both spatial directions, which exhibit insulating or metallic behaviour depending on the parameters of the holographic theory. For low temperatures and small frequencies, the real part of the optical conductivity has a power-law behaviour, with the exponent determined by the ground state. We also obtain an expression for the the DC conductivity at finite temperature in terms of horizon data of the black hole solutions.

  16. Holographic Metals and Insulators with Helical Symmetry

    E-Print Network [OSTI]

    Aristomenis Donos; Blaise Goutéraux; Elias Kiritsis

    2014-09-17T23:59:59.000Z

    Homogeneous, zero temperature scaling solutions with Bianchi VII spatial geometry are constructed in Einstein-Maxwell-Dilaton theory. They correspond to quantum critical saddle points with helical symmetry at finite density. Assuming $AdS_{5}$ UV asymptotics, the small frequency/(temperature) dependence of the AC/(DC) electric conductivity along the director of the helix are computed. A large class of insulating and conducting anisotropic phases is found, as well as isotropic, metallic phases. Conduction can be dominated by dissipation due to weak breaking of translation symmetry or by a quantum critical current.

  17. Metal-Insulating-Semi-Incorporation of Silicon Nanoparticles into

    E-Print Network [OSTI]

    Foundation Research Experience for Undergraduates under grant number DMR-1063150, Renewable Energy Materials Research Science and Engineering Center under grant number DMR-0820518 and the Department of Energy SunMetal-Insulating-Semi- Conductor Incorporation of Silicon Nanoparticles into Silicon Based Solar

  18. Hall effect at a tunable metal-insulator transition

    E-Print Network [OSTI]

    Teizer, Winfried; Hellman, F.; Dynes, RC.

    2003-01-01T23:59:59.000Z

    Using a rotating magnetic field, the Hall effect in three-dimensional amorphous GdxSi1-x has been measured in the critical regime of the metal-insulator transition for a constant total magnetic field. The Hall coefficient R-0 is negative, indicating...

  19. Jacketed lamp bulb envelope

    DOE Patents [OSTI]

    MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD); Gitsevich, Aleksandr (Gaithersburg, MD); Bass, Gary K. (Mt. Airy, MD); Dolan, James T. (Frederick, MD); Kipling, Kent (Gaithersburg, MD); Kirkpatrick, Douglas A. (Great Falls, VA); Leng, Yongzhang (Damascus, MD); Levin, Izrail (Silver Spring, MD); Roy, Robert J. (Frederick, MD); Shanks, Bruce (Gaithersburg, MD); Smith, Malcolm (Alexandria, VA); Trimble, William C. (Columbia, MD); Tsai, Peter (Olney, MD)

    2001-01-01T23:59:59.000Z

    A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.

  20. Memristor using a transition metal nitride insulator

    DOE Patents [OSTI]

    Stevens, James E; Marinella, Matthew; Lohn, Andrew John

    2014-10-28T23:59:59.000Z

    Apparatus is disclosed in which at least one resistive switching element is interposed between at least a first and a second conducting electrode element. The resistive switching element comprises a metal oxynitride. A method for making such a resistive switching element is also disclosed.

  1. Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides

    E-Print Network [OSTI]

    New Mexico, University of

    Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides Jing Chen bound and leaky surface plasmon (SP) modes. The dispersion relations, propagation lengths steering devices. ©2008 Optical Society of America OCIS codes: (240.6680) Surface plasmons; (250

  2. Investigation of the impact of insulator material on the performance of dissimilar electrode metal-insulator-metal diodes

    SciTech Connect (OSTI)

    Alimardani, Nasir; Tan, Cheng; Lampert, Benjamin P.; Conley, John F., E-mail: jconley@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331 (United States); King, Sean W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States); French, Benjamin L. [Ocotillo Materials Laboratory, Intel Corporation, Chandler, Arizona 85248 (United States)

    2014-07-14T23:59:59.000Z

    The performance of thin film metal-insulator-metal (MIM) diodes is investigated for a variety of large and small electron affinity insulators using ultrasmooth amorphous metal as the bottom electrode. Nb{sub 2}O{sub 5}, Ta{sub 2}O{sub 5}, ZrO{sub 2}, HfO{sub 2}, Al{sub 2}O{sub 3}, and SiO{sub 2} amorphous insulators are deposited via atomic layer deposition (ALD). Reflection electron energy loss spectroscopy (REELS) is utilized to measure the band-gap energy (E{sub G}) and energy position of intrinsic sub-gap defect states for each insulator. E{sub G} of as-deposited ALD insulators are found to be Nb{sub 2}O{sub 5}?=?3.8?eV, Ta{sub 2}O{sub 5}?=?4.4?eV, ZrO{sub 2}?=?5.4?eV, HfO{sub 2}?=?5.6?eV, Al{sub 2}O{sub 3}?=?6.4?eV, and SiO{sub 2}?=?8.8?eV with uncertainty of ±0.2?eV. Current vs. voltage asymmetry, non-linearity, turn-on voltage, and dominant conduction mechanisms are compared. Al{sub 2}O{sub 3} and SiO{sub 2} are found to operate based on Fowler-Nordheim tunneling. Al{sub 2}O{sub 3} shows the highest asymmetry. ZrO{sub 2}, Nb{sub 2}O{sub 5}, and Ta{sub 2}O{sub 5} based diodes are found to be dominated by Frenkel-Poole emission at large biases and exhibit lower asymmetry. The electrically estimated trap energy levels for defects that dominate Frenkel-Poole conduction are found to be consistent with the energy levels of surface oxygen vacancy defects observed in REELS measurements. For HfO{sub 2}, conduction is found to be a mix of trap assisted tunneling and Frenkel-Poole emission. Insulator selection criteria in regards to MIM diodes applications are discussed.

  3. Metal-insulator Transition by Holographic Charge Density Waves

    E-Print Network [OSTI]

    Yi Ling; Chao Niu; Jianpin Wu; Zhuoyu Xian; Hongbao Zhang

    2014-08-06T23:59:59.000Z

    We construct a gravity dual for charge density waves (CDW) in which the translational symmetry along one spatial direction is spontaneously broken. Our linear perturbation calculation on the gravity side produces the frequency dependence of the optical conductivity, which exhibits the two familiar features of charge density waves, namely the pinned collective mode and gapped single-particle excitation. These two features indicate that our gravity dual also provides a new mechanism to implement the metal to insulator phase transition by CDW, which is further supported by the fact that d.c. conductivity decreases with the decreased temperature below the critical temperature.

  4. Anderson metal-insulator transitions with classical magnetic impurities

    SciTech Connect (OSTI)

    Jung, Daniel [School of Engineering and Science, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang 790-784 (Korea, Republic of); Kettemann, Stefan [School of Engineering and Science, Jacobs University Bremen gGmbH,Campus Ring 1, 28759 Bremen, Germany and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang 790-784 (Korea, Republic of)

    2014-08-20T23:59:59.000Z

    We study the effects of classical magnetic impurities on the Anderson metal-insulator transition (AMIT) numerically. In particular we find that while a finite concentration of Ising impurities lowers the critical value of the site-diagonal disorder amplitude W{sub c}, in the presence of Heisenberg impurities, W{sub c} is first increased with increasing exchange coupling strength J due to time-reversal symmetry breaking. The resulting scaling with J is compared to analytical predictions by Wegner [1]. The results are obtained numerically, based on a finite-size scaling procedure for the typical density of states [2], which is the geometric average of the local density of states. The latter can efficiently be calculated using the kernel polynomial method [3]. Although still suffering from methodical shortcomings, our method proves to deliver results close to established results for the orthogonal symmetry class [4]. We extend previous approaches [5] by combining the KPM with a finite-size scaling analysis. We also discuss the relevance of our findings for systems like phosphor-doped silicon (Si:P), which are known to exhibit a quantum phase transition from metal to insulator driven by the interplay of both interaction and disorder, accompanied by the presence of a finite concentration of magnetic moments [6].

  5. Metal-insulator transition in Na{sub x}WO{sub 3}: Photoemission spectromicroscopy study

    SciTech Connect (OSTI)

    Paul, Sanhita, E-mail: raj@iiserkol.ac.in; Ghosh, Anirudha, E-mail: raj@iiserkol.ac.in; Raj, Satyabrata, E-mail: raj@iiserkol.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research - Kolkata, Mohanpur Campus, Nadia -741252, West Bengal (India)

    2014-04-24T23:59:59.000Z

    We have investigated the validity of percolation model, which is quite often invoked to explain the metal-insulator transition in sodium tungsten bronzes, Na{sub x}WO{sub 3} by photoelectron spectromicroscopy. The spatially resolved direct spectromicroscopic probing on both the insulating and metallic phases of high quality single crystals of Na{sub x}WO{sub 3} reveals the absence of any microscopic inhomogeneities embedded in the system within the experimental limit. Neither any metallic domains in the insulating host nor any insulating domains in the metallic host have been found to support the validity of percolation model to explain the metal-insulator transition in Na{sub x}WO{sub 3}.

  6. Metal-insulator-semiconductor structures on p-type GaAs with low interface state density

    E-Print Network [OSTI]

    Chen, Zhi

    Metal-insulator-semiconductor structures on p-type GaAs with low interface state density Zhi Chen properties of in situ deposited Si3N4 /Si/p-GaAs metal-insulator-semiconductor structures have been offered by a low gate leakage technology in GaAs, such as metal insulator structures, func- tional Ga

  7. Superelastic metal-insulator phase transition in single-crystal VO[subscript 2] nanobeams

    E-Print Network [OSTI]

    Fan, W.

    We investigated external-stress-induced metal-insulator phase transitions in cantilevered single-crystal VO[subscript 2] nanobeams at variable temperatures using a combined theoretical and experimental approach. An atomic ...

  8. Thermal-performance study of liquid metal fast breeder reactor insulation

    SciTech Connect (OSTI)

    Shiu, Kelvin K.

    1980-09-01T23:59:59.000Z

    Three types of metallic thermal insulation were investigated analytically and experimentally: multilayer reflective plates, multilayer honeycomb composite, and multilayer screens. Each type was subjected to evacuated and nonevacuated conditions, where thermal measurements were made to determine thermal-physical characteristics. A variation of the separation distance between adjacent reflective plates of multilayer reflective plates and multilayer screen insulation was also experimentally studied to reveal its significance. One configuration of the multilayer screen insulation was further selected to be examined in sodium and sodium oxide environments. The emissivity of Type 304 stainless steel used in comprising the insulation was measured by employing infrared technology. A comprehensive model was developed to describe the different proposed types of thermal insulation. Various modes of heat transfer inherent in each type of insulation were addressed and their relative importance compared. Provision was also made in the model to allow accurate simulation of possible sodium and sodium oxide contamination of the insulation. The thermal-radiation contribution to heat transfer in the temperature range of interest for LMFBR's was found to be moderate, and the suppression of natural convection within the insulation was vital in preserving its insulating properties. Experimental data were compared with the model and other published results. Moreover, the three proposed test samples were assessed and compared under various conditions as viable LMFBR thermal insulations.

  9. Mid-infrared intersubband polaritons in dispersive metal-insulator-metal resonators

    SciTech Connect (OSTI)

    Manceau, J.-M., E-mail: jean-michel.manceau@u-psud.fr; Ongarello, T.; Colombelli, R., E-mail: raffaele.colombelli@u-psud.fr [Institut d'Electronique Fondamentale, Univ. Paris Sud, UMR8622 CNRS, 91405 Orsay (France); Zanotto, S.; Sorba, L. [NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa (Italy); Tredicucci, A. [NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa (Italy); Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy); Biasiol, G. [Laboratorio TASC, CNR-IOM, Area Science Park, I-34149 Trieste (Italy)

    2014-08-25T23:59:59.000Z

    We demonstrate room-temperature strong coupling between a mid-infrared (??=?9.9??m) intersubband transition and the fundamental cavity mode of a metal-insulator-metal resonator. Patterning of the resonator surface enables surface-coupling of the radiation and introduces an energy dispersion which can be probed with angle-resolved reflectivity. In particular, the polaritonic dispersion presents an accessible energy minimum at k?=?0 where—potentially—polaritons can accumulate. We also show that it is possible to maximize the coupling of photons into the polaritonic states and—simultaneously—to engineer the position of the minimum Rabi splitting at a desired value of the in-plane wavevector. This can be precisely accomplished via a simple post-processing technique. The results are confirmed using the temporal coupled mode theory formalism and their significance in the context of the strong critical coupling concept is highlighted.

  10. Half-metallic to insulating behavior of rare-earth nitrides C. M. Aerts,1

    E-Print Network [OSTI]

    Svane, Axel Torstein

    Half-metallic to insulating behavior of rare-earth nitrides C. M. Aerts,1 P. Strange,1 M. Horne,1 W in the literature that rare-earth nitrides may form half-metallic ferromagnets.6­8 This is sur- prising because 30 January 2004 The electronic structure of the rare-earth nitrides is studied systematically using

  11. Light-Induced Metal-Insulator Transition in a Switchable Mirror

    SciTech Connect (OSTI)

    Hoekstra, A. F. Th.; Roy, A. S.; Rosenbaum, T. F.; Griessen, R.; Wijngaarden, R. J.; Koeman, N. J.

    2001-06-04T23:59:59.000Z

    Rare earth hydride films can be converted reversibly from metallic mirrors to insulating windows simply by changing the surrounding hydrogen gas pressure at room temperature. At low temperatures, in situ doping is not possible in this way as hydrogen cannot diffuse. However, our finding of persistent photoconductivity under ultraviolet illumination offers an attractive possibility to tune yttrium hydride through the T=0 metal-insulator transition. Conductivity and Hall measurements are used to determine critical exponents. The unusually large value for the product of the static and dynamical critical exponents appears to signify the important role played by electron-electron interactions.

  12. High aspect ratio iridescent three-dimensional metal–insulator–metal capacitors using atomic layer deposition

    SciTech Connect (OSTI)

    Burke, Micheal, E-mail: micheal.burke@tyndall.ie; Blake, Alan; Djara, Vladimir; O'Connell, Dan; Povey, Ian M.; Cherkaoui, Karim; Monaghan, Scott; Scully, Jim; Murphy, Richard; Hurley, Paul K.; Pemble, Martyn E.; Quinn, Aidan J., E-mail: aidan.quinn@tyndall.ie [Tyndall National Institute, University College Cork, Cork (Ireland)

    2015-01-01T23:59:59.000Z

    The authors report on the structural and electrical properties of TiN/Al{sub 2}O{sub 3}/TiN metal–insulator–metal (MIM) capacitor structures in submicron three-dimensional (3D) trench geometries with an aspect ratio of ?30. A simplified process route was employed where the three layers for the MIM stack were deposited using atomic layer deposition (ALD) in a single run at a process temperature of 250?°C. The TiN top and bottom electrodes were deposited via plasma-enhanced ALD using a tetrakis(dimethylamino)titanium precursor. 3D trench devices yielded capacitance densities of 36 fF/?m{sup 2} and quality factors >65 at low frequency (200?Hz), with low leakage current densities (<3 nA/cm{sup 2} at 1 V). These devices also show strong optical iridescence which, when combined with the covert embedded capacitance, show potential for system in package (SiP) anticounterfeiting applications.

  13. Thermoelectric Effect across the Metal-Insulator Domain Walls in VO2

    E-Print Network [OSTI]

    Wu, Junqiao

    Thermoelectric Effect across the Metal-Insulator Domain Walls in VO2 Microbeams J. Cao,,, W. Fan-performance thermoelectric materials are currently one of the focuses in materials research for energy conversion technologies.1-4 A good thermoelectric material should have a relatively high thermopower (Seebeck coefficient

  14. Femtosecond NEXAFS of Photoinduced Insulator-Metal Transition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    delocalization of the charge carriers in the spatially extended conduction band cause an ultrafast transition to the metallic state as the valence and conductions bands once...

  15. Electrically induced insulator to metal transition in epitaxial SmNiO{sub 3} thin films

    SciTech Connect (OSTI)

    Shukla, Nikhil, E-mail: nss152@psu.edu; Dasgupta, Sandeepan; Datta, Suman [Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Joshi, Toyanath; Borisov, Pavel; Lederman, David [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

    2014-07-07T23:59:59.000Z

    We report on the electrically induced insulator to metal transition (IMT) in SmNiO{sub 3} thin films grown on (001) LaAlO{sub 3} by pulsed laser deposition. The behavior of the resistivity as a function of temperature suggests that the primary transport mechanism in the SmNiO{sub 3} insulating state is dominated by Efros-Shklovskii variable range hopping (ES-VRH). Additionally, the magnetic transition in the insulating state of SmNiO{sub 3} modifies the characteristics of the ES-VRH transport. Systematic DC and pulsed current-voltage measurements indicate that current-induced joule heating is the fundamental mechanism driving the electrically induced IMT in SmNiO{sub 3}. These transport properties are explained in context of the IMT in SmNiO{sub 3} being related to the strong electron-lattice coupling.

  16. VOLUME 86, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 4 JUNE 2001 Light-Induced Metal-Insulator Transition in a Switchable Mirror

    E-Print Network [OSTI]

    Wijngaarden, Rinke J.

    possibility to tune yttrium hydride through the T 0 metal-insulator transition. Conductivity and Hall

  17. Metal-insulator transition in silicon MOSFETs: new viewpoint

    E-Print Network [OSTI]

    Fominov, Yakov

    .T. Dolgopolov, PRB 33, 1076 (1986). / =-kT/EF C(n s) G. Zala, B. Narozhny, I.L. Aleiner PRB 64.A. Shashkin, S.V. Kravchenko, V.T. Dolgopolov, and T.M. Klapwijk, PRB, 66, 073303 (2002) (T)/=1-AkT, gm = ?2ns in a metallic 2D electron system. A.A. Shashkin, S.V. Kravchenko, V.T. Dolgopolov, and T.M. Klapwijk, PRB, 66

  18. Design and construction of a radiation resistant quadrupole using metal oxide insulated CICC

    SciTech Connect (OSTI)

    Albert F. Zeller

    2012-12-28T23:59:59.000Z

    The construction of a engineering test model of a radiation resistant quadrupole is described. The cold-iron quadrupole uses coils fabricated from metal-oixide (synthetic spinel) insulated Cable-In-Conduit-Conductor (CICC). The superconductor is NbTi in a copper matrix. The quadrupole is designed to produce a pole-tip field of 2 T with an operating current of 7,000 A.

  19. Microwave-induced spin currents in ferromagnetic-insulator|normal-metal bilayer system

    SciTech Connect (OSTI)

    Agrawal, Milan, E-mail: magrawal@physik.uni-kl.de [Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany); Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, 67663 Kaiserslautern (Germany); Serga, Alexander A.; Lauer, Viktor; Papaioannou, Evangelos Th.; Hillebrands, Burkard; Vasyuchka, Vitaliy I. [Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany)

    2014-09-01T23:59:59.000Z

    A microwave technique is employed to simultaneously examine the spin pumping and the spin Seebeck effect processes in a YIG|Pt bilayer system. The experimental results show that for these two processes, the spin current flows in opposite directions. The temporal dynamics of the longitudinal spin Seebeck effect exhibits that the effect depends on the diffusion of bulk thermal-magnons in the thermal gradient in the ferromagnetic-insulator|normal-metal system.

  20. Discharge lamp with reflective jacket

    DOE Patents [OSTI]

    MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD); Kipling, Kent (Gaithersburg, MD)

    2001-01-01T23:59:59.000Z

    A discharge lamp includes an envelope, a fill which emits light when excited disposed in the envelope, a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed around the envelope and defining an opening, the reflector being configured to reflect some of the light emitted by the fill back into the fill while allowing some light to exit through the opening. The reflector may be made from a material having a similar thermal index of expansion as compared to the envelope and which is closely spaced to the envelope. The envelope material may be quartz and the reflector material may be either silica or alumina. The reflector may be formed as a jacket having a rigid structure which does not adhere to the envelope. The lamp may further include an optical clement spaced from the envelope and configured to reflect an unwanted component of light which exited the envelope back into the envelope through the opening in the reflector. Light which can be beneficially recaptured includes selected wavelength regions, a selected polarization, and selected angular components.

  1. Deuterium-deuterium nuclear cross-sections in insulator and metallic environments

    E-Print Network [OSTI]

    David Salzmann; Michael Hass

    2008-06-02T23:59:59.000Z

    The three-dimensional Thomas-Fermi (TF) model is used to simulate the variation of the d+d to t + p cross-section at low impact energies, when the target deuterium nucleus is embedded in metallic or insulator environments. Comparison of the computational results to recent experiments demonstrates that even though the TF model can explain some increase in the low energy cross section for metallic host, a full explanation of the experimental results is still lacking. Possible reasons for the disagreement are discussed.

  2. Interplay between Ferroelastic and Metal-Insulator Phase Transitions in Strained Quasi-2D VO[subscript 2] Nanoplatelets

    SciTech Connect (OSTI)

    Tselev, Alexander; Strelcov, Evgheni; Luk’ yanchuk, Igor A.; Budai, John D.; Tischler, Jonathan Z.; Ivanov, Ilia N.; Jones, Keith; Proksch, Roger; Kalinin, Sergei V.; Kolmakov, Andrei (Asylum); (ORNL); (SIUC); (UPJV)

    2011-08-09T23:59:59.000Z

    Formation of ferroelastic twin domains in vanadium dioxide (VO{sub 2}) nanosystems can strongly affect local strain distributions, and hence couple to the strain-controlled metal-insulator transition. Here we report polarized-light optical and scanning microwave microscopy studies of interrelated ferroelastic and metal-insulator transitions in single-crystalline VO{sub 2} quasi-two-dimensional (quasi-2D) nanoplatelets (NPls). In contrast to quasi-1D single-crystalline nanobeams, the 2D geometric frustration results in emergence of several possible families of ferroelastic domains in NPls, thus allowing systematic studies of strain-controlled transitions in the presence of geometrical frustration. We demonstrate the possibility of controlling the ferroelastic domain population by the strength of the NPl-substrate interaction, mechanical stress, and by the NPl lateral size. Ferroelastic domain species and domain walls are identified based on standard group-theoretical considerations. Using variable temperature microscopy, we imaged the development of domains of metallic and semiconducting phases during the metal-insulator phase transition and nontrivial strain-driven reentrant domain formation. A long-range reconstruction of ferroelastic structures accommodating metal-insulator domain formation has been observed. These studies illustrate that a complete picture of the phase transitions in single-crystalline and disordered VO{sub 2} structures can be drawn only if both ferroelastic and metal-insulator strain effects are taken into consideration and understood.

  3. Effects of imperfect insulating coatings on the flow partitioning between parallel channels in self-cooled liquid metal blankets

    SciTech Connect (OSTI)

    Gaizer, A.A.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

    1996-12-31T23:59:59.000Z

    Fully developed liquid-metal flow in a system of three straight rectangular ducts is investigated. The ducts are electrically coupled by common conducting walls covered with an imperfect insulating layer. A numerical model of magnetohydrodynamic (MHD) flow in the system is described. Since no additional assumptions, such as in the core-flow solution, have been made, this model can be used for the analysis of MHD flow in parallel ducts with nearly perfect insulating coating. Any orientation of the applied uniform magnetic field is possible. Electrical conductivities of the dividing and exterior walls, and of the insulating layers in individual channels can be varied independently, as well as characteristics of insulating imperfections in each channel. A restriction of equal pressure gradients in all ducts is imposed, and the flow partitioning between parallel channels is examined. Results of the numerical simulation of the influence of insulation imperfections on flow distribution and velocity profiles are presented. 9 refs., 6 figs.

  4. Observation of the Anderson Metal-Insulator Transition with Atomic Matter Waves: Theory and Experiment

    E-Print Network [OSTI]

    Gabriel Lemarié; Julien Chabé; Pascal Szriftgiser; Jean-Claude Garreau; Benoît Grémaud; Dominique Delande

    2009-07-20T23:59:59.000Z

    Using a cold atomic gas exposed to laser pulses -- a realization of the chaotic quasiperiodic kicked rotor with three incommensurate frequencies -- we study experimentally and theoretically the Anderson metal-insulator transition in three dimensions. Sensitive measurements of the atomic wavefunction and the use of finite-size scaling techniques make it possible to unambiguously demonstrate the existence of a quantum phase transition and to measure its critical exponents. By taking proper account of systematic corrections to one-parameter scaling, we show the universality of the critical exponent $\

  5. Electronic Excitations and Metal-Insulator Transition inPoly(3-hexylthiophene) Organic Field-Effect Transistors

    SciTech Connect (OSTI)

    Sai, N.; Li, Z.Q.; Martin, M.C.; Basov, D.N.; Di Ventra, M.

    2006-11-07T23:59:59.000Z

    We carry out a comprehensive theoretical and experimentalstudy of charge injection in poly(3-hexylthiophene) (P3HT) to determinethe most likely scenario for metal-insulator transition in this system.Wecalculate the optical-absorption frequencies corresponding to a polaronand a bipolaron lattice in P3HT. We also analyze the electronicexcitations for three possible scenarios under which a first- or asecond-order metal-insulator transition can occur in doped P3HT. Thesetheoretical scenarios are compared with data from infrared absorptionspectroscopy on P3HT thin-film field-effect transistors (FETs). Ourmeasurements and theoretical predictions suggest that charge-inducedlocalized states in P3HT FETs are bipolarons and that the highest dopinglevel achieved in our experiments approaches that required for afirst-order metal-insulator transition.

  6. Variation of the density of states in amorphous GdSi at the metal-insulator transition

    E-Print Network [OSTI]

    Bokacheva, L.; Teizer, Winfried; Hellman, F.; Dynes, RC.

    2004-01-01T23:59:59.000Z

    by the disordered potential cannot screen their interactions as well as the mo- bile ones, and therefore the Coulomb interactions among them are strong and cannot be treated perturbatively. Insulating and metallic behaviors are defined as follows. The sample... to the interactions in the conductivity s and the density of states (DOS) NsEd. The transport con- ductivity of a metallic material with strong Coulomb corre- lations follows a power law as a function of temperature: ssTd=s0+s1Ty, with y=0.5.2 On the insulating...

  7. Diamond logic inverter with enhancement-mode metal-insulator-semiconductor field effect transistor

    SciTech Connect (OSTI)

    Liu, J. W., E-mail: liu.jiangwei@nims.go.jp [International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Liao, M. Y.; Imura, M. [Optical and Electronic Materials Unit, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Watanabe, E.; Oosato, H. [Nanofabrication Platform, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Koide, Y., E-mail: koide.yasuo@nims.go.jp [Optical and Electronic Materials Unit, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Nanofabrication Platform, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Center of Materials Research for Low Carbon Emission, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-08-25T23:59:59.000Z

    A diamond logic inverter is demonstrated using an enhancement-mode hydrogenated-diamond metal-insulator-semiconductor field effect transistor (MISFET) coupled with a load resistor. The gate insulator has a bilayer structure of a sputtering-deposited LaAlO{sub 3} layer and a thin atomic-layer-deposited Al{sub 2}O{sub 3} buffer layer. The source-drain current maximum, extrinsic transconductance, and threshold voltage of the MISFET are measured to be ?40.7?mA·mm{sup ?1}, 13.2?±?0.1?mS·mm{sup ?1}, and ?3.1?±?0.1?V, respectively. The logic inverters show distinct inversion (NOT-gate) characteristics for input voltages ranging from 4.0 to ?10.0?V. With increasing the load resistance, the gain of the logic inverter increases from 5.6 to as large as 19.4. The pulse response against the high and low input voltages shows the inversion response with the low and high output voltages.

  8. Direct Observation of Nanoscale Peltier and Joule Effects at Metal-Insulator Domain Walls in Vanadium Dioxide Nanobeams

    E-Print Network [OSTI]

    Wu, Junqiao

    Direct Observation of Nanoscale Peltier and Joule Effects at Metal- Insulator Domain Walls localized alternating Peltier heating and cooling as well as Joule heating concentrated at the M-I domain the monoclinic phase identification. KEYWORDS: Vanadium dioxide, thermoreflectance microscopy, Peltier effect

  9. Time-resolved x-ray absorption spectroscopy of photoinduced insulator-metal transition in a colossal magnetoresistive manganite

    SciTech Connect (OSTI)

    Rini, M.; Tobey, R.; Wall, S.; Zhu, Y.; Tomioka, Y.; Tokura, Y.; Cavalleri, A.; Schoenlein, R.W.

    2008-08-01T23:59:59.000Z

    We studied the ultrafast insulator-metal transition in a manganite by means of picosecond X-ray absorption at the O K- and Mn L-edges, probing photoinduced changes in O-2p and Mn-3d electronic states near the Fermi level.

  10. MetalBosonic InsulatorSuperconductor Transition in Boron-Doped Granular Diamond Gufei Zhang,1,* Monika Zeleznik,2

    E-Print Network [OSTI]

    Bristol, University of

    . Second, the giant RðTÞ peak is observed in heavily boron-doped polycrystalline diamond thick filmsMetal­Bosonic Insulator­Superconductor Transition in Boron-Doped Granular Diamond Gufei Zhang,1 the onset of superconductivity in heavily boron-doped diamond. This anomalous RðTÞ peak in a 3D system

  11. Electrophoretic-like Gating Used To Control Metal-Insulator Transitions in Electronically Phase Separated Manganite Wires

    E-Print Network [OSTI]

    Tennessee, University of

    traditional carrier doping and by inducing electroresistive phase transitions in the material. In the case, and an electric field applied to the gate acts to change the material's access to electrons. This switchingElectrophoretic-like Gating Used To Control Metal-Insulator Transitions in Electronically Phase

  12. Amorphous silicon enhanced metal-insulator-semiconductor contacts for silicon solar cells

    SciTech Connect (OSTI)

    Bullock, J., E-mail: james.bullock@anu.edu.au; Cuevas, A.; Yan, D. [Research School of Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Demaurex, B.; Hessler-Wyser, A.; De Wolf, S. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Micro Engineering (IMT), Photovoltaics and Thin Film Electronic Laboratory PVLab, Maladière 71b, CH-200 Neuchâtel (Switzerland)

    2014-10-28T23:59:59.000Z

    Carrier recombination at the metal-semiconductor contacts has become a significant obstacle to the further advancement of high-efficiency diffused-junction silicon solar cells. This paper provides the proof-of-concept of a procedure to reduce contact recombination by means of enhanced metal-insulator-semiconductor (MIS) structures. Lightly diffused n{sup +} and p{sup +} surfaces are passivated with SiO{sub 2}/a-Si:H and Al{sub 2}O{sub 3}/a-Si:H stacks, respectively, before the MIS contacts are formed by a thermally activated alloying process between the a-Si:H layer and an overlying aluminum film. Transmission/scanning transmission electron microscopy (TEM/STEM) and energy dispersive x-ray spectroscopy are used to ascertain the nature of the alloy. Idealized solar cell simulations reveal that MIS(n{sup +}) contacts, with SiO{sub 2} thicknesses of ?1.55?nm, achieve the best carrier-selectivity producing a contact resistivity ?{sub c} of ?3 m? cm{sup 2} and a recombination current density J{sub 0c} of ?40 fA/cm{sup 2}. These characteristics are shown to be stable at temperatures up to 350?°C. The MIS(p{sup +}) contacts fail to achieve equivalent results both in terms of thermal stability and contact characteristics but may still offer advantages over directly metallized contacts in terms of manufacturing simplicity.

  13. Thickness-dependent metal-insulator transition in epitaxial SrRuO? ultrathin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shen, Xuan [Nanjing Univ. (China); Brookhaven National Lab. (BNL), Upton, NY (United States); Qiu, Xiangbiao [Nanjing Univ. (China); Su, Dong [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhou, Shengqiang [Inst. of Ion Beam Physics and Materials Research, Dresden (Germany); Li., Aidong [Nanjing Univ. (China); Wu, Di [Nanjing Univ. (China)

    2015-01-07T23:59:59.000Z

    Transport characteristics of ultrathin SrRuO? films, deposited epitaxially on TiO?-terminated SrTiO? (001) single-crystal substrates, were studied as a function of film thickness. Evolution from a metallic to an insulating behavior is observed as the film thickness decreases from 20 to 4 unit cells. In films thicker than 4 unit cells, the transport behavior obeys the Drude low temperature conductivity with quantum corrections, which can be attributed to weak localization. Fitting the data with 2-dimensional localization model indicates that electron-phonon collisions are the main inelastic relaxation mechanism. In the film of 4 unit cells in thickness, the transport behavior follows variable range hopping model, indicating a strongly localized state. Magnetoresistance measurements reveal a likely magnetic anisotropy with the magnetic easy axis along the out-of-plane direction.

  14. Magnetically Driven Metal-Insulator Transition in NaOsO3

    SciTech Connect (OSTI)

    Calder, Stuart A [ORNL; Christianson, Andrew D [ORNL; Lumsden, Mark D [ORNL; Lang, Jonathan [Argonne National Laboratory (ANL); Stone, Matthew B [ORNL; McMorrow, D. F. [University College, London; Garlea, Vasile O [ORNL; Kim, Jong-Woo [Argonne National Laboratory (ANL); Schlueter, J. A. [Argonne National Laboratory (ANL); Shi, Y. G. [Chinese Academy of Sciences; Yamaura, K. [National Institute for Materials Science, Tsukuba, Japan; Sun, Y. S. [MANA; Tsujimoto, Y. [Kyoto University, Japan

    2012-01-01T23:59:59.000Z

    The metal-insulator transition (MIT) is one of the most dramatic manifestations of electron correlations in materials. Various mechanisms producing MITs have been extensively considered, including the Mott (electron localization via Coulomb repulsion), Anderson (localization via disorder), and Peierls (local- ization via distortion of a periodic one-dimensional lattice) mechanisms. One additional route to a MIT proposed by Slater, in which long-range magnetic order in a three dimensional system drives the MIT, has received relatively little attention. Using neutron and x-ray scattering we show that the MIT in NaOsO3 is coincident with the onset of long-range commensurate three dimensional magnetic order. While candidate materials have been suggested, our experimental methodology allows the first definitive demonstration of the long predicted Slater MIT.

  15. Is the chiral phase transition induced by a metal-insulator transition?

    E-Print Network [OSTI]

    Antonio M. Garcia-Garcia; James C. Osborn

    2007-11-18T23:59:59.000Z

    We investigate the QCD Dirac operator with gauge configurations given by a liquid of instantons in the region of temperatures about the chiral phase transition. Both the quenched and unquenched cases are examined in detail. We present evidence of a localization transition in the low lying modes of the Dirac operator around the same temperature as the chiral phase transition. Thus both level statistics and eigenvectors of the QCD Dirac operator at the chiral phase transition have similar properties than those of a disordered conductor at the metal-insulator transition. This strongly suggests the phenomenon of Anderson localization (localization by destructive quantum interference) is the leading physical mechanism in the restoration of the chiral symmetry. Finally we argue that our findings are not in principle restricted to the ILM approximation and may also be found in lattice simulations.

  16. Thickness-dependent metal-insulator transition in epitaxial SrRuO? ultrathin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shen, Xuan; Qiu, Xiangbiao; Su, Dong; Zhou, Shengqiang; Li., Aidong; Wu, Di

    2015-01-07T23:59:59.000Z

    Transport characteristics of ultrathin SrRuO? films, deposited epitaxially on TiO?-terminated SrTiO? (001) single-crystal substrates, were studied as a function of film thickness. Evolution from a metallic to an insulating behavior is observed as the film thickness decreases from 20 to 4 unit cells. In films thicker than 4 unit cells, the transport behavior obeys the Drude low temperature conductivity with quantum corrections, which can be attributed to weak localization. Fitting the data with 2-dimensional localization model indicates that electron-phonon collisions are the main inelastic relaxation mechanism. In the film of 4 unit cells in thickness, the transport behavior follows variablemore »range hopping model, indicating a strongly localized state. Magnetoresistance measurements reveal a likely magnetic anisotropy with the magnetic easy axis along the out-of-plane direction.« less

  17. A Study of the Energy-Saving Potential of Metal Roofs Incorporating Dynamic Insulation Systems

    SciTech Connect (OSTI)

    Biswas, Kaushik [ORNL; Miller, William A [ORNL; Kriner, Scott [Metal Construction Association, Glenview, IL; Manlove, Gary [Metanna, Monument, CO

    2013-01-01T23:59:59.000Z

    This article presents various metal roof configurations that were tested at Oak Ridge National Laboratory in Tennessee, U.S. between 2009 and 2013, and describes their potential for reducing the attic-generated space-conditioning loads. These roofs contained different combinations of phase-change material, rigid insulation, low emittance surface, and above-sheathing ventilation with standing-seam metal panels on top. These roofs were designed to be installed on existing roofs decks, or on top of asphalt shingles for retrofit construction. All the tested roofs showed the potential for substantial energy savings compared to an asphalt shingle roof, which was used as a control for comparison. The roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. The attics were built on top of a conditioned room. All attics were vented at the soffit and ridge. The test roofs and attics were instrumented with an array of thermocouples. Heat flux transducers were installed in the roof deck and attic floor (ceiling) to measure the heat flows through the roof and between the attic and conditioned space below. Temperature and heat flux data were collected during the heating, cooling and swing seasons over a three-year period. Data from previous years of testing have been published. Here, data from the latest roof configurations being tested in year three of the project are presented. All test roofs were highly effective in reducing the heat flows through the roof and ceiling, and in reducing the diurnal attic-temperature fluctuations.

