National Library of Energy BETA

Sample records for metal halide mercury

  1. New Energy Efficiency Standards for Metal Halide Lamp Fixtures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Halide Lamp Fixtures to Save on Energy Bills and Reduce Carbon Pollution New Energy Efficiency Standards for Metal Halide Lamp Fixtures to Save on Energy Bills and Reduce...

  2. A Solid-State 199Hg NMR Study of Mercury Halides

    E-Print Network [OSTI]

    Taylor, Robert E; Bai, Shi; Dybowski, Cecil

    2011-01-01

    550 (1998), 89-99. [25] R. E. Taylor, C. T. Carver, R. E.7 (1997), 333-336. [33] R. E. Taylor, Concepts Magn. Reson.Study of Mercury Halides R. E. Taylor 1 *, Shi Bai 2 , and

  3. Electrolytic systems and methods for making metal halides and refining metals

    DOE Patents [OSTI]

    Holland, Justin M.; Cecala, David M.

    2015-05-26

    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  4. Spatial and time-dependent distribution of plasma parameters in the metal-halide arc lamp

    E-Print Network [OSTI]

    Khakhaev, A; Ekimov, K; Soloviev, A; Khakhaev, Anatoly; Luizova, Lidia; Ekimov, Konstantin; Soloviev, Alexey

    2004-01-01

    It was shown by several authors that closed high pressure arc a.c. discharge in mercury vapors with addition of metal halide cannot be described in frames of the local thermodynamic equilibrium (LTE) model. However some plasma parameters (electron and high lying excited states densities as well as Hg metastable levels densities) are assumed to be in equilibrium with electron temperature and these assumptions are applied in plasma diagnostics. To verify these supposition the method of local plasma spectroscopy based on spatial and temporal distribution of spectral line profiles was developed. The experimental set up is based on diffraction spectrometer with large aperture, spatial scanning device and photodetector, which allows to carry out the measurements in chosen phases of current period. The software for data acquisition and processing is based on LabVIEW system. The original method of joint data processing was applied to data arrays containing spatial, spectral and temporal distribution of a source surfa...

  5. Method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock in the presence of a molten metal halide catalyst

    DOE Patents [OSTI]

    Gorin, Everett (San Rafael, CA)

    1981-01-01

    A method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock to produce lighter hydrocarbon fuels by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, the method comprising: mixing the feedstock with a heavy naphtha fraction which has an initial boiling point from about 100.degree. to about 160.degree. C. with a boiling point difference between the initial boiling point and the final boiling point of no more than about 50.degree. C. to produce a mixture; thereafter contacting the mixture with partially spent molten metal halide and hydrogen under temperature and pressure conditions so that the temperature is near the critical temperature of the heavy naphtha fraction; separating at least a portion of the heavy naphtha fraction and lighter hydrocarbon fuels from the partially spent molten metal halide, unreacted feedstock and reaction products; thereafter contacting the partially spent molten metal halide, unreacted feedstock and reaction products with hydrogen and fresh molten metal halide in a hydrocracking zone to produce additional lighter hydrocarbon fuels and separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide.

  6. Evaluation of Metal Halide, Plasma, and LED Lighting Technologies for a Hydrogen Fuel Cell Mobile Light (H 2 LT)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miller, L. B.; Donohoe, S. P.; Jones, M. H.; White, W. A.; Klebanoff, L. E.; Velinsky, S. A.

    2015-04-22

    This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore »better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less

  7. Metal Halide Lamp Ballasts and Fixtures | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof EnergyPresentation:DaisStatesEMCHIEF HUMANAtMetal

  8. Metal Halide Surface Treatment of Quantum Dots - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matter ByMentor-ProtegeFrom the Director HereMetal

  9. Alkaline and alkaline earth metal phosphate halides and phosphors

    DOE Patents [OSTI]

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  10. Transition metal ion-assisted photochemical generation of alkyl halides and hydrocarbons from carboxylic acids

    SciTech Connect (OSTI)

    Carraher, Jack; Pestovsky, Oleg; Bakac, Andreja

    2012-03-14

    Near-UV photolysis of aqueous solutions of propionic acid and aqueous Fe3+ in the absence of oxygen generates a mixture of hydrocarbons (ethane, ethylene and butane), carbon dioxide, and Fe2+. The reaction becomes mildly catalytic (about five turnovers) in the presence of oxygen which converts a portion of alkyl radicals to oxidizing intermediates that reoxidize Fe2+. The photochemistry in the presence of halide ions (X? = Cl?, Br?) generates ethyl halides via halogen atom abstraction from FeXn3?n by ethyl radicals. Near-quantitative yields of C2H5X are obtained at ?0.05 M X?. Competition experiments with Co(NH3)5Br2+ provided kinetic data for the reaction of ethyl radicals with FeCl2+ (k = (4.0 ± 0.5) × 106 M?1 s?1) and with FeBr2+ (k = (3.0 ± 0.5) × 107 M?1 s?1). Photochemical decarboxylation of propionic acid in the presence of Cu2+ generates ethylene and Cu+. Longer-chain acids also yield alpha olefins as exclusive products. These reactions become catalytic under constant purge with oxygen which plays a dual role. It reoxidizes Cu+ to Cu2+, and removes gaseous olefins to prevent accumulation of Cu+(olefin) complexes and depletion of Cu2+. The results underscore the profound effect that the choice of metal ions, the medium, and reaction conditions exert on the photochemistry of carboxylic acids.

  11. Sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.

    1998-01-01

    A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.

  12. ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS

    SciTech Connect (OSTI)

    Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

    2010-07-31

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-?g/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-?g/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine and hydrogen selenide sorbents. The noncarbon sorbent was able to reduce the concentration to 0 ppb from a starting concentration of 120 ppb. This compares to the target value of 5 ppb (~17?g/m3). The EERC-prepared metal-based pellet and coprecipitate sorbents exhibited arsine reductions of 90% or greater, being below 10 ppb. Corning SR Liquid monoliths exhibited brief periods (<1 hour) of attaining 90% arsine reduction but were able to achieve greater than 80% reduction for several hours. With respect to hydrogen selenide, all Group IB and IIB metal-based sorbents tested exhibited 100% reduction from an inlet concentration of approximately 400 ppb. Corning SR Liquid monoliths exhibited an 82% reduction when two monoliths were tested simultaneously in series.

  13. Evaluation of Metal Halide, Plasma, and LED Lighting Technologies for a Hydrogen Fuel Cell Mobile Light (H 2 LT)

    SciTech Connect (OSTI)

    Miller, L. B.; Donohoe, S. P.; Jones, M. H.; White, W. A.; Klebanoff, L. E.; Velinsky, S. A.

    2015-04-22

    This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 times better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.

  14. Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    SciTech Connect (OSTI)

    Nimalasuriya, T.; Flikweert, A.J.; Stoffels, W.W.; Haverlag, M.; Mullen, J.J.A.M. van der; Pupat, N.B.M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Ecole Nationale Superieure de Chimie de Paris, 11 Rue Pierre et Marie Curie, 75005 Paris (France)

    2006-03-01

    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function (ASDF) of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the (excitation) temperature, the ion ratio Hg{sup +}/Dy{sup +}, the electron density, the ground state, and the total density of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate.

  15. Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas: Gold, Palladium and Platinum Formulations

    SciTech Connect (OSTI)

    Presto, A.A.; Granite, E.J

    2008-07-01

    The use of noble metals as catalysts for mercury oxidation in flue gas remains an area of active study. To date, field studies have focused on gold and palladium catalysts installed at pilot scale. In this article, we introduce bench-scale experimental results for gold, palladium and platinum catalysts tested in realistic simulated flue gas. Our initial results reveal some intriguing characteristics of catalytic mercury oxidation and provide insight for future research into this potentially important process.

  16. Method for fixating sludges and soils contaminated with mercury and other heavy metals

    DOE Patents [OSTI]

    Broderick, Thomas E.; Roth, Rachel L.; Carlson, Allan L.

    2005-06-28

    The invention relates to a method, composition and apparatus for stabilizing mercury and other heavy metals present in a particulate material such that the metals will not leach from the particulate material. The method generally involves the application of a metal reagent, a sulfur-containing compound, and the addition of oxygen to the particulate material, either through agitation, sparging or the addition of an oxygen-containing compound.

  17. Lutetium gadolinium halide scintillators

    DOE Patents [OSTI]

    Shah, Kanai S. (Newton, MA); Higgins, William M (Westborough, MA); Van Loef, Edgar V (Allston, MA); Glodo, Jaroslaw (Allston, MA)

    2010-07-13

    Lutetium gadolinium halide scintillators, devices and methods, including a composition having the formula Lu.sub.xGd.sub.(1-x)Halide and a dopant.

  18. Mercury Removal from Aqueous Systems Using Commercial and Laboratory Prepared Metal Oxide Nanoparticles 

    E-Print Network [OSTI]

    Desai, Ishan

    2010-10-12

    Five commercial metal oxide nanoparticles (CuO, SiO2, Fe2O3, TiO2 and Al2O3) have been individually screened for mercury removal in a batch reactor under bicarbonate buffered and non-buffered aqueous solutions (DI water). Copper oxide...

  19. Advanced Gasification Mercury/Trace Metal Control with Monolith...

    Office of Scientific and Technical Information (OSTI)

    by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials,...

  20. Recovery of mercury from acid waste residues

    DOE Patents [OSTI]

    Greenhalgh, W.O.

    1987-02-27

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and thence quenching the reactivity of the nitric acid prior to nitration of the mercury metal. 1 fig.

  1. Actinide halide complexes

    DOE Patents [OSTI]

    Avens, Larry R. (Los Alamos, NM); Zwick, Bill D. (Santa Fe, NM); Sattelberger, Alfred P. (Los Alamos, NM); Clark, David L. (Los Alamos, NM); Watkin, John G. (Los Alamos, NM)

    1992-01-01

    A compound of the formula MX.sub.n L.sub.m wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands, a compound of the formula MX.sub.n wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  2. Actinide halide complexes

    DOE Patents [OSTI]

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1992-11-24

    A compound is described of the formula MX[sub n]L[sub m] wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands. A compound of the formula MX[sub n] wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds are described including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant.

  3. 190 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 30, NO. 1, FEBRUARY 2002 Gap Closure in a Cold Metal Halide Lamp

    E-Print Network [OSTI]

    Kushner, Mark

    190 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 30, NO. 1, FEBRUARY 2002 Gap Closure in a Cold Metal lamp has been investigated using a two-dimensional, plasma transport model. Im- ages are presented are found to be important during gap closure. Index Terms--Arc discharges, avalanche breakdown, glow dis

  4. Method for the removal and recovery of mercury

    DOE Patents [OSTI]

    Easterly, C.E.; Vass, A.A.; Tyndall, R.L.

    1997-01-28

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  5. Sorbents for the oxidation and removal of mercury

    DOE Patents [OSTI]

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry

    2014-09-02

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  6. Sorbents for the oxidation and removal of mercury

    DOE Patents [OSTI]

    Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

    2012-05-01

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  7. Sorbents for the oxidation and removal of mercury

    DOE Patents [OSTI]

    Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

    2008-10-14

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  8. sup 3 P Hg, Cd, and Zn photosensitized chemistry of vinyl halides in krypton matrix

    SciTech Connect (OSTI)

    Cartland, H.E.; Pimentel, G.C. )

    1990-01-25

    The reaction of group IIB metals in the {sup 3}P state with vinyl fluoride, chloride, and bromide is studied in krypton matrix. The primary process in all cases is hydrogen halide elimination to form a hydrogen halide/acetylene hydrogen-bonded complex. Insertion of metal atoms into C-Cl and C-Br bonds, but not into C-H and C-F bonds, is also observed. The insertion photochemistry can be explained by a mechanism which requires that the process occur on a triplet surface with the vinyl halide in the planar ground-state conformation.

  9. IMPACT OF NOBLE METALS AND MERCURY ON HYDROGEN GENERATION DURING HIGH LEVEL WASTE PRETREATMENT AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Stone, M; Tommy Edwards, T; David Koopman, D

    2009-03-03

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies radioactive High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. HLW consists of insoluble metal hydroxides (primarily iron, aluminum, calcium, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The pretreatment process in the Chemical Processing Cell (CPC) consists of two process tanks, the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) as well as a melter feed tank. During SRAT processing, nitric and formic acids are added to the sludge to lower pH, destroy nitrite and carbonate ions, and reduce mercury and manganese. During the SME cycle, glass formers are added, and the batch is concentrated to the final solids target prior to vitrification. During these processes, hydrogen can be produced by catalytic decomposition of excess formic acid. The waste contains silver, palladium, rhodium, ruthenium, and mercury, but silver and palladium have been shown to be insignificant factors in catalytic hydrogen generation during the DWPF process. A full factorial experimental design was developed to ensure that the existence of statistically significant two-way interactions could be determined without confounding of the main effects with the two-way interaction effects. Rh ranged from 0.0026-0.013% and Ru ranged from 0.010-0.050% in the dried sludge solids, while initial Hg ranged from 0.5-2.5 wt%, as shown in Table 1. The nominal matrix design consisted of twelve SRAT cycles. Testing included: a three factor (Rh, Ru, and Hg) study at two levels per factor (eight runs), three duplicate midpoint runs, and one additional replicate run to assess reproducibility away from the midpoint. Midpoint testing was used to identify potential quadratic effects from the three factors. A single sludge simulant was used for all tests and was spiked with the required amount of noble metals immediately prior to performing the test. Acid addition was kept effectively constant except to compensate for variations in the starting mercury concentration. SME cycles were also performed during six of the tests.

  10. Vitrification of IFR and MSBR halide salt reprocessing wastes

    SciTech Connect (OSTI)

    Siemer, D.D.

    2013-07-01

    Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

  11. MERCURY PURIFICATION IN THE MEGAWATT LIQUID METAL SPALLATION TARGET OF EURISOL-DS Joerg Neuhausena

    E-Print Network [OSTI]

    McDonald, Kirk

    such as corrosion. Additionally, the fast flowing liquid metal can cause erosion of the construction materials such as spallation neutron sources, neutrino factories, radioactive beam facilities or accelerator driven systems such as temperature, pressure, liquid metal flow, redox potential and proton dose. These micro

  12. Preparation of cerium halide solvate complexes

    DOE Patents [OSTI]

    Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E

    2013-08-06

    Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.

  13. High Photoluminescence E?ciency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors

    E-Print Network [OSTI]

    Deschler, Felix; Price, Michael; Pathak, Sandeep; Klintberg, Lina E.; Jarausch, David-Dominik; Higler, Ruben; Hu?ttner, Sven; Leijtens, Tomas; Stranks, Samuel D.; Snaith, Henry J.; Atatu?re, Mete; Phillips, Richard T.; Friend, Richard H.

    2014-03-24

    The study of the photo-physical properties of organic-metallic lead-halide perovskites, which demonstrate excellent photovoltaic performance in devices with electron- and hole-accepting layers, helps to understand their charge photo...

  14. Method for high temperature mercury capture from gas streams

    DOE Patents [OSTI]

    Granite, E.J.; Pennline, H.W.

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  15. Development of Halide and Oxy-Halides for Isotopic Separations

    SciTech Connect (OSTI)

    Leigh R. Martin; Aaron T. Johnson; Jana Pfeiffer; Martha R. Finck

    2014-10-01

    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  16. Removal of mercury from aqueous solutions by ETS-4 microporous titano-silicate: effect of contact time, titano-silicate mass and initial metal concentration

    SciTech Connect (OSTI)

    Lopes, C. B.; Otero, M.; Pereira, E.; Duarte, A. C. [CESAM and Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); Lin, Z.; Silva, C. M.; Rocha, J. [CICECO and Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal)

    2007-07-01

    Mercury is one of the most toxic heavy metals present in the environment and therefore is extremely important develop new, simple and reliable techniques for its removal from aqueous solutions. A recent line of research within this context is the application of microporous materials. The use of these materials for removing heavy metals from solutions may become a potential clean-up technology in the field of wastewater treatment. In this work it is reported the application of microporous titano-silicate ETS-4 as ion exchanger to remove Hg{sup 2+} from aqueous solution. Under batch conditions, we studied the effect of contact time, titano-silicate mass and initial Hg{sup 2+} concentration. Only 5 mf of ETS-4 are required to purify 2 litres of water with 50 {mu}g L{sup -1} of metal. Under the experimental conditions, the initial Hg{sup 2+} concentration and ETS-4 mass have strong influence on the sorption process, and it is proved that 24 h are almost always sufficient to attain ion exchange equilibrium. Langmuir and Freundlich isotherms were used to fit equilibrium experimental results. The kinetics of mercury removal was reliably described by a pseudo second-order model. On the whole, ETS-4 shows considerable potential to remove Hg{sup 2+} from wastewaters. (authors)

  17. Diamond films treated with alkali-halides

    DOE Patents [OSTI]

    Anderson, D.F.; Kwan, S.W.

    1997-04-08

    A secondary electron emitter is provided and includes a substrate with a diamond film, the diamond film is treated or coated with an alkali-halide. 5 figs.

  18. Lanthanide doped strontium barium mixed halide scintillators

    DOE Patents [OSTI]

    Gundiah, Gautam; Bizarri, Gregory; Hanrahan, Stephen M; Bourret-Courchesne, Edith; Derenzo, Stephen E

    2013-07-16

    The present invention provides for a composition comprising an inorganic scintillator comprising a lanthanide-doped strontium barium mixed halide useful for detecting nuclear material.

  19. Mercury in the Anthropocene Ocean

    E-Print Network [OSTI]

    Lamborg, Carl

    The toxic metal mercury is present only at trace levels in the ocean, but it accumulates in fish at concentrations high enough to pose a threat to human and environmental health. Human activity has dramatically altered the ...

  20. Process for removing mercury from aqueous solutions

    DOE Patents [OSTI]

    Googin, J.M.; Napier, J.M.; Makarewicz, M.A.; Meredith, P.F.

    1985-03-04

    A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

  1. Hygroscopicity Evaluation of Halide Scintillators

    SciTech Connect (OSTI)

    Zhuravleva, M; Stand, L; Wei, H; Hobbs, C. L.; Boatner, Lynn A; Ramey, Joanne Oxendine; Burger, Arnold; Rowe, E; Bhattacharya, P.; Tupitsyn, E; Melcher, Charles L

    2014-01-01

    A collaborative study of relative hygroscopicity of anhydrous halide scintillators grown at various laboratories is presented. We have developed a technique to evaluate moisture sensitivity of both raw materials and grown crystals, in which the moisture absorption rate is measured using a gravimetric analysis. Degradation of the scintillation performance was investigated by recording gamma-ray spectra and monitoring the photopeak position, count rate and energy resolution. The accompanying physical degradation of the samples exposed to ambient atmosphere was photographically recorded as well. The results were compared with ben

  2. Apparatus and method for removing mercury vapor from a gas stream

    DOE Patents [OSTI]

    Ganesan, Kumar (Butte, MT)

    2008-01-01

    A metallic filter effectively removes mercury vapor from gas streams. The filter captures the mercury which then can be released and collected as product. The metallic filter is a copper mesh sponge plated with a six micrometer thickness of gold. The filter removes up to 90% of mercury vapor from a mercury contaminated gas stream.

  3. Halide and Oxy-Halide Eutectic Systems for High-Performance,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    computational modeling along with rapid material screening methods to identify halide salt mixtures with a melting point below 250C that are stable at temperatures well above...

  4. Regenerative process for removal of mercury and other heavy metals from gases containing H.sub.2 and/or CO

    DOE Patents [OSTI]

    Jadhav, Raja A. (Naperville, IL)

    2009-07-07

    A method for removal of mercury from a gaseous stream containing the mercury, hydrogen and/or CO, and hydrogen sulfide and/or carbonyl sulfide in which a dispersed Cu-containing sorbent is contacted with the gaseous stream at a temperature in the range of about 25.degree. C. to about 300.degree. C. until the sorbent is spent. The spent sorbent is contacted with a desorbing gaseous stream at a temperature equal to or higher than the temperature at which the mercury adsorption is carried out, producing a regenerated sorbent and an exhaust gas comprising released mercury. The released mercury in the exhaust gas is captured using a high-capacity sorbent, such as sulfur-impregnated activated carbon, at a temperature less than about 100.degree. C. The regenerated sorbent may then be used to capture additional mercury from the mercury-containing gaseous stream.

  5. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  6. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  7. Mercury Information Clearinghouse

    SciTech Connect (OSTI)

    Chad A. Wocken; Michael J. Holmes; Dennis L. Laudal; Debra F. Pflughoeft-Hassett; Greg F. Weber; Nicholas V. C. Ralston; Stanley J. Miller; Grant E. Dunham; Edwin S. Olson; Laura J. Raymond; John H. Pavlish; Everett A. Sondreal; Steven A. Benson

    2006-03-31

    The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. With the support of CEA, the Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates, and the U.S. Department of Energy (DOE), the EERC developed comprehensive quarterly information updates that provide a detailed assessment of developments in the various areas of mercury monitoring, control, policy, and research. A total of eight topical reports were completed and are summarized and updated in this final CEA quarterly report. The original quarterly reports can be viewed at the CEA Web site (www.ceamercuryprogram.ca). In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. Members of Canada's coal-fired electricity generation sector (ATCO Power, EPCOR, Manitoba Hydro, New Brunswick Power, Nova Scotia Power Inc., Ontario Power Generation, SaskPower, and TransAlta) and CEA, have compiled an extensive database of information from stack-, coal-, and ash-sampling activities. Data from this effort are also available at the CEA Web site and have provided critical information for establishing and reviewing a mercury standard for Canada that is protective of environment and public health and is cost-effective. Specific goals outlined for the CEA mercury program included the following: (1) Improve emission inventories and develop management options through an intensive 2-year coal-, ash-, and stack-sampling program; (2) Promote effective stack testing through the development of guidance material and the support of on-site training on the Ontario Hydro method for employees, government representatives, and contractors on an as-needed basis; (3) Strengthen laboratory analytical capabilities through analysis and quality assurance programs; and (4) Create and maintain an information clearinghouse to ensure that all parties can keep informed on global mercury research and development activities.

  8. Mercury Replacement Program It is the policy of California State University, Fullerton to remove mercury containing

    E-Print Network [OSTI]

    de Lijser, Peter

    and air conditioning (HVAC) devices and in temperature controls for heat pumps. V. Accountability decomposes. As a liquid metal at room temperature, mercury has been widely used throughout industry. Man-made sources of mercury include abandoned mines, energy production, sewage, industrial processes, mining

  9. Enhanced Quantum Efficiency From Hybrid Cesium Halide/Copper Photocathode

    SciTech Connect (OSTI)

    Kong, Lingmei; Joly, Alan G.; Droubay, Timothy C.; Gong, Yu; Hess, Wayne P.

    2014-04-28

    The quantum efficiency of Cu is found to increase dramatically when coated by a CsI film and then irradiated by a UV laser. Over three orders of magnitude quantum efficiency enhancement at 266 nm is observed in CsI/Cu(100), indicating potential application in future photocathode devices. Upon laser irradiation, a large work function reduction to a value less than 2 eV is also observed, significantly greater than for similarly treated CsBr/Cu(100). The initial QE enhancement, prior to laser irradiation, is attributed to interface interaction, surface cleanliness and the intrinsic properties of the Cs halide film. Further QE enhancement following activation is attributed to formation of inter-band states and Cs metal accumulation at the interface induced by laser irradiation.

  10. Lanthanide-halide based humidity indicators

    DOE Patents [OSTI]

    Beitz, James V. (Hinsdale, IL); Williams, Clayton W. (Chicago, IL)

    2008-01-01

    The present invention discloses a lanthanide-halide based humidity indicator and method of producing such indicator. The color of the present invention indicates the humidity of an atmosphere to which it is exposed. For example, impregnating an adsorbent support such as silica gel with an aqueous solution of the europium-containing reagent solution described herein, and dehydrating the support to dryness forms a substance with a yellow color. When this substance is exposed to a humid atmosphere the water vapor from the air is adsorbed into the coating on the pore surface of the silica gel. As the water content of the coating increases, the visual color of the coated silica gel changes from yellow to white. The color change is due to the water combining with the lanthanide-halide complex on the pores of the gel.

  11. Mercury Emission Measurement at a CFB Plant

    SciTech Connect (OSTI)

    John Pavlish; Jeffrey Thompson; Lucinda Hamre

    2009-02-28

    In response to pending regulation to control mercury emissions in the United States and Canada, several projects have been conducted to perform accurate mass balances at pulverized coal (pc)-fired utilities. Part of the mercury mass balance always includes total gaseous mercury as well as a determination of the speciation of the mercury emissions and a concentration bound to the particulate matter. This information then becomes useful in applying mercury control strategies, since the elemental mercury has traditionally been difficult to control by most technologies. In this instance, oxidation technologies have proven most beneficial for increased capture. Despite many years of mercury measurement and control projects at pc-fired units, far less work has been done on circulating fluidized-bed (CFB) units, which are able to combust a variety of feedstocks, including cofiring coal with biomass. Indeed, these units have proven to be more problematic because it is very difficult to obtain a reliable mercury mass balance. These units tend to have very different temperature profiles than pc-fired utility boilers. The flexibility of CFB units also tends to be an issue when a mercury balance is determined, since the mercury inputs to the system come from the bed material and a variety of fuels, which can have quite variable chemistry, especially for mercury. In addition, as an integral part of the CFB operation, the system employs a feedback loop to circulate the bed material through the combustor and the solids collection system (the primary cyclone), thereby subjecting particulate-bound metals to higher temperatures again. Despite these issues, CFB boilers generally emit very little mercury and show good native capture. The Energy & Environmental Research Center is carrying out this project for Metso Power in order to characterize the fate of mercury across the unit at Rosebud Plant, an industrial user of CFB technology from Metso. Appropriate solids were collected, and flue gas samples were obtained using the Ontario Hydro method, mercury continuous emission monitors, and sorbent trap methods. In addition, chlorine and fluorine were determined for solids and in the flue gas stream. Results of this project have indicated a very good mercury mass balance for Rosebud Plant, indicating 105 {+-} 19%, which is well within acceptable limits. The mercury flow through the system was shown to be primarily in with the coal and out with the flue gas, which falls outside of the norm for CFB boilers.

  12. Accumulation of mercury in selected plant species grown in soils contaminated with different mercury compounds

    SciTech Connect (OSTI)

    Su, Yi; Han, Fengxiang; Shiyab, Safwan; Chen, Jian; Monts, David L. [Institute for Clean Energy Technology (ICET), Mississippi State University, 205 Research Blvd, Starkville, MS 39759 (United States)

    2007-07-01

    The objective of our research is to screen and search for suitable plant species for phyto-remediation of mercury-contaminated soil. Currently our effort is specifically focused on mercury removal from the U.S. Department of Energy (DOE) sites, where mercury contamination is a major concern. In order to cost effectively implement mercury remediation efforts, it is necessary now to obtain an improved understanding of biological means of removing mercury and mercury compounds.. Phyto-remediation is a technology that uses various plants to degrade, extract, contain, or immobilize contaminants from soil and water. In particular, phyto-extraction is the uptake of contaminants by plant roots and translocation within the plants to shoots or leaves. Contaminants are generally removed by harvesting the plants. We have investigated phyto-extraction of mercury from contaminated soil by using some of the known metal-accumulating plants since no natural plant species with mercury hyper-accumulating properties has yet been identified. Different natural plant species have been studied for mercury uptake, accumulation, toxicity and overall mercury removal efficiency. Various mercury compounds, such as HgS, HgCl{sub 2}, and Hg(NO{sub 3}){sub 2}, were used as contaminant sources. Different types of soil were examined and chosen for phyto-remediation experiments. We have applied microscopy and diffuse reflectance spectrometry as well as conventional analytical chemistry to monitor the phyto-remediation processes of mercury uptake, translocation and accumulation, and the physiological impact of mercury contaminants on selected plant species. Our results indicate that certain plant species, such as beard grass (Polypogon monospeliensis), accumulated a very limited amount of mercury in the shoots (<65 mg/kg), even though root mercury accumulation is significant (maximum 2298 mg/kg). Consequently, this plant species may not be suitable for mercury phyto-remediation. Other plant species, such as Indian mustard (Brassica juncea), a well-studied metal accumulator, exhibited severe chlorosis symptoms during some experiments. Among all the plant species studied, Chinese brake fern (Pteris vittata) accumulated significant amount of mercury in both roots and shoots and hence may be considered as a potential candidate for mercury phyto-extraction. During one experiment, Chinese brake ferns accumulated 540 mg/kg and 1469 mg/kg in shoots after 18 days of growing in soils treated with 500 parts-per-million (ppm) and 1000 ppm HgCl{sub 2} powder, respectively; no visual stress symptoms were observed. We also studied mercury phyto-remediation using aged soils that contained HgS, HgCl{sub 2}, or Hg(NO{sub 3}){sub 2}. We have found that up to hundreds of ppm mercury can be accumulated in the roots of Indian mustard plants grown with soil contaminated by mercury sulfide; HgS is assumed to be the most stable and also the predominant mercury form in flood plain soils. We have also started to investigate different mercury uptake mechanisms, such as root uptake of soil contaminant and foliar mercury accumulation from ambient air. We have observed mercury translocation from roots to shoot for Chinese fern and two Indian mustard varieties. (authors)

  13. Removal of mercury from waste gases

    SciTech Connect (OSTI)

    Muster, U.; Marr, R.; Pichler, G.; Kremshofer, S.; Wilferl, R.; Draxler, J.

    1996-12-31

    Waste and process gases from thermal power, incineration and metallurgical plants or those from cement and alkali chloride industries contain metallic, inorganic and organic mercury. Widespread processes to remove the major amount of mercury are absorption and adsorption. Caused by the lowering of the emission limit from 200 to 50 {mu}g/m{sup 3} [STP] by national and European legislators, considerable efforts were made to enhance the efficiency of the main separation units of flue gas cleaning plants. Specially impregnated ceramic carriers can be used for the selective separation of metallic, inorganic and organic mercury. Using the ceramic reactor removal rates lower than 5 {mu}g/m{sup 3} [STP] of gaseous mercury and its compounds can be achieved. The ceramic reactor is active, regenerable and stable for a long term operation. 4 refs., 7 figs.

  14. Mercury contamination extraction

    DOE Patents [OSTI]

    Fuhrmann, Mark (Silver Spring, MD); Heiser, John (Bayport, NY); Kalb, Paul (Wading River, NY)

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  15. Thief carbon catalyst for oxidation of mercury in effluent stream

    DOE Patents [OSTI]

    Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

    2011-12-06

    A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

  16. On the surface morphology of thin alkali halide photocathode "lms

    E-Print Network [OSTI]

    On the surface morphology of thin alkali halide photocathode "lms T. Boutboul *, A. Breskin , R-91128 Palaiseau Cedex, France Abstract Thin alkali halide "lms are currently used as transmissive UVI and CsBr "lms was investigated by means of a scanning electron microscope, to which the samples were

  17. FY09 assessment of mercury reduction at SNL/NM.

    SciTech Connect (OSTI)

    McCord, Samuel Adam

    2010-02-01

    This assessment takes the result of the FY08 performance target baseline of mercury at Sandia National Laboratories/New Mexico, and records the steps taken in FY09 to collect additional data, encourage the voluntary reduction of mercury, and measure success. Elemental (metallic) mercury and all of its compounds are toxic, and exposure to excessive levels can permanently damage or fatally injure the brain and kidneys. Elemental mercury can also be absorbed through the skin and cause allergic reactions. Ingestion of inorganic mercury compounds can cause severe renal and gastrointestinal damage. Organic compounds of mercury such as methyl mercury, created when elemental mercury enters the environment, are considered the most toxic forms of the element. Exposures to very small amounts of these compounds can result in devastating neurological damage and death.1 SNL/NM is required to report annually on the site wide inventory of mercury for the Environmental Protection Agency's (EPA) Toxics Release Inventory (TRI) Program, as the site's inventory is excess of the ten pound reportable threshold quantity. In the fiscal year 2008 (FY08) Pollution Prevention Program Plan, Section 5.3 Reduction of Environmental Releases, a performance target stated was to establish a baseline of mercury, its principle uses, and annual quantity or inventory. This was accomplished on July 29, 2008 by recording the current status of mercury in the Chemical Information System (CIS).

  18. MERCURY-NITRITE-RHODIUM-RUTHENIUM INTERACTIONS IN NOBLE METAL CATALYZED HYDROGEN GENERATION FROM FORMIC ACID DURING NUCLEAR WASTE PROCESSING AT THE SAVANNAH RIVER SITE - 136C

    SciTech Connect (OSTI)

    Koopman, D.; Pickenheim, B.; Lambert, D.; Newell, J; Stone, M.

    2009-09-02

    Chemical pre-treatment of radioactive waste at the Savannah River Site is performed to prepare the waste for vitrification into a stable waste glass form. During pre-treatment, compounds in the waste become catalytically active. Mercury, rhodium, and palladium become active for nitrite destruction by formic acid, while rhodium and ruthenium become active for catalytic conversion of formic acid into hydrogen and carbon dioxide. Nitrite ion is present during the maximum activity of rhodium, but is consumed prior to the activation of ruthenium. Catalytic hydrogen generation during pre-treatment can exceed radiolytic hydrogen generation by several orders of magnitude. Palladium and mercury impact the maximum catalytic hydrogen generation rates of rhodium and ruthenium by altering the kinetics of nitrite ion decomposition. New data are presented that illustrate the interactions of these various species.

  19. Neutrino Factory Mercury Vessel

    E-Print Network [OSTI]

    McDonald, Kirk

    Neutrino Factory Mercury Vessel: Initial Cooling Calculations V. Graves Target Studies Nov 15, 2012 vessel assumed to be cooled with Helium ­ Shielding vessel filled with tungsten beads ­ Mercury vessel;7 Managed by UT-Battelle for the U.S. Department of Energy Cooling Calculations 15 Nov 2012 Mercury Vessel

  20. Cross-coupling reactions of unactivated alkyl halides

    E-Print Network [OSTI]

    Zhou, Jianrong (Jianrong Steve)

    2005-01-01

    My graduate research at MIT has been focused on the development of palladium- or nickel-catalyzed cross-coupling reactions using unactivated alkyl electrophiles (e.g., halides and sulfonates). Although aryl and alkenyl ...

  1. Bright Light-Emitting Diodes based on Organometal Halide Perovskite

    E-Print Network [OSTI]

    Tan, Zhi-Kuang; Moghaddam, Reza Saberi; Lai, May Ling; Docampo, Pablo; Higler, Ruben; Deschler, Felix; Price, Michael; Sadhanala, Aditya; Pazos, Luis M.; Credgington, Dan; Hanusch, Fabian; Bein, Thomas; Snaith, Henry J.; Friend, Richard H.

    2014-08-03

    temperature and high vacuum processes, rendering them uneconomical for use in large area displays. Here, we report high brightness light-emitting diodes based on solution-processed organometal halide perovskites. We demonstrate electroluminescence in the near...

  2. Assessing Global Terrestrial Sources of Methyl Halides - Ozone Regulating Gases 

    E-Print Network [OSTI]

    Gancarczyk, Maciej

    2010-11-24

    Methyl bromide (CH3Br) and methyl chloride (CH3Cl) play significant roles in the depletion of the stratospheric ozone layer. The vast portion of methyl halide sources and sinks sources and sinks are natural in origin. The ...

  3. Oxidation of Mercury in Products of Coal Combustion

    SciTech Connect (OSTI)

    Peter Walsh; Giang Tong; Neeles Bhopatkar; Thomas Gale; George Blankenship; Conrad Ingram; Selasi Blavo Tesfamariam Mehreteab; Victor Banjoko; Yohannes Ghirmazion; Heng Ban; April Sibley

    2009-09-14

    Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materials for simultaneous oxidation and adsorption of mercury, were performed in support of the development of technology for control of mercury emissions from coal-fired boilers and furnaces. Conversion of gas-phase mercury from the elemental state to water-soluble oxidized form (HgCl{sub 2}) enables removal of mercury during wet flue gas desulfurization. The increase in mercury oxidation in a monolithic V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} SCR catalyst with increasing HCl at low levels of HCl (< 10 ppmv) and decrease in mercury oxidation with increasing NH{sub 3}/NO ratio during SCR were consistent with results of previous work by others. The most significant finding of the present work was the inhibition of mercury oxidation in the presence of CO during SCR of NO at low levels of HCl. In the presence of 2 ppmv HCl, expected in combustion products from some Powder River Basin coals, an increase in CO from 0 to 50 ppmv reduced the extent of mercury oxidation from 24 {+-} 3 to 1 {+-} 4%. Further increase in CO to 100 ppmv completely suppressed mercury oxidation. In the presence of 11-12 ppmv HCl, increasing CO from 0 to {approx}120 ppmv reduced mercury oxidation from {approx}70% to 50%. Conversion of SO{sub 2} to sulfate also decreased with increasing NH{sub 3}/NO ratio, but the effects of HCl and CO in flue gas on SO{sub 2} oxidation were unclear. Oxidation and adsorption of mercury by unburned carbon and fly ash enables mercury removal in a particulate control device. A chemical kinetic mechanism consisting of nine homogeneous and heterogeneous reactions for mercury oxidation and removal was developed to interpret pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash in experiments at pilot scale, burning bituminous coals (Gale, 2006) and blends of bituminous coals with Powder River Basin coal (Gale, 2005). The removal of mercury by fly ash and unburned carbon in the flue gas from combustion of the bituminous coals and blends was reproduced with satisfactory accuracy by the model. The enhancement of mercury capture in the presence of calcium (Gale, 2005) explained a synergistic effect of blending on mercury removal across the baghouse. The extent of mercury oxidation, on the other hand, was not so well described by the simulation, because of oversensitivity of the oxidation process in the model to the concentration of unburned carbon. Combined catalysts and sorbents for oxidation and removal of mercury from flue gas at low temperature were based on surfactant-templated silicas containing a transition metal and an organic functional group. The presence of both metal ions and organic groups within the pore structure of the materials is expected to impart to them the ability to simultaneously oxidize elemental mercury and adsorb the resulting oxidized mercury. Twelve mesoporous organosilicate catalysts/sorbents were synthesized, with and without metals (manganese, titanium, vanadium) and organic functional groups (aminopropyl, chloropropyl, mercaptopropyl). Measurement of mercury oxidation and adsorption by the candidate materials remains for future work.

  4. Metal-halide perovskites for photovoltaic and light-emitting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are exotic hybrid crystalline materials developed out of curiosity. Unexpectedly, solar cells incorporating these perovskites are rapidly emerging as serious contenders to rival...

  5. New Energy Efficiency Standards for Metal Halide Lamp Fixtures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department's efforts to develop efficiency standards that cut carbon pollution and save money by saving energy, U.S. Energy Secretary Ernest Moniz today announced that the...

  6. Phytoremediation of ionic and methyl mercury pollution

    SciTech Connect (OSTI)

    Meagher, R.B.

    1998-06-01

    'The long-term objective of the research is to manipulate single-gene traits into plants, enabling them to process heavy metals and remediate heavy-metal pollution by resistance, sequestration, removal, and management of these contaminants. The authors are focused on mercury pollution as a case study of this plant genetic engineering approach. The working hypothesis behind this proposal was that transgenic plants expressing both the bacterial organo mercury lyase (merB) and the mercuric ion reductase gene (merA) will: (A) remove the mercury from polluted sites and (B) prevent methyl mercury from entering the food chain. The results from the research are so positive that the technology will undoubtedly be applied in the very near future to cleaning large mercury contaminates sites. Many such sites were not remediable previously due to the excessive costs and the negative environmental impact of conventional mechanical-chemical technologies. At the time this grant was awarded 20 months ago, the authors had successfully engineered a small model plant, Arabidopsis thaliana, to use a highly modified bacterial mercuric ion reductase gene, merA9, to detoxify ionic mercury (Hg(II)), reducing it to much less toxic and volatile metallic Hg(0) (Rugh et al., 1996). Seeds from these plants germinate, grow, and set seed at normal growth rates on levels of Hg(II) that are lethal to normal plants. In assays on transgenic seedlings suspended in a solution of Hg(II), 10 ng of Hg(0) was evolved per min per mg wet weight of plant tissue. At that time, the authors had no information on expression of merA in any other plant species, nor had the authors tested merB in any plant. However, the results were so startlingly positive and well received that they clearly presaged a paradigm shift in the field of environmental remediation.'

  7. STANDARD OPERATING PROCEDURE HEAVY METAL SALTS (selected)

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    (s): ___________________________________________________ Chemical(s): heavy metal salts: acetates, chlorides, sulfates, nitrates, anhydrides, oxides, hydroxides, etc., of arsenic, cadmium, chromium, cobalt, lead, mercury, osmium, silver, and uranium. Specific

  8. Process for low mercury coal

    DOE Patents [OSTI]

    Merriam, Norman W. (Laramie, WY); Grimes, R. William (Laramie, WY); Tweed, Robert E. (Laramie, WY)

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  9. Process for low mercury coal

    DOE Patents [OSTI]

    Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

    1995-04-04

    A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

  10. Regeneration of zinc halide catalyst used in the hydrocracking of polynuclear hydrocarbons

    DOE Patents [OSTI]

    Gorin, Everett (San Rafael, CA)

    1978-01-01

    Improved recovery of spent molten zinc halide hydro-cracking catalyst is achieved in the oxidative vapor phase regeneration thereof by selective treatment of the zinc oxide carried over by the effluent vapors from the regeneration zone with hydrogen halide gas under conditions favoring the reaction of the zinc oxide with the hydrogen halide, whereby regenerated zinc halide is recovered in a solids-free state with little loss of zinc values.

  11. Geochemical, Genetic, and Community Controls on Mercury

    SciTech Connect (OSTI)

    Wall, Judy D.

    2014-11-10

    The sulfate-reducing bacteria (SRB) are soil bacteria that share two common characteristics, strict anaerobiosis and the ability to respire sulfate. The metabolic activities of these bacteria play significant roles in the global sulfur cycle, anaerobic degradation of biomass, biological metal corrosion in the environment and, recently, degradation of toxic compounds. The accumulation of evidence suggests these bacteria are also key to the production of the neurotoxin methylmercury in environmental settings. We propose to use our experience with the development of genetics in sulfate-reducing bacteria of the genus Desulfovibrio to create mutations that will eliminate the methylation of mercury, thereby identifying the genes essential for this process. This information may allow the environmental monitoring of the mercury methylation potential to learn the location and quantity of the production this toxin. From these data, more accurate predictive models of mercury cycling can be generated.

  12. Thiacrown polymers for removal of mercury from waste streams

    DOE Patents [OSTI]

    Baumann, Theodore F.; Reynolds, John G.; Fox, Glenn A.

    2004-02-24

    Thiacrown polymers immobilized to a polystyrene-divinylbenzene matrix react with Hg.sup.2+ under a variety of conditions to efficiently and selectively remove Hg.sup.2+ ions from acidic aqueous solutions, even in the presence of a variety of other metal ions. The mercury can be recovered and the polymer regenerated. This mercury removal method has utility in the treatment of industrial wastewater, where a selective and cost-effective removal process is required.

  13. Thiacrown polymers for removal of mercury from waste streams

    DOE Patents [OSTI]

    Baumann, Theodore F. (Tracy, CA); Reynolds, John G. (San Ramon, CA); Fox, Glenn A. (Livermore, CA)

    2002-01-01

    Thiacrown polymers immobilized to a polystyrene-divinylbenzene matrix react with Hg.sup.2+ under a variety of conditions to efficiently and selectively remove Hg.sup.2+ ions from acidic aqueous solutions, even in the presence of a variety of other metal ions. The mercury can be recovered and the polymer regenerated. This mercury removal method has utility in the treatment of industrial wastewater, where a selective and cost-effective removal process is required.

  14. Mercury in the environment

    ScienceCinema (OSTI)

    Idaho National Laboratory - Mike Abbott

    2010-01-08

    Abbott works for Idaho National Laboratory as an environmental scientist. Using state-of-thescienceequipment, he continuously samples the air, looking for mercury. In turn, he'll analyzethis long-term data and try to figure out the mercury's point of or

  15. Mercury Chamber Considerations

    E-Print Network [OSTI]

    McDonald, Kirk

    Pump Gravity Drain Flow Control Valve Storage Tank Heat Exchanger Beam Dump #12;4 Managed by UT Mercury Jet Proton Beam Mercury Overflow Gravity Drain Flow Control Overflow drains WC Shielding #12 tungsten shielding · Chamber shape requires significant increase in complexity · Integrating resistive

  16. Method for providing adhesion to a metal surface

    DOE Patents [OSTI]

    Harrah, L.A.; Allred, R.E.; Wilson, K.V. Jr.

    1992-02-18

    A process for treating metal surfaces to obtain improved susceptibility to bonding with adhesive compositions is disclosed. A metal surface is oxidized with a halogen to form a monolayer of halide ions on the surface. The halide ions are then exchanged with azide ions to form an azide monolayer on the metal surface. Upon contact of the treated surface with an adhesive composition, the azide layer may be thermally or photochemically decomposed to form active nitrene species, which react to bond the adhesive composition to the metal surface.

  17. Method for providing adhesion to a metal surface

    DOE Patents [OSTI]

    Harrah, Larry A. (Albuquerque, NM); Allred, Ronald E. (Albuquerque, NM); Wilson, Jr., Kennard V. (Albuquerque, NM)

    1992-01-01

    A process for treating metal surfaces to obtain improved susceptibility to bonding with adhesive compositions is disclosed. A metal surface is oxidized with a halogen to form a monolayer of halide ions on the surface. The halide ions are then exchanged with azide ions to form an azide monolayer on the metal surface. Upon contact of the treated surface with an adhesive composition, the azide layer may be thermally or photochemically decomposed to form active nitrene species, which react to bond the adhesive composition to the metal surface.

  18. Recovery of mercury from mercury compounds via electrolytic methods

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1989-11-07

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

  19. Semi-continuous detection of mercury in gases

    DOE Patents [OSTI]

    Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

    2011-12-06

    A new method for the semi-continuous detection of heavy metals and metalloids including mercury in gaseous streams. The method entails mass measurement of heavy metal oxides and metalloid oxides with a surface acoustic wave (SAW) sensor having an uncoated substrate. An array of surface acoustic wave (SAW) sensors can be used where each sensor is for the semi-continuous emission monitoring of a particular heavy metal or metalloid.

  20. MERCURY CONTAMINATED MATERIAL DECONTAMINATION METHODS: INVESTIGATION AND ASSESSMENT

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.

    2001-01-01

    Over the years mercury has been recognized as having serious impacts on human health and the environment. This recognition has led to numerous studies that deal with the properties of various mercury forms, the development of methods to quantify and speciate the forms, fate and transport, toxicology studies, and the development of site remediation and decontamination technologies. This report reviews several critical areas that will be used in developing technologies for cleaning mercury from mercury-contaminated surfaces of metals and porous materials found in many DOE facilities. The technologies used for decontamination of water and mixed wastes (solid) are specifically discussed. Many technologies that have recently appeared in the literature are included in the report. Current surface decontamination processes have been reviewed, and the limitations of these technologies for mercury decontamination are discussed. Based on the currently available technologies and the processes published recently in the literature, several processes, including strippable coatings, chemical cleaning with iodine/iodide lixiviant, chemisorbing surface wipes with forager sponge and grafted cotton, and surface/pore fixation through amalgamation or stabilization, have been identified as potential techniques for decontamination of mercury-contaminated metal and porous surfaces. Their potential merits and applicability are discussed. Finally, two processes, strippable coatings and chemical cleaning with iodine/iodide lixiviant, were experimentally investigated in Phase II of this project.

  1. Method and apparatus for monitoring mercury emissions

    DOE Patents [OSTI]

    Durham, M.D.; Schlager, R.J.; Sappey, A.D.; Sagan, F.J.; Marmaro, R.W.; Wilson, K.G.

    1997-10-21

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber. 15 figs.

  2. Method and apparatus for monitoring mercury emissions

    DOE Patents [OSTI]

    Durham, Michael D. (Castle Rock, CO); Schlager, Richard J. (Aurora, CO); Sappey, Andrew D. (Golden, CO); Sagan, Francis J. (Lakewood, CO); Marmaro, Roger W. (Littleton, CO); Wilson, Kevin G. (Littleton, CO)

    1997-01-01

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

  3. Selective extraction of copper, mercury, silver and palladium ions from water using hydrophobic ionic liquids.

    E-Print Network [OSTI]

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; Von Stosch, Moritz; Prausnitz, John M.

    2008-01-01

    for metal-ion extraction from water. All ionic liquids (useful for extraction of cations from water. 9-15 Previoussingle extraction of mercury in water with either [3MOPYR

  4. BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING

    SciTech Connect (OSTI)

    Zamecnik, J.; Koopman, D.

