Powered by Deep Web Technologies
Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A Solid-State 199Hg NMR Study of Mercury Halides  

E-Print Network (OSTI)

red polymorph) suggest that the mercury is in sites of cubicTable III. NMR Properties of Mercury Halide Nuclei a IsotopeState 199 Hg NMR Study of Mercury Halides R. E. Taylor 1 *,

Taylor, Robert E; Bai, Shi; Dybowski, Cecil

2011-01-01T23:59:59.000Z

2

METHOD OF PREPARING METAL HALIDES  

DOE Patents (OSTI)

The conversion of plutonium halides from plutonium peroxide can be done by washing the peroxide with hydrogen peroxide, drying the peroxide, passing a dry gaseous hydrohalide over the surface of the peroxide at a temperature of about lOO icient laborato C until the reaction rate has stabillzed, and then ralsing the reaction temperature to between 400 and 600 icient laborato C until the conversion to plutonium halide is substantially complete.

Hendrickson, A.V.

1958-11-18T23:59:59.000Z

3

Information on the Fate of Mercury From Fluorescent Lamps Disposed in Landfills  

Science Conference Proceedings (OSTI)

Mercury is contained in energy-efficient fluorescent, mercury-vapor, metal halide, and high-pressure sodium lamps. This report presents information on the potential for air and groundwater contamination when mercury lamps are disposed in municipal landfills.

1995-04-19T23:59:59.000Z

4

Method for producing hydrocarbon fuels from heavy polynuclear hydrocarbons by use of molten metal halide catalyst  

DOE Patents (OSTI)

In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst, thereafter separating at least a substantial portion of the carbonaceous material associated with the reaction mixture from the spent molten metal halide and thereafter regenerating the metal halide catalyst, an improvement comprising contacting the spent molten metal halide catalyst after removal of a major portion of the carbonaceous material therefrom with an additional quantity of hydrogen is disclosed.

Gorin, Everett (San Rafael, CA)

1979-01-01T23:59:59.000Z

5

X-ray Methods in High-Intensity Discharges and Metal-Halide Lamps: X-ray Induced Fluorescence  

SciTech Connect

We describe the use of x-ray induced fluorescence to study metal-halide high-intensity discharge lamps and to measure equilibrium vapor pressures of metal-halide salts. The physical principles of metal-halide lamps, relevant aspects of x-ray-atom interactions, the experimental method using synchrotron radiation, and x-ray induced fluorescence measurements relevant to metal-halide lamps are covered.

Curry, John J.; Lapatovich, Walter P.; Henins, Albert (NIST)

2011-12-09T23:59:59.000Z

6

Method for producing hydrocarbon fuels and fuel gas from heavy polynuclear hydrocarbons by the use of molten metal halide catalysts  

DOE Patents (OSTI)

In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst in a hydrocracking zone, thereafter separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide and thereafter regenerating the spent molten metal halide by incinerating the spent molten metal halide by combustion of carbon and sulfur compounds in the spent molten metal halide in an incineration zone, the improvement comprising: (a) contacting the heavy feedstocks and hydrogen in the presence of the molten metal halide in the hydrocracking zone at reaction conditions effective to convert from about 60 to about 90 weight percent of the feedstock to lighter hydrocarbon fuels; (b) separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide; (c) contacting the spent molten metal halide with oxygen in a liquid phase gasification zone at a temperature and pressure sufficient to vaporize from about 25 to about 75 weight percent of the spent metal halide, the oxygen being introduced in an amount sufficient to remove from about 60 to about 90 weight percent of the carbon contained in the spent molten metal halide to produce a fuel gas and regenerated metal halide; and (d) incinerating the spent molten metal halide by combusting carbon and sulfur compounds contained therein.

Gorin, Everett (San Rafael, CA)

1979-01-01T23:59:59.000Z

7

Thermal battery. [solid metal halide electrolytes with enhanced electrical conductance after a phase transition  

DOE Patents (OSTI)

The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.

Carlsten, R.W.; Nissen, D.A.

1973-03-06T23:59:59.000Z

8

ELECTROLYTIC PROCESS FOR PRODUCING METALS  

DOE Patents (OSTI)

A method is described for reducing beryllium halides to beryllium. The beryllfum halide fs placed in an eutectic mixture of alkali halides and alkaline earth halides. The constituents of this eutectic bath are so chosen that it has a melting point less than the boiling point of mercury, which acts as a cathode for the system. The beryllium metal is then deposited in the mercury upon electrolysis.

Kopelman, B.; Holden, R.B.