  18. Photo-response of a P3HT:PCBM blend in metal-insulator-semiconductor capacitors

    SciTech Connect (OSTI)

    Devynck, M.; Rostirolla, B.; Watson, C. P.; Taylor, D. M., E-mail: d.m.taylor@bangor.ac.uk [School of Electronic Engineering, Bangor University, Dean Street, Bangor, Gwynedd LL57 1UT (United Kingdom)

    2014-11-03T23:59:59.000Z

    Metal-insulator-semiconductor capacitors are investigated, in which the insulator is cross-linked polyvinylphenol and the active layer a blend of poly(3-hexylthiophene), P3HT, and the electron acceptor [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM). Admittance spectra and capacitance-voltage measurements obtained in the dark both display similar behaviour to those previously observed in P3HT-only devices. However, the photo-capacitance response is significantly enhanced in the P3HT:PCBM case, where exciton dissociation leads to electron transfer into the PCBM component. The results are consistent with a network of PCBM aggregates that is continuous through the film but with no lateral interconnection between the aggregates at or near the blend/insulator interface.

  19. Conduction processes in metal–insulator–metal diodes with Ta{sub 2}O{sub 5} and Nb{sub 2}O{sub 5} insulators deposited by atomic layer deposition

    SciTech Connect (OSTI)

    Alimardani, Nasir; McGlone, John M.; Wager, John F.; Conley, John F., E-mail: jconley@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, 1148 Kelley Engineering Center, Corvallis, Oregon 97331-5501 (United States)

    2014-01-15T23:59:59.000Z

    Metal–insulator–metal diodes with Nb{sub 2}O{sub 5} and Ta{sub 2}O{sub 5} insulators deposited via atomic layer deposition are investigated. For both Nb{sub 2}O{sub 5} and Ta{sub 2}O{sub 5}, the dominant conduction process is established as Schottky emission at small biases and Frenkel–Poole emission at large biases. Fowler–Nordheim tunneling is not found to play a role in determining current versus voltage asymmetry. The dynamic dielectric constants are extracted from conduction plots and found to be in agreement with measured optical dielectric constants. Trap energy levels at ?{sub T}???0.62 and 0.53?eV below the conduction band minimum are estimated for Nb{sub 2}O{sub 5} and Ta{sub 2}O{sub 5}, respectively.

  20. Recent Experiences with Corrosion Beneath Thermal Insulation in a Chemical Plant 

    E-Print Network [OSTI]

    Long, V. C.; Crawley, P. G.

    1984-01-01T23:59:59.000Z

    year old chemical plant located at La Porte, Texas. The program is intended to determine the extent of corrosion damage to major pieces of equipment that has occurred under inhibited calcium silicate insulation finished with aluminum jacketing...

  1. Metal-Insulator Transition Revisited for Cold Atoms in Non-Abelian Gauge Potentials

    E-Print Network [OSTI]

    Indubala I. Satija; Daniel C. Dakin; Charles W. Clark

    2006-07-10T23:59:59.000Z

    We discuss the possibility of realizing metal-insulator transitions with ultracold atoms in two-dimensional optical lattices in the presence of artificial gauge potentials. Such transitions have been extensively studied for magnetic fields corresponding to Abelian gauges; they occur when the magnetic flux penetrating the lattice plaquette is an irrational multiple of the magnetic flux quantum. Here we present the first study of these transitions for non-Abelian U(2) gauge fields, which can be realized with atoms with two pairs of degenerate internal states. In contrast to the Abelian case, the spectrum and localization transition in the non-Abelian case is strongly influenced by atomic momenta. In addition to determining the localization boundary, the momentum fragments the spectrum and the minimum energy viewed as a function of momentum exhibits a step structure. Other key characteristics of the non-Abelian case include the absence of localization for certain states and satellite fringes around the Bragg peaks in the momentum distribution and an interesting possibility that the transition can be tuned by the atomic momenta.

  2. Insulating conduction in Sn/Si(111): Possibility of a Mott insulating ground state and metallization/localization induced by carrier doping

    E-Print Network [OSTI]

    Hasegawa, Shuji

    Insulating conduction in Sn/Si(111): Possibility of a Mott insulating ground state measurements. The temperature dependence of the surface-state conductivity showed an insulating behavior from is insulating with a very small energy gap, which is consistent with a recent theoretical study G. Profeta and E

  3. Topological invariants for Standard Model: from semi-metal to topological insulator

    E-Print Network [OSTI]

    G. E. Volovik

    2010-01-18T23:59:59.000Z

    We consider topological invariants describing semimetal (gapless) and insulating (gapped) states of the quantum vacuum of Standard Model and possible quantum phase transitions between these states.

  4. Low leakage Ru-strontium titanate-Ru metal-insulator-metal capacitors for sub-20?nm technology node in dynamic random access memory

    SciTech Connect (OSTI)

    Popovici, M., E-mail: Mihaela.Ioana.Popovici@imec.be; Swerts, J.; Redolfi, A.; Kaczer, B.; Aoulaiche, M.; Radu, I.; Clima, S.; Everaert, J.-L.; Van Elshocht, S.; Jurczak, M. [Imec, Leuven 3001 (Belgium)

    2014-02-24T23:59:59.000Z

    Improved metal-insulator-metal capacitor (MIMCAP) stacks with strontium titanate (STO) as dielectric sandwiched between Ru as top and bottom electrode are shown. The Ru/STO/Ru stack demonstrates clearly its potential to reach sub-20?nm technology nodes for dynamic random access memory. Downscaling of the equivalent oxide thickness, leakage current density (J{sub g}) of the MIMCAPs, and physical thickness of the STO have been realized by control of the Sr/Ti ratio and grain size using a heterogeneous TiO{sub 2}/STO based nanolaminate stack deposition and a two-step crystallization anneal. Replacement of TiN with Ru as both top and bottom electrodes reduces the amount of electrically active defects and is essential to achieve a low leakage current in the MIM capacitor.

  5. Structural evolution across the insulator-metal transition in oxygen-deficient BaTiO3-? studied using neutron total scattering and Rietveld analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jeong, I.-K.; Lee, Seunghun; Jeong, Se-Young; Won, C. J.; Hur, N.; Llobet, A.

    2011-08-01T23:59:59.000Z

    Oxygen-deficient BaTiO3-? exhibits an insulator-metal transition with increasing ?. We performed neutron total scattering measurements to study structural evolution across an insulator-metal transition in BaTiO3-?. Despite its significant impact on resistivity, slight oxygen reduction (?=0.09) caused only a small disturbance on the local doublet splitting of Ti-O bond. This finding implies that local polarization is well preserved under marginal electric conduction. In the highly oxygen-deficient metallic state (?=0.25), however, doublet splitting of the Ti-O bond became smeared. The smearing of the local Ti-O doublet is complemented with long-range structural analysis and demonstrates that the metallic conduction in the highly oxygen-reducedmore »BaTiO3-? is due to the appearance of nonferroelectric cubic lattice.« less

  6. Structural evolution across the insulator-metal transition in oxygen-deficient BaTiO3-? studied using neutron total scattering and Rietveld analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jeong, I.-K.; Lee, Seunghun; Jeong, Se-Young; Won, C. J.; Hur, N.; Llobet, A.

    2011-08-01T23:59:59.000Z

    Oxygen-deficient BaTiO3-? exhibits an insulator-metal transition with increasing ?. We performed neutron total scattering measurements to study structural evolution across an insulator-metal transition in BaTiO3-?. Despite its significant impact on resistivity, slight oxygen reduction (?=0.09) caused only a small disturbance on the local doublet splitting of Ti-O bond. This finding implies that local polarization is well preserved under marginal electric conduction. In the highly oxygen-deficient metallic state (?=0.25), however, doublet splitting of the Ti-O bond became smeared. The smearing of the local Ti-O doublet is complemented with long-range structural analysis and demonstrates that the metallic conduction in the highly oxygen-reduced BaTiO3-? is due to the appearance of nonferroelectric cubic lattice.

  7. Magnetic and transport properties of amorphous Tb-Si alloys near the metal-insulator transition M. Liu and F. Hellman

    E-Print Network [OSTI]

    Hellman, Frances

    Magnetic and transport properties of amorphous Tb-Si alloys near the metal-insulator transition M; revised manuscript received 18 November 2002; published 4 February 2003 The magnetic and transport as a function of temperature. The spin-glass freezing seen in amorphous Gd-Si alloys is drastically affected

  8. Experimental study on vertical scaling of InAs-on-insulator metal-oxide-semiconductor field-effect transistors

    SciTech Connect (OSTI)

    Kim, SangHyeon, E-mail: dadembyora@mosfet.t.u-tokyo.ac.jp, E-mail: sh-kim@kist.re.kr; Yokoyama, Masafumi; Nakane, Ryosho; Takenaka, Mitsuru; Takagi, Shinichi [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ichikawa, Osamu; Osada, Takenori; Hata, Masahiko [Sumitomo Chemical Co., Ltd., 6 Kitahara, Tsukuba, Ibaraki 300-3294 (Japan)

    2014-06-30T23:59:59.000Z

    We have investigated effects of the vertical scaling on electrical properties in extremely thin-body InAs-on-insulator (-OI) metal-oxide-semiconductor field-effect transistors (MOSFETs). It is found that the body thickness (T{sub body}) scaling provides better short channel effect (SCE) control, whereas the T{sub body} scaling also causes the reduction of the mobility limited by channel thickness fluctuation (?T{sub body}) scattering (?{sub fluctuation}). Also, in order to achieve better SCEs control, the thickness of InAs channel layer (T{sub channel}) scaling is more favorable than the thickness of MOS interface buffer layer (T{sub buffer}) scaling from a viewpoint of a balance between SCEs control and ?{sub fluctuation} reduction. These results indicate necessity of quantum well channel structure in InAs-OI MOSFETs and these should be considered in future transistor design.

  9. Insulating and metallic spin glass in Ni-doped K x Fe 2 - y Se 2 single crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ryu, Hyejin; Abeykoon, Milinda; Wang, Kefeng; Lei, Hechang; Lazarevic, N.; Warren, J. B.; Bozin, E. S.; Popovic, Z. V.; Petrovic, C.

    2015-05-01T23:59:59.000Z

    We report electron doping effects by Ni in KxFe2-?-yNiySe?(0.06?y?1.44) single-crystal alloys. A rich ground-state phase diagram is observed. A small amount of Ni (~4%) suppressed superconductivity below 1.8 K, inducing insulating spin-glass magnetic ground state for higher Ni content. With further Ni substitution, metallic resistivity is restored. For high Ni concentration in the lattice the unit cell symmetry is high symmetry I4/mmm with no phase separation whereas both I4/m+I4/mmm space groups were detected in the phase separated crystals when concentration of Ni < Fe. The absence of superconductivity coincides with the absence of crystalline Fe vacancy order.

  10. Insulating and metallic spin glass in Ni-doped KxFe2-ySe? single crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ryu, Hyejin; Abeykoon, Milinda; Wang, Kefeng; Lei, Hechang; Lazarevic, N.; Warren, J. B.; Bozin, E. S.; Popovic, Z. V.; Petrovic, C.

    2015-05-01T23:59:59.000Z

    We report electron doping effects by Ni in KxFe2???yNiySe? (0.06 ? y ? 1.44) single crystal alloys. A rich ground state phase diagram is observed. A small amount of Ni (~ 4%) suppressed superconductivity below 1.8 K, inducing insulating spin glass magnetic ground state for higher Ni content. With further Ni substitution, metallic resistivity is restored. For high Ni concentration in the lattice the unit cell symmetry is high symmetry I4/mmm with no phase separation whereas both I4/m + I4/mmm space groups were detected in the phase separated crystals when concentration of Ni more »with the absence of crystalline Fe vacancy order.« less

  11. Effect of inhomogeneties and substrate on the dynamics of the metal-insulator transition in VO$_2$ thin films

    E-Print Network [OSTI]

    Rodriguez-Vega, M; Radue, E; Kittiwatanakul, S; Lu, J; Wolf, S A; Lukaszew, R A; Novikova, I; Rossi, E

    2015-01-01T23:59:59.000Z

    We study the thermal relaxation dynamics of VO$_2$ films after the ultrafast photo-induced metal-insulator transition for two VO$_2$ film samples grown on Al$_2$O$_3$ and TiO$_2$ substrates. We find two orders of magnitude difference in the recovery time (a few ns for the VO$_2$/Al$_2$O$_3$ sample vs. hundreds of ns for the VO$_2$/TiO$_2$ sample). We present a theoretical model that accurately describes the MIT thermal properties and interpret the experimental measurements. We obtain quantitative results that show how the microstructure of the VO$_2$ film and the thermal conductivity of the interface between the VO$_2$ film and the substrate affect long time-scale recovery dynamics. We also obtain a simple analytic relationship between the recovery time-scale and some of the film parameters.

  12. ITER Central Solenoid Coil Insulation Qualification

    SciTech Connect (OSTI)

    Martovetsky, Nicolai N [ORNL] [ORNL; Mann Jr, Thomas Latta [ORNL] [ORNL; Miller, John L [ORNL] [ORNL; Freudenberg, Kevin D [ORNL] [ORNL; Reed, Richard P [Cryogenic Materials, Inc.] [Cryogenic Materials, Inc.; Walsh, Robert P [Florida State University] [Florida State University; McColskey, J D [National Institute of Standards and Technology (NIST), Boulder] [National Institute of Standards and Technology (NIST), Boulder; Evans, D [Advanced Cryogenic Materials] [Advanced Cryogenic Materials

    2010-01-01T23:59:59.000Z

    An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4x4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.

  13. ITER CENTRAL SOLENOID COIL INSULATION QUALIFICATION

    SciTech Connect (OSTI)

    Martovetsky, N N; Mann, T L; Miller, J R; Freudenberg, K D; Reed, R P; Walsh, R P; McColskey, J D; Evans, D

    2009-06-11T23:59:59.000Z

    An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4 x 4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.

  14. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

    1985-01-01T23:59:59.000Z

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  15. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30T23:59:59.000Z

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  16. Superconducting, metallic, and insulating phases in a model of CuO sub 2 layers

    SciTech Connect (OSTI)

    Ye, J.; Sachdev, S. (Center for Theoretical Physics, P.O. Box 6666, Yale University, New Haven, Connecticut (USA))

    1991-11-01T23:59:59.000Z

    We examine a three-band model of the CuO{sub 2} layers in cuprate superconductors in a systematic large-{ital N} expansion obtained by generalizing the SU(2) spins of the model to symplectic Sp({ital N}) symmetry. We find superconducting and metallic ground states connected by a zero-temperature, superconductor-metal transition (SMT) at finite doping. Qualitative features of the temperature-doping phase diagram are consistent with experiments. The critical properties of the SMT are shown to be described by a continuum model of spin-1/2, charge-{ital e} fermions, and a charge-({minus}{ital e}) scalar. A renormalization-group analysis of this model finds either a second-order SMT or runaway renormalization-group flows, usually interpreted as a fluctuation-induced first-order transition. The flux quantum of this model remains at {ital hc}/2{ital e}, although {ital hc}/{ital e} vortices should become stable near the SMT unless the SMT is strongly first order.

  17. Temperature dependent metal-induced lateral crystallization of amorphous SiGe on insulating substrate

    SciTech Connect (OSTI)

    Kanno, Hiroshi; Toko, Kaoru; Sadoh, Taizoh; Miyao, Masanobu [Department of Electronics, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan)

    2006-10-30T23:59:59.000Z

    Metal-induced lateral crystallization (MILC) of amorphous SiGe films on SiO{sub 2} has been investigated as a function of Ge fraction (0%-100%) and annealing temperature (320-550 deg. C). High temperature annealing (>500 deg. C) caused spontaneous nucleation in amorphous SiGe with a high Ge fraction (>70%). This suppressed the progress of MILC. Spontaneous nucleation was significantly suppressed by lowering the annealing temperature (<400 deg. C). As a result, large poly-SiGe regions (>20 {mu}m) were observed around Ni patterns even for high Ge fractions (>70%). In this way, MILC of amorphous SiGe was achieved for samples with whole Ge fractions (0%-100%)

  18. Synchronization of pairwise-coupled, identical, relaxation oscillators based on metal-insulator phase transition devices: A Model Study

    E-Print Network [OSTI]

    Abhinav Parihar; Nikhil Shukla; Suman Datta; Arijit Raychowdhury

    2014-08-11T23:59:59.000Z

    Computing with networks of synchronous oscillators has attracted wide-spread attention as novel materials and device topologies have enabled realization of compact, scalable and low-power coupled oscillatory systems. Of particular interest are compact and low-power relaxation oscillators that have been recently demonstrated using MIT (metal- insulator-transition) devices using properties of correlated oxides. This paper presents an analysis of the dynamics and synchronization of a system of two such identical coupled relaxation oscillators implemented with MIT devices. We focus on two implementations of the oscillator: (a) a D-D configuration where complementary MIT devices (D) are connected in series to provide oscillations and (b) a D-R configuration where it is composed of a resistor (R) in series with a voltage-triggered state changing MIT device (D). The MIT device acts like a hysteresis resistor with different resistances in the two different states. The synchronization dynamics of such a system has been analyzed with purely charge based coupling using a resistive (Rc) and a capacitive (Cc) element in parallel. It is shown that in a D-D configuration symmetric, identical and capacitively coupled relaxation oscillator system synchronizes to an anti-phase locking state, whereas when coupled resistively the system locks in phase. Further, we demonstrate that for certain range of values of Rc and Cc, a bistable system is possible which can have potential applications in associative computing. In D-R configuration, we demonstrate the existence of rich dynamics including non-monotonic flows and complex phase relationship governed by the ratios of the coupling impedance. Finally, the developed theoretical formulations have been shown to explain experimentally measured waveforms of such pairwise coupled relaxation oscillators.

  19. Heteroepitaxial VO{sub 2} thin films on GaN: Structure and metal-insulator transition characteristics

    SciTech Connect (OSTI)

    Zhou You; Ramanathan, Shriram [Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2012-10-01T23:59:59.000Z

    Monolithic integration of correlated oxide and nitride semiconductors may open up new opportunities in solid-state electronics and opto-electronics that combine desirable functional properties of both classes of materials. Here, we report on epitaxial growth and phase transition-related electrical properties of vanadium dioxide (VO{sub 2}) thin films on GaN epitaxial layers on c-sapphire. The epitaxial relation is determined to be (010){sub vo{sub 2}} parallel (0001){sub GaN} parallel (0001){sub A1{sub 2O{sub 3}}} and [100]{sub vo{sub 2}} parallel [1210]{sub GaN} parallel [0110]{sub A1{sub 2O{sub 3}}} from x-ray diffraction. VO{sub 2} heteroepitaxial growth and lattice mismatch are analyzed by comparing the GaN basal plane (0001) with the almost close packed corrugated oxygen plane in vanadium dioxide and an experimental stereographic projection describing the orientation relationship is established. X-ray photoelectron spectroscopy suggests a slightly oxygen rich composition at the surface, while Raman scattering measurements suggests that the quality of GaN layer is not significantly degraded by the high-temperature deposition of VO{sub 2}. Electrical characterization of VO{sub 2} films on GaN indicates that the resistance changes by about four orders of magnitude upon heating, similar to epitaxial VO{sub 2} films grown directly on c-sapphire. It is shown that the metal-insulator transition could also be voltage-triggered at room temperature and the transition threshold voltage scaling variation with temperature is analyzed in the framework of a current-driven Joule heating model. The ability to synthesize high quality correlated oxide films on GaN with sharp phase transition could enable new directions in semiconductor-photonic integrated devices.

  20. The role of redundancy in jacket-type offshore platforms

    E-Print Network [OSTI]

    Womble, J'nina Elaine

    1988-01-01T23:59:59.000Z

    . The reliability of a structure is influenced by its ability to redistribute and carry load after the failure of a component or components. The reliability of the structure, in fact, increases as the ability to redis- tribute load increases. The ability... in every remaining member is less that its capacity. The focus of this paper is the relationship between redundancy and the reliability of jacket-type platforms. The reliability of these systems is discussed in terms of two factors which in this paper...

  1. Performance of reduced wall EPR insulated medium voltage power cables. Part 2: Mechanical characteristics

    SciTech Connect (OSTI)

    Wen, Y.; Cinquemani, P.L. [Pirelli Cable Corp., Lexington, SC (United States)

    1997-04-01T23:59:59.000Z

    For the replacement of paper insulated lead covered cables (PILC) reduced insulation wall designs have been developed. They provide a reliable lower diameter cable design for installation in existing PILC conduits. Representing Part 2 of the investigation, this paper presents the results of mechanical testing conducted on both reduced and full wall EPR insulated cables. Both jacketed and non-jacketed cable designs have been subjected to mechanical pulling forces which greatly exceed recommended industry limitations, followed by electrical testing to ascertain cable performance. The results of this study conclude that reduced wall EPR insulated cables can safely withstand the same pulling forces as recommended for conventional walls and can be designed for installation under the same pulling limitations.

  2. Robust controller design for temperature tracking problems in jacketed batch reactors

    E-Print Network [OSTI]

    Palanki, Srinivas

    Robust controller design for temperature tracking problems in jacketed batch reactors Vishak for temperature tracking problems in batch reactors in the presence of parametric uncertainty. The controller has]. Control is achieved by manipulating the heat content from the jacket to the reactor. In the past

  3. Ferromagnetic-nonmagnetic and metal-insulator phase transitions at the interfaces of KTaO{sub 3} and PbTiO{sub 3}

    SciTech Connect (OSTI)

    Yang, Yi; Chen, Jin-Feng; Hu, Lei [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Lin, Chen-Sheng; Cheng, Wen-Dan, E-mail: cwd@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2014-10-21T23:59:59.000Z

    We studied the electronic and magnetic properties of hole doped KTaO{sub 3}/PbTiO{sub 3} interface using density functional theory methods. Ferromagnetic-nonmagnetic phase transition and metal-insulator phase transition occur simultaneously at the interface with ferroelectric polarization reversal. Furthermore, these two transitions are coupled with each other because hole doping with large concentration of holes gives rise to ferromagnetism. The interfacial magnetization, which is proportional to hole concentration at the interface, can be tuned by ferroelectric polarization, leading to strong intrinsic magnetoelectric effect at the interface of originally nonmagnetic KTaO{sub 3} and PbTiO{sub 3}.

  4. Use of reagents to convert chrysotile and amosite asbestos used as insulation or protection for metal surfaces

    DOE Patents [OSTI]

    Sugama, Toshifumi (Wading River, NY); Petrakis, Leon (Port Jefferson, NY)

    2000-12-12T23:59:59.000Z

    A composition for converting asbestos-containing material, covering metal pipes or other metal surfaces, to non-regulated, environmentally benign-materials, and inhibiting the corrosion of the metal pipes or other metal surfaces. The composition comprises a combination of at least two multiple-functional group reagents, in which each reagent includes a Fluro acid component and a corrosion inhibiting compoment. A method for converting asbestos-containing material, covering metal pipes or other metal surfaces, to non-regulated, environmentally benign-materials, and inhibiting the corrosion of the metal pipes or other metal surfaces is also provided.

  5. Pressure-driven semiconductor-metal transition in intermediate-valence TmSe sub 1 minus x Te sub x and the concept of an excitonic insulator

    SciTech Connect (OSTI)

    Neuenschwander, J.; Wachter, P. (Laboratorium fuer Festkoerperphysik, Eidgenoessische Technische Hochschule Zuerich, CH-8093 Zuerich (Switzerland))

    1990-06-15T23:59:59.000Z

    This work studies the pressure-induced semiconductor-to-metal transition (SMT) in the TmSe-TmTe alloy system. This SMT is accompanied by a valence instability of the Tm ions. Single-crystalline semiconducting TmSe{sub 1{minus}{ital x}}Te{sub {ital x}} alloys are investigated under high pressure at low temperatures. Measurements of electrical resistivity, magnetic susceptibility, neutron diffraction, and optical properties are presented and discussed. A very unusual peak structure in the resistivity-pressure relation is observed at low temperatures. A discussion of the novel feature involves the concept of an excitonic insulator and {ital f}-{ital d} hybridization. The magnetic behavior of the compounds is significantly influenced by the SMT. This is thought to be mainly due to the additional coupling between the magnetic moments of Tm via free carriers which are present in the metallic state.

  6. Spin-orbit tuned metal-insulator transitions in single-crystal Sr?Ir1–xRhxO? (0?x?1)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qi, T. F.; Korneta, O. B.; Li, L.; Butrouna, K.; Cao, V. S.; Wan, Xiangang; Schlottmann, P.; Kaul, R. K.; Cao, G.

    2012-09-01T23:59:59.000Z

    Sr?IrO? is a magnetic insulator driven by spin-orbit interaction (SOI) whereas the isoelectronic and isostructural Sr?RhO? is a paramagnetic metal. The contrasting ground states have been shown to result from the critical role of the strong SOI in the iridate. Our investigation of structural, transport, magnetic, and thermal properties reveals that substituting 4d Rh?? (4d?) ions for 5d Ir?? (5d?) ions in Sr?IrO? directly reduces the SOI and rebalances the competing energies so profoundly that it generates a rich phase diagram for Sr?Ir1–xRhxO? featuring two major effects: (1) Light Rh doping (0 ? x ? 0.16) prompts a simultaneous and precipitous drop in both the electrical resistivity and the magnetic ordering temperature TC, which is suppressed to zero at x = 0.16 from 240 K at x = 0. (2) However, with heavier Rh doping [0.24 1–xRhxO? is further highlighted by comparison with Sr?Ir1–xRuxO? where Ru?? (4d?) drives a direct crossover from the insulating to metallic states.

  7. Physicochemical and electrical characterizations of atomic layer deposition grown HfO2 on TiN and Pt for metal-insulator-metal application

    E-Print Network [OSTI]

    Boyer, Edmond

    for the physicochemical characterization in order to study the junction interface and determine the oxide thickness reflectance. Electrical characteristics of the structures with different oxide thicknesses and an evaporated insulating materials with a higher dielectric constant.1 These materials shall lead to a high capacitance

  8. Modeling of FRP-jacketed RC columns subject to combined axial and lateral loads

    E-Print Network [OSTI]

    Lee, Chung-Sheng

    2006-01-01T23:59:59.000Z

    LOCATIONS #6 u-bars @ 4" 3" PVC for axial load and verticalsteel Steel jacket encasing load stub 2" PVC for clevisattatch 3" PVC for axial load A B Vertical tiedown Column

  9. Experiment study on FLOATING JACKET: a new concept for deep water platform design

    E-Print Network [OSTI]

    Xu, Yufeng

    1996-01-01T23:59:59.000Z

    As more oil and gas are discovered in deeper water than ever before, the offshore industry has become increasingly interested in the design of advanced offshore production platforms. A new design concept called FLOATING JACKET (FJ) is studied...

  10. A Probabilistic Deformation Demand Model and Fragility Estimates for Asymmetric Offshore Jacket Platforms

    E-Print Network [OSTI]

    Fallon, Michael Brooks

    2012-11-12T23:59:59.000Z

    to assess the deformation demand on asymmetric offshore jacket platforms subject to wave and current loadings. The probabilistic model is constructed by adding correction terms and a model error to an existing deterministic deformation demand model...

  11. Thin film three-dimensional topological insulator metal-oxide-semiconductor field-effect-transistors: A candidate for sub-10?nm devices

    SciTech Connect (OSTI)

    Akhavan, N. D., E-mail: nima.dehdashti@uwa.edu.au; Jolley, G.; Umana-Membreno, G. A.; Antoszewski, J.; Faraone, L. [Department of Electrical, Electronic and Computer Engineering, University of Western Australia, Crawley, WA 6009 (Australia)

    2014-08-28T23:59:59.000Z

    Three-dimensional (3D) topological insulators (TI) are a new state of quantum matter in which surface states reside in the bulk insulating energy bandgap and are protected by time-reversal symmetry. It is possible to create an energy bandgap as a consequence of the interaction between the conduction band and valence band surface states from the opposite surfaces of a TI thin film, and the width of the bandgap can be controlled by the thin film thickness. The formation of an energy bandgap raises the possibility of thin-film TI-based metal-oxide-semiconductor field-effect-transistors (MOSFETs). In this paper, we explore the performance of MOSFETs based on thin film 3D-TI structures by employing quantum ballistic transport simulations using the effective continuous Hamiltonian with fitting parameters extracted from ab-initio calculations. We demonstrate that thin film transistors based on a 3D-TI structure provide similar electrical characteristics compared to a Si-MOSFET for gate lengths down to 10?nm. Thus, such a device can be a potential candidate to replace Si-based MOSFETs in the sub-10?nm regime.

  12. Low-frequency noise in AlN/AlGaN/GaN metal-insulator-semiconductor devices: A comparison with Schottky devices

    SciTech Connect (OSTI)

    Le, Son Phuong; Nguyen, Tuan Quy; Shih, Hong-An; Kudo, Masahiro; Suzuki, Toshi-kazu, E-mail: tosikazu@jaist.ac.jp [Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2014-08-07T23:59:59.000Z

    We have systematically investigated low-frequency noise (LFN) in AlN/AlGaN/GaN metal-insulator-semiconductor (MIS) devices, where the AlN gate insulator layer was sputtering-deposited on the AlGaN surface, in comparison with LFN in AlGaN/GaN Schottky devices. By measuring LFN in ungated two-terminal devices and heterojunction field-effect transistors (HFETs), we extracted LFN characteristics in the intrinsic gated region of the HFETs. Although there is a bias regime of the Schottky-HFETs in which LFN is dominated by the gate leakage current, LFN in the MIS-HFETs is always dominated by only the channel current. Analyzing the channel-current-dominated LFN, we obtained Hooge parameters ? for the gated region as a function of the sheet electron concentration n{sub s} under the gate. In a regime of small n{sub s}, both the MIS- and Schottky-HFETs exhibit ??n{sub s}{sup ?1}. On the other hand, in a middle n{sub s} regime of the MIS-HFETs, ? decreases rapidly like n{sub s}{sup ??} with ????2-3, which is not observed for the Schottky-HFETs. In addition, we observe strong increase in ??n{sub s}{sup 3} in a large n{sub s} regime for both the MIS- and Schottky-HFETs.

  13. Low trap states in in situ SiN{sub x}/AlN/GaN metal-insulator-semiconductor structures grown by metal-organic chemical vapor deposition

    SciTech Connect (OSTI)

    Lu, Xing; Ma, Jun; Jiang, Huaxing; Liu, Chao; Lau, Kei May, E-mail: eekmlau@ust.hk [Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2014-09-08T23:59:59.000Z

    We report the use of SiN{sub x} grown in situ by metal-organic chemical vapor deposition as the gate dielectric for AlN/GaN metal-insulator-semiconductor (MIS) structures. Two kinds of trap states with different time constants were identified and characterized. In particular, the SiN{sub x}/AlN interface exhibits remarkably low trap state densities in the range of 10{sup 11}–10{sup 12?}cm{sup ?2}eV{sup ?1}. Transmission electron microscopy and X-ray photoelectron spectroscopy analyses revealed that the in situ SiN{sub x} layer can provide excellent passivation without causing chemical degradation to the AlN surface. These results imply the great potential of in situ SiN{sub x} as an effective gate dielectric for AlN/GaN MIS devices.

  14. Variations of the infrared transmission properties with the metal{endash}insulator transition in thin films of the yttrium-hydride system

    SciTech Connect (OSTI)

    Lee, M. W.; Kuo, C. Y.; Lin, H. C.; Wang, H. C.

    2001-06-01T23:59:59.000Z

    This work investigates the variations of the infrared transmission spectra of yttrium-hydride films YH{sub x} during the hydrogen loading process for the frequency range 500{endash}4000 cm{minus}1. The results indicate that the transmittance slightly decreases in the dihydride phase, followed by a significant increase in the trihydride phase. In addition, the carrier concentration decreases, whereas the carrier relaxation time increases with hydrogen content. The hydrogen vibration modes at interstitial sites are completely screened in the dihydride phase. The screening effect decreases as the system goes through the metal{endash}insulator transition. Moreover, the screening effect can be continuously tuned by simply varying the hydrogen content in the yttrium-hydride system. Analysis indicates that the absorption intensity of the vibration mode depends on the carrier concentration. This effect can be used as a diagnostic tool for estimating the carrier concentration and hydrogen content in rare-earth hydrides. {copyright} 2001 American Institute of Physics.

  15. Electron lone pair distortion facilitated metal-insulator transition in ?-Pb{sub 0.33}V{sub 2}O{sub 5} nanowires

    SciTech Connect (OSTI)

    Wangoh, L.; Quackenbush, N. F. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Marley, P. M.; Banerjee, S. [Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260 (United States); Sallis, S. [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States); Fischer, D. A.; Woicik, J. C. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Piper, L. F. J., E-mail: lpiper@binghamton.edu [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States)

    2014-05-05T23:59:59.000Z

    The electronic structure of ?-Pb{sub 0.33}V{sub 2}O{sub 5} nanowires has been studied with x-ray photoelectron spectroscopy techniques. The recent synthesis of defect-free ?-Pb{sub 0.33}V{sub 2}O{sub 5} nanowires resulted in the discovery of an abrupt voltage-induced metal insulator transition. First principle calculations predicted an additional V-O-Pb hybridized “in-gap” state unique to this vanadium bronze playing a significant role in facilitating the transition. We confirm the existence, energetic position, and orbital character of the “in-gap” state. Moreover, we reveal that this state is a hybridized Pb 6s–O 2p antibonding lone pair state resulting from the asymmetric coordination of the Pb{sup 2+} ions.

  16. Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films

    E-Print Network [OSTI]

    Wu, Junqiao

    the optical and infrared reflection spectra in the metallic phase, we obtained the plasma edge of VO2, from studied most intensively owing mostly to its near-room-temperature phase transition as well as its high

  17. Temperature dependent junction capacitance-voltage characteristics of Ni embedded TiN/SiO{sub 2}/p-Si metal–insulator–semiconductor structure

    SciTech Connect (OSTI)

    Panda, J.; Nath, T. K., E-mail: tnath@phy.iitkgp.ernet.in [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 (India); Chattopadhyay, S. [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 (India); Amity Institute of Nano Technology, Amity University, Sector-125, Noida, Uttar Pradesh 201313 (India)

    2013-12-14T23:59:59.000Z

    This work presents the junction capacitance–voltage characteristics of highly textured/epitaxial Ni nanoparticle embedded in TiN matrix (TiN(Ni)) metal-insulator-semiconductor TiN(Ni)/SiO{sub 2}/p-Si (100) heterojunction in the temperature range of 10–300?K. This heterojunction behaves as metal-semiconductor junction with unavoidable leakage through native oxide SiO{sub 2} layer. The clockwise hysteresis loop has been observed in the capacitance-voltage characteristics measured at various frequencies mainly due to presence of trap centers at the TiN(Ni)/SiO{sub 2} interface and these are temperature dependent. The spin-dependent trap charge effect at the interface influences the quadratic nature of the capacitance with magnetic field. The junction magnetocapacitance (JMC) is observed to be dependent on both temperature and frequency. The highest JMC of this heterojunction has been observed at 200?K at higher frequencies (100?kHz–1?MHz). It is found that there is not much effect of band structure modification under magnetic field causing the JMC.