    2012-04-09

    The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower retention of mercury in the slurry. Both recovery of mercury in the offgas system and removal (segregation + recovery) from the slurry correlate with slurry consistency. Higher slurry consistency results in better retention of Hg in the slurry (less segregation) and better recovery in the offgas system, but the relationships of recovery and retention with consistency are sludge dependent. Some correlation with slurry yield stress and acid stoichiometry was also found. Better retention of mercury in the slurry results in better recovery in the offgas system because the mercury in the slurry is stripped more easily than the segregated mercury at the bottom of the vessel. Although better retention gives better recovery, the time to reach a particular slurry mercury content (wt%) is longer than if the retention is poorer because the segregation is faster. The segregation of mercury is generally a faster process than stripping. The stripping factor (mass of water evaporated per mass of mercury stripped) of mercury at the start of boiling were found to be less than 1000 compared to the assumed design basis value of 750 (the theoretical factor is 250). However, within two hours, this value increased to at least 2000 lb water per lb Hg. For runs with higher mercury recovery in the offgas system, the stripping factor remained around 2000, but runs with low recovery had stripping factors of 4000 to 40,000. DWPF data shows similar trends with the stripping factor value increasing during boiling. These high values correspond to high segregation and low retention of mercury in the sludge. The stripping factor for a pure Hg metal bead in water was found to be about 10,000 lb/lb. About 10-36% of the total Hg evaporated in a SRAT cycle was refluxed back to the SRAT during formic acid addition and boiling. Mercury is dissolved as a result of nitric acid formation from absorption of NO{sub x}. The actual solubility of dissolved mercury in the acidic condensate is about 100 times higher than the actual concentrations measured. Mercury metal present in the MWWT from previous batch

  5. Removal of Elemental Mercury from a Gas Stream Facilitated by a Non-Thermal Plasma Device

    SciTech Connect (OSTI)

    Charles Mones

    2006-12-01

    Mercury generated from anthropogenic sources presents a difficult environmental problem. In comparison to other toxic metals, mercury has a low vaporization temperature. Mercury and mercury compounds are highly toxic, and organic forms such as methyl mercury can be bio-accumulated. Exposure pathways include inhalation and transport to surface waters. Mercury poisoning can result in both acute and chronic effects. Most commonly, chronic exposure to mercury vapor affects the central nervous system and brain, resulting in neurological damage. The CRE technology employs a series of non-thermal, plasma-jet devices to provide a method for elemental mercury removal from a gas phase by targeting relevant chemical reactions. The technology couples the known chemistry of converting elemental mercury to ionic compounds by mercury-chlorine-oxygen reactions with the generation of highly reactive species in a non-thermal, atmospheric, plasma device. The generation of highly reactive metastable species in a non-thermal plasma device is well known. The introduction of plasma using a jet-injection device provides a means to contact highly reactive species with elemental mercury in a manner to overcome the kinetic and mass-transfer limitations encountered by previous researchers. To demonstrate this technology, WRI has constructed a plasma test facility that includes plasma reactors capable of using up to four plasma jets, flow control instrumentation, an integrated control panel to operate the facility, a mercury generation system that employs a temperature controlled oven and permeation tube, combustible and mercury gas analyzers, and a ductless fume hood designed to capture fugitive mercury emissions. Continental Research and Engineering (CR&E) and Western Research Institute (WRI) successfully demonstrated that non-thermal plasma containing oxygen and chlorine-oxygen reagents could completely convert elemental mercury to an ionic form. These results demonstrate potential the application of this technology for removing elemental mercury from flue gas streams generated by utility boilers. On an absolute basis, the quantity of reagent required to accomplish the oxidation was small. For example, complete oxidation of mercury was accomplished using a 1% volume fraction of oxygen in a nitrogen stream. Overall, the tests with mercury validated the most useful aspect of the CR&E technology: Providing a method for elemental mercury removal from a gas phase by employing a specific plasma reagent to either increase reaction kinetics or promote reactions that would not have occurred under normal circumstances.

  6. ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL

    SciTech Connect (OSTI)

    Ernest F. Stine Jr; Steven T. Downey

    2002-08-14

    U.S. Department of Energy (DOE) used large quantities of mercury in the uranium separating process from the 1950s until the late 1980s in support of national defense. Some of this mercury, as well as other hazardous metals and radionuclides, found its way into, and under, several buildings, soil and subsurface soils and into some of the surface waters. Several of these areas may pose potential health or environmental risks and must be dealt with under current environmental regulations. DOE's National Energy Technology Laboratory (NETL) awarded a contract ''Alternative Field Methods to Treat Mercury in Soil'' to IT Group, Knoxville TN (IT) and its subcontractor NFS, Erwin, TN to identify remedial methods to clean up mercury-contaminated high-clay content soils using proven treatment chemistries. The sites of interest were the Y-12 National Security Complex located in Oak Ridge, Tennessee, the David Witherspoon properties located in Knoxville, Tennessee, and at other similarly contaminated sites. The primary laboratory-scale contract objectives were (1) to safely retrieve and test samples of contaminated soil in an approved laboratory and (2) to determine an acceptable treatment method to ensure that the mercury does not leach from the soil above regulatory levels. The leaching requirements were to meet the TC (0.2 mg/l) and UTS (0.025 mg/l) TCLP criteria. In-situ treatments were preferred to control potential mercury vapors emissions and liquid mercury spills associated with ex-situ treatments. All laboratory work was conducted in IT's and NFS laboratories. Mercury contaminated nonradioactive soil from under the Alpha 2 building in the Y-12 complex was used. This soils contained insufficient levels of leachable mercury and resulted in TCLP mercury concentrations that were similar to the applicable LDR limits. The soil was spiked at multiple levels with metallic (up to 6000 mg/l) and soluble mercury compounds (up to 500 mg/kg) to simulate expected ranges of mercury contamination and to increase the TCLP mercury values. IT/NFS investigated ambient temperature amalgamation/stabilization/fixation of mercury-contaminated soils to meet these objectives. Treatment ranged in size from a few ounces to 10 pounds. The treatability study philosophy was to develop working envelops of formulations where reasonable minimum and maximum amounts of each reagent that would successfully treat the contaminated soil were determined. The dosages investigated were based on ratios of stoichiometric reactions and applications of standard sets of formulations. The approach purposely identified formulations that failed short or longer cure-time performance criteria to define the limits of the envelope. Reagent envelops successfully met the project requirements one day after treatment and after greater than 30-day cures. The use of multiple levels of spikes allowed the establishment of reagent dosages that were successful across a broad range of mercury values, e.g., 50 to 6000 mg/kg mercury. The treatment products were damp to slightly wet material. Enough drying reagent, e.g., Portland cement or lime by-product, were added to some formulations to control the leachability of uranium and other hazardous metals and to ensure the product passed the paint filter test. Cost analyzes and conceptual designs for four alternatives for full-scale treatments were prepared. The alternatives included two in-situ treatments and two ex-situ treatments. The cost estimates were based on the results from the bench-scale study. All four alternatives treatment costs were well below the baseline costs.

  7. Catalysts for oxidation of mercury in flue gas

    DOE Patents [OSTI]

    Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

    2010-08-17

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  8. Follow that mercury!

    SciTech Connect (OSTI)

    Linero, A.A.

    2008-07-01

    The article discusses one technology option for avoiding release of mercury captured by power plant pollution control equipment in order to render it usable in concrete. This is the use of selective catalytic reduction for NOx control and lime spray dryer absorbers (SDA) for SO{sub 2} control prior to particulate collection by fabric filters. In this scenario all mercury removed is trapped in the fabric filter baghouse. The US EPA did not establish mercury emission limits for existing cement plants in the latest regulation 40 CFR 63, Subpart LLL (December 2006) and was sued by the Portland Cement Association because of the Hg limits established for new kilns and by several states and environmental groups for the lack of limits on existing ones. A full version of this article is available on www.acaa-usa.org/AshatWork.htm. 2 figs.

  9. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    SciTech Connect (OSTI)

    Moore, David T.; Sai, Hiroaki; Wee Tan, Kwan; Estroff, Lara A.; Wiesner, Ulrich

    2014-08-01

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material. Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt's anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films.

  10. Survey of mercury, cadmium and lead content of household batteries

    SciTech Connect (OSTI)

    Recknagel, Sebastian, E-mail: sebastian.recknagel@bam.de [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Radant, Hendrik [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Kohlmeyer, Regina [German Federal Environment Agency (UBA), Section III 1.6 Extended Producer Responsibility, Wörlitzer Platz 1, D-06844 Dessau-Roßlau (Germany)

    2014-01-15

    Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.

  11. Mercury control in 2009

    SciTech Connect (OSTI)

    Sjostrom, S.; Durham, M.; Bustard, J.; Martin, C.

    2009-07-15

    Although activated carbon injection (ACI) has been proven to be effective for many configurations and is a preferred option at many plants sufficient quantities of powdered activated coking (PAC) must be available to meet future needs. The authors estimate that upcoming federal and state regulations will result in tripling the annual US demand for activated carbon to nearly 1.5 billion lb from approximately 450 million lb. Rapid expansion of US production capacity is required. Many PAC manufacturers are discussing expansion of their existing production capabilities. One company, ADA Carbon Solutions, is in the process of constructing the largest activated carbon facility in North America to meet the future demand for PAC as a sorbent for mercury control. Emission control technology development and commercialization is driven by regulation and legislation. Although ACI will not achieve > 90% mercury control at every plant, the expected required MACT legislation level, it offers promise as a low-cost primary mercury control technology option for many configurations and an important trim technology for others. ACI has emerged as the clear mercury-specific control option of choice, representing over 98% of the commercial mercury control system orders to date. As state regulations are implemented and the potential for a federal rule becomes more imminent, suppliers are continuing to develop technologies to improve the cost effectiveness and limit the balance of plant impacts associated with ACI and are developing additional PAC production capabilities to ensure that the industry's needs are met. The commercialisation of ACI is a clear example of industry, through the dedication of many individuals and companies with support from the DOE and EPRI, meeting the challenge of developing cost-effectively reducing emissions from coal-fired power plants. 7 refs., 1 fig.

  12. Mercury Strategic Plan Outfall 200 Mercury Treatment Facility

    Office of Environmental Management (EM)

    Partial LMR * Alpha-5 LMR & Bldg Characterization * S&M mercury removal * Hg waterfishsediment studies * Technology Development Plan * Debris treatability study * Fate and...

  13. ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL

    SciTech Connect (OSTI)

    Ernie F. Stine

    2002-08-14

    The Department of Energy (DOE) currently has mercury (Hg) contaminated materials and soils at the various sites. Figure 1-1 (from http://www.ct.ornl.gov/stcg.hg/) shows the estimated distribution of mercury contaminated waste at the various DOE sites. Oak Ridge and Idaho sites have the largest deposits of contaminated materials. The majorities of these contaminated materials are soils, sludges, debris, and waste waters. This project concerns treatment of mercury contaminated soils. The technology is applicable to many DOE sites, in-particular, the Y-12 National Security Complex in Oak Ridge Tennessee and Idaho National Engineering and Environmental Laboratory (INEEL). These sites have the majority of the soils and sediments contaminated with mercury. The soils may also be contaminated with other hazardous metals and radionuclides. At the Y12 plant, the baseline treatment method for mercury contaminated soil is low temperature thermal desorption (LTTD), followed by on-site landfill disposal. LTTD is relatively expensive (estimated cost of treatment which exclude disposal cost for the collect mercury is greater than $740/per cubic yard [cy] at Y-12), does not treat any of the metal or radionuclides. DOE is seeking a less costly alternative to the baseline technology. As described in the solicitation (DE-RA-01NT41030), this project initially focused on evaluating cost-effective in-situ alternatives to stabilize or remove the mercury (Hg) contamination from high-clay content soil. It was believed that ex-situ treatment of soil contaminated with significant quantities of free-liquid mercury might pose challenges during excavation and handling. Such challenges may include controlling potential mercury vapors and containing liquid mercury beads. As described below, the focus of this project was expanded to include consideration of ex-situ treatment after award of the contract to International Technology Corporation (IT). After award of the contract, IT became part of Shaw E&I. The company will be denoted as ''IT'' for the rest of the document since the original contract was awarded to IT. This report details IT, Knoxville, TN and its subcontractor Nuclear Fuels Services (NFS) study to investigate alternative mercury treatment technology. The IT/NFS team demonstrated two processes for the amalgamation/stabilization/fixation of mercury and potentially Resource Conservation Recovery Act (RCRA) and radionuclide-contaminated soils. This project was to identify and demonstrate remedial methods to clean up mercury-contaminated soil using established treatment chemistries on soil from the Oak Ridge Reservation, Y-12 National Security Complex, the off-site David Witherspoon properties, and/or other similarly contaminated sites. Soil from the basement of Y-12 Plant Alpha 2 Building at the Oak Ridge Reservation was received at IT and NFS on December 20, 2001. Soils from the other locations were not investigated. The soil had background levels of radioactivity and had all eight RCRA metals well below the Toxicity Characteristic (TC) criteria. This project addresses the new DOE Environmental Management Thrust 2 ''Alternative Approaches to Current High Risk/High Cost Baselines''. Successful completion of this project will provide a step-change in DOE's treatment ability.

  14. Apparatus for mercury refinement

    DOE Patents [OSTI]

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-07-16

    The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

  15. Method for scavenging mercury

    DOE Patents [OSTI]

    Chang, Shih-ger (El Cerrito, CA); Liu, Shou-heng (Kaohsiung, TW); Liu, Zhao-rong (Bejing, CN); Yan, Naiqiang (Burkeley, CA)

    2010-07-13

    Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

  16. Method for scavenging mercury

    DOE Patents [OSTI]

    Chang, Shih-Ger (El Cerrito, CA); Liu, Shou-Heng (Kaohsiung, TW); Liu, Zhao-Rong (Beijing, CN); Yan, Naiqiang (Berkeley, CA)

    2011-08-30

    Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

  17. Method for scavenging mercury

    DOE Patents [OSTI]

    Chang, Shih-ger (El Cerrito, CA); Liu, Shou-heng (Kaohsiung, TW); Liu, Zhao-rong (Beijing, CN); Yan, Naiqiang (Berkeley, CA)

    2009-01-20

    Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

  18. Method for mercury refinement

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA); George, William A. (Rockport, MA)

    1991-01-01

    The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

  19. Apparatus for mercury refinement

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA); George, William A. (Rockport, MA)

    1991-01-01

    The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

  20. Method for mercury refinement

    DOE Patents [OSTI]

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-04-09

    The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

  1. Removing mercury from coal emissions: options for ash-friendly technologies

    SciTech Connect (OSTI)

    Sager, J.

    2009-07-01

    The article gives a brief description of techniques to remove mercury emitted from coal-fired power plants and discusses environmental considerations associated with the effect of emission controls on coal fly ash. Techniques covered include use of injected mercury sorbents (activated carbon, metal oxide catalysts, MerCAP{trademark} and MercScreen{trademark}) and fuel cleaning. Technologies currently being researched are mentioned. 8 refs.

  2. Neutrino Factory Mercury Flow Loop

    E-Print Network [OSTI]

    McDonald, Kirk

    Storage Tank length beam dump shown 3 Managed by UT-Battelle for the U.S. Department of Energy IDS control Mercury Jet Mercury Overflow Gravity Drain WC Shielding 4 Managed by UT-Battelle for the U/pool receive shielding ­ Currently assumed to be WC spheres cooled

  3. The Clean Air Mercury Rule

    SciTech Connect (OSTI)

    Michael Rossler

    2005-07-01

    Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

  4. Two-photon pumped lead halide perovskite nanowire lasers

    E-Print Network [OSTI]

    Gu, Zhiyuan; Sun, Wenzhao; Li, Jinakai; Liu, Shuai; Song, Qinghai; Xiao, Shumin

    2015-01-01

    Solution-processed lead halide perovskites have shown very bright future in both solar cells and microlasers. Very recently, the nonlinearity of perovskites started to attract considerable research attention. Second harmonic generation and two-photon absorption have been successfully demonstrated. However, the nonlinearity based perovskite devices such as micro- & nano- lasers are still absent. Here we demonstrate the two-photon pumped nanolasers from perovskite nanowires. The CH3NH3PbBr3 perovskite nanowires were synthesized with one-step solution self-assembly method and dispersed on glass substrate. Under the optical excitation at 800 nm, two-photon pumped lasing actions with periodic peaks have been successfully observed at around 546 nm. The obtained quality (Q) factors of two-photon pumped nanolasers are around 960, and the corresponding thresholds are about 674?J=cm2. Both the Q factors and thresholds are comparable to conventional whispering gallery modes in two-dimensional polygon microplates. Ou...

  5. Methods for dispensing mercury into devices

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1987-04-28

    A process is described for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg[sub 2]Cl[sub 2] and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury. 2 figs.

  6. Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides

    E-Print Network [OSTI]

    Han, Chong

    An efficient palladium-catalyzed process has been developed for Negishi coupling of secondary alkylzinc halides with a wide range of aryl bromides and activated aryl chlorides. A palladium catalyst composed of a new ...

  7. Size-dependent Photon Emission from Organometal Halide Perovskite Nanocrystals Embedded in an Organic Matrix

    E-Print Network [OSTI]

    Di, Dawei; Musselman, Kevin P.; Li, Guangru; Sadhanala, Aditya; Ievskaya, Yulia; Song, Qilei; Tan, Zhi-Kuang; Lai, May Ling; MacManus-Driscoll, Judith L.; Greenham, Neil C.; Friend, Richard H.

    2015-01-14

    In recent years, organometal halide perovskite materials have attracted significant research interest in the field of optoelectronics. Here we introduce a simple and low temperature route for the formation of self-assembled perovskite nanocrystals...

  8. Methods for synthesizing alane without the formation of adducts and free of halides

    DOE Patents [OSTI]

    Zidan, Ragaiy; Knight, Douglas A; Dinh, Long V

    2013-02-19

    A process is provided to synthesize an alane without the formation of alane adducts as a precursor. The resulting product is a crystallized .alpha.-alane and is a highly stable product and is free of halides.

  9. Hair mercury concentrations and associated factors in an electronic waste recycling area, Guiyu, China

    SciTech Connect (OSTI)

    Ni, Wenqing [Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong (China)] [Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong (China); Chen, Yaowen [Central Laboratory of Shantou University, Shantou 515063, Guangdong (China)] [Central Laboratory of Shantou University, Shantou 515063, Guangdong (China); Huang, Yue; Wang, Xiaoling [Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong (China)] [Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong (China); Zhang, Gairong [Central Laboratory of Shantou University, Shantou 515063, Guangdong (China)] [Central Laboratory of Shantou University, Shantou 515063, Guangdong (China); Luo, Jiayi [Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong (China)] [Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong (China); Wu, Kusheng, E-mail: kswu@stu.edu.cn [Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong (China)] [Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong (China)

    2014-01-15

    Objective: Toxic heavy metals are released to the environment constantly from unregulated electronic waste (e-waste) recycling in Guiyu, China, and thus may contribute to the elevation of mercury (Hg) and other heavy metals levels in human hair. We aimed to investigate concentrations of mercury in hair from Guiyu and potential risk factors and compared them with those from a control area where no e-waste processing occurs. Methods: A total of 285 human hair samples were collected from three villages (including Beilin, Xianma, and Huamei) of Guiyu (n=205) and the control area, Jinping district of Shantou city (n=80). All the volunteers were administered a questionnaire regarding socio-demographic characteristics and other possible factors contributed to hair mercury concentration. Hair mercury concentration was analyzed by hydride generation atomic fluorescence spectrometry (AFS). Results: Our results suggested that hair mercury concentrations in volunteers of Guiyu (median, 0.99; range, 0.18–3.98 ?g/g) were significantly higher than those of Jinping (median, 0.59; range, 0.12–1.63 ?g/g). We also observed a higher over-limit ratio (>1 ?g/g according to USEPA) in Guiyu than in Jinping (48.29% vs. 11.25%, P<0.001). Logistic regression model showed that the variables of living house also served as an e-waste workshop, work related to e-waste, family income, time of residence in Guiyu, the distance between home and waste incineration, and fish intake were associated with hair mercury concentration. After multiple stepwise regression analysis, in the Guiyu samples, hair mercury concentration was found positively associated with the time residence in Guiyu (?=0.299, P<0.001), and frequency of shellfish intake (?=0.184, P=0.016); and negatively associated with the distance between home and waste incineration (?=?0.190, P=0.015) and whether house also served as e-waste workshop (?=?0.278, P=0.001). Conclusions: This study investigated human mercury exposure and suggested elevated hair mercury concentrations in an e-waste recycling area, Guiyu, China. Living in Guiyu for a long time and work related to e-waste may primarily contribute to the high hair mercury concentrations. -- Highlights: • Mercury levels in hair samples from Guiyu and risk factors were assessed. • The recruitments from Guiyu were exposed to high levels of mercury. • Primitive e-waste recycling resulted in high mercury exposure of local people.

  10. Method for removal and stabilization of mercury in mercury-containing gas streams

    DOE Patents [OSTI]

    Broderick, Thomas E.

    2005-09-13

    The present invention is directed to a process and apparatus for removing and stabilizing mercury from mercury-containing gas streams. A gas stream containing vapor phase elemental and/or speciated mercury is contacted with reagent, such as an oxygen-containing oxidant, in a liquid environment to form a mercury-containing precipitate. The mercury-containing precipitate is kept or placed in solution and reacts with one or more additional reagents to form a solid, stable mercury-containing compound.

  11. Metal resistance sequences and transgenic plants

    DOE Patents [OSTI]

    Meagher, Richard Brian (Athens, GA); Summers, Anne O. (Athens, GA); Rugh, Clayton L. (Athens, GA)

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  12. Modeling the Atmospheric Transport and Deposition of Mercury

    E-Print Network [OSTI]

    .S. (1999) and Canada (2000) #12;18 #12;19 coal elec gen (GL_states) 57.7% waste incin (GL_states) 21 Laboratory Silver Spring, Maryland Mercury Workshop, Great Lakes Biennial Meeting, Kingston, Ontario, Canada.0% other fuel (GL_states) 8.1% manuf/other (GL_states) 4.3% metals (GL_states) 0.8% coal elec gen (GL

  13. Long-Term Management and Storage of Elemental Mercury | Department...

    Energy Savers [EERE]

    Mercury Long-Term Management and Storage of Elemental Mercury In addition to banning the export of elemental mercury from the United States as of January 1, 2013, the Mercury...

  14. Discovery of the Mercury Isotopes

    E-Print Network [OSTI]

    D. Meierfrankenfeld; M. Thoennessen

    2010-09-08

    Forty mercury isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  15. Removal Efficiencies of a Bioretention System for Trace Metals, PCBs, PAHs, and Dioxins in a Semiarid

    E-Print Network [OSTI]

    Removal Efficiencies of a Bioretention System for Trace Metals, PCBs, PAHs, and Dioxins (concentration or load reductions) were demonstrated for total Hg, polychlori- nated biphenols (PCBs) and dioxins); Metals; Mercury; Dioxins; Stormwater. Introduction Stormwater runoff from streets and parking lots

  16. Investigation and Demonstration of Dry Carbon-Based Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Jim Butz; Terry Hunt

    2005-11-01

    Public Service Company of Colorado and ADA Technologies, Inc. have performed a study of the injection of activated carbon for the removal of vapor-phase mercury from coal-fired flue gas streams. The project was completed under contract to the US Department of Energy's National Energy Technology Laboratory, with contributions from EPRI and Public Service Company. The prime contractor for the project was Public Service Company, with ADA Technologies as the major subcontractor providing technical support to all aspects of the project. The research and development effort was conducted in two phases. In Phase I a pilot facility was fabricated and tests were performed using dry carbon-based sorbent injection for mercury control on a coal-fired flue gas slipstream extracted from an operating power plant. Phase II was designed to move carbon injection technology towards commercial application on coal-fired power plants by addressing key reliability and operability concerns. Phase II field work included further development work with the Phase I pilot and mercury measurements on several of PSCo's coal-fired generating units. In addition, tests were run on collected sorbent plus fly ash to evaluate the impact of the activated carbon sorbent on the disposal of fly ash. An economic analysis was performed where pilot plant test data was used to develop a model to predict estimated costs of mercury removal from plants burning western coals. Testing in the pilot plant was undertaken to quantify the effects of plant configuration, flue gas temperature, and activated carbon injection rate on mercury removal. All three variables were found to significantly impact the mercury removal efficiency in the pilot. The trends were clear: mercury removal rates increased with decreasing flue gas temperature and with increasing carbon injection rates. Mercury removal was much more efficient with reverse-gas and pulse-jet baghouse configurations than with an ESP as the particulate control device. The native fly ash of the host unit provided significant mercury removal capacity, so that the activated carbon sorbent served as an incremental mercury removal mechanism. Tests run to characterize the waste product, a combination of fly ash and activated carbon on which mercury was present, showed that mercury and other RCRA metals of interest were all below Toxic Characteristic Leaching Procedure (TCLP) regulatory limits in the leachate. The presence of activated carbon in the fly ash was shown to have an effect on the use of fly ash as an additive in the manufacture of concrete, which could limit the salability of fly ash from a plant where activated carbon was used for mercury control.

  17. Mercury switch with non-wettable electrodes

    DOE Patents [OSTI]

    Karnowsky, Maurice M. (Albulquerque, NM); Yost, Frederick G. (Carlsbad, NM)

    1987-01-01

    A mercury switch device comprising a pool of mercury and a plurality of electrical contacts made of or coated with a non-wettable material such as titanium diboride.

  18. Environmental Remediation program completes legacy mercury cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Stewardship Environmental Cleanup Feature Stories Legacy slope-side cleanup Environmental Remediation program completes legacy mercury cleanup near Smith's...

  19. Surface characterizatin of palladium-alumina sorbents for high-temperature capture of mercury and arsenic from fuel gas

    SciTech Connect (OSTI)

    Baltrus, J.P.; Granite, E.J.; Pennline, H.W.; Stanko, D.; Hamilton, H.; Rowsell, L.; Poulston, S.; Smith, A.; Chu, W.

    2010-01-01

    Coal gasification with subsequent cleanup of the resulting fuel gas is a way to reduce the impact of mercury and arsenic in the environment during power generation and on downstream catalytic processes in chemical production, The interactions of mercury and arsenic with PdlAl2D3 model thin film sorbents and PdlAh03 powders have been studied to determine the relative affinities of palladium for mercury and arsenic, and how they are affected by temperature and the presence of hydrogen sulfide in the fuel gas. The implications of the results on strategies for capturing the toxic metals using a sorbent bed are discussed.

  20. Preferential Eu Site Occupation and Its Consequences in the Ternary Luminescent HalidesAB2I5:Eu2+(A=Li–Cs;B=Sr, Ba)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fang, C.? M.; Biswas, Koushik

    2015-07-22

    Several rare-earth-doped, heavy-metal halides have recently been identified as potential next-generation luminescent materials with high efficiency at low cost. AB2I5:Eu2+ (A=Li–Cs; B=Sr, Ba) is one such family of halides. Its members, such as CsBa2I5:Eu2+ and KSr2I5:Eu2+, are currently being investigated as high-performance scintillators with improved sensitivity, light yield, and energy resolution less than 3% at 662 keV. Within the AB2I5 family, our first-principles-based calculations reveal two remarkably different trends in Eu site occupation. The substitutional Eu ions occupy both eightfold-coordinated B1(VIII) and the sevenfold-coordinated B2(VII) sites in the Sr-containing compounds. However, in the Ba-containing crystals, Eu ions strongly prefer themore »B2(VII)sites. This random versus preferential distribution of Eu affects their electronic properties. The calculations also suggest that in the Ba-containing compounds one can expect the formation of Eu-rich domains. These results provide atomistic insight into recent experimental observations about the concentration and temperature effects in Eu-doped CsBa2I5. We discuss the implications of our results with respect to luminescent properties and applications. We also hypothesize Sr, Ba-mixed quaternary iodides ABaVIIISrVIII5:Eu as scintillators having enhanced homogeneity and electronic properties.« less

  1. REPLACE YOUR MERCURY THERMOMETERS BEFORE THEY BREAK!

    E-Print Network [OSTI]

    presents a hazard for faculty, staff, and students in laboratory areas? Mercury also presents a hazard mercury thermometers create hazardous waste that is costly to clean up and costly to dispose of. Other generating hazardous waste from spill clean-up. · Mercury is volatile at room temperature with vapors

  2. Atmospheric Chemistry, Modeling, and Biogeochemistry of Mercury

    E-Print Network [OSTI]

    activities that release mercury to the atmosphere include coal burning, industrial processes, waste incine and climate projections; critically and quantitatively analyze environmental management and policy proposals mercury research. Global Budget of Mercury Prior to the onset of human industrial activities, the amount

  3. Coping with uncertainties of mercury regulation

    SciTech Connect (OSTI)

    Reich, K.

    2006-09-15

    The thermometer is rising as coal-fired plants cope with the uncertainties of mercury regulation. The paper deals with a diagnosis and a suggested cure. It describes the state of mercury emission rules in the different US states, many of which had laws or rules in place before the Clean Air Mercury Rule (CAMR) was promulgated.

  4. A mechanistic study of aryl halide reactions with lithium aluminum hydride 

    E-Print Network [OSTI]

    Chung, Fu-Fan

    1980-01-01

    A M:"CHA~JISTIC STUDv OF ARYL HALID RHAC IC~JS ' ITH LITHIUM ALUM 'J"M HYDRIDE A Thesis FU-FAJJ CHUI'JG Submitted to the Graduate College of Texas ARM University in nartial fulfillment of the reauirement for the degree of MASTER OF SCI- JC... August Jo80 Major Subject: Chemistry A MECHANISTIC STUDY OF ARYL HALIDE REACTIONS 1'IITH LITHIUM ALUMINUM HYDRIDE A Thesis by FU-FAN CHUNG Approved as to style and content by; (Chairman of Co ittee) (Member) , . 7 1 (Member) (Member) i (Head...

  5. Apparatus for control of mercury

    DOE Patents [OSTI]

    Downs, William (Alliance, OH); Bailey, Ralph T. (Uniontown, OH)

    2001-01-01

    A method and apparatus for reducing mercury in industrial gases such as the flue gas produced by the combustion of fossil fuels such as coal adds hydrogen sulfide to the flue gas in or just before a scrubber of the industrial process which contains the wet scrubber. The method and apparatus of the present invention is applicable to installations employing either wet or dry scrubber flue gas desulfurization systems. The present invention uses kraft green liquor as a source for hydrogen sulfide and/or the injection of mineral acids into the green liquor to release vaporous hydrogen sulfide in order to form mercury sulfide solids.

  6. Mercury Measurement Programs within Steve Brooks, Mark Cohen,Steve Brooks, Mark Cohen,

    E-Print Network [OSTI]

    of Mex. Cove Mtn. ELA, Canada Diurnal Hg(0) ConcentrationsDiurnal Hg(0) Concentrations 0 10 20 30 40 50 Harcum, VA Oxford Wye Gulf of Mex. Cove Mtn. ELA, Canada Diurnal RGM ConcentrationsDiurnal RGM(II) (kg/yr) coal incinerator metals manuf/other Symbol color indicates type of mercury source other fuel 9

  7. Palladium-catalyzed reaction of allyl halides with a-diazocarbonyl Shufeng Chen and Jianbo Wang*

    E-Print Network [OSTI]

    Wang, Jianbo

    Palladium-catalyzed reaction of allyl halides with a-diazocarbonyl compoundsw Shufeng Chen-Allylic palladium complexes are important intermediates in palladium-catalyzed reactions.1 The p-allylic palladium,3-dicarbonyl compounds.2 In connection to our recent interest in the palladium-catalyzed reaction of diazo

  8. A VIBRATIONAL SPECTROSCOPIC STUDY OF AQUEOUS HYDROGEN HALIDE SOLUTIONS: APPLICATION TO ATMOSPHERIC AEROSOL CHEMISTRY

    E-Print Network [OSTI]

    Heterogeneous reactions on the surfaces of atmospheric aerosols play an important role in atmospheric chemistryA VIBRATIONAL SPECTROSCOPIC STUDY OF AQUEOUS HYDROGEN HALIDE SOLUTIONS: APPLICATION TO ATMOSPHERIC AEROSOL CHEMISTRY A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master

  9. Shape Evolution and Single Particle Luminescence of Organometal Halide Perovskite Nanocrystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Feng; Men, Long; Guo, Yijun; Zhu, Qiaochu; Bhattacharjee, Ujjal; Goodwin, Peter M.; Petrich, Jacob W.; Smith, Emily A.; Vela, Javier

    2015-02-09

    Organometallic halide perovskites CH3NH3PbX3 (X = I, Br, Cl) have quickly become one of the most promising semiconductors for solar cells, with photovoltaics made of these materials reaching power conversion efficiencies of near 20%. Improving our ability to harness the full potential of organometal halide perovskites will require more controllable syntheses that permit a detailed understanding of their fundamental chemistry and photophysics. In our manuscript, we systematically synthesize CH3NH3PbX3 (X = I, Br) nanocrystals with different morphologies (dots, rods, plates or sheets) by using different solvents and capping ligands. CH3NH3PbX3 nanowires and nanorods capped with octylammonium halides show relatively highermore »photoluminescence (PL) quantum yields and long PL lifetimes. CH3NH3PbI3 nanowires monitored at the single particle level show shape-correlated PL emission across whole particles, with little photobleaching observed and very few off periods. Our work highlights the potential of low-dimensional organometal halide perovskite semiconductors in constructing new porous and nanostructured solar cell architectures, as well as in applying these materials to other fields such as light-emitting devices and single particle imaging and tracking.« less

  10. Mercury exposure from interior latex paint

    SciTech Connect (OSTI)

    Agocs, M.M.; Etzel, R.A.; Parrish, R.G.; Paschal, D.C.; Campagna, P.R.; Cohen, D.S.; Kilbourne, E.M.; Hesse, J.L. )

    1990-10-18

    Many paint companies have used phenylmercuric acetate as a preservative to prolong the shelf life of interior latex paint. In August 1989, acrodynia, a form of mercury poisoning, occurred in a child exposed to paint fumes in a home recently painted with a brand containing 4.7 mmol of mercury per liter (at that time the Environmental Protection Agency's recommended limit was 1.5 mmol or less per liter). To determine whether the recent use of that brand of paint containing phenylmercuric acetate was associated with elevated indoor-air and urinary mercury concentrations, we studied 74 exposed persons living in 19 homes recently painted with the brand and 28 unexposed persons living in 10 homes not recently painted with paint containing mercury. The paint samples from the homes of exposed persons contained a median of 3.8 mmol of mercury per liter, and air samples from the homes had a median mercury content of 10.0 nmol per cubic meter (range, less than 0.5 to 49.9). No mercury was detected in paint or air samples from the homes of unexposed persons. The median urinary mercury concentration was higher in the exposed persons (4.7 nmol of mercury per millimole of creatinine; range, 1.4 to 66.5) than in the unexposed persons (1.1 nmol per millimole; range, 0.02 to 3.9; P less than 0.001). Urinary mercury concentrations within the range that we found in exposed persons have been associated with symptomatic mercury poisoning. We found that potentially hazardous exposure to mercury had occurred among persons whose homes were painted with a brand of paint containing mercury at concentrations approximately 2 1/2 times the Environmental Protection Agency's recommended limit.

  11. Extraction of trace metals from fly ash

    DOE Patents [OSTI]

    Blander, Milton (Palos Park, IL); Wai, Chien M. (Moscow, ID); Nagy, Zoltan (Woodridge, IL)

    1984-01-01

    A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  12. Extraction of trace metals from fly ash

    DOE Patents [OSTI]

    Blander, M.; Wai, C.M.; Nagy, Z.

    1983-08-15

    A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  13. New Energy Efficiency Standards for Metal Halide Lamp Fixtures to Save on

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable for Public Comment (March 2012) |NewEnergy Bills

  14. Amended Silicated for Mercury Control

    SciTech Connect (OSTI)

    James Butz; Thomas Broderick; Craig Turchi

    2006-12-31

    Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where fly ash is sold as a by-product.

  15. Ligand-Controlled Palladium-Catalyzed Regiodivergent Suzuki–Miyaura Cross-Coupling of Allylboronates and Aryl Halides

    E-Print Network [OSTI]

    Yang, Yang

    An orthogonal set of catalyst systems has been developed for the Suzuki–Miyaura coupling of 3,3-disubstituted and 3-monosubstituted allylboronates with (hetero)aryl halides. These methods allow for the highly selective ...

  16. Palladium-Catalyzed Hydroxylation of Aryl and Heteroaryl Halides Enabled by the Use of a Palladacycle Precatalyst

    E-Print Network [OSTI]

    Cheung, Chi Wai

    A method for the hydroxylation of aryl and heteroaryl halides, promoted by a catalyst based on a biarylphosphine ligand tBuBrettPhos (L5) and its corresponding palladium precatalyst (1), is described. The reactions allow ...

  17. THE EFFECT OF MERCURY CONTROLS ON WALLBOARD MANUFACTURE

    SciTech Connect (OSTI)

    Sandra Meischen

    2004-07-01

    Pending EPA regulations may mandate 70 to 90% mercury removal efficiency from utility flue gas. A mercury control option is the trapping of oxidized mercury in wet flue gas desulfurization systems (FGD). The potential doubling of mercury in the FGD material and its effect on mercury volatility at temperatures common to wallboard manufacture is a concern that could limit the growing byproduct use of FGD material. Prediction of mercury fate is limited by lack of information on the mercury form in the FGD material. The parts per billion mercury concentrations prevent the identification of mercury compounds by common analytical methods. A sensitive analytical method, cold vapor atomic fluorescence, coupled with leaching and thermodecomposition methods were evaluated for their potential to identify mercury compounds in FGD material. The results of the study suggest that the mercury form is dominated by the calcium sulfate matrix and is probably associated with the sulfate form in the FGD material. Additionally, to determine the effect of high mercury concentration FGD material on wallboard manufacture, a laboratory FGD unit was built to trap the oxidized mercury generated in a simulated flue gas. Although the laboratory prepared FGD material did not contain the mercury concentrations anticipated, further thermal tests determined that mercury begins to evolve from FGD material at 380 to 390 F, consequently dropping the drying temperature should mitigate mercury evolution if necessary. Mercury evolution is also diminished as the weight of the wallboard sample increased. Consequently, mercury evolution may not be a significant problem in wallboard manufacture.

  18. Apparatus for isotopic alteration of mercury vapor

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); George, William A. (Gloucester, MA); Marcucci, Rudolph V. (Danvers, MA)

    1988-01-01

    An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

  19. Mercury audit at Rocky Mountain Arsenal

    SciTech Connect (OSTI)

    Smith, S.M.; Jensen, M.K. [Oak Ridge National Lab., TN (United States); Anderson, G.M. [Rocky Mountain Arsenal, Denver, CO (United States)

    1994-02-01

    This report presents the results of an environmental compliance audit to identify potential mercury-containing equipment in 261 building and 197 tanks at the Rocky Mountain Arsenal (RMA). The RMA, located near Denver, Colorado, is undergoing clean up and decommissioning by the Department of the Army. Part of the decommissioning procedure is to ensure that all hazardous wastes are properly identified and disposed of. The purpose of the audit was to identify any mercury spills and mercury-containing instrumentation. The audit were conducted from April 7, 1992, through July 16, 1992, by a two-person team. The team interviewed personnel with knowledge of past uses of the buildings and tanks. Information concerning past mercury spills and the locations and types of instrumentation that contain mercury proved to be invaluable for an accurate survey of the arsenal. The team used a Jerome{reg_sign} 431-X{trademark} Mercury Vapor Analyzer to detect spills and confirm locations of mercury vapor. Twelve detections were recorded during the audit and varied from visible mercury spills to slightly elevated readings in the corners of rooms with past spills. The audit also identified instrumentation that contained mercury. All data have been incorporated into a computerized data base that is compatible with the RMA data base.

  20. Three-dimensional computational fluid dynamics for the Spallation Neutron Source liquid mercury target

    SciTech Connect (OSTI)

    Wendel, M.W.; Siman-Tov, M.

    1998-11-01

    The Spallation Neutron Source (SNS) is a high-power accelerator-based pulsed spallation source being designed by a multilaboratory team led by Oak Ridge National Laboratory (ORNL) to achieve high fluxes of neutrons for scientific experiments. Computational fluid dynamics (CFD) is being used to analyze the SNS design. The liquid-mercury target is subjected to the neutronic (internal) heat generation that results from the proton collisions with the mercury nuclei. The liquid mercury simultaneously serves as the neutronic target medium, transports away the heat generated within itself, and cools the metallic target structure. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots. These zones exist because the most feasible target designs include a complete U-turn flow redirection. Although the primary concern is that the target is adequately cooled, the pressure drop from inlet to outlet must also be considered because pressure drop directly affects structural loading and required pumping power. Based on the current design, a three-dimensional CFD model has been developed that includes the stainless steel target structure, the liquid-mercury target flow, and the liquid-mercury cooling jacket that wraps around the nose of the target.

  1. Fly ash properties and mercury sorbent affect mercury release from curing concrete

    SciTech Connect (OSTI)

    Danold W. Golightly; Chin-Min Cheng; Linda K. Weavers; Harold W. Walker; William E. Wolfe

    2009-04-15

    The release of mercury from concrete containing fly ashes from various generator boilers and powdered activated carbon sorbent used to capture mercury was measured in laboratory experiments. Release of gaseous mercury from these concretes was less than 0.31% of the total quantity of mercury present. The observed gaseous emissions of mercury during the curing process demonstrated a dependency on the organic carbon content of the fly ash, with mercury release decreasing with increasing carbon content. Further, lower gaseous emissions of mercury were observed for concretes incorporating ash containing activated carbon sorbent than would be expected based on the observed association with organic carbon, suggesting that the powdered activated carbon more tightly binds the mercury as compared to unburned carbon in the ash. Following the initial 28-day curing interval, mercury release diminished with time. In separate leaching experiments, average mercury concentrations leached from fly ash concretes were less than 4.1 ng/L after 18 h and 7 days, demonstrating that less than 0.02% of the mercury was released during leaching. 25 refs., 4 figs., 5 tabs.

  2. Investigation into Nanostructured Lanthanum Halides and CeBr{sub 3} for Nuclear Radiation Detection

    SciTech Connect (OSTI)

    Guss, P., Guise, R., Mukhopadhyay, S., Yuan, D.

    2011-06-22

    This slide-show presents work on radiation detection with nanostructured lanthanum halides and CeBr{sub 3}. The goal is to extend the gamma energy response on both low and high-energy regimes by demonstrating the ability to detect low-energy x-rays and relatively high-energy activation prompt gamma rays simultaneously using the nano-structured lanthanum bromide, lanthanum fluoride, cerium bromide, or other nanocrystal material. Homogeneous and nano structure cases are compared.

  3. Lanthanum halide scintillators for time-of-flight 3-D pet

    DOE Patents [OSTI]

    Karp, Joel S. (Glenside, PA); Surti, Suleman (Philadelphia, PA)

    2008-06-03

    A Lanthanum Halide scintillator (for example LaCl.sub.3 and LaBr.sub.3) with fast decay time and good timing resolution, as well as high light output and good energy resolution, is used in the design of a PET scanner. The PET scanner includes a cavity for accepting a patient and a plurality of PET detector modules arranged in an approximately cylindrical configuration about the cavity. Each PET detector includes a Lanthanum Halide scintillator having a plurality of Lanthanum Halide crystals, a light guide, and a plurality of photomultiplier tubes arranged respectively peripherally around the cavity. The good timing resolution enables a time-of-flight (TOF) PET scanner to be developed that exhibits a reduction in noise propagation during image reconstruction and a gain in the signal-to-noise ratio. Such a PET scanner includes a time stamp circuit that records the time of receipt of gamma rays by respective PET detectors and provides timing data outputs that are provided to a processor that, in turn, calculates time-of-flight (TOF) of gamma rays through a patient in the cavity and uses the TOF of gamma rays in the reconstruction of images of the patient.

  4. Reactions of stannylamines and anionic main group metal halides : : a mild route to novel main group metal-nitrogen compounds

    E-Print Network [OSTI]

    Wilson, Robert James

    2013-01-01

    Rodriguez-Monge, L. ; Taylor, R. ; van de Streek, J. ; Wood,Rodriguez-Monge, L. ; Taylor, R. ; van de Streek, J. ; Wood,Rodriguez-Monge, L. ; Taylor, R. ; van de Streek, J. ; Wood,

  5. Mercury Isotope Fractionation by Environmental Transport and Transformation Processes

    E-Print Network [OSTI]

    Koster van Groos, Paul Gijsbert

    2011-01-01

    in contaminated soils: Mercury pyrolysis versus sequentialin soils and sediments–acid digestion versus pyrolysis.

  6. Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta

    E-Print Network [OSTI]

    McDonald, Kirk

    in mercury pool with 24GeV beam How much of the beam energy is absorbed in the beam dump? #12;Agitation `eruption' of mercury pool surface due to 24GeV proton beam Autodyne simulation Splash following pulse of 20 pool surface due to impinging mercury jet 2 phase CFX model mercury jet velocity = 20m/s Angle

  7. MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER

    E-Print Network [OSTI]

    McDonald, Kirk

    . A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. Design issues discussed in this paper include the nozzle, splash mitigation in the mercury pool. · Providing a mercury pool that serves as a dump for both the jet and the proton beam remaining after target

  8. Treatment of mercury containing waste

    DOE Patents [OSTI]

    Kalb, Paul D. (Wading River, NY); Melamed, Dan (Gaithersburg, MD); Patel, Bhavesh R (Elmhurst, NY); Fuhrmann, Mark (Babylon, NY)

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  9. A study of certain trace metals in sea water using anodic stripping voltammetry

    E-Print Network [OSTI]

    Fitzgerald, William Francis, 1926-

    1970-01-01

    Anodic stripping voltammetry utilizing a thin film mercury composite graphite electrode has been evaluated and applied for the direct analysis of the metals, Zn,J Cu, Pb, and Cd in sea water. The electrode was observed to ...

  10. Halide-Dependent Electronic Structure of Organolead Perovskite Andrei Buin, Riccardo Comin, Jixian Xu, Alexander H. Ip, and Edward H. Sargent*

    E-Print Network [OSTI]

    Sargent, Edward H. "Ted"

    Halide-Dependent Electronic Structure of Organolead Perovskite Materials Andrei Buin, Riccardo Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G4 ABSTRACT: Organometal halide perovskites perovskite-based photovoltaic technology. In addition to this, the performance of perovskite-based devices

  11. Phytoremediation of ionic and methyl mercury pollution. 1997 annual progress report

    SciTech Connect (OSTI)

    Meagher, R.B.

    1997-01-01

    'The long-term goal of this research is to manipulate single-gene traits into plants, enabling them to process heavy metals and remediate heavy-metal pollution by resistance, sequestration, removal, and management of these contaminants (Meagher and Rugh, 1996; Meagher et al., 1997). The working hypothesis behind this proposal was that transgenic plants expressing both the bacterial organo mercury lyase (merB) and the mercuric ion reductase gene (merA) will (A) remove the mercury from polluted sites and (B) prevent methyl mercury from entering the food chain. The authors have had a very successful first year either testing aspects of this hypothesis directly or preparing material needed for future experiments. The results are outlined below under goals A and B, which are explicit in this hypothesis. There were less than 10% of the funds remaining in any category as projected in the first 12 month budget at the end of the first year, with the exception of the equipment category which had 25% of the funds remaining ({approximately} $8,000). Much of this remaining equipment money is being spent this week on a mercury vapor analyzer. It might be useful to remember that at the time this grant was awarded, the authors had successfully engineered a small model plant, Arabidopsis thalianat to use a highly modified bacterial mercuric ion reductase gene, merA9, to detoxify ionic mercury (Hg(II)), reducing it to Hg(0) (Rugh et al., 1996). Seeds from these plants germinate, grow, and set seed at normal growth rates on levels of Hg(II) that are lethal to normal plants. In assays on transgenic seedlings suspended in a solution of Hg(II), 10 ng of Hg(0) was evolved per min per mg wet weight of plant tissue. However, at that time, they had no information on expression of merA in any other plant species, nor had they expressed merB in any plant.'

  12. Band gaps and structural properties of graphene halides and their derivates: A hybrid functional study with localized orbital basis sets

    E-Print Network [OSTI]

    Karlický, František; Otyepka, Michal; 10.1063/1.4736998

    2012-01-01

    DFT calculations of the electronic structure of graphane and stoichiometrically halogenated graphene derivatives (fluorographene and other analogous graphene halides) show (i) localized orbital basis sets can be successfully and effectively used for such 2D materials; (ii) several functionals predict that the band gap of graphane is greater than that of fluorographene, whereas HSE06 gives the opposite trend; (iii) HSE06 functional predicts quite good values of band gaps w.r.t benchmark theoretical and experimental data; (iv) the zero band gap of graphene is opened by hydrogenation and halogenation and strongly depends on the chemical composition of mixed graphene halides; (v) the stability of graphene halides decreases sharply with increasing size of the halogen atom - fluorographene is stable, whereas graphene iodide spontaneously decomposes. In terms of band gap and stability, the C2FBr, and C2HBr derivatives seem to be promising materials, e.g., for (opto)electronics applications, because their band gaps a...