1961-06-01T23:59:59.000Z

9

Mercury and Other Trace Metals in Coal  

Science Conference Proceedings (OSTI)

This document summarizes the trace metal analyses of more than 150 as-received bituminous, sub-bituminous, and lignite coal samples from full-scale power plants. Analyses for mercury, arsenic, beryllium, cadmium, chromium, copper, nickel, and lead offer a benchmark for utilities to compare and contrast their own estimates and measurements of trace element content in coal.

1997-02-25T23:59:59.000Z

10

400-Watt Electronic High-Bay Fixture for Metal-Halide High-Intensity Discharge Lighting  

Science Conference Proceedings (OSTI)

The product under assessment is an advanced lighting technology8212a 400-watt, metal-halide, electronic high-intensity discharge (HID) ballast technology designed to be operated as a stand-alone ballast or integrated as a fixture where the ballast becomes part of the fixture mechanical support system.

2008-06-12T23:59:59.000Z

11

Method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock in the presence of a molten metal halide catalyst  

DOE Patents (OSTI)

A method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock to produce lighter hydrocarbon fuels by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, the method comprising: mixing the feedstock with a heavy naphtha fraction which has an initial boiling point from about 100.degree. to about 160.degree. C. with a boiling point difference between the initial boiling point and the final boiling point of no more than about 50.degree. C. to produce a mixture; thereafter contacting the mixture with partially spent molten metal halide and hydrogen under temperature and pressure conditions so that the temperature is near the critical temperature of the heavy naphtha fraction; separating at least a portion of the heavy naphtha fraction and lighter hydrocarbon fuels from the partially spent molten metal halide, unreacted feedstock and reaction products; thereafter contacting the partially spent molten metal halide, unreacted feedstock and reaction products with hydrogen and fresh molten metal halide in a hydrocracking zone to produce additional lighter hydrocarbon fuels and separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide.

Gorin, Everett (San Rafael, CA)

1981-01-01T23:59:59.000Z

12

Lanthanide-alkali Metal Halide Systems: Characterization and ...  

Science Conference Proceedings (OSTI)

Recovery of Precious Metals from Chloride Media Using Microalgae Waste from Biofuel Extraction · Segregation Roasting of a Saprolitic Laterite Ore: An ...

13

Alkaline and alkaline earth metal phosphate halides and phosphors  

SciTech Connect

Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

2012-11-13T23:59:59.000Z

14

Transition metal ion-assisted photochemical generation of alkyl halides and hydrocarbons from carboxylic acids  

Science Conference Proceedings (OSTI)

Near-UV photolysis of aqueous solutions of propionic acid and aqueous Fe3+ in the absence of oxygen generates a mixture of hydrocarbons (ethane, ethylene and butane), carbon dioxide, and Fe2+. The reaction becomes mildly catalytic (about five turnovers) in the presence of oxygen which converts a portion of alkyl radicals to oxidizing intermediates that reoxidize Fe2+. The photochemistry in the presence of halide ions (X? = Cl?, Br?) generates ethyl halides via halogen atom abstraction from FeXn3?n by ethyl radicals. Near-quantitative yields of C2H5X are obtained at ?0.05 M X?. Competition experiments with Co(NH3)5Br2+ provided kinetic data for the reaction of ethyl radicals with FeCl2+ (k = (4.0 ± 0.5) × 106 M?1 s?1) and with FeBr2+ (k = (3.0 ± 0.5) × 107 M?1 s?1). Photochemical decarboxylation of propionic acid in the presence of Cu2+ generates ethylene and Cu+. Longer-chain acids also yield alpha olefins as exclusive products. These reactions become catalytic under constant purge with oxygen which plays a dual role. It reoxidizes Cu+ to Cu2+, and removes gaseous olefins to prevent accumulation of Cu+(olefin) complexes and depletion of Cu2+. The results underscore the profound effect that the choice of metal ions, the medium, and reaction conditions exert on the photochemistry of carboxylic acids.

Carraher, Jack; Pestovsky, Oleg; Bakac, Andreja

2012-03-14T23:59:59.000Z

15

Silicon halide-alkali metal flames as a source of solar grade silicon. Final report  

DOE Green Energy (OSTI)

The object of this program was to determine the feasibility of using continuous high-temperature reactions of alkali metals and silicon halides to produce silicon in large quantities and of suitable purity for use in the production of photovoltaic solar cells. Equilibrium calculations showed that a range of conditions were available where silicon was produced as a condensed phase but the byproduct alkali metal salt was a vapor. A process was proposed using the vapor phase reaction of Na with SiCl/sub 4/. Low pressure experiments were performed demonstrating that free silicon was produced and providing experience with the construction of reactant vapor generators. Further experiments at higher reagent flow rates were performed in a low temperature flow tube configuration with co-axial injection of reagents. Relatively pure silicon was produced in these experiments. A high temperature graphite flow tube was built and continuous separation of Si from NaCl was demonstrated. A larger-scaled well-stirred reactor was built. Experiments were performed to investigate the compatibility of graphite-based reactor materials of construction with sodium. At 1100 to 1200 K none of these materials were found to be suitable. At 1700 K the graphites performed well with little damage except to coatings of pyrolytic graphite and silicon carbide which were damaged.