  18. Insulative laser shell coupler

    DOE Patents [OSTI]

    Arnold, P.A.; Anderson, A.T.; Alger, T.W.

    1994-09-20T23:59:59.000Z

    A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dielectric break ring, and a pair of threaded ring sections is disclosed. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections. 4 figs.

  19. Sensitivity of Forced Air Distribution System Efficiency to Climate, Duct Location, Air Leakage and Insulation

    E-Print Network [OSTI]

    , Air Leakage and Insulation Iain S. Walker Energy Performance of Buildings Group Indoor Environment ................................................................................................................................................ 4 Duct Insulation, Location and Leakage Examples............................................................... 4 Figure 2. Sheet metal ducts in a basement insulated with asbestos

  20. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1992-10-27T23:59:59.000Z

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  1. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1992-01-01T23:59:59.000Z

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  2. Compact vacuum insulation embodiments

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1992-04-28T23:59:59.000Z

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  3. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1993-01-01T23:59:59.000Z

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  4. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1993-01-05T23:59:59.000Z

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  5. Compact vacuum insulation embodiments

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1992-01-01T23:59:59.000Z

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  6. Suppression of the metal-insulator transition by magnetic field in (Pr{sub 1?y}Y{sub y}){sub 0.7}Ca{sub 0.3}CoO{sub 3} (y?=?0.0625)

    SciTech Connect (OSTI)

    Naito, Tomoyuki, E-mail: tnaito@iwate-u.ac.jp; Fujishiro, Hiroyuki [Faculty of Engineering, Iwate University, Morioka 020-8551 (Japan); Nishizaki, Terukazu; Kobayashi, Norio [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Hejtmánek, Ji?í; Knížek, Karel; Jirák, Zden?k [Institute of Physics, ASCR, Cukrovarnická 10, 162 00 Prague 6 (Czech Republic)

    2014-06-21T23:59:59.000Z

    The (Pr{sub 1?y}Y{sub y}){sub 0.7}Ca{sub 0.3}CoO{sub 3} compound (y?=?0.0625, T{sub MI-SS}=40?K), at the lower limit for occurrence of the first-order metal-insulator (MI) and simultaneous spin-state (SS) transitions, has been studied using electrical resistivity and magnetization measurements in magnetic fields up to 17?T. The isothermal experiments demonstrate that the low-temperature insulating phase can be destabilized by an applied field and the metallic phase returns well below the transition temperature T{sub MI-SS}. The reverse process with decreasing field occurs with a significant hysteresis. The temperature scans taken at fixed magnetic fields reveal a parabolic-like decrease in T{sub MI-SS} with increasing field strength and a complete suppression of the MI-SS transition in fields above 9?T.

  7. Physical understanding of electron mobility in asymmetrically strained InGaAs-on-insulator metal-oxide-semiconductor field-effect transistors fabricated by lateral strain relaxation

    SciTech Connect (OSTI)

    Kim, SangHyeon, E-mail: dadembyora@mosfet.t.u-tokyo.ac.jp, E-mail: sh-kim@kist.re.kr; Yokoyama, Masafumi; Ikku, Yuki; Nakane, Ryosho; Takenaka, Mitsuru; Takagi, Shinichi [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ichikawa, Osamu; Osada, Takenori; Hata, Masahiko [Sumitomo Chemical Co. Ltd., 6 Kitahara, Tsukuba, Ibaraki 300-3294 (Japan)

    2014-03-17T23:59:59.000Z

    In this paper, we fabricated asymmetrically tensile-strained In{sub 0.53}Ga{sub 0.47}As-on-insulator (-OI) metal-oxide-semiconductor field-effect transistors (MOSFETs) using a lateral strain relaxation technique. A stripe-like line structure, fabricated in biaxially strained In{sub 0.53}Ga{sub 0.47}As-OI can lead to the lateral strain relaxation and asymmetric strain configuration in In{sub 0.53}Ga{sub 0.47}As-OI with the channel width of 100?nm. We have found that the effective mobility (?{sub eff}) enhancement in In{sub 0.53}Ga{sub 0.47}As-OI MOSFETs with uniaxial-like asymmetric strain becomes smaller than that in In{sub 0.53}Ga{sub 0.47}As-OI MOSFETs with biaxial strain. We have clarified from a systematic analysis between the strain values and the ?{sub eff} characteristics that this mobility behavior can be understood by the change of the energy level of the conduction band minimum due to the lateral strain relaxation.

  8. Analysis of AlN/AlGaN/GaN metal-insulator-semiconductor structure by using capacitance-frequency-temperature mapping

    SciTech Connect (OSTI)

    Shih, Hong-An; Kudo, Masahiro; Suzuki, Toshi-kazu [Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2012-07-23T23:59:59.000Z

    AlN/AlGaN/GaN metal-insulator-semiconductor (MIS) structure is analyzed by using capacitance-frequency-temperature (C-f-T) mapping. Applying sputtering-deposited AlN, we attained AlN/AlGaN/GaN MIS heterostructure field-effect transistors with much suppressed gate leakage currents, but exhibiting frequency dispersion in C-V characteristics owing to high-density AlN/AlGaN interface states. In order to investigate the interface states deteriorating the device performance, we measured temperature-dependent frequency dispersion in the C-V characteristics. As a result, we obtained C-f-T mapping, whose analysis gives the activation energies of electron trapping, namely the interface state energy levels, for a wide range of the gate biases. This analysis method is auxiliary to the conventional conductance method, serving as a valuable tool for characterization of wide-bandgap devices with deep interface states. From the analysis, we can directly evaluate the gate-control efficiency of the devices.

  9. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Superconducting Topological Insulators Print Wednesday, 26 January 2011 00:00 Three-dimensional topological insulators (TIs), discovered...

  10. Incoherent Bi off-centering in Bi?Ti?O?O' and Bi?Ru?O?O': Insulator versus metal

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shoemaker, Daniel P.; Seshadri, Ram; Tachibana, Makoto; Hector, Andrew L.

    2011-08-01T23:59:59.000Z

    In the cubic, stoichiometric oxide compounds Bi?Ti?O?O' (also written as Bi?Ti?O?) and Bi?Ru?O?O' (also written as Bi?Ru?O?) Bi³? ions on the pyrochlore A site display a propensity to off-center. Unlike Bi?Ti?O?O', Bi?Ru?O?O' is a metal, so it is of interest to ask whether conduction electrons and/or involvement of Bi 6s states at the Fermi energy influence Bi³? displacements. The Bi³? off-centering in Bi?Ti?O?O' has previously been revealed to be incoherent from detailed reverse Monte Carlo analysis of total neutron scattering. Similar analysis of Bi?Ru?O?O' reveals incoherent off-centering as well, but of smaller magnitude and with distinctly different orientational preference. Analysis of the distributions of metal to oxygen distances presented suggests that Bi in both compounds is entirely Bi³?. Disorder in Bi?Ti?O?O' has the effect of stabilizing valence while simultaneously satisfying the steric constraint imposed by the presence of the lone pair of electrons. In Bi?Ru?O?O', off-centering is not required to satisfy valence and seems to be driven by the lone pair. Decreased volume of the lone pair may be a result of partial screening by conduction electrons.

  11. Incoherent Bi off-centering in Bi?Ti?O?O' and Bi?Ru?O?O': Insulator versus metal

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shoemaker, Daniel P.; Seshadri, Ram; Tachibana, Makoto; Hector, Andrew L.

    2011-08-01T23:59:59.000Z

    In the cubic, stoichiometric oxide compounds Bi?Ti?O?O' (also written as Bi?Ti?O?) and Bi?Ru?O?O' (also written as Bi?Ru?O?) Bi³? ions on the pyrochlore A site display a propensity to off-center. Unlike Bi?Ti?O?O', Bi?Ru?O?O' is a metal, so it is of interest to ask whether conduction electrons and/or involvement of Bi 6s states at the Fermi energy influence Bi³? displacements. The Bi³? off-centering in Bi?Ti?O?O' has previously been revealed to be incoherent from detailed reverse Monte Carlo analysis of total neutron scattering. Similar analysis of Bi?Ru?O?O' reveals incoherent off-centering as well, but of smaller magnitude and with distinctly different orientational preference. Analysismore »of the distributions of metal to oxygen distances presented suggests that Bi in both compounds is entirely Bi³?. Disorder in Bi?Ti?O?O' has the effect of stabilizing valence while simultaneously satisfying the steric constraint imposed by the presence of the lone pair of electrons. In Bi?Ru?O?O', off-centering is not required to satisfy valence and seems to be driven by the lone pair. Decreased volume of the lone pair may be a result of partial screening by conduction electrons.« less

  12. Ultra-fast x-ray Thomson scattering measurements of insulator-metal transition in shock-compressed matter

    SciTech Connect (OSTI)

    Kritcher, A; Neumayer, P; Castor, J; Doppner, T; Falcone, R W; Landen, O L; Lee, H J; Lee, R W; Morse, E C; Ng, A; Pollaine, S; Price, D; Glenzer, S H

    2008-05-16T23:59:59.000Z

    Spectrally resolved scattering of ultra-short pulse laser-generated K-{alpha} x rays has been applied to measure the heating and compression of shocked solid-density lithium hydride. Two shocks launched by a nanosecond laser pulse coalesce yielding pressures of 400 gigapascals. The evolution of the intensity of the elastic (Rayleigh) scattering component indicates rapid heating to temperatures of 25,000 K on a 100 ps time scale. At shock coalescence, the scattering spectra show the collective plasmon oscillations indicating the transition to the dense metallic plasma state. The plasmon frequency determines the material compression, which is found to be a factor of three thereby reaching conditions in the laboratory important for studying astrophysics phenomena.

  13. Magnetotransport in low-density p-Si/SiGe heterostructures : from metal through hopping insulator to Wigner glass.

    SciTech Connect (OSTI)

    Drichko, I. L.; Dyakonov, A. M.; Smirnov, I. Yu.; Suslov, A. V.; Galperin, Y. M.; Vinokur , V.; Myronov, M.; Mironov, O. A.; Leadley, D. R.; Materials Science Division; Russian Acadademy of Science; National High Magnetic Field Lab.; Univ. of Oslo; Musashi Inst. of Tech.; Univ.of Warwick

    2008-02-01T23:59:59.000Z

    We study dc and ac transport in low-density p-Si/SiGe heterostructures at low temperatures and in a broad domain of magnetic fields up to 18 T. Complex ac conductance is determined from simultaneous measurement of velocity and attenuation of a surface acoustic wave propagating in close vicinity of the two-dimensional hole layer. The observed behavior of dc and ac conductances is interpreted as an evolution from metallic conductance at B=0 through hopping between localized states in intermediate magnetic fields (close to the plateau of the integer quantum Hall effect corresponding to the Landau-level filling factor {nu}=1) to formation of the Wigner glass in the extreme quantum limit (B {ge} 14, T {le} 0.8 K).

  14. SUBSPACE-BASED DETECTION OF FATIGUE DAMAGE ON JACKET SUPPORT STRUCTURES OF OFFSHORE WIND TURBINES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SUBSPACE-BASED DETECTION OF FATIGUE DAMAGE ON JACKET SUPPORT STRUCTURES OF OFFSHORE WIND TURBINES-based Damage Detec- tion (SSDD) method on model structures for an utilization of this approach on offshore wind damage in real size structural components of offshore wind turbines. KEYWORDS : Damage detection

  15. Panelized wall system with foam core insulation

    DOE Patents [OSTI]

    Kosny, Jan (Oak Ridge, TN); Gaskin, Sally (Houston, TX)

    2009-10-20T23:59:59.000Z

    A wall system includes a plurality of wall members, the wall members having a first metal panel, a second metal panel, and an insulating core between the first panel and the second panel. At least one of the first panel and the second panel include ridge portions. The insulating core can be a foam, such as a polyurethane foam. The foam can include at least one opacifier to improve the k-factor of the foam.

  16. Results from large scale ultimate strength tests of K-braced jacket frame structures

    SciTech Connect (OSTI)

    Bolt, H.M.

    1995-12-01T23:59:59.000Z

    Phase 2 of the JIP Frames Project included four large scale collapse tests of K-braced frames in which both gap and overlap K joints were the critical components. The results are presented in this paper. The local failure modes differed from typical isolated component tests, yet were representative of structural damage observed following Hurricane Andrew. The frame test results therefore provide important insight to the ultimate response of offshore jacket structures.

  17. Fermi-level tuning of topological insulator thin films Masaki Aitani,1

    E-Print Network [OSTI]

    Hasegawa, Shuji

    Fermi-level tuning of topological insulator thin films Masaki Aitani,1 Yusuke Sakamoto,1 Toru Topological insulators are insulating materials but have metallic edge states with peculiar prop- erties properties of topological insulator ultrathin Bi2Te3 films by angle-resolved photoemission spectroscopy

  18. Topological insulators/Isolants topologiques An introduction to topological insulators

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Topological insulators/Isolants topologiques An introduction to topological insulators Introduction topology, the insulator is called a topological insulator. We introduce this notion of topological order sont finalement discutées. Keywords: topological insulator, topological band theory, quantum anomalous

  19. Process for making ceramic insulation

    DOE Patents [OSTI]

    Akash, Akash (Salt Lake City, UT); Balakrishnan, G. Nair (Sandy, UT)

    2009-12-08T23:59:59.000Z

    A method is provided for producing insulation materials and insulation for high temperature applications using novel castable and powder-based ceramics. The ceramic components produced using the proposed process offers (i) a fine porosity (from nano-to micro scale); (ii) a superior strength-to-weight ratio; and (iii) flexibility in designing multilayered features offering multifunctionality which will increase the service lifetime of insulation and refractory components used in the solid oxide fuel cell, direct carbon fuel cell, furnace, metal melting, glass, chemical, paper/pulp, automobile, industrial heating, coal, and power generation industries. Further, the ceramic components made using this method may have net-shape and/or net-size advantages with minimum post machining requirements.

  20. Effect of conductive TiN buffer layer on the growth of stoichiometric VO{sub 2} films and the out-of-plane insulator–metal transition properties

    SciTech Connect (OSTI)

    Mian, Md. Suruz; Okimura, Kunio, E-mail: okifn@keyaki.cc.u-tokai.ac.jp [Graduate School of Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2014-07-15T23:59:59.000Z

    A TiN buffer film is used with a conductive interfacial layer for stoichiometric vanadium dioxide (VO{sub 2}) film growth, creating a layered device with a VO{sub 2} insulator–metal transition. Low-temperature growth (<250?°C) of the VO{sub 2} film on a Ti layer on a Si substrate is achieved using inductively coupled plasma-assisted sputtering. It is found that Ti diffusion and oxidation degrades the VO{sub 2} film quality at higher temperatures, but the introduction of a TiN buffer layer suppresses the degradation and enables growth of a stoichiometric VO{sub 2} film even at 400?°C. The high resistance of the VO{sub 2} film grown on the TiN layer suggests the benefit of using the intrinsic insulator–metal transition of VO{sub 2}. The voltage-triggered switching properties of the layered devices are examined, and the cause of the high out-of-plane resistance in this layered structure is discussed based upon the dependence of the initial resistance as a function the electrode area.

  1. Enhancement of Topological Insulators Surface Conduction

    E-Print Network [OSTI]

    Yu, Xinxin

    2012-01-01T23:59:59.000Z

    Enhancement of Topological Insulators Surface Conduction AEnhancement of Topological Insulators Surface Conduction byTopological Insulator

  2. Vacuum Insulator Development for the Dielectric Wall Accelerator

    SciTech Connect (OSTI)

    Harris, J R; Blackfield, D; Caporaso, G J; Chen, Y; Hawkins, S; Kendig, M; Poole, B; Sanders, D M; Krogh, M; Managan, J E

    2008-03-17T23:59:59.000Z

    At Lawrence Livermore National Laboratory, we are developing a new type of accelerator, known as a Dielectric Wall Accelerator, in which compact pulse forming lines directly apply an accelerating field to the beam through an insulating vacuum boundary. The electrical strength of this insulator may define the maximum gradient achievable in these machines. To increase the system gradient, we are using 'High Gradient Insulators' composed of alternating layers of dielectric and metal for the vacuum insulator. In this paper, we present our recent results from experiment and simulation, including the first test of a High Gradient Insulator in a functioning Dielectric Wall Accelerator cell.

  3. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, Terry W. (Tracy, CA)

    1994-01-01T23:59:59.000Z

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  4. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, T.W.

    1994-09-06T23:59:59.000Z

    A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

  5. Calcium silicate insulation structure

    DOE Patents [OSTI]

    Kollie, Thomas G. (Oak Ridge, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01T23:59:59.000Z

    An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

  6. Diminished Short Channel Effects in Nanoscale Double-Gate Silicon-on-Insulator MetalOxideSemiconductor Field-Effect-Transistors

    E-Print Network [OSTI]

    Kumar, M. Jagadesh

    ) and the back-gate oxide (tb) thickness is 2 nm. The doping in the p-type body and n+ source/drain regions­Oxide­Semiconductor Field-Effect-Transistors due to Induced Back-Gate Step Potential M. Jagadesh KUMAR Ã and G. Venkateshwar surface potential profile at the back gate of an asymmetrical double gate (DG) silicon-on-insulator (SOI

  7. Metal-insulator-semiconductor structure on low-temperature grown GaAs M. Young, W. Li, and T. P. Ma

    E-Print Network [OSTI]

    Woodall, Jerry M.

    technique has been used to deposit high-quality insula- tors on Si,16 GaN,17 and GaP.18 It utilizes a high-speed jet of light carrier gases to transport depositing species onto the substrate to form insulator films-type substrate was chosen for potential n-channel de- vices. A 400 nm thick regular p-type GaAs epilayer doped

  8. Role of the dielectric for the charging dynamics of the dielectric/barrier interface in AlGaN/GaN based metal-insulator-semiconductor structures under forward gate bias stress

    SciTech Connect (OSTI)

    Lagger, P., E-mail: peter.lagger@infineon.com [Infineon Technologies Austria AG, Siemensstraße 2, 9500 Villach (Austria); Institute of Solid State Electronics, Vienna University of Technology, Floragasse 7, 1040 Wien (Austria); Steinschifter, P.; Reiner, M.; Stadtmüller, M.; Denifl, G.; Ostermaier, C. [Infineon Technologies Austria AG, Siemensstraße 2, 9500 Villach (Austria); Naumann, A.; Müller, J.; Wilde, L.; Sundqvist, J. [Fraunhofer IPMS-CNT, Königsbrücker Straße 178, 01099 Dresden (Germany); Pogany, D. [Institute of Solid State Electronics, Vienna University of Technology, Floragasse 7, 1040 Wien (Austria)

    2014-07-21T23:59:59.000Z

    The high density of defect states at the dielectric/III-N interface in GaN based metal-insulator-semiconductor structures causes tremendous threshold voltage drifts, ?V{sub th}, under forward gate bias conditions. A comprehensive study on different dielectric materials, as well as varying dielectric thickness t{sub D} and barrier thickness t{sub B}, is performed using capacitance-voltage analysis. It is revealed that the density of trapped electrons, ?N{sub it}, scales with the dielectric capacitance under spill-over conditions, i.e., the accumulation of a second electron channel at the dielectric/AlGaN barrier interface. Hence, the density of trapped electrons is defined by the charging of the dielectric capacitance. The scaling behavior of ?N{sub it} is explained universally by the density of accumulated electrons at the dielectric/III-N interface under spill-over conditions. We conclude that the overall density of interface defects is higher than what can be electrically measured, due to limits set by dielectric breakdown. These findings have a significant impact on the correct interpretation of threshold voltage drift data and are of relevance for the development of normally off and normally on III-N/GaN high electron mobility transistors with gate insulation.

  9. Model test of wave forces on a structurally dense jacket platform

    SciTech Connect (OSTI)

    Gu, G.Z.; Parsley, M.A.; Berek, E.P.; Calvo, J.J.; Johnson, R.C.; Petruska, D.J. [Mobil Technology Co., Dallas, TX (United States)

    1996-12-31T23:59:59.000Z

    In the Gulf of Mexico, there are a significant number of jacket platforms built in the 1950`s and 60`s which are still in operation. Typically, these platforms have a large number of closely spaced legs and densely arranged bracing members. Since most of these platforms are beyond their design lives but the reservoirs are still producing, their safety, serviceability and fitness-for-purpose must be re-assessed in order to continue producing from them. During Mobil`s in-house re-qualification effort, it was found that the predictions by structural analysis programs (such as SACS and KARMA) were inconsistent with the platform inspection results. The programs predicted a large number of joint can failures during design storms (such as hurricane Andrew), but underwater inspections indicated only few failures had actually occurred. It was apparent that the procedure used for the assessment was conservative--either the wave loads the platforms experienced during the hurricanes were overestimated and/or the structural resistances were underestimated. This paper addresses the wave load issue. To calibrate the force algorithms typically used in structural analysis programs, a model test of a typical aging jacket platform was conducted in the wave basin.

  10. Low-temperature (180?°C) formation of large-grained Ge (111) thin film on insulator using accelerated metal-induced crystallization

    SciTech Connect (OSTI)

    Toko, K., E-mail: toko@bk.tsukuba.ac.jp; Numata, R.; Oya, N.; Suemasu, T. [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Fukata, N. [National Institute for Materials Science, Namiki, Tsukuba 305-0044 (Japan); Usami, N. [Materials, Physics and Energy Engineering, Nagoya University, Aichi 464-8603 (Japan)

    2014-01-13T23:59:59.000Z

    The Al-induced crystallization (AIC) yields a large-grained (111)-oriented Ge thin film on an insulator at temperatures as low as 180?°C. We accelerated the AIC of an amorphous Ge layer (50-nm thickness) by initially doping Ge in Al and by facilitating Ge diffusion into Al. The electron backscatter diffraction measurement demonstrated the simultaneous achievement of large grains over 10??m and a high (111) orientation fraction of 90% in the polycrystalline Ge layer formed at 180?°C. This result opens up the possibility for developing Ge-based electronic and optical devices fabricated on inexpensive flexible substrates.

  11. Membranes Improve Insulation Efficiency

    E-Print Network [OSTI]

    Bullock, C. A.

    1986-01-01T23:59:59.000Z

    No Clear White Alum Temp Mem Mem Mem Foil FIGURE 7 Temperature Inside Room and Temperature Next to Top of Sheetrock Under Various insulation Configurations. It should be noted that after this test was completed, the fiber insulation was inspected...

  12. Insulating polymer concrete

    DOE Patents [OSTI]

    Schorr, H. Peter (Douglaston, NY); Fontana, Jack J. (Shirley, NY); Steinberg, Meyer (Melville, NY)

    1987-01-01T23:59:59.000Z

    A lightweight insulating polymer concrete formed from a lightweight closed cell aggregate and a water resistance polymeric binder.

  13. Topological Insulators & Superconductors

    E-Print Network [OSTI]

    Topological Insulators & Superconductors New Frontiers in Low-Dimensional Systems Program 3-5 November 2010 Jadwin Hall, Fourth Floor, Room 407 Topological Insulators and Superconductors have quickly Insulators and Superconductors will gather the world- leading researchers in this field to present recent

  14. Radiation-controlled dynamic vacuum insulation

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1995-01-01T23:59:59.000Z

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  15. Variably insulating portable heater/cooler

    DOE Patents [OSTI]

    Potter, Thomas F. (Denver, CO)

    1998-01-01T23:59:59.000Z

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  16. Material-controlled dynamic vacuum insulation

    DOE Patents [OSTI]

    Benson, David K. (14154 W. First Dr., Golden, CO 80401); Potter, Thomas F. (515 S. Magnolia La., Denver, CO 80224)

    1996-10-08T23:59:59.000Z

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  17. Variably insulating portable heater/cooler

    DOE Patents [OSTI]

    Potter, T.F.

    1998-09-29T23:59:59.000Z

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  18. Material-controlled dynamic vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1996-10-08T23:59:59.000Z

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  19. Radiation-controlled dynamic vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1995-07-18T23:59:59.000Z

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  20. J. Phys. C: Solid State Phys., Vol. 8, 1975.Printed in Great Britain. @ 1975 The metal-insulator transition in lanthanum strontium vanadate

    E-Print Network [OSTI]

    Chen, Reuven

    + and an enhanced hole conduction in the system of vanadium 3d bands. Mott (1972)has suggested that this systemJ. Phys. C: Solid State Phys., Vol. 8, 1975.Printed in Great Britain. @ 1975 The metal in AC conductivity and a temperature dependent activation energy at temperatures below 100K

  1. Abstract--The electrical properties of the PVD AlN have been investigated by means of metal-insulator-semiconductor

    E-Print Network [OSTI]

    Technische Universiteit Delft

    to reduce the self-heating in silicon-on-glass bipolar junction transistors [15]. These devicesAbstract--The electrical properties of the PVD AlN have been investigated by means of metal silicon. In this paper the electrical properties of the PVD AlN when deposited on silicon have been

  2. Sheath insulator final test report, TFE Verification Program

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications.

  3. Stress-induced martensitic transformation during tensile test of full-size TF conductor jacket tube at 4.2 K

    SciTech Connect (OSTI)

    Yang, H. H.; Li, S. P. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China and University of Chinese Academy of Sciences Beijing, 100049, P.R. (China); Wu, Z. X.; Huang, C. J.; Huang, R. J.; Li, L. F. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. (China)

    2014-01-27T23:59:59.000Z

    The toroidal-field (TF) conductor jacket of International Thermonuclear Experimental Reactor (ITER) is made of modified 316LN stainless steel, which is influenced by heat treatment at approximately 650 °C for 200 h to produce Nb{sub 3}Sn superconducting materials at the final stage. Due to the high electromagnetic forces arising during magnet operation, higher mechanical properties of the jacket materials at cryogenic temperatures are required. In our work, mechanical properties of the full-size TF conductor jacket tube were investigated, which satisfied the ITER requirements. Stress-induced martensitic transformation mechanism during tensile test of the conductor jacket material at 4.2 K was characterized by means of in-situ temperature dependent XRD, vibrating sample magnetometer (VSM) and in conjunction with transmission electron microscopy (TEM). The tensile behavior related to the amount of stress-induced phase transformation at cryogenic temperature was also discussed.

  4. A Simple Holographic Insulator

    E-Print Network [OSTI]

    Eric Mefford; Gary T. Horowitz

    2014-07-11T23:59:59.000Z

    We present a simple holographic model of an insulator. Unlike most previous holographic insulators, the zero temperature infrared geometry is completely nonsingular. Both the low temperature DC conductivity and the optical conductivity at zero temperature satisfy power laws with the same exponent, given by the scaling dimension of an operator in the IR. Changing a parameter in the model converts it from an insulator to a conductor with a standard Drude peak.

  5. Pipe Insulation Economies

    E-Print Network [OSTI]

    Schilling, R. E.

    PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram written in IBM basic to simplify the economic insulation thickness for an insulated pipe. Many... ECONOMIES" 30 LOCATE 10,29:PRINT"ROBERT E. SCHILLING,P.E." 40 LOCATE l2,3l:PRINT"EATON CORPORATION" 50 LOCATE l3,26:PRINT"119 Q SOUTH CHILLICOTHE ROAD" 598 ESL-IE-86-06-97 Proceedings from the Eighth Annual Industrial Energy Technology Conference...

  6. CALIFORNIA ENERGY Ceiling Insulation Report

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION Ceiling Insulation Report: Effectiveness of Lay-In Ceiling Insulation Effectiveness of Lay-In Insulation (product 5.2.6) TECHNICALREPORT October 2003 500-03-082-A-14 Gray Davis

  7. Insulation spacer eliminates electric shorts between lines

    SciTech Connect (OSTI)

    Colaizzi, J.F.; Rockafellow, G.B.

    1983-03-01T23:59:59.000Z

    The design criteria incorporated into the pipeline insulating spacer were: spacer material selected must have a very large compressive and tensile strength in order to withstand the weight and stress resulting on the pipelines; provide the necessary abrasive resistance, dielectric strength, and will not decay underground; must not soften with heat when used around or near stream lines or will not cold flow under pressure; minimum length and circumference to reduce ''Shielding Effects'' from any cathodic protection system; and provide a material that incorporates a maximum strength at a minimum thickness. Explains that electric shorts are caused by 2 or more metallic structures in contact with each other. Notes that the insulating spacer's use has been expanded to provide electrical and physical insulation between carrier pipe and casing, supports for piping in compressing stations, and for pipelines that are suspended on bridges.

  8. Heat insulating system for a fast reactor shield slab

    DOE Patents [OSTI]

    Kotora, J. Jr.; Groh, E.F.; Kann, W.J.; Burelbach, J.P.

    1984-04-10T23:59:59.000Z

    Improved thermal insulation for a nuclear reactor deck comprises many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  9. Cooper-Pair Injection into Topological Insulators and Helical Wires

    E-Print Network [OSTI]

    Sato, Koji

    2013-01-01T23:59:59.000Z

    Topological Insulator . . . . . . . . . . . . . . . . . . . . . . . .phenomena : Topological Insulators and Superconductors. ”Colloquium : Topological insulators. ” Rev. Mod. Phys. , 82:

  10. Design of a variable-conductance vacuum insulation

    SciTech Connect (OSTI)

    Benson, D K; Potter, T F; Tracy, C E

    1994-01-01T23:59:59.000Z

    This paper describes one approach to the design of a variable-conductance vacuum insulation. In this design, the vacuum insulation consists of a permanently sealed, thin sheet steel, evacuated envelope of whatever geometry is required for the application. The steel envelope is supported internally against the atmospheric pressure loads by an array of discrete, low-conductance, ceramic supports, and radiative heat transfer is blocked by layers of thin metal radiation shields. Thermal conductance through this insulation is controlled electronically by changing the temperature of a small metal hydride connected to the vacuum envelope. The hydride reversibly absorbs/desorbs hydrogen to produce a hydrogen pressure typically within the range from less than 10{sup {minus}6} to as much as 1 torr. Design calculations are compared with results from laboratory tests of bench scale samples, and some possible automotive applications for this variable-conductance vacuum insulation are suggested.

  11. Thermal Insulation Systems

    E-Print Network [OSTI]

    Stanley, T. F.

    1982-01-01T23:59:59.000Z

    Thermal insulation systems are receiving a high degree of attention in view of increasing energy cost. Industrial, commercial and residential energy users are all well aware of energy cost increases and great emphasis is being directed to energy...

  12. Cooper Pairs in Insulators?!

    ScienceCinema (OSTI)

    James Valles

    2010-01-08T23:59:59.000Z

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  13. Insulator for laser housing

    DOE Patents [OSTI]

    Duncan, David B. (Auburn, CA)

    1992-01-01T23:59:59.000Z

    The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member.

  14. Electoral Competition, Political Uncertainty and Policy Insulation

    E-Print Network [OSTI]

    de Figueiredo, Rui J. P. Jr.

    2001-01-01T23:59:59.000Z

    Uncertainty and Policy Insulation Horn, Murray. 1995. TheUncertainty and Policy Insulation United States Congress.UNCERTAINTY AND POLICY INSULATION Rui J. P. de Figueiredo,

  15. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05T23:59:59.000Z

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  16. Thermal insulated glazing unit

    SciTech Connect (OSTI)

    Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

    1991-01-01T23:59:59.000Z

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  17. Notes on topological insulators

    E-Print Network [OSTI]

    Dan Li; Ralph M. Kaufmann; Birgit Wehefritz-Kaufmann

    2015-01-13T23:59:59.000Z

    This paper is a survey of the $\\mathbb{Z}/\\mathbb{Z}_2$-valued invariants of topological insulators in condensed matter physics. The $\\mathbb{Z}$-valued topological invariant was originally called the TKNN invariant in physics, which has been fully understood as the first Chern number. The $\\mathbb{Z}_2$ invariant is more mysterious, we will devote our efforts to reviewing its equivalent descriptions from different point of views. We emphasize that both invariants are realizations of the Atiyah--Singer index theorem in condensed matter physics. The topological K-theory also plays an important role in the classification of topological insulators with different symmetries.

  18. Topological Mott Insulators

    SciTech Connect (OSTI)

    Raghu, S.

    2010-03-02T23:59:59.000Z

    We consider extended Hubbard models with repulsive interactions on a honeycomb lattice, and the transitions from the semimetal to Mott insulating phases at half-filling. Because of the frustrated nature of the second-neighbor interactions, topological Mott phases displaying the quantum Hall and the quantum spin Hall effects are found for spinless and spin fermion models, respectively. The mean-field phase diagram is presented and the fluctuations are treated within the random phase approximation. Renormalization group analysis shows that these states can be favored over the topologically trivial Mott insulating states.

  19. Insulation | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturing | Department ofInsulation Insulation

  20. Contaminant trap for gas-insulated apparatus

    DOE Patents [OSTI]

    Adcock, J.L.; Pace, M.O.; Christophorou, L.G.

    1984-01-01T23:59:59.000Z

    A resinous body is placed in gas-insulated electrical apparatus to remove particulate material from the insulating gas.

  1. Using fiberglass volumes for VPI of superconductive magnetic systems’ insulation

    SciTech Connect (OSTI)

    Andreev, I. S.; Bezrukov, A. A.; Pischugin, A. B. [Sredne-Nevskiy Shipyard (SNSZ), 10 Zavodskaya str., c. Pontonniy, Saint-Petersburg (Russian Federation); Bursikov, A. S.; Klimchenko, Y. A.; Marushin, E. L.; Mednikov, A. A.; Rodin, I. Y.; Stepanov, D. B. [The D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), 3 Doroga na Metallostroy, Metallostroy, Saint-Petersburg (Russian Federation)

    2014-01-29T23:59:59.000Z

    The paper describes the method of manufacturing fiberglass molds for vacuum pressure impregnation (VPI) of high-voltage insulation of superconductive magnetic systems (SMS) with epoxidian hot-setting compounds. The basic advantages of using such vacuum volumes are improved quality of insulation impregnation in complex-shaped areas, and considerable cost-saving of preparing VPI of large-sized components due to dispensing with the stage of fabricating a metal impregnating volume. Such fiberglass vacuum molds were used for VPI of high-voltage insulation samples of an ITER reactor’s PF1 poloidal coil. Electric insulation of these samples has successfully undergone a wide range of high-voltage and mechanical tests at room and cryogenic temperatures. Some results of the tests are also given in this paper.

  2. Physics World Archive Topological insulators

    E-Print Network [OSTI]

    Johannesson, Henrik

    Physics World Archive Topological insulators Charles Kane, Joel Moore From Physics World February, how- ever, now uncovered a new electronic phase called a topological insulator. Putting the name; this "spin current" is a milestone in the realization of practical "spintronics". Topological insulators have

  3. Topological Insulator Nanowires and Nanoribbons

    E-Print Network [OSTI]

    Cui, Yi

    Topological Insulator Nanowires and Nanoribbons Desheng Kong, Jason C. Randel,,| Hailin Peng,, Judy material show that it is a three-dimensional topological insulator possessing conductive surface states topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface

  4. Holographic fractional topological insulators

    SciTech Connect (OSTI)

    Hoyos, Carlos; Jensen, Kristan; Karch, Andreas [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States)

    2010-10-15T23:59:59.000Z

    We give a holographic realization of the recently proposed low-energy effective action describing a fractional topological insulator. In particular we verify that the surface of this hypothetical material supports a fractional quantum Hall current corresponding to half that of a Laughlin state.

  5. Vortex state in a doped Mott insulator M. Franz and Z. Tesanovic

    E-Print Network [OSTI]

    Tesanovic, Zlatko

    predicts two types of singly quantized vortices: an insulating ``holon'' vortex in the underdoped and a metallic ``spinon'' vortex in the overdoped region of the phase diagram. We argue that the holon vortex

  6. Electrically insulating phosphate coatings for iron powder based electromagnetic core applications

    E-Print Network [OSTI]

    Nolan, William Rane

    2009-01-01T23:59:59.000Z

    Powdered metals, such as iron, are a common building block for electromagnetic cores. An iron powder was reacted with phosphoric acid to create a layer of iron phosphate on each particle. This electrically insulating ...