  13. Cadmium, lead and mercury exposure in non smoking pregnant women

    SciTech Connect (OSTI)

    Hinwood, A.L., E-mail: a.hinwood@ecu.edu.au [Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia); Callan, A.C.; Ramalingam, M.; Boyce, M. [Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia)] [Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia); Heyworth, J. [School Population Health, The University of Western Australia, 35 Stirling Highway Crawley, WA 6009 (Australia)] [School Population Health, The University of Western Australia, 35 Stirling Highway Crawley, WA 6009 (Australia); McCafferty, P. [ChemCentre, PO Box 1250, Bentley, WA 6983 (Australia)] [ChemCentre, PO Box 1250, Bentley, WA 6983 (Australia); Odland, J.Ř. [Department of Community Medicine, University of Tromsř, N-9037 Tromsř (Norway)] [Department of Community Medicine, University of Tromsř, N-9037 Tromsř (Norway)

    2013-10-15

    Recent literature suggests that exposure to low concentrations of heavy metals may affect both maternal and child health. This study aimed to determine the biological heavy metals concentrations of pregnant women as well as environmental and dietary factors that may influence exposure concentrations. One hundred and seventy three pregnant women were recruited from Western Australia, each providing a sample of blood, first morning void urine, residential soil, dust and drinking water samples. Participants also completed a questionnaire which included a food frequency component. All biological and environmental samples were analysed for heavy metals using ICP-MS. Biological and environmental concentrations of lead and mercury were generally low (Median Pb Drinking Water (DW) 0.04 µg/L; Pb soil <3.0 µg/g; Pb dust 16.5 µg/g; Pb blood 3.67 µg/L; Pb urine 0.55; µg/L Hg DW <0.03; Hg soil <1.0 µg/g; Hg dust <1.0 µg/g; Hg blood 0.46 µg/L; Hg urine <0.40 µg/L). Cadmium concentrations were low in environmental samples (Median CdDW 0.02 µg/L; Cdsoil <0.30 ug/g; Cddust <0.30) but elevated in urine samples (Median 0.55 µg/L, creatinine corrected 0.70 µg/g (range <0.2–7.06 µg/g creatinine) compared with other studies of pregnant women. Predictors of increased biological metals concentrations in regression models for blood cadmium were residing in the Great Southern region of Western Australia and not using iron/folic acid supplements and for urinary cadmium was having lower household annual income. However, these factors explained little of the variation in respective biological metals concentrations. The importance of establishing factors that influence low human exposure concentrations is becoming critical in efforts to reduce exposures and hence the potential for adverse health effects. -- Highlights: • Biological heavy metals concentrations in women in their 3rd trimester of pregnancy. • Exposure assessment including environmental, lifestyle and activity data. • Urinary cadmium concentrations were elevated in this group of pregnant women. • Blood lead and mercury concentrations were below recommended biological guideline values.

  14. Advances in the growth of alkaline-earth halide single crystals for scintillator detectors

    SciTech Connect (OSTI)

    Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A; Neal, John S; Cherepy, Nerine; Payne, Stephen A.; Beck, P; Burger, Arnold; Rowe, E; Bhattacharya, P.

    2014-01-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystal-growth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  15. Innovative Mercury Treatment Benefits Stream, Fish

    Office of Energy Efficiency and Renewable Energy (EERE)

    AIKEN, S.C. – A team of scientists is working at the Savannah River Site (SRS) to evaluate the impact of an innovative, inexpensive treatment system that removes mercury from water.

  16. Analysis of Alternative Mercury Control Strategies

    Reports and Publications (EIA)

    2005-01-01

    This analysis responds to a September 14, 2004, request from Chairmen James M. Inhofe and George V. Voinovich asking the Energy Information Administration (EIA) to analyze the impacts of different approaches for removing mercury from coal-fired power plants.

  17. Gold Mining Impacts on Food Chain Mercury in Northwestern Sierra Nevada Streams

    E-Print Network [OSTI]

    Slotton, Darell G; Ayers, Shaun M; Reuter, John E; Goldman, Charles R

    1995-01-01

    food item mercury was considerably lower than corresponding stream invertebrate mercury, it was noted that terrestrial insects

  18. Water treatment process and system for metals removal using Saccharomyces cerevisiae

    DOE Patents [OSTI]

    Krauter, Paula A. W. (Livermore, CA); Krauter, Gordon W. (Livermore, CA)

    2002-01-01

    A process and a system for removal of metals from ground water or from soil by bioreducing or bioaccumulating the metals using metal tolerant microorganisms Saccharomyces cerevisiae. Saccharomyces cerevisiae is tolerant to the metals, able to bioreduce the metals to the less toxic state and to accumulate them. The process and the system is useful for removal or substantial reduction of levels of chromium, molybdenum, cobalt, zinc, nickel, calcium, strontium, mercury and copper in water.

  19. Surface characterization of palladium–alumina sorbents for high-temperature capture of mercury and arsenic from fuel gas

    SciTech Connect (OSTI)

    Baltrus, John P. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Granite, Evan J. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Pennline, Henry W. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Stanko, Dennis [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Hamilton, Hugh [Johnson Matthey Plc, Technology Centre, Reading (United Kingdom); Rowsell, Liz [Johnson Matthey Plc, Technology Centre, Reading (United Kingdom); Poulston, Stephen [Johnson Matthey Plc, Technology Centre, Reading (United Kingdom); Smith, Andrew [Johnson Matthey Plc, Technology Centre, Reading (United Kingdom); Chu, Wilson [Johnson Matthey, Malvern, PA (United States)

    2010-06-01

    Coal gasification with subsequent cleanup of the resulting fuel gas is a way to reduce the impact of mercury and arsenic in the environment during power generation and on downstream catalytic processes in chemical production. The interactions of mercury and arsenic with Pd/Al2O3 model thin film sorbents and Pd/Al2O3 powders have been studied to determine the relative affinities of palladium for mercury and arsenic, and how they are affected by temperature and the presence of hydrogen sulfide in the fuel gas. The implications of the results on strategies for capturing the toxic metals using a sorbent bed are discussed.

  20. Calcium manganate: A promising candidate as buffer layer for hybrid halide perovskite photovoltaic-thermoelectric systems

    SciTech Connect (OSTI)

    Zhao, Pengjun; Wang, Hongguang; Kong, Wenwen; Xu, Jinbao Wang, Lei; Ren, Wei; Bian, Liang; Chang, Aimin

    2014-11-21

    We have systematically studied the feasibility of CaMnO{sub 3} thin film, an n-type perovskite, to be utilized as the buffer layer for hybrid halide perovskite photovoltaic-thermoelectric device. Locations of the conduction band and the valence band, spontaneous polarization performance, and optical properties were investigated. Results indicate the energy band of CaMnO{sub 3} can match up well with that of CH{sub 3}NH{sub 3}PbI{sub 3} on separating electron-hole pairs. In addition, the consistent polarization angle helps enlarge the open circuit voltage of the composite system. Besides, CaMnO{sub 3} film shows large absorption coefficient and low extinction coefficient under visible irradiation, demonstrating high carrier concentration, which is beneficial to the current density. More importantly, benign thermoelectric properties enable CaMnO{sub 3} film to assimilate phonon vibration from CH{sub 3}NH3PbI{sub 3}. All the above features lead to a bright future of CaMnO{sub 3} film, which can be a promising candidate as a buffer layer for hybrid halide perovskite photovoltaic-thermoelectric systems.

  1. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563Abuse Tolerance(Conference) |stabilized by an(Technical(Technical

  2. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563Abuse Tolerance(Conference) |stabilized by

  3. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2005-12-30

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

  4. VEE-0020- In the Matter of Mercury Fuel Service, Inc.

    Broader source: Energy.gov [DOE]

    On April 9, 1996, Mercury Fuel Service, Inc. (Mercury) of Waterbury, Connecticut, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE)....

  5. Removal of mercury from coal via a microbial pretreatment process

    DOE Patents [OSTI]

    Borole, Abhijeet P. (Knoxville, TN); Hamilton, Choo Y. (Knoxville, TN)

    2011-08-16

    A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

  6. Impact of Sulfur Oxides on Mercury Capture by Activated Carbon

    SciTech Connect (OSTI)

    Presto, A.A.; Granite, E.J.

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACI, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  7. Seismic effects of the Caloris basin impact, Mercury

    E-Print Network [OSTI]

    Lü, Jiangning

    2011-01-01

    Striking geological features on Mercury's surface have been linked to tectonic disruption associated with the Caloris impact and have the potential to provide information on the interior structure of Mercury. The unusual ...

  8. J. Am. Chem. SOC.1991, 113,9575-9585 9575 Mixed Aggregation of Lithium Enolates and Lithium Halides

    E-Print Network [OSTI]

    Collum, David B.

    J. Am. Chem. SOC.1991, 113,9575-9585 9575 Mixed Aggregation of Lithium Enolates and Lithium Halides with Lithium 2,2,6,6-Tetramethylpiperidide(LiTMP) Patricia L. Hall, James H. Gilchrist, Aidan T. Harrison]-lithiumdi-tert-butylamide and conformationally locked [6Li]-lithium2,2,4,6,6-pentamethylpiperidide shed further light

  9. Ambient-temperature superconductor symetrical metal-dihalide bis-(ethylenedithio)-tetrathiafulvalene compounds

    DOE Patents [OSTI]

    Williams, Jack M. (Downers Grove, IL); Wang, Hsien-Hau (Willowbrook, IL); Beno, Mark A. (Woodridge, IL)

    1987-01-01

    A new class of organic superconductors having the formula (ET).sub.2 MX.sub.2 wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET).sub.2 AuI.sub.2 exhibits a transition temperature of 5 K. which is high for organic superconductors.

  10. CFD Modeling for Mercury Control Technology

    SciTech Connect (OSTI)

    Madsen, J.I.

    2006-12-01

    Compliance with the Clean Air Mercury Rule will require implementation of dedicated mercury control solutions at a significant portion of the U.S. coal-fired utility fleet. Activated Carbon Injection (ACI) upstream of a particulate control device (ESP or baghouse) remains one of the most promising near-term mercury control technologies. The DOE/NETL field testing program has advanced the understanding of mercury control by ACI, but a persistent need remains to develop predictive models that may improve the understanding and practical implementation of this technology. This presentation describes the development of an advanced model of in-flight mercury capture based on Computational Fluid Dynamics (CFD). The model makes detailed predictions of the induct spatial distribution and residence time of sorbent, as well as predictions of mercury capture efficiency for particular sorbent flow rates and injection grid configurations. Hence, CFD enables cost efficient optimization of sorbent injection systems for mercury control to a degree that would otherwise be impractical both for new and existing plants. In this way, modeling tools may directly address the main cost component of operating an ACI system – the sorbent expense. A typical 300 MW system is expected to require between $1 and $2 million of sorbent per year, and so even modest reductions (say 10-20%) in necessary sorbent feed injection rates will quickly make any optimization effort very worthwhile. There are few existing models of mercury capture, and these typically make gross assumptions of plug gas flow, zero velocity slip between particle and gas phase, and uniform sorbent dispersion. All of these assumptions are overcome with the current model, which is based on first principles and includes mass transfer processes occurring at multiple scales, ranging from the large-scale transport in the duct to transport within the porous structure of a sorbent particle. In principle any single one of these processes could limit the overall capture of mercury. For example, capture may be severely limited in situations where the dispersion of sorbent is poor, or where adsorption rates are low because of relatively high temperatures. Application examples taken from the DOE/NETL field test program were considered. The sites considered include Brayton Point, Meramec, Monroe, and Yates. Some general lessons learned concerning the impact of turbulence and flow stratification on dispersion and capture will be presented.

  11. DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site Is Preferred for Long-Term Mercury Storage

    Broader source: Energy.gov [DOE]

    WASHINGTON – The Department of Energy has prepared a Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement to analyze the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven locations

  12. Screening of low cost sorbents for arsenic and mercury capture in gasification systems

    SciTech Connect (OSTI)

    Cedric Charpenteau; Revata Seneviratne; Anthe George; Marcos Millan; Denis R. Dugwell; Rafael Kandiyoti

    2007-09-15

    A novel laboratory-scale fixed-bed reactor has been developed to investigate trace metal capture on selected sorbents for cleaning the hot raw gas in Integrated Gasification Combined Cycle (IGCC) power plants. The new reactor design is presented, together with initial results for mercury and arsenic capture on five sorbents. It was expected that the capture efficiency of sorbents would decrease with increasing temperature. However, a commercial activated carbon, Norit Darco 'Hg', and a pyrolysis char prepared from scrap tire rubber exhibit similar efficiencies for arsenic at 200 and at 400{sup o}C (70% and 50%, respectively). Meta-kaolinite and fly ash both exhibit an efficiency of around 50% at 200{sup o}C, which then dropped as the test temperature was increased to 400{sup o}C. Activated scrap tire char performed better at 200{sup o}C than the pyrolysis char showing an arsenic capture capacity similar to that of commercial Norit Darco 'Hg'; however, efficiency dropped to below 40% at 400{sup o}C. These results suggest that the capture mechanism of arsenic (As4) is more complex than purely physical adsorption onto the sorbents. Certain elements within the sorbents may have significant importance for chemical adsorption, in addition to the effect of surface area, as determined by the BET method. This was indeed the case for the mercury capture efficiency for all four sorbents tested. Three of the sorbents tested retained 90% of the mercury when operated at 100{sup o}C. As the temperature increased, the efficiency of activated carbon and pyrolysis char reduced significantly. Curiously, despite having the smallest Brunauer-Emmet-Teller (BET) surface area, a pf-combustion ash was the most effective in capturing mercury over the temperature range studied. These observations suggest that the observed mercury capture was not purely physical adsorption but a combination of physical and chemical processes. 27 refs., 4 figs., 4 tabs.

  13. PILOT-SCALE EVALUATION OF THE IMPACT OF SELECTIVE CATALYTIC REDUCTION FOR NOx ON MERCURY SPECIATION

    SciTech Connect (OSTI)

    Dennis L. Laudal; John H. Pavlish; Kevin C. Galbreath; Jeffrey S. Thompson; Gregory F. Weber; Everett Sondreal

    2000-12-01

    Full-scale tests in Europe and bench-scale tests in the United States have indicated that the catalyst, normally vanadium/titanium metal oxide, used in the selective catalytic reduction (SCR) of NO{sub x}, may promote the formation of Hg{sup 2+} and/or particulate-bound mercury (Hg{sub p}). To investigate the impact of SCR on mercury speciation, pilot-scale screening tests were conducted at the Energy & Environmental Research Center. The primary research goal was to determine whether the catalyst or the injection of ammonia in a representative SCR system promotes the conversion of Hg{sup 0} to Hg{sup 2+} and/or Hg{sub p} and, if so, which coal types and parameters (e.g., rank and chemical composition) affect the degree of conversion. Four different coals, three eastern bituminous coals and a Powder River Basin (PRB) subbituminous coal, were tested. Three tests were conducted for each coal: (1) baseline, (2) NH{sub 3} injection, and (3) SCR of NO{sub x}. Speciated mercury, ammonia slip, SO{sub 3}, and chloride measurements were made to determine the effect the SCR reactor had on mercury speciation. It appears that the impact of SCR of NO{sub x} on mercury speciation is coal-dependent. Although there were several confounding factors such as temperature and ammonia concentrations in the flue gas, two of the eastern bituminous coals showed substantial increases in Hg{sub p} at the inlet to the ESP after passing through an SCR reactor. The PRB coal showed little if any change due to the presence of the SCR. Apparently, the effects of the SCR reactor are related to the chloride, sulfur and, possibly, the calcium content of the coal. It is clear that additional work needs to be done at the full-scale level.

  14. MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER

    E-Print Network [OSTI]

    McDonald, Kirk

    angle to the magnetic axis, so as later to be collected in a mercury pool/beam dump. The replaceable target module includes the interaction region and mercury pool inside a primary containment vessel flow loop: The interaction region inside the target module: Cross section of the mercury pool: Services

  15. Mercury in shallow Savannah River Plant soil

    SciTech Connect (OSTI)

    Carlton, W.H.; Price, V.; Cook, J.R.

    1988-10-01

    Soil concentrations of adsorbed mercury at 999 sites at the Savannah River Plant (SRP) were determined by Microseeps Limited of Indianola, PA. The sites were in and around the 643-C Burial Ground, at the Savannah River Swamp adjacent to TNX Area, and at a background area. The Burial Ground was chosen as a test site because of a history of disposal of radioactive mercury there prior to 1968. Extremely low traces of mercury have been detected in the water table beneath the Burial Ground. Although the mercury concentrations at the majority of these sites are at background levels, several areas appear to be anomalously high. In particular, an area of large magnitude anomaly was found in the northwest part of the Burial Ground. Three other single point anomalies and several other areas of more subtle but consistently high values were also found. Several sites with anomalous mercury levels were found in an area of the Savannah River flood plain adjacent to TNX Area.

  16. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS

    SciTech Connect (OSTI)

    Michael D. Durham

    2003-05-01

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

  17. Nickel-catalyzed cross-couplings of unactivated secondary and tertiary alkyl halides and photoinduced copper-mediated asymmetric C-N cross-couplings

    E-Print Network [OSTI]

    Zultanski, Susan L. (Susan Lyn)

    2013-01-01

    Chapter 1 describes the development of two nickel-catalyzed Suzuki cross-coupling methodologies that employ alkyl halides as electrophiles. In Section 1.1, asymmetric [gamma]-alkylation relative to a carbonyl group is ...

  18. Mercury Handling for the Target System for a Muon Collider

    SciTech Connect (OSTI)

    Graves, Van B [ORNL; Mcdonald, K [Princeton University; Kirk, H. [Brookhaven National Laboratory (BNL); Weggel, Robert [Particle Beam Laser, Inc.; Souchlas, Nicholas [Particle Beam Laser, Inc.; Sayed, H [Brookhaven National Laboratory (BNL); Ding, X [University of California, Los Angeles

    2012-01-01

    The baseline target concept for a Muon Collider or Neutrino Factory is a free-stream mercury jet being impacted by an 8-GeV proton beam. The target is located within a 20-T magnetic field, which captures the generated pions that are conducted to a downstream decay channel. Both the mercury and the proton beam are introduced at slight downward angles to the magnetic axis. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. The impact energy of the remaining beam and jet are substantial, and it is required that splashes and waves be controlled in order to minimize the potential for interference of pion production at the target. Design issues discussed in this paper include the nozzle, splash mitigation in the mercury pool, the mercury containment vessel, and the mercury recirculation system.

  19. CONTROL OF TRACE METAL EMISSIONS DURING COAL COMBUSTION

    SciTech Connect (OSTI)

    THOMAS C. HO

    1998-02-18

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold-end of the process by air-pollution control devices (APCDs) such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions, alternatively, at the hot-end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process, which would effectively eliminate the metal emission problems. Specifically, the technology is to employ suitable sorbents to (1) reduce the amount of metal volatilization during combustion and (2) capture volatilized metal vapors. The objectives of the project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor. This final technical report details the work performed, the conclusions obtained, and the accomplishments achieved over the project performance period from July 1, 1994 through December 31, 1997. Specifically, this report consists of the following five chapters: Chapter 1. Executive Summary; Chapter 2. Metal Capture by Various Sorbents; Chapter 3. Simultaneous Metal and Sulfur Capture; Chapter 4. Sorption and Desorption of Mercury on Sorbents; and Chapter 5. Project Conclusions. In summary, the metals involved in the project were arsenic, cadmium, chromium, lead, mercury and selenium and the sorbents tested included bauxite, zeolite and calcined limestone. The three sorbents have been found to have various degree of metal capture capability on arsenic, cadmium, chromium and lead. Among them, calcined limestone is capable of simultaneouely capturing metals and sulfur. Mercury and selenium, however, can not be effectively retained by these sorbents under the combustion conditions. Mercury adsorption by sorbents at low temperatures was also investigated and the developed mass transfer model for mercury absorption appears to describe reasonably well the experimental results. Overall, the project has generated 18 presentations and/or publications in professional conferences and journals.

  20. HEAVY METALS IN THE NORTHERN FUR SEAL, CALLORHINUS URSIN US, AND

    E-Print Network [OSTI]

    HEAVY METALS IN THE NORTHERN FUR SEAL, CALLORHINUS URSIN US, AND HARBOR SEAL, PHOCA VITULINA Calillnnia harbor seal and 170 ppm in a fur seal taken oil the Washington coast. Concentrations of cadmium of mercury were from southern California seals. Heavy metals are persistent contaminants that ultimately end

  1. Mercury Chamber NF-IDS Meeting

    E-Print Network [OSTI]

    McDonald, Kirk

    windows (upstream and downstream) ­ Shell cooling? #12;4 Managed by UT-Battelle for the U.S. Department Upstream View Downstream View #12;6 Managed by UT-Battelle for the U.S. Department of Energy Mercury Isometrics Downstream Beam Window Drainage Notch Overflow & Maintenance Drains Nozzle, Beam Pipe, Vents

  2. Catalytic Reactor For Oxidizing Mercury Vapor

    DOE Patents [OSTI]

    Helfritch, Dennis J. (Baltimore, MD)

    1998-07-28

    A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

  3. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2008-06-30

    ADA-ES, Inc., with support from DOE/NETL, EPRI, and industry partners, studied mercury control options at six coal-fired power plants. The overall objective of the this test program was to evaluate the capabilities of activated carbon injection at six plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, American Electric Power's Conesville Station Unit 6, and Labadie Power Plant Unit 2. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The financial goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000 per pound of mercury removed. Results from testing at Holcomb, Laramie, Meramec, Labadie, and Monroe indicate the DOE goal was successfully achieved. However, further improvements for plants with conditions similar to Conesville are recommended that would improve both mercury removal performance and economics.

  4. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2006-04-30

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at DTE Energy's Monroe Power Plant, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program was to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000/lb mercury removed. The results from Monroe indicate that using DARCO{reg_sign} Hg would result in higher mercury removal (80%) at a sorbent cost of $18,000/lb mercury, or 70% lower than the benchmark. These results demonstrate that the goals established by DOE/NETL were exceeded during this test program. The increase in mercury removal over baseline conditions is defined for this program as a comparison in the outlet emissions measured using the Ontario Hydro method during the baseline and long-term test periods. The change in outlet emissions from baseline to long-term testing was 81%.

  5. Mercury Control with Calcium-Based Sorbents and Oxidizing Agents

    SciTech Connect (OSTI)

    Thomas K. Gale

    2005-07-01

    This Final Report contains the test descriptions, results, analysis, correlations, theoretical descriptions, and model derivations produced from many different investigations performed on a project funded by the U.S. Department of Energy, to investigate calcium-based sorbents and injection of oxidizing agents for the removal of mercury. Among the technologies were (a) calcium-based sorbents in general, (b) oxidant-additive sorbents developed originally at the EPA, and (c) optimized calcium/carbon synergism for mercury-removal enhancement. In addition, (d) sodium-tetrasulfide injection was found to effectively capture both forms of mercury across baghouses and ESPs, and has since been demonstrated at a slipstream treating PRB coal. It has been shown that sodium-tetrasulfide had little impact on the foam index of PRB flyash, which may indicate that sodium-tetrasulfide injection could be used at power plants without affecting flyash sales. Another technology, (e) coal blending, was shown to be an effective means of increasing mercury removal, by optimizing the concentration of calcium and carbon in the flyash. In addition to the investigation and validation of multiple mercury-control technologies (a through e above), important fundamental mechanism governing mercury kinetics in flue gas were elucidated. For example, it was shown, for the range of chlorine and unburned-carbon (UBC) concentrations in coal-fired utilities, that chlorine has much less effect on mercury oxidation and removal than UBC in the flyash. Unburned carbon enhances mercury oxidation in the flue gas by reacting with HCl to form chlorinated-carbon sites, which then react with elemental mercury to form mercuric chloride, which subsequently desorbs back into the flue gas. Calcium was found to enhance mercury removal by stabilizing the oxidized mercury formed on carbon surfaces. Finally, a model was developed to describe these mercury adsorption, desorption, oxidation, and removal mechanisms, including the synergistic enhancement of mercury removal by calcium.

  6. Sorption Mechanisms for Mercury Capture in Warm Post-Gasification Gas Clean-Up Systems

    SciTech Connect (OSTI)

    Jost Wendt; Sung Jun Lee; Paul Blowers

    2008-09-30

    The research was directed towards a sorbent injection/particle removal process where a sorbent may be injected upstream of the warm gas cleanup system to scavenge Hg and other trace metals, and removed (with the metals) within the warm gas cleanup process. The specific objectives of this project were to understand and quantify, through fundamentally based models, mechanisms of interaction between mercury vapor compounds and novel paper waste derived (kaolinite + calcium based) sorbents (currently marketed under the trade name MinPlus). The portion of the research described first is the experimental portion, in which sorbent effectiveness to scavenge metallic mercury (Hg{sup 0}) at high temperatures (>600 C) is determined as a function of temperature, sorbent loading, gas composition, and other important parameters. Levels of Hg{sup 0} investigated were in an industrially relevant range ({approx} 25 {micro}g/m{sup 3}) although contaminants were contained in synthetic gases and not in actual flue gases. A later section of this report contains the results of the complementary computational results.

  7. Calcium looping process for high purity hydrogen production integrated with capture of carbon dioxide, sulfur and halides

    DOE Patents [OSTI]

    Ramkumar, Shwetha; Fan, Liang-Shih

    2013-07-30

    A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.

  8. Nanostructured Lanthanum Halides and CeBr3 for Nuclear Radiation and Detection

    SciTech Connect (OSTI)

    Paul Guss, Sanjoy Mukhopadhyay, Ron Guise, Ding Yuan

    2010-06-09

    Scintillator materials are used to detect, and in some cases identify, gamma rays. Higher performance scintillators are expensive, hard to manufacture, fragile, and sometimes require liquid nitrogen or cooling engines. But whereas lower-quality scintillators are cheap, easy to manufacture, and more rugged, their performance is lower. At issue: can the desirable qualities of high-and low-performance scintillators be combined to achieve better performance at lower cost? Preliminary experiments show that a LaF{sub 3}:Ce oleic acid-based nanocomposite exhibits a photopeak when exposed to {sup 137}Cs source gamma-radiation. The chemical synthesis of the cerium-doped lanthanum halide nanoparticles are scalable and large quantities of material can be produced at a time, unlike typical crystal growth processes such as the Bridgeman process. Using a polymer composite (Figure 1), produced by LANL, initial measurements of the unloaded and 8% LaF{sub 3}:Ce-loaded sample have been made using {sup 137}Cs sources. Figure 2 shows an energy spectrum acquired for CeF{sub 3}. The lighter plot is the measured polymer-only spectrum and the black plot is the spectrum from the nanocomposite scintillator. As the development of this material continues, the energy resolution is expected to improve and the photopeak-to-Compton ratio will become greater at higher loadings. These measurements show the expected Compton edge in the polymer-only sample, and the Compton edge and photo-peak expected in the nanophosphor composites that LANL has produced. Using a porous VYCORR with CdSe/ZnS core shell quantum dots, Letant has demonstrated that he has obtained signatures of the 241Am photopeak with energy resolution as good at NaI (Figure 3). We begin with the fact that CeBr{sub 3} crystals do not have a self-activity component as strong as the lanthanum halides. The radioactive 0.090% {sup 138}La component of lanthanum leads to significant self-activity, which will be a problem for very large detector volumes. Yet a significant strength of the nanostructure detector concept is the ability to create extremely large detector volumes by mixing nanoparticles into a transparent matrix. This would argue for use of nanoparticles other than lanthanum halides. Nanocomposites are easy to prepare; it is much less costly to use nanocomposites than to grow large whole crystals of these materials. The material can be fabricated at an industrial scale, further reducing cost. This material potentially offers the performance of $300/cc material (e.g., lanthanum bromide) at a cost of $1/cc. Because the material acts as a plastic, it is rugged and flexible, and can be made in large sheets, increasing the sensitivity of a detector using it. It would operate at ambient temperatures. Very large volumes of detector may be produced at greatly reduced cost, enhancing the non-proliferation posture of the nation for the same dollar value.

  9. Mercury residues in south Florida apple snails (Pomacea paludosa)

    SciTech Connect (OSTI)

    Eisemann, J.D.; Beyer, W.N.; Morton, A.; Bennetts, R.E.

    1997-05-01

    Mercury concentrations in the sediments of south Florida wetlands have increased three fold in the last century. Because south Florida is home to many endemic and endangered species, it is important to understand the potential impacts of mercury in this ecosystem`s food web. Recent research by Malley et al. has shown mollusks to be sensitive indicators of methyl mercury which can reflect small differences in background methyl mercury concentrations. In this study, we attempted to determine if the apple snail (Pomacea paludosa) or its eggs are good indicators of bioavailable mercury. Then, using the apple snail as an indicator, we attempted to determine geographic differences in the concentrations of mercury in south Florida. 12 refs., 1 fig., 1 tab.

  10. Mercury Emissions Control Technologies (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    The Annual Energy Outlook 2006 reference case assumes that states will comply with the requirements of the Environmental Protection Agency's new Clean Air Mercury Rule (CAMR) regulation. CAMR is a two-phase program, with a Phase I cap of 38 tons of mercury emitted from all U.S. power plants in 2010 and a Phase II cap of 15 tons in 2018. Mercury emissions in the electricity generation sector in 2003 are estimated at around 50 tons. Generators have a variety of options to meet the mercury limits, such as: switching to coal with a lower mercury content, relying on flue gas desulfurization or selective catalytic reduction equipment to reduce mercury emissions, or installing conventional activated carbon injection (ACI) technology.

  11. Water and Mercury Pipe Flow Simulation in FLUENTSimulation in FLUENT

    E-Print Network [OSTI]

    McDonald, Kirk

    Water and Mercury Pipe Flow Simulation in FLUENTSimulation in FLUENT Yan Zhan, Foluso Ladeinde;Straight Pipe flow Ph i l bl-- Physical problem Isothermal mercury/ water flow through a 60D straight pipe* Mercury 1500 41.844 m 4.04 m/s 18.5 bar 15.67 bar Water 1500 331.404 m 4.04 m/s 18.5 bar 18.291bar *uave

  12. Evaluation of mercury in the liquid waste processing facilities

    SciTech Connect (OSTI)

    Jain, Vijay; Shah, Hasmukh; Occhipinti, John E.; Wilmarth, William R.; Edwards, Richard E.

    2015-08-13

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  13. EM's Los Alamos Site Completes Canyon-Side Cleanup ofMercury...

    Broader source: Energy.gov (indexed) [DOE]

    A spider excavator extracts mercury-contaminated soil. A spider excavator extracts mercury-contaminated soil. Workers position a crane above the project site. Workers position a...

  14. Wetting of Sodium on ??-Al2O3/YSZ Composites for Low Temperature Planar Sodium-Metal Halide Batteries

    SciTech Connect (OSTI)

    Reed, David M.; Coffey, Greg W.; Mast, Eric S.; Canfield, Nathan L.; Mansurov, Jirgal; Lu, Xiaochuan; Sprenkle, Vincent L.

    2013-04-01

    Wetting of Na on B”-Al2O3/YSZ composites was investigated using the sessile drop technique. The effects of moisture and surface preparation were studied at low temperatures. Electrical conductivity of Na/B”-Al2O3-YSZ/Na cells was also investigated at low temperatures and correlated to the wetting behavior. The use of planar B”-Al2O3 substrates at low temperature with low cost polymeric seals is realized due to improved wetting at low temperature and conductivity values consistent with the literature.

  15. Mitigation and Remediation of Mercury Contamination at the Y...

    Office of Environmental Management (EM)

    to identify and delineate "reaches" of the creek where mercury is entering, or could enter, the water column in, for example, "dissolved" form where dissolved might be defined...

  16. ORNL scientists solve mercury mystery | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for bacteria to transform inorganic mercury in the environment into methylmercury, an organic and far more toxic form. Pictured with Liang is ORNL researcher Baohua Gu. By...

  17. The mission of the Remediation of Mercury and Industrial

    Office of Environmental Management (EM)

    what and how critical mercury precursors are produced and subsequently passed into cells and become methylated. * Investigate microbial subcellular mechanisms including...

  18. ORNL research reveals new challenges for mercury cleanup | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mercury to methylmercury, a neurotoxin that can penetrate skin and at high doses affect brain and muscle tissue, causing paralysis and brain damage. The discovery of how...

  19. Mercury Specie and Multi-Pollutant Control

    SciTech Connect (OSTI)

    Rob James; Virgil Joffrion; John McDermott; Steve Piche

    2010-05-31

    This project was awarded to demonstrate the ability to affect and optimize mercury speciation and multi-pollutant control using non-intrusive advanced sensor and optimization technologies. The intent was to demonstrate plant-wide optimization systems on a large coal fired steam electric power plant in order to minimize emissions, including mercury (Hg), while maximizing efficiency and maintaining saleable byproducts. Advanced solutions utilizing state-of-the-art sensors and neural network-based optimization and control technologies were proposed to maximize the removal of mercury vapor from the boiler flue gas thereby resulting in lower uncontrolled releases of mercury into the atmosphere. Budget Period 1 (Phase I) - Included the installation of sensors, software system design and establishment of the as-found baseline operating metrics for pre-project and post-project data comparison. Budget Period 2 (Phase II) - Software was installed, data communications links from the sensors were verified, and modifications required to integrate the software system to the DCS were performed. Budget Period 3 (Phase III) - Included the validation and demonstration of all control systems and software, and the comparison of the optimized test results with the targets established for the project site. This report represents the final technical report for the project, covering the entire award period and representing the final results compared to project goals. NeuCo shouldered 61% of the total project cost; while DOE shouldered the remaining 39%. The DOE requires repayment of its investment. This repayment will result from commercial sales of the products developed under the project. NRG's Limestone power plant (formerly owned by Texas Genco) contributed the host site, human resources, and engineering support to ensure the project's success.

  20. Radiation-induced defects in GaN bulk grown by halide vapor phase epitaxy

    SciTech Connect (OSTI)

    Duc, Tran Thien; Pozina, Galia; Son, Nguyen Tien; Janzén, Erik; Hemmingsson, Carl; Ohshima, Takeshi

    2014-09-08

    Defects induced by electron irradiation in thick free-standing GaN layers grown by halide vapor phase epitaxy were studied by deep level transient spectroscopy. In as-grown materials, six electron traps, labeled D2 (E{sub C}–0.24?eV), D3 (E{sub C}–0.60?eV), D4 (E{sub C}–0.69?eV), D5 (E{sub C}–0.96?eV), D7 (E{sub C}–1.19?eV), and D8, were observed. After 2?MeV electron irradiation at a fluence of 1?×?10{sup 14?}cm{sup ?2}, three deep electron traps, labeled D1 (E{sub C}–0.12?eV), D5I (E{sub C}–0.89?eV), and D6 (E{sub C}–1.14?eV), were detected. The trap D1 has previously been reported and considered as being related to the nitrogen vacancy. From the annealing behavior and a high introduction rate, the D5I and D6 centers are suggested to be related to primary intrinsic defects.

  1. Analysis of Halogen-Mercury Reactions in Flue Gas

    SciTech Connect (OSTI)

    Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

    2010-01-01

    Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation was observed at SO{sub 2} concentrations of 400 ppmv and higher. In contrast, SO{sub 2} concentrations as low as 50 ppmv significantly reduced mercury oxidation by bromine, this reduction could be due to both gas and liquid phase interactions between SO{sub 2} and oxidized mercury species. The simultaneous presence of chlorine and bromine in the flue gas resulted in a slight increase in mercury oxidation above that obtained with bromine alone, the extent of the observed increase is proportional to the chlorine concentration. The results of this study can be used to understand the relative importance of gas-phase mercury oxidation by bromine and chlorine in combustion systems. Two temperature profiles were tested: a low quench (210 K/s) and a high quench (440 K/s). For chlorine the effects of quench rate were slight and hard to characterize with confidence. Oxidation with bromine proved sensitive to quench rate with significantly more oxidation at the lower rate. The data generated in this program are the first homogeneous laboratory-scale data on bromine-induced oxidation of mercury in a combustion system. Five Hg-Cl and three Hg-Br mechanisms, some published and others under development, were evaluated and compared to the new data. The Hg-halogen mechanisms were combined with submechanisms from Reaction Engineering International for NO{sub x}, SO{sub x}, and hydrocarbons. The homogeneous kinetics under-predicted the levels of mercury oxidation observed in full-scale systems. This shortcoming can be corrected by including heterogeneous kinetics in the model calculations.

  2. Fundamentals of Mercury Oxidation in Flue Gas

    SciTech Connect (OSTI)

    JoAnn Lighty; Geoffrey Silcox; Constance Senior; Joseph Helble; Balaji Krishnakumar

    2008-07-31

    The objective of this project was to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involved both experimental and modeling efforts. The team was comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective was to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. The results suggested that homogeneous mercury oxidation is below 10% which is not consistent with previous data of others and work which was completed early in this research program. Previous data showed oxidation above 10% and up to 100%. However, the previous data are suspect due to apparent oxidation occurring within the sampling system where hypochlorite ion forms in the KCl impinger, which in turn oxidized mercury. Initial tests with entrained iron oxide particles injected into a flame reactor suggest that iron present on fly ash particle surfaces can promote heterogeneous oxidation of mercury in the presence of HCl under entrained flow conditions. Using the data generated above, with homogeneous reactions accounting for less than 10% of the oxidation, comparisons were made to pilot- and full-scale data. The results suggest that heterogeneous reactions, as with the case of iron oxide, and adsorption on solid carbon must be taking place in the full-scale system. Modeling of mercury oxidation using parameters from the literature was conducted to further study the contribution of homogeneous pathways to Hg oxidation in coal combustion systems. Calculations from the literature used rate parameters developed in different studies, in some cases using transition state theory with a range of approaches and basis sets, and in other cases using empirical approaches. To address this, rate constants for the entire 8-step homogeneous Hg oxidation sequence were developed using an internally consistent transition state approach. These rate constants when combined with the appropriate sub-mechanisms produced lower estimates of the overall extent of homogeneous oxidation, further suggesting that heterogeneous pathways play an important role in Hg oxidation in coal-fired systems.

  3. Release of Ammonium and Mercury from NOx Controlled Fly Ash

    SciTech Connect (OSTI)

    Schroeder, K.T.; Cardone, C.R.; Kim, A.G

    2007-07-01

    One of the goals of the Department of Energy is to increase the reuse of coal utilization byproducts (CUB) to 50% by 2010. This will require both developing new markets and maintaining traditional ones such as the use of fly ash in concrete. However, the addition of pollution control devices can introduce side-effects that affect the marketability of the CUB. Such can be the case when NOx control is achieved using selective catalytic or non-catalytic reduction (SCR or SNCR). Depending on site-specific details, the ammonia slip can cause elevated levels of NH3 in the fly ash. Disposal of ammoniated fly ash can present environmental concerns related to the amount of ammonia that might be released, the amount of water that might become contaminated, and the extent to which metals might be mobilized by the presence of the ammonia. Ammonia retained in fly ash appears to be present as either an ammonium salt or as a chemisorbed species. Mercury in the leachates correlated to neither the amount of leachable ammonium nor to the total amount of Hg in the ash. The strongest correlation was between the decreases in the amount of Hg leached with increased LOI.

  4. Metal aminoboranes

    DOE Patents [OSTI]

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya Kaviraj; Shrestha, Roshan P.

    2010-05-11

    Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  5. Activated carbon injection - a mercury control success story

    SciTech Connect (OSTI)

    NONE

    2008-07-01

    Almost 100 full-scale activated carbon injection (ACI) systems have been ordered by US electric utilities. These systems have the potential to remove over 90% of the mercury in flue, at a cost below $10,000 per pound of mercury removal. Field trials of ACI systems arm outlined. 1 fig.

  6. UNCERTAINTY IN PALEOECOLOGICAL STUDIES OF MERCURY IN SEDIMENT CORES

    E-Print Network [OSTI]

    Gottgens, Hans

    UNCERTAINTY IN PALEOECOLOGICAL STUDIES OF MERCURY IN SEDIMENT CORES JOHAN F. GOTTGENS1,, BRIAN E by as much as ±48%. Uncertainty in paleoecological studies of mercury needs to be documented in order, paleoecology, sediment cores, uncertainty 1. Introduction Paleoecological studies of lakes, wetlands

  7. Mercury removal in utility wet scrubber using a chelating agent

    DOE Patents [OSTI]

    Amrhein, Gerald T. (Louisville, OH)

    2001-01-01

    A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

  8. Retention of elemental mercury in fly ashes in different atmospheres

    SciTech Connect (OSTI)

    M.A. Lopez-Anton; M. Diaz-Somoano; M.R. Martinez-Tarazona

    2007-01-15

    Mercury is an extremely volatile element, which is emitted from coal combustion to the environment mostly in the vapor phase. To avoid the environmental problems that the toxic species of this element may cause, control technologies for the removal of mercury are necessary. Recent research has shown that certain fly ash materials have an affinity for mercury. Moreover, it has been observed that fly ashes may catalyze the oxidation of elemental mercury and facilitate its capture. However, the exact nature of Hg-fly ash interactions is still unknown, and mercury oxidation through fly ash needs to be investigated more thoroughly. In this work, the influence of a gas atmosphere on the retention of elemental mercury on fly ashes of different characteristics was evaluated. The retention capacity was estimated comparatively in inert and two gas atmospheres containing species present in coal gasification and coal combustion. Fly ashes produced in two pulverized coal combustion (PCC) plants, produced from coals of different rank (CTA and CTSR), and a fly ash (CTP) produced in a fluidized bed combustion (FBC) plant were used as raw materials. The mercury retention capacity of these fly ashes was compared to the retention obtained in different activated carbons. Although the capture of mercury is very similar in the gasification atmosphere and N{sub 2}, it is much more efficient in a coal combustion retention, being greater in fly ashes from PCC than those from FBC plants. 22 refs., 6 figs., 3 tabs.

  9. MERCURY CONTROL WITH CALCIUM-BASED SORBENTS AND OXIDIZING AGENTS

    SciTech Connect (OSTI)

    Thomas K. Gale

    2002-06-01

    The initial tasks of this DOE funded project to investigate mercury removal by calcium-based sorbents have been completed, and initial testing results have been obtained. Mercury monitoring capabilities have been obtained and validated. An approximately 1MW (3.4 Mbtu/hr) Combustion Research Facility at Southern Research Institute was used to perform pilot-scale investigations of mercury sorbents, under conditions representative of full-scale boilers. The initial results of ARCADIS G&M proprietary sorbents, showed ineffective removal of either elemental or oxidized mercury. Benchscale tests are currently underway to ascertain the importance of differences between benchscale and pilot-scale experiments. An investigation of mercury-capture temperature dependence using common sorbents has also begun. Ordinary hydrated lime removed 80 to 90% of the mercury from the flue gas, regardless of the temperature of injection. High temperature injection of hydrated lime simultaneously captured SO{sub 2} at high temperatures and Hg at low temperatures, without any deleterious effects on mercury speciation. Future work will explore alternative methods of oxidizing elemental mercury.

  10. Method for removal of mercury from various gas streams

    DOE Patents [OSTI]

    Granite, E.J.; Pennline, H.W.

    2003-06-10

    The invention provides for a method for removing elemental mercury from a fluid, the method comprising irradiating the mercury with light having a wavelength of approximately 254 nm. The method is implemented in situ at various fuel combustion locations such as power plants and municipal incinerators.

  11. PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code

    SciTech Connect (OSTI)

    Iandola, F N; O'Brien, M J; Procassini, R J

    2010-11-29

    Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improves usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.

  12. Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same

    DOE Patents [OSTI]

    Comanzo, Holly Ann; Setlur, Anant Achyut; Srivastava, Alok Mani

    2006-04-04

    Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.

  13. Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same

    DOE Patents [OSTI]

    Comanzo, Holly Ann; Setlur, Anant Achyut; Srivastava, Alok Mani; Manivannan, Venkatesan

    2004-07-13

    Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.

  14. Bench-scale studies with mercury contaminated SRS soil

    SciTech Connect (OSTI)

    Cicero, C.A.

    1996-05-08

    The Savannah River Technology Center (SRTC) has been charactered by the Department of Enregy (DOE) - Office of Technology Development (OTD) to investigate vitrification technology for the treatment of Low Level Mixed Wastes (LLMW). In fiscal year 1995, LLW streams containing mercury and organics were targeted. This report will present the results of studies with mercury contaminated waste. In order to successfully apply vitrification technology to LLMW, the types and quantities of glass forming additives necessary for producing homogeneous glasses from the wastes had to be determined, and the treatment for the mercury portion had to also be determined. The selected additives had to ensure that a durable and leach resistant waste form was produced, while the mercury treatment had to ensure that hazardous amounts of mercury were not released into the environment.

  15. Environmental release of mercury from coal utilization by-products: will new mercury controls at power plants make a difference?

    SciTech Connect (OSTI)

    Aljoe, W.W.; Feeley, T.J., III; Brickett, L.A.; Schroeder, K.T.; Murphy, J.T. [National Energy Technology Laboratory, Pittsburgh, PA (US)

    2005-09-30

    The US Department of Energy's National Energy Technology Laboratory (DOE/NETL) uses the term coal utilization by-products (CUBs) to describe the solid materials produced by the combustion or gasification of coal. The following general observations can be drawn from results of field tests that have been carried out thus far to determine whether new technologies for mercury emission control at coal power plants will affect the release of mercury from CUBs. There appears to be only minimal potential mercury release to the environment in typical disposal or utilization application for CUBs generated using ACI control technologies. There appears to be only minimal mercury release to the environment for CUBs generated using wet FGD control technologies. The amount of mercury leached from CUBs samples tested is significantly lower than the federal drinking water standards and water quality criteria for the protection of aquatic life. 3 figs., 2 tabs.

  16. Category:Mercury Vapor | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to: navigation,Ground GravityListsMercury Vapor Jump to:

  17. Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing

    DOE Patents [OSTI]

    Gay, E.C.

    1995-10-03

    An electrochemical method is described for separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500 C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode. 3 figs.

  18. Fundamentals of Mercury Oxidation in Flue Gas

    SciTech Connect (OSTI)

    JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Constance Senior; Joseph Helble; Balaji Krishnakumar

    2005-08-01

    The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves both experimental and modeling efforts. The team is comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 2 results for the experimental and modeling tasks. Experiments in the mercury reactor are underway and interesting results suggested that a more comprehensive look at catalyzed surface reactions was needed. Therefore, much of the work has focused on the heterogeneous reactions. In addition, various chemical kinetic models have been explored in an attempt to explain some discrepancies between this modeling effort and others.

  19. Chemistry of gaseous lower halides of uranium. Technical progress report, 1 September 1979-1 April 1980

    SciTech Connect (OSTI)

    Hildenbrand, D.L.

    1980-04-15

    The gaseous uranium species UF, UF/sub 2/, UF/sub 3/, and UF/sub 4/ were generated in effusion cell beams by vaporization of UF/sub 4/(s) under reducing conditions, and they were identified and studied by mass spectrometry. From extensive second-law studies of reaction equilibria involving these species and several reaction partners used as reference standards, the individual bond dissociation energies and standard enthalpies of formation of the U-F species were derived. Reaction entropies derived from the slope data indicate that the electronic entropies of the U-F species are substantial, and are comparable to or larger than that of atomic uranium. Additional thermochemical measurements were made to establish the properties of several Ag and Cu monohalides that have been or will be used as reference standards in the uranium halide measurements. From studies of the sublimation and decomposition of uranyl fluoride, UO/sub 2/F/sub 2/(s), the enthalpy of sublimation of UO/sub 2/F/sub 2/(g), has been determined, and another gaseous oxyfluoride, UOF/sub 4/(g), has been tentatively identified. The gaseous products of decomposition of UO/sub 2/F/sub 2/(s) observed by mass spectrometry differ from those postulated by other investigators, indicating that the mechanism of decomposition has not been clearly established. A search of the thermochemical literature on uranium halides has been completed.

  20. Metal inks

    DOE Patents [OSTI]

    Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

    2014-02-04

    Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

  1. Demonstration of Mer-Cure Technology for Enhanced Mercury Control

    SciTech Connect (OSTI)

    John Marion; Dave O'Neill; Kevin Taugher; Shin Kang; Mark Johnson; Gerald Pargac; Jane Luedecke; Randy Gardiner; Mike Silvertooth; Jim Hicks; Carl Edberg; Ray Cournoyer; Stanley Bohdanowicz; Ken Peterson; Kurt Johnson; Steve Benson; Richard Schulz; Don McCollor; Mike Wuitshick

    2008-06-01

    Alstom Power Inc. has completed a DOE/NETL-sponsored program (under DOE Cooperative Agreement No. De-FC26-07NT42776) to demonstrate Mer-Cure{trademark}, one of Alstom's mercury control technologies for coal-fired boilers. The Mer-Cure{trademark}system utilizes a small amount of Mer-Clean{trademark} sorbent that is injected into the flue gas stream for oxidation and adsorption of gaseous mercury. Mer-Clean{trademark} sorbents are carbon-based and prepared with chemical additives that promote oxidation and capture of mercury. The Mer-Cure{trademark} system is unique in that the sorbent is injected into an environment where the mercury capture kinetics is accelerated. The full-scale demonstration program originally included test campaigns at two host sites: LCRA's 480-MW{sub e} Fayette Unit No.3 and Reliant Energy's 190-MW{sub e} Shawville Unit No.3. The only demonstration tests actually done were the short-term tests at LCRA due to budget constraints. This report gives a summary of the demonstration testing at Fayette Unit No.3. The goals for this Mercury Round 3 program, established by DOE/NETL under the original solicitation, were to reduce the uncontrolled mercury emissions by 90% at a cost significantly less than 50% of the previous target of $60,000/lb mercury removed. The results indicated that Mer-Cure{trademark} technology could achieve mercury removal of 90% based on uncontrolled stack emissions. The estimated costs for 90% mercury control, at a sorbent cost of $0.75 to $2.00/lb respectively, were $13,400 to $18,700/lb Hg removed. In summary, the results from demonstration testing show that the goals established by DOE/NETL were met during this test program. The goal of 90% mercury reduction was achieved. Estimated mercury removal costs were 69-78% lower than the benchmark of $60,000/lb mercury removed, significantly less than 50% of the baseline removal cost.

  2. Advanced Utility Mercury-Sorbent Field-Testing Program

    SciTech Connect (OSTI)

    Ronald Landreth

    2007-12-31

    This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was purchased used and all of the equipment has nearly reached the end of its useful service.