Olson, D.B.; Miller, W.J.; Gould, R.K.

1980-01-01T23:59:59.000Z

16

ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS  

SciTech Connect

Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-?g/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-?g/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine and hydrogen selenide sorbents. The noncarbon sorbent was able to reduce the concentration to 0 ppb from a starting concentration of 120 ppb. This compares to the target value of 5 ppb (~17?g/m3). The EERC-prepared metal-based pellet and coprecipitate sorbents exhibited arsine reductions of 90% or greater, being below 10 ppb. Corning SR Liquid monoliths exhibited brief periods (<1 hour) of attaining 90% arsine reduction but were able to achieve greater than 80% reduction for several hours. With respect to hydrogen selenide, all Group IB and IIB metal-based sorbents tested exhibited 100% reduction from an inlet concentration of approximately 400 ppb. Corning SR Liquid monoliths exhibited an 82% reduction when two monoliths were tested simultaneously in series.

Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

2010-07-31T23:59:59.000Z

17

Technetium Dichloride: A New Binary Halide Containing Metal-Metal Multiple Bonds  

Science Conference Proceedings (OSTI)

Technetium dichloride has been discovered. It was synthesized from the elements and characterized by several physical techniques, including single crystal X-ray diffraction. In the solid state, technetium dichloride exhibits a new structure type consisting of infinite chains of face sharing [Tc{sub 2}Cl{sub 8}] rectangular prisms that are packed in a commensurate supercell. The metal-metal separation in the prisms is 2.127(2) {angstrom}, a distance consistent with the presence of a Tc {triple_bond} Tc triple bond that is also supported by electronic structure calculations.

Poineau, Frederic; Malliakas, Christos D.; Weck, Philippe F.; Scott, Brian L.; Johnstone, Erik V.; Forster, Paul M.; Kim, Eunja; Kanatzidis, Mercouri G.; Czerwinski, Kenneth R.; Sattelberge, Alfred P. (UNLV); (NWU); (LANL)

2011-10-19T23:59:59.000Z

18

Technetium dichloride : a new binary halide containing metal-metal multiple bonds.  

Science Conference Proceedings (OSTI)

Technetium dichloride has been discovered. It was synthesized from the elements and characterized by several physical techniques, including single crystal X-ray diffraction. In the solid state, technetium dichloride exhibits a new structure type consisting of infinite chains of face sharing [Tc{sub 2}Cl{sub 8}] rectangular prisms that are packed in a commensurate supercell. The metal-metal separation in the prisms is 2.127(2) {angstrom}, a distance consistent with the presence of a Tc {triple_bond} Tc triple bond that is also supported by electronic structure calculations.

Poineau, F.; Malliakas, C. D.; Weck, P. F.; Scott, B. L.; Johnstone, E. V.; Forster, P. M.; Kim, E.; Kanatzidis, M. G.; Czerwinski, K. R.; Sattelberger, A. P. (Materials Science Division); ( OTD-EESA); (Univ. of Nevada at Las Vegas); (LANL); (Northwestern Univ.)

2011-06-15T23:59:59.000Z

19

Packaging a liquid metal ESD with micro-scale Mercury droplet.  

SciTech Connect

A liquid metal ESD is being developed to provide electrical switching at different acceleration levels. The metal will act as both proof mass and electric contact. Mercury is chosen to comply with operation parameters. There are many challenges surrounding the deposition and containment of micro scale mercury droplets. Novel methods of micro liquid transfer are developed to deliver controllable amounts of mercury to the appropriate channels in volumes under 1 uL. Issues of hermetic sealing and avoidance of mercury contamination are also addressed.

Barnard, Casey Anderson

2011-08-01T23:59:59.000Z

20

Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas: Gold, Palladium and Platinum Formulations  

Science Conference Proceedings (OSTI)

The use of noble metals as catalysts for mercury oxidation in flue gas remains an area of active study. To date, field studies have focused on gold and palladium catalysts installed at pilot scale. In this article, we introduce bench-scale experimental results for gold, palladium and platinum catalysts tested in realistic simulated flue gas. Our initial results reveal some intriguing characteristics of catalytic mercury oxidation and provide insight for future research into this potentially important process.