  7. Integrated natural-gas-engine cooling jacket vapor-compressor program. Annual progress report (phase 2), January-December 1987

    SciTech Connect (OSTI)

    DiBella, F.A.; Becker, F.

    1988-01-01T23:59:59.000Z

    A unique, alternative cogeneration system was designed that will provide an industrial or commercial energy user with high-pressure steam and electricity directly from a packaged cogeneration system. The Integrated Gas Engine Vapor Compression System concept includes an engine-generator set and a steam screw compressor that are mechanically integrated with the engine. The gas-fueled engine is ebulliently cooled, thus allowing its water jacket heat to be recovered in the form of low-pressure steam. This steam is then compressed by the steam compressor to a higher pressure, and when combined with the high-pressure steam generated in the engine's exhaust gas boiler it provides the end user with a more useable thermal energy source. Phase 1B of this project was completed in 1986 and consisted primarily of the procurement of equipment and the final design and assembly of a prototype integrated gas-engine vapor-compression system.

  8. Maskless laser writing of microscopic metallic interconnects

    DOE Patents [OSTI]

    Maya, L.

    1995-10-17T23:59:59.000Z

    A method of forming a metal pattern on a substrate is disclosed. The method includes depositing an insulative nitride film on a substrate and irradiating a laser beam onto the nitride film, thus decomposing the metal nitride into a metal constituent and a gaseous constituent, the metal constituent remaining in the nitride film as a conductive pattern. 4 figs.

  9. Maskless laser writing of microscopic metallic interconnects

    DOE Patents [OSTI]

    Maya, Leon (Oak Ridge, TN)

    1995-01-01T23:59:59.000Z

    A method of forming a metal pattern on a substrate. The method includes depositing an insulative nitride film on a substrate and irradiating a laser beam onto the nitride film, thus decomposing the metal nitride into a metal constituent and a gaseous constituent, the metal constituent remaining in the nitride film as a conductive pattern.

  10. BAYESIAN UPDATING OF PROBABILISTIC TIME-DEPENDENT FATIGUE MODEL: APPLICATION TO JACKET FOUNDATIONS OF WIND TURBINES

    E-Print Network [OSTI]

    Boyer, Edmond

    OF WIND TURBINES Benjamin Rocher1,2 , Franck Schoefs1 , Marc François1 , Arnaud Salou2 1 LUNAM Université.rocher@univ-nantes.fr ABSTRACT Due to both wave and wind fluctuation, the metal foundations of offshore wind turbines are highly algorithm. KEYWORDS: Fatigue, Damage, Reliability, Bayesian updating. INTRODUCTION In offshore wind turbines

  11. 2D Dirac Materials: From Graphene to Topological Insulators

    E-Print Network [OSTI]

    Teweldebrhan, Desalegne Bekuretsion

    2011-01-01T23:59:59.000Z

    2D Topological Insulators. . . . . . . . . . . . . . . . .structure for a topological insulator. The Dirac cone fallsband structure for topological insulators. With the Fermi

  12. Gas filled panel insulation

    DOE Patents [OSTI]

    Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

    1993-12-14T23:59:59.000Z

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

  13. Möbius Graphene Strip as Topological Insulator

    E-Print Network [OSTI]

    Z. L. Guo; Z. R. Gong; H. Dong; C. P. Sun

    2009-06-12T23:59:59.000Z

    We study the electronic properties of M\\"{o}bius graphene strip with a zigzag edge. We show that such graphene strip behaves as a topological insulator with a gapped bulk and a robust metallic surface, which enjoys some features due to its nontrivial topology of the spatial configuration, such as the existence of edge states and the non-Abelian induced gauge field. We predict that the topological properties of the M\\"{o}bius graphene strip can be experimentally displayed by the destructive interference in the transmission spectrum, and the robustness of edge states under certain perturbations.

  14. Ceramic electrical insulation for electrical coils, transformers, and magnets

    DOE Patents [OSTI]

    Rice, John A. (Longmont, CO); Hazelton, Craig S. (Lafayette, CO); Fabian, Paul E. (Broomfield, CO)

    2002-01-01T23:59:59.000Z

    A high temperature electrical insulation is described, which is suitable for electrical windings for any number of applications. The inventive insulation comprises a cured preceramic polymer resin, which is preferably a polysiloxane resin. A method for insulating electrical windings, which are intended for use in high temperature environments, such as superconductors and the like, advantageously comprises the steps of, first, applying a preceramic polymer layer to a conductor core, to function as an insulation layer, and second, curing the preceramic polymer layer. The conductor core preferably comprises a metallic wire, which may be wound into a coil. In the preferred method, the applying step comprises a step of wrapping the conductor core with a sleeve or tape of glass or ceramic fabric which has been impregnated by a preceramic polymer resin. The inventive insulation system allows conducting coils and magnets to be fabricated using existing processing equipment, and maximizes the mechanical and thermal performance at both elevated and cryogenic temperatures. It also permits co-processing of the wire and the insulation to increase production efficiencies and reduce overall costs, while still remarkably enhancing performance.

  15. Humidity effects on wire insulation breakdown strength.

    SciTech Connect (OSTI)

    Appelhans, Leah

    2013-08-01T23:59:59.000Z

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  16. Thermal insulations using vacuum panels

    DOE Patents [OSTI]

    Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

    1991-07-16T23:59:59.000Z

    Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

  17. Hydrogen in semiconductors and insulators

    E-Print Network [OSTI]

    Van de Walle, Chris G.

    2007-01-01T23:59:59.000Z

    level in two different semiconductors, illustrating the06-01999R1 Hydrogen in semiconductors and insulators SpecialA. oxide materials; A. semiconductors; C. electronic

  18. Insulation | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf NSECAtomInsulation

  19. Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment ofEnergy1EnergyEnergy InsulateandInsulation

  20. Electrical wire insulation and electromagnetic coil

    DOE Patents [OSTI]

    Bich, George J. (Penn Hills, PA); Gupta, Tapan K. (Monroeville, PA)

    1984-01-01T23:59:59.000Z

    An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

  1. Aerogel Impregnated Polyurethane Piping and Duct Insulation ...

    Energy Savers [EERE]

    Aerogel Impregnated Polyurethane Piping and Duct Insulation Aerogel Impregnated Polyurethane Piping and Duct Insulation Emerging Technologies Project for the 2013 Building...

  2. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Flipping Photoelectron Spins in Topological Insulators Print Tuesday, 23 April 2013 10:00 Inherently strange crystalline...

  3. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping Photoelectron Spins in Topological Insulators Print Inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science....

  4. Plasmon-phonon interactions in topological insulator rings

    E-Print Network [OSTI]

    Autore, Marta; Di Gaspare, Alessandra; Giliberti, Valeria; Limaj, Odeta; Roy, Pascale; Brahlek, Matthew; Koirala, Nikesh; Oh, Seongshik; de Abajo, Francisco Javier Garcìa; Lupi, Stefano

    2015-01-01T23:59:59.000Z

    The great potential of Dirac electrons for plasmonics and photonics has been readily recognized after their discovery in graphene, followed by applications to smart optical devices. Dirac carriers are also found in topological insulators (TI) --quantum systems having an insulating gap in the bulk and intrinsic Dirac metallic states at the surface--. Here, we investigate the plasmonic response of ring structures patterned in Bi$_2$Se$_3$ TI films, which we investigate through terahertz (THz) spectroscopy. The rings are observed to exhibit a bonding and an antibonding plasmon modes, which we tune in frequency by varying their diameter. We develop an analytical theory based on the THz conductivity of unpatterned films, which accurately describes the strong plasmon-phonon hybridization and Fano interference experimentally observed as the bonding plasmon is swiped across the promineng 2\\,THz phonon exhibited by this material. This work opens the road for the investigation of plasmons in topological insulators and ...

  5. Integrated natural-gas-engine cooling-jacket vapor-compressor program. Final report, February 1985-August 1990

    SciTech Connect (OSTI)

    DiBella, F.A.

    1990-08-01T23:59:59.000Z

    A unique, alternative cogeneration system has been designed that will provide an industrial or commercial energy user with high-pressure steam and electricity directly from a packaged cogeneration system. The Integrated Gas Engine Vapor Compression System concept includes an engine-generator set and a twin screw compressor that are mechanically integrated with the engine. The gas-fueled engine is ebulliently cooled, thus allowing its water jacket heat to be recovered in the form of low-pressure steam. The steam is then compressed by the steam compressor to a higher pressure, and when combined with the high-pressure steam generated in the engine's exhaust gas boiler, it provides the end user with a more usable thermal energy source. Phase 1B of the project was completed in 1986 and consisted primarily of the procurement of equipment and the final design and assembly of a prototype integrated gas engine vapor compression system. The project continued with Phase 2, which comprised the actual laboratory testing of the prototype system, as well as the study of several pertinent subtasks that were identified to GRI as supportive of the primary project objective. Phase 2 also included the selection of a field site, site engineering, and the final installation, start-up, and acceptance testing of the system.

  6. Multiple layer insulation cover

    DOE Patents [OSTI]

    Farrell, James J. (Livingston Manor, NY); Donohoe, Anthony J. (Ovid, NY)

    1981-11-03T23:59:59.000Z

    A multiple layer insulation cover for preventing heat loss in, for example, a greenhouse, is disclosed. The cover is comprised of spaced layers of thin foil covered fabric separated from each other by air spaces. The spacing is accomplished by the inflation of spaced air bladders which are integrally formed in the cover and to which the layers of the cover are secured. The bladders are inflated after the cover has been deployed in its intended use to separate the layers of the foil material. The sizes of the material layers are selected to compensate for sagging across the width of the cover so that the desired spacing is uniformly maintained when the cover has been deployed. The bladders are deflated as the cover is stored thereby expediting the storage process and reducing the amount of storage space required.

  7. Density Matrix Topological Insulators

    E-Print Network [OSTI]

    A. Rivas; O. Viyuela; M. A. Martin-Delgado

    2013-10-31T23:59:59.000Z

    Thermal noise can destroy topological insulators (TI). However we demonstrate how TIs can be made stable in dissipative systems. To that aim, we introduce the notion of band Liouvillian as the dissipative counterpart of band Hamiltonian, and show a method to evaluate the topological order of its steady state. This is based on a generalization of the Chern number valid for general mixed states (referred to as density matrix Chern value), which witnesses topological order in a system coupled to external noise. Additionally, we study its relation with the electrical conductivity at finite temperature, which is not a topological property. Nonetheless, the density matrix Chern value represents the part of the conductivity which is topological due to the presence of quantum mixed edge states at finite temperature. To make our formalism concrete, we apply these concepts to the two-dimensional Haldane model in the presence of thermal dissipation, but our results hold for arbitrary dimensions and density matrices.

  8. Gas-controlled dynamic vacuum insulation with gas gate

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

    1994-06-07T23:59:59.000Z

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber.

  9. Gas-controlled dynamic vacuum insulation with gas gate

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1994-06-07T23:59:59.000Z

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.

  10. STATE OF CALIFORNIA INSULATION STAGE CHECKLIST

    E-Print Network [OSTI]

    STATE OF CALIFORNIA INSULATION STAGE CHECKLIST CEC-CF-6R-ENV-22 (Revised 05/12) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-ENV-22 Quality Insulation Installation (QII) - Insulation Stage be insulated in a manner that resists thermal bridging of the assembly separating conditioned from

  11. Chromatin insulators: lessons from the fly

    E-Print Network [OSTI]

    Corces, Victor G.

    Chromatin insulators: lessons from the fly B.V.Gurudatta and Victor G.Corces Abstract Chromatin insulators are DNA^protein complexes with broad functions in nuclear biology. Drosophila has at least five different types of insulators; recent results suggest that these different insulators share some components

  12. Solar Decathlon Technology Spotlight: Structural Insulated Panels

    Broader source: Energy.gov [DOE]

    Structural insulated panels (SIPs) are prefabricated structural elements used to build walls, ceilings, floors, and roofs.

  13. Tunable Dirac Fermion Dynamics in Topological Insulators

    E-Print Network [OSTI]

    Wang, Wei Hua

    Tunable Dirac Fermion Dynamics in Topological Insulators Chaoyu Chen1 , Zhuojin Xie1 , Ya Feng1, Beijing 100190, China. Three-dimensional topological insulators are characterized by insulating bulk state topological insulators. We have directly revealed signatures of the electron-phonon coupling and found

  14. High voltage capability electrical coils insulated with materials containing SF.sub.6 gas

    DOE Patents [OSTI]

    Lanoue, Thomas J. (Muncie, IN); Zeise, Clarence L. (Penn Township, Allegheny County, PA); Wagenaar, Loren (Muncie, IN); Westervelt, Dean C. (Acme, PA)

    1988-01-01T23:59:59.000Z

    A coil is made having a plurality of layers of adjacent metal conductor windings subject to voltage stress, where the windings have insulation therebetween containing a small number of minute disposed throughout its cross-section, where the voids are voids filled with SF.sub.6 gas to substitute for air or other gaseous materials in from about 60% to about 95% of the cross-sectional void volume in the insulation, thus incorporating an amount of SF.sub.6 gas in the cross-section of the insulation effective to substantially increase corona inception voltages.

  15. Correlation effects on topological insulator

    E-Print Network [OSTI]

    Xiong-Jun Liu; Yang Liu; Xin Liu

    2010-11-24T23:59:59.000Z

    The strong correlation effects on topological insulator are studied in a two-sublattice system with an onsite single-particle energy difference $\\Delta$ between two sublattices. At $\\Delta=0$, increasing the onsite interaction strength $U$ drives the transition from the quantum spin Hall insulating state to the non-topological antiferromagnetic Mott-insulating (AFMI) state. When $\\Delta$ is larger than a certain value, a topologically trivial band insulator or AFMI at small values of $U$ may change into a quantum anomalous Hall state with antiferromagnetic ordering at intermediate values of $U$. Further increasing $U$ drives the system back into the topologically trivial state of AFMI. The corresponding phenomena is observable in the solid state and cold atom systems. We also propose a scheme to realize and detect these effects in cold atom systems.

  16. Measure Guideline: Basement Insulation Basics

    SciTech Connect (OSTI)

    Aldrich, R.; Mantha, P.; Puttagunta, S.

    2012-10-01T23:59:59.000Z

    This guideline is intended to describe good practices for insulating basements in new and existing homes, and is intended to be a practical resources for building contractors, designers, and also to homeowners.

  17. Fully synthetic taped insulation cables

    DOE Patents [OSTI]

    Forsyth, Eric B. (Brookhaven, NY); Muller, Albert C. (Center Moriches, NY)

    1984-01-01T23:59:59.000Z

    A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.

  18. GROUND PLANE INSULATION FAILURE IN THE FIRST TPC SUPERCONDUCTING COIL

    E-Print Network [OSTI]

    Green, M.A.

    2010-01-01T23:59:59.000Z

    is WIUUTEO GROUND PLANE INSULATION FAILURE IN THE FIRST TPCOn August 27, 1980, an insulation failure occurred dt-ringby a failure uf ground plane insulation. ACKNOWLEDGMENTS The

  19. Typical Clothing Ensemble Insulation Levels for Sixteen Body Parts

    E-Print Network [OSTI]

    Lee, Juyoun; Zhang, Hui; Arens, Edward

    2013-01-01T23:59:59.000Z

    Thermal Comfort.1994 CLO Insulation Levels For Sixteen Bodya mesh arm chair whose insulation level was measured. FigureExperimental Conditions. CLO Insulation Levels For Sixteen

  20. Insulation board and process of making

    DOE Patents [OSTI]

    Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

    1985-01-01T23:59:59.000Z

    Insulation board capable of bearing a load without significant loss of insulating capacity due to compression, produced by a method wherein the board is made in compliance with specified conditions of time, temperature and pressure.

  1. Insulator damage endangers public, power reliability; ratepayers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for tips about multiple incidents of insulators damaged by firearms on its high-voltage power line near Joint Base Lewis-McChord in Tacoma, Wash. Damaged insulators can put...

  2. Degradation of Structural Alloys Under Thermal Insulation

    E-Print Network [OSTI]

    McIntyre, D. R.

    1984-01-01T23:59:59.000Z

    Wet thermal insulation may actively degrade steel and stainless steel structures by general corrosion or stress-corrosion cracking. Two different mechanisms of water ingress into insulation are discussed; flooding from external sources...

  3. STATE OF CALIFORNIA ENVELOPE INSULATION; ROOFING; FENESTRATION

    E-Print Network [OSTI]

    STATE OF CALIFORNIA ENVELOPE ­ INSULATION; ROOFING; FENESTRATION CEC-CF-6R-ENV-01 (Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-ENV-01 Envelope ­ Insulation; Roofing:__________________________________ Brand Name:_______________________________ Thickness (inches):_________________________ Thermal

  4. Degradation of Structural Alloys Under Thermal Insulation 

    E-Print Network [OSTI]

    McIntyre, D. R.

    1984-01-01T23:59:59.000Z

    Wet thermal insulation may actively degrade steel and stainless steel structures by general corrosion or stress-corrosion cracking. Two different mechanisms of water ingress into insulation are discussed; flooding from external sources...

  5. Dynamics of Dirac Fermions in Topological Insulators

    E-Print Network [OSTI]

    Arnold, Anton

    Dynamics of Dirac Fermions in Topological Insulators R. Hammer1 , C. Ertler1 , W. P¨otz1 , and A.hammer@uni-graz.at Abstract We study the coherent dynamics of Dirac fermions on the surface of topological insulators in one topological insulators (TI) we investigate theoretically the dynamics of Dirac fermion wave packets on their 2

  6. Vacuum-insulated catalytic converter

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO)

    2001-01-01T23:59:59.000Z

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  7. Impact of Thermally Insulated Floors 

    E-Print Network [OSTI]

    Alghimlas, F.; Omar, E. A.

    2004-01-01T23:59:59.000Z

    of insulated floors. It was found that using an R- 10 floors in multi-story apartment buildings greatly reduce both the peak cooling demand as well as the energy consumption by about 15%, whereas only minimal savings (about 4%) were detected in the case...

  8. A Holographic Fractional Topological Insulator

    E-Print Network [OSTI]

    Carlos Hoyos-Badajoz; Kristan Jensen; Andreas Karch

    2010-07-19T23:59:59.000Z

    We give a holographic realization of the recently proposed low energy effective action describing a fractional topological insulator. In particular we verify that the surface of this hypothetical material supports a fractional quantum Hall current corresponding to half that of a Laughlin state.

  9. A round robin evaluation of the corrosiveness of wet residential insulation by electrochemical measurements

    SciTech Connect (OSTI)

    Stansbury, E.E. (Stansbury (E.E.), Knoxville, TN (United States))

    1991-10-01T23:59:59.000Z

    The results of a round cabin evaluation of the use of an electrochemical method of calculating the corrosion rate of low carbon steel in environments related to cellulosic building insulations are reported. Environments included the leachate from a wet cellulosic insulation and solutions based on pure and commercial grades of borax, ammonium sulfate and aluminum sulfate. The pH values of these environments were in the range of 2.5 to 9.5. Electrochemical measurements were made using a direct reading corrosion rate instrument. The calculated corrosion rates were compared with those determined directly by weight loss measurements. Electrochemical measurements were made over a period of 48 hours and weight loss exposures were for two weeks. Poor agreement was observed for the corrosion rates determined electrochemically and the values were consistently larger than those based on weight loss. Reasons proposed for these results included the complex nature of the corrosion product deposits and the control these deposits have on oxygen diffusion to the metal interface. Both factors influence the validity of the calculation of the corrosion rate by the direct reading instrument. It was concluded that development of a viable electrochemical method of general applicability to the evaluation of the corrosiveness of wet residential building thermal insulations were doubtful. Because of the controlling influence of dissolved oxygen on the corrosion rate in the insulation leachate, an alternate evaluation method is proposed in which a thin steel specimen is partially immersed in wet insulation for three weeks. The corrosiveness of the wet insulation is evaluated in terms of the severity of attack near the metal-air-wet insulation interface. With thin metal specimens, complete penetration along the interface is proposed as a pass/fail criterion. An environment of sterile cotton wet with distilled water is proposed as a comparative standard. 9 refs., 2 figs., 3 tabs.

  10. Integrated natural-gas-engine cooling-jacket vapor-compressor program. Annual progress report (Phase 1B) January-December 1986

    SciTech Connect (OSTI)

    DiBella, F.A.; Becker, F.; Balsavich, J.

    1987-01-01T23:59:59.000Z

    A unique, alternative cogeneration system was designed that will provide an industrial or commercial energy user with high-pressure steam and electricity directly from a packaged cogeneration system. The Integrated Gas Engine Vapor Compression System concept includes an engine-generator set and a steam screw compressor mechanically integrated with the engine. The gas-fueled engine is ebulliently cooled, thus allowing its water jacket heat to be recovered in the form of low-pressure steam. The steam is then compressed by the steam compressor to a higher pressure, and when combined with the high-pressure steam generated in the engine's exhaust gas boiler it provides the end user with a more-usable thermal-energy source.

  11. Plain Talk About Condensation and Radiation Below Metal Roof Assemblies

    E-Print Network [OSTI]

    Ward, L.

    . Unfortunately, some of these advantages may give rise to certain disadvantages in comfort, durability and operating costs (7) This paper provides a brief historical overview of common metal roof insulation methods as well as recent innovations for low cost... assemblies. INTRODUCTION A primary objective of this paper is to try and simplify the complex subject of condensation in metal roof assemblies. A secondary objective is to focus on condensation considerations with reflective insulation systems (as...

  12. Insulation assembly for electric machine

    SciTech Connect (OSTI)

    Rhoads, Frederick W.; Titmuss, David F.; Parish, Harold; Campbell, John D.

    2013-10-15T23:59:59.000Z

    An insulation assembly is provided that includes a generally annularly-shaped main body and at least two spaced-apart fingers extending radially inwards from the main body. The spaced-apart fingers define a gap between the fingers. A slot liner may be inserted within the gap. The main body may include a plurality of circumferentially distributed segments. Each one of the plurality of segments may be operatively connected to another of the plurality of segments to form the continuous main body. The slot liner may be formed as a single extruded piece defining a plurality of cavities. A plurality of conductors (extendable from the stator assembly) may be axially inserted within a respective one of the plurality of cavities. The insulation assembly electrically isolates the conductors in the electric motor from the stator stack and from other conductors.

  13. Magnetically insulated transmission line oscillator

    DOE Patents [OSTI]

    Bacon, Larry D. (Albuquerque, NM); Ballard, William P. (Albuquerque, NM); Clark, M. Collins (Albuquerque, NM); Marder, Barry M. (Albuquerque, NM)

    1988-01-01T23:59:59.000Z

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.

  14. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, W.Y.

    1984-07-27T23:59:59.000Z

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  15. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, Wayne Y. (Munster, IN)

    1987-01-01T23:59:59.000Z

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  16. A review of vacuum insulation research and development in the Building Materials Group of the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Kollie, T.G.; McElroy, D.L.; Fine, H.A.; Childs, K.W.; Graves, R.S.; Weaver, F.J.

    1991-09-01T23:59:59.000Z

    This report is a summary of the development work on flat-vacuum insulation performed by the Building Materials Group (BMG) in the Metals and Ceramics Division of the Oak Ridge National Laboratory (ORNL) during the last two years. A historical review of the technology of vacuum insulation is presented, and the role that ORNL played in this development is documented. The ORNL work in vacuum insulation has been concentrated in Powder-filled Evacuated Panels (PEPs) that have a thermal resistivity over 2.5 times that of insulating foams and seven times that of many batt-type insulations, such as fiberglass. Experimental results of substituting PEPs for chlorofluorocarbon (CFC) foal insulation in Igloo Corporation ice coolers are summarized. This work demonstrated that one-dimensional (1D) heat flow models overestimated the increase in thermal insulation of a foam/PEP-composite insulation, but three-dimensional (3D) models provided by a finite-difference, heat-transfer code (HEATING-7) accurately predicted the resistance of the composites. Edges and corners of the ice coolers were shown to cause the errors in the 1D models as well as shunting of the heat through the foam and around the PEPs. The area of coverage of a PEP in a foam/PEP composite is established as an important parameter in maximizing the resistance of such composites. 50 refs., 27 figs,. 22 tabs.

  17. Electrically detected interferometry of Majorana fermions in a topological insulator

    E-Print Network [OSTI]

    A. R. Akhmerov; Johan Nilsson; C. W. J. Beenakker

    2009-03-12T23:59:59.000Z

    We show how a chiral Dirac fermion (a massless electron or hole) can be converted into a pair of neutral chiral Majorana fermions (a particle equal to its own antiparticle). These two types of fermions exist on the metallic surface of a topological insulator, respectively, at a magnetic domain wall and at a magnet-superconductor interface. Interferometry of Majorana fermions is a key operation in topological quantum computation, but the detection is problematic since these particles have no charge. The Dirac-Majorana converter enables electrical detection of the interferometric signal.

  18. Topological Insulators at Room Temperature

    SciTech Connect (OSTI)

    Zhang, Haijun; /Beijing, Inst. Phys.; Liu, Chao-Xing; /Tsinghua U., Beijing; Qi, Xiao-Liang; /Stanford U., Phys. Dept.; Dai, Xi; Fang, Zhong; /Beijing, Inst. Phys.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-25T23:59:59.000Z

    Topological insulators are new states of quantum matter with surface states protected by the time-reversal symmetry. In this work, we perform first-principle electronic structure calculations for Sb{sub 2}Te{sub 3}, Sb{sub 2}Se{sub 3}, Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} crystals. Our calculations predict that Sb{sub 2}Te{sub 3}, Bi{sub 2}T e{sub 3} and Bi{sub 2}Se{sub 3} are topological insulators, while Sb{sub 2}Se{sub 3} is not. In particular, Bi{sub 2}Se{sub 3} has a topologically non-trivial energy gap of 0.3eV , suitable for room temperature applications. We present a simple and unified continuum model which captures the salient topological features of this class of materials. These topological insulators have robust surface states consisting of a single Dirac cone at the {Lambda} point.

  19. Silicon on insulator achieved using electrochemical etching

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1997-01-01T23:59:59.000Z

    Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50.degree. C. or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense.

  20. Floating insulated conductors for heating subsurface formations

    DOE Patents [OSTI]

    Burns, David; Goodwin, Charles R.

    2014-07-29T23:59:59.000Z

    A heating system for a subsurface formation includes a conduit located in a first opening in the subsurface formation. Three electrical conductors are located in the conduit. A return conductor is located inside the conduit. The return conductor is electrically coupled to the ends of the electrical conductors distal from the surface of the formation. Insulation is located inside the conduit. The insulation electrically insulates the three electrical conductors, the return conductor, and the conduit from each other.

  1. T-Duality of Topological Insulators

    E-Print Network [OSTI]

    Varghese Mathai; Guo Chuan Thiang

    2015-04-08T23:59:59.000Z

    Topological insulators and D-brane charges in string theory can both be classified by the same family of groups. In this letter, we extend this connection via a geometric transform, giving a novel duality of topological insulators which can be viewed as a condensed matter analog of T-duality in string theory. For 2D Chern insulators, this duality exchanges the rank and Chern number of the valence bands.

  2. Building America Expert Meeting: Interior Insulation Retrofit...

    Broader source: Energy.gov (indexed) [DOE]

    Building Science Corporation team held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011, at the Westford Regency Hotel in...

  3. Farmers RECC- Residential Insulation Rebate Program

    Broader source: Energy.gov [DOE]

    The Farmers Rural Electric Cooperative (RECC) Button-Up Program provides free energy audits and rebates for insulation upgrades to its residential customers. Farmers RECC's energy advisor will...

  4. How Much Insulation is Too Much?

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "How much insulation is too much?"

  5. Studies Bolster Promise of Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Bolster Promise of Topological Insulators Print A few years ago, a strange new material began to drive research in condensed-matter physics around the world. First...

  6. Issue 5: Optimizing High Levels of Insulation

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "How much insulation is too much?"

  7. On Holographic Insulators and Supersolids

    E-Print Network [OSTI]

    Kiritsis, Elias

    2015-01-01T23:59:59.000Z

    We obtain holographic realisations for systems that have strong similarities to Mott insulators and supersolids, after examining the ground states of Einstein-Maxwell-scalar systems. The real part of the AC conductivity has a hard gap and a discrete spectrum only. We add momentum dissipation to resolve the delta function in the conductivity due to translational invariance. We develop tools to directly calculate the Drude weight for a large class of solutions and to support our claims. Numerical RG flows are also constructed to verify that such saddle points are IR fixed points of asymptotically AdS_4 geometries.

  8. Fully synthetic taped insulation cables

    DOE Patents [OSTI]

    Forsyth, E.B.; Muller, A.C.

    1983-07-15T23:59:59.000Z

    The present invention is a cable which, although constructed from inexpensive polyolefin tapes and using typical impregnating oils, furnishes high voltage capability up to 765 kV, and has such excellent dielectric characteristics and heat transfer properties that it is capable of operation at capacities equal to or higher than presently available cables at a given voltage. This is accomplished by using polyethylene, polybutene or polypropylene insulating tape which has been specially processed to attain properties which are not generally found in these materials, but are required for their use in impregnated electrical cables. Chief among these properties is compatibility with impregnating oil.

  9. Insulation Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment ofEnergy1EnergyEnergy Insulate

  10. Modular cell biology: retroactivity and insulation Domitilla Del Vecchio1,

    E-Print Network [OSTI]

    Sontag, Eduardo

    Modular cell biology: retroactivity and insulation Domitilla Del Vecchio1, *, Alexander J Ninfa2 a remarkable insulation property, due to the fast timescales of the phosphorylation and dephosphorylation: computational methods; metabolic and regulatory networks Keywords: feedback; insulation; modularity; singular

  11. Low-cost exterior insulation process and structure

    DOE Patents [OSTI]

    Vohra, Arun (Bethesda, MD)

    1999-01-01T23:59:59.000Z

    A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value.

  12. Topological insulators of bosons/spins T. Senthil (MIT)

    E-Print Network [OSTI]

    Topological insulators of bosons/spins T. Senthil (MIT) Thanks: X.-G.Wen, M.P.A. Fisher Trivial phases Eg: Band insulators, superfluids, antiferromagnets, ......... Gapped `topologically ordered phases Eg: Band insulators, superfluids, antiferromagnets, ......... Gapped `topologically ordered

  13. Classification and characterization of topological insulators and superconductors

    E-Print Network [OSTI]

    Mong, Roger

    2012-01-01T23:59:59.000Z

    Antiferromagnetic topological insulators 5.1 Z 2 topological1.3 Topological insulators in 3D . . . . . . . . . . . . .1.3.1 Strong topological insulators (STI) . . . . . 1.3.2

  14. Widespread spin polarizationeffects in photoemission from topological insulators

    E-Print Network [OSTI]

    Jozwiak, C.

    2012-01-01T23:59:59.000Z

    photoemission from topological insulators C. Jozwiak, 1, ?approach in the 3D topological insulators. [1] D. Hsieh, D.three-dimensional topological insulator Bi 2 Se 3 using a

  15. Low-cost exterior insulation process and structure

    DOE Patents [OSTI]

    Vohra, A.

    1999-03-02T23:59:59.000Z

    A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value. 2 figs.

  16. Process for manufacturing hollow fused-silica insulator cylinder

    DOE Patents [OSTI]

    Sampayan, Stephen E. (Manteca, CA); Krogh, Michael L. (Lee's Summit, MO); Davis, Steven C. (Lee's Summit, MO); Decker, Derek E. (Discovery Bay, CA); Rosenblum, Ben Z. (Overland Park, KS); Sanders, David M. (Livermore, CA); Elizondo-Decanini, Juan M. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A method for building hollow insulator cylinders that can have each end closed off with a high voltage electrode to contain a vacuum. A series of fused-silica round flat plates are fabricated with a large central hole and equal inside and outside diameters. The thickness of each is related to the electron orbit diameter of electrons that escape the material surface, loop, and return back. Electrons in such electron orbits can support avalanche mechanisms that result in surface flashover. For example, the thickness of each of the fused-silica round flat plates is about 0.5 millimeter. In general, the thinner the better. Metal, such as gold, is deposited onto each top and bottom surface of the fused-silica round flat plates using chemical vapor deposition (CVD). Eutectic metals can also be used with one alloy constituent on the top and the other on the bottom. The CVD, or a separate diffusion step, can be used to defuse the deposited metal deep into each fused-silica round flat plate. The conductive layer may also be applied by ion implantation or gas diffusion into the surface. The resulting structure may then be fused together into an insulator stack. The coated plates are aligned and then stacked, head-to-toe. Such stack is heated and pressed together enough to cause the metal interfaces to fuse, e.g., by welding, brazing or eutectic bonding. Such fusing is preferably complete enough to maintain a vacuum within the inner core of the assembled structure. A hollow cylinder structure results that can be used as a core liner in a dielectric wall accelerator and as a vacuum envelope for a vacuum tube device where the voltage gradients exceed 150 kV/cm.

  17. Charge and spin topological insulators

    SciTech Connect (OSTI)

    Kopaev, Yu. V., E-mail: kopaev@sci.lebedev.ru; Gorbatsevich, A. A.; Belyavskii, V. I. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2011-09-15T23:59:59.000Z

    The topologically nontrivial states of matter-charge and spin topological insulators, which exhibit, respectively, properties of the integer quantum Hall effect and the quantum spin Hall effect-are discussed. The topological characteristics (invariant with respect to weak adiabatic changes in the Hamiltonian parameters) which lead to such states are considered. The model of a 2D hexagonal lattice having symmetries broken with respect to time reversal and spatial inversion which was proposed by Haldane and marked the beginning of unprecedented activity in the study of topologically nontrivial states is discussed. This model relates the microscopic nature of the symmetry breaking with respect to the time reversal to the occurrence of spontaneous orbital currents which circulate within a unit cell. Such currents become zero upon summation over the unit cell, but they may form spreading current states at the surface which are similar to the edge current states under the quantum Hall effect. The first model of spontaneous currents (exciton insulator model) is considered, and the possibility of implementing new topologically nontrivial states in this model is discussed.

  18. Uniform insulation applied-B ion diode

    DOE Patents [OSTI]

    Seidel, David B. (Albuquerque, NM); Slutz, Stephen A. (Albuquerque, NM)

    1988-01-01T23:59:59.000Z

    An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

  19. Kingspan Insulated Panels: Order (2013-CE-5353)

    Broader source: Energy.gov [DOE]

    DOE ordered Kingspan Insulated Panels, Inc. to pay a $8,000 civil penalty after finding Kingspan Insulated Panels had failed to certify that any basic models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  20. Surprising Control over Photoelectrons from a Topological Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surprising Control over Photoelectrons from a Topological Insulator Surprising Control over Photoelectrons from a Topological Insulator Print Tuesday, 12 March 2013 00:00...

  1. Materials - Next-generation insulation ... | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials - Next-generation insulation ... A composite foam insulation panel being developed by Oak Ridge National Laboratory and partners could reduce wall-generated heating and...

  2. Exterior Rigid Insulation Best Practices - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exterior Rigid Insulation Best Practices - Building America Top Innovation Exterior Rigid Insulation Best Practices - Building America Top Innovation Effec guid-exterior rigid...

  3. Building America Expert Meeting Report: Interior Insulation Retrofit...

    Broader source: Energy.gov (indexed) [DOE]

    Interior Insulation Retrofit of Mass Masonry Wall Assembliesessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce...

  4. Sensitivity of forced air distribution system efficiency to climate, duct location, air leakage and insulation

    E-Print Network [OSTI]

    Walker, Iain

    2001-01-01T23:59:59.000Z

    Location, Air Leakage and Insulation Iain S. Walker Energy4 Duct Insulation, Location and Leakageinsulation

  5. Topological insulators and metals in atomic optical lattices

    SciTech Connect (OSTI)

    Stanescu, Tudor D.; Galitski, Victor; Das Sarma, S. [Department of Physics, Joint Quantum Institute and Condensed Matter Theory Center, University of Maryland, College Park, Maryland 20742-4111 (United States); Vaishnav, J. Y.; Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2009-05-15T23:59:59.000Z

    We propose the realization of topological quantum states in a cold-atom system, using a two-dimensional hexagonal optical lattice and a light-induced periodic vector potential. A necessary condition for observing the topological states is the realization of a confining potential with a flat bottom and sharp boundaries. To probe the topological states, we propose to load bosons into the characteristic edge states and image them directly. The possibility of mapping out the edge states and controlling the optical lattice and vector potentials offers opportunities for exploring topological phases with no equivalent in condensed-matter systems.