  3. Heavy metals in fish from the Aleutians: Interspecific and locational differences

    SciTech Connect (OSTI)

    Burger, Joanna; Gochfeld, Michael; Jeitner, Christian; Pittfield, Taryn; Donio, Mark

    2014-05-01

    The objectives of this study were to examine levels of arsenic, cadmium, lead, mercury and selenium in edible tissue of seven species of marine fish collected from several Aleutian islands (in 2004) to determine: (1) interspecific differences, (2) locational differences (among Aleutian Islands), (3) size-related differences in any metal levels within a species, and (4) potential risk to the fish or to predators on the fish, including humans. We also compared metals levels to those of three other fish species previously examined in detail, as well as examining metals in the edible tissue of octopus (Octopus dofleini). Octopus did not have the highest levels of any metal. There were significant interspecific differences in all metal levels among the fish species, although the differences were less than an order of magnitude, except for arsenic (mean of 19,500 ppb in Flathead sole, Hippoglossoides elassodon). Significant intraisland variation occurred among the four sites on Amchitka, but there was not a consistent pattern. There were significant interisland differences for some metals and species. Mercury levels increased significantly with size for several species; lead increased significantly for only one fish species; and cadmium and selenium decreased significantly with size for halibut (Hippoglossus stenolepis). The Alaskan Department of Health and Social Services supports unrestricted consumption of most Alaskan fish species for all people, including pregnant women. Most mean metal concentrations were well below the levels known to adversely affect the fish themselves, or predators that consume them (including humans), except for mercury in three fish species (mean levels just below 0.3 ppm), and arsenic in two fish species. However, even at low mercury levels, people who consume fish almost daily will exceed guideline values from the Centers for Disease Control and the Environmental Protection Agency. - Highlights: • Cadmium, lead, mercury and selenium levels differed among 10 fish species from the Aleutians. • Mean Arsenic was as high as 19,500 ppb (flathead sole, Hippoglossoides elassodon). • Mercury levels increased significantly with fish size for several species. • Metal levels were generally below adverse effects levels for fish and their predators. • Mercury and arsenic might pose a risk to human consumers, and require further examination.

  4. Halide, Chromate, and Phosphate Impacts on LAW Glass for Dynamic Flowsheet 24590-WTP-MCR-PET-09-0037, Rev. 1

    SciTech Connect (OSTI)

    Gimpel, Rodney F.; Kruger, Albert A.

    2013-12-16

    Revision 1 of this Model Change Request changed Equation 6 in Attachment Al only. Melter studies have shown that halide, chromium, and phosphates can cause precipitation of solids that can interfer the melting process. Pilot melter data now shows what concentrations LAW glass can tolerate. These limits shall be incorporated into the existing LAW glass algorithm per Attachment Al.

  5. 1302 J. Phys. Chem. 1981, 85,1302-1305 PhotochemicalIsotope Separation of Hg-196 by Reaction with Hydrogen Halides

    E-Print Network [OSTI]

    chloride as substrate with added butadiene. The enrichment is definedhere asthe finalisotopicabundanceover amounts of the hydrogen halide (HC1,HBr, or HI) gas to be mixed with a fractional amount of l,&butadiene are of the highest purity commercially available (>99.9% for HC1). Before entry into the reaction cell, the butadiene

  6. An ecological study examining the correlation of end-stage renal disease and ground water heavy metal content in Texas counties 

    E-Print Network [OSTI]

    Bishop, Scott Alan

    1999-01-01

    An ecological study was conducted to examine the correlation of end-stage renal disease (ESRD) and the ground water heavy metal level of lead, arsenic, cadmium, mercury and the cumulative level of all four metals in Texas counties. The heavy meal...

  7. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  8. Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure...

    Open Energy Info (EERE)

    Mercury Geochemistry As A Guide To Volcanic Vent Structure And Zones Of High Heat Flow In The Valley Of Ten Thousand Smokes, Katmai National Park, Alaska Jump to: navigation,...

  9. Dissolved gaseous mercury behavior in shallow water estuaries 

    E-Print Network [OSTI]

    Landin, Charles Melchor

    2009-05-15

    , increased wind speed should enhance air to water transfer of elemental mercury, thus one would expect a negative correlation. DGM co-varied negatively with salinity during the continuous studies, suggesting that the DGM pool is reduced in surface waters...

  10. Mercury Contents of Natural Thermal and Mineral Fluids, In- U...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Book Section: Mercury Contents of Natural Thermal and Mineral Fluids, In- U.S. Geological Survey Professional Paper 713 Abstract...

  11. Mercury-Contaminated Hydraulic Mining Debris in San Francisco Bay

    E-Print Network [OSTI]

    Bouse, Robin M; Fuller, Christopher C; Luoma, Sam; Hornberger, Michelle I; Jaffe, Bruce E; Smith, Richard E

    2010-01-01

    may 2010 Mercury-Contaminated Hydraulic Mining Debris in SanCA 94025 Abstract The hydraulic gold-mining process usedsediment created by hydraulic gold mining in the Sierra

  12. Transformations of mercury in the marine water column

    E-Print Network [OSTI]

    Munson, Kathleen M. (Kathleen May)

    2014-01-01

    Methylation of mercury (Hg) in the marine water column has been hypothesized to serve as the primary source of the bioaccumulating chemical species monomethylmercury (MMHg) to marine food webs. Despite decades of research ...

  13. Fly Ash and Mercury Oxidation/Chlorination Reactions

    SciTech Connect (OSTI)

    Sukh Sidhu; Patanjali Varanasi

    2008-12-31

    Mercury is a known pollutant that has detrimental effect on human health and environment. The anthropogenic emissions of mercury account for 10 to 30% of worldwide mercury emissions. There is a need to control/reduce anthropogenic mercury emissions. Many mercury control technologies are available but their effectiveness is dependent on the chemical form of mercury, because different chemical forms of mercury have different physical and chemical properties. Mercury leaves the boiler in its elemental form but goes through various transformations in the post-combustion zone. There is a need to understand how fly ash and flue gas composition affect speciation, partitioning, and reactions of mercury under the full range of post-combustion zone conditions. This knowledge can then be used to predict the chemical transformation of mercury (elemental, oxidized or particulate) in the post combustion zone and thus help with the control of mercury emissions from coal-burning power plants. To accomplish this goal present study was conducted using five coal fly ashes. These ashes were characterized and their catalytic activity was compared under selected reaction conditions in a fixed bed reactor. Based on the results from these fly ash experiments, three key components (carbon, iron oxide and calcium oxide) were chosen. These three components were then used to prepare model fly ashes. Silica/alumina was used as a base for these model fly ashes. One, two or three component model fly ashes were then prepared to investigate mercury transformation reactions. The third set of experiments was performed with CuO and CuCl2 catalysts to further understand the mercury oxidation process. Based on the results of these three studies the key components were predicted for different fly ash compositions under variety of flue gas conditions. A fixed bed reactor system was used to conduct this study. In all the experiments, the inlet concentration of Hg0(g) was maintained at 35 {micro}g/m3 using a diffusion tube as the source of Hg0(g). All experiments were conducted using 4% O2 in nitrogen mix as a reaction gas, and other reactants (HCl, H2O and SO2, NO2, Br2) were added as required. The fixed bed reactor was operated over a temperature range of 200 to 400 C. In each experiment, the reactor effluent was analyzed using the modified Ontario-Hydro method. After each experiment, fly ash particles were also analyzed for mercury. The results show that the ability of fly ash to adsorb and/or oxidize mercury is primarily dependent on its carbon, iron and calcium content. There can be either one or more than one key component at a particular temperature and flue gas condition. Surface area played a secondary role in effecting the mercury transformations when compared to the concentration of the key component in the fly ash. Amount of carbon and surface area played a key important role in the adsorption of mercury. Increased concentration of gases in the flue gas other than oxygen and nitrogen caused decreased the amount of mercury adsorbed on carbon surface. Mercury adsorption by iron oxide primarily depended on the crystalline structure of iron oxide. {alpha}-Iron oxide had no effect on mercury adsorption or oxidation under most of the flue gas conditions, but ?-iron oxide adsorbed mercury under most of the flue gas conditions. Bromine is a very good oxidizing agent for mercury. But in the presence of calcium oxide containing fly ashes, all the oxidized mercury would be reduced to elemental form. Among the catalysts, it was observed that presence of free lattice chlorine in the catalyst was very important for the oxidation of mercury. But instead of using the catalyst alone, using it along with carbon may better serve the purpose by providing the adsorption surface for mercury and also some extra surface area for the reaction to occur (especially for fly ashes with low surface area).

  14. FINAL REPORT ON THE AQUATIC MERCURY ASSESSMENT STUDY

    SciTech Connect (OSTI)

    Halverson, N

    2008-09-30

    In February 2000, the United States Environmental Protection Agency (EPA) Region 4 issued a proposed Total Maximum Daily Load (TMDL) for total mercury in the middle and lower Savannah River. The initial TMDL, which would have imposed a 1 ng/l mercury limit for discharges to the middle/lower Savannah River, was revised to 2.8 ng/l in the final TMDL released in February 2001. The TMDL was intended to protect people from the consumption of contaminated fish, which is the major route of mercury exposure to humans. The most bioaccumulative form of mercury is methylmercury, which is produced in aquatic environments by the action of microorganisms on inorganic mercury. Because of the environmental and economic significance of the mercury discharge limits that would have been imposed by the TMDL, the Savannah River Site (SRS) initiated several studies concerning: (1) mercury in SRS discharges, SRS streams and the Savannah River, (2) mercury bioaccumulation factors for Savannah River fish, (3) the use of clams to monitor the influence of mercury from tributary streams on biota in the Savannah River, and (4) mercury in rainwater falling on the SRS. The results of these studies are presented in detail in this report. The first study documented the occurrence, distribution and variation of total and methylmercury at SRS industrial outfalls, principal SRS streams and the Savannah River where it forms the border with the SRS. All of the analyses were performed using the EPA Method 1630/31 ultra low-level and contaminant-free techniques for measuring total and methylmercury. Total mercury at National Pollutant Discharge Elimination System (NPDES) outfalls ranged from 0.31-604 ng/l with a mean of 8.71 ng/l. Mercury-contaminated groundwater was the source for outfalls with significantly elevated mercury concentrations. Total mercury in SRS streams ranged from 0.95-15.7 ng/l. Mean total mercury levels in the streams varied from 2.39 ng/l in Pen Branch to 5.26 ng/l in Tims Branch. Methylmercury ranged from 0.002 ng/l in Upper Three Runs to 2.60 ng/l in Tims Branch. Total mercury in the Savannah River ranged from 0.62 ng/l to 43.9 ng/l, and methylmercury ranged from 0.036 ng/l to 7.54 ng/l. Both total and methylmercury concentrations were consistently high in the river near the mouth of Steel Creek. Total mercury was positively correlated with methylmercury (r = 0.88). Total mercury bound to particulates ranged from 41% to 57% in the river and from 28% to 90% in the streams. Particulate methylmercury varied from 9% to 37% in the river and from 6% to 79% in the streams. Small temporary pools in the Savannah River swamp area near and around Fourmile Branch had the highest concentrations observed in the Savannah River watershed, reaching 1,890 ng/l for total mercury and 34.0 ng/l for methylmercury. The second study developed a mercury bioaccumulation factor (BAF) for the Savannah River near SRS. A BAF is the ratio of the concentration of mercury in fish flesh to the concentration of mercury in the water. BAFs are important in the TMDL process because target concentrations for mercury in water are computed from BAFs. Mercury BAFs are known to differ substantially among fish species, water bodies, and possibly seasons. Knowledge of such variation is needed to determine a BAF that accurately represents average and extreme conditions in the water body under study. Analysis of fish tissue and aqueous methylmercury samples collected at a number of locations and over several seasons in a 110 km (68 mile) reach of the Savannah River demonstrated that BAFs for each species under study varied by factors of three to eight. Influences on BAF variability were location, habitat and season-related differences in fish mercury levels and seasonal differences in methylmercury levels in the water. Overall (all locations, habitats, and seasons) average BAFs were 3.7 x 10{sup 6} for largemouth bass, 1.4 x 10{sup 6} for sunfishes, and 2.5 x 10{sup 6} for white catfish. This study showed that determination of representative BAFs for large rivers requires the collect

  15. JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal

    SciTech Connect (OSTI)

    Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

    2009-03-29

    The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

  16. Trace metal concentration in blood of the Kemp's ridley sea turtle (Lepidochelys kempii) 

    E-Print Network [OSTI]

    Orvik, Lisa Marie

    1997-01-01

    characterized the level of five trace metals in Kemp's ridleys and compared these levels in headstart and wild cohorts as well as between the sexes. Overall, copper, lead, mercury, silver and zinc levels in the blood of Kemp's ridleys were: copper (range = 215...

  17. Field Demonstration of Enhanced Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Shin Kang; Robert Schrecengost

    2009-01-07

    Alstom Power Inc. has conducted a DOE/NETL-sponsored program (under DOE Cooperative Agreement No. DE-FC26-04NT42306) to demonstrate Mer-Cure{trademark}, one of Alstom's mercury control technologies for coal-fired boilers. Mer-Cure{trademark} utilizes a small amount of Mer-Clean{trademark} sorbent that is injected into the flue gas stream for oxidation and adsorption of gaseous mercury. Mer-Clean{trademark} sorbents are carbon-based and prepared with chemical additives that promote oxidation and capture of mercury. Mer-Cure{trademark} is unique in that the sorbent is injected into an environment where the mercury capture kinetics is accelerated. This full-scale demonstration program was comprised of three seven-week long test campaigns at three host sites including PacifiCorp's 240-MW{sub e} Dave Johnston Unit No.3 burning a Powder River Basin (PRB) coal, Basin Electric's 220-MW{sub e} Leland Olds Unit No.1 burning a North Dakota lignite, and Reliant Energy's 170-MW{sub e} Portland Unit No.1 burning an Eastern bituminous coal. All three boilers are equipped with electrostatic precipitators. The goals for this Round 2 program, established by DOE/NETL under the original solicitation, were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the previous target of $60,000/lb mercury removed. The results for all three host sites indicated that Mer-Cure{trademark} technology could achieve mercury removal of 90%. The estimated mercury removal costs were 25-92% lower than the benchmark of $60,000/lb mercury removed. The estimated costs for control, at sorbent cost of $1.25 to $2.00/lb respectively, are as follows: (1) Dave Johnston Unit No.3--$2,650 to $4,328/lb Hg removed (92.8% less than $60k/lb); (2) Leland Olds Unit No.1--$8,680 to $13,860/lb Hg removed (76.7% less than $60k/lb); and (3) Portland Unit No.1--$28,540 to $45,065/lb Hg removed (24.9% less than $60k/lb). In summary, the results from demonstration testing at all three host sites show that the goals established by DOE/NETL were exceeded during this test program. Mercury removal performance4 of greater than 90% reduction was above the 50-70% reduction goal, and mercury removal cost of 25-92% lower than the benchmark was above the 25 to 50% cost reduction goal.

  18. The development and field testing of a passive mercury dosimeter 

    E-Print Network [OSTI]

    Zahray, Robert Karl

    1982-01-01

    THE DEVELOPMENT AND FIELD TESTING OF A PASSIVE MERCURY DOSIMETER A Thesis by ROBERT KARL ZAHRAY Submitted to t. he Graduate College of Texas AddS University in partial fulfillment of the requirements for the degree o' f MASTER OF SCIENCE... December 1982 Major Subject: Industrial Hygiene THE DEVELOPMENT AND FIELD TESTING OF A PASSIVE MERCURY DOSIMETER A Thesis by ROBERT KARL ZAHRAY Approved as to style and content by: R. J. mon (Chairman of . Committee) J. Su (Member K. Irgolic...

  19. Electrolytic recovery of mercury enriched in isotopic abundance

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA)

    1991-01-01

    The present invention is directed to a method of electrolytically extracting liquid mercury from HgO or Hg.sub.2 Cl.sub.2. Additionally there are disclosed two related techniques associated with the present invention, namely (1) a technique for selectively removing product from different regions of a long photochemical reactor (photoreactor) and (2) a method of accurately measuring the total quantity of mercury formed as either HgO or Hg.sub.2 Cl.sub.2.

  20. Mercury control challenge for industrial boiler MACT affected facilities

    SciTech Connect (OSTI)

    2009-09-15

    An industrial coal-fired boiler facility conducted a test program to evaluate the effectiveness of sorbent injection on mercury removal ahead of a fabric filter with an inlet flue gas temperature of 375{sup o}F. The results of the sorbent injection testing are essentially inconclusive relative to providing the facility with enough data upon which to base the design and implementation of permanent sorbent injection system(s). The mercury removal performance of the sorbents was significantly less than expected. The data suggests that 50 percent mercury removal across a baghouse with flue gas temperatures at or above 375{sup o}F and containing moderate levels of SO{sub 3} may be very difficult to achieve with activated carbon sorbent injection alone. The challenge many coal-fired industrial facilities may face is the implementation of additional measures beyond sorbent injection to achieve high levels of mercury removal that will likely be required by the upcoming new Industrial Boiler MACT rule. To counter the negative effects of high flue gas temperature on mercury removal with sorbents, it may be necessary to retrofit additional boiler heat transfer surface or spray cooling of the flue gas upstream of the baghouse. Furthermore, to counter the negative effect of moderate or high SO{sub 3} levels in the flue gas on mercury removal, it may be necessary to also inject sorbents, such as trona or hydrated lime, to reduce the SO{sub 3} concentrations in the flue gas. 2 refs., 1 tab.

  1. Controlling mercury emissions from coal-fired power plants

    SciTech Connect (OSTI)

    Chang, R. [Electric Power Research Institute, Palo Alto, CA (United States)

    2009-07-15

    Increasingly stringent US federal and state limits on mercury emissions form coal-fired power plants demand optimal mercury control technologies. This article summarises the successful removal of mercury emissions achieved with activated carbon injection and boiler bromide addition, technologies nearing commercial readiness, as well as several novel control concepts currently under development. It also discusses some of the issues standing in the way of confident performance and cost predictions. In testing conducted on western coal-fired units with fabric filters or TOXECON to date, ACI has generally achieved mercury removal rates > 90%. At units with ESPs, similar performance requires brominated ACI. Alternatively, units firing western coals can use boiler bromide addition to increase flue gas mercury oxidation and downstream capture in a wet scrubber, or to enhance mercury removal by ACI. At eastern bituminous fired units with ESPs, ACI is not as effective, largely due to SO{sub 3} resulting from the high sulfur content of the coal or the use of SO{sub 3} flue gas conditioning to improve ESP performance. 7 refs., 3 figs.

  2. Catalyst Additives to Enhance Mercury Oxidation and Capture

    SciTech Connect (OSTI)

    Jared W. Cannon; Thomas K. Gale

    2004-12-31

    Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. This report discusses initial results from fundamental investigations into the behavior of mercury species in the presence of SCR catalysts at Southern Research Institute. Three different SCR catalysts are being studied. These are honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts are manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Test methods and experimental procedures were developed for current and future testing. The methods and procedures equalize factors influencing mercury adsorption and oxidation (surface area, catalyst activity, and pore structure) that normally differ for each catalyst type. Initial testing was performed to determine the time necessary for each catalyst to reach surface-adsorption equilibrium. In addition, the fraction of Hg oxidized by each of the SCR catalyst types is being investigated, for a given amount of catalyst and flow rate of mercury and flue gas. The next major effort will be to examine the kinetics of mercury oxidation across the SCR catalysts with respect to changes in mercury concentration and with respect to HCl concentration. Hg-sorption equilibrium times will also be investigated with respect to ammonia concentration in the simulated flue gas.

  3. Method and apparatus for controlling the flow rate of mercury in a flow system

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA)

    1991-01-01

    A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.

  4. JV Task 98 - Controlling Mercury Emissions for Utilities Firing Lignites from North America

    SciTech Connect (OSTI)

    Steven Benson

    2007-06-15

    This project compiled and summarized the findings and conclusions of research, development, and demonstration projects on controlling mercury from lignite coals. A significant amount of work has been conducted since 1994 on mercury in lignite, mercury measurement in flue gases, sorbent, sorbent enhancement additives, oxidation agent development, and full-scale demonstration of mercury control technologies. This report is focused on providing the lignite industry with an understanding of mercury issues associated with the combustion of lignite, as well as providing vital information on the methods to control mercury emissions in coal-fired power plants.

  5. Direct Measurement of Mercury Reactions In Coal Power Plant Plumes

    SciTech Connect (OSTI)

    Leonard Levin

    2005-12-31

    Recent field and pilot-scale results indicate that divalent mercury emitted from power plants may rapidly transform to elemental mercury within the power plant plumes. Simulations of mercury chemistry in plumes based on measured rates to date have improved regional model fits to Mercury Deposition Network wet deposition data for particular years, while not degrading model verification fits for remaining years of the ensemble. The years with improved fit are those with simulated deposition in grid cells in the State of Pennsylvania that have matching MDN station data significantly less than the model values. This project seeks to establish a full-scale data basis for whether or not significant reduction or oxidation reactions occur to mercury emitted from coal-fired power plants, and what numerical redox rate should apply for extension to other sources and for modeling of power plant mercury plumes locally, regionally, and nationally. Although in-stack mercury (Hg) speciation measurements are essential to the development of control technologies and to provide data for input into atmospheric fate and transport models, the determination of speciation in a cooling coal combustion plume is more relevant for use in estimating Hg fate and effects through the atmosphere. It is mercury transformations that may occur in the plume that determine the eventual rate and patterns of mercury deposited to the earth's surface. A necessary first step in developing a supportable approach to modeling any such transformations is to directly measure the forms and concentrations of mercury from the stack exit downwind to full dispersion in the atmosphere. As a result, a study was sponsored by EPRI and jointly funded by EPRI, the U.S Department of Energy (DOE), and the Wisconsin Department of Administration. The study was designed to further our understanding of plume chemistry. The study was carried out at the We Energies Pleasant Prairie Power Plant, Pleasant Prairie, Wisconsin, just west of Kenosha. Aircraft and ground measurements support the occurrence of a reduction in the fraction of reactive gaseous mercury (RGM) (with a corresponding increase in elemental mercury) as part of the Total Gaseous Mercury (TGM) emitted from the Pleasant Prairie stack. This occurrence is based on comparison of the RGM concentrations in the plume (at standard conditions) compared to the RGM in the stack. There was found to be a 44% drop in the fraction of RGM between the stack exit and the first sampling arc and a 66% reduction from the stack to the 5-mile sampling arc, with no additional drop between the 5- and 10-mile arcs. Smaller-scale experiments in both test chambers and pilot-scale coal combustor exhaust streams have indicated the presence of rapid and relatively complete reduction reactions converting divalent into elemental mercury within power plant plumes prior to full dispersion in the atmosphere. These measurements, however, have been unable to identify whether the reactions occur during plume rise from physical to virtual stack height (during positive thermal buoyancy). The presence, rate, completeness, ubiquity, and dependence on source characteristics of these reactions, however, must be demonstrated in plume environments associated with fully operational power plants. That requirement, to capture either the reactions or the reaction products of chemistry that may be occurring very close to stack exits in highly turbulent environments, constrains the precision and reproducibility with which such full-scale experiments can be carried out. The work described here is one of several initial steps required to test whether, and in what direction, such rapid mercury redox reactions might be occurring in such plumes.

  6. Methods and sorbents for utilizing a hot-side electrostatic precipitator for removal of mercury from combustion gases

    DOE Patents [OSTI]

    Nelson, Sidney (Hudson, OH)

    2011-02-15

    Methods are provided for reducing emission of mercury from a gas stream by treating the gas with carbonaceous mercury sorbent particles to reduce the mercury content of the gas; collecting the carbonaceous mercury sorbent particles on collection plates of a hot-side ESP; periodically rapping the collection plates to release a substantial portion of the collected carbonaceous mercury sorbent particles into hoppers; and periodically emptying the hoppers, wherein such rapping and emptying are done at rates such that less than 70% of mercury adsorbed onto the mercury sorbent desorbs from the collected mercury sorbent into the gas stream.

  7. Optical amplifier operating at 1.3 microns useful for telecommunications and based on dysprosium-doped metal chloride host materials

    DOE Patents [OSTI]

    Page, R.H.; Schaffers, K.I.; Payne, S.A.; Krupke, W.F.; Beach, R.J.

    1997-12-02

    Dysprosium-doped metal chloride materials offer laser properties advantageous for use as optical amplifiers in the 1.3 {micro}m telecommunications fiber optic network. The upper laser level is characterized by a millisecond lifetime, the host material possesses a moderately low refractive index, and the gain peak occurs near 1.31 {micro}m. Related halide materials, including bromides and iodides, are also useful. The Dy{sup 3+}-doped metal chlorides can be pumped with laser diodes and yield 1.3 {micro}m signal gain levels significantly beyond those currently available. 9 figs.

  8. Optical amplifier operating at 1.3 microns useful for telecommunications and based on dysprosium-doped metal chloride host materials

    DOE Patents [OSTI]

    Page, Ralph H. (San Ramon, CA); Schaffers, Kathleen I. (Pleasanton, CA); Payne, Stephen A. (Castro Valley, CA); Krupke, William F. (Pleasanton, CA); Beach, Raymond J. (Livermore, CA)

    1997-01-01

    Dysprosium-doped metal chloride materials offer laser properties advantageous for use as optical amplifiers in the 1.3 .mu.m telecommunications fiber optic network. The upper laser level is characterized by a millisecond lifetime, the host material possesses a moderately low refractive index, and the gain peak occurs near 1.31 .mu.m. Related halide materials, including bromides and iodides, are also useful. The Dy.sup.3+ -doped metal chlorides can be pumped with laser diodes and yield 1.3 .mu.m signal gain levels significantly beyond those currently available.

  9. Density functional theory study on the interstitial chemical shifts of main-group-element centered hexazirconium halide clusters; synthetic control of speciation in [(Zr6ZCl12)] (Z = B, C)-based mixed ligand complexes 

    E-Print Network [OSTI]

    Shen, Jingyi

    2005-08-29

    The correlation between NMR chemical shifts of interstitial atoms and electronic structures of boron- and carbon-centered hexazirconium halide clusters was investigated by density functional theory (DFT) calculation. The ...

  10. INTERIM RESULTS FROM A STUDY OF THE IMPACTS OF TIN(II) BASED MERCURY TREATMENT IN A SMALL STREAM ECOSYSTEM: TIMS BRANCH, SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Looney, B.; Bryan, L.; Mathews, T.

    2012-03-30

    Mercury (Hg) has been identified as a 'persistent, bioaccumulative and toxic' pollutant with widespread impacts throughout North America and the world (EPA. 1997a, 1997b, 1998a, 1998b, 2000). Although most of the mercury in the environment is inorganic Hg, a small proportion of total Hg is transformed through the actions of aquatic microbes into methylmercury (MeHg). In contrast to virtually all other metals, MeHg biomagnifies or becomes increasingly concentrated as it is transferred through aquatic food chains so that the consumption of mercury contaminated fish is the primary route of this toxin to humans. For this reason, the ambient water quality criterion (AWQC) for mercury is based on a fish tissue endpoint rather than an aqueous Hg concentration, as the tissue concentration (e.g., < 0.3 {mu}g/g fillet) is considered to be a more consistent indicator of exposure and risk (EPA, 2001). Effective mercury remediation at point-source contaminated sites requires an understanding of the nature and magnitude of mercury inputs, and also knowledge of how these inputs must be controlled in order to achieve the desired reduction of mercury contamination in biota necessary for compliance with AWQC targets. One of the challenges to remediation is that mercury body burdens in fish are more closely linked to aqueous MeHg than to inorganic Hg concentrations (Sveinsdottir and Mason 2005), but MeHg production is not easily predicted or controlled. At point-source contaminated sites, mercury methylation is not only affected by the absolute mercury load, but also by the form of mercury loaded. In addition, once MeHg is formed, the hydrology, trophic structure, and water chemistry of a given system affect how it is transformed and transferred through the food chain to fish. Decreasing inorganic Hg concentrations and loading may often therefore be a more achievable remediation goal, but has led to mixed results in terms of responses in fish bioaccumulation. A number of source control measures have resulted in rapid responses in lake or reservoir fisheries (Joslin 1994, Turner and Southworth 1999; Orihel et al., 2007), but examples of similar responses in Hg-contaminated stream ecosystems are less common. Recent work suggests that stream systems may actually be more susceptible to mercury bioaccumulation than lakes, highlighting the need to better understand the ecological drivers of mercury bioaccumulation in stream-dwelling fish (Chasar et al. 2009, Ward et al. 2010). In the present study we examine the response of fish to remedial actions in Tims Branch, a point-source contaminated stream on the Department of Energy's (DOE) Savannah River Site in Aiken, South Carolina. This second order stream received inorganic mercury inputs at its headwaters from the 1950s-2000s which contaminated the water, sediments, and biota downstream. In 2007, an innovative mercury removal system using tin (II) chloride (stannous chloride, SnCl{sub 2}) was implemented at a pre-existing air stripper. Tin(II) reduces dissolved Hg (II) to Hg (0), which is removed by the air stripper. During this process, tin(II) is oxidized to tin (IV) which is expected to precipitate as colloidal tin(IV) oxides and hydroxides, particulate materials with relatively low toxicity (Hallas and Cooney, 1981, EPA 2002, ATSDR, 2005). The objectives of the present research are to provide an initial assessment of the net impacts of the tin(II) based mercury treatment on key biota and to document the distribution and fate of inorganic tin in this small stream ecosystem after the first several years of operating a full scale system. To support these objectives, we collected fish, sediment, water, invertebrates, and biofilm samples from Tims Branch to quantify the general behavior and accumulation patterns for mercury and tin in the ecosystem and to determine if the treatment process has resulted in: (1) a measurable beneficial impact on (i.e., decrease of) mercury concentration in upper trophic level fish and other biota; this is a key environmental endpoint since reducing mercury concen

  11. Lead, mercury, cadmium, chromium, and arsenic levels in eggs, feathers, and tissues of Canada geese of the New Jersey Meadowlands

    SciTech Connect (OSTI)

    Tsipoura, Nellie; Burger, Joanna; Environmental and Occupational Health Sciences Institute, Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ 08854 ; Newhouse, Michael; Jeitner, Christian; Environmental and Occupational Health Sciences Institute, Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ 08854 ; Gochfeld, Michael; Environmental and Occupational Medicine. Robert Wood Johnson Medical School, 170 Frelinghuysen Road, Piscataway, NJ 08854 ; Mizrahi, David

    2011-08-15

    The New Jersey Meadowlands are located within the heavily urbanized New York/New Jersey Harbor Estuary and have been subject to contamination due to effluent and runoff from industry, traffic, and homes along the Hackensack River and nearby waterways. These extensive wetlands, though heavily impacted by development and pollution, support a wide array of bird and other wildlife species. Persistent contaminants may pose threats to birds in these habitats, affecting reproduction, egg hatchability, nestling survival, and neurobehavioral development. Metals of concern in the Meadowlands include arsenic, cadmium, chromium, lead, and mercury. These metals were analyzed in eggs, feathers, muscle, and liver of Canada geese (Branta canadensis) breeding in four wetland sites. We sampled geese collected during control culling (n=26) and collected eggs from goose nests (n=34). Levels of arsenic were below the minimum quantification level (MQL) in most samples, and cadmium and mercury were low in all tissues sampled. Chromium levels were high in feather samples. Mercury levels in eggs of Canada geese, an almost exclusively herbivorous species, were lower (mean {+-}SE 4.29{+-}0.30 {mu}g/g wet weight) than in eggs of omnivorous mallards (Anas platyrhynchos), and insectivorous red-winged blackbirds (Agelaius phoeniceus) and marsh wrens (Cistothorus palustris) from the Meadowlands, consistent with trophic level differences. However, lead levels were higher in the goose eggs (161{+-}36.7 ng/g) than in the other species. Geese also had higher levels of lead in feathers (1910{+-}386 ng/g) than those seen in Meadowlands passerines. By contrast, muscle and liver lead levels were within the range reported in waterfowl elsewhere, possibly a reflection of metal sequestration in eggs and feathers. Elevated lead levels may be the result of sediment ingestion or ingestion of lead shot and sinkers. Finally, lead levels in goose liver (249{+-}44.7 ng/g) and eggs (161{+-}36.7 ng/g) may pose a risk if consumed frequently by humans. Mill Creek, the site with the most documented prior contamination, had significantly elevated cadmium, chromium, mercury, and lead in goose tissues. - Highlights: {yields} The NJ Meadowlands include extensive wetlands in the urban NYC metropolitan area. {yields} We analyzed eggs, feathers, muscle, and liver of Canada geese at 4 Meadowlands sites. {yields} As, Cd, and Hg were low in all tissues sampled, while Cr was high in feathers. {yields} Pb was higher in goose eggs and feathers than in other Meadowlands bird species. {yields} Pb in muscle and liver was lower and within the range seen in waterfowl elsewhere.

  12. Field Line Resonance at Mercury's Magnetosphere: A Simulation Study

    SciTech Connect (OSTI)

    Eun-Hwa Kim, Jay R. Johnson, and Dong-Hun Lee

    2008-05-22

    Ultra low frequency (ULF) waves, which are assumed to be standing waves on the field, are observed by the Mariner 10 spacecraft at Mercury. These waves are oscillating at 38% of the proton gyrofrequency. It is well known that the heavy ions, such as Na+, are abundant in Mercury's magnetosphere. Because the presence of different ion species has an influence on the plasma dispersion characteristics near the ion gyro-frequencies, such relatively high frequencies of magnetospheric eigenoscillations at Mercury require a multi-fluid treatment for the plasma. Thus ULF waves at Mercury may have a distinct difference from typical ULF oscillations at Earth, which are often described in terms of magnetohydrodynamics (MHD). By adopting a multi-fluid numerical wave model, we examine how magnetic eigenoscillations occur in Mercury's magnetosphere. Because protons and sodium ions are the main constituents at Mercury, we assume an electron-proton- sodium plasma in our model. The frequency spectra and time histories of the electromagnetic fields at the ion-ion hybrid (IIH) and cavity resonances are presented. Our results show: (1) The observed ULF waves are likely compressional waves rather than FLR. (2) Resonant absorption occurs at the IIH resonance, thus incoming compressional waves are converted into the IIH resonance. (3) The IIH resonance is strongly guided by the background magnetic field and shows linear polarization in the east-west meridian. (4) Both the Alfvén and the IIH are suggested as a mechanism for FLR at Mercury. (5) The resonance frequency enables us to estimate the local heavy ion concentration ratio.

  13. Catalyst Additives to Enhance Mercury Oxidation and Capture

    SciTech Connect (OSTI)

    Alex J. Berry; Thomas K. Gale

    2005-09-30

    Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. This report discusses initial results from fundamental investigations into the behavior of mercury species in the presence of SCR catalysts at Southern Research Institute. The testing was performed at Southern Research's Catalyst Test Facility, a bench-scale reactor capable of simulating gas-phase reactions occurring in coal-fired utility pollution-control equipment. Three different SCR catalysts are currently being studied in this project - honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Methods and procedures for experimental testing continue to be developed to produce the highest quality mercury-oxidation data. Most experiments so far have focused on testing the catalysts in a simulated Powder River Basin (PRB) flue-gas environment, which contains lower sulfur and chlorine than produced by other coals. Future work to characterize flue gas simulations typically derived from low and high sulfur bituminous coal will be performed in a stepwise manner, to avoid the constant interruptions in testing that occur when leaks in the system are generated during temperature transitions. Specifically, chlorine concentration vs. mercury oxidation graph will be developed for each catalyst. The contributions of temperature and later sulfur will be investigated after this is complete. Also, last quarter's tests showed a potential linear relationship between SO3 conversion and mercury oxidation. As a result, SO3 samples will be taken more frequently to investigate each catalyst's ability to selectively oxidize mercury.

  14. Mechanisms Regulating Mercury Bioavailability for Methylating Microorganisms in the Aquatic Environment: A Critical Review

    E-Print Network [OSTI]

    Mechanisms Regulating Mercury Bioavailability for Methylating Microorganisms in the Aquatic by anaerobic bacteria. In this Review, we evaluate the current state of knowledge regarding the mechanisms the uptake of inorganic mercury to these microorganisms. Our understanding of the mechanisms behind

  15. Method and apparatus for controlling the flow rate of mercury in a flow system

    SciTech Connect (OSTI)

    Grossman, M.W.; Speer, R.

    1991-01-01

    This patent describes a process for increasing the mercury flow rate {ital Q{sub Hg}} to a photochemical mercury enrichment process. It comprises: utilizing an entrainment system having a temperature regulated pool of mercury, a bubbler or sparger system, and a carrier gas for entraining mercury vapor; passing the carrier gas over a pool of mercury maintained at a first temperature, T{sub 1} wherein the carrier gas entrains mercury vapor; and passing the mercury vapor entrained carrier gas to a second temperature zone, maintained at a temperature T{sub 2}, such that T{sub 2} is less than T{sub 1}, in which the entrained mercury vapor is condensed, thereby producing a saturated Hg conditioning the carrier gas; and passing the saturated Hg carrier gas to the photochemical enrichment reactor, yielding a high flow rate {ital Q{sub Hg}}.

  16. Dispersion modeling of mercury emissions from coal-fired power plants at Coshocton and Manchester, Ohio

    SciTech Connect (OSTI)

    Lee, S.; Keener, T.C. [University of Cincinnati, Cincinnati, OH (United States). Dept. of Civil and Environmental Engineering

    2009-09-15

    Mercury emissions from coal-fired power plants are estimated to contribute to approximately 46% of the total US anthropogenic mercury emissions and required to be regulated by maximum achievable control technology (MACT) standards. Dispersion modeling of mercury emissions using the AERMOD model and the industrial source complex short term (ISCST3) model was conducted for two representative coal-fired power plants at Coshocton and Manchester, Ohio. Atmospheric mercury concentrations, dry mercury deposition rates, and wet mercury deposition rates were predicted in a 5 x 5 km area surrounding the Coonesville and JM Stuart coal-fired power plants. In addition, the analysis results of meteorological parameters showed that wet mercury deposition is dependent on precipitation, but dry mercury deposition is influenced by various meteorological factors. 8 refs., 5 figs., 3 tabs.

  17. A Mass Balance Mercury Budget for a Mine-Dominated Lake: Clear Lake, California

    E-Print Network [OSTI]

    Richerson, Peter J.

    . 150­300 years. Keywords Acid mine drainage . Budget . Clear Lake . Mercury. Mass balance . Mercury) municipal and agricultural water diversions, (3) losses from out-flowing drainage of Cache Creek that feeds

  18. Effect of the shutdown of a large coal fired power plant on ambient mercury species

    E-Print Network [OSTI]

    Wang, Yungang

    2014-01-01

    the shutdown of a coal-fired power plant on urban ultrafineof a large coal-fired power plant on ambient mercury speciesof a large coal-fired power plant on ambient mercury species

  19. Quantifying the health and economic impacts of mercury : an integrated assessment approach

    E-Print Network [OSTI]

    Giang, Amanda (Amanda Chi Wen)

    2013-01-01

    Mercury is a toxic pollutant that endangers human and ecosystem health. Especially potent in the form of methyl mercury, exposure is known to lead to adverse neurological effects, and, a growing body of evidence suggests, ...

  20. Mercury-Contaminated Sediments Affect Amphipod Feeding Mirco Bundschuh Jochen P. Zubrod Frank Seitz

    E-Print Network [OSTI]

    Fabrizio, Mary C.

    Mercury-Contaminated Sediments Affect Amphipod Feeding Mirco Bundschuh · Jochen P. Zubrod · Frank and contaminated field sediment during the preliminary experi- ment and additionally to Sedimite (a commercial mercury- sequestering agent) amended sediments during the final experiment. The preliminary experiment

  1. Reductive precipitation of metals photosensitized by tin and antimony porphyrins

    DOE Patents [OSTI]

    Shelnutt, John A.; Gong, Weiliang; Abdelouas, Abdesselam; Lutze, Werner

    2003-09-30

    A method for reducing metals using a tin or antimony porphyrin by forming an aqueous solution of a tin or antimony porphyrin, an electron donor, such as ethylenediaminetetraaceticacid, triethylamine, triethanolamine, and sodium nitrite, and at least one metal compound selected from a uranium-containing compound, a mercury-containing compound, a copper-containing compound, a lead-containing compound, a gold-containing compound, a silver-containing compound, and a platinum-containing compound through irradiating the aqueous solution with light.

  2. Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds

    E-Print Network [OSTI]

    Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

    2008-01-01

    Coal-fired power generating plants contribute approximatelynumber of coal-fired generating plants (1-3). The mercury is

  3. MERIT Systems Tests at MIT Integration of Magnet and Mercury Delivery

    E-Print Network [OSTI]

    McDonald, Kirk

    successfully recovered. First mercury jets inside cold magnet reveal fogging of windows. #12;Fri Mar 2 Heaters

  4. Catalyst Additives to Enhance Mercury Oxidation and Capture

    SciTech Connect (OSTI)

    Thomas K. Gale

    2006-06-30

    Catalysis is the key fundamental ingredient to convert elemental mercury in coal-fired power stations into its oxidized forms that are more easily captured by sorbents, ESPs, baghouses, and wet scrubbers, whether the catalyst be unburned carbon (UBC) in the ash or vanadium pentoxide in SCR catalysts. This project has investigated several different types of catalysts that enhance mercury oxidation in several different ways. The stated objective of this project in the Statement of Objectives included testing duct-injection catalysts, catalyst-sorbent hybrids, and coated low-pressure-drop screens. Several different types of catalysts were considered for duct injection, including different forms of iron and carbon. Duct-injection catalysts would have to be inexpensive catalysts, as they would not be recycled. Iron and calcium had been shown to catalyze mercury oxidation in published bench-scale tests. However, as determined from results of an on-going EPRI/EPA project at Southern Research, while iron and calcium did catalyze mercury oxidation, the activity of these catalysts was orders of magnitude below that of carbon and had little impact in the short residence times available for duct-injected catalysts or catalyst-sorbent hybrids. In fact, the only catalyst found to be effective enough for duct injection was carbon, which is also used to capture mercury and remove it from the flue gas. It was discovered that carbon itself is an effective catalyst-sorbent hybrid. Bench-scale carbon-catalyst tests were conducted, to obtain kinetic rates of mercury adsorption (a key step in the catalytic oxidation of mercury by carbon) for different forms of carbon. All carbon types investigated behaved in a similar manner with respect to mercury sorption, including the effect of temperature and chlorine concentration. Activated carbon was more effective at adsorbing mercury than carbon black and unburned carbon (UBC), because their internal surface area of activated carbon was greater. Catalyst coating of low-pressure-drop screens was of particular interest as this project was being developed. However, it was discovered that URS was already heavily involved in the pursuit of this same technology, being funded by DOE, and reporting significant success. Hence, testing of SCR catalysts became a major focus of the project. Three different commercial SCR catalysts were examined for their ability to oxidize mercury in simulated flue-gas. Similar performance was observed from each of the three commercial catalysts, both in terms of mercury oxidation and SO{sub 3} generation. Ammonia injection hindered mercury oxidation at low HCl concentrations (i.e., {approx}2 ppmv), yet had little impact on mercury oxidation at higher HCl concentrations. On the other hand, SO{sub 2} oxidation was significantly reduced by the presence of ammonia at both low and high concentrations of HCl.

  5. Method for combined removal of mercury and nitrogen oxides from off-gas streams

    DOE Patents [OSTI]

    Mendelsohn, Marshall H. (Downers Grove, IL); Livengood, C. David (Lockport, IL)

    2006-10-10

    A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

  6. Method for the removal of elemental mercury from a gas stream

    DOE Patents [OSTI]

    Mendelsohn, M.H.; Huang, H.S.

    1999-05-04

    A method is provided to remove elemental mercury from a gas stream by reacting the gas stream with an oxidizing solution to convert the elemental mercury to soluble mercury compounds. Other constituents are also oxidized. The gas stream is then passed through a wet scrubber to remove the mercuric compounds and oxidized constituents. 7 figs.

  7. Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil

    DOE Patents [OSTI]

    Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

    2014-07-08

    The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

  8. Mercury Oxidation via Catalytic Barrier Filters Phase II

    SciTech Connect (OSTI)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  9. Thief process for the removal of mercury from flue gas

    DOE Patents [OSTI]

    Pennline, Henry W. (Bethel Park, PA); Granite, Evan J. (Wexford, PA); Freeman, Mark C. (South Park Township, PA); Hargis, Richard A. (Canonsburg, PA); O'Dowd, William J. (Charleroi, PA)

    2003-02-18

    A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.

  10. The fate of mercury in coal utilization byproducts

    SciTech Connect (OSTI)

    William Aljoe; Thomas Feeley; James Murphy; Lynn Brickett [US Department of Energy's National Energy Technology Laboratory (DOE/NETL), Pittsburgh, PA (US)

    2005-05-01

    The US Department of Energy National Energy Technology Laboratory's (DOE/NETL's) research has helped to further scientific understanding of the environmental characteristics of coal-utilization by-products (CUBs) in both disposal and beneficial utilization applications. The following general observations can be drawn from results of the research that has been carried out to date: There appears to be only minimal mercury release to the environment in typical disposal or utilization applications for CUBs generated using activated carbon injection (ACI) control technologies; There appears to be only minimal mercury release to the environment in typical disposal and utilization applications for CUBs generated using wet FGD control technologies. The potential release of mercury from wet FGD gypsum during the manufacture of wallboard is still under evaluation; The amount of mercury leached from CUB samples tested by DOE/NETL is significantly lower than the federal drinking water standards and water quality criteria for the protection of aquatic life; in many cases, leachate concentrations were below the standard test method detection limits. DOE/NETL will continue to partner with industry and other key stakeholders in carrying out research to better understand the fate of mercury and other trace elements in the byproducts from coal combustion. 16 refs., 6 tabs.

  11. Catalyst Additives to Enhance Mercury Oxidation and Capture

    SciTech Connect (OSTI)

    Thomas K. Gale

    2004-09-30

    Bench-scale carbon-catalyst tests were conducted in the first quarter of 2004, to obtain kinetic rates of mercury oxidation and sorption for different forms of carbon. The current quarterly report provides a more extensive quantitative analysis of the data obtained from the CRTF experiments on different carbon types and carbocalcium mixtures than was presented in the last quarterly report. The procedure and basis for normalizing mercury removals, so that they could be compared on an equal residence time basis, is described. The chemisorption rate of mercury on carbon was found to be first order in mercury concentration and half order in HCl concentration, for the facility configuration investigated. The applicable temperature range of the kinetic rates obtained is from 300 F to 700 F, and the applicable chlorine concentration range is from 2 ppmv HCl to 250 ppmv HCl. The gas-sorbent contact time of 0.12 seconds used in this work was shown to be representative of gas-dust cake contact times in full-scale baghouses. All carbon types investigated behaved similarly with respect to Hg sorption, including the effect of temperature and chlorine concentration. Activated carbon was more effective at sorbing mercury than carbon black and unburned carbon (UBC), because the internal surface area of activated carbon is greater. The synergistic relationship between Ca and C is also discussed in the report.

  12. Fundamentals of Mercury Oxidation in Flue Gas

    SciTech Connect (OSTI)

    JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Joseph Helble; Balaji Krishnakumar

    2006-07-31

    The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves both experimental and modeling efforts. The team is comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 3 results for the experimental and modeling tasks. Experiments have been completed on the effects of chlorine. However, the experiments with sulfur dioxide and NO, in the presence of water, suggest that the wet-chemistry analysis system, namely the impingers, is possibly giving erroneous results. Future work will investigate this further and determine the role of reactions in the impingers on the oxidation results. The solid-phase experiments have not been completed and it is anticipated that only preliminary work will be accomplished during this study.

  13. After the Clean Air Mercury Eule: prospects for reducing mercury emissions from coal-fired power plants

    SciTech Connect (OSTI)

    Jana B. Milford; Alison Pienciak

    2009-04-15

    Recent court decisions have affected the EPA's regulation of mercury emissions from coal burning, but some state laws are helping to clear the air. In 2005, the US EPA issued the Clean Air Mercury Rule (CAMR), setting performance standards for new coal-fired power plants and nominally capping mercury emissions form new and existing plants at 38 tons per year from 2010 to 2017 and 15 tpy in 2018 and thereafter; these down from 48.5 tpy in 1999. To implement the CAMR, 21 states with non-zero emissions adopted EPA's new source performance standards and cap and trade program with little or no modification. By December 2007, 23 other states had proposed or adopted more stringent requirements; 16 states prohibited or restricted interstate trading of mercury emissions. On February 2008, the US Court of Appeal for the District of Columbia Circuit unanimously vacated the CAMR. This article assesses the status of mercury emission control requirements for coal-fired power plants in the US in light of this decision, focusing on state actions and prospects for a new federal rule. 34 refs., 1 fig.