Presto, A.A.; Granite, E.J

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Treatability study for removal of leachable mercury in crushed fluorescent lamps  

SciTech Connect

Nonserviceable fluorescent lamps removed from radiological control areas at the Oak Ridge Department of Energy facilities have been crushed and are currently managed as mixed waste (hazardous and radiologically contaminated). We present proposed treatment flowsheets and supporting treatability study data for conditioning this solid waste residue so that it can qualify for disposal in a sanitary landfill. Mercury in spent fluorescent lamps occurs primarily as condensate on high-surface-area phosphor material. It can be solubilized with excess oxidants (e.g., hypochlorite solution) and stabilized by complexation with halide ions. Soluble mercury in dechlorinated saline solution is effectively removed by cementation with zero-valent iron in the form of steel wool. In packed column dynamic flow testing, soluble mercury was reduced to mercury metal and insoluble calomel, loading > 1.2 g of mercury per grain of steel wool before an appreciable breakthrough of soluble mercury in the effluent.

Bostick, W.D.; Beck, D.E.; Bowser, K.T. [and others

1996-02-01T23:59:59.000Z

22

Mercury Removal from Aqueous Systems Using Commercial and Laboratory Prepared Metal Oxide Nanoparticles  

E-Print Network (OSTI)

Five commercial metal oxide nanoparticles (CuO, SiO2, Fe2O3, TiO2 and Al2O3) have been individually screened for mercury removal in a batch reactor under bicarbonate buffered and non-buffered aqueous solutions (DI water). Copper oxide was then selected for surface modification to enhance mercury removal. The surfaces of both laboratory prepared and commercially available copper oxide nanoparticles were treated with 1-octanethiol to produce copper sulfide and/or copper alkanethiol nanoparticles. The resulting particles were characterized using X-Ray Fluorescence(XRF), X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The novel nanoparticles demonstrated very high mercury removal (> 99%) from both the buffered and non-buffered aqueous solutions.

Desai, Ishan

2009-08-01T23:59:59.000Z

23

Cavitation-erosion resistance of 316LN stainless steel in mercury containing metallic solutes  

Science Conference Proceedings (OSTI)

Room temperature cavitation tests of vacuum annealed type 316LN stainless steel were performed in pure mercury and in mercury with various amounts of metallic solute to evaluate potential mitigation of erosion/wastage. Tests were performed using an ultrasonic vibratory horn with specimens attached at the tip. All of the solutes examined, which included 5 wt% In, 10 wt% In, 4.4 wt% Cd, 2 wt% Ga, and a mixture that included 1 wt% each of Pb, Sn, and Zn, were found to increase cavitation-erosion as measured by increased weight loss and/or surface profile development compared to exposures for the same conditions in pure mercury. Qualitatively, each solute appeared to increase the tenacity of the post-test wetting of the Hg solutions and render the Hg mixture susceptible to manipulation of droplet shape. Published by Elsevier B.V.

Pawel, Steven J [ORNL; Mansur, Louis K [ORNL

2003-01-01T23:59:59.000Z

24

Actinide halide complexes  

DOE Patents (OSTI)

A compound of the formula MX{sub n}L{sub m} wherein M = Th, Pu, Np,or Am thorium, X = a halide atom, n = 3 or 4, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is 3 or 4 for monodentate ligands or is 2 for bidentate ligands, where n + m = 7 or 8 for monodentate ligands or 5 or 6 for bidentate ligands, a compound of the formula MX{sub n} wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

1991-02-07T23:59:59.000Z

25

Oxidation of hydrogen halides to elemental halogens  

DOE Patents (OSTI)

A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

Rohrmann, Charles A. (Kennewick, WA); Fullam, Harold T. (Richland, WA)

1985-01-01T23:59:59.000Z

26

Recovery of mercury from acid waste residues  

DOE Patents (OSTI)

Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and thence quenching the reactivity of the nitric acid prior to nitration of the mercury metal. 1 fig.

Greenhalgh, W.O.

1987-02-27T23:59:59.000Z

27

Recovery of mercury from acid waste residues  

DOE Patents (OSTI)

Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

Greenhalgh, Wilbur O. (Richland, WA)

1989-01-01T23:59:59.000Z

28

Actinide halide complexes  

DOE Patents (OSTI)

A compound is described of the formula MX[sub n]L[sub m] wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands. A compound of the formula MX[sub n] wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds are described including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant.

Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

1992-11-24T23:59:59.000Z

29

Actinide halide complexes  

DOE Patents (OSTI)

A compound of the formula MX.sub.n L.sub.m wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands, a compound of the formula MX.sub.n wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

Avens, Larry R. (Los Alamos, NM); Zwick, Bill D. (Santa Fe, NM); Sattelberger, Alfred P. (Los Alamos, NM); Clark, David L. (Los Alamos, NM); Watkin, John G. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

30

Development of processes for the production of solar grade silicon from halides and alkali metals. First quarterly report, October 3-December 31, 1979  

DOE Green Energy (OSTI)

This program is directed toward the development of processes involving high temperature reactions of silicon halides with alkali metals for the production of solar grade silicon in volume at low cost. Experiments are being performed to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, determine the effects of reactants and/or products on materials of reactor construction, and make preliminary engineering and economic analyses of a scaled-up process. Samples of the silicon product will be delivered to JPL for evaluation of solar cell performance. During this reporting period the silicon reactor test apparatus reached operational capabilities after a shutdown for two months. Several design improvements were made while returning it to an operational stage. During the initial series of experiments complete product separation of the silicon from the salt was achieved and small samples (approx. = 3 to 40 g) of fused silicon were collected. The test apparatus is now being operated on a routine basis for periods of about twenty minutes. Finally, the initial work began on the engineering and economic analysis for scale-up of the silicon production process.

Dickson, C.R.; Gould, R.K.

1980-02-01T23:59:59.000Z

31

APPARATUS FOR THE PRODUCTION OF LITHIUM METAL  

DOE Patents (OSTI)

Methods and apparatus for the production of high-purity lithium from lithium halides are described. The apparatus is provided for continuously contacting a molten lithium halide with molten barium, thereby forming lithium metal and a barium halide, establishing separate layers of these reaction products and unreacted barium and lithium halide, and continuously withdrawing lithium and barium halide from the reaction zone. (AEC)

Baker, P.S.; Duncan, F.R.; Greene, H.B.

1961-08-22T23:59:59.000Z

32

Photochemical studies of alkali halide vapors  

SciTech Connect

Thesis. An apparatus has been constructed for studying the photodissociation of alkali halides to produce excited alkali metal atoms. The key component is a low pressure H/sub 2/ arc continuum uv source. Radiation from this source, modulated by a chopping wheel and analyzed by a monochromator, enters a cell containing the alkali halide vapor. In the appropriate wavelength range, photodissociation occurs to produce the alkali atom in an excited /sup 2/p state, the flourescence from which is detected by a photomultiplier-lock-in amplifier combination. (auth)

Earl, B.L.

1973-08-01T23:59:59.000Z

33

Effect of Mercury-Noble Metal Interactions on SRAT Processing of SB3 Simulants (U)  

DOE Green Energy (OSTI)

Controlling hydrogen generation below the Defense Waste Processing Facility (DWPF) safety basis constrains the range of allowable acid additions in the DWPF Chemical Processing Cell. This range is evaluated in simulant tests at the Savannah River National Laboratory (SRNL). A minimum range of allowable acid additions is needed to provide operational flexibility and to handle typical uncertainties in process and analytical measurements used to set acid additions during processing. The range of allowable acid additions is a function of the composition of the feed to DWPF. Feed changes that lead to a smaller range of allowable acid additions have the potential to impact decisions related to wash endpoint control of DWPF feed composition and to the introduction of secondary waste streams into DWPF. A limited program was initiated in SRNL in 2001 to study the issue of hydrogen generation. The program was reinitiated at the end of fiscal year 2004. The primary motivation for the study is that a real potential exists to reduce the conservatism in the range of allowable acid additions in DWPF. Increasing the allowable range of acid additions can allow decisions on the sludge wash endpoint or the introduction of secondary waste streams to DWPF to be based on other constraints such as glass properties, organic carbon in the melter off-gas, etc. The initial phase of the study consisted of a review of site reports and off-site literature related to catalytic hydrogen generation from formic acid and/or formate salts by noble metals. Many things are already known about hydrogen generation during waste processing. This phase also included the development of an experimental program to improve the understanding of hydrogen generation. This phase is being documented in WSRC-TR-2002-00034. A number of areas were identified where an improved understanding would be beneficial. A phased approach was developed for new experimental studies related to hydrogen generation. The first phase of new experimental work consisted of six simulations of the DWPF Sludge Receipt and Adjustment Tank (SRAT). This phase had four objectives, but the primary focus was on the effect of mercury on hydrogen generation and SRAT processing. These objectives were to: (1) Obtain SRAT processing data at three different mercury concentrations. (2) Obtain comparable data for mercury added as HgO or as Hg(NO{sub 3}){sub 2}. (3) Obtain process data that could lead to more prototypical performance of the experimental equipment. (4) Use data from enhanced gas chromatographs to improve the understanding of acid consumption during processing.

Koopman, D. C.; Baich, M. A.

2004-12-31T23:59:59.000Z

34

Method for the removal and recovery of mercury  

DOE Patents (OSTI)

The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

Easterly, C.E.; Vass, A.A.; Tyndall, R.L.