  6. Topological Insulators and Metals in Atomic Optical Lattices

    E-Print Network [OSTI]

    Tudor D. Stanescu; Victor Galitski; J. Y. Vaishnav; Charles W. Clark; S. Das Sarma

    2009-01-26T23:59:59.000Z

    We propose the realization of topological quantum states with cold atoms trapped in an optical lattice. We discuss an experimental setup that generates a two-dimensional hexagonal lattice in the presence of a light-induced periodic vector potential, which represents a realization of the Haldane model with cold atoms. We determine theoretically the conditions necessary for observing the topological states and show that two of the key conditions are: 1) the realization of sharp boundaries and 2) the minimization of any smoothly varying component of the confining potential. We argue that, unlike their condensed matter counterparts, cold atom topological quantum states can be i) "seen", by mapping out the characteristic chiral edge states, and ii) controlled, by controlling the periodic vector potential and the properties of the confining potential.

  7. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zand Analysis Utilities (TAU) References

  8. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zand Analysis Utilities (TAU)

  9. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zand Analysis Utilities (TAU)Tuning of the

  10. Redox chemistry and metal-insulator transitions intertwined in a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases 2014 2013Requirementsnano-porous material

  11. Redox chemistry and metal-insulator transitions intertwined | Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases 2014 2013Requirementsnano-porous

  12. Graphene physics and insulator-metal transition in compressed hydrogen

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR57451DOE/SC0002390dVand Technical(Journal

  13. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliancesTrending:ScheduleTsung-Dao

  14. Graphene physics and insulator-metal transition in compressed hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Annual Report, 1993Semiconductor |(Journal

  15. Radio-transparent multi-layer insulation for radiowave receivers

    SciTech Connect (OSTI)

    Choi, J. [Korea University, Anam-dong Seongbuk-gu, Seoul 136-713 (Korea, Republic of)] [Korea University, Anam-dong Seongbuk-gu, Seoul 136-713 (Korea, Republic of); Ishitsuka, H. [Department of Particle and Nuclear Physics, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193 (Japan)] [Department of Particle and Nuclear Physics, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Mima, S. [Terahertz Sensing and Imaging Team, Terahertz-wave Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] [Terahertz Sensing and Imaging Team, Terahertz-wave Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Oguri, S., E-mail: shugo@post.kek.jp [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan); Takahashi, K. [Terahertz Sensing and Imaging Team, Terahertz-wave Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan) [Terahertz Sensing and Imaging Team, Terahertz-wave Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Tajima, O. [Department of Particle and Nuclear Physics, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193 (Japan) [Department of Particle and Nuclear Physics, School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2013-11-15T23:59:59.000Z

    In the field of radiowave detection, enlarging the receiver aperture to enhance the amount of light detected is essential for greater scientific achievements. One challenge in using radio transmittable apertures is keeping the detectors cool. This is because transparency to thermal radiation above the radio frequency range increases the thermal load. In shielding from thermal radiation, a general strategy is to install thermal filters in the light path between aperture and detectors. However, there is difficulty in fabricating metal mesh filters of large diameters. It is also difficult to maintain large diameter absorptive-type filters in cold because of their limited thermal conductance. A technology that maintains cold conditions while allowing larger apertures has been long-awaited. We propose radio-transparent multi-layer insulation (RT-MLI) composed from a set of stacked insulating layers. The insulator is transparent to radio frequencies, but not transparent to infrared radiation. The basic idea for cooling is similar to conventional multi-layer insulation. It leads to a reduction in thermal radiation while maintaining a uniform surface temperature. The advantage of this technique over other filter types is that no thermal links are required. As insulator material, we used foamed polystyrene; its low index of refraction makes an anti-reflection coating unnecessary. We measured the basic performance of RT-MLI to confirm that thermal loads are lowered with more layers. We also confirmed that our RT-MLI has high transmittance to radiowaves, but blocks infrared radiation. For example, RT-MLI with 12 layers has a transmittance greater than 95% (lower than 1%) below 200 GHz (above 4 THz). We demonstrated its effects in a system with absorptive-type filters, where aperture diameters were 200 mm. Low temperatures were successfully maintained for the filters. We conclude that this technology significantly enhances the cooling of radiowave receivers, and is particularly suitable for large-aperture systems. This technology is expected to be applicable to various fields, including radio astronomy, geo-environmental assessment, and radar systems.

  16. Automatic insulation resistance testing apparatus

    DOE Patents [OSTI]

    Wyant, Francis J.; Nowlen, Steven P.; Luker, Spencer M.

    2005-06-14T23:59:59.000Z

    An apparatus and method for automatic measurement of insulation resistances of a multi-conductor cable. In one embodiment of the invention, the apparatus comprises a power supply source, an input measuring means, an output measuring means, a plurality of input relay controlled contacts, a plurality of output relay controlled contacts, a relay controller and a computer. In another embodiment of the invention the apparatus comprises a power supply source, an input measuring means, an output measuring means, an input switching unit, an output switching unit and a control unit/data logger. Embodiments of the apparatus of the invention may also incorporate cable fire testing means. The apparatus and methods of the present invention use either voltage or current for input and output measured variables.

  17. Slab edge insulating form system and methods

    DOE Patents [OSTI]

    Lee, Brain E. (Corral de Tierra, CA); Barsun, Stephan K. (Davis, CA); Bourne, Richard C. (Davis, CA); Hoeschele, Marc A. (Davis, CA); Springer, David A. (Winters, CA)

    2009-10-06T23:59:59.000Z

    A method of forming an insulated concrete foundation is provided comprising constructing a foundation frame, the frame comprising an insulating form having an opening, inserting a pocket former into the opening; placing concrete inside the foundation frame; and removing the pocket former after the placed concrete has set, wherein the concrete forms a pocket in the placed concrete that is accessible through the opening. The method may further comprise sealing the opening by placing a sealing plug or sealing material in the opening. A system for forming an insulated concrete foundation is provided comprising a plurality of interconnected insulating forms, the insulating forms having a rigid outer member protecting and encasing an insulating material, and at least one gripping lip extending outwardly from the outer member to provide a pest barrier. At least one insulating form has an opening into which a removable pocket former is inserted. The system may also provide a tension anchor positioned in the pocket former and a tendon connected to the tension anchor.

  18. Excavationless Exterior Foundation Insulation Field Study

    SciTech Connect (OSTI)

    Schirber, T.; Mosiman, G.; Ojczyk, C.

    2014-10-01T23:59:59.000Z

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  19. Method and apparatus for melting metals

    DOE Patents [OSTI]

    Moore, Alan F.; Schechter, Donald E.; Morrow, Marvin Stanley

    2006-03-14T23:59:59.000Z

    A method and apparatus for melting metals uses microwave energy as the primary source of heat. The metal or mixture of metals are placed in a ceramic crucible which couples, at least partially, with the microwaves to be used. The crucible is encased in a ceramic casket for insulation and placed within a microwave chamber. The chamber may be evacuated and refilled to exclude oxygen. After melting, the crucible may be removed for pouring or poured within the chamber by dripping or running into a heated mold within the chamber. Apparent coupling of the microwaves with softened or molten metal produces high temperatures with great energy savings.

  20. Measure Guideline: Hybrid Foundation Insulation Retrofits

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J.

    2012-05-01T23:59:59.000Z

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a 'partial drainage' detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  1. Porous Materials -Metal-Organic Frameworks

    E-Print Network [OSTI]

    Tsymbal, Evgeny Y.

    ShellsSnow Coral SoilBoneLungs Lemons #12;Artificial Porous Materials Insulation Cake Concrete BreadPorous Materials -Metal-Organic Frameworks 2012 Nanocamp NCMN, UNL Dr. Jian Zhang & Jacob Johnson-organic Frameworks Porous polymer networks #12;Porous Materials in Nature Sandstones Sea Sponge Butterfly Wings Egg

  2. 1 Introduction 3 2 Topological insulators -Overview 5

    E-Print Network [OSTI]

    Johannesson, Henrik

    Contents 1 Introduction 3 2 Topological insulators - Overview 5 2.1 Introduction quantum spin Hall insulator . . . . . . . . . . . . . 7 2.4 Three dimensional topological insulator . . . . . . . . . . . . . . . . 9 3 Bulk band structure in a 2D spin orbit induced topological insulator 11 3.1 Introduction

  3. Biomaterials LaboratoryBiomaterials Laboratory Martinos Center for Biomedical ImagingMartinos Center for Biomedical Imaging

    E-Print Network [OSTI]

    Bar, Moshe

    Ceramic fiber insulation 3 mm water jacket Thermocouple Specimen Thermocouple Noninductive heater Water fiber insulation 3 mm water jacket Thermocouple Specimen Thermocouple Noninductive heater Water outSpecimen ThermocoupleThermocouple Noninductive heaterNoninductive heater Water outWater

  4. Strained-Si-on-Insulator (SSOI) and SiGe-on-Insulator (SGOI): Fabrication Obstacles and Solutions

    E-Print Network [OSTI]

    Strained-Si-on-Insulator (SSOI) and SiGe-on-Insulator (SGOI): Fabrication Obstacles and Solutions-Si and SiGe-on-insulator were fabricated, combining both the benefits of high-mobility strained-Si and SOI) to oxidized handle wafers. Layer transfer onto insulating handle wafers can be accomplished using grind

  5. PHYSICAL REVIEW B 83, 165440 (2011) Electron interaction-driven insulating ground state in Bi2Se3 topological insulators

    E-Print Network [OSTI]

    Wang, Wei Hua

    2011-01-01T23:59:59.000Z

    topological insulators in the two-dimensional limit Minhao Liu,1 Cui-Zu Chang,1,2 Zuocheng Zhang,1 Yi Zhang,2 of ultrathin Bi2Se3 topological insulators with thickness from one quintuple layer to six quintuple layers that this unusual insulating ground state in the two-dimensional limit of topological insulators is induced

  6. Ultrathin Strained Si-on-Insulator and SiGe-on-Insulator Created using Low Temperature Wafer Bonding

    E-Print Network [OSTI]

    Ultrathin Strained Si-on-Insulator and SiGe-on-Insulator Created using Low Temperature Wafer, uniform thickness, low defect density, monocrystalline SiGe alloys and strained Si on any desired substrate was developed, allowing for the creation of SiGe-on-insulator and strained Si-on-insulator. After

  7. Nonlinear boundary value problem of magnetic insulation

    E-Print Network [OSTI]

    A. V. Sinitsyn

    2000-09-09T23:59:59.000Z

    On the basis of generalization of upper and lower solution method to the singular two point boundary value problems, the existence theorem of solutions for the system, which models a process of magnetic insulation in plasma is proved.

  8. Phosphorylation based insulation devices design and implementation

    E-Print Network [OSTI]

    Rivera Ortiz, Phillip M. (Phillip Michael)

    2013-01-01T23:59:59.000Z

    This thesis presents the analysis of a phosphorylation based insulation device implemented in Saccharomyces cerevisae and the minimization of the retroactivity to the input and retroactivity to the output of a single cycle ...

  9. Install Removable Insulation on Valves and Fittings

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on installing removable insulation on valves and fittings provides how-to advice for improving the system using low-cost, proven practices and technologies.

  10. Saving Energy and Money with Aerogel Insulation

    Broader source: Energy.gov [DOE]

    The Energy Department is investing in an innovative insulation material that saves energy and money for industrial facilities while also helping to support 50 full-time clean energy jobs for Americans.

  11. KSI's Cross Insulated Core Transformer Technology

    SciTech Connect (OSTI)

    Uhmeyer, Uwe [Kaiser Systems, Inc, 126 Sohier Road, Beverly, MA 01915 (United States)

    2009-08-04T23:59:59.000Z

    Cross Insulated Core Transformer (CCT) technology improves on Insulated Core Transformer (ICT) implementations. ICT systems are widely used in very high voltage, high power, power supply systems. In an ICT transformer ferrite core sections are insulated from their neighboring ferrite cores. Flux leakage is present at each of these insulated gaps. The flux loss is raised to the power of stages in the ICT design causing output voltage efficiency to taper off with increasing stages. KSI's CCT technology utilizes a patented technique to compensate the flux loss at each stage of an ICT system. Design equations to calculate the flux compensation capacitor value are presented. CCT provides corona free operation of the HV stack. KSI's CCT based High Voltage power supply systems offer high efficiency operation, high frequency switching, low stored energy and smaller size over comparable ICT systems.

  12. Thermal conductivity of thermal-battery insulations

    SciTech Connect (OSTI)

    Guidotti, R.A.; Moss, M.

    1995-08-01T23:59:59.000Z

    The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

  13. Probing the topology in band insulators

    E-Print Network [OSTI]

    Chen, Kuang-Ting, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Topological Insulator is a newly found state of matter. Unlike phases described by the traditional Landau theory of symmetry breaking, the topological phases do not break symmetry, and it is not obvious in which measurable ...

  14. Air leakage of Insulated Concrete Form houses

    E-Print Network [OSTI]

    Durschlag, Hannah (Hanna Rebekah)

    2012-01-01T23:59:59.000Z

    Air leakage has been shown to increase building energy use due to additional heating and cooling loads. Although many construction types have been examined for leakage, an exploration of a large number of Insulated Concrete ...

  15. A Guide to Insulation Selection for Industrial Applications

    E-Print Network [OSTI]

    Harrison, M. R.

    1979-01-01T23:59:59.000Z

    of new insulations on th mar ket, it is important that the insulation selection process be upgraded. Insulation peci fications need to be reviewed in terms of new products and installation techniques. Also, the specific application or end use should... be critically analyzed to determine whic~ pro f ducts are best suited for that application. INSULATION MATERIAL SELECTION The selection and specification of insulation materials can be broken down int two I separate but interrelated activities. The first...

  16. T-Duality and Topological Insulators

    E-Print Network [OSTI]

    Mathai, Varghese

    2015-01-01T23:59:59.000Z

    It is well known that topological insulators are classified by a family of groups, which coincidentally also classifies D-brane charges on orientifolds in string theory. In this letter, we extend this correlation via a geometric analog of the real Fourier transform to obtain a novel duality of topological insulators that can be viewed as a condensed matter analog of T-duality in string theory.

  17. Status of surface conduction in topological insulators

    SciTech Connect (OSTI)

    Barua, Sourabh, E-mail: sbarua@iitk.ac.in; Rajeev, K. P. [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)] [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2014-01-15T23:59:59.000Z

    In this report, we scrutinize the thickness dependent resistivity data from the recent literature on electrical transport measurements in topological insulators. A linear increase in resistivity with increase in thickness is expected in the case of these materials since they have an insulating bulk and a conducting surface. However, such a trend is not seen in the resistivity versus thickness data for all the cases examined, except for some samples, where it holds for a range of thickness.

  18. Measure Guideline: Internal Insulation of Masonry Walls

    SciTech Connect (OSTI)

    Straube, J. F.; Ueno, K.; Schumacher, C. J.

    2012-07-01T23:59:59.000Z

    This measure guideline provides recommendations for interior insulation assemblies that control interstitial condensation and durability risks; recommendations for acceptable thermal performance are also provided. An illustrated guide of high-risk exterior details (which concentrate bulk water), and recommended remediation details is provided. This is followed by a recommended methodology for risk assessment of a masonry interior insulation project: a series of steps are suggested to assess the risks associated with this retrofit, with greater certainty with added steps.

  19. Apparatus for improving performance of electrical insulating structures

    DOE Patents [OSTI]

    Wilson, Michael J. (Modesto, CA); Goerz, David A. (Brentwood, CA)

    2002-01-01T23:59:59.000Z

    Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.

  20. Method for improving performance of highly stressed electrical insulating structures

    DOE Patents [OSTI]

    Wilson, Michael J. (Modesto, CA); Goerz, David A. (Brentwood, CA)

    2002-01-01T23:59:59.000Z

    Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.

  1. Apparatus for improving performance of electrical insulating structures

    DOE Patents [OSTI]

    Wilson, Michael J.; Goerz, David A.

    2004-08-31T23:59:59.000Z

    Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.

  2. S-Wave Superconductivity in Anisotropic Holographic Insulators

    E-Print Network [OSTI]

    Erdmenger, Johanna; Klug, Steffen; Meyer, Rene; Schalm, Koenraad

    2015-01-01T23:59:59.000Z

    Within gauge/gravity duality, we consider finite density systems in a helical lattice dual to asymptotically anti-de Sitter space-times with Bianchi VII symmetry. These systems can become an anisotropic insulator in one direction while retaining metallic behavior in others. To this model, we add a $U(1)$ charged scalar and show that below a critical temperature, it forms a spatially homogeneous condensate that restores isotropy in a new superconducting ground state. We determine the phase diagram in terms of the helix parameters and perform a stability analysis on its IR fixed point corresponding to a finite density condensed phase at zero temperature. Moreover, by analyzing fluctuations about the gravity background, we study the optical conductivity. Due to the lattice, this model provides an example for a holographic insulator-superfluid transition in which there is no unrealistic delta-function peak in the normal phase DC conductivity. Our results suggest that in the zero temperature limit, all degrees of ...

  3. Load responsive multilayer insulation performance testing

    SciTech Connect (OSTI)

    Dye, S.; Kopelove, A. [Quest Thermal Group, 6452 Fig Street Suite A, Arvada, CO 80004 (United States); Mills, G. L. [Ball Aerospace and Technologies Corp, 1600 Commerce Street, Boulder, CO 80301 (United States)

    2014-01-29T23:59:59.000Z

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI.

  4. Topological insulators and superconductors from string theory

    SciTech Connect (OSTI)

    Ryu, Shinsei; Takayanagi, Tadashi [Department of Physics, University of California, Berkeley, California 94720 (United States); Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, Kashiwa, Chiba 277-8582 (Japan)

    2010-10-15T23:59:59.000Z

    Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the {theta} term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).

  5. Topological Insulators and Superconductors from String Theory

    E-Print Network [OSTI]

    Shinsei Ryu; Tadashi Takayanagi

    2010-08-01T23:59:59.000Z

    Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and supercondutors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K-theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K-theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the $\\theta$-term in various dimensions. This sheds light on topological insulators and superconductors beyond non-interacting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).

  6. Design Tool for Cryogenic Thermal Insulation Systems

    SciTech Connect (OSTI)

    Demko, Jonathan A [ORNL] [ORNL; Fesmire, J. E. [NASA Kennedy Space Center, Kennedy Space Center, Florida] [NASA Kennedy Space Center, Kennedy Space Center, Florida; Augustynowicz, S. D. [Sierra Lobo Inc., Kennedy Space Center, Florida] [Sierra Lobo Inc., Kennedy Space Center, Florida

    2008-01-01T23:59:59.000Z

    Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed. The approach is to apply thermal analysis to standard shapes (plane walls, cylinders, spheres) that are relatively simple to characterize with a one-dimensional analytical or numerical model. The user describes the system hot and cold boundary geometry and the operating environment. Basic outputs such as heat load and temperature profiles are determined. The user can select from a built-in insulation material database or input user defined materials. Existing information has been combined with the new experimental thermal conductivity data produced by the Cryogenics Test Laboratory for cryogenic and vacuum environments, including high vacuum, soft vacuum, and no vacuum. Materials in the design tool include multilayer insulation, aerogel blankets, aerogel bulk-fill, foams, powders, composites, and other insulation system constructions. A comparison of the design tool to a specific composite thermal insulation system is given.

  7. Thermal Performance Evaluation of Innovative Metal Building Roof Assemblies

    SciTech Connect (OSTI)

    Walker, Daniel James [ORNL; Zaltash, Abdolreza [ORNL; Atchley, Jerald Allen [ORNL

    2011-01-01T23:59:59.000Z

    In order to meet the coming energy codes, multiple layers of various insulation types will be required. The demand for greater efficiency has pushed insulation levels beyond the cavity depth. These experiments show the potential for improving metal building roof thermal performance. Additional work is currently being done by several stakeholders, so the data is expanding. These experiments are for research and development purposes, and may not be viable for immediate use.

  8. Stabilization of Electrocatalytic Metal Nanoparticles at Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points. Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene...

  9. Magnetic insulation at finite temperatures

    SciTech Connect (OSTI)

    Goedecke, G. H.; Davis, Brian T.; Chen, Chiping [Physics Department, New Mexico State University, Las Cruces, New Mexico 88003 and Raytheon Missile Systems, 1151 E. Hermans Road, Tucson, Arizona 85706 (United States); Intense Beam Theoretical Research Group, Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and Raytheon Missile Systems, 1151 E. Hermans Road, Tucson, Arizona 85706 (United States)

    2006-08-15T23:59:59.000Z

    A finite-temperature non-neutral plasma (FTNNP) theory of magnetically insulated (MI) electron flows in crossed-field vacuum devices is developed and applied in planar geometry. It is shown that, in contrast to the single type of MI flow predicted by traditional cold-plasma treatments, the nonlinear FTNNP equations admit five types of steady flow, of which three types are MI flows, including flows in which the electric field and/or the tangential velocity at the cathode may be zero or nonzero. It is also shown that finite-temperature Vlasov-Poisson treatments yield solutions for electron number densities and electrostatic potentials that are a subset of the FTNNP solutions. The algorithms that are used to solve the FTNNP equations numerically are discussed, and the numerical results are presented for several examples of the three types of MI flow. Results include prediction of the existence, boundaries, number density profiles, and other properties of sheaths of electrons in the anode-cathode gap.

  10. Quantum spin Hall effect and topological insulators for light

    E-Print Network [OSTI]

    Bliokh, Konstantin Y

    2015-01-01T23:59:59.000Z

    We show that free-space light has intrinsic quantum spin-Hall effect (QSHE) properties. These are characterized by a non-zero topological spin Chern number, and manifest themselves as evanescent modes of Maxwell equations. The recently discovered transverse spin of evanescent modes demonstrates spin-momentum locking stemming from the intrinsic spin-orbit coupling in Maxwell equations. As a result, any interface between free space and a medium supporting surface modes exhibits QSHE of light with opposite transverse spins propagating in opposite directions. In particular, we find that usual isotropic metals with surface plasmon-polariton modes represent natural 3D topological insulators for light. Several recent experiments have demonstrated transverse spin-momentum locking and spin-controlled unidirectional propagation of light at various interfaces with evanescent waves. Our results show that all these experiments can be interpreted as observations of the QSHE of light.

  11. Method for minimizing contaminant particle effects in gas-insulated electrical apparatus

    DOE Patents [OSTI]

    Pace, Marshall O. (Knoxville, TN); Adcock, James L. (Knoxville, TN); Christophorou, Loucas G. (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    Electrical breakdown of a gas insulator in high voltage apparatus is preved by placing an electrical insulative coating on contaminant particles in the gas insulator.

  12. Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures

    E-Print Network [OSTI]

    Schiavon, Stefano; Lee, Kwang Ho

    2012-01-01T23:59:59.000Z

    predictive clothing insulation models based on outdoor airrange of the clothing insulation calculated for eachbuilding). Figure 8 Clothing insulation versus dress code [

  13. Influence of two dynamic predictive clothing insulation models on building energy performance

    E-Print Network [OSTI]

    Lee, Kwang Ho; Schiavon, Stefano

    2013-01-01T23:59:59.000Z

    Predictive Clothing Insulation Models on Building Energyunnecessarily higher clothing insulation and lower heatingthat the constant clothing insulation assumption lead to the

  14. Predictive clothing insulation model based on outdoor air and indoor operative temperatures

    E-Print Network [OSTI]

    Schiavon, Stefano; Lee, Kwang Ho

    2012-01-01T23:59:59.000Z

    2012) Predictive clothing insulation model based on outdoorPredictive clothing insulation model based on outdoor airpredictive models of clothing insulation have been developed

  15. Versatile Indian sari: Clothing insulation with different drapes of typical sari ensembles

    E-Print Network [OSTI]

    Indraganti, Madhavi; Lee, Juyoun; Zhang, Hui; Arens, Edward

    2014-01-01T23:59:59.000Z

    Extension of the Clothing Insulation Database for Standardand air movement on that insulation. , s.l. : s.n. Havenith,Estimation of the thermal insulation and evaporative

  16. An Insulating Glass Knowledge Base

    SciTech Connect (OSTI)

    Michael L. Doll; Gerald Hendrickson; Gerard Lagos; Russell Pylkki; Chris Christensen; Charlie Cureija

    2005-08-01T23:59:59.000Z

    This report will discuss issues relevant to Insulating Glass (IG) durability performance by presenting the observations and developed conclusions in a logical sequential format. This concluding effort discusses Phase II activities and focuses on beginning to quantifying IG durability issues while continuing the approach presented in the Phase I activities (Appendix 1) which discuss a qualitative assessment of durability issues. Phase II developed a focus around two specific IG design classes previously presented in Phase I of this project. The typical box spacer and thermoplastic spacer design including their Failure Modes and Effect Analysis (FMEA) and Fault Tree diagrams were chosen to address two currently used IG design options with varying components and failure modes. The system failures occur due to failures of components or their interfaces. Efforts to begin quantifying the durability issues focused on the development and delivery of an included computer based IG durability simulation program. The focus/effort to deliver the foundation for a comprehensive IG durability simulation tool is necessary to address advancements needed to meet current and future building envelope energy performance goals. This need is based upon the current lack of IG field failure data and the lengthy field observation time necessary for this data collection. Ultimately, the simulation program is intended to be used by designers throughout the current and future industry supply chain. Its use is intended to advance IG durability as expectations grow around energy conservation and with the growth of embedded technologies as required to meet energy needs. In addition the tool has the immediate benefit of providing insight for research and improvement prioritization. Included in the simulation model presentation are elements and/or methods to address IG materials, design, process, quality, induced stress (environmental and other factors), validation, etc. In addition, acquired data is presented in support of project and model assumptions. Finally, current and suggested testing protocol and procedure for future model validation and IG physical testing are discussed.

  17. Topological insulators and topological nonlinear {sigma} models

    SciTech Connect (OSTI)

    Yao Hong; Lee, Dung-Hai [Department of Physics, University of California at Berkeley, Berkeley, California 94720 (United States) and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2010-12-15T23:59:59.000Z

    In this paper we link the physics of topological nonlinear {sigma} models with that of Chern-Simons insulators. We show that corresponding to every 2n-dimensional Chern-Simons insulator there is a (n-1)-dimensional topological nonlinear {sigma} model with the Wess-Zumino-Witten term. Breaking internal symmetry in these nonlinear {sigma} models leads to nonlinear {sigma} models with the {theta} term. [This is analogous to the dimension reduction leading from 2n-dimensional Chern-Simons insulators to (2n-1) and (2n-2)-dimensional topological insulators protected by discrete symmetries.] The correspondence described in this paper allows one to derive the topological term in a theory involving fermions and order parameters (we shall referred to them as ''fermion-{sigma} models'') when the conventional gradient-expansion method fails. We also discuss the quantum number of solitons in topological nonlinear {sigma} model and the electromagnetic action of the (2n-1)-dimensional topological insulators. Throughout the paper we use a simple model to illustrate how things work.

  18. Multilayer insulation blanket, fabricating apparatus and method

    DOE Patents [OSTI]

    Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

    1992-01-01T23:59:59.000Z

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  19. Method of fabricating a multilayer insulation blanket

    DOE Patents [OSTI]

    Gonczy, John D. (Oak Lawn, IL); Niemann, Ralph C. (Downers Grove, IL); Boroski, William N. (Aurora, IL)

    1993-01-01T23:59:59.000Z

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  20. Electrically insulated MLI and thermal anchor

    SciTech Connect (OSTI)

    Kamiya, Koji; Furukawa, Masato; Murakami, Haruyuki; Kizu, Kaname; Tsuchiya, Katsuhiko; Koidea, Yoshihiko; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Hatakenaka, Ryuta; Miyakita, Takeshi [Japan Aerospace Exploration and Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)

    2014-01-29T23:59:59.000Z

    The thermal shield of JT-60SA is kept at 80 K and will use the multilayer insulation (MLI) to reduce radiation heat load to the superconducting coils at 4.4 K from the cryostat at 300 K. Due to plasma pulse operation, the MLI is affected by eddy current in toroidal direction. The MLI is designed to suppress the current by electrically insulating every 20 degree in the toroidal direction by covering the MLI with polyimide films. In this paper, two kinds of designs for the MLI system are proposed, focusing on a way to overlap the layers. A boil-off calorimeter method and temperature measurement has been performed to determine the thermal performance of the MLI system. The design of the electrical insulated thermal anchor between the toroidal field (TF) coil and the thermal shield is also explained.

  1. Gaseous insulators for high voltage electrical equipment

    DOE Patents [OSTI]

    Christophorou, Loucas G. (Oak Ridge, TN); James, David R. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Pai, Robert Y. (Concord, TN)

    1981-01-01T23:59:59.000Z

    Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

  2. Electrical insulator assembly with oxygen permeation barrier

    DOE Patents [OSTI]

    Van Der Beck, Roland R. (Lansdale, PA); Bond, James A. (Exton, PA)

    1994-01-01T23:59:59.000Z

    A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.

  3. Is graphene in vacuum an insulator?

    E-Print Network [OSTI]

    Joaquín E. Drut; Timo A. Lähde

    2009-01-15T23:59:59.000Z

    We present evidence, from Lattice Monte Carlo simulations of the phase diagram of graphene as a function of the Coulomb coupling between quasiparticles, that graphene in vacuum is likely to be an insulator. We find a semimetal-insulator transition at $\\alpha_g^\\text{crit} = 1.11 \\pm 0.06$, where $\\alpha_g^{} \\simeq 2.16$ in vacuum, and $\\alpha_g^{} \\simeq 0.79$ on a SiO$_2^{}$ substrate. Our analysis uses the logarithmic derivative of the order parameter, supplemented by an equation of state. The insulating phase disappears above a critical number of four-component fermion flavors $4 < N_f^{\\text{crit}} < 6$. Our data are consistent with a second-order transition.

  4. Constraints on topological order in Mott Insulators

    E-Print Network [OSTI]

    Michael P. Zaletel; Ashvin Vishwanath

    2015-04-18T23:59:59.000Z

    We point out certain symmetry induced constraints on topological order in Mott Insulators (quantum magnets with an odd number of spin $\\tfrac{1}{2}$ per unit cell). We show, for example, that the double semion topological order is incompatible with time reversal and translation symmetry in Mott insulators. This sharpens the Hastings-Oshikawa-Lieb-Schultz-Mattis theorem for 2D quantum magnets, which guarantees that a fully symmetric gapped Mott insulator must be topologically ordered, but is silent on which topological order is permitted. An application of our result is the Kagome lattice quantum antiferromagnet where recent numerical calculations of entanglement entropy indicate a ground state compatible with either toric code or double semion topological order. Our result rules out the latter possibility.

  5. Nuclear reactor vessel fuel thermal insulating barrier

    DOE Patents [OSTI]

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19T23:59:59.000Z

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  6. Electrical insulator assembly with oxygen permeation barrier

    DOE Patents [OSTI]

    Van Der Beck, R.R.; Bond, J.A.

    1994-03-29T23:59:59.000Z

    A high-voltage electrical insulator for electrically insulating a thermoelectric module in a spacecraft from a niobium-1% zirconium alloy wall of a heat exchanger filled with liquid lithium while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator has a single crystal alumina layer (SxAl[sub 2]O[sub 3], sapphire) with a niobium foil layer bonded thereto on the surface of the alumina crystal facing the heat exchanger wall, and a molybdenum layer bonded to the niobium layer to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface. 3 figures.

  7. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1998-06-02T23:59:59.000Z

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  8. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, A.M.

    1996-01-30T23:59:59.000Z

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  9. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1996-01-01T23:59:59.000Z

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  10. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, A.M.

    1998-06-02T23:59:59.000Z

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  11. Thermal performance measurements of insulated roof systems

    SciTech Connect (OSTI)

    Courville, G.E.; Childs, K.W.; Walukas, D.J.; Childs, P.W.; Griggs, E.I.

    1985-01-01T23:59:59.000Z

    Oak Ridge National Laboratory has established a Roof Thermal Researcch Apparatus for carrying out thermal and hygric experiments on sections of low-sloped roofs. Test panels are exposed to a controlled temperature interior space and to the prevailing East Tennessee exterior environment. They are well instrumented and all data are stored and aided in the analysis by computer systems. Current experiments include studies of the effect of wet insulation on membrane temperature, thermal storage phenomena in built-up roof insulation, and the effects of varying surface reflectance on roof thermal performance.

  12. Investigations on field optimization of insulator geometries

    SciTech Connect (OSTI)

    Daumling, H.H.; Singer, H.

    1989-01-01T23:59:59.000Z

    Today computer methods become more and more a useful help for the constructor of any high voltage components, because stresses on dielectric materials have become increasingly high. The paper describes new algorithms based on the CAD concept for optimizing insulator contours according to a given field distribution along their surfaces. These algorithms were applied to some examples of insulators. By means of experimental investigations it was found that it is not sufficient to achieve a low tangential field strength component but that it is necessary to reduce the maximum values of the total field strength as far as possible, especially in the case of high air humidities.

  13. Experience with 113 Retrofit Insulation Surveys

    E-Print Network [OSTI]

    Webber, W. O.

    EXPERIENCE WITH 113 RETROFIT INSULATION SURVEYS W. O. Webber Energy Conservation Consultants Baytown, Texas ABSTRACT We have surveyed 113 plants for thirteen clie~ts. The results of 21 recent surveys, at today s avera&e fuel price, show...,000 for $3.00 fuel up to $80,000 for $6.00 fuel. When this happens, the project return will increase from 100% up to 165% per year. The main problem that we have found with retrofit insulation surveys is the processing of detail in existing plants...

  14. Edge modes in band topological insulators

    E-Print Network [OSTI]

    Lukasz Fidkowski; T. S. Jackson; Israel Klich

    2011-05-09T23:59:59.000Z

    We characterize gapless edge modes in translation invariant topological insulators. We show that the edge mode spectrum is a continuous deformation of the spectrum of a certain gluing function defining the occupied state bundle over the Brillouin zone (BZ). Topologically non-trivial gluing functions, corresponding to non-trivial bundles, then yield edge modes exhibiting spectral flow. We illustrate our results for the case of chiral edge states in two dimensional Chern insulators, as well as helical edges in quantum spin Hall states.

  15. Rolling up SiGe on insulator

    SciTech Connect (OSTI)

    Cavallo, F.; Songmuang, R.; Ulrich, C.; Schmidt, O. G. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany)

    2007-05-07T23:59:59.000Z

    SiGe on insulator films of 10-50 nm thickness are fabricated by Ge condensation applying different oxidation times. The layers are released from the substrate by selectively etching the insulator film. Due to the varying Ge composition, the layers bend downward toward the substrate surface and roll up into microtubes. Depending on the Ge condensation, the strain distribution in the SiGe layers varies and allows a scaling of the tube diameters between 1 and 4 {mu}m. Assuming pseudomorphic SiGe layers, the tube diameters are smaller than expected from continuum mechanical theory. This suggests the occurrence of additional strain in the oxidized films.

  16. An analytical and experimental investigation for an interstitial insulation technology 

    E-Print Network [OSTI]

    Kim, Dong Keun

    2009-05-15T23:59:59.000Z

    An insulation technique has been developed which contains a single or combination of materials to help minimize heat loss in actual industrial applications. For the petroleum industry, insulation for deep sea piping is one of the greatest challenges...