  14. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard

    2001-07-31

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000 to 2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG and E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

  15. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard

    2001-10-01

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

  16. DIRECT MEASUREMENT OF MERCURY REACTIONS IN COAL POWER PLANT PLUMES

    SciTech Connect (OSTI)

    Leonard Levin

    2006-06-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Program Area of Interest: No.5--Environmental and Water Resources. The project team includes the Electric Power Research Institute (EPRI) as the contractor and the University of North Dakota Energy & Environmental Research Center (EERC) and Frontier Geosciences as subcontractors. Wisconsin Energies and its Pleasant Prairie Power Plant acted as host for the field-testing portion of the research. The project is aimed at clarifying the role, rates, and end results of chemical transformations that may occur to mercury that has been emitted from elevated stacks of coal-fired electric power plants. Mercury emitted from power plants emerges in either its elemental, divalent, or particulate-bound form. Deposition of the divalent form is more likely to occur closer to the source than that of the other two forms, due to its solubility in water. Thus, if chemical transformations occur in the stack emissions plume, measurements in the stack may mischaracterize the fate of the material. Initial field and pilot plant measurements have shown significant and rapid chemical reduction of divalent to elemental mercury may occur in these plumes. Mercury models currently assume that the chemical form of mercury occurring in stacks is the same as that which enters the free atmosphere, with no alteration occurring in the emissions plume. Recent data indicate otherwise, but need to be evaluated at full operating scale under field conditions. Prestbo and others have demonstrated the likelihood of significant mercury chemical reactions occurring in power plant plumes (Prestbo et al., 1999; MDNR-PPRP, 2000; EERC, 2001). This experiment will thus increase our understanding of mercury atmospheric chemistry, allowing informed decisions regarding source attribution. The experiment was carried out during the period August 22-September 5, 2003. The experimental site was the Pleasant Prairie Power Plant in Pleasant Prairie, Wisconsin, just west of Kenosha. The experiment involved using an aircraft to capture emissions and document chemistry changes in the plume. While using the airplane for sampling, supplemental fast-response sensors for NOx, connected to data loggers, were used to gauge entry and exit times and transect intervals through plume emissions material. The Frontier Geosciences Static Plume Dilution Chamber (SPDC) was employed simultaneously adjacent to the stack to correlate its findings with the aircraft sampling, as well as providing evaluation of the SPDC as a rapid, less costly sampler for mercury chemistry. A complementary stack plume method, the Dynamic Plume Dilution (DPD) was used in the latter portion of the experiment to measure mercury speciation to observe any mercury reduction reaction with respect to both the reaction time (5 to 30 seconds) and dilution ratio. In addition, stack sampling using the ''Ontario Hydro'' wet chemistry method and continuous mercury monitors (CMM) were used to establish the baseline chemistry in the stack. Comparisons among stack, SPDC, DPD and aircraft measurements allow establishment of whether significant chemical changes to mercury occur in the plume, and of the verisimilitude of the SPDC and DPD methods. This progress report summarizes activities during a period of results review from the stack/aircraft subcontractor, data analysis and synthesis, and preparation and presentation of preliminary results to technical and oversight meetings.

  17. Support Facility for a Mercury Target Neutrino Factory

    SciTech Connect (OSTI)

    Spampinato, P.T.

    2001-12-06

    A conceptual design for a neutrino-producing facility is presented, including the mercury-jet target system, beam absorber, and facility for the target/capture region. The mercury system is a closed loop that includes a containment structure in the high-magnetic field region, a mercury pool beam absorber, conventional equipment such as magnetic-coupled pumps, valves, a heat exchanger, and a special nozzle insert. The superconducting solenoids in the target region are protected from nuclear heating and radiation damage with water-cooled tungsten-carbide shielding; the decay channel solenoids are protected with water-cooled steel shielding. The target region and decay channel have high-neutron fluxes resulting in components that are highly activated. Therefore, the facility configuration is based on remotely maintaining the target system and the magnets, as well as providing sufficient shielding for personnel. Summaries of cost estimates for the target system, magnet shielding, maintenance equipment, and the facility are also presented.

  18. Clean Air Mercury Rule (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    On February 8, 2008, a three-judge panel on the D.C. Circuit of the U.S. Court of Appeals issued a decision to vacate the Clean Air Mercury Rule (CAMR). In its ruling, the panel cited the history of hazardous air pollutant regulation under Section 112 of the Clean Air Act (CAA). Section 112, as written by Congress, listed emitted mercury as a hazardous air pollutant that must be subject to regulation unless it can be proved harmless to public welfare and the environment. In 2000, the Environmental Protection Agency ruled that mercury was indeed hazardous and must be regulated under Section 112 and, therefore, subjected to the best available control technology for mitigation.

  19. Catalyst Additives to Enhance Mercury Oxidation and Capture

    SciTech Connect (OSTI)

    Thomas K. Gale

    2005-12-31

    Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. Three different SCR catalysts are currently being studied in this project--honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Future work to characterize flue gas simulations typically derived from low and high sulfur bituminous coal are being performed in a stepwise manner, to avoid the constant interruptions in testing that occur when leaks in the system are generated during temperature transitions. Specifically, chlorine concentration vs. mercury oxidation correlations will be developed for each catalyst. The contributions of temperature are also being investigated. SO2 oxidation is also being investigated for each test condition.

  20. Metal binding proteins, recombinant host cells and methods

    DOE Patents [OSTI]

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  1. Process for forming epitaxial perovskite thin film layers using halide precursors

    DOE Patents [OSTI]

    Clem, Paul G. (Albuquerque, NM); Rodriguez, Mark A. (Albuquerque, NM); Voigt, James A. (Corrales, NM); Ashley, Carol S. (Albuquerque, NM)

    2001-01-01

    A process for forming an epitaxial perovskite-phase thin film on a substrate. This thin film can act as a buffer layer between a Ni substrate and a YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor layer. The process utilizes alkali or alkaline metal acetates dissolved in halogenated organic acid along with titanium isopropoxide to dip or spin-coat the substrate which is then heated to about 700.degree. C. in an inert gas atmosphere to form the epitaxial film on the substrate. The YBCO superconductor can then be deposited on the layer formed by this invention.

  2. Liquid Metal Jet into a High Magnetic Field 1 Figure 1: Left: jet chamber; right: schematic setup

    E-Print Network [OSTI]

    McDonald, Kirk

    Liquid Metal Jet into a High Magnetic Field 1 M9 bore z [cm] 20 70 0 valve z nozzle drift opt#ectively prevents any mercury leakage. The 20 data sets recorded during the third day contains su#cient information

  3. Mercury Control With The Advanced Hybrid Particulate Collector

    SciTech Connect (OSTI)

    Stanley J. Miller; Ye Zhuang; Jay C. Almlie

    2004-12-31

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-FC26-01NT41184 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the original five-task project was to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach included benchscale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this task was to evaluate the mercury capture effectiveness of the AHPC when used with elemental mercury oxidation additives. This project, which is now in the final report phase, demonstrated at the pilot-scale level a technology that provides a cost-effective technique to control mercury and, at the same time, greatly enhances fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution for improved fine particulate control combined with effective mercury control for a large segment of the U.S. utility industry as well as other industries.

  4. Catalyst Additives to Enhance Mercury Oxidation and Capture

    SciTech Connect (OSTI)

    Jared W. Cannon; Thomas K. Gale

    2005-06-30

    Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. This report discusses initial results from fundamental investigations into the behavior of mercury species in the presence of SCR catalysts at Southern Research Institute. The testing was performed at Southern Research's Catalyst Test Facility, a bench-scale reactor capable of simulating gas-phase reactions occurring in coal-fired utility pollution-control equipment. Three different SCR catalysts are currently being studied in this project--honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Methods and procedures for experimental testing continue to be developed to produce the highest quality mercury-oxidation data. During this past quarter, it was discovered that long periods (12 - 24 hours) are required to equilibrate the catalysts in the system. In addition, after the system has been equilibrated, operational changes to temperature, gas concentration, or flow rate shifts the equilibrium, and steady-state must be reestablished, which can require as much as twelve additional hours per condition change. In the last quarter of testing, it was shown that the inclusion of ammonia had a strong effect on the oxidation of mercury by SCR catalysts, both in the short-term (a transitional period of elemental and oxidized mercury off gassing) and the long-term (less steady-state mercury oxidation). All experiments so far have focused on testing the catalysts in a simulated Powder River Basin (PRB) flue-gas environment, which contains lower sulfur and chlorine than produced by other coals. In the next quarter, parametric testing will be expanded to include flue gases simulating power plants burning Midwestern and Eastern coals, which are higher in sulfur and chlorine. Also, the isolation of such gases as hydrogen chloride (HCl), ammonia (NH{sub 3}), and sulfur trioxide (SO{sub 3}) will be investigated. All of these efforts will be used to examine the kinetics of mercury oxidation across the SCR catalysts with respect to flue gas composition, temperature, and flow rate.

  5. Mercury Control With The Advanced Hybrid Paticulate Collector

    SciTech Connect (OSTI)

    Stanley J. Miller; Ye Zhuang; Jay Almlie

    2004-09-30

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project was to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this task was to evaluate the mercury capture effectiveness of the AHPC when used with elemental mercury oxidation additives. This project, which is now nearing completion, demonstrated at the pilot-scale level a technology that provides a cost-effective technique to control mercury and, at the same time, greatly enhances fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution for improved fine particulate control combined with effective mercury control for a large segment of the U.S. utility industry as well as other industries.

  6. A study of the solubility of mercury in liquid hydrocarbons 

    E-Print Network [OSTI]

    McFarlane, David Larimer

    1991-01-01

    A STUDY OF THE SOLUBILITY OF MERCURY IN LIQUID HYDROCARBONS A Thesis by DAVID LARIhKR MCFARLANE Submitted to the Oflice of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1991 Major Subject: Nuclear Engineering A STUDY OF THE SOLUBILITY OF MERCURY IN LIQUID HYDROCARBONS A Thesis by DAVID LARI1VKR MCFARLANE Approved as to style and content by: W. H. Marlow (Chair of Committee) . W. Bevan (Member) . A...

  7. Ranking low cost sorbents for mercury capture from simulated flue gases

    SciTech Connect (OSTI)

    H. Revata Seneviratne; Cedric Charpenteau; Anthe George; Marcos Millan; Denis R. Dugwell; Rafael Kandiyoti

    2007-12-15

    Coal fired utility boilers are the largest anthropogenic source of mercury release to the atmosphere, and mercury abatement legislation is already in place in the USA. The present study aimed to rank low cost mercury sorbents (char and activated carbon from the pyrolysis of scrap tire rubber and two coal fly ashes from UK power plants) against Norit Darco HgTM for mercury retention by using a novel bench-scale reactor. In this scheme, a fixed sorbent bed was tested for mercury capture efficiency from a simulated flue gas stream. Experiments with a gas stream of only mercury and nitrogen showed that while the coal ashes were the most effective in mercury capture, char from the pyrolysis of scrap tire rubber was as effective as the commercial sorbent Norit Darco HgTM. Tests conducted at 150{sup o}C, with a simulated flue gas mix that included N{sub 2}, NO, NO{sub 2}, CO{sub 2}, O{sub 2}, SO{sub 2} and HCl, showed that all the sorbents captured approximately 100% of the mercury in the gas stream. The introduction of NO and NO{sub 2} was found to significantly improve the mercury capture, possibly by reactions between NOx and the mercury. Since the sorbents' efficiency decreased with increasing test temperature, physical sorption could be the initial step in the mercury capture process. As the sorbents were only exposed to 64 ng of mercury in the gas stream, the mercury loadings on the samples were significantly less than their equilibrium capacities. The larger capacities of the activated carbons due to their more microporous structure were therefore not utilized. Although the sorbents have been characterized by BET surface area analysis and XRD analysis, further analysis is needed in order to obtain a more conclusive correlation of how the characteristics of the different sorbents correlate with the observed variations in mercury capture ability. 34 refs., 8 figs., 6 tabs.

  8. Enhanced open voltage of BiFeO{sub 3} polycrystalline film by surface modification of organolead halide perovskite

    SciTech Connect (OSTI)

    Zhao, Pengjun; Bian, Liang; Xu, Jinbao Chang, Aimin; Wang, Lei

    2014-07-07

    Inorganic-organolead halide perovskite CH{sub 3}NH{sub 3}PbI{sub 3} modified BiFeO{sub 3} polycrystalline film has been established. The composite photoelectrode presents much larger open voltage and several magnitudes superior photoelectric conversion performance in comparison to the ordinary BiFeO{sub 3} polycrystalline film. The I-V curve shows that the short-circuit current (J{sub sc}) is 1.74?mA·cm{sup ?2} and open-circuit voltage (V{sub oc}) is 1.62?V, the device's photon to current efficiency is over 1%. The large open voltage and high photovoltaic efficiency is believed to attributed to the spontaneous polarization of composite perovskite induced by BiFeO{sub 3} lattice and modified reduced work function of the modified BiFeO{sub 3} surface. Our results clearly show that the present BiFeO{sub 3}-CH{sub 3}NH{sub 3}PbI{sub 3} planar device is capable to generate a large voltage in macro scale under visible light, leading an approach to further applications on photodetectors and optoelectronic switch.

  9. Simulation of High-Intensity Mercury Jet Targets

    E-Print Network [OSTI]

    McDonald, Kirk

    of high speed jet cavitation and breakup FronTier MHD, a 3D code with explicitly tracked interfaces for cavitation Realistic equation of states Simulation studies focus on Distortion of mercury jets entering Smoothed Particle Hydrodynamics (SPH) Code · A new code for free surface / multiphase MHD flows is being

  10. Mercury emission behavior during isolated coal particle combustion 

    E-Print Network [OSTI]

    Puchakayala, Madhu Babu

    2009-05-15

    and bioaccumulates in human and animal tissue. The largest source of human-caused mercury air emissions in the U.S is from combustion coal, a dominant fuel used for power generation. The Hg emitted from plants primarily occurs in two forms: elemental Hg and oxidized...

  11. Fate of Mercury in Synthetic Gypsum Used for Wallboard Production

    SciTech Connect (OSTI)

    Jessica Sanderson

    2007-12-31

    This report presents and discusses results from the project 'Fate of Mercury in Synthetic Gypsum Used for Wallboard Production', performed at five different full-scale commercial wallboard plants. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. This practice has long benefited the environment by recycling the FGD gypsum byproduct, which is becoming available in increasing quantities, decreasing the need to landfill this material, and increasing the sustainable design of the wallboard product. However, new concerns have arisen as recent mercury control strategies involve the capture of mercury in FGD systems. The objective of this study has been to determine whether any mercury is released into the atmosphere at wallboard manufacturing plants when the synthetic gypsum material is used as a feedstock for wallboard production. The project has been co-funded by the U.S. DOE National Energy Technology Laboratory (Cooperative Agreement DE-FC26-04NT42080), USG Corporation, and EPRI. USG Corporation is the prime contractor, and URS Group is a subcontractor. The project scope included seven discrete tasks, each including a test conducted at various USG wallboard plants using synthetic gypsum from different wet FGD systems. The project was originally composed of five tasks, which were to include (1) a base-case test, then variations representing differing power plant: (2) emissions control configurations, (3) treatment of fine gypsum particles, (4) coal types, and (5) FGD reagent types. However, Task 5,could not be conducted as planned and instead was conducted at conditions similar to Task 3. Subsequently an opportunity arose to test gypsum produced from the Task 5 FGD system, but with an additive expected to impact the stability of mercury, so Task 6 was added to the project. Finally, Task 7 was added to evaluate synthetic gypsum produced at a power plant from an additional coal type. In the project, process stacks in the wallboard plant were sampled using the Ontario Hydro method. In every task, the stack locations sampled included a gypsum dryer and a gypsum calciner. In Tasks 1 and 4 through 7, the stack of the dryer for the wet wallboard product was also tested. Also at each site, in-stream process samples were collected and analyzed for mercury concentration before and after each significant step in wallboard production. These results and process data were used to construct mercury mass balances across the wallboard plants. The results from the project showed a wide range of percentage mercury losses from the synthetic gypsum feedstocks as measured by the Ontario Hydro method at the process stacks, ranging from 2% to 55% of the mercury in the gypsum feedstock. For the tasks exceeding 10% mercury loss across the wallboard plant, most of the loss occurred across the gypsum calciner. When total wallboard emissions remained below 10%, the primary emission location varied with a much less pronounced difference in emission between the gypsum dryer, calciner and board dryer. For all seven tasks, the majority of the mercury emissions were measured to be in the elemental form (Hg{sup 0}). Overall, the measured mercury loss mass rates ranged from 0.01 to 0.17 grams of mercury per dry ton of synthetic gypsum processed, or 0.01 to 0.4 pounds of mercury released per million square feet of wallboard produced from synthetic gypsum. The Coal Combustion Product Production and Use Survey from the American Coal Ash Association (ACAA) indicate that 7,579,187 short tons of synthetic gypsum were used for wallboard production in 2006. Extrapolating the results of this study to the ACAA industry usage rate, we estimate that mercury releases from wallboard production plants in 2006 ranged between 150 to 3000 pounds for the entire U.S. wallboard industry. With only seven sets of wallboard plant measurements, it is difficult to draw firm conclusions about what variables impact the mercury loss percentages across the wallboard plants. One significant o

  12. Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511

    SciTech Connect (OSTI)

    Behrouzi, Aria [Savannah River Remediation, LLC (United States); Zamecnik, Jack [Savannah River National Laboratory, Aiken, South Carolina, 29808 (United States)

    2012-07-01

    The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolution of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been effectively purified and collected in the Mercury Purification Cell (MPC) since 2008. A significant cleaning campaign aims to bring the MPC back up to facility housekeeping standards. Two significant investigations are being undertaken to restore mercury collection. The SMECT mercury pump has been removed from the tank and will be functionally tested. Also, research is being conducted by the Savannah River National Laboratory to determine the effects of antifoam addition on the behavior of mercury. These path forward items will help us better understand what is occurring in the mercury collection system and ultimately lead to an improved DWPF production rate and mercury recovery rate. (authors)

  13. Figure 2: The mercury jet target geometry. The proton beam and mercury jet cross at z=-37.5 cm.

    E-Print Network [OSTI]

    McDonald, Kirk

    that the meson production loss is negligible (beta functions of 0.3m or greater. ENERGY DEPOSITION by the focusing of the proton beam. The energy deposition in the capture system is determined and the shielding. These muons are first produced by focusing a proton beam on to a liquid mercury target, where low-energy pions

  14. Dry halide method for separating the components of spent nuclear fuels

    DOE Patents [OSTI]

    Christian, J.D.; Thomas, T.R.; Kessinger, G.F.

    1998-06-30

    The invention is a nonaqueous, single method for processing multiple spent nuclear fuel types by separating the fission and transuranic products from the nonradioactive and fissile uranium product. The invention has four major operations: exposing the spent fuels to chlorine gas at temperatures preferably greater than 1200 C to form volatile metal chlorides; removal of the fission product chlorides, transuranic product chlorides, and any nickel chloride and chromium chloride in a molten salt scrubber at approximately 400 C; fractional condensation of the remaining volatile chlorides at temperatures ranging from 164 to 2 C; and regeneration and recovery of the transferred spent molten salt by vacuum distillation. The residual fission products, transuranic products, and nickel- and chromium chlorides are converted to fluorides or oxides for vitrification. The method offers the significant advantages of a single, compact process that is applicable to most of the diverse nuclear fuels, minimizes secondary wastes, segregates fissile uranium from the high level wastes to resolve potential criticality concerns, segregates nonradioactive wastes from the high level wastes for volume reduction, and produces a common waste form glass or glass-ceramic. 3 figs.

  15. Dry halide method for separating the components of spent nuclear fuels

    DOE Patents [OSTI]

    Christian, Jerry Dale (Idaho Falls, ID); Thomas, Thomas Russell (Rigby, ID); Kessinger, Glen F. (Idaho Falls, ID)

    1998-01-01

    The invention is a nonaqueous, single method for processing multiple spent nuclear fuel types by separating the fission- and transuranic products from the nonradioactive and fissile uranium product. The invention has four major operations: exposing the spent fuels to chlorine gas at temperatures preferably greater than 1200.degree. C. to form volatile metal chlorides; removal of the fission product chlorides, transuranic product chlorides, and any nickel chloride and chromium chloride in a molten salt scrubber at approximately 400.degree. C.; fractional condensation of the remaining volatile chlorides at temperatures ranging from 164.degree. C. to 2.degree. C.; and regeneration and recovery of the transferred spent molten salt by vacuum distillation. The residual fission products, transuranic products, and nickel- and chromium chlorides are converted to fluorides or oxides for vitrification. The method offers the significant advantages of a single, compact process that is applicable to most of the diverse nuclear fuels, minimizes secondary wastes, segregates fissile uranium from the high level wastes to resolve potential criticality concerns, segregates nonradioactive wastes from the high level wastes for volume reduction, and produces a common waste form glass or glass-ceramic.

  16. Low-Cost Options for Moderate Levels of Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2008-02-09

    This is the final technical report for a three-site project that is part of an overall program funded by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) and industry partners to obtain the necessary information to assess the feasibility and costs of controlling mercury from coal-fired utility plants. This report summarizes results from tests conducted at MidAmerican's Louisa Generating Station and Entergy's Independence Steam Electric Station (ISES) and sorbent screening at MidAmerican's Council Bluffs Energy Center (CBEC) (subsequently renamed Walter Scott Energy Center (WSEC)). Detailed results for Independence and Louisa are presented in the respective Topical Reports. As no full-scale testing was conducted at CBEC, screening updates were provided in the quarterly updates to DOE. ADA-ES, Inc., with support from DOE/NETL, EPRI, and other industry partners, has conducted evaluations of EPRI's TOXECON II{trademark} process and of high-temperature reagents and sorbents to determine the capabilities of sorbent/reagent injection, including activated carbon, for mercury control on different coals and air emissions control equipment configurations. An overview of each plant configuration is presented: (1) MidAmerican's Louisa Generating Station burns Powder River Basin (PRB) coal in its 700-MW Unit 1 and employs hot-side electrostatic precipitators (ESPs) with flue gas conditioning for particulate control. This part of the testing program evaluated the effect of reagents used in the existing flue gas conditioning on mercury removal. (2) MidAmerican's Council Bluffs Energy Center typically burns PRB coal in its 88-MW Unit 2. It employs a hot-side ESP for particulate control. Solid sorbents were screened for hot-side injection. (3) Entergy's Independence Steam Electric Station typically burns PRB coal in its 880-MW Unit 2. Various sorbent injection tests were conducted on 1/8 to 1/32 of the flue gas stream either within or in front of one of four ESP boxes (SCA = 542 ft{sup 2}/kacfm), specifically ESP B. Initial mercury control evaluations indicated that although significant mercury control could be achieved by using the TOXECON II{trademark} design, the sorbent concentration required was higher than expected, possibly due to poor sorbent distribution. Subsequently, the original injection grid design was modeled and the results revealed that the sorbent distribution pattern was determined by the grid design, fluctuations in flue gas flow rates, and the structure of the ESP box. To improve sorbent distribution, the injection grid and delivery system were redesigned and the effectiveness of the redesigned system was evaluated. This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase II project with the goal of developing mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. Results from testing at Independence indicate that the DOE goal was successfully achieved. Further improvements in the process are recommended, however. Results from testing at Louisa indicate that the DOE goal was not achievable using the tested high-temperature sorbent. Sorbent screening at Council Bluffs also indicated that traditional solid sorbents may not achieve significant mercury removal in hot-side applications.

  17. Mercury and Air Toxic Element Impacts of Coal Combustion By-Product Disposal and Utilizaton

    SciTech Connect (OSTI)

    David Hassett; Loreal Heebink; Debra Pflughoeft-Hassett; Tera Buckley; Erick Zacher; Mei Xin; Mae Sexauer Gustin; Rob Jung

    2007-03-31

    The University of North Dakota Energy & Environmental Research Center (EERC) conducted a multiyear study to evaluate the impact of mercury and other air toxic elements (ATEs) on the management of coal combustion by-products (CCBs). The ATEs evaluated in this project were arsenic, cadmium, chromium, lead, nickel, and selenium. The study included laboratory tasks to develop measurement techniques for mercury and ATE releases, sample characterization, and release experiments. A field task was also performed to measure mercury releases at a field site. Samples of fly ash and flue gas desulfurization (FGD) materials were collected preferentially from full-scale coal-fired power plants operating both without and with mercury control technologies in place. In some cases, samples from pilot- and bench-scale emission control tests were included in the laboratory studies. Several sets of 'paired' baseline and test fly ash and FGD materials collected during full-scale mercury emission control tests were also included in laboratory evaluations. Samples from mercury emission control tests all contained activated carbon (AC) and some also incorporated a sorbent-enhancing agent (EA). Laboratory release experiments focused on measuring releases of mercury under conditions designed to simulate CCB exposure to water, ambient-temperature air, elevated temperatures, and microbes in both wet and dry conditions. Results of laboratory evaluations indicated that: (1) Mercury and sometimes selenium are collected with AC used for mercury emission control and, therefore, present at higher concentrations than samples collected without mercury emission controls present. (2) Mercury is stable on CCBs collected from systems both without and with mercury emission controls present under most conditions tested, with the exception of vapor-phase releases of mercury exposed to elevated temperatures. (3) The presence of carbon either from added AC or from unburned coal can result in mercury being sorbed onto the CCB when exposed to ambient-temperature air. The environmental performance of the mercury captured on AC used as a sorbent for mercury emission control technologies indicated that current CCB management options will continue to be sufficiently protective of the environment, with the potential exception of exposure to elevated temperatures. The environmental performance of the other ATEs investigated indicated that current management options will be appropriate to the CCBs produced using AC in mercury emission controls.

  18. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, Nathaniel M. (Espanola, NM); Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM); Birdsell, Stephan A. (Los Alamos, NM)

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  19. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  20. Atmospheric Mercury near Salmon Falls Creek Reservoir in Southern Idaho

    SciTech Connect (OSTI)

    Michael L. Abbott; Jeffrey J. Einerson

    2007-12-01

    Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were measured over two-week seasonal field campaigns near Salmon Falls Creek Reservoir in south-central Idaho from the summer of 2005 through the fall of 2006 and over the entire summer of 2006 using automated Tekran mercury analyzers. GEM, RGM, and particulate mercury (HgP) were also measured at a secondary site 90 km to the west in southwestern Idaho during the summer of 2006. The study was performed to characterize mercury air concentrations in the southern Idaho area for the first time, estimate mercury dry deposition rates, and investigate the source of observed elevated concentrations. High seasonal variability was observed with the highest GEM (1.91 ± 0.9 ng m-3) and RGM (8.1 ± 5.6 pg m-3) concentrations occurring in the summer and lower values in the winter (1.32 ± 0.3 ng m-3, 3.2 ± 2.9 pg m-3 for GEM, RGM respectively). The summer-average HgP concentrations were generally below detection limit (0.6 ± 1 pg m-3). Seasonally-averaged deposition velocities calculated using a resistance model were 0.034 ± 0.032, 0.043 ± 0.040, 0.00084 ± 0.0017 and 0.00036 ± 0.0011 cm s-1 for GEM (spring, summer, fall, and winter, respectively) and 0.50 ± 0.39, 0.40 ± 0.31, 0.51 ± 0.43 and 0.76 ± 0.57 cm s-1 for RGM. The total annual RGM + GEM dry deposition estimate was calculated to be 11.9 ± 3.3 µg m-2, or about 2/3 of the total (wet + dry) deposition estimate for the area. Periodic elevated short-term GEM (2.2 – 12 ng m-3) and RGM (50 - 150 pg m-3) events were observed primarily during the warm seasons. Back-trajectory modeling and PSCF analysis indicated predominant source directions from the southeast (western Utah, northeastern Nevada) through the southwest (north-central Nevada) with fewer inputs from the northwest (southeastern Oregon and southwestern Idaho).

  1. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Ye Zhuang; Stanley J. Miller; Steven A. Benson; Michelle R. Olderbak

    2003-08-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the ''Advanced Hybrid''{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultra-high collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control.

  2. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Stanley J. Miller; Ye Zhuang; Michelle R. Olderbak

    2003-03-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4--Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control.

  3. Environmental chamber measurements of mercury flux from coal utilization by-products

    SciTech Connect (OSTI)

    Pekney, Natalie J.; Martello, Donald; Schroeder, Karl; Granite, Evan

    2009-05-01

    An environmental chamber was constructed to measure the mercury flux from coal utilization by-product (CUB) samples. Samples of fly ash, FGD gypsum, and wallboard made from FGD gypsum were tested under both dark and illuminated conditions with or without the addition of water to the sample. Mercury releases varied widely, with 7- day experiment averages ranging from -6.8 to 73 ng/m(2) h for the fly ash samples and -5.2 to 335 ng/m(2) h for the FGD/wallboard samples. Initial mercury content, fly ash type, and light exposure had no observable consistent effects on the mercury flux. For the fly ash samples, the effect of a mercury control technology was to decrease the emission. For three of the four pairs of FGD gypsum and wallboard samples, the wallboard sample released less (or absorbed more) mercury than the gypsum.

  4. Environmental chamber measurements of mercury flux from coal utilization by-products

    SciTech Connect (OSTI)

    Pekney, N.J.; Martello, D.V.; Schroeder, K.T.; Granite, E.J.

    2009-05-01

    An environmental chamber was constructed to measure the mercury flux from coal utilization by-product (CUB) samples. Samples of fly ash, FGD gypsum, and wallboard made from FGD gypsum were tested under both dark and illuminated conditions with or without the addition of water to the sample. Mercury releases varied widely, with 7-day experiment averages ranging from -6.8 to 73 ng/m2 h for the fly ash samples and -5.2 to 335 ng/m2 h for the FGD/wallboard samples. Initial mercury content, fly ash type, and light exposure had no observable consistent effects on the mercury flux. For the fly ash samples, the effect of a mercury control technology was to decrease the emission. For three of the four pairs of FGD gypsum and wallboard samples, the wallboard sample released less (or absorbed more) mercury than the gypsum.

  5. Lead (II) selenite halides Pb{sub 3}(SeO{sub 3}){sub 2}X{sub 2} (X = Br, I): Synthesis and crystal structure

    SciTech Connect (OSTI)

    Berdonosov, P. S., E-mail: berdonosov@inorg.chem.msu.ru; Olenev, A. V.; Dolgikh, V. A. [Moscow State University (Russian Federation)

    2012-03-15

    Two lead selenite halides, Pb{sub 3}(SeO{sub 3}){sub 2}Br{sub 2} and Pb{sub 3}(SeO{sub 3}){sub 2}I{sub 2}, have been prepared by solid-phase synthesis and structurally characterized. These compounds are isotypic and can be considered 3D with a microporous framework composed of lead polyhedra (distorted Archimedean antiprisms formed by oxygen and halogen atoms). The framework contains channels oriented in the [010] direction. These channels contain selenium atoms, which are bound with framework oxygen atoms belonging to different lead polyhedra.

  6. Obtaining accurate amounts of mercury from mercury compounds via electrolytic methods

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1987-07-07

    A process is described for obtaining pre-determined, accurate rate amounts of mercury. In one embodiment, predetermined, precise amounts of Hg are separated from HgO and plated onto a cathode wire. The method for doing this involves dissolving a precise amount of HgO which corresponds to a pre-determined amount of Hg desired in an electrolyte solution comprised of glacial acetic acid and H[sub 2]O. The mercuric ions are then electrolytically reduced and plated onto a cathode producing the required pre-determined quantity of Hg. In another embodiment, pre-determined, precise amounts of Hg are obtained from Hg[sub 2]Cl[sub 2]. The method for doing this involves dissolving a precise amount of Hg[sub 2]Cl[sub 2] in an electrolyte solution comprised of concentrated HCl and H[sub 2]O. The mercurous ions in solution are then electrolytically reduced and plated onto a cathode wire producing the required, pre-determined quantity of Hg. 1 fig.

  7. Evaluation of mercury in liquid waste processing facilities - Phase I report

    SciTech Connect (OSTI)

    Jain, V.; Occhipinti, J. E.; Shah, H.; Wilmarth, W. R.; Edwards, R. E.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  8. Evaluation of Mercury in Liquid Waste Processing Facilities - Phase I Report

    SciTech Connect (OSTI)

    Jain, V.; Occhipinti, J.; Shah, H.; Wilmarth, B.; Edwards, R.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  9. Field-deployable, nano-sensing approach for real-time detection of free mercury, speciation and quantification in surface stream waters and groundwater samples at the U.S. Department of Energy contaminated sites

    SciTech Connect (OSTI)

    Campiglia, Andres D.; Hernandez, Florencio E.

    2014-08-28

    The detrimental effects on human health caused by long-term exposure to trace contamination of toxic metals have been documented in numerous epidemiological and toxicological studies. The fact that metals are non-biodegradable and accumulate in the food chain poses a severe threat to the environment and human health. Their monitoring in drinking water, aquatic ecosystems, food and biological fluids samples is then essential for global sustainability. While research efforts employing established methodology continue to advance conceptual/computational models of contaminant behavior, the increasing awareness and public concern with environmental and occupational exposure to toxic metals calls for sensing devices capable to handle on-site elemental analysis in short analysis time. Field analysis with potable methodology prevents unnecessary scrutiny of un-contaminated samples via laboratory-bound methods, reduces analysis cost and expedites turnaround time for decision making and remediation purposes. Of particular toxicological interest are mercury and its species. Mercury is recognized as a major environmental pollution issue. The field-portable sensor developed in this project provides a unique and valuable tool for the on-site, real-time determination of inorganic mercury in surface waters. The ability to perform on-site analysis of mercury should prove useful in remote locations with difficult accessibility. It should facilitate data collection from statistically meaningful population sizes for a better understanding of the dose-effect role and the water-soil-plant-animal-human transfer mechanisms. The acquired knowledge should benefit the development of efficient environmental remediation processes, which is extremely relevant for a globally sustainable environment.

  10. Mercury emission control for coal fired power plants using coal and biomass 

    E-Print Network [OSTI]

    Arcot Vijayasarathy, Udayasarathy

    2009-05-15

    + Oxidized Mercury HgP Particulate Mercury HgCl2 Mercuric chloride HCl Hydrogen chloride Sep. Sol. Separated Solids HA High Ash PC Partially Composted DB Dairy Biomass TXL Texas Lignite Coal WYC Wyoming Subbituminous Coal HHV Higher Heating.... ? Oxidized mercury (Hg2+) ? normally exist in gas phase, and can be captured by wet FGD type of units, since they are highly soluble in water. ? Mercury in particulate form (HgP) ? exist in solid phase and can be easily captured at traditional particulate...

  11. Selective extraction of copper, mercury, silver and palladium ions from water using hydrophobic ionic liquids.

    E-Print Network [OSTI]

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; Von Stosch, Moritz; Prausnitz, John M.

    2008-01-01

    P. R. V. Extraction of fission palladium by Aliquat 336 andnitrate salt and potassium palladium chloride were used. [Copper, Mercury, Silver and Palladium Ions from Water Using

  12. FGD Additives to Segregate and Sequester Mercury in Solid Byproducts - Final Report

    SciTech Connect (OSTI)

    Searcy, K; Bltyhe, G M; Steen, W A

    2012-02-28

    Many mercury control strategies for U.S. coal-fired power generating plants involve co-benefit capture of oxidized mercury from flue gases treated by wet flue gas desulfurization (FGD) systems. For these processes to be effective at overall mercury control, the captured mercury must not be re-emitted to the atmosphere or into surface or ground water. The project sought to identify scrubber additives and FGD operating conditions under which mercury re-emissions would decrease and mercury would remain in the liquor and be blown down from the system in the chloride purge stream. After exiting the FGD system, mercury would react with precipitating agents to form stable solid byproducts and would be removed in a dewatering step. The FGD gypsum solids, free of most of the mercury, could then be disposed or processed for reuse as wallboard or in other beneficial reuse. The project comprised extensive bench-scale FGD scrubber tests in Phases I and II. During Phase II, the approaches developed at the bench scale were tested at the pilot scale. Laboratory wastewater treatment tests measured the performance of precipitating agents in removing mercury from the chloride purge stream. Finally, the economic viability of the approaches tested was evaluated.

  13. Manganese oxide/titania materials for removal of NOx and elemental mercury from flue gas

    SciTech Connect (OSTI)

    Lei Ji; Pavani M. Sreekanth; Panagiotis G. Smirniotis; Stephen W. Thiel; Neville G. Pinto [University of Cincinnati, Cincinnati, OH (United States). Department of Chemical & Materials Engineering

    2008-07-15

    A novel catalyst for low temperature selective catalytic reduction (SCR) using CO as reductant, MnOx supported on titania, has been shown to be effective for both elemental mercury capture and low temperature SCR. In low temperature (200{sup o}C) SCR trials using an industrially relevant space velocity (50 000 h{sup -1}) and oxygen concentration (2 vol %), nearly quantitative reduction of NOx was obtained using CO as the reductant. Fresh catalyst used as an adsorbent for elemental mercury from an inert atmosphere showed remarkable mercury capture capacity, as high as 17.4 mg/g at 200{sup o}C. The catalyst effectively captured elemental mercury after use in NOx reduction. Mercury capture efficiency was not affected by the presence of water vapor. Mercury capacity was reduced in the presence of SO{sub 2}. Manganese loading and bed temperature, which influence surface oxide composition, were found to be important factors for mercury capture. X-ray photoelectron spectroscopy (XPS) results reveal that the mercury is present in its oxidized form (HgO) in spent catalyst, indicating the participation of lattice oxygen of the catalyst in the reaction. These results suggest that a single-step process integrating low temperature SCR and mercury capture from flue gas might be feasible. 42 refs., 10 figs., 2 tabs.

  14. Summary Final Long-Term Management and Storage of Elemental Mercury...

    Office of Environmental Management (EM)

    Environmental Impact Statement Final LONG-TERM MANAGEMENT AND STORAGE OF ELEMENTAL MERCURY Final Supplemental Environmental Impact Statement LONG-TERM MANAGEMENT AND STORAGE OF...

  15. Final Long-Term Management and Storage of Elemental Mercury Supplement...

    Office of Environmental Management (EM)

    of the public to comment on the Draft Mercury Storage SEIS. More detail about facility design and operation is available in the Interim Guidance (DOE 2009), which establishes...

  16. The Effect of Wildfire on Soil Mercury Concentrations in Southern California Watersheds

    E-Print Network [OSTI]

    2010-01-01

    from Rocky Mountain forest fires. Global Biogeochemicalestimated in a prescribed forest-fire experiment in Florida,B. , & Vladicka, K. E. (2006). Forest fire increases mercury

  17. The Effect of Wildfire on Soil Mercury Concentrations in Southern California Watersheds

    E-Print Network [OSTI]

    2010-01-01

    mercury measured in the leachate (liquid, leachate, hence 2.07%(±0.34%) Hgin the equivalent leachate, resulting in only 0.58% (±0.07%)

  18. Method of preparing mercury with an arbitrary isotopic distribution

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1986-12-16

    This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg[sub 2]Cl[sub 2], corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H[sub 2]O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H[sub 2]O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered. 1 fig.

  19. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Charlene R. Crocker; Steven A. Benson; Stanley J. Miller

    2003-11-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4--Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultra-high collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this task is to evaluate the mercury capture effectiveness of the AHPC when used with elemental mercury oxidation additives and a spray dryer absorber and with novel baghouse sorbent inserts downstream of the fabric filter.

  20. Mercury Control With The Advanced Hybrid Particulate Collector

    SciTech Connect (OSTI)

    Steven A. Benson; Stanley J. Miller; Charlene R. Crocker; Kevin C. Galbreath; Jason D. Laumb; Jill M. Zola; Ye Zhuang; Michelle R. Olderbak

    2003-12-31

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes benchscale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this task is to evaluate the mercury capture effectiveness of the AHPC when used with elemental mercury oxidation additives and a spray dryer absorber and with novel baghouse sorbent inserts downstream of the fabric filter.

  1. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Steven A. Benson; Stanley J. Miller; Charlene R. Crocker; Kevin C. Galbreath; Jason D. Laumb; Jill M. Zola; Ye Zhuang; Michelle R. Olderbak

    2004-08-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scale-up and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this task is to evaluate the mercury capture effectiveness of the AHPC when used with elemental mercury oxidation additives, a spray dryer absorber, and novel baghouse sorbent inserts downstream of the fabric filter.

  2. Mercury Control With The Advanced Hybrid Particulate Collector

    SciTech Connect (OSTI)

    Steven A. Benson; Stanley J. Miller; Charlene R. Crocker; Kevin C. Galbreath; Jason D. Laumb; Jill M. Zola; Ye Zhuang; Michelle R. Olderbak

    2004-03-31

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes benchscale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scale-up and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this task is to evaluate the mercury capture effectiveness of the AHPC when used with elemental mercury oxidation additives, a spray dryer absorber, and novel baghouse sorbent inserts downstream of the fabric filter.

  3. Separation of Mercury from Flue Gas Desulfurization Scrubber Produced Gypsum

    SciTech Connect (OSTI)

    Hensman, Carl, E., P.h.D; Baker, Trevor

    2008-06-16

    Frontier Geosciences (Frontier; FGS) proposed for DOE Grant No. DE-FG02-07ER84669 that mercury control could be achieved in a wet scrubber by the addition of an amendment to the wet-FGD scrubber. To demonstrate this, a bench-scale scrubber and synthetic flue-gas supply was designed to simulate the limestone fed, wet-desulfurization units utilized by coal-fired power plants. Frontier maintains that the mercury released from these utilities can be controlled and reduced by modifying the existing equipment at installations where wet flue-gas desulfurization (FGD) systems are employed. A key element of the proposal was FGS-PWN, a liquid-based mercury chelating agent, which can be employed as the amendment for removal of all mercury species which enter the wet-FGD scrubber. However, the equipment design presented in the proposal was inadequate to demonstrate these functions and no significant progress was made to substantiate these claims. As a result, funding for a Phase II continuation of this work will not be pursued. The key to implementing the technology as described in the proposal and report appears to be a high liquid-to-gas ratio (L/G) between the flue-gas and the scrubber liquor, a requirement not currently implemented in existing wet-FGD designs. It may be that this constraint can be reduced through parametric studies, but that was not apparent in this work. Unfortunately, the bench-scale system constructed for this project did not function as intended and the funds and time requested were exhausted before the separation studies could occur.

  4. Kinetics of Mercury(II) Adsorption and Desorption on Soil

    E-Print Network [OSTI]

    Sparks, Donald L.

    Kinetics of Mercury(II) Adsorption and Desorption on Soil Y U J U N Y I N , H E R B E R T E . A L L of Delaware, Newark, Delaware 19716 D O N A L D L . S P A R K S Department of Plant and Soil Sciences kinetics of Hg(II) on four soils at pH 6 were investigated to discern the mechanisms controlling

  5. Mercury dimer spectroscopy and an Einstein-Podolsky-Rosen experiment 

    E-Print Network [OSTI]

    Qu, Xinmei

    2009-05-15

    SPECTROSCOPY AND AN EINSTEIN-PODOLSKY-ROSEN EXPERIMENT A Dissertation by XINMEI QU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY... August 2008 Major Subject: Physics MERCURY DIMER SPECTROSCOPY AND AN EINSTEIN-PODOLSKY-ROSEN EXPERIMENT A Dissertation by XINMEI QU Submitted to the Office of Graduate Studies of Texas A&M University in partial...

  6. Metal Hydrides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial ReportProposal to changeNovemberEnergyMessage fromMetal

  7. CORRELATION OF DNA METHYLATION WITH MERCURY CONTAMINATION IN MARINE ORGANISMS: A CASE STUDY OF NOAA MUSSEL WATCH TISSUE SAMPLES 

    E-Print Network [OSTI]

    Brinkmeyer, Robin; Taylor, Robert; Germ, Kaylyn E.

    2011-08-04

    contamination (measured by NOAA) and from sites with little to no measurable mercury. Assessment of anthropogenic stressors such as mercury in the coastal environment has traditionally relied upon species diversity indices or assays to determine lethal doses...

  8. In situ measurements of speciated atmospheric mercury and the identification of source regions in the Mexico City Metropolitan Area

    E-Print Network [OSTI]

    Rutter, A. P.

    In order to expand the currently limited understanding of atmospheric mercury source-receptor relationships in the Mexico City Metropolitan Area, real time measurements of atmospheric mercury were made at a downtown urban ...

  9. Sources of Mercury to East Fork Poplar Creek Downstream from the Y-12 National Security Complex: Inventories and Export Rates

    SciTech Connect (OSTI)

    Southworth, George R [ORNL; Greeley Jr, Mark Stephen [ORNL; Peterson, Mark J [ORNL; Lowe, Kenneth Alan [ORNL; Ketelle, Richard H [ORNL; Floyd, Stephanie B [ORNL

    2010-02-01

    East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee, has been heavily contaminated with mercury (also referred to as Hg) since the 1950s as a result of historical activities at the U.S. Department of Energy (DOE) Y-12 National Security Complex (formerly the Oak Ridge Y-12 Plant and hereinafter referred to as Y-12). During the period from 1950 to 1963, spills and leaks of elemental mercury (Hg{sup 0}) contaminated soil, building foundations, and subsurface drainage pathways at the site, while intentional discharges of mercury-laden wastewater added 100 metric tons of mercury directly to the creek (Turner and Southworth 1999). The inventory of mercury estimated to be lost to soil and rock within the facility was 194 metric tons, with another estimated 70 metric tons deposited in floodplain soils along the 25 km length of EFPC (Turner and Southworth 1999). Remedial actions within the facility reduced mercury concentrations in EFPC water at the Y-12 boundary from > 2500 ng/L to about 600 ng/L by 1999 (Southworth et al. 2000). Further actions have reduced average total mercury concentration at that site to {approx}300 ng/L (2009 RER). Additional source control measures planned for future implementation within the facility include sediment/soil removal, storm drain relining, and restriction of rainfall infiltration within mercury-contaminated areas. Recent plans to demolish contaminated buildings within the former mercury-use areas provide an opportunity to reconstruct the storm drain system to prevent the entry of mercury-contaminated water into the flow of EFPC. Such actions have the potential to reduce mercury inputs from the industrial complex by perhaps as much as another 80%. The transformation and bioaccumulation of mercury in the EFPC ecosystem has been a perplexing subject since intensive investigation of the issue began in the mid 1980s. Although EFPC was highly contaminated with mercury (waterborne mercury exceeded background levels by 1000-fold, mercury in sediments by more than 2000-fold) in the 1980s, mercury concentrations in EFPC fish exceeded those in fish from regional reference sites by only a little more than 10-fold. This apparent low bioavailability of mercury in EFPC, coupled with a downstream pattern of mercury in fish in which mercury decreased in proportion to dilution of the upstream source, lead to the assumption that mercury in fish would respond to decreased inputs of dissolved mercury to the stream's headwaters. However, during the past two decades when mercury inputs were decreasing, mercury concentrations in fish in Lower EFPC (LEFPC) downstream of Y-12 increased while those in Upper EFPC (UEFPC) decreased. The key assumption of the ongoing cleanup efforts, and concentration goal for waterborne mercury were both called into question by the long-term monitoring data. The large inventory of mercury within the watershed downstream presents a concern that the successful treatment of sources in the headwaters may not be sufficient to reduce mercury bioaccumulation within the system to desired levels. The relative importance of headwater versus floodplain mercury sources in contributing to mercury bioaccumulation in EFPC is unknown. A mercury transport study conducted by the Tennessee Valley Authority (TVA) in 1984 estimated that floodplain sources contributed about 80% of the total annual mercury export from the EFPC system (ORTF 1985). Most of the floodplain inputs were associated with wet weather, high flow events, while much of the headwater flux occurred under baseflow conditions. Thus, day-to-day exposure of biota to waterborne mercury was assumed to be primarily determined by the Y-12 source. The objective of this study was to evaluate the results of recent studies and monitoring within the EFPC drainage with a focus on discerning the magnitude of floodplain mercury sources and how long these sources might continue to contaminate the system after headwater sources are eliminated or greatly reduced.

  10. Task 2.8 -- Mercury speciation and capture in scrubber solutions. Semi-annual report, July 1--December 31, 1996

    SciTech Connect (OSTI)

    Ness, S.R.

    1997-08-01

    Investigations into mercury control across conventional scrubber systems have precipitated questions concerning (1) the initial speciation between oxidized and elemental forms of mercury in flue gas from coal-fired boilers and, subsequently, (2) the effects of scrubber slurry composition and pH on the mercury forms. Mercury capture in scrubber slurry is highly dependent on its form. Oxidized mercury is highly water-soluble and can be removed by scrubber slurry, whereas elemental mercury is not and passes through the scrubber to the stack. The objectives of this project are to determine whether scrubber solutions convert either form of mercury to another and whether mercury capture is affected by pH.

  11. Task 2.8 - Mercury speciation and capture in scrubber solutions: Semiannual report, January 1-June 30, 1996

    SciTech Connect (OSTI)

    Ness, S.R.

    1997-09-01

    Investigations into mercury control across conventional scrubber systems have precipitated questions concerning (1) the initial speciation between oxidized and elemental forms of mercury in flue gas from coal-fired boilers and subsequently, (2) the effects of scrubber slurry composition and pH on the mercury forms. Mercury capture in scrubber slurry is highly dependent on its own form. Oxidized mercury is highly water-soluble and can be removed by scrubber slurry, whereas elemental mercury is not and passes through the scrubber to the stack. The objectives of this project are to determine whether scrubber solutions convert either form of mercury to another and whether mercury capture is affected by pH.

  12. Sediment-adsorbed total mercury flux through Yolo Bypass, the primary floodway and wetland in the Sacramento Valley, California

    E-Print Network [OSTI]

    Springborn, M; Singer, MB; Singer, MB; Dunne, T

    2011-01-01

    sediment transport in the Sacramento River, California.Sediment transport Mass balance Yolo Bypass California a b sand transport of total mercury and methyl mercury in the Sacramento River basin, California.