1997-01-28T23:59:59.000Z

35

Method for the removal and recovery of mercury  

DOE Patents (OSTI)

The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

Easterly, Clay E. (Knoxville, TN); Vass, Arpad A. (Oak Ridge, TN); Tyndall, Richard L. (Clinton, TN)

1997-01-01T23:59:59.000Z

36

Method and apparatus for sampling atmospheric mercury  

DOE Patents (OSTI)

A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

Trujillo, Patricio E. (Santa Fe, NM); Campbell, Evan E. (Los Alamos, NM); Eutsler, Bernard C. (Los Alamos, NM)

1976-01-20T23:59:59.000Z

37

PREPARATION OF HALIDES OF PLUTONIUM  

DOE Patents (OSTI)

A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.

Garner, C.S.; Johns, I.B.

1958-09-01T23:59:59.000Z

38

Sorbents for the oxidation and removal of mercury  

DOE Patents (OSTI)

A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

2012-05-01T23:59:59.000Z

39

Sorbents for the oxidation and removal of mercury  

DOE Patents (OSTI)

A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

2008-10-14T23:59:59.000Z

40

Process for oxidation of hydrogen halides to elemental halogens  

DOE Patents (OSTI)

An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

Lyke, Stephen E. (Middleton, WI)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

IMPACT OF NOBLE METALS AND MERCURY ON HYDROGEN GENERATION DURING HIGH LEVEL WASTE PRETREATMENT AT THE SAVANNAH RIVER SITE  

DOE Green Energy (OSTI)

The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies radioactive High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. HLW consists of insoluble metal hydroxides (primarily iron, aluminum, calcium, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The pretreatment process in the Chemical Processing Cell (CPC) consists of two process tanks, the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) as well as a melter feed tank. During SRAT processing, nitric and formic acids are added to the sludge to lower pH, destroy nitrite and carbonate ions, and reduce mercury and manganese. During the SME cycle, glass formers are added, and the batch is concentrated to the final solids target prior to vitrification. During these processes, hydrogen can be produced by catalytic decomposition of excess formic acid. The waste contains silver, palladium, rhodium, ruthenium, and mercury, but silver and palladium have been shown to be insignificant factors in catalytic hydrogen generation during the DWPF process. A full factorial experimental design was developed to ensure that the existence of statistically significant two-way interactions could be determined without confounding of the main effects with the two-way interaction effects. Rh ranged from 0.0026-0.013% and Ru ranged from 0.010-0.050% in the dried sludge solids, while initial Hg ranged from 0.5-2.5 wt%, as shown in Table 1. The nominal matrix design consisted of twelve SRAT cycles. Testing included: a three factor (Rh, Ru, and Hg) study at two levels per factor (eight runs), three duplicate midpoint runs, and one additional replicate run to assess reproducibility away from the midpoint. Midpoint testing was used to identify potential quadratic effects from the three factors. A single sludge simulant was used for all tests and was spiked with the required amount of noble metals immediately prior to performing the test. Acid addition was kept effectively constant except to compensate for variations in the starting mercury concentration. SME cycles were also performed during six of the tests.

Stone, M; Tommy Edwards, T; David Koopman, D

2009-03-03T23:59:59.000Z

42

It's Elemental - The Element Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Gold Gold Previous Element (Gold) The Periodic Table of Elements Next Element (Thallium) Thallium The Element Mercury [Click for Isotope Data] 80 Hg Mercury 200.59 Atomic Number: 80 Atomic Weight: 200.59 Melting Point: 234.32 K (-38.83°C or -37.89°F) Boiling Point: 629.88 K (356.73°C or 674.11°F) Density: 13.5336 grams per cubic centimeter Phase at Room Temperature: Liquid Element Classification: Metal Period Number: 6 Group Number: 12 Group Name: none What's in a name? Named after the planet Mercury. Mercury's chemical symbol comes from the Greek word hydrargyrum, which means "liquid silver." Say what? Mercury is pronounced as MER-kyoo-ree. History and Uses: Mercury was known to the ancient Chinese and Hindus and has been found in 3500 year old Egyptian tombs. Mercury is not usually found free in nature

43

Mercury and other heavy metals influence bacterial community structure in contaminated Tennessee streams  

Science Conference Proceedings (OSTI)