  17. Insulated laser tube structure and method of making same

    DOE Patents [OSTI]

    Dittbenner, Gerald R. (4353 Findlay Way, Livermore, CA 94550)

    1999-01-01T23:59:59.000Z

    An insulated high temperature ceramic laser tube having substantially uniform insulation along the length of the tube is disclosed having particulate ceramic insulation positioned between the outer wall of the ceramic laser tube and the inner surface of tubular ceramic fiber insulation which surrounds the ceramic laser tube. The particulate ceramic insulation is preferably a ceramic capable of sintering to the outer surface of the ceramic laser tube and to the inner surface of the tubular ceramic fiber insulation. The addition of the particulate ceramic insulation to fill all the voids between the ceramic laser tube and the fibrous ceramic insulation permits the laser tube to be operated at a substantially uniform temperature throughout the length of the laser tube.

  18. Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01T23:59:59.000Z

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  19. An analytical and experimental investigation for an interstitial insulation technology

    E-Print Network [OSTI]

    Kim, Dong Keun

    2009-05-15T23:59:59.000Z

    An insulation technique has been developed which contains a single or combination of materials to help minimize heat loss in actual industrial applications. For the petroleum industry, insulation for deep sea piping is one of the greatest challenges...

  20. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Insulator Print Wednesday, 27 May 2009 00:00 It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of...

  1. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a Macroscopically Quantum-Entangled Insulator Print It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of...

  2. Gapped symmetry preserving surface state for the electron topological insulator

    E-Print Network [OSTI]

    Wang, Chong

    It is well known that the three-dimensional (3D) electronic topological insulator (TI) with charge-conservation and time-reversal symmetry cannot have a trivial insulating surface that preserves symmetry. It is often ...

  3. antisolar insulated roof: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...

  4. airborne sound insulation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...

  5. affordable window insulation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...

  6. antiferromagnetic mott insulator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...

  7. atomic mott insulator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...

  8. alumina fibrous insulation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...

  9. Classification and characterization of topological insulators and superconductors

    E-Print Network [OSTI]

    Mong, Roger

    2012-01-01T23:59:59.000Z

    Weak topological insulators (WTI) . . . . . 1.4 Topologicalweak topological insulators (WTI). The surfaces of STIs haveSTI STM TI TRIM/TRIMs TRS TKNN VPT WTI one-dimension, two-

  10. China Marches West: Jacket cover

    E-Print Network [OSTI]

    Perdue, Peter C.

    The China we know today is the product of vast frontier conquests of the seventeenth and eighteenth centuries by the expanding Qing empire. China Marches West tells the story of this unprecedented expansion and explores ...

  11. Mechanics of Insulator Behavior in Concrete Crosstie Fastening Systems

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    of Insulator Behavior Analysis of failure modes and causes · Failure Mode and Effect Analysis (FMEA) used

  12. Metal aminoboranes

    DOE Patents [OSTI]

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya; Shrestha, Roshan P.

    2010-05-11T23:59:59.000Z

    Metal aminoboranes of the formula M(NH2BH3)n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  13. Molecular Cell Mode of Regulation and the Insulation

    E-Print Network [OSTI]

    Molecular Cell Article Mode of Regulation and the Insulation of Bacterial Gene Expression Vered.molcel.2012.04.032 SUMMARY A gene can be said to be insulated from environ- mental variations if its the insulation of the lac promoter of E. coli and of synthetic constructs in which the transcription factor CRP

  14. MOTT INSULATORS, SPIN LIQUIDS AND QUANTUM DISORDERED SUPERCONDUCTIVITY

    E-Print Network [OSTI]

    COURSE 7 MOTT INSULATORS, SPIN LIQUIDS AND QUANTUM DISORDERED SUPERCONDUCTIVITY MATTHEW P.A. FISHER insulators and quantum magnetism 583 3.1 Spin models and quantum magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 #12;MOTT INSULATORS, SPIN LIQUIDS AND QUANTUM DISORDERED SUPERCONDUCTIVITY Matthew P.A. Fisher

  15. Vacuum insulation tandem accelerator for B. Bayanov1

    E-Print Network [OSTI]

    Taskaev, Sergey Yur'evich

    273 Vacuum insulation tandem accelerator for NCT B. Bayanov1 , Yu. Belchenko1 , V. Belov1 , G of high current hydrogen negative ions by special geometry of potential electrodes with vacuum insulation. Fig. 1 shows the construction of vacuum insulation tandem accelerator developed at BINP, as a base

  16. Method and apparatus for filling thermal insulating systems

    DOE Patents [OSTI]

    Arasteh, D.K.

    1992-01-14T23:59:59.000Z

    A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air. 3 figs.

  17. Topological insulators and superconductors Xiao-Liang Qi

    E-Print Network [OSTI]

    Wu, Zhigang

    Topological insulators and superconductors Xiao-Liang Qi Microsoft Research, Station Q, Elings Hall, California 94305, USA (Received 2 August 2010; published 14 October 2011) Topological insulators are new-dimensional and three-dimensional topological insulators are reviewed, and both the topological band theory

  18. Molten metal holder furnace and casting system incorporating the molten metal holder furnace

    DOE Patents [OSTI]

    Kinosz, Michael J. (Apollo, PA); Meyer, Thomas N. (Murrysville, PA)

    2003-02-11T23:59:59.000Z

    A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

  19. Topological insulators in silicene: Quantum hall, quantum spin hall and quantum anomalous hall effects

    SciTech Connect (OSTI)

    Ezawa, Motohiko [Department of Applied Physics, University of Tokyo, Hongo 7-3-1, Tokyo 113-8656 (Japan)

    2013-12-04T23:59:59.000Z

    Silicene is a monolayer of silicon atoms forming a two-dimensional honeycomb lattice, which shares almost every remarkable property with graphene. The low energy dynamics is described by Dirac electrons, but they are massive due to relatively large spin-orbit interactions. I will explain the following properties of silicene: 1) The band structure is controllable by applying an electric field. 2) Silicene undergoes a phase transition from a topological insulator to a band insulator by applying external electric field. 3) The topological phase transition can be detected experimentally by way of diamagnetism. 4) There is a novel valley-spin selection rules revealed by way of photon absorption. 5) Silicene yields a remarkably many phases such as quantum anomalous Hall phase and valley polarized metal when the exchange field is additionally introduced. 6) A silicon nanotubes can be used to convey spin currents under an electric field.

  20. The Insulation Energy Appraisal Assessing the True Value of Insulated System

    E-Print Network [OSTI]

    Schell, S.

    Insulation remains a seriously under-utilized technology in the manufacturing and industrial sectors of the economy even though its role in energy efficiency and environmental preservation is clear. The objective of the presentation is to educate...

  1. ASBESTOS PIPE-INSULATION REMOVAL ROBOT SYSTEM

    SciTech Connect (OSTI)

    Unknown

    2000-09-15T23:59:59.000Z

    This final topical report details the development, experimentation and field-testing activities for a robotic asbestos pipe-insulation removal robot system developed for use within the DOE's weapon complex as part of their ER and WM program, as well as in industrial abatement. The engineering development, regulatory compliance, cost-benefit and field-trial experiences gathered through this program are summarized.

  2. Cladding Attachment Over Thick Exterior Insulating Sheathing

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.; Lepage, R.

    2014-01-01T23:59:59.000Z

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1. What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2. Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3. What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  3. Tunable Chern insulator with shaken optical lattices

    E-Print Network [OSTI]

    Albert Verdeny; Florian Mintert

    2015-04-16T23:59:59.000Z

    Driven optical lattices permit the engineering of effective dynamics with well-controllable tunneling properties. We describe the realization of a tunable a Chern insulator by driving particles on a shaken hexagonal lattice with optimally designed polychromatic driving forces. Its implementation does not require shallow lattices, which favors the study of strongly-correlated phases with non-trivial topology.

  4. D-Algebra Structure of Topological Insulators

    E-Print Network [OSTI]

    B. Estienne; N. Regnault; B. A. Bernevig

    2013-02-01T23:59:59.000Z

    In the quantum Hall effect, the density operators at different wave-vectors generally do not commute and give rise to the Girvin MacDonald Plazmann (GMP) algebra with important consequences such as ground-state center of mass degeneracy at fractional filling fraction, and W_{1 + \\infty} symmetry of the filled Landau levels. We show that the natural generalization of the GMP algebra to higher dimensional topological insulators involves the concept of a D-algebra formed by using the fully anti-symmetric tensor in D-dimensions. For insulators in even dimensional space, the D-algebra is isotropic and closes for the case of constant non-Abelian F(k) ^ F(k) ... ^ F(k) connection (D-Berry curvature), and its structure factors are proportional to the D/2-Chern number. In odd dimensions, the algebra is not isotropic, contains the weak topological insulator index (layers of the topological insulator in one less dimension) and does not contain the Chern-Simons \\theta form (F ^ A - 2/3 A ^ A ^ A in 3 dimensions). The Chern-Simons form appears in a certain combination of the parallel transport and simple translation operator which is not an algebra. The possible relation to D-dimensional volume preserving diffeomorphisms and parallel transport of extended objects is also discussed.

  5. Interfacial Coatings for Inorganic Composite Insulation Systems

    SciTech Connect (OSTI)

    Hooker, M. W.; Fabian, P. E.; Stewart, M. W.; Grandlienard, S. D.; Kano, K. S. [Composite Technology Development, Inc., Lafayette, CO, 80026 (United States)

    2006-03-31T23:59:59.000Z

    Inorganic (ceramic) insulation materials are known to have good radiation resistance and desirable electrical and mechanical properties at cryogenic and elevated temperatures. In addition, ceramic materials can withstand the high-temperature reaction cycle used with Nb3Sn superconductor materials, allowing the insulation to be co-processed with the superconductor in a wind-and-react fabrication process. A critical aspect in the manufacture of ceramic-based insulation systems is the deposition of suitable fiber-coating materials that prevent chemical reaction of the fiber and matrix materials, and thus provide a compliant interface between the fiber and matrix, which minimizes the impact of brittle failure of the ceramic matrix. Ceramic insulation produced with CTD-FI-202 fiber interfaces have been found to exhibit very high shear and compressive strengths. However, this material is costly to produce. Thus, the goal of the present work is to evaluate alternative, lower-cost materials and processes. A variety of oxide and polyimide coatings were evaluated, and one commercially available polyimide coating has been shown to provide some improvement as compared to uncoated and de-sized S2 glass.

  6. Laminated insulators having heat dissipation means

    DOE Patents [OSTI]

    Niemann, R.C.; Mataya, K.F.; Gonczy, J.D.

    1980-04-24T23:59:59.000Z

    A laminated body is provided with heat dissipation capabilities. The insulator body is formed by dielectric layers interleaved with heat conductive layers, and bonded by an adhesive to form a composite structure. The heat conductive layers include provision for connection to an external thermal circuit.

  7. Development of a Leave-in-Place Slab Edge Insulating Form System

    SciTech Connect (OSTI)

    Marc Hoeschele; Eric Lee

    2009-08-31T23:59:59.000Z

    Concrete slabs represent the primary foundation type in residential buildings in the fast-growing markets throughout the southern and southwestern United States. Nearly 75% of the 2005 U.S. population growth occurred in these southern tier states. Virtually all of these homes have uninsulated slab perimeters that transfer a small, but steady, flow of heat from conditioned space to outdoors during the heating season. It is estimated that new home foundations constructed each year add 0.016 quads annually to U.S. national energy consumption; we project that roughly one quarter of this amount can be attributed to heat loss through the slab edge and the remaining three quarters to deep ground transfers, depending upon climate. With rising concern over national energy use and the impact of greenhouse gas emissions, it is becoming increasingly imperative that all cost-effective efforts to improve building energy efficiency be implemented. Unlike other building envelope components that have experienced efficiency improvements over the years, slab edge heat loss has largely been overlooked. From our vantage point, a marketable slab edge insulation system would offer significant benefits to homeowners, builders, and the society as a whole. Conventional slab forming involves the process of digging foundation trenches and setting forms prior to the concrete pour. Conventional wood form boards (usually 2 x 10's) are supported by vertical stakes on the outer form board surface, and by supporting 'kickers' driven diagonally from the top of the form board into soil outside the trench. Typically, 2 x 10's can be used only twice before they become waste material, contributing to an additional 400 pounds of construction waste per house. Removal of the form boards and stakes also requires a follow-up trip to the jobsite by the concrete subcontractor and handling (storage/disposal) of the used boards. In the rare cases where the slab is insulated (typically custom homes with radiant floor heating), the most practical insulation strategy is to secure rigid foam insulation, such as Dow Styrofoam{trademark}, to the inside of the wooden slab edge forms. An alternative is to clad insulation to the perimeter of the slab after the slab has been poured and cured. In either case, the foam must have a 'termite strip' that prevents termites from creating hidden tunnels through or behind the foam on their way to the wall framing above. Frequently this termite strip is a piece of sheet metal that must be fabricated for each project. The above-grade portion of the insulation also needs to be coated for appearance and to prevent damage from construction and UV degradation. All these steps add time, complexity, and expense to the insulating process.

  8. A physical approach to metal insulator metal (MIM) tuning capacitor modeling

    E-Print Network [OSTI]

    Nelson, James Erich

    2000-01-01T23:59:59.000Z

    and behavior as lumped elements. Many attempts have been proposed to predict shunt capacitor MIM behavior. However, past models are valid for 20 GHz or less and do not directly correspond to the physical structure of the element. The research presented here...

  9. Pipeline system insulation: Thermal insulation and corrosion prevention. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The bibliography contains citations concerning thermal and corrosion insulation of pipeline systems used to transport liquids and gases. Topics include thermal aging of polyurethane used for foam heating pipes, extrusion film pipeline insulation materials and processes, flexible expanded nitrile rubber pipeline insulation with Class 1 fire rating, and underground fiberglass reinforced polyester insulated pipeline systems. Applications in solar heating systems; underground water, oil, and gas pipelines; interior hot and cold water lines under seawater; and chemical plant pipeline system insulation are included. (Contains 250 citations and includes a subject term index and title list.)

  10. Metal vapor laser including hot electrodes and integral wick

    DOE Patents [OSTI]

    Ault, Earl R. (Livermore, CA); Alger, Terry W. (Tracy, CA)

    1995-01-01T23:59:59.000Z

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube.

  11. Metal vapor laser including hot electrodes and integral wick

    DOE Patents [OSTI]

    Ault, E.R.; Alger, T.W.

    1995-03-07T23:59:59.000Z

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube. 5 figs.

  12. Effect of contact metals on the piezoelectric properties of aluminum nitride thin films

    SciTech Connect (OSTI)

    Harman, J.P.; Kabulski, A. (West Virginia U., Morgantown, WV); Pagan, V.R. (West Virginia U., Morgantown, WV); Famouri, K. (West Virginia U., Morgantown, WV); Kasarla, K.R.; Rodak, L.E. (West Virginia U., Morgantown, WV); Hensel, J.P.; Korakakis, D.

    2008-07-01T23:59:59.000Z

    The converse piezoelectric response of aluminum nitride evaluated using standard metal insulator semiconductor structures has been found to exhibit a linear dependence on the work function of the metal used as the top electrode. The apparent d33 of the 150–1100 nm films also depends on the dc bias applied to the samples.

  13. Apparatus for insulating windows and the like

    DOE Patents [OSTI]

    Mitchell, R.A.

    1984-06-19T23:59:59.000Z

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in kit'' form. 11 figs.

  14. Contaminant trap for gas-insulated apparatus

    DOE Patents [OSTI]

    Adcock, James L. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Christophorou, Loucas G. (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    A contaminant trap for a gas-insulated electrical conductor is provided. A resinous dielectric body such as Kel-F wax, grease or other sticky polymeric or oligomeric compound is disposed on the inside wall of the outer housing for the conductor. The resinous body is sufficiently sticky at ambient temperatures to immobilize contaminant particles in the insulating gas on the exposed surfaces thereof. An electric resistance heating element is disposed in the resinous body to selectively raise the temperature of the resinous body to a molten state so that the contaminant particles collected on the surface of the body sink into the body so that the surface of the resinous body is renewed to a particle-less condition and, when cooled, returns to a sticky collecting surface.

  15. Multiterminal Conductance of a Floquet Topological Insulator

    E-Print Network [OSTI]

    L. E. F. Foa Torres; P. M. Perez-Piskunow; C. A. Balseiro; G. Usaj

    2014-09-08T23:59:59.000Z

    We report on simulations of the dc conductance and quantum Hall response of a Floquet topological insulator using Floquet scattering theory. Our results reveal that laser-induced edge states in graphene lead to quantum Hall plateaus once imperfect matching with the non-illuminated leads is lessened. But the magnitude of the Hall plateaus is not directly related to the number and chirality of all the edge states at a given energy as usual. Instead, the plateaus are dominated only by those edge states adding to the dc density of states. Therefore, the dc quantum Hall conductance of a Floquet topological insulator is not directly linked to topological invariants of the full the Floquet bands.

  16. Electric-Magnetic Duality and Topological Insulators

    E-Print Network [OSTI]

    Andreas Karch

    2009-10-03T23:59:59.000Z

    We work out the action of the SL(2,Z) electric-magnetic duality group for an insulator with a non-trivial permittivity, permeability and theta-angle. This theory has recently been proposed to be the correct low-energy effective action for topological insulators. As applications, we give manifestly SL(2,Z) covariant expressions for the Faraday rotation at orthogonal incidence at the interface of two such materials, as well as for the induced magnetic and electric charges, slightly clarifying the meaning of expressions previously derived in the literature. We also use electric-magnetic duality to find a gravitational dual for a strongly coupled version of this theory using the AdS/CFT correspondence.

  17. Fractional topological insulators in three dimensions

    E-Print Network [OSTI]

    Joseph Maciejko; Xiao-Liang Qi; Andreas Karch; Shou-Cheng Zhang

    2010-11-14T23:59:59.000Z

    Topological insulators can be generally defined by a topological field theory with an axion angle theta of 0 or pi. In this work, we introduce the concept of fractional topological insulator defined by a fractional axion angle and show that it can be consistent with time reversal (T) invariance if ground state degeneracies are present. The fractional axion angle can be measured experimentally by the quantized fractional bulk magnetoelectric polarization P_3, and a `halved' fractional quantum Hall effect on the surface with Hall conductance of the form (p/q)(e^2/2h) with p,q odd. In the simplest of these states the electron behaves as a bound state of three fractionally charged `quarks' coupled to a deconfined non-Abelian SU(3) `color' gauge field, where the fractional charge of the quarks changes the quantization condition of P_3 and allows fractional values consistent with T-invariance.

  18. Electric-Magnetic Duality and Topological Insulators

    SciTech Connect (OSTI)

    Karch, A. [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States)

    2009-10-23T23:59:59.000Z

    We work out the action of the SL(2,Z) electric-magnetic duality group for an insulator with a nontrivial permittivity, permeability, and theta angle. This theory has recently been proposed to be the correct low-energy effective action for topological insulators. As applications, we give manifestly SL(2,Z) covariant expressions for the Faraday rotation at orthogonal incidence at the interface of two such materials, as well as for the induced magnetic and electric charges, slightly clarifying the meaning of expressions previously derived in the literature. We also use electric-magnetic duality to find a gravitational dual for a strongly coupled version of this theory using the gauge/gravity correspondence.

  19. Fractional Topological Insulators in Three Dimensions

    SciTech Connect (OSTI)

    Maciejko, Joseph; Zhang Shoucheng [Department of Physics, Stanford University, Stanford, California 94305 (United States); Qi Xiaoliang [Microsoft Research, Station Q, Elings Hall, University of California, Santa Barbara, California 93106 (United States); Department of Physics, Stanford University, Stanford, California 94305 (United States); Karch, Andreas [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States)

    2010-12-10T23:59:59.000Z

    Topological insulators can be generally defined by a topological field theory with an axion angle {theta} of 0 or {pi}. In this work, we introduce the concept of fractional topological insulator defined by a fractional axion angle and show that it can be consistent with time reversal T invariance if ground state degeneracies are present. The fractional axion angle can be measured experimentally by the quantized fractional bulk magnetoelectric polarization P{sub 3}, and a 'halved' fractional quantum Hall effect on the surface with Hall conductance of the form {sigma}{sub H}=(p/q)(e{sup 2}/2h) with p, q odd. In the simplest of these states the electron behaves as a bound state of three fractionally charged 'quarks' coupled to a deconfined non-Abelian SU(3) 'color' gauge field, where the fractional charge of the quarks changes the quantization condition of P{sub 3} and allows fractional values consistent with T invariance.

  20. Transgression field theory for interacting topological insulators

    E-Print Network [OSTI]

    Aç?k, Özgür

    2013-01-01T23:59:59.000Z

    We consider effective topological field theories of quantum Hall systems and time-reversal invariant topological insulators that are Chern-Simons and BF field theories. The edge states of these systems are related to the gauge invariance of the effective actions. For the edge states at the interface of two topological insulators, transgression field theory is proposed as a gauge invariant effective action. Transgression actions of Chern-Simons theories for (2+1)D and (4+1)D and BF theories for (3+1)D are constructed. By using transgression actions, the edge states are written in terms of the bulk connections of effective Chern-Simons and BF theories.

  1. High temperature insulation for ceramic matrix composites

    SciTech Connect (OSTI)

    Merrill, Gary B. (Monroeville, PA); Morrison, Jay Alan (Orlando, FL)

    2000-01-01T23:59:59.000Z

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composite comprises a plurality of hollow oxide-based spheres of varios dimentions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substates are also provided.

  2. High temperature insulation for ceramic matrix composites

    DOE Patents [OSTI]

    Merrill, Gary B.; Morrison, Jay Alan

    2004-01-13T23:59:59.000Z

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  3. High temperature insulation for ceramic matrix composites

    SciTech Connect (OSTI)

    Merrill, Gary B. (Monroeville, PA); Morrison, Jay Alan (Orlando, FL)

    2001-01-01T23:59:59.000Z

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  4. The topological insulator in a fractal space

    SciTech Connect (OSTI)

    Song, Zhi-Gang; Zhang, Yan-Yang; Li, Shu-Shen [SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China)

    2014-06-09T23:59:59.000Z

    We investigate the band structures and transport properties of a two-dimensional model of topological insulator, with a fractal edge or a fractal bulk. A fractal edge does not affect the robust transport even when the fractal pattern has reached the resolution of the atomic-scale, because the bulk is still well insulating against backscattering. On the other hand, a fractal bulk can support the robust transport only when the fractal resolution is much larger than a critical size. Smaller resolution of bulk fractal pattern will lead to remarkable backscattering and localization, due to strong couplings of opposite edge states on narrow sub-edges which appear almost everywhere in the fractal bulk.

  5. Apparatus for insulating windows and the like

    DOE Patents [OSTI]

    Mitchell, Robert A. (R.D. #1, Box 462-A, Voorheesville, NY 12186)

    1984-01-01T23:59:59.000Z

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in "kit" form.

  6. High temperature superconductivity in metallic region near Mott transition

    E-Print Network [OSTI]

    Tian De Cao

    2009-09-11T23:59:59.000Z

    The spin-singlet superconductivity without phonons is examined in consideration of correlations on an extended Hubbard model. It is shown that the superconductivity requires not only the total correlation should be strong enough but also the density of state around Fermi energy should be large enough, which shows that the high temperature superconductivity could only be found in the metallic region near the Mott metal insulator transition (MIT). Other properties of superconductors are also discussed on these conclusions.

  7. Excavationless Exterior Foundation Insulation Exploratory Study

    SciTech Connect (OSTI)

    Mosiman, G.; Wagner, R.; Schirber, T.

    2013-02-01T23:59:59.000Z

    The key objective of this exploratory study was to investigate the feasibility of the development or adoption of technologies that would enable a large percentage of existing homes in cold climates to apply a combination 'excavationless' soil removal process with appropriate insulation and water management on the exterior of existing foundations at a low cost. Our approach was to explore existing excavation and material technologies and systems to discover whether potential successful combinations existed.

  8. Metal inks

    DOE Patents [OSTI]

    Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

    2014-02-04T23:59:59.000Z

    Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

  9. Correctly specify insulation for process equipment and piping

    SciTech Connect (OSTI)

    Allen, C. [Raytheon Engineers and Constructors, Birmingham, AL (United States)

    1997-05-01T23:59:59.000Z

    Insulation serves as a thermal barrier to resist the flow of heat. When insulation is installed over piping or equipment to minimize heat losses, the insulation is categorized as heat conservation. Software programs for determining heat losses are based on ASTM C 680. If heat conservation insulation is calculated to determine the most cost-effective thickness for piping or equipment, then the insulation is categorized as economic insulation. Methods for manually determining economic thicknesses using various graphs and precalculated charts are given in Turner and Malloy. However, modern software programs available from industrial associations calculate economic thicknesses based on after-tax annual costs. Costs associated with owning insulation are expressed on an equivalent uniform annual cost basis. The thickness with the lowest annual cost is reported as the economic thickness. Some of the economic data needed to calculate economic thicknesses are fuel cost, depreciation period, annual fuel inflation rate, annual hours of operation, return on investment, effective income tax rate, annual insulation maintenance costs, and installed costs. To obtain accurate economical thicknesses, it is best to solicit installed costs from a local contractor likely to bid on the work. This paper covers the most suitable insulation materials for certain applications, the most economic material and thickness to use, and how the total insulation system should be designed.

  10. Witten effect in a crystalline topological insulator

    SciTech Connect (OSTI)

    Rosenberg, G.; Franz, M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1 (Canada)

    2010-07-15T23:59:59.000Z

    It has been noted a long time ago that a term of the form theta(e{sup 2}/2pih)Bcentre dotE may be added to the standard Maxwell Lagrangian without modifying the familiar laws of electricity and magnetism. theta is known to particle physicists as the 'axion' field and whether or not it has a nonzero expectation value in vacuum remains a fundamental open question of the standard model. A key manifestation of the axion term is the Witten effect: a unit magnetic monopole placed inside a medium with thetanot =0 is predicted to bind a (generally fractional) electric charge -e(theta/2pi+n) with n integer. Here we conduct a test of the Witten effect based on the recently established fact that the axion term with theta=pi emerges naturally in the description of the electromagnetic response of a class of crystalline solids called topological insulators--materials distinguished by strong spin-orbit coupling and nontrivial band structures. Using a simple physical model for a topological insulator we demonstrate the existence of a fractional charge bound to a monopole by an explicit numerical calculation. We also propose a scheme for generating an 'artificial' magnetic monopole in a topological insulator film that may be used to facilitate an experimental test of Witten's prediction.

  11. Topological insulators with arbitrarily tunable entanglement

    E-Print Network [OSTI]

    J. C. Budich; J. Eisert; E. J. Bergholtz

    2014-05-15T23:59:59.000Z

    We elucidate how Chern and topological insulators fulfill an area law for the entanglement entropy. By explicit construction of a family of lattice Hamiltonians, we are able to demonstrate that the area law contribution can be tuned to an arbitrarily small value, but is topologically protected from vanishing exactly. We prove this by introducing novel methods to bound entanglement entropies from correlations using perturbation bounds, drawing intuition from ideas of quantum information theory. This rigorous approach is complemented by an intuitive understanding in terms of entanglement edge states. These insights have a number of important consequences: The area law has no universal component, no matter how small, and the entanglement scaling cannot be used as a faithful diagnostic of topological insulators. This holds for all Renyi entropies which uniquely determine the entanglement spectrum which is hence also non-universal. The existence of arbitrarily weakly entangled topological insulators furthermore opens up possibilities of devising correlated topological phases in which the entanglement entropy is small and which are thereby numerically tractable, specifically in tensor network approaches.

  12. Smoldering combustion hazards of thermal insulation materials

    SciTech Connect (OSTI)

    Ohlemiller, T.J.; Rogers, F.E.

    1980-07-01T23:59:59.000Z

    Work on the smolder ignitability in cellulosic insulation and on thermal analytical characterization of the oxidation of this material is presented. Thermal analysis (TGA and DSC) shows that both retarded and unretarded cellulosic insulation oxidizes in two overall stages, both of which are exothermic. The second stage (oxidation of the char left as a residue of the first stage) is much more energetic on a unit mass basis than the first. However, kinetics and a sufficient exothermicity make the first stage responsible for ignition in most realistic circumstances. Existing smolder retardants such as boric acid have their major effect on the kinetics of the second oxidation stage and thus produce only a rather small (20/sup 0/C) increase in smolder ignition temperature. Several simplified analogs of attic insulations have been tested to determine the variability of minimum smolder ignition temperature. These employed planar or tubular constant temperature heat sources in a thermal environment quite similar to a realistic attic application. Go/no-go tests provided the borderline (minimum) ignition temperature for each configuration. The wide range (150/sup 0/C) of minimum ignition temperatures confirmed the predominant dependence of smolder ignition on heat flow geometry. Other factors (bulk density, retardants) produced much less effect on ignitability.

  13. Ultrafast Optical Excitation of a Persistent Surface-State Population in the Topological Insulator Bi2Se3

    SciTech Connect (OSTI)

    Sobota, Jonathan

    2012-03-14T23:59:59.000Z

    Using femtosecond time- and angle-resolved photoemission spectroscopy, we investigated the nonequilibrium dynamics of the topological insulator Bi{sub 2}Se{sub 3}. We studied p-type Bi{sub 2}Se{sub 3}, in which the metallic Dirac surface state and bulk conduction bands are unoccupied. Optical excitation leads to a meta-stable population at the bulk conduction band edge, which feeds a nonequilibrium population of the surface state persisting for >10 ps. This unusually long-lived population of a metallic Dirac surface state with spin texture may present a channel in which to drive transient spin-polarized currents.

  14. Influence Of Three Dynamic Predictive Clothing Insulation Models On Building Energy Use, HVAC Sizing And Thermal Comfort

    E-Print Network [OSTI]

    Schiavon, Stefano; Lee, Kwang Ho

    2013-01-01T23:59:59.000Z

    Predictive Clothing Insulation Models based on Outdoor AirPREDICTIVE CLOTHING INSULATION MODELS ON BUILDING ENERGYthat the clothing insulation is equal to a constant value of

  15. Development of large-capacity gas-insulated transformer

    SciTech Connect (OSTI)

    Takahashi, E.; Tanaka, K. [Tokyo Electric Power Co., Ltd. (Japan)] [Tokyo Electric Power Co., Ltd. (Japan); Toda, K.; Ikeda, M.; Teranishi, T.; Inaba, M.; Yanari, T. [Toshiba Corp., Kawasaki (Japan)] [Toshiba Corp., Kawasaki (Japan)

    1996-04-01T23:59:59.000Z

    Concentrations of population and business activities result in high electricity demand in urban areas. This requires the construction of large-capacity underground substations. Oilless, non-flammable and non-explosive equipment is recommended for underground substations. Therefore, several types of large-capacity gas-insulated transformer have been developed. Because the gas forced cooling type was considered to be available up to approximately 60 MVA, all of these gas-insulated transformers are liquid cooled. But the liquid cooling type has the disadvantage of a complex structure for liquid cooling. For this reason, the authors have been studying the development of a simple design for a gas forced cooling, large-capacity gas-insulated transformer. This paper discusses research and development of cooling and insulation technology for a large-capacity gas-insulated transformer and the development of a 275 kV, 300 MVA gas-insulated transformer.

  16. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09T23:59:59.000Z

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  17. Insulation of steel studs in the rehab of masonry structures

    SciTech Connect (OSTI)

    Ide, N.F. [Grass Roots Alliance for a Solar Pennsylvania, Philadelphia, PA (United States); Larson, D.C.; Abdou, O.A. [Drexel Univ., Philadelphia, PA (United States)

    1998-10-01T23:59:59.000Z

    Metal studs cause thermal bridging when erected next to existing masonry walls. To mitigate this thermal bridge, the authors propose to move the studs away from the masonry and install thicker batt to fill the entire cavity. This experiment addresses two questions: (1) How much does R-value improve when using batt this is thicker than the studs;? (2) How much do gaps between batts degrade this improved R-value? A 4 ft (1.22 m) square test wall was constructed with a 5.25 in. (133 mm) deep cavity. Steel studs, spaced 16 in. (406 mm) on center, were set 1.75 in. (44 mm) away from the masonry (simulated by gypsum). Three insulation configurations were tested using a scanning heat flux meter. Clear-wall R-values were calculated from the heat flux profile across the center stud cavity. The base case used R-11 batt (R{sub SI}-1.94) and yielded R-8.5 (1.50). Completely filling the cavity with batt having an installed thermal resistance of R-17.2 (3.03) improved the R-value to R-14.2 (2.50). Introducing gaps the width of the studs decreased the R-value to R-12.8 (2.25). The apparatus was calibrated against a transfer standard obtained from National Institute of Standards and Technology (NIST).

  18. Compact gas-insulated transformer. Fourteenth quarterly report

    SciTech Connect (OSTI)

    Not Available

    1983-08-01T23:59:59.000Z

    Objective is to develop a compact, more efficient, quieter transformer which does not rely on mineral oil insulation. Compressed SF/sub 6/ is used as the external insulation and polymer film as the insulation between turns. A separate liquid cooling system is also provided. This document reports progress made in design, mechanical, dielectric, short circuit, thermal, materials, prototype, accessories, commercialization, and system studies. (DLC)

  19. Thermal Insulation Performance in the Process Industries: Facts and Fallacies

    E-Print Network [OSTI]

    Tye, R. P.

    Guarded Hot Box Study on Thermal Performance of Fibrous Insulations Used in Lofts," private com munication. 295 ESL-IE-85-05-54 Proceedings from the Seventh National Industrial Energy Technology Conference, Houston, TX, May 12-15, 1985 ...THERMAL INSULATION PERFORMANCE IN 'mE PROCESS INDUSTRIES: FACTS AND FALLACIES R.P. Tye Dynatech RID Company, Cambridge, MA, U.S.A. ABSTRACT The efficient use of thermal insulation materials and systems for design of cryogenic and elevated...

  20. Explosion resistant insulator and method of making same

    DOE Patents [OSTI]

    Meyer, Jeffry R. (Penn Hills, PA); Billings, Jr., John S. (Trafford, PA); Spindle, Harvey E. (Wilkins Township, Allegheny County, PA); Hofmann, Charles F. (Export, PA)

    1983-01-01T23:59:59.000Z

    An electrical insulator assembly and method of manufacturing same, having a generally cylindrical or conical body portion formed of a breakable cast solid insulation system and a reinforcing member having a corrugated configuration and formed of a web or mesh type reinforcing fabric. When the breakable body member has been broken, the corrugated configured reinforcing web member provides a path of escape for pressurized insulating fluid while limiting the movement of body member fragments in the direction of escape of the pressurized fluid.

  1. A Guide to Insulation Selection for Industrial Applications 

    E-Print Network [OSTI]

    Harrison, M. R.

    1979-01-01T23:59:59.000Z

    the system, degrade the insulation further and reduce the thermal effic iency. There is no question that rigid insulations such as calcium silicate are preferred in any application where abuse will occur. Some specifications call for all horizontal pip..., the owners are requiring more effic ient plant operations in both new and existing facilities. Thermal insulation will always playa major role in achieving those efficiencies, so its proper selection and application is of the utmost importance. 1012 ESL...

  2. A New Generation of Building Insulation by Foaming Polymer Blend...

    Broader source: Energy.gov (indexed) [DOE]

    insulation technologies available on the market. Instead of hydroflurocarbon, it uses carbon dioxide as the blowing agent. This technology represents a highly valuable market...

  3. Highly Insulating Windows Volume Purchase Program Final Report

    SciTech Connect (OSTI)

    Parker, Graham B.; Mapes, Terry S.; Zalis, WJ

    2013-02-01T23:59:59.000Z

    This report summarizes the Highly Insulating Windows Volume Purchase Program, conduced by PNNL for DOE-BTP, including a summary of outcomes and lessons learned.

  4. Thermocouple assembly

    DOE Patents [OSTI]

    Thermos, Anthony Constantine (Greer, SC); Rahal, Fadi Elias (Easley, SC)

    2002-01-01T23:59:59.000Z

    A thermocouple assembly includes a thermocouple; a plurality of lead wires extending from the thermocouple; an insulating jacket extending along and enclosing the plurality of leads; and at least one internally sealed area within the insulating jacket to prevent fluid leakage along and within the insulating jacket. The invention also provides a method of preventing leakage of a fluid along and through an insulating jacket of a thermocouple including the steps of a) attaching a plurality of lead wires to a thermocouple; b) adding a heat sensitive pseudo-wire to extend along the plurality of lead wires; c) enclosing the lead wires and pseudo-wire inside an insulating jacket; d) locally heating axially spaced portions of the insulating jacket to a temperature which melts the pseudo-wire and fuses it with an interior surface of the jacket.