  13. Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals

    SciTech Connect (OSTI)

    Goodrich, Jaclyn M.; Wang, Yi [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States)] [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Gillespie, Brenda [Department of Biostatistics, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States)] [Department of Biostatistics, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Werner, Robert [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States) [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Department of Physical Medicine and Rehabilitation, University of Michigan, 325 E. Eisenhower Parkway Suite 100, Ann Arbor, MI 48108 (United States); Franzblau, Alfred [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States)] [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Basu, Niladri, E-mail: niladri@umich.edu [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States)] [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States)

    2011-12-15

    Mercury is a potent toxicant of concern to both the general public and occupationally exposed workers (e.g., dentists). Recent studies suggest that several genes mediating the toxicokinetics of mercury are polymorphic in humans and may influence inter-individual variability in mercury accumulation. This work hypothesizes that polymorphisms in key glutathione synthesizing enzyme, glutathione s-transferase, and selenoprotein genes underlie inter-individual differences in mercury body burden as assessed by analytical mercury measurement in urine and hair, biomarkers of elemental mercury and methylmercury, respectively. Urine and hair samples were collected from a population of dental professionals (n = 515), and total mercury content was measured. Average urine (1.06 {+-} 1.24 ug/L) and hair mercury levels (0.49 {+-} 0.63 ug/g) were similar to national U.S. population averages. Taqman assays were used to genotype DNA from buccal swab samples at 15 polymorphic sites in genes implicated in mercury metabolism. Linear regression modeling assessed the ability of polymorphisms to modify the relationship between mercury biomarker levels and exposure sources (e.g., amalgams, fish consumption). Five polymorphisms were significantly associated with urine mercury levels (GSTT1 deletion), hair mercury levels (GSTP1-105, GSTP1-114, GSS 5 Prime ), or both (SEPP1 3 Prime UTR). Overall, this study suggests that polymorphisms in selenoproteins and glutathione-related genes may influence elimination of mercury in the urine and hair or mercury retention following exposures to elemental mercury (via dental amalgams) and methylmercury (via fish consumption). -- Highlights: Black-Right-Pointing-Pointer We explore the influence of 15 polymorphisms on urine and hair Hg levels. Black-Right-Pointing-Pointer Urine and hair Hg levels in dental professionals were similar to the US population. Black-Right-Pointing-Pointer GSTT1 and SEPP1 polymorphisms associated with urine Hg levels. Black-Right-Pointing-Pointer Accumulation of Hg in hair following exposure from fish was modified by genotype. Black-Right-Pointing-Pointer GSTP1, GSS, and SEPP1 polymorphisms influenced Hg accumulation in hair.

  14. Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors

    SciTech Connect (OSTI)

    Gary Blythe; John Currie; David DeBerry

    2008-03-31

    This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling efforts.

  15. Practical limitations of ITS-90 from the mercury triple point to the silver freeze point

    SciTech Connect (OSTI)

    Tavener, J. P.; Tavener, S. J.; Tavener, I. F.; Davies, N. [Isothermal Technology Ltd (Isotech), Pine Grove, Southport, Merseyside, PR9 9AG, England (United Kingdom)] [Isothermal Technology Ltd (Isotech), Pine Grove, Southport, Merseyside, PR9 9AG, England (United Kingdom)

    2013-09-11

    The NPL published a forward to the ITS-90 text as follows:- 'The purpose of the ITS is to define procedures by which certain specified practical thermometers of the required quality can be calibrated in such a way that the values of temperature obtained from them can be precise and reproducible, while at the same time closely approximating the corresponding thermodynamic values.' [1]. The paper investigates the properties of thirty four lots of 6N pure metal used to make cells conforming to ITS-90 from mercury through silver over a period of twenty years. Three hundred individual cells are analysed by the impurities listed and supplied with each lot, melt and freeze curve slopes are also summarised for each lot and depressions calculated. These are then compared to the slopes and depressions suggested in the Supplementary Information for the ITS-90 and in CCT/2000-13 'Optimal Realizations'. Results are summarised, tabulated and discussed. Three lots of the thirty four were found to produce cells outside 6N expectations; however the remaining thirty one lots no matter how well or badly the accompanying certification was presented produced cells that conformed to 6N expectations as suggested in Supplementary Information to ITS-90 and CCT/2000-13.

  16. Fate of Mercury in Synthetic Gypsum Used for Wallboard Production

    SciTech Connect (OSTI)

    Jessica Marshall Sanderson

    2006-06-01

    This report presents and discusses results from Task 5 of the study ''Fate of Mercury in Synthetic Gypsum Used for Wallboard Production,'' performed at a full-scale commercial wallboard plant. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. The FGD process is used to control the sulfur dioxide emissions which would result in acid rain if not controlled. This practice has long benefited the environment by recycling the FGD gypsum byproduct, which is becoming available in increasing quantities, decreasing the need to landfill this material, and increasing the sustainable design of the wallboard product. However, new concerns have arisen as recent mercury control strategies developed for power plants involve the capture of mercury in FGD systems. The objective of this study is to determine whether any mercury is released into the atmosphere when the synthetic gypsum material is used as a feedstock for wallboard production. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory (Cooperative Agreement DE-FC26-04NT42080), USG Corporation, and EPRI. USG Corporation is the prime contractor, and URS Group is a subcontractor. The project scope includes five discrete tasks, each conducted at various USG wallboard plants using synthetic gypsum from different FGD systems. The five tasks were to include (1) a baseline test, then variations representing differing power plant (2) emissions control configurations, (3) treatment of fine gypsum particles, (4) coal types, and (5) FGD reagent types. However, Task 5, which was to evaluate gypsum produced from an alternate FGD reagent, could not be conducted as planned. Instead, Task 5 was conducted at conditions similar to a previous task, Task 3, although with gypsum from an alternate FGD system. In this project, process stacks in the wallboard plant have been sampled using the Ontario Hydro method. The stack locations sampled for each task include a dryer for the wet gypsum as it enters the plant and a gypsum calciner. The stack of the dryer for the wet wallboard product was also tested as part of this task, and was tested as part of Tasks 1 and 4. Also at each site, in-stream process samples were collected and analyzed for mercury concentration before and after each significant step in wallboard production. The Ontario Hydro results, process sample mercury concentration data, and process data were used to construct mercury mass balances across the wallboard plants. Task 5 was conducted at a wallboard plant processing synthetic gypsum from a power plant that fires Eastern bituminous coal. The power plant is equipped with a selective catalytic reduction (SCR) system for NOX emissions control, but the SCR was bypassed during the time period the gypsum tested was produced. The power plant has a single-loop, open spray tower, limestone reagent FGD system, with forced oxidation conducted in a reaction tank integral with the FGD absorber. The FGD system has gypsum fines blow down as part of the dewatering step. Gypsum fines blow down is believed to be an important variable that impacts the amount of mercury in the gypsum byproduct and possibly its stability during the wallboard process. The results of the Task 5 stack testing, as measured by the Ontario Hydro method, detected that an average of 51% of the incoming mercury in the FGD gypsum was emitted during wallboard production. These losses were distributed as 2% or less each across the wet gypsum dryer and product wallboard dryer, and about 50% across the gypsum calciner. Emissions were similar to what Task 3 results showed, on both a percentage and a mass basis, for gypsum produced by a power plant firing bituminous coal and also having gypsum fines blow down as part of the FGD dewatering scheme. As was seen in the Task 1 through 4 results, most of the mercury detected in the stack testing on the wet gypsum dryer and kettle calciner was in the form of elemental mercury. In the wallboard dryer kiln, a more signific

  17. Magnetic Transitions in Iron Porphyrin Halides by Inelastic Neutron Scattering and Ab-initio Studies of Zero-Field Splittings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stavretis, Shelby E.; Atanasov, Mihail; Podlesnyak, Andrey A.; Hunter, Seth C.; Neese, Frank; Xue, Zi-Ling

    2015-10-02

    Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H2TPP = tetraphenylporphyrin) are determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm–1 for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm–1, E = 0.1(2) cm–1 and D = 13.4(6) cm–1, E = 0.3(6) cm–1 for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm–1 for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series. The electronic structure of [Fe(TPP)X] (X =more »F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the 6A1 ground state. D was calculated from wave functions of the electronic multiplets spanned by the d5 configuration of Fe(III) along with spin–orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the ?- and ?-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX63- complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the ?- and ?-antibonding energies e?X (? = ?, ?) in the series from X = F to I. Analysis of this correlation using second-order perturbation theory expressions in terms of angular overlap parameters rationalizes the experimentally deduced trend. Furthermore, D parameters from CASSCF and NEVPT2 results have been calibrated against those from the INS data, yielding a predictive power of these approaches. Methods to improve the quantitative agreement between ab initio calculated and experimental D and spectroscopic transitions for high-spin Fe(III) complexes are proposed.« less

  18. 10.1177/0270467603259787ARTICLEBULLETIN OF SCIENCE, TECHNOLOGY & SOCIETY / October 2003Roe / FISHING FOR IDENTITY Fishing for Identity: Mercury Contamination

    E-Print Network [OSTI]

    Delaware, University of

    / FISHING FOR IDENTITY Fishing for Identity: Mercury Contamination and Fish Consumption Among Indigenous Groups in the United States Amy Roe University of Delaware Mercury contamination of local fish stocks has disproportionately impacted by the risks of mercury contamination of their food source. Some of these groups

  19. Packaging a liquid metal ESD with micro-scale mercury droplet.

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    Micro-Gas-Analyzers have many applications in detecting chemical compounds present in the air. MEMS valves are used to perform sampling of gasses, as they enable control of fluid flow at the micro level. Current generation electrostatically actuated MEMS valves were tested to determine their ability to hold off a given gauge pressure with an applied voltage. Current valve designs were able to hold off 98 psi with only 82 V applied to the valves. The valves were determined to be 1.83 times more efficient than older valve designs, due to increasing the electrostatic area of the valve and trapping oxide between polysilicon layers. Newer valve designs were also proposed and modeled using ANSYS multiphysics, which should be able to hold off 100 psi with only 29 V needed. This performance would be 2.82 times more efficient than current designs, or 5.17 times more efficient than older valve designs. This will be accomplished by further increasing the valve radius and decreasing the gap between the valve boss and electrode.

  20. Packaging a liquid metal ESD with micro-scale Mercury droplet. (Technical

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeeding access to(Conference) |ofPDVGLENELG IN GALEPRT/Sabbatical

  1. Packaging a liquid metal ESD with micro-scale Mercury droplet. (Technical

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeeding access to(Conference) |ofPDVGLENELG IN GALEPRT/SabbaticalReport) |

  2. Metal filled porous carbon

    DOE Patents [OSTI]

    Gross, Adam F. (Los Angeles, CA); Vajo, John J. (West Hills, CA); Cumberland, Robert W. (Malibu, CA); Liu, Ping (Irvine, CA); Salguero, Tina T. (Encino, CA)

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  3. Air-sea exchange in the global mercury cycle Sarah A. Strode,1

    E-Print Network [OSTI]

    Park, Rokjin

    Research Council, 2000], as well as detrimental effects on wildlife [Wolfe et al., 1998]. Because mercury sources [Lindqvist et al., 1991]. [3] Mercury is emitted to the atmosphere from anthropo- genic sources al., 2003], with direct anthropogenic emissions representing approximately one third of the total

  4. Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers

    E-Print Network [OSTI]

    Li, Ying

    Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility's studies have determined that mercury emissions from coal-fired power plants pose significant hazards to public health and must be reduced. Coal-fired power plants represent a significant fraction

  5. Yale's Environment School Power Plants Big Influence in Regional Mercury Emissions Introduction Knowledge

    E-Print Network [OSTI]

    Lee, Xuhui

    Yale's Environment School · Power Plants Big Influence in Regional Mercury Emissions Introduction Power Plants Big Influence in Regional Mercury Emissions Related Topics: News Releases; Publications winters and a correspondent decrease in the need for regional power plants to burn coal could partially

  6. Sex Differences in Mercury Contamination of Birds: Testing Multiple Hypotheses with Meta-Analysis

    E-Print Network [OSTI]

    Lajeunesse, Marc J.

    size dimorphism did not explain variation in sex differences in mercury burden among breeding birds. WeSex Differences in Mercury Contamination of Birds: Testing Multiple Hypotheses with Meta-5200, United States *S Supporting Information ABSTRACT: The sex of a bird can, in principle, affect exposure

  7. High Mercury Concentrations Reflect Trophic Ecology of Three Deep-Water Chondrichthyans

    E-Print Network [OSTI]

    Newman, Michael C.

    High Mercury Concentrations Reflect Trophic Ecology of Three Deep-Water Chondrichthyans Michael C concentrations were explored for three deep-water chondrichthyans (Etmopterus princeps, Cen- troscymnus position in the trophic web (as indicated by differences in d15 N). Mercury is a major contaminant

  8. Atmospheric Environment 42 (2008) 51935204 Seasonal and spatial patterns of mercury wet deposition in

    E-Print Network [OSTI]

    Jacob, Daniel J.

    2008-01-01

    ) and enter the global pool. Anthropogenic emission of mercury from North America is mostly from coal North America (Seigneur et al., 2004; Selin et al., 2007; Strode et al., 2007, 2008 America accounts for only 7% of global anthropogenic emission of mercury (2000 statistics) (Pacyna et al

  9. Short-Term Solubility of Eight Alloys Circulating in Mercury at Room Temperature

    E-Print Network [OSTI]

    McDonald, Kirk

    at room temperature, it has found application in particle-accelerator targets with high energy the ser- vice lifetime of a mercury target container may be limited by corrosion or erosion caused by the flowing mercury, the pres- ent authors found it difficult to retrieve clear guidance from the literature

  10. Bench-scale vitrification studies with Savannah River Site mercury contaminated soil

    SciTech Connect (OSTI)

    Cicero, C.A.; Bickford, D.F.

    1995-12-31

    The Savannah River Technology Center (SRTC) has been charted by the Department of Energy (DOE)--Office of Technology Development (OTD) to investigate vitrification technology for the treatment of Low Level Mixed Wastes (LLMW). In fiscal year 1995, mercury containing LLMW streams were targeted. In order to successfully apply vitrification technology to mercury containing LLMW, the types and quantities of glass forming additives necessary for producing homogeneous glasses from the wastes have to be determined and the treatment for the mercury portion must also be determined. Selected additives should ensure that a durable and leach resistant waste form is produced, while the mercury treatment should ensure that hazardous amounts of mercury are not released into the environment. The mercury containing LLMW selected for vitrification studies at the SRTC was mercury contaminated soil from the TNX pilot-plant facility at the Savannah River Site (SRS). Samples of this soil were obtained so bench-scale vitrification studies could be performed at the SRTC to determine the optimum waste loading obtainable in the glass product without sacrificing durability and leach resistance. Vitrifying this waste stream also required offgas treatment for the capture of the vaporized mercury.

  11. Mercury Releases to Air and Rivers Contaminate Ocean Fish: Dartmouth-Led Effort Publishes Major Findings

    E-Print Network [OSTI]

    Myers, Lawrence C.

    Mercury Releases to Air and Rivers Contaminate Ocean Fish: Dartmouth-Led Effort Publishes Major and in Sources to Seafood: Mercury Pollution in the Marine Environment-- a companion report by the Dartmouth released into the air and then deposited into oceans, contaminates seafood commonly eaten by people

  12. Incorporating Uncertainty in Watershed Management Decision-Making: A Mercury TMDL Case Study

    E-Print Network [OSTI]

    Stanford University

    Incorporating Uncertainty in Watershed Management Decision-Making: A Mercury TMDL Case Study-4020, Stanford, CA 94305-4020; email: labiosa@stanford.edu 2 Department of Management Science. Several mercury Total Maximum Daily Load regulations are currently being developed to address this problem

  13. Marvell Nanolab Member login Lab Manual Index Mercury Web Berkeley Microlab Chapter 5.31

    E-Print Network [OSTI]

    Healy, Kevin Edward

    Win21 Rapid Thermal Processor ­ RTP1. 2.0 Purpose This manual describes the operating procedures for rtpMarvell Nanolab Member login Lab Manual Index Mercury Web Berkeley Microlab Chapter 5.31 AccuThermo 610 rtp is in the manual located on Mercury. 5.0 Definitions & Process Terminology 5.1 RTP: Rapid

  14. Does proximity to coal-fired power plants influence fish tissue mercury?

    E-Print Network [OSTI]

    Does proximity to coal-fired power plants influence fish tissue mercury? Dana K. Sackett · D. Derek+Business Media, LLC 2010 Abstract Much of the mercury contamination in aquatic biota originates from coal of contaminated fish. In this study, we quantified the relative importance of proximity to coal-fired power plants

  15. Heavy metal ions are potent inhibitors of protein folding

    SciTech Connect (OSTI)

    Sharma, Sandeep K. [Biochemisches Institut, Universitaet Zuerich, CH-8057 Zuerich (Switzerland); Departement de Biologie Moleculaire Vegetale, Universite de Lausanne, CH-1015 Lausanne (Switzerland); Goloubinoff, Pierre [Departement de Biologie Moleculaire Vegetale, Universite de Lausanne, CH-1015 Lausanne (Switzerland); Christen, Philipp [Biochemisches Institut, Universitaet Zuerich, CH-8057 Zuerich (Switzerland)], E-mail: christen@bioc.uzh.ch

    2008-07-25

    Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd{sup 2+}, Hg{sup 2+} and Pb{sup 2+} proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC{sub 50} in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far.

  16. Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems

    SciTech Connect (OSTI)

    J. A. Withum; J. E. Locke

    2006-02-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the tenth in a series of topical reports, describes the results and analysis of mercury sampling performed on two 468 MW units burning bituminous coal containing 1.3-1.7% sulfur. Unit 2 is equipped with an SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions, respectively. Unit 1 is similar to Unit 2, except that Unit 1 has no SCR for NOx control. Four sampling tests were performed on both units in January 2005; flue gas mercury speciation and concentrations were determined at the economizer outlet, air heater outlet (ESP inlet), ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process samples for material balances were collected with the flue gas measurements. The results show that the SCR increased the oxidation of the mercury at the air heater outlet. At the exit of the air heater, a greater percentage of the mercury was in the oxidized and particulate forms on the unit equipped with an SCR compared to the unit without an SCR (97.4% vs 91%). This higher level of oxidation resulted in higher mercury removals in the scrubber. Total mercury removal averaged 97% on the unit with the SCR, and 87% on the unit without the SCR. The average mercury mass balance closure was 84% on Unit 1 and 103% on Unit 2.

  17. Application of atomic vapor laser isotope separation to the enrichment of mercury

    SciTech Connect (OSTI)

    Crane, J.K.; Erbert, G.V.; Paisner, J.A.; Chen, H.L.; Chiba, Z.; Beeler, R.G.; Combs, R.; Mostek, S.D.

    1986-09-01

    Workers at GTE/Sylvania have shown that the efficiency of fluorescent lighting may be markedly improved using mercury that has been enriched in the /sup 196/Hg isotope. A 5% improvement in the efficiency of fluorescent lighting in the United States could provide a savings of approx. 1 billion dollars in the corresponding reduction of electrical power consumption. We will discuss the results of recent work done at our laboratory to develop a process for enriching mercury. The discussion will center around the results of spectroscopic measurements of excited state lifetimes, photoionization cross sections and isotope shifts. In addition, we will discuss the mercury separator and supporting laser mesurements of the flow properties of mercury vapor. We will describe the laser system which will provide the photoionization and finally discuss the economic details of producing enriched mercury at a cost that would be attractive to the lighting industry.

  18. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  19. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Phelps, Cindy (Moscow, ID)

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  20. COORDINATION CHEMISTRY OF METAL SURFACES AND METAL COMPLEXES

    E-Print Network [OSTI]

    Muetterties, E.L.

    2013-01-01

    4, 1980 Catalysis~ COORDINATION CHEMISTRY OF METAL SURFACESAND METAL COMPLEXES Earl L. Muetterties December 1979 TWO-10308 COORDINATION CHEt1ISTRY OF METAL SURFACES AND METAL

  1. The retention time of inorganic mercury in the brain — A systematic review of the evidence

    SciTech Connect (OSTI)

    Rooney, James P.K.

    2014-02-01

    Reports from human case studies indicate a half-life for inorganic mercury in the brain in the order of years—contradicting older radioisotope studies that estimated half-lives in the order of weeks to months in duration. This study systematically reviews available evidence on the retention time of inorganic mercury in humans and primates to better understand this conflicting evidence. A broad search strategy was used to capture 16,539 abstracts on the Pubmed database. Abstracts were screened to include only study types containing relevant information. 131 studies of interest were identified. Only 1 primate study made a numeric estimate for the half-life of inorganic mercury (227–540 days). Eighteen human mercury poisoning cases were followed up long term including autopsy. Brain inorganic mercury concentrations at death were consistent with a half-life of several years or longer. 5 radionucleotide studies were found, one of which estimated head half-life (21 days). This estimate has sometimes been misinterpreted to be equivalent to brain half-life—which ignores several confounding factors including limited radioactive half-life and radioactive decay from surrounding tissues including circulating blood. No autopsy cohort study estimated a half-life for inorganic mercury, although some noted bioaccumulation of brain mercury with age. Modelling studies provided some extreme estimates (69 days vs 22 years). Estimates from modelling studies appear sensitive to model assumptions, however predications based on a long half-life (27.4 years) are consistent with autopsy findings. In summary, shorter estimates of half-life are not supported by evidence from animal studies, human case studies, or modelling studies based on appropriate assumptions. Evidence from such studies point to a half-life of inorganic mercury in human brains of several years to several decades. This finding carries important implications for pharmcokinetic modelling of mercury and potentially for the regulatory toxicology of mercury.

  2. Fate of Mercury in Synthetic Gypsum Used for Wallboard Production

    SciTech Connect (OSTI)

    Jessica Sanderson; Gary M. Blythe; Mandi Richardson

    2006-12-01

    This report presents and discusses results from Task 6 of the study 'Fate of Mercury in Synthetic Gypsum Used for Wallboard Production,' performed at a full-scale commercial wallboard plant. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. This practice has long benefited the environment by recycling the FGD gypsum byproduct, which is becoming available in increasing quantities, decreasing the need to landfill this material, and increasing the sustainable design of the wallboard product. However, new concerns have arisen as recent mercury control strategies involve the capture of mercury in FGD systems. The objective of this study is to determine whether any mercury is released into the atmosphere when the synthetic gypsum material is used as a feedstock for wallboard production. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory (Cooperative Agreement DE-FC26-04NT42080), USG Corporation, and EPRI. USG Corporation is the prime contractor, and URS Group is a subcontractor. The project scope now includes six discrete tasks, each conducted at various USG wallboard plants using synthetic gypsum from different FGD systems. The project was originally composed of five tasks, which were to include (1) a baseline test, then variations representing differing power plant: (2) emissions control configurations, (3) treatment of fine gypsum particles, (4) coal types, and (5) FGD reagent types. However, Task 5, which was to include testing with an alternate FGD reagent, could not be conducted as planned. Instead, Task 5 was conducted at conditions similar to Task 3, although with gypsum from an alternate FGD system. Subsequent to conducting Task 5 under these revised conditions, an opportunity arose to test gypsum produced at the same FGD system, but with an additive (Degussa Corporation's TMT-15) being used in the FGD system. TMT-15 was expected to impact the stability of mercury in synthetic gypsum used to produce wallboard, so Task 6 was added to the project to test this theory. In this project, process stacks in the wallboard plant have been sampled using the Ontario Hydro method. For every task, the stack locations sampled have included a dryer for the wet gypsum as it enters the plant and a gypsum calciner. For Tasks 1, 4, 5 and 6, the stack of the dryer for the wet wallboard product was also tested. Also at each site, in-stream process samples were collected and analyzed for mercury concentration before and after each significant step in wallboard production. The Ontario Hydro results, process sample mercury concentration data, and process data were used to construct mercury mass balances across the wallboard plants. Task 6 was conducted at a wallboard plant processing synthetic gypsum from a power plant that fires Eastern bituminous coal. The power plant has a single-loop, open spray tower limestone forced oxidation FGD system, with the forced oxidation conducted in the reaction tank integral with the FGD absorber. The FGD system has gypsum fines blow down as part of the dewatering step. The power plant is equipped with a selective catalytic reduction (SCR) system for NOX emissions control, and the SCR was in service during the time period the gypsum tested was produced. Also, as mentioned above, Degussa additive TMT-15 was being added to the FGD system when this gypsum was produced. The results of the Task 6 stack testing, as measured by the Ontario Hydro method, detected that an average of 55% of the incoming mercury was emitted during wallboard production. These losses were distributed as about 4% across the dryer mill, 6% across the board dryer kiln, and 45% across the kettle calciner. Emissions were similar to what Task 5 results showed on a percentage basis, but about 30% lower on a mass basis. The same power plant FGD system produced the synthetic gypsum used in Task 5 (with no use of TMT-15) and in Task 6 (with TMT-15 added to the FGD system). The lower emissions on a mass basis appeared

  3. Mercury Speciation in Piscivorous Fish from Mining-impacted Reservoirs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matter ByMentor-Protege ApplicationMercury Speciation in

  4. Mercury cleanup efforts intensify | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matter ByMentor-Protege ApplicationMercury Speciation

  5. Catalytic graphitization of carbon aerogels by transition metals

    SciTech Connect (OSTI)

    Maldonado-Hodar, F.J.; Moreno-Castilla, C.; Rivera-Utrilla, J.; Hanzawa, Y.; Yamada, Y.

    2000-05-02

    Carbon aerogels and Cr-, Fe-, Co-, and Ni-containing carbon aerogels were obtained by pyrolysis, at temperatures between 500 and 1,800 C, of the corresponding aerogels prepared by the sol-gel method from polymerization of resorcinol with formaldehyde. All samples were characterized by mercury porosimetry, nitrogen adsorption, X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. Results obtained show that carbon aerogels are, essentially, macroporous materials that maintain large pore volumes even after pyrolysis at 1,800 C. For pyrolysis at temperatures higher than 1,000 C, the presence of the transition metals produced graphitized areas with three-dimensional stacking order, as shown by HRTEM, XRD, and Raman spectroscopy. HRTEM also showed that the metal-carbon containing aerogels were formed by polyhedral structures. Cr and Fe seem to be the best catalysts for graphitization of carbon aerogels.

  6. Method and making group IIB metal - telluride films and solar cells

    DOE Patents [OSTI]

    Basol, Bulent M. (Redondo Beach, CA); Kapur, Vijay K. (Northridge, CA)

    1990-08-21

    A technique is disclosed forming thin films (13) of group IIB metal-telluride, such as Cd.sub.x Zn.sub.1-x Te (0.ltoreq.x.ltoreq.1), on a substrate (10) which comprises depositing Te (18) and at least one of the elements (19) of Cd, Zn, and Hg onto a substrate and then heating the elements to form the telluride. A technique is also provided for doping this material by chemically forming a thin layer of a dopant on the surface of the unreacted elements and then heating the elements along with the layer of dopant. A method is disclosed of fabricating a thin film photovoltaic cell which comprises depositing Te and at least one of the elements of Cd, Zn, and Hg onto a substrate which contains on its surface a semiconductor film (12) and then heating the elements in the presence of a halide of the Group IIB metals, causing the formation of solar cell grade Group IIB metal-telluride film and also causing the formation of a rectifying junction, in situ, between the semiconductor film on the substrate and the Group IIB metal-telluride layer which has been formed.

  7. Enhanced response of an oligonucleotide-based biosensor to environmental mercury

    SciTech Connect (OSTI)

    Edenborn, H.M.

    2006-10-01

    One environmental pollutant of particular relevance to the coal-generated power industry is mercury. Power plants in the U.S., led by Texas, Ohio, Pennsylvania, Indiana, and Alabama, collectively emitted over 90,000 pounds of mercury into the air in 2003. Calls for increased mercury monitoring activities have come from many groups concerned with environmental contamination and mercury bioconcentration in fish. Additionally, the benefits of improvements in the reduction of mercury emissions from existing power plants cannot be seriously evaluated without extensive monitoring of the environment. Low in situ mercury concentrations and the expense of traditional laboratory analyses currently limit such routine and effective monitoring. Microbial biosensors sensitive to mercury have been developed that quantitatively produce light in response to the amount of mercury (II) entering the cells. However, these sensors are typically difficult to prepare, can have long lag times between initial exposure and subsequent light emission, and are difficult to use in the field. Whole cell biosensors using living bacteria also require attention to the growth requirements of the cells, as well as complications brought on by the presence of other toxic compounds in addition to mercury. A “molecular beacon” sensor for mercury (II) reported by Ono and Togashi (Angew. Chem. Int. Ed. 2004, 43:4300-4302.) was modified to enhance its sensitivity and fluorescence response. The basic detection method involves the selective binding of mercury ions to thymine-thymine (T-T) base pairs in DNA duplexes. An oligonucleotide sequence in the sensor changes its conformation upon binding with mercury ions, and causes a fluorophore at one end of the oligonucleotide sequence to come in proximity with a quencher molecule attached to the other end. Enhanced fluorescence resonance energy transfer (FRET) results in a decrease in the intensity of the fluorescence spectrum. The use of fluorescein as a harvester fluorophore and alternative emitter fluorophores dramatically increased the sensitivity of the sensor. The fluorescence spectrum generated by this sensor is analyzed using a field spectrofluorometer, and the analytical approach may be useful in environmental mercury monitoring activities.

  8. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Trending: Metal Oxo Bonds Print Wednesday, 29 May 2013 00:00 Metal oxides are important for scientific and technical applications in a variety of...

  9. Potential Moderating Effects of Selenium on Mercury Uptake and Selenium:Mercury Molar Ratios in Fish From Oak Ridge and Savannah River Site - 12086

    SciTech Connect (OSTI)

    Burger, Joanna; Gochfeld, Michael; Donio, Mark; Jeitner, Christian; Pittfield, Taryn

    2012-07-01

    Mercury contamination is an important remediation issue at the U.S. Department of Energy's (DOE) Oak Ridge Reservation and to a lesser extent at other DOE sites because of the hazard it presents, potential consequences to humans and eco-receptors, and completed pathways, to offsite receptors. Recent work has emphasized that selenium might ameliorate the toxicity of mercury, and we examine the selenium:mercury (Se:Hg) molar ratios in fish from Oak Ridge, and compare them to Se:Hg molar ratios in fish from the Savannah River. Selenium/mercury molar ratios varied considerably among and within fish species. There was considerable variation in the molar ratios for individual fish (as opposed to mean ratios by species) for freshwater fish from both sites. The inter-individual variation in molar ratios indicates that such that the molar ratios of mean Se and Hg concentrations may not be representative. Even for fish species with relatively low mercury levels, some individual fish have molar ratios less than unity, the value sometime thought to be protective. Selenium levels varied narrowly regardless of fish size, consistent with homeostatic regulation of this essential trace element. The data indicate that considerable attention will need to be directed toward variations and variances, as well as the mechanisms of the interaction of selenium and mercury, before risk assessment and risk management policies can use this information to manage mercury pollution and risk. Even so, if there are high levels of selenium in the fish from Poplar Creek on Oak Ridge, then the potential exists for some amelioration of adverse health effects, on the fish themselves, predators that eat them, and people who consume them. This work will aid DOE because it will allow managers and scientists to understand another aspect that affects fate and transport of mercury, as well as the potential effects of methylmercury in fish for human and ecological receptors. The variability within fish species, however, suggests that the relative Se:Hg molar ratios in fish are not stable enough to be used in risk assessment at this time. Nor is it known how much excess selenium is required to confer any degree of protectiveness. That is, in conducting risk assessments, it is not possible to determine the spread of ratios, which would be needed for probabilistic risk assessment. Significantly more fish samples per species are required to begin to generate data that would allow it use in risk assessment. Adding Se:Hg molar ratios seems to complicate risk assessment for the potential adverse effects of mercury exposure, and using mercury levels at this time remains the most viable option. (authors)

  10. Fabrication of large-volume, low-cost ceramic lanthanum halide scintillators for gamma ray detection : final report for DHS/DNDO/TRDD project TA-01-SL01.

    SciTech Connect (OSTI)

    Boyle, Timothy J.; Ottley, Leigh Anna M.; Yang, Pin; Chen, Ching-Fong; Sanchez, Margaret R.; Bell, Nelson Simmons

    2008-10-01

    This project uses advanced ceramic processes to fabricate large, optical-quality, polycrystalline lanthanum halide scintillators to replace small single crystals produced by the conventional Bridgman growth method. The new approach not only removes the size constraint imposed by the growth method, but also offers the potential advantages of both reducing manufacturing cost and increasing production rate. The project goal is to fabricate dense lanthanum halide ceramics with a preferred crystal orientation by applying texture engineering and solid-state conversion to reduce the thermal mechanical stress in the ceramic and minimize scintillation light scattering at grain boundaries. Ultimately, this method could deliver the sought-after high sensitivity and <3% energy resolution at 662 keV of lanthanum halide scintillators and unleash their full potential for advanced gamma ray detection, enabling rapid identification of radioactive materials in a variety of practical applications. This report documents processing details from powder synthesis, seed particle growth, to final densification and texture development of cerium doped lanthanum bromide (LaBr{sub 3}:Ce{sup +3}) ceramics. This investigation demonstrated that: (1) A rapid, flexible, cost efficient synthesis method of anhydrous lanthanum halides and their solid solutions was developed. Several batches of ultrafine LaBr{sub 3}:Ce{sup +3} powder, free of oxyhalide, were produced by a rigorously controlled process. (2) Micron size ({approx} 5 {micro}m), platelet shape LaBr{sub 3} seed particles of high purity can be synthesized by a vapor phase transport process. (3) High aspect-ratio seed particles can be effectively aligned in the shear direction in the ceramic matrix, using a rotational shear-forming process. (4) Small size, highly translucent LaBr{sub 3} (0.25-inch diameter, 0.08-inch thick) samples were successfully fabricated by the equal channel angular consolidation process. (5) Large size, high density, translucent LaBr{sub 3} ceramics samples (3-inch diameter, > 1/8-inch thick) were fabricated by hot pressing, demonstrating the superior manufacturability of the ceramic approach over single crystal growth methods in terms of size capability and cost. (6) Despite all these advances, evidence has shown that LaBr{sub 3} is thermally unstable at temperatures required for the densification process. This is particularly true for material near the surface where lattice defects and color centers can be created as bromine becomes volatile at high temperatures. Consequently, after densification these samples made using chemically prepared ultrafine powders turned black. An additional thermal treatment in a flowing bromine condition proved able to reduce the darkness of the surface layer for these densified samples. These observations demonstrated that although finer ceramic powders are desirable for densification due to a stronger driving force from their large surface areas, the same desirable factor can lead to lattice defects and color centers when these powders are densified at higher temperatures where material near the surface becomes thermally unstable.

  11. PRELIMINARY FIELD EVALUATION OF MERCURY CONTROL USING COMBUSTION MODIFICATIONS

    SciTech Connect (OSTI)

    Vitali Lissianski; Antonio Marquez

    2004-02-19

    In this project General Electric Energy and Environmental Research Corporation conducts a preliminary field evaluation of a novel technology, referred to as Hg/NO{sub x}, that can reduce emissions of both mercury (Hg) and oxides of nitrogen (NO{sub x}) from coal-fired power plants. The evaluation takes place in Green Station Unit 2 operated by Western Kentucky Energy. Reduction of Hg and NO{sub x} emissions in Unit 2 is achieved using coal reburning. Activities during first project year (January 23, 2003--January 22, 2004) included measurements of baseline Hg emissions in Unit 2 and pilot-scale testing. Baseline testing of Hg emissions in Green Unit 2 has been completed. Two fuels were tested with OFA system operating at minimum air flow. Mercury emissions were measured at ESP inlet and outlet, and at the stack using Ontario Hydro revised method. Testing demonstrated that baseline Hg reductions at ESP outlet and stack were 30-45% and 70-80%, respectively. Pilot-scale testing demonstrated good agreement with baseline measurements in Unit 2. Testing showed that fuel composition had an effect on the efficiency of Hg absorption on fly ash. Maximum achieved Hg removal in reburning was close to 90%. Maximum achieved Hg reduction at air staging conditions was 60%. Testing also demonstrated that lowering ESP temperature improved efficiency of Hg removal.

  12. Waste Coal Fines Reburn for NOx and Mercury Emission Reduction

    SciTech Connect (OSTI)

    Stephen Johnson; Chetan Chothani; Bernard Breen

    2008-04-30

    Injection of coal-water slurries (CWS) made with both waste coal and bituminous coal was tested for enhanced reduction of NO{sub x} and Hg emissions at the AES Beaver Valley plant near Monaca, PA. Under this project, Breen Energy Solutions (BES) conducted field experiments on the these emission reduction technologies by mixing coal fines and/or pulverized coal, urea and water to form slurry, then injecting the slurry in the upper furnace region of a coal-fired boiler. The main focus of this project was use of waste coal fines as the carbon source; however, testing was also conducted using pulverized coal in conjunction with or instead of waste coal fines for conversion efficiency and economic comparisons. The host site for this research and development project was Unit No.2 at AES Beaver Valley cogeneration station. Unit No.2 is a 35 MW Babcock & Wilcox (B&W) front-wall fired boiler that burns eastern bituminous coal. It has low NO{sub x} burners, overfire air ports and a urea-based selective non-catalytic reduction (SNCR) system for NO{sub x} control. The back-end clean-up system includes a rotating mechanical ash particulate removal and electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. Coal slurry injection was expected to help reduce NOx emissions in two ways: (1) Via fuel-lean reburning when the slurry is injected above the combustion zone. (2) Via enhanced SNCR reduction when urea is incorporated into the slurry. The mercury control process under research uses carbon/water slurry injection to produce reactive carbon in-situ in the upper furnace, promoting the oxidation of elemental mercury in flue gas from coal-fired power boilers. By controlling the water content of the slurry below the stoichiometric requirement for complete gasification, water activated carbon (WAC) can be generated in-situ in the upper furnace. As little as 1-2% coal/water slurry (heat input basis) can be injected and generate sufficient WAC for mercury capture. During July, August, and September 2007, BES designed, procured, installed, and tested the slurry injection system at Beaver Valley. Slurry production was performed by Penn State University using equipment that was moved from campus to the Beaver Valley site. Waste coal fines were procured from Headwaters Inc. and transported to the site in Super Sacks. In addition, bituminous coal was pulverized at Penn State and trucked to the site in 55-gallon drums. This system was operated for three weeks during August and September 2007. NO{sub x} emission data were obtained using the plant CEM system. Hg measurements were taken using EPA Method 30B (Sorbent Trap method) both downstream of the electrostatic precipitator and in the stack. Ohio Lumex Company was on site to provide rapid Hg analysis on the sorbent traps during the tests. Key results from these tests are: (1) Coal Fines reburn alone reduced NO{sub x} emissions by 0-10% with up to 4% heat input from the CWS. However, the NO{sub x} reduction was accompanied by higher CO emissions. The higher CO limited our ability to try higher reburn rates for further NO{sub x} reduction. (2) Coal Fines reburn with Urea (Carbon enhanced SNCR) decreased NO{sub x} emissions by an additional 30% compared to Urea injection only. (3) Coal slurry injection did not change Hg capture across the ESP at full load with an inlet temperature of 400-430 F. The Hg capture in the ESP averaged 40%, with or without slurry injection; low mercury particulate capture is normally expected across a higher temperature ESP because any oxidized mercury is thought to desorb from the particulate at ESP temperatures above 250 F. (4) Coal slurry injection with halogen salts added to the mixing tank increased the Hg capture in the ESP to 60%. This significant incremental mercury reduction is important to improved mercury capture with hot-side ESP operation and wherever hindrance from sulfur oxides limit mercury reduction, because the higher temperature is above sulfur oxide dew point interference.

  13. Subtask 1.23 - Mercury Removal from Barite the Oil Industry

    SciTech Connect (OSTI)

    Michael Holmes; Carolyn Nyberg; Katie Brandt; Kurt Eylands; Nathan Fiala; Grant Dunham

    2008-09-01

    Drilling muds are used by the oil and gas industry to provide a seal and to float rock chips to the surface during the drilling process. Barite (naturally occurring barium sulfate ore) is commonly used as a weighting agent additive in drilling muds because it is chemically nonreactive and has a high specific gravity (between 4.2 and 4.25 at 20 C). Because of environmental concerns, barite used by the oil and gas industry in the Gulf of Mexico must be certified to contain less than 1 mg/kg of mercury. Faced with these regulations, the U.S. Gulf Coast oil industry has looked to foreign sources of low-mercury barite, primarily India and China. These sources tend to have high-grade barite deposits and relatively inexpensive domestic transportation costs; as of late, however, U.S. purchasers have been forced to pay increasing costs for shipping to U.S. grinding plants. The objective of this project was to demonstrate two mercury removal techniques for high-mercury barite sources. Two barite samples of unique origins underwent processing to reduce mercury to required levels. The chemical treatment with dilute acid removed a portion of the mercury in both barite samples. The desired concentration of 1 mg/kg was achieved in both barite samples. An economic analysis indicates that thermal removal of mercury would not significantly add to the cost of barite processing, making higher-mercury barite a viable alternative to more expensive barite sources that contain lower concentrations of mercury.

  14. Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume1

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723).DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations:Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho;Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.

  15. Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume 2

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723). DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho; Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.

  16. Evaluation of MerCAP for Power Plant Mercury Control

    SciTech Connect (OSTI)

    Carl Richardson

    2008-09-30

    This report is submitted to the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) as part of Cooperative Agreement DE-FC26-03NT41993, 'Evaluation of EPRI's MerCAP{trademark} Technology for Power Plant Mercury Control'. This project has investigated the mercury removal performance of EPRI's Mercury Capture by Amalgamation Process (MerCAP{trademark}) technology. Test programs were conducted to evaluate gold-based MerCAP{trademark} at Great River Energy's Stanton Station Unit 10 (Site 1), which fired both North Dakota lignite (NDL) and Power River Basin (PRB) coal during the testing period, and at Georgia Power's Plant Yates Unit 1 (Site 2) [Georgia Power is a subsidiary of The Southern Company] which fires a low sulfur Eastern bituminous coal. Additional tests were carried out at Alabama Power's Plant Miller, which fires Powder River Basin Coal, to evaluate a carbon-based MerCAP{trademark} process for removing mercury from flue gas downstream of an electrostatic precipitator [Alabama Power is a subsidiary of The Southern Company]. A full-scale gold-based sorbent array was installed in the clean-air plenum of a single baghouse compartment at GRE's Stanton Station Unit 10, thereby treating 1/10th of the unit's exhaust gas flow. The substrates that were installed were electroplated gold screens oriented parallel to the flue gas flow. The sorbent array was initially installed in late August of 2004, operating continuously until its removal in July 2006, after nearly 23 months. The initial 4 months of operation were conducted while the host unit was burning North Dakota lignite (NDL). In November 2004, the host unit switched fuel to burn Powder River Basin (PRB) subbituminous coal and continued to burn the PRB fuel for the final 19 months of this program. Tests were conducted at Site 1 to evaluate the impacts of flue gas flow rate, sorbent plate spacing, sorbent pre-cleaning and regeneration, and spray dryer operation on MerCAP{trademark} performance. At Site 2, a pilot-scale array was installed in a horizontal reactor chamber designed to treat approximately 2800 acfm of flue gas obtained from downstream of the plant's flue gas desulfurization (FGD) system. The initial MerCAP{trademark} array was installed at Plant Yates in January 2004, operating continuously for several weeks before a catastrophic system failure resulting from a failed flue gas fan. A second MerCAP{trademark} array was installed in July 2006 and operated for one month before being shut down for a reasons pertaining to system performance and host site scheduling. A longer-term continuous-operation test was then conducted during the summer and fall of 2007. Tests were conducted to evaluate the impacts of flue gas flow rate, sorbent space velocity, and sorbent rinsing frequency on mercury removal performance. Detailed characterization of treated sorbent plates was carried out in an attempt to understand the nature of reactions leading to excessive corrosion of the substrate surfaces.

  17. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    Richard Schlager; Tom Millar

    2003-01-27

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the ninth reporting quarter, progress was made on the project in the following areas: PG&E NEG Salem Harbor Station -- Long term testing and equipment decommissioning has been completed, A web cast/conference call was held to review data, and Preliminary preparation and review of data and test results for the final report. Technology Transfer -- A number of technical presentations and briefings were made during the quarter. Notable among them was a Program Status Report presented to NETL. Also, one paper was presented at Power-Gen and one at the Annual Coal Marketing Strategies Conference.

  18. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    Richard Schlager; Tom Millar

    2002-10-18

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the eighth reporting quarter, progress was made on the project in the following areas: (1) PG&E NEG Salem Harbor Station--Sorbent injection equipment was installed at the site during the quarter; Test plans were prepared for the field-testing phase of the project; and Baseline testing was completed during the quarter. (2) Technology Transfer--A number of technical presentations and briefings were made during the quarter. Notable among them was a paper published in the JAWMA. Also, two papers were presented at the Air Quality III Conference and one at the Pittsburgh Coal Conference.

  19. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    Richard Schlager

    2002-08-01

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the seventh reporting quarter, progress was made on the project in the following areas: (1) PG&E NEG Brayton Point Station--Sorbent injection equipment was installed at the site during the quarter; Test plans were prepared for the field testing phase of the project; Baseline testing was completed during the quarter and parametric testing was begun; and A paper summarizing the full-scale tests was written and submitted to A&WMA for presentation at the annual meeting in June 2002. (2) Technology Transfer--A number of technical presentations and briefings were made during the quarter. Notable among them are papers published in the A&WMA EM journal and Pollution Engineering. Also, information was provided to the EPA MACT Working Group and a paper was presented at the annual A&WMA meeting.

  20. Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed Reactor

    SciTech Connect (OSTI)

    Paula A. Buitrago, Mike Morrill, JoAnn S. Lighty, Geoffrey D.; Silcox,

    2009-06-15

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300- W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150oC. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and intraparticle diffusion. The Freundlich isotherm more accurately described in-flight mercury capture. Using these parameters, very little intraparticle diffusion was evident. Consistent with other data, smaller particles resulted in higher mercury uptake due to available surface area. Therefore, it is important to capture the particle size distribution in the model. At typical full-scale sorbent feed rates, the calculations underpredicted adsorption, suggesting that wall effects can account for as much as 50 percent of the removal, making it an important factor in entrained-mercury adsorption models.

  1. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    SciTech Connect (OSTI)

    J.A. Withum

    2006-03-07

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), evaluated the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)-wet flue gas desulfurization (FGD) combination or a spray dyer absorber-fabric filter (SDA-FF) combination. In this program CONSOL determined mercury speciation and removal at 10 bituminous coal-fired facilities; at four of these facilities, additional tests were performed on units without SCR, or with the existing SCR bypassed. This project final report summarizes the results and discusses the findings of the body of work as a whole. Eleven Topical Reports were issued (prior to this report) that describe in great detail the sampling results at each of the ten power plants individually. The results showed that the SCR-FGD combination removed a substantial fraction of mercury from flue gas. The coal-to-stack mercury removals ranged from 65% to 97% for the units with SCR and from 53% to 87% for the units without SCR. There was no indication that any type of FGD system was more effective at mercury removal than others. The coal-to-stack mercury removal and the removal in the wet scrubber were both negatively correlated with the elemental mercury content of the flue gas and positively correlated with the scrubber liquid chloride concentration. The coal chlorine content was not a statistically significant factor in either case. Mercury removal in the ESP was positively correlated with the fly ash carbon content and negatively correlated with the flue gas temperature. At most of the units, a substantial fraction (>35%) of the flue gas mercury was in the elemental form at the boiler economizer outlet. After passing through the SCR-air heater combination very little of the total mercury (<10%) remained in the elemental form in the flue gas; this was true for all SCR catalyst types and sources. Although chlorine has been suggested as a factor affecting the mercury speciation in flue gas, coal chlorine was not a statistically significant factor affecting mercury speciation at the economizer exit or at the air heater exit. The only statistically significant factors were the coal ash CaO content and the fly ash carbon content; the fraction of mercury in the elemental form at the economizer exit was positively correlated with both factors. In a direct comparison at four SCR-equipped units vs. similar units at the same sites without SCR (or with the SCR bypassed), the elemental mercury fractions (measured at the ESP outlet) were lower, and the coal-to-stack mercury removals were higher, when the SCR was present and operating. The average coal-to-stack mercury removal at the four units without an operating SCR was 72%, whereas the average removal at the same sites with operating SCRs was 88%. The unit mercury mass balance (a gauge of the overall quality of the tests) at all of the units ranged from 81% to 113%, which were within our QA/QC criterion of 80-120%.

  2. Heavy metal biosensor

    DOE Patents [OSTI]

    Hillson, Nathan J; Shapiro, Lucille; Hu, Ping; Andersen, Gary L

    2014-04-15

    Compositions and methods are provided for detection of certain heavy metals using bacterial whole cell biosensors.