High concentrations of uranium, inorganic mercury [Hg(II)], and methylmercury (MeHg) have been detected in streams located in the Department of Energy reservation in Oak Ridge, TN. To determine the potential effects of the surface water contamination on the microbial community composition, surface stream sediments were collected 7 times during the year, from 5 contaminated locations and 1 control stream. Fifty-nine samples were analyzed for bacterial community composition and geochemistry. Community characterization was based on GS 454 FLX pyrosequencing with 235 Mb of 16S rRNA gene sequence targeting the V4 region. Sorting and filtering of the raw reads resulted in 588,699 high-quality sequences with lengths of >200 bp. The bacterial community consisted of 23 phyla, including Proteobacteria (ranging from 22.9 to 58.5% per sample), Cyanobacteria (0.2 to 32.0%), Acidobacteria (1.6 to 30.6%), Verrucomicrobia (3.4 to 31.0%), and unclassified bacteria. Redundancy analysis indicated no significant differences in the bacterial community structure between midchannel and near-bank samples. Significant correlations were found between the bacterial community and seasonal as well as geochemical factors. Furthermore, several community members within the Proteobacteria group that includes sulfate-reducing bacteria and within the Verrucomicrobia group appeared to be associated positively with Hg and MeHg. This study is the first to indicate an influence of MeHg on the in situ microbial community and suggests possible roles of these bacteria in the Hg/MeHg cycle.

Vishnivetskaya, Tatiana A [ORNL; Mosher, Jennifer J [ORNL; Palumbo, Anthony Vito [ORNL; Yang, Zamin [ORNL; Podar, Mircea [ORNL; Brown, Steven D [ORNL; Brooks, Scott C [ORNL; Gu, Baohua [ORNL; Southworth, George R [ORNL; Drake, Meghan M [ORNL; Brandt, Craig C [ORNL; Elias, Dwayne A [ORNL

2011-01-01T23:59:59.000Z

44

Oxidation of hydrogen halides to elemental halogens with catalytic molten salt mixtures  

DOE Patents (OSTI)

A process for oxidizing hydrogen halides by means of a catalytically active molten salt is disclosed. The subject hydrogen halide is contacted with a molten salt containing an oxygen compound of vanadium and alkali metal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen. The reduced vanadium which remains after this contacting is regenerated to the active higher valence state by contacting the spent molten salt with a stream of oxygen-bearing gas.

Rohrmann, Charles A. (Kennewick, WA)

1978-01-01T23:59:59.000Z

45

RARE-EARTH METAL FISSION PRODUCTS FROM LIQUID U-Bi  

DOE Patents (OSTI)

Fission product metals can be removed from solution in liquid bismuth without removal of an appreciable quantity of uranium by contacting the liquid metal solution with fused halides, as for example, the halides of sodium, potassium, and lithium and by adding to the contacted phases a quantity of a halide which is unstable relative to the halides of the fission products, a specific unstable halide being MgCl/sub 3/.

Wiswall, R.H.

1960-05-10T23:59:59.000Z

46

Method for high temperature mercury capture from gas streams  

DOE Patents (OSTI)

A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

Granite, E.J.; Pennline, H.W.

2006-04-25T23:59:59.000Z

47

Mercury levels in albacore tuna (Thunnus alalunga) and the effects of canning.  

E-Print Network (OSTI)

??Mercury is a toxic heavy metal released into the environment from both natural and anthropogenic sources. The organic form of mercury is a potent neurotoxin… (more)

Rasmussen, Rosalee S.

2006-01-01T23:59:59.000Z

48

Evaluation of Cavitation-Erosion Resistance of 316LN Stainless Steel in Mercury Containing Metallic Solutes  

Science Conference Proceedings (OSTI)

Room temperature cavitation tests of vacuum annealed type 316LN stainless steel were performed in pure Hg and in Hg with various amounts of metallic solute to evaluate potential mitigation of erosion/wastage. Tests were performed using an ultrasonic vibratory horn with specimens attached at the tip. All of the solutes examined, which included 5 wt% In, 10 wt% In, 4.4 wt% Cd, 2 wt% Ga, and a mixture that included 1 wt% each of Pb, Sn, and Zn, were found to increase cavitation-erosion as measured by increased weight loss and/or surface profile development compared to exposures for the same conditions in pure Hg. Qualitatively, each solute appeared to increase the post-test wetting tenacity of the Hg solutions and render the Hg mixture susceptible to manipulation of droplet shape.

Pawel, Steven J [ORNL; Mansur, Louis K [ORNL

2006-08-01T23:59:59.000Z

49

Lanthanide doped strontium barium mixed halide scintillators  

DOE Patents (OSTI)

The present invention provides for a composition comprising an inorganic scintillator comprising a lanthanide-doped strontium barium mixed halide useful for detecting nuclear material.

Gundiah, Gautam; Bizarri, Gregory; Hanrahan, Stephen M; Bourret-Courchesne, Edith; Derenzo, Stephen E

2013-07-16T23:59:59.000Z

50

PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS  

DOE Patents (OSTI)

A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)

Moore, R.H.