  5. Objective: Determine the energy use of two greenhouse insulation technologies (a bubble insulation system and an energy/shade screen) retrofitted into plastic covered greenhouses, and compare the

    E-Print Network [OSTI]

    Vermont, University of

    Objective: Determine the energy use of two greenhouse insulation technologies (a bubble insulation structures. 1. Unimproved standard double-layer poly inflated greenhouse (control) 2. Bubble insulation is around 1-2, compared to an estimated 30 for the bubble system. What did we learn? The bubble insulation

  6. Topological insulators with SU(2) Landau levels

    E-Print Network [OSTI]

    Yi Li; Shou-Cheng Zhang; Congjun Wu

    2013-10-23T23:59:59.000Z

    We construct continuum models of 3D and 4D topological insulators by coupling spin-1/2 fermions to an SU(2) background gauge field, which is equivalent to a spatially dependent spin-orbit coupling. Higher dimensional generalizations of flat Landau levels are obtained in the Landau-like gauge. The 2D helical Dirac modes with opposite helicities and 3D Weyl modes with opposite chiralities are spatially separated along the third and fourth dimensions, respectively. Stable 2D helical Fermi surfaces and 3D chiral Fermi surfaces appear on open boundaries, respectively. The charge pumping in 4D Landau level systems shows quantized 4D quantum Hall effect.

  7. Electrical Transport of Topological Insulator-Bi2Se3 and Thermoelectric Properties of Graphene

    E-Print Network [OSTI]

    WEI, PENG

    2011-01-01T23:59:59.000Z

    Hall effect and topological insulators. Phys Today Klitzing,L. & Mele, E. J. Topological insulators in three dimensions.Zhang, H. J. et al. Topological insulators in Bi 2 Se 3 , Bi

  8. Scattering of Dirac Fermions in Barrier Geometries on the Surface of Topological Insulators

    E-Print Network [OSTI]

    Torquato, Salvatore

    Scattering of Dirac Fermions in Barrier Geometries on the Surface of Topological Insulators Lindsay Fleischer 1 Introduction Predicted theoretically and discovered experimentally, the topological insulators topological in- sulators and the trivial insulating vacuum have wavefunctions which are not smoothly

  9. Polarization dependent photocurrents in thin films of the topological insulator Bi?Se?

    E-Print Network [OSTI]

    Lau, Claudia (Claudia M.)

    2012-01-01T23:59:59.000Z

    Topological insulators are a new class of three-dimensional quantum materials whose interior or bulk is an insulator but whose surface is a conductor. Bi?Se? is a prototypical topological insulator that physicists at MIT ...

  10. Insulation of Pipe Bends Improves Efficiency of Hot Oil Furnaces

    E-Print Network [OSTI]

    Haseltine, D. M.; Laffitte, R. D.

    of the convective sections. Consultation with the furnace manufacturer then revealed that furnaces made in the 1960's tended to not insulate the pipe bends in the convective section. When insulation was added within the covers of the pipe bends on one furnace...

  11. Topological Field Theory of Time-Reversal Invariant Insulators

    E-Print Network [OSTI]

    Xiao-Liang Qi; Taylor Hughes; Shou-Cheng Zhang

    2008-02-24T23:59:59.000Z

    We show that the fundamental time reversal invariant (TRI) insulator exists in 4+1 dimensions, where the effective field theory is described by the 4+1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2+1 dimensions. The TRI quantum spin Hall insulator in 2+1 dimensions and the topological insulator in 3+1 dimension can be obtained as descendants from the fundamental TRI insulator in 4+1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the $Z_2$ topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant $\\alpha=e^2/\\hbar c$. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.

  12. Bosonic Topological Insulators and Paramagnets: a view from cobordisms

    E-Print Network [OSTI]

    Anton Kapustin

    2014-11-14T23:59:59.000Z

    We classify Bosonic Topological Insulators and Paramagnets in DTopological Insulator protected by time-reversal symmetry whose surface admits an all-fermion topologically ordered state. For D=4 there is a unique "beyond group cohomology" phase. It is protected by gravitational anomalies of the boundary theory and is stable without any additional symmetry.

  13. Topological Field Theory of Time-Reversal Invariant Insulators

    SciTech Connect (OSTI)

    Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19T23:59:59.000Z

    We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.

  14. The use of coated micropowders to reduce radiation heat transfer in foam insulation

    E-Print Network [OSTI]

    Marge, Arlene Lanciani

    1991-01-01T23:59:59.000Z

    Polyurethane foam is the most effective insulation currently available for buildings. Chlorofluorocarbon (CFC) blowing agents, which have low thermal conductivities, contribute highly to the effectiveness of this insulation. ...

  15. Correlated topological insulators and the fractional magnetoelectric effect

    SciTech Connect (OSTI)

    Swingle, B.; Barkeshli, M.; McGreevy, J.; Senthil, T. [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2011-05-15T23:59:59.000Z

    Topological insulators are characterized by the presence of gapless surface modes protected by time-reversal symmetry. In three space dimensions the magnetoelectric response is described in terms of a bulk {theta} term for the electromagnetic field. Here we construct theoretical examples of such phases that cannot be smoothly connected to any band insulator. Such correlated topological insulators admit the possibility of fractional magnetoelectric response described by fractional {theta}/{pi}. We show that fractional {theta}/{pi} is only possible in a gapped time-reversal-invariant system of bosons or fermions if the system also has deconfined fractional excitations and associated degenerate ground states on topologically nontrivial spaces. We illustrate this result with a concrete example of a time-reversal-symmetric topological insulator of correlated bosons with {theta}=({pi}/4). Extensions to electronic fractional topological insulators are briefly described.

  16. Correlated Topological Insulators and the Fractional Magnetoelectric Effect

    E-Print Network [OSTI]

    Brian Swingle; Maissam Barkeshli; John McGreevy; T. Senthil

    2010-05-06T23:59:59.000Z

    Topological insulators are characterized by the presence of gapless surface modes protected by time-reversal symmetry. In three space dimensions the magnetoelectric response is described in terms of a bulk theta term for the electromagnetic field. Here we construct theoretical examples of such phases that cannot be smoothly connected to any band insulator. Such correlated topological insulators admit the possibility of fractional magnetoelectric response described by fractional theta/pi. We show that fractional theta/pi is only possible in a gapped time reversal invariant system of bosons or fermions if the system also has deconfined fractional excitations and associated degenerate ground states on topologically non-trivial spaces. We illustrate this result with a concrete example of a time reversal symmetric topological insulator of correlated bosons with theta = pi/4. Extensions to electronic fractional topological insulators are briefly described.

  17. Tuning the Jeff=1/2 insulating state via electron doping and pressure in the double-layered iridate Sr3Ir2O7

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, L.; Kong, P. P.; Qi, T. F.; Jin, C. Q.; Yuan, S. J.; DeLong, L. E.; Schlottmann, P.; Cao, G.

    2013-06-01T23:59:59.000Z

    Sr3Ir2O7 exhibits a novel Jeff=12 insulating state that features a splitting between Jeff=1/2 and 3/2 bands due to spin-orbit interaction. We report a metal-insulator transition in Sr3Ir2O7 via either dilute electron doping (La3+ for Sr2+) or application of high pressure up to 35 GPa. Our study of single-crystal Sr3Ir2O7 and (Sr1?xLax)3Ir2O7 reveals that application of high hydrostatic pressure P leads to a drastic reduction in the electrical resistivity by as much as six orders of magnitude at a critical pressure PC = 13.2 GPa, manifesting a closing of the gap; but further increasing P up to 35 GPa produces no fully metallic state at low temperatures, possibly as a consequence of localization due to a narrow distribution of bonding angles ?. In contrast, slight doping of La3+ ions for Sr2+ ions in Sr3Ir2O7 readily induces a robust metallic state in the resistivity at low temperatures; the magnetic ordering temperature is significantly suppressed but remains finite for (Sr0.95La0.05)3Ir2O7 where the metallic state occurs. The results are discussed along with comparisons drawn with Sr2IrO4, a prototype of the Jeff=1/2 insulator.

  18. Method for producing metal oxide aerogels

    SciTech Connect (OSTI)

    Tillotson, Thomas M. (Tracy, CA); Poco, John F. (Livermore, CA); Hrubesh, Lawrence W. (Pleasanton, CA); Thomas, Ian M. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm.sup.3 and greater than 0.27g/cm.sup.3. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods.

  19. Method for producing metal oxide aerogels

    SciTech Connect (OSTI)

    Tillotson, T.M.; Poco, J.F.; Hrubesh, L.W.; Thomas, I.M.

    1995-04-25T23:59:59.000Z

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm{sup 3} and greater than 0.27g/cm{sup 3}. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods. 8 figs.

  20. Scattering theory of topological insulators and superconductors

    E-Print Network [OSTI]

    I. C. Fulga; F. Hassler; A. R. Akhmerov

    2013-01-10T23:59:59.000Z

    The topological invariant of a topological insulator (or superconductor) is given by the number of symmetry-protected edge states present at the Fermi level. Despite this fact, established expressions for the topological invariant require knowledge of all states below the Fermi energy. Here, we propose a way to calculate the topological invariant employing solely its scattering matrix at the Fermi level without knowledge of the full spectrum. Since the approach based on scattering matrices requires much less information than the Hamiltonian-based approaches (surface versus bulk), it is numerically more efficient. In particular, is better-suited for studying disordered systems. Moreover, it directly connects the topological invariant to transport properties potentially providing a new way to probe topological phases.

  1. Electromagnetic Scattering by Spheres of Topological Insulators

    E-Print Network [OSTI]

    Ge, Lixin; Zi, Jian

    2015-01-01T23:59:59.000Z

    The electromagnetic scattering properties of topological insulator (TI) spheres are systematically studied in this paper. Unconventional backward scattering caused by the topological magneto-electric (TME) effect of TIs are found in both Rayleigh and Mie scattering regimes. This enhanced backward scattering can be achieved by introducing an impedance-matched background which can suppress the bulk scattering. For the cross-polarized scattering coefficients, interesting antiresonances are found in the Mie scattering regime, wherein the cross-polarized electromagnetic fields induced by the TME effect are trapped inside TI spheres. In the Rayleigh limit, the quantized TME effect of TIs can be determined by measuring the electric-field components of scattered waves in the far field.

  2. Photonic spin Hall effect in topological insulators

    E-Print Network [OSTI]

    Zhou, Xinxing; Ling, Xiaohui; Chen, Shizhen; Luo, Hailu; Wen, Shuangchun

    2013-01-01T23:59:59.000Z

    In this paper we theoretically investigate the photonic spin Hall effect (SHE) of a Gaussian beam reflected from the interface between air and topological insulators (TIs). The photonic SHE is attributed to spin-orbit coupling and manifests itself as in-plane and transverse spin-dependent splitting. We reveal that the spin-orbit coupling effect in TIs can be routed by adjusting the axion angle variations. Unlike the transverse spin-dependent splitting, we find that the in-plane one is sensitive to the axion angle. It is shown that the polarization structure in magneto-optical Kerr effect is significantly altered due to the spin-dependent splitting in photonic SHE. We theoretically propose a weak measurement method to determine the strength of axion coupling by probing the in-plane splitting of photonic SHE.

  3. From topological insulators to superconductors and Confinement

    E-Print Network [OSTI]

    M. Cristina Diamantini; Pasquale Sodano; Carlo A. Trugenberger

    2012-02-01T23:59:59.000Z

    Topological matter in 3D is characterized by the presence of a topological BF term in its long-distance effective action. We show that, in 3D, there is another marginal term that must be added to the action in order to fully determine the physical content of the model. The quantum phase structure is governed by three parameters that drive the condensation of topological defects: the BF coupling, the electric permittivity and the magnetic permeability of the material. For intermediate levels of electric permittivity and magnetic permeability the material is a topological insulator. We predict, however, new states of matter when these parameters cross critical values: a topological superconductor when electric permittivity is increased and magnetic permeability is lowered and a charge confinement phase in the opposite case of low electric permittivity and high magnetic permeability. Synthetic topological matter may be fabricated as 3D arrays of Josephson junctions.

  4. Topological Insulators Avoid the Parity Anomaly

    E-Print Network [OSTI]

    Michael Mulligan; F. J. Burnell

    2013-01-17T23:59:59.000Z

    The surface of a 3+1d topological insulator hosts an odd number of gapless Dirac fermions when charge conjugation and time-reversal symmetries are preserved. Viewed as a purely 2+1d system, this surface theory would necessarily explicitly break parity and time-reversal when coupled to a fluctuating gauge field. Here we explain why such a state can exist on the boundary of a 3+1d system without breaking these symmetries, even if the number of boundary components is odd. This is accomplished from two complementary perspectives: topological quantization conditions and regularization. We first discuss the conditions under which (continuous) large gauge transformations may exist when the theory lives on a boundary of a higher-dimensional spacetime. Next, we show how the higher-dimensional bulk theory is essential in providing a parity-invariant regularization of the theory living on the lower-dimensional boundary or defect.

  5. Analysis and testing of multilayer and aerogel insulation configurations

    SciTech Connect (OSTI)

    Johnson, W L [NASA Kennedy Space Center, Kennedy Space Center, Florida; Demko, Jonathan A [ORNL; Fesmire, J. E. [NASA Kennedy Space Center, Kennedy Space Center, Florida

    2010-01-01T23:59:59.000Z

    Multilayer insulation systems that have robust operational characteristics have long been a goal of many research projects. Such thermal insulation systems may need to offer some degree of structural support and/or mechanical integrity during loss of vacuum scenarios while continuing to provide insulative value to the vessel. Aerogel-based composite blankets can be the best insulation materials in ambient pressure environments; in high vacuum, the thermal performance of aerogel improves by about one order of magnitude. Standard multilayer insulation (MLI) is typically 50% worse at ambient pressure and at soft vacuum, but as much as two or three orders of magnitude better at high vacuum. Different combinations of aerogel blanket and multilayer insulation materials have been tested at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Analysis performed at Oak Ridge National Laboratory showed an importance to the relative location of the MLI and aerogel blankets. Apparent thermal conductivity testing under cryogenicvacuum conditions was performed to verify the analytical conclusion. Tests results are shown to be in agreement with the analysis which indicated that the best performance is obtained with aerogel layers located in the middle of the blanket insulation system.

  6. Metal oxide films on metal

    DOE Patents [OSTI]

    Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

    1995-01-01T23:59:59.000Z

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  7. Storage tank insulation panels that offer fire protection

    SciTech Connect (OSTI)

    Stancroff, M. [Pittsburgh Corning Corp., Houston, TX (United States)

    1995-12-31T23:59:59.000Z

    Many fluids require storage temperatures of over several hundred degrees above ambient. As a result of these elevated storage temperatures many storage tanks require insulation to help in both energy conservation and in maintaining a uniform fluid temperature distribution. Since these fluids are typically flammable these storage tanks also often require some sort of fire protection. One of the most commonly used methods of fire protection is a deluge system. Actively operated deluge systems, although effective when working properly, have several drawbacks. A cellular glass insulation panel system can provide not only excellent insulation value but also passive fire protection without the concern of an active system failure.

  8. Life-cycle energy costs of thermal insulation

    SciTech Connect (OSTI)

    Chinneck, J.W.; Chandrashekar, M.; Hahn, C.K.G.

    1980-01-01T23:59:59.000Z

    A set of calculations is presented which compare the magnitude of the energy costs of insulation with the heating energy savings over the expected lifetime of a model dwelling. A representative city is examined in each of four different levels of Canadian climatic severity. The energy cost of insulation was found to be insignificant relative to the heating energy savings caused by its use. The proposed minimum insulation standards for Canada were found to be significantly better than the existing standards although not optimum from an energy viewpoint.

  9. Holographic classification of Topological Insulators and its 8-fold periodicity

    E-Print Network [OSTI]

    André LeClair; Denis Bernard

    2012-05-16T23:59:59.000Z

    Using generic properties of Clifford algebras in any spatial dimension, we explicitly classify Dirac hamiltonians with zero modes protected by the discrete symmetries of time-reversal, particle-hole symmetry, and chirality. Assuming the boundary states of topological insulators are Dirac fermions, we thereby holographically reproduce the Periodic Table of topological insulators found by Kitaev and Ryu. et. al, without using topological invariants nor K-theory. In addition we find candidate Z_2 topological insulators in classes AI, AII in dimensions 0,4 mod 8 and in classes C, D in dimensions 2,6 mod 8.

  10. Torsional Response and Dissipationless Viscosity in Topological Insulators

    E-Print Network [OSTI]

    Taylor L. Hughes; Robert G. Leigh; Eduardo Fradkin

    2011-01-18T23:59:59.000Z

    We consider the visco-elastic response of the electronic degrees of freedom in 2D and 3D topological insulators (TI). Our primary focus is on the 2D Chern insulator which exhibits a bulk dissipationless viscosity analogous to the quantum Hall viscosity predicted in integer and fractional quantum Hall states. We show that the dissipationless viscosity is the response of a TI to torsional deformations of the underlying lattice geometry. The visco-elastic response also indicates that crystal dislocations in Chern insulators will carry momentum density. We briefly discuss generalizations to 3D which imply that time-reversal invariant TI's will exhibit a quantum Hall viscosity on their surfaces.

  11. Outdoor polymeric insulators long-term exposed to HVDC

    SciTech Connect (OSTI)

    Soerqvist, T.; Vlastos, A.E. [Chalmers Univ. of Technology, Gothenburg (Sweden)] [Chalmers Univ. of Technology, Gothenburg (Sweden)

    1997-04-01T23:59:59.000Z

    Field experience from outdoor polymeric insulators exposed to HVDC under natural contamination conditions is presented. This paper summarizes the peak leakage current statistics, the hydrophobicity and the surface material conditions studied by electron spectroscopy for chemical analysis (ESCA) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The results show a strong interrelation between the surface conditions and the performance with respect to leakage currents. Moreover, the results show that the surface conditions and the performance of the insulators exposed to HVDC are rather similar to those of the insulators exposed to HVAC.

  12. Fabrication of strained silicon on insulator by strain transfer process

    SciTech Connect (OSTI)

    Jin Bo; Wang Xi; Chen Jing; Cheng Xinli; Chen Zhijun [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China)

    2005-08-01T23:59:59.000Z

    The fabrication of ultrathin strained silicon layer directly on insulator is demonstrated. 50 nm strained silicon on insulator layers were fabricated by a method which includes four steps: Epitaxial growth of strained SiGe on ultrathin silicon on insulator (SOI) substrates, ion implantation, postannealing process, and etch-back process. Strain of the layer was observed by Raman spectroscopy. 0.72% tensile strain was maintained in the strained silicon layer even after removing the SiGe film. The strained layer was the result of strain equalization and transfer process between the SiGe film and top silicon layer.

  13. Sound-insulation layers low-frequency modeling, using the fuzzy structure theory

    E-Print Network [OSTI]

    Boyer, Edmond

    09NVC-0163 Sound-insulation layers low-frequency modeling, using the fuzzy structure theory Laurent [20,200] Hz, sound-insulation layer modeling remains a critical topic. Recent work allows- insulation layer. Nevertheless, such an approach requires a FE model of sound-insulation layer, which may

  14. Key-Insulated Signcryption (Science and Technology on Communication Security Laboratory,

    E-Print Network [OSTI]

    Zheng, Yuliang

    Key-Insulated Signcryption Jia Fan 1 (Science and Technology on Communication Security Laboratory addresses the issue of key exposure by proposing a key-insulated signcryption technique. We define a security model for key-insulated signcryption and prove that the key- insulated signcryption technique

  15. Irradiation requirements of Nb3Sn based SC magnets electrical insulation

    E-Print Network [OSTI]

    McDonald, Kirk

    Irradiation requirements of Nb3Sn based SC magnets electrical insulation developed within the Eu electrical insulation candidates · EuCARD insulators certification conditions · Post irradiation tests and neutrino factories will be subjected to very high radiation doses. · The electrical insulation employed

  16. Science Highlight August 2010 New State of Topological Insulators Offers New Opportunities

    E-Print Network [OSTI]

    Wechsler, Risa H.

    Science Highlight ­ August 2010 New State of Topological Insulators Offers New Opportunities Three dimensional topological insulators are a new state of quantum matter with a bulk gap and odd number insulator enters the insulating masive Dirac fermion state, a state that harbors striking topological

  17. Topological Insulators with Ultracold Atoms Indubala I. Satija and Erhai Zhao

    E-Print Network [OSTI]

    Satija, Indu

    Chapter 12 Topological Insulators with Ultracold Atoms Indubala I. Satija and Erhai Zhao Abstract- tance is topological insulators, materials that are insulating in the interior but con- duct along of matter known as Topological Insulators. I.I. Satija (B) · E. Zhao School of Physics, Astronomy

  18. PHYSICAL REVIEW B 85, 115415 (2012) Smooth gauge for topological insulators

    E-Print Network [OSTI]

    Vanderbilt, David

    2012-01-01T23:59:59.000Z

    PHYSICAL REVIEW B 85, 115415 (2012) Smooth gauge for topological insulators Alexey A. Soluyanov polarization3,4 and the anomalous Hall conductance.5,6 The recent discovery of topological insulators7,8 has-like functions for 2D Z2 insulators (i.e., quantum spin- Hall insulators) that are smooth functions of k

  19. Topological Insulators with Ultracold Atoms Indubala I Satija and Erhai Zhao

    E-Print Network [OSTI]

    Satija, Indu

    Topological Insulators with Ultracold Atoms Indubala I Satija and Erhai Zhao School of Physics is topological insulators, materials that are insulating in the interior but conduct along the edges. Quantum to the family of exotic states of matter known as Topological Insulators. QH and QSH effect usually requires

  20. Correlation effects in (111) bilayers of perovskite transition-metal oxides

    SciTech Connect (OSTI)

    Okamoto, Satoshi [ORNL] [ORNL; Zhu, Wenguang [University of Science and Technology of China] [University of Science and Technology of China; Nomura, Yusuke [University of Tokyo, Japan] [University of Tokyo, Japan; Arita, R. [University of Tokyo, Japan] [University of Tokyo, Japan; Xiao, Di [Carnegie Mellon University (CMU)] [Carnegie Mellon University (CMU); Nagaosa, Naoto [University of Tokyo, Japan] [University of Tokyo, Japan

    2014-01-01T23:59:59.000Z

    We investigate the correlation-induced Mott, magnetic, and topological phase transitions in artificial (111) bilayers of perovskite transition-metal oxides LaAuO3 and SrIrO3 for which the previous density-functional theory calculations predicted topological insulating states. Using the dynamical-mean-field theory with realistic band structures and Coulomb interactions, LaAuO3 bilayer is shown to be far away from a Mott insulating regime, and a topological-insulating state is robust. On the other hand, SrIrO3 bilayer is on the verge of an orbital-selective topological Mott transition and turns to a trivial insulator by an antiferromagnetic ordering. Oxide bilayers thus provide a novel class of topological materials for which the interplay between the spin-orbit coupling and electron-electron interactions is a fundamental ingredient.

  1. Metals 2000

    SciTech Connect (OSTI)

    Allison, S.W.; Rogers, L.C.; Slaughter, G. [Oak Ridge National Lab., TN (United States); Boensch, F.D. [6025 Oak Hill Lane, Centerville, OH (United States); Claus, R.O.; de Vries, M. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1993-05-01T23:59:59.000Z

    This strategic planning exercise identified and characterized new and emerging advanced metallic technologies in the context of the drastic changes in global politics and decreasing fiscal resources. In consideration of a hierarchy of technology thrusts stated by various Department of Defense (DOD) spokesmen, and the need to find new and creative ways to acquire and organize programs within an evolving Wright Laboratory, five major candidate programs identified are: C-17 Flap, Transport Fuselage, Mach 5 Aircraft, 4.Fighter Structures, and 5. Missile Structures. These results were formed by extensive discussion with selected major contractors and other experts, and a survey of advanced metallic structure materials. Candidate structural applications with detailed metal structure descriptions bracket a wide variety of uses which warrant consideration for the suggested programs. An analysis on implementing smart skins and structures concepts is given from a metal structures perspective.

  2. Dendritic metal nanostructures

    DOE Patents [OSTI]

    Shelnutt, John A. (Tijeras, NM); Song, Yujiang (Albuquerque, NM); Pereira, Eulalia F. (Vila Nova de Gaia, PT); Medforth, Craig J. (Winters, CA)

    2010-08-31T23:59:59.000Z

    Dendritic metal nanostructures made using a surfactant structure template, a metal salt, and electron donor species.

  3. Thermal Effects of Moisture in Rigid Insulation Board

    E-Print Network [OSTI]

    Crow, G. W.

    The impact of moisture in rigid roof insulation upon energy consumption is often assumed to be a simple function of the conductance. This paper will show that there are complex interactions between conductance, thermal mass, and climate. The energy...

  4. Aerogel Insulation: The Materials Science of Empty Space

    Broader source: Energy.gov [DOE]

    Empty space can be good, like a blank canvas for an artist, or it can be bad, like an attic without insulation for a homeowner.  But when a technological breakthrough provides just the right amount...

  5. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    SciTech Connect (OSTI)

    John Williams

    2011-03-30T23:59:59.000Z

    Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energy’s Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT®, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspen’s best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XT’s commercial success has been driven by it’s 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

  6. Static electric field in one-dimensional insulators without boundaries

    E-Print Network [OSTI]

    Chen, Kuang-Ting

    In this brief report, we show that in a one-dimensional insulating system with periodic boundary conditions, the coefficient of the ? term in the effective theory is not only determined by the topological index ?i?[superscript ...

  7. (Insulating materials and large high voltage electric systems)

    SciTech Connect (OSTI)

    Dale, S.J.

    1990-09-18T23:59:59.000Z

    The traveler attended the 33rd Session of CIGRE (The International Conference on Large High Voltage Electric Systems in Paris, France) as a US technical expert advisor the Study Committee 15, Insulating Materials. Over 200 papers were discussed, contributed from over 45 countries at the conference on all aspects of electric power generation and transmission. Of special interest was a panel session on superconducting technology for electric power systems and the participation on a new task force on the electrical insulation at cryogenic temperatures. Significant insight was gained into the development of superconducting power technologies in Europe and Japan. CIGRE has set up a committee to follow the development in research on the biological effects of electric and magnetic fields. The traveler also visited the Centre for Electric Power Engineering at the University of Strathclyde, Glasgow, Scotland and discussed research on degradation of polymeric cable insulation and gas insulated equipment. 5 refs.

  8. High constriction ratio continuous insulator based dielectrophoretic particle sorting

    E-Print Network [OSTI]

    Wang, Qianru, S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Low frequency insulator based dielectrophoresis (iDEP) is a promising technique to study cell surface dielectric properties. To date, iDEP has been exploited to distinguish, characterize, and manipulate particles and ...

  9. A Comprehensive Map of Insulator Elements for the Drosophila Genome

    E-Print Network [OSTI]

    White, Kevin P.

    Insulators are DNA sequences that control the interactions among genomic regulatory elements and act as chromatin boundaries. A thorough understanding of their location and function is necessary to address the complexities ...

  10. Identification of building applications for a variable-conductance insulation

    SciTech Connect (OSTI)

    Potter, T.F. [National Renewable Energy Lab., Golden, CO (United States); Tuluca, A. [Winter (Steven) Associates, Inc., New York, NY (United States)

    1992-07-01T23:59:59.000Z

    Recent experiments have confirmed the feasibility of controllable, reversible disabling of a vacuum insulation panel, which may result in the development of energy-efficient building envelope components. These components could extend the managed energy exchange through the building envelope from about 30% (typical with fenestration systems in commercial buildings), to as much as 90% of the gross wall and roof areas. Further investigation will be required to optimized the thermal response and the magnitude of the R-value swing (from a difference between insulating and conducting insulating values of 4 to as high as a factor of 100). The potential for energy reduction by using the variable-conductance insulation in the building envelope is discussed, and other potential building applications are mentioned.

  11. Radiative transfer and thermal performance levels in foam insulation boardstocks

    E-Print Network [OSTI]

    Moreno, John David

    1991-01-01T23:59:59.000Z

    The validity of predictive models for the thermal conductivity of foam insulation is established based on the fundamental geometry of the closed-cell foam. The extinction coefficient is experimentally and theoretically ...

  12. An Investigation of Insulator Proteins in Mosquito Genomes

    E-Print Network [OSTI]

    Johanson, Michael

    2013-08-02T23:59:59.000Z

    of transgenes in mosquito species. The use of insulator sequences to flank transgenes may have the ability to overcome position effects caused by the genomic environment surrounding the insertion site. CTCF is a multifunctional protein, conserved from humans...

  13. Kingspan Insulated Panels: Proposed Penalty (2013-CE-5353)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Kingspan Insulated Panels, Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  14. Expansion Joint Concepts for High Temperature Insulation Systems

    E-Print Network [OSTI]

    Harrison, M. R.

    1980-01-01T23:59:59.000Z

    As high temperature steam and process piping expands with heat, joints begin to open between the insulation sections, resulting in increased energy loss and possible unsafe surface temperatures. Many different expansion joint designs are presently...

  15. Exchange-Coupling-Induced Symmetry Breaking in Topological Insulators

    E-Print Network [OSTI]

    Wei, Peng

    An exchange gap in the Dirac surface states of a topological insulator (TI) is necessary for observing the predicted unique features such as the topological magnetoelectric effect as well as to confine Majorana fermions. ...

  16. Correlated topological insulators and the fractional magnetoelectric effect

    E-Print Network [OSTI]

    Swingle, Brian Gordon

    Topological insulators are characterized by the presence of gapless surface modes protected by time-reversal symmetry. In three space dimensions the magnetoelectric response is described in terms of a bulk ? [theta] term ...

  17. Topological crystalline insulators and Dirac octets in antiperovskites

    E-Print Network [OSTI]

    Liu, Junwei

    We predict a class of topological crystalline insulators in the antiperovskite material family with the chemical formula A[subscript 3]BX. Here the nontrivial topology arises from band inversion between two J = 3/2 quartets, ...

  18. Classification of Interacting Electronic Topological Insulators in Three Dimensions

    E-Print Network [OSTI]

    Wang, Chong

    A fundamental open problem in condensed-matter physics is how the dichotomy between conventional and topological band insulators is modified in the presence of strong electron interactions. We show that there are six ...

  19. Driven electronic states at the surface of a topological insulator

    E-Print Network [OSTI]

    Fregoso, Benjamin M.

    Motivated by recent photoemission experiments on the surface of topological insulators we compute the spectrum of driven topological surface excitations in the presence of an external light source. We completely characterize ...

  20. Interacting fermionic topological insulators/superconductors in three dimensions

    E-Print Network [OSTI]

    Wang, Chong

    Symmetry protected topological (SPT) phases are a minimal generalization of the concept of topological insulators to interacting systems. In this paper, we describe the classification and properties of such phases for ...

  1. Topological Crystalline Insulators in the SnTe Material Class

    E-Print Network [OSTI]

    Hsieh, Timothy Hwa-wei

    Topological crystalline insulators are new states of matter in which the topological nature of electronic structures arises from crystal symmetries. Here we predict the first material realization of topological crystalline ...

  2. Homotopy Theory of Strong and Weak Topological Insulators

    E-Print Network [OSTI]

    Ricardo Kennedy; Charles Guggenheim

    2014-09-08T23:59:59.000Z

    We use homotopy theory to extend the notion of strong and weak topological insulators to the non-stable regime (low numbers of occupied/empty energy bands). We show that for strong topological insulators in d spatial dimensions to be "truly d-dimensional", i.e. not realizable by stacking lower-dimensional insulators, a more restrictive definition of "strong" is required. However, this does not exclude weak topological insulators from being "truly d-dimensional", which we demonstrate by an example. Additionally, we prove some useful technical results, including the homotopy theoretic derivation of the factorization of invariants over the torus into invariants over spheres in the stable regime, as well as the rigorous justification of replacing $T^d$ by $S^d$ and $T^{d_k}\\times S^{d_x}$ by $S^{d_k+d_x}$ as is common in the current literature.

  3. Microscopic Realization of Two-Dimensional Bosonic Topological Insulators

    E-Print Network [OSTI]

    Liu, Zheng-Xin

    It is well known that a bosonic Mott insulator can be realized by condensing vortices of a boson condensate. Usually, a vortex becomes an antivortex (and vice versa) under time reversal symmetry, and the condensation of ...

  4. Condition Monitoring of In-Service Nonceramic Insulators

    E-Print Network [OSTI]

    about PSERC can be found at the Center's website: http://www.pserc.wisc.edu. For additional information nonceramic insulators that do not have any manufacturing or design defects. The next phase of the project

  5. Thermal Effects of Moisture in Rigid Insulation Board 

    E-Print Network [OSTI]

    Crow, G. W.

    1992-01-01T23:59:59.000Z

    The impact of moisture in rigid roof insulation upon energy consumption is often assumed to be a simple function of the conductance. This paper will show that there are complex interactions between conductance, thermal mass, and climate. The energy...

  6. Energy and Emissions Savings through Insulation Upgrade Projects

    E-Print Network [OSTI]

    Lettich, M.

    2008-01-01T23:59:59.000Z

    The presentation demonstrates the value of including insulation system assessment, repairs and upgrades on a facility's physical function and its importance in the overall energy and environmental management program. Financial and environmental...

  7. Linear particle accelerator with seal structure between electrodes and insulators

    DOE Patents [OSTI]

    Broadhurst, John H. (Golden Valley, MN)

    1989-01-01T23:59:59.000Z

    An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.

  8. Measure Guideline: Sealing and Insulating of Ducts in Existing Homes

    SciTech Connect (OSTI)

    Aldrich, R.; Puttagunta, S.

    2011-12-01T23:59:59.000Z

    This document begins with a discussion on potential cost and performance benefits of duct sealing and insulating. It continues with a review of typical duct materials and components and the overall procedures for assessing and improving the duct system.

  9. Manipulation of bacteria using three dimensional insulator based dielectrophoresis

    E-Print Network [OSTI]

    Braff, William Allan

    2011-01-01T23:59:59.000Z

    Insulator-based dielectrophoresis (iDEP) is a very promising technique for sorting microparticles based on their electrical properties. By using constrictions in a microchannel to generate large electric field gradients, ...

  10. SiGe-On-Insulator (SGOI) Technology and MOSFET Fabrication

    E-Print Network [OSTI]

    Cheng, Zhiyuan

    In this work, we have developed two different fabrication processes for relaxed Si??xGex-on-insulator (SGOI) substrates: (1) SGOI fabrication by etch-back approach, and (2) by "smart-cut" approach utilizing ...

  11. aluminum nitride insulator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    K-r grown by a modified Bridgman tech- nique,r6 Rollins, Andrew M. 27 Low-voltage organic thin film transistors with hydrophobic aluminum nitride film as gate insulator Materials...

  12. Investigation of the fire performance of building insulation in full-scale and laboratory fire tests

    SciTech Connect (OSTI)

    Kleinfelder, W.A.

    1984-04-01T23:59:59.000Z

    Twenty-two insulations are exposed to fire tests including the 25 ft Tunnel test, the Attic Floor Radiant Panel test and actual fire conditions of a simulated attic configuration. The insulations consisted of a number of cellulose fiber insulations, utilizing various chemical treatments, glass fiber and mineral fiber insulations. The fire performance characteristics of the insulations were measured in each of the three test scenarios and the report compares their results.

  13. Performance of MHD insulating materials in a potassium environment

    SciTech Connect (OSTI)

    Natesan, K.; Park, J.H.; Rink, D.L. (Argonne National Lab., IL (United States)); Thomas, C.A. (USDOE Pittsburgh Energy Technology Center, PA (United States))

    1991-12-01T23:59:59.000Z

    The objectives of this study are to evaluate the compatibility of the MHD insulating materials boron nitride and silicon nitride in a potassium environment at temperatures of 1000 and 1400{degrees}F (538 and 760{degrees}C, respectively) and to measure the electrical conductivities of the specimens before and after exposure to potassium. Based on the test results, an assessment is to be made of the suitability of these materials for application as insulator materials in an MHD channel.