  3. Progress and Future Plans for Mercury Remediation at the Y-12 National Security Complex, Oak Ridge, Tennessee - 13059

    SciTech Connect (OSTI)

    Wilkerson, Laura O. [DOE Oak Ridge, P.O. Box 2001, Oak Ridge, TN 37831 (United States)] [DOE Oak Ridge, P.O. Box 2001, Oak Ridge, TN 37831 (United States); DePaoli, Susan M. [Pro2Serve, 1100 Bethel Valley Rd., Oak Ridge, TN 37830 (United States)] [Pro2Serve, 1100 Bethel Valley Rd., Oak Ridge, TN 37830 (United States); Turner, Ralph [P.O. Box 421, Squamish, BC V8B 0A4 (United States)] [P.O. Box 421, Squamish, BC V8B 0A4 (United States)

    2013-07-01

    The U.S. Department of Energy (DOE), along with the Tennessee Department of Environment and Conservation (TDEC) and the U.S. Environmental Protection Agency (EPA), has identified mercury contamination at the Y-12 National Security Complex (Y-12) as the highest priority cleanup risk on the Oak Ridge Reservation (ORR). The historic loss of mercury to the environment dwarfs any other contaminant release on the ORR. Efforts over the last 20 years to reduce mercury levels leaving the site in the surface waters of Upper East Fork Poplar Creek (UEFPC) have not resulted in a corresponding decrease in mercury concentrations in fish. Further reductions in mercury surface water concentrations are needed. Recent stimulus funding through the American Recovery and Reinvestment Act of 2009 (ARRA) has supported several major efforts involving mercury cleanup at Y-12. Near-term implementation activities are being pursued with remaining funds and include design of a centrally located mercury treatment facility for waterborne mercury, treatability studies on mercury-contaminated soils, and free mercury removal from storm drains. Out-year source removal will entail demolition/disposal of several massive uranium processing facilities along with removal and disposal of underlying contaminated soil. As a National Priorities List (NPL) site, cleanup is implemented under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and directed by the Federal Facility Agreement (FFA) between DOE, EPA, and TDEC. The CERCLA process is followed to plan, reach approval, implement, and monitor the cleanup. (authors)

  4. Advanced Materials for Mercury 50 Gas Turbine Combustion System

    SciTech Connect (OSTI)

    Price, Jeffrey

    2008-09-30

    Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70,

  5. Remediation of Mercury-Contaminated Storm Sewer Sediments from the West End Mercury Area at the Y-12 National Security Complex in Oak Ridge, Tennessee - 12061

    SciTech Connect (OSTI)

    Tremaine, Diana [Science and Ecology Corporation, Knoxville, Tennessee, 37931 (United States); Douglas, Steven G. [B and W Y-12, Oak Ridge, Tennessee, 37831 (United States)

    2012-07-01

    The Y-12 National Security Complex in Oak Ridge, TN has faced an ongoing challenge from mercury entrapped in soils beneath and adjacent to buildings, storm sewers, and process pipelines. Previous actions to reduce the quantity and/or mobilization of mercury-contaminated media have included plugging of building floor drains, cleaning of sediment and sludge from sumps, manholes, drain lines, and storm sewers, lining/relining of storm sewers and replacement of a portion of the storm sewer trunk line, re-routing and removal of process piping, and installation of the Central Mercury Treatment System to capture and treat contaminated sump water. Despite the success of these actions, mercury flux in the storm sewer out-falls that discharge to Upper East Fork Poplar Creek (UEFPC) continues to pose a threat to long-term water quality. A video camera survey of the storm sewer network revealed several sections of storm sewer that had large cracks, separations, swells, and accumulations of sediment/sludge and debris. The selected remedy was to clean and line the sections of storm sewer pipe that were determined to be primary contributors to the mercury flux in the storm sewer out-falls. The project, referred to as the West End Mercury Area (WEMA) Storm Sewer Remediation Project, included cleaning sediment and debris from over 2,460 meters of storm sewer pipe followed by the installation of nearly 366 meters of cure-in-place pipe (CIPP) liner. One of the greatest challenges to the success of this project was the high cost of disposal associated with the mercury-contaminated sludge and wastewater generated from the storm sewer cleaning process. A contractor designed and operated an on-site wastewater pre-treatment system that successfully reduced mercury levels in 191 cubic meters of sludge to levels that allowed it to be disposed at Nevada Nuclear Security Site (NNSS) disposal cell as a non-hazardous, low-level waste. The system was also effective at pre-treating over 1,514,000 liters of wastewater to levels that met the waste acceptance criteria for the on-site West End [wastewater] Treatment Facility (WETF). This paper describes the storm sewer cleaning and lining process and the methods used to process the mercury-contaminated sludge and wastewater, as well as several 'lessons learned' that would be relevant to any future projects involving storm sewer cleaning and debris remediation. (authors)

  6. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells

    SciTech Connect (OSTI)

    Chu, T.L. )

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

  7. Lead, mercury, and cadmium exposure and attention deficit hyperactivity disorder in children

    SciTech Connect (OSTI)

    Kim, Stephani [Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267 (United States)] [Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267 (United States); Arora, Monica [Department of Psychiatry, Creighton University School of Medicine, Omaha, NE 68131 (United States)] [Department of Psychiatry, Creighton University School of Medicine, Omaha, NE 68131 (United States); Fernandez, Cristina [Department of Pediatrics, Creighton University School of Medicine, Omaha, NE 68131 (United States)] [Department of Pediatrics, Creighton University School of Medicine, Omaha, NE 68131 (United States); Landero, Julio; Caruso, Joseph [Metallomics Center, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221 (United States)] [Metallomics Center, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221 (United States); Chen, Aimin, E-mail: aimin.chen@uc.edu [Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267 (United States)] [Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267 (United States)

    2013-10-15

    Background: There is limited research examining the relationship between lead (Pb) exposure and medically diagnosed attention deficit hyperactivity disorder (ADHD) in children. The role of mercury (Hg) and cadmium (Cd) exposures in ADHD development is even less clear. Objectives: To examine the relationship between Pb, Hg, and Cd and ADHD in children living inside and outside a Lead Investigation Area (LIA) of a former lead refinery in Omaha, NE. Methods: We carried out a case-control study with 71 currently medically diagnosed ADHD cases and 58 controls from a psychiatric clinic and a pediatric clinic inside and outside of the LIA. The participants were matched on age group (5–8, 9–12 years), sex, race (African American or Caucasians and others), and location (inside or outside LIA). We measured whole blood Pb, total Hg, and Cd using inductively coupled plasma mass spectrometry. Results: Inside the LIA, the 27 cases had blood Pb geometric mean (GM) 1.89 µg/dL and the 41 controls had 1.51 µg/dL. Outside the LIA, the 44 cases had blood Pb GM 1.02 µg/dL while the 17 controls had 0.97 µg/dL. After adjustment for matching variables and maternal smoking, socioeconomic status, and environmental tobacco exposure, each natural log unit blood Pb had an odds ratio of 2.52 with 95% confidence interval of 1.07–5.92. Stratification by the LIA indicated similar point estimate but wider CIs. No associations were observed for Hg or Cd. Conclusions: Postnatal Pb exposure may be associated with higher risk of clinical ADHD, but not the postnatal exposure to Hg or Cd. -- Highlights: • Blood Pb levels are associated with ADHD diagnosis in children. • No association was found between blood Cd or Hg levels and ADHD. • Children living close to hazardous waste site need to reduce metal exposure.

  8. Mechanisms of faulting in and around Caloris basin, Mercury Patrick J. Kennedy,1

    E-Print Network [OSTI]

    Freed, Andrew

    Mechanisms of faulting in and around Caloris basin, Mercury Patrick J. Kennedy,1 Andrew M. Freed,1 a test of this prediction and more generally of the models developed here. Citation: Kennedy, P. J., A. M

  9. Mercury contamination of terrestrial vegetation near a caustic soda factory in Thailand

    SciTech Connect (OSTI)

    Suckcharoen, S.

    1980-03-01

    The present study is concerned with the fall-out of mercury on some terrestrial plants and one species of aquatic plant growing in the vicinity of the TACSCO factory.

  10. EIS-0347: Long-Term Management of the National Defense Stockpile Inventory of Excess Mercury

    Broader source: Energy.gov [DOE]

    This Defense Logistics Agency EIS evaluated alternatives for managing the Defense National Stockpile Center inventory of excess mercury. DOE was a cooperating agency for preparation of the draft EIS.

  11. MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2012-01-01

    from a Simulated In-Situ Oil Shale J. P. Fox, J. J. Duvall,of elements in rich oil shales of the Green River Formation,E . • 1977; Mercury in Oil Shale from the Mahogany Zone the

  12. Mercury speciation in Galveston Bay, Texas: the importance of complexation by natural organic ligands 

    E-Print Network [OSTI]

    Han, Seunghee

    2005-02-17

    The major goal of this research is the development of a competitive ligand equilibration-solvent solvent extraction (CLE-SSE) method to determine organically complexed mercury species in estuarine water. The method was ...

  13. Thickness of the crust of Mercury from geoid-to-topography ratios

    E-Print Network [OSTI]

    Padovan, S; Wieczorek, MA; Margot, JL; Tosi, N; Solomon, SC

    2015-01-01

    the support of planetary topography, J. Geophys. Res. , 86,thickness and support of topography on Venus, J. Geophys.expansion for the topography of Mercury, GTMES_120V02_SHA,

  14. CALCULATIONS FOR A MERCURY JET TARGET IN A SOLENOID MAGNET CAPTURE SYSTEM

    E-Print Network [OSTI]

    McDonald, Kirk

    may cause cavitations in the mercury jet. The purpose of this study is to calculate the lowest order and from the calculated fields we provide numerical estimates of the magneto-hydrodynamic effects. Section

  15. Microbes, Mercury, and Risk | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    us are at least vaguely aware of the risks of mercury exposure associated with eating fish-it's pretty widely known, for example, that a constant daily diet of albacore tuna is...

  16. Emissions, Monitoring and Control of Mercury from Subbituminous Coal-Fired Power Plants

    SciTech Connect (OSTI)

    Alan Bland; Kumar Sellakumar; Craig Cormylo

    2007-08-01

    The Subbituminous Energy Coalition (SEC) identified a need to re-test stack gas emissions from power plants that burn subbituminous coal relative to compliance with the EPA mercury control regulations for coal-fired plants. In addition, the SEC has also identified the specialized monitoring needs associated with mercury continuous emissions monitors (CEM). The overall objectives of the program were to develop and demonstrate solutions for the unique emission characteristics found when burning subbituminous coals. The program was executed in two phases; Phase I of the project covered mercury emission testing programs at ten subbituminous coal-fired plants. Phase II compared the performance of continuous emission monitors for mercury at subbituminous coal-fired power plants and is reported separately. Western Research Institute and a number of SEC members have partnered with Eta Energy and Air Pollution Testing to assess the Phase I objective. Results of the mercury (Hg) source sampling at ten power plants burning subbituminous coal concluded Hg emissions measurements from Powder River Basin (PBR) coal-fired units showed large variations during both ICR and SEC testing. Mercury captures across the Air Pollution Control Devices (APCDs) present much more reliable numbers (i.e., the mercury captures across the APCDs are positive numbers as one would expect compared to negative removal across the APCDs for the ICR data). Three of the seven units tested in the SEC study had previously shown negative removals in the ICR testing. The average emission rate is 6.08 lb/TBtu for seven ICR units compared to 5.18 lb/TBtu for ten units in the SEC testing. Out of the ten (10) SEC units, Nelson Dewey Unit 1, burned a subbituminous coal and petcoke blend thus lowering the total emission rate by generating less elemental mercury. The major difference between the ICR and SEC data is in the APCD performance and the mercury closure around the APCD. The average mercury removal values across the APCDs are 2.1% and 39.4% with standard deviations (STDs) of 1990 and 75%, respectively for the ICR and SEC tests. This clearly demonstrates that variability is an issue irrespective of using 'similar' fuels at the plants and the same source sampling team measuring the species. The study also concluded that elemental mercury is the main Hg specie that needs to be controlled. 2004 technologies such as activated carbon injection (ACI) may capture up to 60% with double digit lb/MMacf addition of sorbent. PRB coal-fired units have an Hg input of 7-15 lb/TBtu; hence, these units must operate at over 60% mercury efficiency in order to bring the emission level below 5.8 lb/TBtu. This was non-achievable with the best technology available as of 2004. Other key findings include: (1) Conventional particulate collectors, such as Cold-side Electro-Static Precipitators (CESPs), Hot-side Electro-Static Precipitator (HESP), and Fabric Filter (FF) remove nearly all of the particulate bound mercury; (2) CESPs perform better highlighting the flue gas temperature effect on the mercury removal. Impact of speciation with flue gas cooling is apparent; (3) SDA's do not help in enhancing adsorption of mercury vapor species; and (4) Due to consistently low chlorine values in fuels, it was not possible to analyze the impact of chlorine. In summary, it is difficult to predict the speciation at two plants that burn the same fuel. Non-fuel issues, such as flue gas cooling, impact the speciation and consequently mercury capture potential.

  17. MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2012-01-01

    from a Simulated In-Situ Oil Shale J. P. Fox, J. J. Duvall,of elements in rich oil shales of the Green River Formation,V. E . • 1977; Mercury in Oil Shale from the Mahogany Zone

  18. Emissions, Monitoring, and Control of Mercury from Subbituminous Coal-Fired Power Plants - Phase II

    SciTech Connect (OSTI)

    Alan Bland; Jesse Newcomer; Allen Kephart; Volker Schmidt; Gerald Butcher

    2008-10-31

    Western Research Institute (WRI), in conjunction with Western Farmers Electric Cooperative (WFEC), has teamed with Clean Air Engineering of Pittsburgh PA to conduct a mercury monitoring program at the WEFC Hugo plant in Oklahoma. Sponsored by US Department of Energy Cooperative Agreement DE-FC-26-98FT40323, the program included the following members of the Subbituminous Energy Coalition (SEC) as co-sponsors: Missouri Basin Power Project; DTE Energy; Entergy; Grand River Dam Authority; and Nebraska Public Power District. This research effort had five objectives: (1) determine the mass balance of mercury for subbituminous coal-fired power plant; (2) assess the distribution of mercury species in the flue gas (3) perform a comparison of three different Hg test methods; (4) investigate the long-term (six months) mercury variability at a subbituminous coal-fired power plant; and (5) assess operation and maintenance of the Method 324 and Horiba CEMS utilizing plant personnel.

  19. A Meta-analysis of Mercury Levels in Lavaca Bay Texas 

    E-Print Network [OSTI]

    Pillado, Maria C.

    2014-05-07

    meta-analysis to determine if the mercury levels in secondary and tertiary trophic levels have changed between years 1992 and 2012, and if the levels in red drum (Sciaenops ocellatus) and oysters (Crassostrea virginica) have decreased over time...

  20. Mercury retention by fly ashes from coal combustion: Influence of the unburned carbon content

    SciTech Connect (OSTI)

    Lopez-Anton, M.A.; Diaz-Somoano, M.; Martinez-Tarazona, M.R.

    2007-01-31

    The objective of this study was to evaluate the effect of unburned carbon particles present in fly ashes produced by coal combustion on mercury retention. To achieve this objective, the work was divided into two parts. The aim of the first part of the study was to estimate the amount of mercury captured by the fly ashes during combustion in power stations and the relationship of this retention to the unburned carbon content. The second part was a laboratory-scale study aimed at evaluating the retention of mercury concentrations greater than those produced in power stations by fly ashes of different characteristics and by unburned carbon particles. From the results obtained it can be inferred that the unburned carbon content is not the only variable that controls mercury capture in fly ashes. The textural characteristics of these unburned particles and of other components of fly ashes also influence retention.

  1. MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2012-01-01

    measured mercury levels in shale gases and waters. The TLV'srecovery shale Spent shale gas (wet) CS~35 cs~s6 CS-57 CS-59on large areas of the shale bed if gas channeling and

  2. Trimeric perfluoro-ortho-phenylene mercury as a building block for supramolecular materials 

    E-Print Network [OSTI]

    Haneline, Mason Reames

    2006-04-12

    and show that 1 and arenes form extended binary stacks in which the two components alternate. The photoluminescence observed in some of these supramolecular complexes corresponds to the phosphorescence of the arene indicating a mercury heavy atom effect...

  3. Weather in stellar atmosphere revealed by the dynamics of mercury clouds in

    E-Print Network [OSTI]

    Loss, Daniel

    LETTERS Weather in stellar atmosphere revealed by the dynamics of mercury clouds in Andromedae , and may have the same underlying physics as the weather patterns on terrestrial and giant planets. Since

  4. VALIDATION OF MERCURY CEMS WHEN COFIRING BIOMASS AT MADISON ELECTRIC'S BLOUNT STATION

    SciTech Connect (OSTI)

    Dennis L. Laudal; Jeffrey S. Thompson

    2000-09-30

    The state of Wisconsin has been concerned about mercury deposition into its lakes and streams and has been evaluating strategies to reduce mercury emissions. As part of this effort, the Blount Station, owned and operated by Madison Gas and Electric Company (MGE), has undergone a project to evaluate the effects and potential mercury emissions reduction of cofiring preconsumer waste. MGE owns and operates the Blount Generating Station located in central Madison, Wisconsin. At present, Blount operates with nine boilers and six turbine generators. The two largest boilers at Blount produce 400,000 pounds of steam per hour at 950 F and 1250 psi. These larger boilers, MGE's Boiler Nos. 8 and 9, have the capability of cofiring both paper and plastic. MGE's Blount Generating Station was one of the first electric generating stations in the United States to retrofit its existing steam boilers to successfully burn refuse-derived fuel and other alternate fuels including waste paper and wood. It is the No. 9 boiler that was the focus of this project to determine the effect of cofiring PDF (plastic- and paper-derived fuel) on speciated mercury emissions. The project was laid out to compare four different fuel combinations: (1) coal feed only, (2) coal with plastic, (3) coal with paper, and (4) coal with paper and plastic. The design was to run the boiler for 2 days at each condition, thus allowing four samples to be taken at each condition. This plan was aimed at getting at least three representative samples at each condition and allowed for difficulties in sampling and boiler operation. The following objectives were accomplished as part of the project to determine the effects of cofiring PDF on mercury emissions and speciation at MGE Blount Station: Successfully completed all of the mercury sampling for each of the four boiler/PDF conditions using the Ontario Hydro (OH) mercury speciation method; Determined mercury concentrations at the stack location using mercury continuous emission monitors (CEMs) for each of the four boiler/PDF conditions; Calculated the overall mercury mass balance for each of the runs; Determined chlorine concentrations at the stack location using EPA Method 26A for each of the four boiler/PDF conditions; and Calculated speciated mercury flow to determine removal and/or transformations before its exiting the unit at the stack for each of the four boiler/PDF conditions.

  5. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    SciTech Connect (OSTI)

    Gary Blythe; Conor Braman; Katherine Dombrowski; Tom Machalek

    2010-12-31

    This document is the final technical report for Cooperative Agreement DE-FC26-04NT41992, 'Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,' which was conducted over the time-period January 1, 2004 through December 31, 2010. The objective of this project has been to demonstrate at pilot scale the use of solid catalysts and/or fixed-structure mercury sorbents to promote the removal of total mercury and oxidation of elemental mercury in flue gas from coal combustion, followed by wet flue gas desulfurization (FGD) to remove the oxidized mercury at high efficiency. The project was co-funded by the U.S. DOE National Energy Technology Laboratory (DOE-NETL), EPRI, Great River Energy (GRE), TXU Energy (now called Luminant), Southern Company, Salt River Project (SRP) and Duke Energy. URS Group was the prime contractor. The mercury control process under development uses fixed-structure sorbents and/or catalysts to promote the removal of total mercury and/or oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury not adsorbed is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The project has tested candidate materials at pilot scale and in a commercial form, to provide engineering data for future full-scale designs. Pilot-scale catalytic oxidation tests have been completed for periods of approximately 14 to19 months at three sites, with an additional round of pilot-scale fixed-structure sorbent tests being conducted at one of those sites. Additionally, pilot-scale wet FGD tests have been conducted downstream of mercury oxidation catalysts at a total of four sites. The sites include the two of three sites from this project and two sites where catalytic oxidation pilot testing was conducted as part of a previous DOE-NETL project. Pilot-scale wet FGD tests were also conducted at a fifth site, but with no catalyst or fixed-structure mercury sorbent upstream. This final report presents and discusses detailed results from all of these efforts, and makes a number of conclusions about what was learned through these efforts.

  6. Annual Report 2002 5.2. A fast mercury jet entering a 20 T

    E-Print Network [OSTI]

    McDonald, Kirk

    nozzle generating a pulsed mercury jet (~ 200 ms duration). The read-out is based on observation with a high speed camera. The injection of an 11 m/s mercury jet at an angle of 0 and 6 degree into a 20 Tesla are suppressed by one order of manitude at 20 Tesla. The amplitude is then of the order of the spatial resolution

  7. Development Of Chemical Reduction And Air Stripping Processes To Remove Mercury From Wastewater

    SciTech Connect (OSTI)

    Jackson, Dennis G.; Looney, Brian B.; Craig, Robert R.; Thompson, Martha C.; Kmetz, Thomas F.

    2013-07-10

    This study evaluates the removal of mercury from wastewater using chemical reduction and air stripping using a full-scale treatment system at the Savannah River Site. The existing water treatment system utilizes air stripping as the unit operation to remove organic compounds from groundwater that also contains mercury (C ~ 250 ng/L). The baseline air stripping process was ineffective in removing mercury and the water exceeded a proposed limit of 51 ng/L. To test an enhancement to the existing treatment modality a continuous dose of reducing agent was injected for 6-hours at the inlet of the air stripper. This action resulted in the chemical reduction of mercury to Hg(0), a species that is removable with the existing unit operation. During the injection period a 94% decrease in concentration was observed and the effluent satisfied proposed limits. The process was optimized over a 2-day period by sequentially evaluating dose rates ranging from 0.64X to 297X stoichiometry. A minimum dose of 16X stoichiometry was necessary to initiate the reduction reaction that facilitated the mercury removal. Competing electron acceptors likely inhibited the reaction at the lower 1 doses, which prevented removal by air stripping. These results indicate that chemical reduction coupled with air stripping can effectively treat large-volumes of water to emerging part per trillion regulatory standards for mercury.

  8. METAL NANOPARTICLES FUNCTIONALIZED WITH METAL-LIGAND COVALENT BONDS

    E-Print Network [OSTI]

    Kang, Xiongwu

    2012-01-01

    Formation of catalytic metal-molecule contacts. Science,of Organotransition Metal Compounds. Advances inof highly monodisperse metal nanoparticles. Journal of the

  9. New Catalytic DNA Biosensors for Radionuclides and Metal ion

    SciTech Connect (OSTI)

    Yi Lu

    2008-03-01

    We aim to develop new DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides, such as uranium, technetium, and plutonium, and metal contaminants, such as lead, chromium, and mercury. The sensors will be highly sensitive and selective. They will be applied to on-site, real-time assessment of concentration, speciation, and stability of the individual contaminants before and during bioremediation, and for long-term monitoring of DOE contaminated sites. To achieve this goal, we have employed a combinatorial method called “in vitro selection” to search from a large DNA library (~ 1015 different molecules) for catalytic DNA molecules that are highly specific for radionuclides or other metal ions through intricate 3-dimensional interactions as in metalloproteins. Comprehensive biochemical and biophysical studies have been performed on the selected DNA molecules. The findings from these studies have helped to elucidate fundamental principles for designing effective sensors for radionuclides and metal ions. Based on the study, the DNA have been converted to fluorescent or colorimetric sensors by attaching to it fluorescent donor/acceptor pairs or gold nanoparticles, with 11 part-per-trillion detection limit (for uranium) and over million fold selectivity (over other radionuclides and metal ions tested). Practical application of the biosensors for samples from the Environmental Remediation Sciences Program (ERSP) Field Research Center (FRC) at Oak Ridge has also been demonstrated.

  10. Preferential Eu Site Occupation and Its Consequences in the Ternary Luminescent HalidesAB2I5:Eu2+(A=LiCs;B=Sr, Ba)

    SciTech Connect (OSTI)

    Fang, C.? M.; Biswas, Koushik

    2015-07-22

    Several rare-earth-doped, heavy-metal halides have recently been identified as potential next-generation luminescent materials with high efficiency at low cost. AB2I5:Eu2+ (A=Li–Cs; B=Sr, Ba) is one such family of halides. Its members, such as CsBa2I5:Eu2+ and KSr2I5:Eu2+, are currently being investigated as high-performance scintillators with improved sensitivity, light yield, and energy resolution less than 3% at 662 keV. Within the AB2I5 family, our first-principles-based calculations reveal two remarkably different trends in Eu site occupation. The substitutional Eu ions occupy both eightfold-coordinated B1(VIII) and the sevenfold-coordinated B2(VII) sites in the Sr-containing compounds. However, in the Ba-containing crystals, Eu ions strongly prefer the B2(VII)sites. This random versus preferential distribution of Eu affects their electronic properties. The calculations also suggest that in the Ba-containing compounds one can expect the formation of Eu-rich domains. These results provide atomistic insight into recent experimental observations about the concentration and temperature effects in Eu-doped CsBa2I5. We discuss the implications of our results with respect to luminescent properties and applications. We also hypothesize Sr, Ba-mixed quaternary iodides ABaVIIISrVIII5:Eu as scintillators having enhanced homogeneity and electronic properties.

  11. JV Task 122 - Assessment of Mercury Control Options for the San Miguel Electric Cooperative Power Plant

    SciTech Connect (OSTI)

    Nicholas Lentz; Brandon Pavlish; John Kay; Michael Jones

    2009-02-01

    In the United States, testing has been under way at electric coal-fired power plants to find viable and economical mercury control strategies to meet pending regulations. San Miguel Electric Cooperative (SMEC) engaged the Energy & Environmental Research Center (EERC) through a request for proposal (RFP) to perform research tests to evaluate sorbent-based technologies at its coal-fired San Miguel Generating Station to identify possible technology options that could be used by SMEC to meet the mercury reduction requirements of future U.S. federal standards. The goal of the testing was to target a mercury removal of {ge}90%. The EERC has successfully field-tested several sorbent-based technologies in previous projects that offer promise and potential to achieve a target removal of {ge}90%. Based on these field test results, yet recognizing that fuel type and plant operating conditions affect mercury capture significantly, the EERC proposed research tests to evaluate potential sorbent-based technologies provided by Norit Americas and the EERC that could potentially meet SMEC's mercury control objectives. Over the period of May through mid-June 2008, the EERC tested injection of both treated and nontreated activated carbon (AC) provided by Norit Americas and sorbent enhancement additives (SEAs) provided by the EERC. Tests were performed at San Miguel Unit 1 (450 MW) and included injection at the inlet of the air heater (AH) (temperature of 720 F). The test coal was a Texas lignite fuel with an average moisture content of 31.19%, an ash content of 26.6%, a heating value of 5,094 Btu/lb, a sulfur content of 2.7%, and a mercury concentration of 0.182 ppm, all reported on an as-received basis. Pilot-scale testing results identified DARCO{reg_sign} Hg-LH, SEA2 + DARCO{reg_sign} Hg, and the ChemMod sorbents as technologies with the potential to achieve the target mercury removal of {ge}90% at the full-scale test. Mercury concentrations were tracked with continuous mercury monitors (CMMs) at the electrostatic precipitator (ESP) inlet (ESP In), scrubber inlet, and scrubber outlet of San Miguel Unit 1, and a dry sorbent trap method was used to take samples periodically to measure mercury concentrations at the each of the CMM sampling locations described above. A limited number of Ontario Hydro (OH) measurements were also conducted. Removal efficiencies were calculated from mercury-in-coal values to scrubber out CMM values. Sorbent trap samples taken at the each sampling location outlet were found to be fairly consistent with CMM values. A maximum mercury removal of 78.5% was achieved with the SEA2 + DARCO Hg sorbent combination at injection rates of 50 ppm and 4 lb/Macf, respectively. An injection rate of 4 lb/Macf for DARCO Hg-LH and DARCO Hg resulted in mercury removals of 70.0% and 64.2%, respectively. These mercury reduction values were achieved at full load and at stable plant operating conditions. Scrubber reemission was observed during sorbent injection and had a significant effect on coal to scrubber out mercury removal values. When the sorbents were injected into San Miguel Unit 1 at the AH inlet, no effects on unit operations were observed. ESP performance throughout the test period was fairly steady, with only one minor breakdown. However, it should be noted that test durations were short.

  12. LOCAL IMPACTS OF MERCURY EMISSIONS FROM THE MONTICELLO COAL FIRED POWER PLANT.

    SciTech Connect (OSTI)

    SULLIVAN, T.M.; ADAMS, J.; MILIAN, L.; SUBRAMANIAN, S.; FEAGIN, L.; WILLIAMS, J.; BOYD, A.

    2006-10-31

    The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as currently proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots of mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury ''hot spots'', using two types of evidence. First, the world-wide literature was searched for reports of deposition around mercury sources, including coal-fired power plants. Second, soil samples from around two mid-sized U.S. coal-fired power plants were collected and analyzed for evidence of ''hot spots'' and for correlation with model predictions of deposition. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (A) local soil concentration Hg increments of 30%-60%, (B) sediment increments of 18-30%, (C) wet deposition increments of 11-12%, and (D) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg(0) in power plant plumes and the role of water chemistry in the relationship between Hg deposition and fish content. Soil and vegetation sampling programs were performed around the Monticello coal fired power plant. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with model predictions. The study found the following: (1) There was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. At the Monticello plant, excess soil Hg was associated with soil characteristics with higher values near the lake. Vegetation concentration showed some correlation with soil concentrations having higher mercury in vegetation when the soil mercury. (2) Based on computer modeling, Hg deposition was primarily RGM with much lower deposition from elemental mercury. The total deposition within 50 Km of the plant was predicted to be 4.2% of the total emitted. In the deposition, RGM is responsible for 98.7% of the total deposition, elemental mercury accounts for 1.1% and particulate mercury accounts for 0.2%. Less than 1% of the elemental mercury emitted was predicted to deposit within 50 km.

  13. Metal halogen electrochemical cell

    SciTech Connect (OSTI)

    Walsh, F.M.

    1986-06-03

    An electrochemical cell is described having a metal anode selected from the group consisting of zinc and cadmium; a bromine cathode; and, an aqueous electrolyte containing a metal bromide, the metal having the same metal as the metal of the anode, the improvement comprising: a bromine complexing agent in the aqueous metal bromide electrolyte consisting solely of a tetraorgano substituted ammonium salt, which salt is soluble of water and forms and substantially water immiscible liquid bromine complex at temperatures in the range of about 10/sup 0/C. to about 60/sup 0/C. and wherein the tetraorgano substituted ammonium salt is selected from asymmetric quaternary ammonium compounds.

  14. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  15. Mercury in the Northeastern Chukchi Sea: Distribution patterns in seawater and sediments and biomagnification in the benthic food web

    SciTech Connect (OSTI)

    Fox, Austin L.; Hughes, Emily A.; Trocine, R. P.; Trefry, John; Schonberg, Susan V.; McTigue, Nathan D.; Lasorsa, Brenda K.; Konar, Brenda; Cooper, L. W.

    2014-04-01

    Mercury contamination in the atmosphere, snow and marine mammals of the Artic has been a continuing environmental concern and the focus of many investigations.

  16. Sediment-adsorbed total mercury flux through Yolo Bypass, the primary floodway and wetland in the Sacramento Valley, California

    E-Print Network [OSTI]

    Springborn, M; Singer, MB; Singer, MB; Dunne, T

    2011-01-01

    contamination of lowland sediments and food webs (Bouse etconcentrations in bed sediments, suspended load, dissolvedof water, suspended sediment, and mercury from the

  17. Progress in transition metal-based enantioselective catalysis

    E-Print Network [OSTI]

    Arp, Forrest O

    2008-01-01

    In Chapter 1, the first enantioselective cross-coupling reactions of racemic secondary benzylic halides are described (eq 1). This method was applied to the syntheses of intermediates employed by other groups in the ...

  18. Metal-Ion-Mediated Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal-Ion-Mediated Reactions Metal-Ion-Mediated Reactions Print Monday, 19 December 2011 18:29 While mononuclear, polynuclear, and polymeric metal complexes are most often...

  19. Qualification of the Nippon Instrumentation for use in Measuring Mercury at the Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Edwards, T.; Mahannah, R.

    2011-07-05

    The Nippon Mercury/RA-3000 system installed in 221-S M-14 has been qualified for use. The qualification was a side-by-side comparison of the Nippon Mercury/RA-3000 system with the currently used Bacharach Mercury Analyzer. The side-by-side testing included standards for instrument calibration verifications, spiked samples and unspiked samples. The standards were traceable back to the National Institute of Standards and Technology (NIST). The side-by-side work included the analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt, SRAT Product, and Slurry Mix Evaporator (SME) samples. With the qualification of the Nippon Mercury/RA-3000 system in M-14, the DWPF lab will be able to perform a head to head comparison of a second Nippon Mercury/RA-3000 system once the system is installed. The Defense Waste Processing Facility (DWPF) analyzes receipt and product samples from the Sludge Receipt and Adjustment Tank (SRAT) to determine the mercury (Hg) concentration in the sludge slurry. The SRAT receipt is typically sampled and analyzed for the first ten SRAT batches of a new sludge batch to obtain an average Hg concentration. This average Hg concentration is then used to determine the amount of steam stripping required during the concentration/reflux step of the SRAT cycle to achieve a less than 0.6 wt% Hg in the SRAT product solids. After processing is complete, the SRAT product is sampled and analyzed for mercury to ensure that the mercury concentration does not exceed the 0.45 wt% limit in the Slurry Mix Evaporator (SME). The DWPF Laboratory utilizes Bacharach Analyzers to support these Hg analyses at this facility. These analyzers are more than 10 years old, and they are no longer supported by the manufacturer. Due to these difficulties, the Bacharach Analyzers are to be replaced by new Nippon Mercury/RA-3000 systems. DWPF issued a Technical Task Request (TTR) for the Savannah River National Laboratory (SRNL) to assist in the qualification of the new systems. SRNL prepared a task technical and quality assurance (TT&QA) plan that outlined the activities that are necessary and sufficient to meet the objectives of the TTR. In addition, TT&QA plan also included a test plan that provided guidance to the DWPF Lab in collecting the data needed to qualify the new Nippon Mercury/RA-3000 systems.

  20. Liquid-Metal Electrode to Enable Ultra-Low Temperature Sodium-Beta Alumina Batteries for Renewable Energy Storage

    SciTech Connect (OSTI)

    Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong; Mei, Donghai; Lemmon, John P.; Sprenkle, Vincent L.; Liu, Jun

    2014-08-01

    Metal electrodes have a high capacity for energy storage but have found limited applications in batteries because of dendrite formation and other problems. In this paper, we report a new alloying strategy that can significantly reduce the melting temperature and improve wetting with the electrolyte to allow the use of liquid metal as anode in sodium-beta alumina batteries (NBBs) at much lower temperatures (e.g., 95 to 175°C). Commercial NBBs such as sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries typically operate at relatively high temperatures (e.g., 300-350°C) due to poor wettability of sodium on the surface of ?"-Al2O3. Our combined experimental and computational studies suggest that Na-Cs alloy can replace pure sodium as the anode material, which provides a significant improvement in wettability, particularly at lower temperatures (i.e., <200°C). Single cells with the Na-Cs alloy anode exhibit excellent cycling life over those with pure sodium anode at 175 and 150°C. The cells can even operate at 95°C, which is below the melting temperature of pure sodium. These results demonstrate that NBB can be operated at ultra lower temperatures with successfully solving the wetting issue. This work also suggests a new strategy to use liquid metal as the electrode materials for advanced batteries that can avoid the intrinsic safety issues associated with dendrite formation on the anode.

  1. Liquid Metal Transformers

    E-Print Network [OSTI]

    Sheng, Lei; Liu, Jing

    2014-01-01

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clar...

  2. Metal phthalocyanine catalysts

    DOE Patents [OSTI]

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-10-11

    A new composition of matter is described which is an alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  3. Metal phthalocyanine catalysts

    DOE Patents [OSTI]

    Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

    1994-01-01

    As a new composition of matter, alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  4. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  5. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, Paul O. (Golden, CO); Kennedy, Cheryl E. (Lafayette, CO); Jorgensen, Gary J. (Pine, CO); Shinton, Yvonne D. (Northglenn, CO); Goggin, Rita M. (Englewood, CO)

    1994-01-01

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  6. PHYTOEXTRACTION OF HEAVY METALS

    E-Print Network [OSTI]

    Blouin-Demers, Gabriel

    Plants Chelating agents Pb hyperaccumulation Effects of pH on metal extraction Disposal options contaminants from soils Contaminants must be in harvestable portions of the plant (Wongkongkatep et al. 2003) Chelating Agents: desorb heavy metals from soil matrix and form water-soluble metal complexes (Shen et al

  7. Metal Affinity Chromatography (MAC)

    E-Print Network [OSTI]

    Lebendiker, Mario

    Fractogel® Metal Affinity Chromatography (MAC) Resins and Cartridges Tools for His·Tag® Fusion-MACTM Cartridges #12;2 Novagen · Fractogel Metal Affinity Chromatography (MAC) Resins Ni-MACTM , Co-MACTM and u-MACTM Metal Affinity Chromatography (MAC) Resins and Cartridges HI Ni2+ Ni2+ Ni2+ HISHISHI SHISHISHIS Ni2

  8. Metal roofing Shingle roofing

    E-Print Network [OSTI]

    Hutcheon, James M.

    Metal roofing panel Shingle roofing Water & ice barrier Thermal Barrier Plywood Student: Arpit a cost benefit analysis and choose the most efficient and cost effective modification. Metal or shingle roof with only a water barrier between the plywood and the roofing panels. Metal roofing panel Shingle

  9. Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste

    SciTech Connect (OSTI)

    Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

    1997-05-01

    A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

  10. Backward and forward modes guided by metal-dielectric-metal

    E-Print Network [OSTI]

    Backward and forward modes guided by metal-dielectric-metal plasmonic waveguides Arthur R. Davoyan by metal-dielectric-metal plasmonic waveguides Arthur R. Davoyan,a Ilya V. Shadrivov,a Sergey I.davoyan@gmail.com Abstract. We revisited the problem of the existence of plasmonic modes guided by metal- dielectric-metal

  11. Atmospheric mercury near Salmon Falls Creek Reservoir in southern Idaho

    SciTech Connect (OSTI)

    Michael L. Abbott; Jeffrey J. Einerson

    2008-03-01

    Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were measured over 2-week seasonal field campaigns near Salmon Falls Creek Reservoir in south-central Idaho from the summer of 2005 through the fall of 2006 and over the entire summer of 2006 using automated Tekran Hg analyzers. GEM, RGM, and particulate Hg (HgP) were also measured at a secondary site 90 km to the west in southwestern Idaho during the summer of 2006. The study was performed to characterize Hg air concentrations in the southern Idaho area for the first time, estimate Hg dry deposition rates, and investigate the source of observed elevated concentrations. High seasonal variability was observed with the highest GEM (1.91 ± 0.9 ng m-3) and RGM (8.1 ± 5.6 pg m-3) concentrations occurring in the summer and lower values in the winter (1.32 ± 0.3 ng m-3, 3.2 ± 2.9 pg m-3 for GEM, RGM, respectively). The summer-average HgP concentrations were generally below detection limit (0.6 ± 1 pg m-3). Seasonally averaged deposition velocities calculated using a resistance model were 0.034 ± 0.032, 0.043 ± 0.040, 0.00084 ± 0.0017 and 0.00036 ± 0.0011 cm s-1 for GEM (spring, summer, fall and winter, respectively) and 0.50 ± 0.39, 0.40 ± 0.31, 0.51 ± 0.43 and 0.76 ± 0.57 cm s-1 for RGM. The total annual RGM + GEM dry deposition estimate was calculated to be 11.9 ± 3.3 µg m-2, or about 2/3 of the total (wet + dry) deposition estimate for the area. Periodic elevated short-term GEM (2.2–12 ng m-3) and RGM (50–150 pg m-3) events were observed primarily during the warm seasons. Back-trajectory modeling and PSCF analysis indicate predominant source directions to the SE (western Utah, northeastern Nevada) and SW (north-central Nevada) with fewer inputs from the NW (southeastern Oregon and southwestern Idaho).

  12. Transport and accumulation of cesium-137 and mercury in the Clinch River and Watts Bar Reservoir system. Environmental Restoration Program

    SciTech Connect (OSTI)

    Olsen, C.R.; Larsen, I.L.; Lowry, P.D.; Moriones, C.R.; Ford, C.J.; Dearstone, K.C.; Turner, R.R.; Kimmel, B.L.; Brandt, C.C.

    1992-06-01

    Operations and waste disposal activities at the Oak Ridge Y-12 Plant, the Oak Ridge National Laboratory (ORNL), and the Oak Ridge K-25 Site (formerly the Oak Ridge Gaseous Diffusion Plant) on the US Department of Energy (DOE) Oak Ridge Reservation (ORR) have introduced a variety of airborne, liquid, and solid wastes into the surrounding environment. Some of these wastes may affect off-site areas by entering local streams, which ultimately drain into the Clinch and Tennessee river system. Previously reported concentrations of radionuclides, metals and organic compounds in water, sediment, and biota of the Clinch River and Watts Bar Reservoir suggest the presence of a variety of contaminants of possible concern to the protection of human health and the environment. The work reported here represents part of the initial scoping phase for the Clinch River RCRA Facility Investigation. In this work, the distribution of {sup 137}Cs is used to identify contaminant accumulation patterns and potential problem, or ``hot-spot,`` areas with regard to environmental hazard or human health. Radiocesium was chosen for this scoping effort because (1) its history of release into the Clinch River is reasonably well documented, (2) it is easy and inexpensive to measure by gamma spectrometry, and (3) it is rapidly sorbed to particulate matter and thus serves as a cost-effective tracer for identifying the transport and accumulation patterns of many other particle-reactive contaminants, such as mercury (Hg), lead (Pb), and plutonium (Pu), and polychlorinated biphenyls (PCBs).

  13. Transport and accumulation of cesium-137 and mercury in the Clinch River and Watts Bar Reservoir system

    SciTech Connect (OSTI)

    Olsen, C.R.; Larsen, I.L.; Lowry, P.D.; Moriones, C.R.; Ford, C.J.; Dearstone, K.C.; Turner, R.R.; Kimmel, B.L.; Brandt, C.C.

    1992-06-01

    Operations and waste disposal activities at the Oak Ridge Y-12 Plant, the Oak Ridge National Laboratory (ORNL), and the Oak Ridge K-25 Site (formerly the Oak Ridge Gaseous Diffusion Plant) on the US Department of Energy (DOE) Oak Ridge Reservation (ORR) have introduced a variety of airborne, liquid, and solid wastes into the surrounding environment. Some of these wastes may affect off-site areas by entering local streams, which ultimately drain into the Clinch and Tennessee river system. Previously reported concentrations of radionuclides, metals and organic compounds in water, sediment, and biota of the Clinch River and Watts Bar Reservoir suggest the presence of a variety of contaminants of possible concern to the protection of human health and the environment. The work reported here represents part of the initial scoping phase for the Clinch River RCRA Facility Investigation. In this work, the distribution of {sup 137}Cs is used to identify contaminant accumulation patterns and potential problem, or hot-spot,'' areas with regard to environmental hazard or human health. Radiocesium was chosen for this scoping effort because (1) its history of release into the Clinch River is reasonably well documented, (2) it is easy and inexpensive to measure by gamma spectrometry, and (3) it is rapidly sorbed to particulate matter and thus serves as a cost-effective tracer for identifying the transport and accumulation patterns of many other particle-reactive contaminants, such as mercury (Hg), lead (Pb), and plutonium (Pu), and polychlorinated biphenyls (PCBs).

  14. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect (OSTI)

    Constance Senior

    2004-12-31

    The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

  15. High Metallicity LGRB Hosts

    E-Print Network [OSTI]

    Graham, J F; Levesque, E M; Kewley, L J; Tanvir, N R; Levan, A J; Patel, S K; Misra, K; Huang, K -H; Reichart, D E; Nysewander, M; Schady, P

    2015-01-01

    We present our imaging and spectroscopic observations of the host galaxies of two dark long bursts with anomalously high metallicities, LGRB 051022 and LGRB 020819B, which in conjunction with another LGRB event with an optical afterglow comprise the three LGRBs with high metallicity host galaxies in the Graham & Fruchter (2013) sample. In Graham & Fruchter (2013), we showed that LGRBs exhibit a strong and apparently intrinsic preference for low metallicity environments (12+log(O/H) & redshift. This is surprising: even among a preselected sample of high metallicity LGRBs, were the metal aversion to remain in effect for these objects, we would expect their metallicity to still be lower than the typical metallicity for the galaxies at that luminosity and redshift. Therefore we deduce that it...

  16. JV Task 125-Mercury Measurement in Combustion Flue Gases Short Course

    SciTech Connect (OSTI)

    Dennis Laudal

    2008-09-30

    The short course, designed to train personnel who have an interest in measuring mercury in combustion flue gases, was held twice at the Drury Inn in Marion, Illinois. The short course helped to provide attendees with the knowledge necessary to avoid the many pitfalls that can and do occur when measuring mercury in combustion flue gases. The first short course, May 5-8, 2008, included both a classroom-type session and hands-on demonstration of mercury-sampling equipment. The hands-on demonstration of equipment was staged at Southern Illinois Power Cooperative. Not including the Illinois Clean Coal Institute and the U.S. Department of Energy project managers, there were 12 attendees. The second short course was conducted September 16-17, 2008, but only included the classroom portion of the course; 14 people attended. In both cases, lectures were provided on the various mercury measurement methods, and interaction between attendees and EERC research personnel to discuss specific mercury measurement problems was promoted. Overall, the response to the course was excellent.

  17. Extraction process for removing metallic impurities from alkalide metals

    DOE Patents [OSTI]

    Royer, L.T.

    1987-03-20

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  18. Preliminary Field Evaluation of Mercury Control Using Combustion Modifications

    SciTech Connect (OSTI)

    V. Lissianski; P. Maly; T. Marquez

    2005-01-22

    In this project EER conducted a preliminary field evaluation of the integrated approach for mercury (Hg) and NO{sub x} control. The approach enhanced the 'naturally occurring' Hg capture by fly ash through combustion optimization, increasing carbon in ash content, and lowering ESP temperature. The evaluation took place in Green Station Units 1 and 2 located near Henderson, Kentucky and operated by Western Kentucky Energy. Units 1 and 2 are equipped with cold-side ESPs and wet scrubbers. Green Station Units 1 and 2 typically fire two types of fuel: a bituminous coal and a blend of bituminous coals based on availability. Testing of Hg emissions in Unit 2 without reburning system in operation and at minimum OFA demonstrated that efficiencies of Hg reduction downstream of the ESP were 30-40%. Testing also demonstrated that OFA system operation at 22% air resulted in 10% incremental increase in Hg removal efficiency at the ESP outlet. About 80% of Hg in flue gas at ESP outlet was present in the oxidized form. Testing of Hg emissions under reburning conditions showed that Hg emissions decreased with LOI increase and ESP temperature decrease. Testing demonstrated that maximum Hg reduction downstream of ESP was 40-45% at ESP temperatures higher than 300 F and 60-80% at ESP temperatures lower than 300 F. The program objective to demonstrate 80% Hg removal at the ESP outlet has been met.

  19. Atmospheric mercury (Hg) in the Adirondacks: Concentrations and sources

    SciTech Connect (OSTI)

    Hyun-Deok Choi; Thomas M. Holsen; Philip K. Hopke

    2008-08-15

    Hourly averaged gaseous elemental Hg (GEM) concentrations and hourly integrated reactive gaseous Hg (RGM), and particulate Hg (HgP) concentrations in the ambient air were measured at Huntington Forest in the Adirondacks, New York from June 2006 to May 2007. The average concentrations of GEM, RGM, and HgP were 1.4 {+-} 0.4 ng m{sup -3}, 1.8 {+-} 2.2 pg m{sup -3}, and 3.2 {+-} 3.7 pg m{sup -3}, respectively. RGM represents <3.5% of total atmospheric Hg or total gaseous Hg (TGM: GEM + RGM) and HgP represents <3.0% of the total atmospheric Hg. The highest mean concentrations of GEM, RGM, and HgP were measured during winter and summer whereas the lowest mean concentrations were measured during spring and fall. Significant diurnal patterns were apparent in warm seasons for all species whereas diurnal patterns were weak in cold seasons. RGM was better correlated with ozone concentration and temperature in both warm than the other species. Potential source contribution function (PSCF) analysis was applied to identify possible Hg sources. This method identified areas in Pennsylvania, West Virginia, Ohio, Kentucky, Texas, Indiana, and Missouri, which coincided well with sources reported in a 2002 U.S. mercury emissions inventory. 51 refs., 7 figs., 1 tab.

  20. Hypersonic MHD Propulsion System Integration for the Mercury Lightcraft

    SciTech Connect (OSTI)

    Myrabo, L.N.; Rosa, R.J.

    2004-03-30

    Introduced herein are the design, systems integration, and performance analysis of an exotic magnetohydrodynamic (MHD) slipstream accelerator engine for a single-occupant 'Mercury' lightcraft. This ultra-energetic, laser-boosted vehicle is designed to ride a 'tractor beam' into space, transmitted from a future orbital network of satellite solar power stations. The lightcraft's airbreathing combined-cycle engine employs a rotary pulsed detonation thruster mode for lift-off and landing, and an MHD slipstream accelerator mode at hypersonic speeds. The latter engine transforms the transatmospheric acceleration path into a virtual electromagnetic 'mass-driver' channel; the hypersonic momentum exchange process (with the atmosphere) enables engine specific impulses in the range of 6000 to 16,000 seconds, and propellant mass fractions as low as 10%. The single-stage-to-orbit, highly reusable lightcraft can accelerate at 3 Gs into low Earth orbit with its throttle just barely beyond 'idle' power, or virtually 'disappear' at 30 G's and beyond. The objective of this advanced lightcraft design is to lay the technological foundations for a safe, very low cost (e.g., 1000X below chemical rockets) air and space transportation for human life in the mid-21st Century - a system that will be completely 'green' and independent of Earth's limited fossil fuel reserves.