  14. Topological insulators/superconductors: Potential future electronic materials

    SciTech Connect (OSTI)

    Hor, Y. S. [Department of Physics, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2014-03-05T23:59:59.000Z

    A new material called topological insulator has been discovered and becomes one of the fastest growing field in condensed matter physics. Topological insulator is a new quantum phase of matter which has Dirac-like conductivity on its surface, but bulk insulator through its interior. It is considered a challenging problem for the surface transport measurements because of dominant internal conductance due to imperfections of the existing crystals of topological insulators. By a proper method, the internal bulk conduction can be suppressed in a topological insulator, and permit the detection of the surface currents which is necessary for future fault-tolerant quantum computing applications. Doped topological insulators have depicted a large variety of bulk physical properties ranging from magnetic to superconducting behaviors. By chemical doping, a TI can change into a bulk superconductor. Nb{sub x}Bi{sub 2}Se{sub 3} is shown to be a superconductor with T{sub c} ? 3.2 K, which could be a potential candidate for a topological superconductor.

  15. External Insulation of Masonry Walls and Wood Framed Walls

    SciTech Connect (OSTI)

    Baker, P.

    2013-01-01T23:59:59.000Z

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  16. Advanced insulated gate bipolar transistor gate drive

    DOE Patents [OSTI]

    Short, James Evans (Monongahela, PA); West, Shawn Michael (West Mifflin, PA); Fabean, Robert J. (Donora, PA)

    2009-08-04T23:59:59.000Z

    A gate drive for an insulated gate bipolar transistor (IGBT) includes a control and protection module coupled to a collector terminal of the IGBT, an optical communications module coupled to the control and protection module, a power supply module coupled to the control and protection module and an output power stage module with inputs coupled to the power supply module and the control and protection module, and outputs coupled to a gate terminal and an emitter terminal of the IGBT. The optical communications module is configured to send control signals to the control and protection module. The power supply module is configured to distribute inputted power to the control and protection module. The control and protection module outputs on/off, soft turn-off and/or soft turn-on signals to the output power stage module, which, in turn, supplies a current based on the signal(s) from the control and protection module for charging or discharging an input capacitance of the IGBT.

  17. Topology of crystalline insulators and superconductors

    E-Print Network [OSTI]

    Ken Shiozaki; Masatoshi Sato

    2014-10-14T23:59:59.000Z

    We complete a classification of topological phases and their topological defects in crystalline insulators and superconductors. We consider topological phases and defects described by non-interacting Bloch and Bogoliubov de Gennes Hamiltonians that support additional order-two spatial symmetry, besides any of ten classes of symmetries defined by time-reversal symmetry and particle-hole symmetry. The additional order-two spatial symmetry we consider is general and it includes $Z_2$ global symmetry, mirror reflection, two-fold rotation, inversion, and their magnetic point group symmetries. We find that the topological periodic table shows a novel periodicity in the number of flipped coordinates under the order-two spatial symmetry, in addition to the Bott-periodicity in the space dimensions. Various symmetry protected topological phases and gapless modes will be identified and discussed in a unified framework. We also present topological classification of symmetry protected Fermi points. The bulk classification and the surface Fermi point classification provide a novel realization of the bulk-boundary correspondence in terms of the K-theory.

  18. Three-Dimensional Topological Insulators in I-III-VI2 and II-IV-V2 Chalcopyrite Semiconductors

    SciTech Connect (OSTI)

    Feng, wanxiang [Chinese Academy of Sciences; Ding, Jun [Beijing National Laboratory for Condensed Matter Physics/Chinese Academy of Scie; Xiao, Di [ORNL; Yao, yugui [Chinese Academy of Sciences

    2011-01-01T23:59:59.000Z

    The recent discovery of topological insulators with exotic metallic surface states has garnered great interest in the fields of condensed matter physics and materials science.1 A number of spectacular quantum phenomena have been predicted when the surface states are under the influence of magnetism and superconductivity,2 5 which could open up new opportunities for technological applications in spintronics and quantum computing. To achieve this goal, material realization of topological insulators with desired physical properties is of crucial importance. Based on first-principles calculations, here we show that a large number of ternary chalcopyrite compounds of composition I-III-VI2 and II-IV-V2 can realize the topological insulating phase in their native states. The crystal structure of chalcopyrites is derived from the frequently used zinc-blende structure, and many of them possess a close lattice match to important mainstream semiconductors, which is essential for a smooth integration into current semiconductor technology. The diverse optical, electrical and structural properties of chalcopyrite semiconductors,6 and particularly their ability to host room-temperature ferromagnetism,7 9 make them appealing candidates for novel spintronic devices.

  19. Three-Dimensional Topological Insulators in I-III-VI$_2$ and II-IV-V$_2$ Chalcopyrite Semiconductors

    E-Print Network [OSTI]

    Wanxiang Feng; Jun Ding; Di Xiao; Yugui Yao

    2010-07-31T23:59:59.000Z

    The recent discovery of topological insulators with exotic metallic surface states has garnered great interest in the fields of condensed matter physics and materials science. A number of spectacular quantum phenomena have been predicted when the surface states are under the influence of magnetism and superconductivity, which could open up new opportunities for technological applications in spintronics and quantum computing. To achieve this goal, material realization of topological insulators with desired physical properties is of crucial importance. Based on first-principles calculations, here we show that a large number of ternary chalcopyrite compounds of composition I-III-VI$_2$ and II-IV-V$_2$ can realize the topological insulating phase in their native states. The crystal structure of chalcopyrites is derived from the frequently used zinc-blende structure, and many of them possess a close lattice match to important mainstream semiconductors, which is essential for a smooth integration into current semiconductor technology. The diverse optical, electrical and structural properties of chalcopyrite semiconductors, and particularly their ability to host room-temperature ferromagnetism, make them appealing candidates for novel spintronic devices.

  20. Energy efficiency improvements for refrigerator/freezers using prototype doors containing gas-filled panel insulating systems

    SciTech Connect (OSTI)

    Griffith, B.; Arasteh, D.; Tuerler, D.

    1995-01-01T23:59:59.000Z

    Energy efficiency improvements in domestic refrigerator/freezers, are directly influenced by the overall thermal performance of the cabinet and doors. An advanced system for reducing heat gain is Gas-Filled Panel thermal insulation technology. Gas-Filled Panels contain a low-conductivity, inert gas at atmospheric pressure and employ a reflective baffle to suppress radiation and convection within the gas. This paper presents energy use test results for a 1993 model 500 liter top mount refrigerator/freezer operated with its original doors and with a series of alternative prototype doors. Gas-Filled Panel technology was used in two types of prototype refrigerator/freezer doors. In one design, panels were used in composite with foam in standard metal door pans; this design yielded no measurable energy savings. In the other design, special polymer door pans were fitted with panels that fill nearly all of the available insulation volume; this design yielded a 6.5% increase in energy efficiency for the entire refrigerator/freezer. The EPA Refrigerator Analysis computer program has been used to predict the change in daily energy consumption with the alternative doors. The computer model also projects a 25% energy efficiency improvement for a refrigerator/freezer that would use Gas-Filled Panel insulation throughout the cabinet as well as the doors.

  1. CERTIFICATE OF FIELD VERIFICATION AND DIAGNOSTIC TESTING CF-4R-ENV-22 Quality Insulation Installation (QII) -Insulation Stage Checklist (Page 1 of 3)

    E-Print Network [OSTI]

    CERTIFICATE OF FIELD VERIFICATION AND DIAGNOSTIC TESTING CF-4R-ENV-22 Quality Insulation Installation (QII) - Insulation Stage Checklist (Page 1 of 3) Site Address: Enforcement Agency: Permit Number: ____________ 2008 Residential Compliance Forms May 2012 All structural framing areas shall be insulated in a manner

  2. Metal Hydrides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19,DepartmentEnergyMetalMetal

  3. Large anomalous Hall effect in ferromagnetic insulator-topological insulator heterostructures

    SciTech Connect (OSTI)

    Alegria, L. D.; Petta, J. R. [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States); Ji, H.; Cava, R. J. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Yao, N. [Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544 (United States); Clarke, J. J. [Hitachi High Technologies America, Inc., Clarksburg, Maryland 20871 (United States)

    2014-08-04T23:59:59.000Z

    We demonstrate the van der Waals epitaxy of the topological insulator compound Bi{sub 2}Te{sub 3} on the ferromagnetic insulator Cr{sub 2}Ge{sub 2}Te{sub 6}. The layers are oriented with (001)Bi{sub 2}Te{sub 3}||(001)Cr{sub 2}Ge{sub 2}Te{sub 6} and (110)Bi{sub 2}Te{sub 3}||(100)Cr{sub 2}Ge{sub 2}Te{sub 6}. Cross-sectional transmission electron microscopy indicates the formation of a sharp interface. At low temperatures, bilayers consisting of Bi{sub 2}Te{sub 3} on Cr{sub 2}Ge{sub 2}Te{sub 6} exhibit a large anomalous Hall effect (AHE). Tilted field studies of the AHE indicate that the easy axis lies along the c-axis of the heterostructure, consistent with magnetization measurements in bulk Cr{sub 2}Ge{sub 2}Te{sub 6}. The 61?K Curie temperature of Cr{sub 2}Ge{sub 2}Te{sub 6} and the use of near-stoichiometric materials may lead to the development of spintronic devices based on the AHE.

  4. Thermal Performance of Exterior Insulation and Finish Systems Containing Vacuum Insulation Panels

    SciTech Connect (OSTI)

    Childs, Kenneth W [ORNL; Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Carbary, Lawrence D [Dow Corning Corporation, Midland, MI

    2013-01-01T23:59:59.000Z

    A high-performance wall system is under development to improve wall thermal performance to a level of U-factor of 0.19 W/(m2 K) (R-30 [h ft2 F]/Btu) in a standard wall thickness by incorporating vacuum insulation panels (VIPs) into an exterior insulation finish system (EIFS). Such a system would be applicable to new construction and will offer a solution to more challenging retrofit situations as well. Multiple design options were considered to balance the need to protect theVIPs during construction and building operation, while minimizing heat transfer through the wall system. The results reported here encompass an indepth assessment of potential system performances including thermal modeling, detailed laboratory measurements under controlled conditions on the component, and system levels according to ASTM C518 (ASTM 2010). The results demonstrate the importance of maximizing the VIP coverage over the wall face. The results also reveal the impact of both the design and execution of system details, such as the joints between adjacent VIPs. The test results include an explicit modeled evaluation of the system performance in a clear wall.

  5. Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows

    E-Print Network [OSTI]

    concentration) in the gas volume between glass panes of the insulated glass units (IGUs). The elimination is an option but it requires well controlled gas exchange processes. Alternatively, and from many pointsElectrochromically switched, gas-reservoir metal hydride devices with application to energy

  6. Cellular glass insulation keeps liquefied gas from vaporizing

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The North West Shelf Project, located on the Burrup Peninsula in Western Australia, supplies much of that vast state with natural gas for domestic and industrial applications. Some of the gas is also exported to Japan as liquefied natural gas (LNG). While awaiting shipment to Japan, the LNG is stored at {minus}322 F in four storage tanks, each with a capacity of 2.5 million ft{sup 3}. When Woodside Offshore Petroleum Pty Ltd., operator of the LNG facility, selected insulation material for the storage tanks, it went in search of a material with more than just insulating value. Since the insulation is installed inside the tanks, it must be able to resist wicking or absorbing the LNG. Also, it had to have sufficient strength to withstand the weight of the 2.5 million ft{sup 3} of LNG without being crushed or losing its insulting properties. And, as a safety precaution, the selected materials should neither burn nor support combustion. Ultimately, Woodside selected a cellular glass insulation called Foamglas, from Pittsburgh Corning Corp., that met all the performance criteria and was cost competitive with the lesser-performing alternatives. Foamglas is produced from strong, inert borosilicate glass. Its insulating capability is provided by the tiny, closed cells of air encapsulated within the foam-like structure of the glass. Since the cells are closed,neither liquid nor vapor can enter the structure of the insulation. The inert glass itself will not absorb or react with LNG, nor will it burn or support a fire. The cellular structure provides effective insulation in both not and cold applications, and offers a fire barrier.

  7. Ceramic-glass-metal seal by microwave heating

    DOE Patents [OSTI]

    Meek, T.T.; Blake, R.D.

    1983-10-04T23:59:59.000Z

    A method for producing a ceramic-glass-metal seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid-phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  8. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing...

  9. Insulating Structural Ceramics Program, Final Report

    SciTech Connect (OSTI)

    Andrews, Mark J.; Tandon, Raj; Ott, Eric; Hind, Abi Akar; Long, Mike; Jensen, Robert; Wheat, Leonard; Cusac, Dave; Lin, H. T.; Wereszczak, Andrew A.; Ferber, Mattison K.; Lee, Sun Kun; Yoon, Hyung K.; Moreti, James; Park, Paul; Rockwood, Jill; Boyer, Carrie; Ragle, Christie; Balmer-Millar, Marilou; Aardahl, Chris; Habeger, Craig; Rappe, Ken; Tran, Diana; Koshkarian, Kent; Readey, Michael; ,

    2005-11-22T23:59:59.000Z

    New materials and corresponding manufacturing processes are likely candidates for diesel engine components as society and customers demand lower emission engines without sacrificing power and fuel efficiency. Strategies for improving thermal efficiency directly compete with methodologies for reducing emissions, and so the technical challenge becomes an optimization of controlling parameters to achieve both goals. Approaches being considered to increase overall thermal efficiency are to insulate certain diesel engine components in the combustion chamber, thereby increasing the brake mean effective pressure ratings (BMEP). Achieving higher BMEP rating by insulating the combustion chamber, in turn, requires advances in material technologies for engine components such as pistons, port liners, valves, and cylinder heads. A series of characterization tests were performed to establish the material properties of ceramic powder. Mechanical chacterizations were also obtained from the selected materials as a function of temperature utilizing ASTM standards: fast fracture strength, fatique resistance, corrosion resistance, thermal shock, and fracture toughness. All ceramic materials examined showed excellent wear properties and resistance to the corrosive diesel engine environments. The study concluded that the ceramics examined did not meet all of the cylinder head insert structural design requirements. Therefore we do not recommend at this time their use for this application. The potential for increased stresses and temperatures in the hot section of the diesel engine combined with the highly corrosive combustion products and residues has driven the need for expanded materials capability for hot section engine components. Corrosion and strength requirements necessitate the examination of more advanced high temperture alloys. Alloy developments and the understanding of processing, structure, and properties of supperalloy materials have been driven, in large part, by the gas turbine community over the last fifty years. Characterization of these high temperature materials has, consequently, concentrated heavily upon application conditions similiar to to that encountered in the turbine engine environment. Significantly less work has been performed on hot corrosion degradation of these materials in a diesel engine environment. This report examines both the current high temperature alloy capability and examines the capability of advanced nickle-based alloys and methods to improve production costs. Microstructures, mechanical properties, and the oxidation/corrosion behavior of commercially available silicon nitride ceramics were investigated for diesel engine valve train applications. Contact, sliding, and scratch damage mechanisms of commercially available silicon nitride ceramics were investigated as a function of microstructure. The silicon nitrides with a course microstructure showed a higher material removal rate that agrees with a higher wear volume in the sliding contact tests. The overall objective of this program is to develop catalyst materials systems for an advanced Lean-NOx aftertreatment system that will provide high NOx reduction with minimum engine fuel efficiency penalty. With Government regulations on diesel engine NOx emissions increasingly becoming more restrictive, engine manufacturers are finding it difficult to meet the regulations solely with engine design strategies (i.e. improved combustion, retarded timing, exhaust gas recirculation, etc.). Aftertreatment is the logical technical approach that will be necessary to achieve the required emission levels while at the same time minimally impacting the engine design and its associated reliability and durability concerns.

  10. Optical properties of inhomogeneous metallic hydrogen plasmas

    E-Print Network [OSTI]

    Broeck, N Van den; Tempere, J; Silvera, I F

    2015-01-01T23:59:59.000Z

    We investigate the optical properties of hydrogen as it undergoes a transition from the insulating molecular to the metallic atomic phase, when heated by a pulsed laser at megabar pressures in a diamond anvil cell. Most current experiments attempt to observe this transition by detecting a change in the optical reflectance and/or transmittance. Theoretical models for this change are based on the dielectric function calculated for bulk, homogeneous slabs of material. Experimentally, one expects a hydrogen plasma density that varies on a length scale not substantially smaller than the wave length of the probing light. We show that taking this inhomogeneity into account can lead to significant corrections in the reflectance and transmittance. We present a technique to calculate the optical properties of systems with a smoothly varying density of charge carriers, determine the optical response for metallic hydrogen in the diamond anvil cell experiment and contrast this with the standard results. Analyzing recent e...

  11. Supporting documentation for the 1997 revision to the DOE Insulation Fact Sheet

    SciTech Connect (OSTI)

    Stovall, T.K.

    1997-08-22T23:59:59.000Z

    The Department of Energy (DOE) Insulation Fact Sheet has been revised to reflect developments in energy conservation technology and the insulation market. A nationwide insulation cost survey was made by polling insulation contractors and builders, and the results are reported here. These costs, along with regional weather data, regional fuel costs, and fuel-specific system efficiencies were used to produce recommended insulation levels for new and existing houses. This report contains all of the methodology, algorithms, assumptions, references, and data resources that were used to produce the 1997 DOE Insulation Fact Sheet.

  12. Understanding and Improving High Voltage Vacuum Insulators for Microsecond Pulses

    SciTech Connect (OSTI)

    Javedani, J B; Goerz, D A; Houck, T L; Lauer, E J; Speer, R D; Tully, L K; Vogtlin, G E; White, A D

    2007-03-05T23:59:59.000Z

    High voltage insulation is one of the main areas of pulsed power research and development, and dielectric breakdown is usually the limiting factor in attaining the highest possible performance in pulsed power devices. For many applications the delivery of pulsed power into a vacuum region is the most critical aspect of operation. The surface of an insulator exposed to vacuum can fail electrically at an applied field more than an order or magnitude below the bulk dielectric strength of the insulator. This mode of breakdown, called surface flashover, imposes serious limitations on the power flow into a vacuum region. This is especially troublesome for applications where high voltage conditioning of the insulator and electrodes is not practical and for applications where relatively long pulses, on the order of several microseconds, are required. The goal of this project is to establish a sound fundamental understanding of the mechanisms that lead to surface flashover, and then evaluate the most promising techniques to improve vacuum insulators and enable high voltage operation at stress levels near the intrinsic bulk breakdown limits of the material. The approach we proposed and followed was to develop this understanding through a combination of theoretical and computation methods coupled with experiments to validate and quantify expected behaviors. In this report we summarize our modeling and simulation efforts, theoretical studies, and experimental investigations. The computational work began by exploring the limits of commercially available codes and demonstrating methods to examine field enhancements and defect mechanisms at microscopic levels. Plasma simulations with particle codes used in conjunction with circuit models of the experimental apparatus enabled comparisons with experimental measurements. The large scale plasma (LSP) particle-in-cell (PIC) code was run on multiprocessor platforms and used to simulate expanding plasma conditions in vacuum gap regions. Algorithms were incorporated into LSP to handle secondary electron emission from dielectric materials to enable detailed simulations of flashover phenomenon. Theoretical studies were focused on explaining a possible mechanism for anode initiated surface flashover that involves an electron avalanche process starting near the anode, not a mechanism involving bulk dielectric breakdown. Experiments were performed in Engineering's Pulsed Power Lab using an available 100-kV, 10-{micro}s pulse generator and vacuum chamber. The initial experiments were done with polyethylene insulator material in the shape of a truncated cone cut at +45{sup o} angle between flat electrodes with a gap of 1.0 cm. The insulator was sized so there were no flashovers or breakdowns under nominal operating conditions. Insulator flashover or gap closure was induced by introducing a plasma source, a tuft of velvet, in proximity to the insulator or electrode.

  13. Analysis Code for High Gradient Dielectric Insulator Surface Breakdown

    SciTech Connect (OSTI)

    Ives, Robert Lawrence [Calabazas Creek Research, Inc.; Verboncoeur, John [University of California - Berkeley; Aldan, Manuel [University of California, Berkeley

    2010-05-30T23:59:59.000Z

    High voltage (HV) insulators are critical components in high-energy, accelerator and pulsed power systems that drive diverse applications in the national security, nuclear weapons science, defense and industrial arenas. In these systems, the insulator may separate vacuum/non-vacuum regions or conductors with high electrical field gradients. These insulators will often fail at electric fields over an order of magnitude lower than their intrinsic dielectric strength due to flashover at the dielectric interface. Decades of studies have produced a wealth of information on fundamental processes and mechanisms important for flashover initiation, but only for relatively simple insulator configurations in controlled environments. Accelerator and pulsed power system designers are faced with applying the fundamental knowledge to complex, operational devices with escalating HV requirements. Designers are forced to rely on “best practices” and expensive prototype testing, providing boundaries for successful operation. However, the safety margin is difficult to estimate, and system design must be very conservative for situations where testing is not practicable, or replacement of failed parts is disruptive or expensive. The Phase I program demonstrated the feasibility of developing an advanced code for modeling insulator breakdown. Such a code would be of great interest for a number of applications, including high energy physics, microwave source development, fusion sciences, and other research and industrial applications using high voltage devices.

  14. Single Dirac Cone Topological Surface State and Unusual Thermoelectric Property of Compounds from a New Topological Insulator Family

    SciTech Connect (OSTI)

    Chen, Y

    2011-08-18T23:59:59.000Z

    Angle resolved photoemission spectroscopy (ARPES) study on TlBiTe2 and TlBiSe2 from a Thallium-based III-V-VI2 ternary chalcogenides family revealed a single surface Dirac cone at the center of the Brillouin zone for both compounds. For TlBiSe{sub 2}, the large bulk gap ({approx} 200meV) makes it a topological insulator with better mechanical properties than the previous binary 3D topological insualtor family. For TlBiTe{sub 2}, the observed negative bulk gap indicates it as a semi-metal, rather than a narrow gap semi-conductor as conventionally believed; this semi-metality naturally explains its mysteriously small thermoelectric figure of merit comparing to other compounds in the family. Finally, the unique band structures of TlBiTe{sub 2} also suggests it as a candidate for topological superconductors.

  15. Window Spacers and Edge Seals in Insulating Glass Units: A State-of-the-Art Review and Future Perspectives

    E-Print Network [OSTI]

    Bergh, Sofie Van Den

    2014-01-01T23:59:59.000Z

    Uvslokk, A. Gustavsen, Vacuum insulation panels for buildingThis excludes vacuum insulation panels (VIPs), which, whenmW/(mK) [50], and vacuum insulation panels (VIPs) with ? as

  16. Strain induced Z{sub 2} topological insulating state of ?-As{sub 2}Te{sub 3}

    SciTech Connect (OSTI)

    Pal, Koushik [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Waghmare, Umesh V., E-mail: waghmare@jncasr.ac.in [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2014-08-11T23:59:59.000Z

    Topological insulators are non-trivial quantum states of matter which exhibit a gap in the electronic structure of their bulk form, but a gapless metallic electronic spectrum at the surface. Here, we predict a uniaxial strain induced electronic topological transition (ETT) from a band to topological insulating state in the rhombohedral phase (space group: R3{sup ¯}m) of As{sub 2}Te{sub 3} (?-As{sub 2}Te{sub 3}) through first-principles calculations including spin-orbit coupling within density functional theory. The ETT in ?-As{sub 2}Te{sub 3} is shown to occur at the uniaxial strain ?{sub zz}?=??0.05 (?{sub zz}?=?1.77?GPa), passing through a Weyl metallic state with a single Dirac cone in its electronic structure at the ? point. We demonstrate the ETT through band inversion and reversal of parity of the top of the valence and bottom of the conduction bands leading to change in the ?{sub 2} topological invariant ?{sub 0} from 0 to 1 across the transition. Based on its electronic structure and phonon dispersion, we propose ultra-thin films of As{sub 2}Te{sub 3} to be promising for use in ultra-thin stress sensors, charge pumps, and thermoelectrics.

  17. Insulation condition monitoring and testing for large electrical machines

    SciTech Connect (OSTI)

    Zhou, Y.; Dix, G.I.; Quaife, P.W. [Industrial Research Ltd., Christchurch (New Zealand)

    1996-12-31T23:59:59.000Z

    An efficient method to assess the insulation condition of rotating machines is on-line partial discharge monitoring. Difficulties in on-line monitoring result from various noise sources associated with the machine and from the power system. The paper introduces and discusses the theories, different testing techniques and monitoring methods currently used by Industrial Research Limited and other laboratories. The design and testing of high frequency current transformers for partial discharge on-line monitoring are introduced. Laboratory and field tests on electrical machines are presented. A database has been developed for efficient insulation monitoring and maintenance. The database allows intra and inter comparisons of partial discharge, tan delta, capacitance between phases in a machine and with other machines easily. The functions of the database enhance the efficiency and provide more information for effective insulation condition assessment.

  18. Chiral Topological Insulator on Nambu 3-Algebraic Geometry

    E-Print Network [OSTI]

    Kazuki Hasebe

    2014-08-02T23:59:59.000Z

    Chiral topological insulator (AIII-class) with Landau levels is constructed based on the Nambu 3-algebraic geometry. We clarify the geometric origin of the chiral symmetry of the AIII-class topological insulator in the context of non-commutative geometry of 4D quantum Hall effect. The many-body groundstate wavefunction is explicitly derived as a $(l,l,l-1)$ Laughlin-Halperin type wavefunction with unique $K$-matrix structure. Fundamental excitation is identified with anyonic string-like object with fractional charge ${1}/({1+2(l-1)^2})$. The Hall effect of the chiral topological insulators turns out be a color version of Hall effect, which exhibits a dual property of the Hall and spin-Hall effects.

  19. Electrical Insulation Paper and Its Physical Properties at Cryogenic Temperatures

    SciTech Connect (OSTI)

    Tuncer, Enis [ORNL] [ORNL; Polyzos, Georgios [ORNL] [ORNL; Sauers, Isidor [ORNL] [ORNL; James, David Randy [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    Paper is widely used in various engineering applications due to its physical properties and ease of manufacture. As a result paper has been selected or designed as an electrical insulation material for parts and components in high voltage technology. In the current study we select a paper employed in conventional transformers as the electrical insulation material. The potential of this paper is investigated at cryogenic temperatures to determine its physical properties for high temperature superconducting power applications. Dielectric measurements were performed using impedance spectroscopy at a constant frequency. Dielectric breakdown tests were performed on samples at 77 K using a liquid nitrogen bath.

  20. Spin connection and boundary states in a topological insulator

    E-Print Network [OSTI]

    V. Parente; P. Lucignano; P. Vitale; A. Tagliacozzo; F. Guinea

    2010-11-02T23:59:59.000Z

    We study the surface resistivity of a three-dimensional topological insulator when the boundaries exhibit a non trivial curvature. We obtain an analytical solution for a spherical topological insulator, and we show that a non trivial quantum spin connection emerges from the three dimensional band structure. We analyze the effect of the spin connection on the scattering by a bump on a flat surface. Quantum effects induced by the geometry lead to resonances when the electron wavelength is comparable to the size of the bump.

  1. Characterization of 3d topological insulators by 2d invariants

    E-Print Network [OSTI]

    Rahul Roy

    2010-04-20T23:59:59.000Z

    The prediction of non-trivial topological phases in Bloch insulators in three dimensions has recently been experimentally verified. Here, I provide a picture for obtaining the $Z_{2}$ invariants for a three dimensional topological insulator by deforming suitable 2d planes in momentum space and by using a formula for the 2d $Z_{2}$ invariant based on the Chern number. The physical interpretation of this formula is also clarified through the connection between this formulation of the $Z_{2}$ invariant and the quantization of spin Hall conductance in two dimensions.

  2. Fabrication of high gradient insulators by stack compression

    DOE Patents [OSTI]

    Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

    2014-04-29T23:59:59.000Z

    Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

  3. Investigation of single unit flashovers in HVDC insulator strings

    SciTech Connect (OSTI)

    Ishikawa, Kouichi; Kageyama, Hiroshi; Yamada, Yasuhiro [Kansai Electric Power Co., Inc., Osaka (Japan)] [Kansai Electric Power Co., Inc., Osaka (Japan); Matsuoka, Ryosuke; Ito, Susumu; Sakanishi, Kenji [NGK Insulators, Ltd., Nagoya (Japan)] [NGK Insulators, Ltd., Nagoya (Japan)

    1996-10-01T23:59:59.000Z

    In HVDC transmission lines, a special phenomenon, so called single unit flashover, is observed under some special conditions. Only one or two insulator units repeat flashovers, not resulting in an overall flashover along the string. However, higher magnitudes of audible noise, radio and television interferences, may give a serious problem. Based on the investigation on {+-}500-kV full scale insulator strings, higher occurrence probability of single unit flashovers under cold-wet-switch-on conditions was clarified compared with normal continuous operating voltage conditions. Effectiveness of the newly proposed countermeasures to prevent single unit flashovers was demonstrated by experiments in laboratory and in field.

  4. Composition and process for making an insulating refractory material

    SciTech Connect (OSTI)

    Pearson, Alan (Murrysville, PA); Swansiger, Thomas G. (Apollo, PA)

    1998-04-28T23:59:59.000Z

    A composition and process for making an insulating refractory material. The composition includes calcined alumina powder, flash activated alumina powder, an organic polymeric binder and a liquid vehicle which is preferably water. Starch or modified starch may also be added. A preferred insulating refractory material made with the composition has a density of about 2.4-2.6 g/cm.sup.3 with reduced thermal conductivity, compared with tabular alumina. Of importance, the formulation has good abrasion resistance and crush strength during intermediate processing (commercial sintering) to attain full strength and refractoriness, good abrasion resistance and crush strength.

  5. Strain-Induced Bond Buckling and Its Role in Insulating Properties of Cr-Doped V{sub 2}O{sub 3}

    SciTech Connect (OSTI)

    Frenkel, A. I. [Department of Physics, Yeshiva University, New York, New York 10016 (United States); Pease, D. M.; Budnick, J. I.; Shanthakumar, P.; Huang, T. [Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States); Metcalf, P. [Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Stern, E. A. [Department of Physics, Box 351560, University of Washington, Seattle, Washington 98195 (United States)

    2006-11-10T23:59:59.000Z

    Structural transformations around both V and Cr atoms in (V{sub 1-x}Cr{sub x}){sub 2}O{sub 3} across its metal-insulator transition (MIT) at x{approx}0.01 are studied by extended x-ray absorption fine-structure technique. Our new results for Cr made possible by the use of a novel x-ray analyzer that we developed reveal the substitutional mechanism of Cr doping. We find that this system has a buckled structure with short Cr-V and long V-V bonds. This system of bonds is disordered around the average trigonal lattice ascertained by x-ray diffraction. Such local distortions can result in a long range strain field that sets in around dilute Cr atoms in microscopic regions. We suggest that such locally strained regions should be insulating even at small x. The possibility of local insulating regions within a metallic phase, first suggested by Rice and Brinkman in 1972, remains unaccounted for in modern MIT theories.

  6. Tunable THz surface plasmon polariton based on a topological insulator/layered superconductor hybrid structure

    E-Print Network [OSTI]

    Li, Mingda

    We theoretically investigate the surface plasmon polariton (SPP) at the interface between a three-dimensional strong topological insulator (TI) and a layered superconductor/magnetic insulator structure, within the random ...

  7. EI2 Insulation Helps Anxious Pooch Find Calm in the Storm | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EI2 Insulation Helps Anxious Pooch Find Calm in the Storm EI2 Insulation Helps Anxious Pooch Find Calm in the Storm Photo of a dog sitting on a bed or couch with a stuffed toy in...

  8. Development of a methodology to discriminate incipient insulator faults from distribution system load

    E-Print Network [OSTI]

    Richards, Christopher Scott

    2000-01-01T23:59:59.000Z

    Insulator failure has long plagued transmission and distribution system power quality. The failure process begins when airborne contamination combines with moisture from atmospheric wetting to form a conductive pollution layer on the insulator...

  9. Industrial Insulation: An Energy Efficient Technology That Saves Money and Reduces

    E-Print Network [OSTI]

    Brayman, B.

    -but no one knew exactly just how much. Everyone understands that insulation protects people from hot surfaces and that it prevents condensation. Until recently, however no one could quantify the emissions saved for the insulation investment incurred. In fact...

  10. The Analysis of Dynamic Thermal Performance of Insulated Wall and Building Cooling Energy Consumption in Guangzhou

    E-Print Network [OSTI]

    Zhao, L.; Li, X.; Li, L.; Gao, Y.

    2006-01-01T23:59:59.000Z

    ST. The simulation predictions indicate that reductions in the cooling load and maximum cooling demand are obtained when the insulation is added in the wall, but the potential of energy saving is quite limited when the wall only is insulated....

  11. asbestos pipe-insulation removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...

  12. Graphene-on-Insulator Transistors Made Using C on Ni Chemical-Vapor Deposition

    E-Print Network [OSTI]

    Keast, Craig L.

    Graphene transistors are made by transferring a thin graphene film grown on Ni onto an insulating SiO[subscript 2] substrate. The properties and integration of these graphene-on-insulator transistors are presented and ...

  13. Polymer quenched prealloyed metal powder

    DOE Patents [OSTI]

    Hajaligol, Mohammad R. (Midlothian, VA); Fleischhauer, Grier (Midlothian, VA); German, Randall M. (State College, PA)

    2001-01-01T23:59:59.000Z

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  14. Particle trap with dielectric barrier for use in gas insulated transmission lines

    DOE Patents [OSTI]

    Dale, Steinar J. (Monroeville, PA)

    1982-01-01T23:59:59.000Z

    A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode.

  15. Particle trap with dielectric barrier for use in gas insulated transmission lines

    DOE Patents [OSTI]

    Dale, S.J.

    1982-06-15T23:59:59.000Z

    A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode. 7 figs.

  16. Disordered Topological Insulators via $C^*$-Algebras

    E-Print Network [OSTI]

    T. A. Loring; M. B. Hastings

    2010-12-28T23:59:59.000Z

    The theory of almost commuting matrices can be used to quantify topological obstructions to the existence of localized Wannier functions with time-reversal symmetry in systems with time-reversal symmetry and strong spin-orbit coupling. We present a numerical procedure that calculates a Z_2 invariant using these techniques, and apply it to a model of HgTe. This numerical procedure allows us to access sizes significantly larger than procedures based on studying twisted boundary conditions. Our numerical results indicate the existence of a metallic phase in the presence of scattering between up and down spin components, while there is a sharp transition when the system decouples into two copies of the quantum Hall effect. In addition to the Z_2 invariant calculation in the case when up and down components are coupled, we also present a simple method of evaluating the integer invariant in the quantum Hall case where they are decoupled.

  17. Band gap tuning in transition metal oxides by site-specific substitution

    DOE Patents [OSTI]

    Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok

    2013-12-24T23:59:59.000Z

    A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.

  18. Sustainable wall construction and exterior insulation retrofit technology process and structure

    DOE Patents [OSTI]

    Vohra, Arun (Bethesda, MD)

    2000-01-01T23:59:59.000Z

    A low-cost process for exterior wall insulation retrofit, or new wall construction by stacking layers of fabric tube filled with insulating material against a wall and covering them with mesh and stucco provides a durable structure with good insulating value.

  19. Mathematical models of magnetic insulation Naoufel BEN ABDALLAH 1 , Pierre DEGOND 1

    E-Print Network [OSTI]

    Méhats, Florian

    Mathematical models of magnetic insulation Naoufel BEN ABDALLAH 1 , Pierre DEGOND 1 and Florian M Palaiseau Cedex, France Abstract The problem of magnetic insulation in a plane diode is discussed. Starting We study the stationary self­consistent problem of magnetic insulation under space­charge lim

  20. Design and characterization of a signal insulation coreless transformer integrated in a CMOS gate driver chip

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Design and characterization of a signal insulation coreless transformer integrated in a CMOS gate the implementation of numerous distinct power transistor gate drivers, the control signal insulation is becoming more results will be shown in order to validate the functionality. I. INTRODUCTION An insulation system