  1. THERMODYNAMIC INTERACTION OF THE PRIMARY PROTON BEAM WITH A MERCURY JET TARGET AT A NEUTRINO FACTORY SOURCE

    E-Print Network [OSTI]

    McDonald, Kirk

    mercury jet target at a neutrino factory or muon collider source, and the consequences of the generated a 20 Tesla magnetic field. In one option, a train of six such proton pulses is to be delivered. The proposed target is a 1cm diameter mercury jet ejected from a nozzle into a 20 Tesla magnetic field where

  2. Demonstration of An Integrated Approach to Mercury Control at Lee Station

    SciTech Connect (OSTI)

    Vitali Lissianski; Pete Maly

    2007-12-31

    General Electric (GE) has developed an approach whereby native mercury reduction on fly ash can be improved by optimizing the combustion system. This approach eliminates carbon-rich areas in the combustion zone, making the combustion process more uniform, and allows increasing carbon content in fly ash without significant increase in CO emissions. Since boiler excess O{sub 2} can be also reduced as a result of optimized combustion, this process reduces NO{sub x} emissions. Because combustion optimization improves native mercury reduction on fly ash, it can reduce requirements for activated carbon injection (ACI) when integrated with sorbent injection for more efficient mercury control. The approach can be tailored to specific unit configurations and coal types for optimal performance. This report describes results of a U.S. DOE sponsored project designed to evaluate the effect of combustion conditions on 'native' mercury capture on fly ash and integrate combustion optimization for improved mercury and NO{sub x} reduction with ACI. The technology evaluation took place in Lee Station Unit 3 located in Goldsboro, NC and operated by Progress Energy. Unit 3 burns a low-sulfur Eastern bituminous coal and is a 250 MW opposed-wall fired unit equipped with an ESP with a specific collection area of 249 ft{sup 2}/kacfm. Unit 3 is equipped with SO{sub 3} injection for ESP conditioning. The technical goal of the project was to evaluate the technology's ability to achieve 70% mercury reduction below the baseline emission value of 2.9 lb/TBtu, which was equivalent to 80% mercury reduction relative to the mercury concentration in the coal. The strategy to achieve the 70% incremental improvement in mercury removal in Unit 3 was (1) to enhance 'naturally' occurring fly ash mercury capture by optimizing the combustion process and using duct humidification to reduce flue gas temperatures at the ESP inlet, and (2) to use ACI in front of the ESP to further reduce mercury emissions. The program was comprised of field and pilot-scale tests, engineering studies and consisted of eight tasks. As part of the program, GE conducted pilot-scale evaluation of sorbent effect on mercury reduction, supplied and installed adjustable riffle boxes to assist in combustion optimization, performed combustion optimization, supplied mobile sorbent injection and flue gas humidification systems, conducted CFD modeling of sorbent injection and flue gas humidification, and performed mercury testing including a continuous 30-day sorbent injection trial. Combustion optimization was the first step in reduction of mercury emissions. Goals of combustion optimization activities were to improve 'native' mercury capture on fly ash and reduce NO{sub x}. Combustion optimization included balancing of coal flow through individual burners to eliminate zones of carbon-rich combustion, air flow balancing, and burner adjustments. As part of the project, the original riffle boxes were replaced with Foster-Wheeler's adjustable riffle boxes to allow for biasing the coal flow between the coal pipes. A 10-point CO/O{sub 2}/NO{sub x} grid was installed in the primary superheater region of the back pass to assist in these activities. Testing of mercury emissions before and after combustion optimization demonstrated that mercury emissions were reduced from 2.9 lb/TBtu to 1.8 lb/TBtu due to boiler operation differences in conjunction with combustion optimization, a 38% improvement in 'native' mercury capture on fly ash. Native mercury reduction from coal was {approx}42% at baseline conditions and 64% at optimized combustion conditions. As a result of combustion optimization NO{sub x} emissions were reduced by 18%. A three-dimensional CFD model was developed to study the flow distribution and sorbent injection in the post air heater duct in Lee Station Unit 3. Modeling of the flow pattern exiting the air pre-heater demonstrated that because of the duct transition from a circular opening at the exit of air-pre-heater to a rectangular ESP inlet duct, flow separation occurred at the corners afte

  3. Full-Scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System

    SciTech Connect (OSTI)

    Gary Blythe; Jennifer Paradis

    2010-06-30

    This document presents and discusses results from Cooperative Agreement DE-FC26-06NT42778, 'Full-scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System,' which was conducted over the time-period July 24, 2006 through June 30, 2010. The objective of the project was to demonstrate at full scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in pulverized-coal-fired flue gas. Oxidized mercury is removed downstream in wet flue gas desulfurization (FGD) absorbers and collected with the byproducts from the FGD system. The project was co-funded by EPRI, the Lower Colorado River Authority (LCRA), who also provided the host site, Great River Energy, Johnson Matthey, Southern Company, Salt River Project (SRP), the Tennessee Valley Authority (TVA), NRG Energy, Ontario Power and Westar. URS Group was the prime contractor and also provided cofunding. The scope of this project included installing and testing a gold-based catalyst upstream of one full-scale wet FGD absorber module (about 200-MW scale) at LCRA's Fayette Power Project (FPP) Unit 3, which fires Powder River Basin coal. Installation of the catalyst involved modifying the ductwork upstream of one of three wet FGD absorbers on Unit 3, Absorber C. The FGD system uses limestone reagent, operates with forced sulfite oxidation, and normally runs with two FGD modules in service and one spare. The full-scale catalyst test was planned for 24 months to provide catalyst life data. Over the test period, data were collected on catalyst pressure drop, elemental mercury oxidation across the catalyst module, and mercury capture by the downstream wet FGD absorber. The demonstration period began on May 6, 2008 with plans for the catalyst to remain in service until May 5, 2010. However, because of continual increases in pressure drop across the catalyst and concerns that further increases would adversely affect Unit 3 operations, LCRA decided to end the demonstration early, during a planned unit outage. On October 2, 2009, Unit 3 was taken out of service for a fall outage and the catalyst upstream of Absorber C was removed. This ended the demonstration after approximately 17 months of the planned 24 months of operation. This report discusses reasons for the pressure drop increase and potential measures to mitigate such problems in any future application of this technology. Mercury oxidation and capture measurements were made on Unit 3 four times during the 17-month demonstration. Measurements were performed across the catalyst and Absorber C and 'baseline' measurements were performed across Absorber A or B, which did not have a catalyst upstream. Results are presented in the report from all four sets of measurements during the demonstration period. These results include elemental mercury oxidation across the catalyst, mercury capture across Absorber C downstream of the catalyst, baseline mercury capture across Absorber A or B, and mercury re-emissions across both absorbers in service. Also presented in the report are estimates of the average mercury control performance of the oxidation catalyst technology over the 17-month demonstration period and the resulting mercury control costs.

  4. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-10-04

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period July 1, 2002 through September 30, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The coprecipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the fourth full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to completing, installing and starting up the pilot unit, completing laboratory runs to size catalysts, and procuring catalysts for the pilot unit. This technical progress report provides an update on these efforts.

  5. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-07-01

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time-period April 1, 2003 through June 30, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months at each of two sites to provide longer-term catalyst life data. This is the seventh full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the first pilot unit, conducting catalyst activity measurements, installing sonic horns for on-line catalyst cleaning, and installing the fourth catalyst, all for the GRE Coal Creek site. CPS began installation of the second mercury oxidation catalyst pilot unit at their Spruce Plant during the quarter. Laboratory efforts were conducted to support catalyst selection for that second pilot unit. This technical progress report provides an update on these efforts.

  6. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-07-17

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period April 1, 2002 through June 30, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the third full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to constructing the pilot unit and conducting laboratory runs to help size catalysts for the pilot unit. This technical progress report provides an update on these two efforts.

  7. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-01-21

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period October 1, 2002 through December 31, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future fullscale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the fifth full reporting period for the subject Cooperative Agreement. During this period, project efforts included starting up the pilot unit with three catalysts at the first site, conducting catalyst activity measurements, completing comprehensive flue gas sampling and analyses, and procuring additional catalysts for the pilot unit. This technical progress report provides an update on these efforts.

  8. Human exposure to mercury: A critical assessment of the evidence of adverse health effects

    SciTech Connect (OSTI)

    Ratcliffe, H.E.; Swanson, G.M.; Fischer, L.J. [Michigan State Univ., East Lansing, MI (United States)

    1996-10-25

    The ubiquitous nature of mercury in the environment, its global atmospheric cycling, and its toxicity to humans at levels that are uncomfortably close to exposures experienced by a proportion of the population are some of the current concerns associated with this pollutant. The purpose of this review is to critically evaluate the scientific quality of published reports involving human exposures to mercury and associated health outcomes as an aid in the risk evaluation of this chemical. A comprehensive review of the scientific literature involving human exposures to mercury was performed and each publication evaluated using a defined set of criteria that are considered standards in epidemiologic and toxicologic research. Severe, sometimes fatal, effects of mercury exposure at high levels were primarily reported as case studies. The disasters in Minamata, Japan, in the 1950s and in Iraq in 1971-1972 clearly demonstrated neurologic effects associated with ingestion of methylmercury both in adults and in infants exposed in utero. The effects were convincingly Associated with methylmercury ingestion, despite limitations of the study design. Several well-conducted studies have investigated the effects of methylmercury at levels below those in the Iraq incident but have not provided clear evidence of an effect. The lower end of the dose-response curve constructed from the Iraq data therefore still needs to be confirmed. The studies of mercury exposure in the workplace were mainly of elemental or inorganic mercury, and effects that were observed at relatively low exposure levels were primarily neurologic and renal. Several studies have investigated effects associated with dental amalgam but have been rated as inconclusive because of methodologic deficiencies. In our overall evaluation, 29 of 110 occupational studies and 20 of 54 studies where exposure occurred in the natural environment provided at least suggestive evidence of an exposure-related effect. 259 refs., 4 tabs.

  9. Full Scale Field Trial of the Low Temperature Mercury Capture Process

    SciTech Connect (OSTI)

    James Locke; Richard Winschel

    2011-09-30

    CONSOL Energy Inc., with partial funding from the Department of Energy (DOE) National Energy Technology Laboratory, designed a full-scale installation for a field trial of the Low-Temperature Mercury Control (LTMC) process, which has the ability to reduce mercury emissions from coal-fired power plants by over 90 percent, by cooling flue gas temperatures to approximately 230 °F and absorbing the mercury on the native carbon in the fly ash, as was recently demonstrated by CONSOL R&D on a slip-stream pilot plant at the Allegheny Energy Mitchell Station with partial support by DOE. LTMC has the potential to remove over 90 percent of the flue gas mercury at a cost at least an order of magnitude lower (on a $/lb mercury removed basis) than activated carbon injection. The technology is suitable for retrofitting to existing and new plants, and, although it is best suited to bituminous coal-fired plants, it may have some applicability to the full range of coal types. Installation plans were altered and moved from the original project host site, PPL Martins Creek plant, to a second host site at Allegheny Energyâ??s R. Paul Smith plant, before installation actually occurred at the Jamestown (New York) Board of Public Utilities (BPU) Samuel A. Carlson (Carlson) Municipal Generating Station Unit 12, where the LTMC system was operated on a limited basis. At Carlson, over 60% mercury removal was demonstrated by cooling the flue gas to 220-230 °F at the ESP inlet via humidification. The host unit ESP operation was unaffected by the humidification and performed satisfactorily at low temperature conditions.

  10. 1997 Performance Testing of Multi-Metal Continuous Emissions Monitors

    SciTech Connect (OSTI)

    Sky +, Inc.

    1998-09-01

    Five prototype and two commercially available multi-metals continuous emissions monitors (CEMs) were tested in September 1997 at the Rotary Kiln Incinerator Simulator facility at the EPA National Risk Management Research Laboratory, Research Triangle Park, North Carolina. The seven CEMs were tested side by side in a long section of duct following the secondary combustion chamber of the RKIS. Two different concentrations of six toxic metals were introduced into the incinerator-approximately 15 and 75 µg/dscm of arsenic, beryllium, cadmium, chromium, lead, and mercury (We also tested for antimony but we are not reporting on it here because EPA recently dropped antimony from the list of metals addressed by the draft MACT rule). These concentrations were chosen to be close to emission standards in the draft MACT rule and the estimated Method Detection Limit (MDL) required of a CEM for regulatory compliance purposes. Results from this test show that no CEMs currently meet the performance specifications in the EPA draft MACT rule for hazardous waste incinerators. Only one of the CEMs tested was able to measure all six metals at the concentrations tested. Even so, the relative accuracy of this CEM varied between 35% and 100%, not 20% or less as required in the EPA performance specification. As a result, we conclude that no CEM is ready for long-term performance validation for compliance monitoring applications. Because sampling and measuring Hg is a recurring problem for multi-metal CEMs as well as Hg CEMs, we recommended that developers participate in a 1998 DOE-sponsored workshop to solve these and other common CEM measurement issues.

  11. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg[sup 196] enrichment

    DOE Patents [OSTI]

    Grossman, M.W.

    1993-02-16

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg[sup 196] isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

  12. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg.sup.196 enrichment

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA)

    1993-01-01

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg.sup.196 isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

  13. Metal atomization spray nozzle

    DOE Patents [OSTI]

    Huxford, T.J.

    1993-11-16

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  14. Comparing and assessing different measurement techniques for mercury in coal systhesis gas

    SciTech Connect (OSTI)

    Maxwell, D.P.; Richardson, C.F. [Radian Corporation, Austin, TX (United States)

    1995-11-01

    Three mercury measurement techniques were performed on synthesis gas streams before and after an amine-based sulfur removal system. The syngas was sampled using (1) gas impingers containing a nitric acid-hydrogen peroxide solution, (2) coconut-based charcoal sorbent, and (3) an on-line atomic absorption spectrophotometer equipped with a gold amalgamation trap and cold vapor cell. Various impinger solutions were applied upstream of the gold amalgamation trap to remove hydrogen sulfide and isolate oxidized and elemental species of mercury. The results from these three techniques are compared to provide an assessment of these measurement techniques in reducing gas atmospheres.

  15. Polyacidic multiloading metal extractants 

    E-Print Network [OSTI]

    Gordon, R. J.; Campbell, J.; Henderson, D.K.; Henry, D. C. R.; Swart, R. M.; Tasker, P. A.; White, F. J.; Wood, J. L.; Yellowlees, L. J

    2008-01-01

    Novel polynucleating, di- and tri-acidic ligands have been designed to increase the molar and mass transport efficiencies for the recovery of base metals by solvent extraction.

  16. The Homogeneus Forcing of Mercury Oxidation to provide Low-Cost Capture

    SciTech Connect (OSTI)

    John Kramlich; Linda Castiglone

    2007-06-30

    Trace amounts of mercury are found in all coals. During combustion, or during thermal treatment in advanced coal processes, this mercury is vaporized and can be released to the atmosphere with the ultimate combustion products. This has been a cause for concern for a number of years, and has resulted in a determination by the EPA to regulate and control these emissions. Present technology does not, however, provide inexpensive ways to capture or remove mercury. Mercury that exits the furnace in the oxidized form (HgCl{sub 2}) is known to much more easily captured in existing pollution control equipment (e.g., wet scrubbers for SO{sub 2}), principally due to its high solubility in water. Work funded by DOE has helped understand the chemical kinetic processes that lead to mercury oxidation in furnaces. The scenario is as follows. In the flame the mercury is quantitatively vaporized as elemental mercury. Also, the chlorine in the fuel is released as HCl. The direct reaction Hg+HCl is, however, far too slow to be of practical consequence in oxidation. The high temperature region does supports a small concentration of atomic chlorine. As the gases cool (either in the furnace convective passes, in the quench prior to cold gas cleanup, or within a sample probe), the decay in Cl atom is constrained by the slowness of the principal recombination reaction, Cl+Cl+M{yields}Cl{sub 2}+M. This allows chlorine atom to hold a temporary, local superequilibrium concentration . Once the gases drop below about 550 C, the mercury equilibrium shifts to favor HgCl{sub 2} over Hg, and this superequilibrium chlorine atom promotes oxidation via the fast reactions Hg+Cl+M{yields}HgCl+M, HgCl+Cl+M{yields}HgCl{sub 2}+M, and HgCl+Cl{sub 2}{yields}HgCl{sub 2}+Cl. Thus, the high temperature region provides the Cl needed for the reaction, while the quench region allows the Cl to persist and oxidize the mercury in the absence of decomposition reactions that would destroy the HgCl{sub 2}. Promoting mercury oxidation is one means of getting moderate-efficiency, 'free' mercury capture when wet gas cleanup systems are already in place. The chemical kinetic model we developed to describe the oxidation process suggests that in fuel lean gases, the introduction of trace amounts of H{sub 2} within the quench region leads to higher Cl concentrations via chain branching. The amount of additive, and the temperature at the addition point are critical. We investigated this process in a high-temperature quartz flow reactor. The results do indicate a substantial amount of promotion of oxidation with the introduction of relatively small amounts of hydrogen at around 1000 K ({approx}100 ppm relative to the furnace gas). In practical systems the source of this hydrogen is likely to be a small natural gas steam reformer. This would also produce CO, so co-injection of CO was also tested. The CO did not provide any additional promotion, and in some cases led to a reduction in oxidation. We also examined the influence of NO and SO{sub 2} on the promotion process. We did not see any influence under the conditions examined. The present results were for a 0.5 s, isothermal plug flow environment. The next step should be to determine the appropriate injection point for the hydrogen and the performance under realistic temperature quench conditions. This could be accomplished first by chemical kinetic modeling, and then by tunnel flow experiment.

  17. MATERIAL TESTING OF LIQUID METAL

    E-Print Network [OSTI]

    Huang, Wei

    with the development and improvement of renewable energy technology. On a more personal note, he enjoys most shades vacuum chamber at NASA Langley Research Center. Two types of LMSGs were tested: indium-gallium and mercury. Testing showed that both types were functional after being subjected to extreme vacuum

  18. Metal pad instabilities in liquid metal batteries

    E-Print Network [OSTI]

    Zikanov, Oleg

    2015-01-01

    A mechanical analogy is used to analyze the interaction between the magnetic field, electric current and deformation of interfaces in liquid metal batteries. It is found that, during charging or discharging, a sufficiently large battery is prone to instabilities of two types. One is similar to the metal pad instability known for aluminum reduction cells. Another type is new. It is related to the destabilizing effect of the Lorentz force formed by the azimuthal magnetic field induced by the base current and the current perturbations caused by the local variations of the thickness of the electrolyte layer.

  19. Heavy Metal Humor: Reconsidering Carnival in Heavy Metal Culture 

    E-Print Network [OSTI]

    Powell, Gary Botts

    2013-06-05

    Bakhtin?s carnivalesque theory by analyzing comedic rhetoric performed by two comedic metal bands. Through the theories of Johan Huizinga and Mikhail Bakhtin, Chapter I: I Play Metal argues that heavy metal culture is a modern carnivalesque play...

  20. Metal-Organic Frameworks Based on Main Group Metals

    E-Print Network [OSTI]

    Zhao, Xiang

    2011-01-01

    Based Frameworks with Open Metal Sites In previous work, weClusters Introduction Porous metal-organic frameworks (MOFs)abundant choice of metal ions and clusters, numerous organic

  1. Metallic nanowire networks

    DOE Patents [OSTI]

    Song, Yujiang; Shelnutt, John A.

    2012-11-06

    A metallic nanowire network synthesized using chemical reduction of a metal ion source by a reducing agent in the presence of a soft template comprising a tubular inverse micellar network. The network of interconnected polycrystalline nanowires has a very high surface-area/volume ratio, which makes it highly suitable for use in catalytic applications.

  2. Porous metallic bodies

    DOE Patents [OSTI]

    Landingham, R.L.

    1984-03-13

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides a

  3. Homogeneous and Heterogeneous Reaction and Transformation of Hg and Trace Metals in Combustion Systems

    SciTech Connect (OSTI)

    J. Helble; Clara Smith; David Miller

    2009-08-31

    The overall goal of this project was to produce a working dynamic model to predict the transformation and partitioning of trace metals resulting from combustion of a broad range of fuels. The information provided from this model will be instrumental in efforts to identify fuels and conditions that can be varied to reduce metal emissions. Through the course of this project, it was determined that mercury (Hg) and arsenic (As) would be the focus of the experimental investigation. Experiments were therefore conducted to examine homogeneous and heterogeneous mercury oxidation pathways, and to assess potential interactions between arsenic and calcium. As described in this report, results indicated that the role of SO{sub 2} on Hg oxidation was complex and depended upon overall gas phase chemistry, that iron oxide (hematite) particles contributed directly to heterogeneous Hg oxidation, and that As-Ca interactions occurred through both gas-solid and within-char reaction pathways. Modeling based on this study indicated that, depending upon coal type and fly ash particle size, vaporization-condensation, vaporization-surface reaction, and As-CaO in-char reaction all play a role in arsenic transformations under combustion conditions.

  4. Production of magnesium metal

    DOE Patents [OSTI]

    Blencoe, James G. (Harriman, TN) [Harriman, TN; Anovitz, Lawrence M. (Knoxville, TN) [Knoxville, TN; Palmer, Donald A. (Oliver Springs, TN) [Oliver Springs, TN; Beard, James S. (Martinsville, VA) [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  5. Metallization of electronic insulators

    DOE Patents [OSTI]

    Gottesfeld, Shimshon (Los Alamos, NM); Uribe, Francisco A. (Los Alamos, NM)

    1994-01-01

    An electroplated element is formed to include an insulating substrate, a conducting polymer polymerized in situ on the substrate, and a metal layer deposited on the conducting polymer. In one application a circuit board is formed by polymerizing pyrrole on an epoxy-fiberglass substrate in a single step process and then electrodepositing a metal over the resulting polypyrrole polymer. No chemical deposition of the metal is required prior to electroplating and the resulting layer of substrate-polymer-metal has excellent adhesion characteristics. The metal deposition is surprisingly smooth and uniform over the relatively high resistance film of polypyrrole. A continuous manufacturing process is obtained by filtering the solution between successive substrates to remove polymer formed in the solution, by maintaining the solution oxidizing potential within selected limits, and by adding a strong oxidant, such as KMnO.sub.4 at periodic intervals to maintain a low sheet resistivity in the resulting conducting polymer film.

  6. Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility

    SciTech Connect (OSTI)

    Yan Cao; Quan-Hai Wang; Jun Li; Jen-Chieh Cheng; Chia-Chun Chan; Marten Cohron; Wei-Ping Pan

    2009-04-15

    Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gas inside the reactor was about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155{sup o}C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155{sup o}C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, at testing conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBR addition alone). 25 refs., 5 figs., 1 tab.

  7. Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Summary and Guide for Stakeholders

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723). DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho; Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.

  8. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    SciTech Connect (OSTI)

    Richard Rhudy

    2006-06-30

    This final report presents and discusses results from a mercury control process development project entitled ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems''. The objective of this project was to demonstrate at pilot scale a mercury control technology that uses solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. Oxidized mercury is removed in downstream wet flue gas desulfurization (FGD) absorbers and leaves with the FGD byproducts. The goal of the project was to achieve 90% oxidation of elemental mercury in the flue gas and 90% overall mercury capture with the downstream wet FGD system. The project was co-funded by EPRI and the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) under Cooperative Agreement DE-FC26-01NT41185. Great River Energy (GRE) and City Public Service (now CPS Energy) of San Antonio were also project co-funders and provided host sites. URS Group, Inc. was the prime contractor. Longer-term pilot-scale tests were conducted at two sites to provide catalyst life data. GRE provided the first site, at their Coal Creek Station (CCS), which fires North Dakota lignite, and CPS Energy provided the second site, at their Spruce Plant, which fires Powder River Basin (PRB) coal. Mercury oxidation catalyst testing began at CCS in October 2002 and continued through the end of June 2004, representing nearly 21 months of catalyst operation. An important finding was that, even though the mercury oxidation catalyst pilot unit was installed downstream of a high-efficiency ESP, fly ash buildup began to plug flue gas flow through the horizontal catalyst cells. Sonic horns were installed in each catalyst compartment and appeared to limit fly ash buildup. A palladium-based catalyst showed initial elemental mercury oxidation percentages of 95% across the catalyst, declining to 67% after 21 months in service. A carbon-based catalyst began with almost 98% elemental mercury oxidation across the catalyst, but declined to 79% oxidation after nearly 13 months in service. The other two catalysts, an SCR-type catalyst (titanium/vanadium) and an experimental fly-ash-based catalyst, were significantly less active. The palladium-based and SCR-type catalysts were effectively regenerated at the end of the long-term test by flowing heated air through the catalyst overnight. The carbon-based catalyst was not observed to regenerate, and no regeneration tests were conducted on the fourth, fly-ash-based catalyst. Preliminary process economics were developed for the palladium and carbon-based catalysts for a scrubbed, North Dakota lignite application. As described above, the pilot-scale results showed the catalysts could not sustain 90% or greater oxidation of elemental mercury in the flue gas for a period of two years. Consequently, the economics were based on performance criteria in a later DOE NETL solicitation, which required candidate mercury control technologies to achieve at least a 55% increase in mercury capture for plants that fire lignite. These economics show that if the catalysts must be replaced every two years, the catalytic oxidation process can be 30 to 40% less costly than conventional (not chemically treated) activated carbon injection if the plant currently sells their fly ash and would lose those sales with carbon injection. If the plant does not sell their fly ash, activated carbon injection was estimated to be slightly less costly. There was little difference in the estimated cost for palladium versus the carbon-based catalysts. If the palladium-based catalyst can be regenerated to double its life to four years, catalytic oxidation process economics are greatly improved. With regeneration, the catalytic oxidation process shows over a 50% reduction in mercury control cost compared to conventional activated carbon injection for a case where the plant sells its fly ash. At Spruce Plant, mercury oxidation catalyst testing began in September 2003 and continued through the end of April 2005, interrupted only by a

  9. The history of mercury emissions from fuel combustion in Maritime Canada

    E-Print Network [OSTI]

    Sunderland, Elsie M.

    combustion of wood, coal and re®ned petroleum products in Maritime Canada. The pattern of emissions (high) kg per year, coinciding with the period of most intensive coal use in Maritime Canada. In 1995The history of mercury emissions from fuel combustion in Maritime Canada E.M. Sunderlanda, *, G

  10. Mercury-free dissolution of aluminum-clad fuel in nitric acid

    DOE Patents [OSTI]

    Christian, Jerry D. (Idaho Falls, ID); Anderson, Philip A. (Pocatello, ID)

    1994-01-01

    A mercury-free dissolution process for aluminum involves placing the aluminum in a dissolver vessel in contact with nitric acid-fluoboric acid mixture at an elevated temperature. By maintaining a continuous flow of the acid mixture through the dissolver vessel, an effluent containing aluminum nitrate, nitric acid, fluoboric acid and other dissolved components are removed.

  11. Mercury(II) Sorption to Two Florida Everglades Peats: Evidence for

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Mercury(II) Sorption to Two Florida Everglades Peats: Evidence for Strong and Weak Binding and Competition by Dissolved Organic Matter Released from the Peat R . T O D D D R E X E L , M A R K U S H A I, Boulder, Colorado 80309-0428, U.S. Geological Survey, Water Resources Division, 3215 Marine Street

  12. Anthropogenic and Natural Emissions of Mercury (Hg) in the northeastern United Jeffrey MacAdam Sigler

    E-Print Network [OSTI]

    Lee, Xuhui

    Abstract Anthropogenic and Natural Emissions of Mercury (Hg) in the northeastern United States impact may depend on the emission rate. Anthropogenic Hg emissions in the United States are poorly characterized. Natural Hg emissions are poorly understood worldwide, due to lack of data or measurement systems

  13. Natural sources of mercury in arid and semiarid landscapes of western North America

    SciTech Connect (OSTI)

    Gustin, M.S.; Taylor, G.E. Jr. [Univ. of Nevada, Reno, NV (United States). Dept. of Environmental and Resource Sciences

    1994-12-31

    Mercury is enriched naturally in three global belts associated with areas in which Tertiary and Quaternary volcanism occurred. one belt, which occurs along the western margin of North America, contains concentrated and disseminated mercury occurrences in semiarid and arid biomes. Mercury enters the atmosphere from these landscapes through three processes: volatilization from enriched substrate, venting of geothermal systems, and resuspension. It is expected that the component of Hg deposited to arid landscapes through wet and dry deposition is negligible. Mercury fluxes to the atmosphere from arid and semiarid landscapes will be greater than that in more mesic environments because of the aridity and the daily amplitude in air temperatures. Resuspension may contribute significantly to the atmospheric burden of Hg due to eolian dispersal and subsequent evasion. To calculate the Hg flux from naturally enriched areas, the concentration, chemical form, and distribution of the Hg must be known. An understanding of the magnitude of natural Hg enrichment in global mercuriferous belts is important because the baseline for addressing human health and ecological risk is likely to be higher in these landscapes.

  14. Multiscale models of atmospheric mercury: bromine chemistry, air-sea exchange, and global transport

    E-Print Network [OSTI]

    Holmes, Christopher D.

    by atomic bromine (Br) in the tropo- sphere by combining kinetic data for the Hg-Br system with modeledMultiscale models of atmospheric mercury: bromine chemistry, air-sea exchange, and global transport rights reserved. #12;iii Dissertation Advisor Author Professor Daniel J. Jacob Christopher D. Holmes

  15. Emission and Long-Range Transport of Gaseous Mercury from a

    E-Print Network [OSTI]

    Lee, Xuhui

    Emission and Long-Range Transport of Gaseous Mercury from a Large-Scale Canadian Boreal Forest FireQuebec.Thesemeasurementsindicated significant and highly correlated increases in Hg and CO during the plume event. The Hg:CO emissions ratio emissions and biomass burned to determine a mean area-based Hg emission flux density for boreal forest fires

  16. Response to Comment on "Sources and Variations of Mercury in Tuna"

    E-Print Network [OSTI]

    Morel, François M. M.

    Hawaii is an exception and not significantly affected by mercury pollution. Hence our finding pollution is high. Dr. Aucott's assump- tion that surface waters near Hawaii have not been affected Committee on Tuna and Billfish 2002. (3) Pacyna, E. G.; Pacyna, J. M. Water, Air, Soil Pollut. 2002, 137

  17. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS

    SciTech Connect (OSTI)

    Michael D. Durham

    2004-10-01

    PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to <25%, even at the same sorbent injection concentration. Other tests examined the impacts of fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.

  18. OFF-GAS MERCURY CONTROL USING SULFUR-IMPREGNATED ACTIVATED CARBON – TEST RESULTS

    SciTech Connect (OSTI)

    Nick Soelberg

    2007-05-01

    Several laboratory and pilot-scale tests since the year 2000 have included demonstrations of off-gas mercury control using fixed bed, sulfur-impregnated activated carbon. These demonstrations have included operation of carbon beds with gas streams containing a wide range of mercury and other gas species concentrations representing off-gas from several U.S. Department of Energy (DOE) mixed waste treatment processes including electrical resistance heated (joule-heated) glass melters, fluidized bed calciners, and fluidized bed steam reformers. Surrogates of various DOE mixed waste streams (or surrogates of offgas from DOE mixed waste streams) including INL “sodium bearing waste” (SBW), liquid “low activity waste” (LAW) from the Pacific Northwest National Laboratory, and liquid waste from Savannah River National Laboratory (“Tank 48H waste”) have been tested. Test results demonstrate mercury control efficiencies up to 99.999%, high enough to comply with the Hazardous Waste (HWC) Combustor Maximum Achievable Control Technology (MACT) standards even when the uncontrolled off-gas mercury concentrations exceed 400,000 ug/dscm (at 7% O2), and confirm carbon bed design parameters for such high efficiencies. Results of several different pilot-scale and engineering-scale test programs performed over several years are presented and compared.

  19. Simulation of High-Power Mercury Jet Targets for Neutrino Factory and Muon

    E-Print Network [OSTI]

    McDonald, Kirk

    Simulation of High-Power Mercury Jet Targets for Neutrino Factory and Muon Collider R. Samulyak,1 interacting with proton pulses in 15-20T magnetic field is a key element of high-power target systems · Proof rarefaction waves · Cavities can form on inter-particle size scales · Present work focuses of pure hydro

  20. Marvell Nanolab Member login Lab Manual Index Mercury Web Berkeley Microlab Chapter 8.24

    E-Print Network [OSTI]

    Healy, Kevin Edward

    Marvell Nanolab Member login Lab Manual Index Mercury Web Berkeley Microlab Chapter 8.24 Netscope device). This microscope can do both bright field and dark field imaging. 4.0 Applicable Documents the focus as needed. 9.5 Dark field: You can select dark field mode by clicking on the DF button on the Ergo

  1. Marvell Nanolab Member login Lab Manual Index Mercury Web Berkeley Microlab UVSCOPE Operation

    E-Print Network [OSTI]

    Healy, Kevin Edward

    Marvell Nanolab Member login Lab Manual Index Mercury Web Berkeley Microlab UVSCOPE (uvscope) 1 for Bright Field, Dark Field, Interference contrast, and UV sub- micron operations. It also includes ­ Microscopic image of reflected light. 5.3 Dark Field Image ­ Microscopic image of scattered light. 5

  2. Mercury level in fish caught in Indian River Lagoon higher than it should be?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Mercury level in fish caught in Indian River Lagoon higher than it should be? Harbor Branch launches new study of humans who eat fish and live around the estuary By Scott Wyland Tuesday, May 22, 2012 INDIAN RIVER COUNTY -- A 20-year-old man fishes local waters every day for his meals and scoffs

  3. Predictive Modeling of Mercury Speciation in Combustion Flue Gases Using GMDH-Based Abductive Networks

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    and boiler operating conditions. Prediction performance compares favourably with neural network models for future work to further improve performance. Index Terms: Mercury speciation, Flue gases, Boiler emissions activities are coal-fired electric utility boilers, where speciation depends on the operating conditions

  4. Mercury: A Memory-Constrained Spatio-temporal Real-time Search on Microblogs

    E-Print Network [OSTI]

    Mokbel, Mohamed F.

    on a real-time Twitter Firehose feed and actual locations of Bing search queries show that Mercury supports Microblogs, e.g., tweets, Facebook comments, and Foursquare check-in's, are among the most popular web tweets [38], while Facebook has 1+ Billion users who post 3.2+ Billion daily comments [12]. Combined

  5. MERCURY CONCENTRATIONS IN LAKE SEDIMENTS REVISITING THE PREDICTIVE POWER OF CATCHMENT MORPHOMETRY AND

    E-Print Network [OSTI]

    Mazumder, Asit

    MERCURY CONCENTRATIONS IN LAKE SEDIMENTS ­ REVISITING THE PREDICTIVE POWER OF CATCHMENT MORPHOMETRY@uvic.ca) (Received 21 April 2005; accepted 9 September 2005) Abstract. Lake sediments are a potential source for lake catchment morphometry and (b) organic matter composition of sediments in an effort to account

  6. Electron transport and precipitation at Mercury during the MESSENGER flybys: Implications for electron-stimulated desorption

    E-Print Network [OSTI]

    California at Berkeley, University of

    Electron transport and precipitation at Mercury during the MESSENGER flybys: Implications of California, Los Angeles, CA 90095-1567, USA b Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1567, USA c Space Sciences Laboratory, University of California, Berkeley, CA

  7. Centrifugal Pump for a 20-m/s, 1-cm-Diameter Mercury Jet

    E-Print Network [OSTI]

    McDonald, Kirk

    Centrifugal Pump for a 20-m/s, 1-cm-Diameter Mercury Jet Ernst de Haas, Kirk T. McDonald Joseph) centrifugal pump from R.S. Cor- coran, powered by a 20-hp, 480 V motor from Baldor. A photograph of this pump

  8. A study of the reaction between mercury (II) iodide and organic amine hydroiodides 

    E-Print Network [OSTI]

    Stevenson, John Harvey

    1959-01-01

    explanations for the dis oies in the analytical determinations of 1 di o o ne and mercuryl 1 ~ Evaporation of the reactton soluti t b on o ring about 111?ation of the roduc p t probably produced some deoomposi- A small amoun+ unt of free mercury appeared...

  9. Mercury-free dissolution of aluminum-clad fuel in nitric acid

    DOE Patents [OSTI]

    Christian, J.D.; Anderson, P.A.

    1994-11-15

    A mercury-free dissolution process for aluminum involves placing the aluminum in a dissolver vessel in contact with nitric acid-fluoboric acid mixture at an elevated temperature. By maintaining a continuous flow of the acid mixture through the dissolver vessel, an effluent containing aluminum nitrate, nitric acid, fluoboric acid and other dissolved components are removed. 5 figs.

  10. Toxecon Retrofit for Mercury and Mulit-Pollutant Control on Three 90-MW Coal-Fired Boilers

    SciTech Connect (OSTI)

    Steven Derenne; Robin Stewart

    2009-09-30

    This U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project was based on a cooperative agreement between We Energies and the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL) to design, install, evaluate, and demonstrate the EPRI-patented TOXECON{trademark} air pollution control process. Project partners included Cummins & Barnard, ADA-ES, and the Electric Power Research Institute (EPRI). The primary goal of this project was to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant in Marquette, Michigan. Additional goals were to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter emissions; allow reuse and sale of fly ash; advance commercialization of the technology; demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use at power plants; and demonstrate recovery of mercury from the sorbent. Mercury was controlled by injection of activated carbon upstream of the TOXECON{trademark} baghouse, which achieved more than 90% removal on average over a 44-month period. During a two-week test involving trona injection, SO{sub 2} emissions were reduced by 70%, although no coincident removal of NOx was achieved. The TOXECON{trademark} baghouse also provided enhanced particulate control, particularly during startup of the boilers. On this project, mercury CEMs were developed and tested in collaboration with Thermo Fisher Scientific, resulting in a reliable CEM that could be used in the power plant environment and that could measure mercury as low as 0.1 {micro}g/m{sup 3}. Sorbents were injected downstream of the primary particulate collection device, allowing for continued sale and beneficial use of captured fly ash. Two methods for recovering mercury using thermal desorption on the TOXECON{trademark} PAC/ash mixture were successfully tested during this program. Two methods for using the TOXECON{trademark} PAC/ash mixture in structural concrete were also successfully developed and tested. This project demonstrated a significant reduction in the rate of emissions from Presque Isle Units 7, 8, and 9, and substantial progress toward establishing the design criteria for one of the most promising mercury control retrofit technologies currently available. The Levelized Cost for 90% mercury removal at this site was calculated at $77,031 per pound of mercury removed with a capital cost of $63,189 per pound of mercury removed. Mercury removal at the Presque Isle Power Plant averages approximately 97 pounds per year.

  11. Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed and Entrained-Flow Reactor

    SciTech Connect (OSTI)

    Buitrago, Paula A; Morrill, Mike; Lighty, JoAnn S; Silcox, Geoffrey D

    2014-08-20

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150oC. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150?C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and intraparticle diffusion. The Freundlich isotherm more accurately described in-flight mercury capture. Using these parameters, very little intraparticle diffusion was evident. Consistent with other data, smaller particles resulted in higher mercury uptake due to available surface area. Therefore, it is important to capture the particle size distribution in the model. At typical full-scale sorbent feed rates, the calculations underpredicted adsorption, suggesting that wall effects can account for as much as 50 percent of the removal, making it an important factor in entrained-mercury adsorption models.

  12. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-10-01

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time-period July 1, 2003 through September 30, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months at each of two sites to provide longer-term catalyst life data. This is the eighth full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the first pilot unit at the GRE Coal Creek site with all four catalysts in service and sonic horns installed for on-line catalyst cleaning. During the quarter, a catalyst activity measurement trip and mercury SCEM relative accuracy tests were completed, and catalyst pressure drop was closely monitored with the sonic horns in operation. CPS completed the installation of the second mercury oxidation catalyst pilot unit at their Spruce Plant during the quarter, and the four catalysts to be tested in that unit were ordered. The pilot unit was started up with two of the four catalysts in service late in August, and initial catalyst activity results were measured in late September. The other two catalysts will not become available for testing until sometime in October. This technical progress report details these efforts at both sites.

  13. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    SciTech Connect (OSTI)

    Gary M. Blythe

    2006-03-31

    This document summarizes progress on Cooperative Agreement DE-FC26-04NT41992, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems'', during the time-period January 1 through March 31, 2006. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in flue gas from coal combustion, and the use of a wet flue gas desulfurization (FGD) system downstream to remove the oxidized mercury at high efficiency. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, EPRI, Great River Energy (GRE), TXU Generation Company LP, the Southern Company, and Duke Energy. URS Group is the prime contractor. The mercury control process under development uses honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The current project is testing previously identified catalyst materials at pilot scale and in a commercial form to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months or longer at each of two sites to provide longer-term catalyst life data. Pilot-scale wet FGD tests are being conducted periodically at each site to confirm the ability to scrub the catalytically oxidized mercury at high efficiency. This is the ninth reporting period for the subject Cooperative Agreement. During this period, project efforts primarily consisted of operating the catalyst pilot units at the TXU Generation Company LP's Monticello Steam Electric Station and at Georgia Power's Plant Yates. Two catalyst activity measurement trips were made to Plant Yates during the quarter. This Technical Progress Report presents catalyst activity results from the oxidation catalyst pilot unit at Plant Yates and discusses the status of the pilot unit at Monticello.

  14. Pilot Testing of WRI'S Novel Mercury Control Technology by Pre-Combustion Thermal Treatment of Coal

    SciTech Connect (OSTI)

    Alan Bland; Jesse Newcomer; Kumar Sellakumar

    2008-08-17

    The challenges to the coal-fired power industry continue to focus on the emission control technologies, such as mercury, and plant efficiency improvements. An alternate approach to post-combustion control of mercury, while improving plant efficiency deals with Western Research Institute's (WRI)'s patented pre-combustion mercury removal and coal upgrading technology. WRI was awarded under the DOE's Phase III Mercury program, to evaluate the effectiveness of WRI's novel thermal pretreatment process to achieve >50% mercury removal, and at costs of <$30,000/lb of Hg removed. WRI has teamed with Etaa Energy, Energy and Environmental Research Center (EERC), Foster Wheeler North America Corp. (FWNA), and Washington Division of URS (WD-URS), and with project co-sponsors including Electric Power Research Institute (EPRI), Southern Company, Basin Electric Power Cooperative (BEPC), Montana-Dakota Utilities (MDU), North Dakota Industrial Commission (NDIC), Detroit Edison (DTE), and SaskPower to undertake this evaluation. The technical objectives of the project were structured in two phases: Phase I--coal selection and characterization, and bench-and PDU-scale WRI process testing and; and Phase II--pilot-scale pc combustion testing, design of an integrated boiler commercial configuration, its impacts on the boiler performance and the economics of the technology related to market applications. This report covers the results of the Phase I testing. The conclusion of the Phase I testing was that the WRI process is a technically viable technology for (1) removing essentially all of the moisture from low rank coals, thereby raising the heating value of the coal by about 30% for subbituminous coals and up to 40% for lignite coals, and (2) for removing volatile trace mercury species (up to 89%) from the coal prior to combustion. The results established that the process meets the goals of DOE of removing <50% of the mercury from the coals by pre-combustion methods. As such, further testing, demonstration and economic analysis as described in the Phase II effort is warranted and should be pursued.

  15. Defining the Molecular-Cellular-Field Continuum of Mercury Detoxification

    SciTech Connect (OSTI)

    Miller, Susan M.

    2014-09-04

    Hg is of special interest to DOE due to past use at the Oak Ridge Reservation (ORR). Its facile redox [Hg2+/0] chemistry, bonding to carbon [e.g. MeHg+] and unique physical properties [e.g., Hg0 volatility] underlie a complex global Hg cycle involving biotic and abiotic chemical and physical transport and transformations in soils, sediments, waterways and the atmosphere. Facultative and anaerobic bacteria make MeHg+, which is neurotoxic to wildlife and humans. Sustainable stewardship requires eliminating both MeHg+ and even more toxic Hg2+, which is also the substrate for methylation. The proteins encoded by the mer locus in aerobic and facultative mercury resistant (HgR) bacteria convert soil or waterborne Hg2+ or MeHg+ to less toxic, gaseous Hg0. HgR microbes live in highly Hg-contaminated sites and depress MeHg+ formation >500-fold in such zones. So, enhancing the capacity of natural HgR microbes to remove Hg2+/MeHg+ from wetlands and waterways is a logical component of contaminated site stewardship. To apply enhancement in the field requires knowing how the HgR pathway works including the metabolic demands it makes on the cell, i.e., the entire cell is the relevant catalytic unit. HgR loci occur in metabolically diverse bacteria and unique mer-host co-evolution has been found. In this project we extended our previous studies of mer enzymes in ?-proteobacteria, which are abundant in high Hg areas of the ORR to include studies of mer enzymes from HgR ?-proteobacteria and HgR actinobacteria, which also increase in the high Hg regions of the ORR. Specifically, we (1) examined interactions between structural compoenents of MerA and MerB enzymes from ?-proteobacteria, (2) investigated effects of mutations on kinetic efficiency of Hg2+ reduction by ?-proteobacterial MerA, (3) cloned and performed initital characterization of MerA and MerB enzymes from Streptomyces lividans, an actinobacterium, (4) cloned and performed initial characterization of a fused MerB-MerA protein from Ochrobactrum anthropi, an ?-proteobacterium, (5) investigate the extent of Hg isotope fractionation that occurs with purified ?-proteobacterial MerA.

  16. Novel Sorbent-Based Process for High Temperature Trace Metal Removal

    SciTech Connect (OSTI)

    Gokhan Alptekin

    2008-09-30

    The objective of this project was to demonstrate the efficacy of a novel sorbent can effectively remove trace metal contaminants (Hg, As, Se and Cd) from actual coal-derived synthesis gas streams at high temperature (above the dew point of the gas). The performance of TDA's sorbent has been evaluated in several field demonstrations using synthesis gas generated by laboratory and pilot-scale coal gasifiers in a state-of-the-art test skid that houses the absorbent and all auxiliary equipment for monitoring and data logging of critical operating parameters. The test skid was originally designed to treat 10,000 SCFH gas at 250 psig and 350 C, however, because of the limited gas handling capabilities of the test sites, the capacity was downsized to 500 SCFH gas flow. As part of the test program, we carried out four demonstrations at two different sites using the synthesis gas generated by the gasification of various lignites and a bituminous coal. Two of these tests were conducted at the Power Systems Demonstration Facility (PSDF) in Wilsonville, Alabama; a Falkirk (North Dakota) lignite and a high sodium lignite (the PSDF operator Southern Company did not disclose the source of this lignite) were used as the feedstock. We also carried out two other demonstrations in collaboration with the University of North Dakota Energy Environmental Research Center (UNDEERC) using synthesis gas slipstreams generated by the gasification of Sufco (Utah) bituminous coal and Oak Hills (Texas) lignite. In the PSDF tests, we showed successful operation of the test system at the conditions of interest and showed the efficacy of sorbent in removing the mercury from synthesis gas. In Test Campaign No.1, TDA sorbent reduced Hg concentration of the synthesis gas to less than 5 {micro}g/m{sup 3} and achieved over 99% Hg removal efficiency for the entire test duration. Unfortunately, due to the relatively low concentration of the trace metals in the lignite feed and as a result of the intermittent operation of the PSDF gasifier (due to the difficulties in the handling of the low quality lignite), only a small fraction of the sorbent capacity was utilized (we measured a mercury capacity of 3.27 mg/kg, which is only a fraction of the 680 mg/kg Hg capacity measured for the same sorbent used at our bench-scale evaluations at TDA). Post reaction examination of the sorbent by chemical analysis also indicated some removal As and Se (we did not detect any significant amounts of Cd in the synthesis gas or over the sorbent). The tests at UNDEERC was more successful and showed clearly that the TDA sorbent can effectively remove Hg and other trace metals (As and Se) at high temperature. The on-line gas measurements carried out by TDA and UNDEERC separately showed that TDA sorbent can achieve greater than 95% Hg removal efficiency at 260 C ({approx}200g sorbent treated more than 15,000 SCF synthesis gas). Chemical analysis conducted following the tests also showed modest amounts of As and Se accumulation in the sorbent bed (the test durations were still short to show higher capacities to these contaminants). We also evaluated the stability of the sorbent and the fate of mercury (the most volatile and unstable of the trace metal compounds). The Synthetic Ground Water Leaching Procedure Test carried out by an independent environmental laboratory showed that the mercury will remain on the sorbent once the sorbent is disposed. Based on a preliminary engineering and cost analysis, TDA estimated the cost of mercury removal from coal-derived synthesis gas as $2,995/lb (this analysis assumes that this cost also includes the cost of removal of all other trace metal contaminants). The projected cost will result in a small increase (less than 1%) in the cost of energy.

  17. Metal nanodisks using bicellar templates

    DOE Patents [OSTI]

    Song, Yujiang; Shelnutt, John A

    2013-12-03

    Metallic nanodisks and a method of making them. The metallic nanodisks are wheel-shaped structures that that provide large surface areas for catalytic applications. The metallic nanodisks are grown within bicelles (disk-like micelles) that template the growth of the metal in the form of approximately circular dendritic sheets. The zero-valent metal forming the nanodisks is formed by reduction of a metal ion using a suitable electron donor species.

  18. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-05-01

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time period January 1, 2003 through March 31, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the sixth full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the pilot unit with three catalysts, conducting catalyst activity measurements, and procuring the fourth catalyst, all for the GRE Coal Creek pilot unit site. Laboratory efforts were also conducted to support catalyst selection for the second pilot unit site, at CPS' Spruce Plant. This technical progress report provides an update on these efforts.

  19. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-02-22

    The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the first full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to project initiation and planning. There is no significant technical progress to report for the current period.

  20. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOE Patents [OSTI]

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.