1962-10-01T23:59:59.000Z

51

Process for removing mercury from aqueous solutions  

DOE Patents (OSTI)

A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

Googin, John M. (Oak Ridge, TN); Napier, John M. (Oak Ridge, TN); Makarewicz, Mark A. (Knoxville, TN); Meredith, Paul F. (Knoxville, TN)

1986-01-01T23:59:59.000Z

52

Process for removing mercury from aqueous solutions  

DOE Patents (OSTI)

A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

Googin, J.M.; Napier, J.M.; Makarewicz, M.A.; Meredith, P.F.

1985-03-04T23:59:59.000Z

53

Apparatus and method for removing mercury vapor from a gas stream  

DOE Patents (OSTI)

A metallic filter effectively removes mercury vapor from gas streams. The filter captures the mercury which then can be released and collected as product. The metallic filter is a copper mesh sponge plated with a six micrometer thickness of gold. The filter removes up to 90% of mercury vapor from a mercury contaminated gas stream.

Ganesan, Kumar (Butte, MT)

2008-01-01T23:59:59.000Z

54

Publications | Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

A. Afsahi, and R. Ross, Mercury: Enabling Remote Procedure Call for High-Performance Computing, IEEE International Conference on Cluster Computing, Sep 2013. DOIslides...

55

Mercury cleanup efforts intensify | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury cleanup efforts ... Mercury cleanup efforts ... Mercury cleanup efforts intensify Posted: February 11, 2013 - 3:31pm | Y-12 Report | Volume 9, Issue 2 | 2013 Millions of pounds of mercury were required to support Y-12's post-World War II mission of separating lithium isotopes. Cleaning up the toxic heavy metal poses many challenges, but what Y-12 is learning could help conquer mercury pollution worldwide. There's a reason you won't find mercury in many thermometers these days. Mercury is a heavy metal that occurs in several chemical forms, all of which can produce toxic effects in high enough doses. Mercury was used in the column exchange process, which Y-12 employed to produce lithium-6 from 1953 to 1962. Through process spills, system leaks and surface runoff, some 700,000 pounds of mercury have been lost to the

56

APPARATUS FOR HIGH PURITY METAL RECOVERY  

DOE Patents (OSTI)

An apparatus is described for preparing high purity metal such as uranium, plutonium and the like from an impure mass of the same metal. The apparatus is arranged so that the impure metal is heated and swept by a stream of hydrogen gas bearing a halogen such as iodine. The volatiie metal halide formed is carried on to a hot filament where the metal halide is decomposed and the molten high purity metal is collected in a rceeiver below

Magel, T.T.

1959-02-10T23:59:59.000Z

57

Regenerative process for removal of mercury and other heavy metals from gases containing H.sub.2 and/or CO  

DOE Patents (OSTI)

A method for removal of mercury from a gaseous stream containing the mercury, hydrogen and/or CO, and hydrogen sulfide and/or carbonyl sulfide in which a dispersed Cu-containing sorbent is contacted with the gaseous stream at a temperature in the range of about 25.degree. C. to about 300.degree. C. until the sorbent is spent. The spent sorbent is contacted with a desorbing gaseous stream at a temperature equal to or higher than the temperature at which the mercury adsorption is carried out, producing a regenerated sorbent and an exhaust gas comprising released mercury. The released mercury in the exhaust gas is captured using a high-capacity sorbent, such as sulfur-impregnated activated carbon, at a temperature less than about 100.degree. C. The regenerated sorbent may then be used to capture additional mercury from the mercury-containing gaseous stream.

Jadhav, Raja A. (Naperville, IL)

2009-07-07T23:59:59.000Z

58

Mercury Vapor Pressure Correlation  

Science Conference Proceedings (OSTI)

An apparent difference between the historical mercury vapor concentration equations used by the mercury atmospheric measurement community ...

2012-10-09T23:59:59.000Z

59

Integrated DWPF Melter System (IDMS) campaign report: The first two noble metals operations  

DOE Green Energy (OSTI)

The Integrated DWPF Melter System (IDMS) is designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas systems. The facility is the first pilot-scale melter system capable of processing mercury, and flowsheet levels of halides and noble metals. In order to characterize the processing of noble metals (Pd, Rh, Ru, and Ag) on a large scale, the IDMS will be operated batchstyle for at least nine feed preparation cycles. The first two of these operations are complete. The major observation to date occurred during the second run when significant amounts of hydrogen were evolved during the feed preparation cycle. The runs were conducted between June 7, 1990 and March 8, 1991. This time period included nearly six months of ``fix-up`` time when forced air purges were installed on the SRAT MFT and other feed preparation vessels to allow continued noble metals experimentation.

Hutson, N.D.; Zamecnik, J.R.; Smith, M.E.; Miller, D.H.; Ritter, J.A.

1991-06-06T23:59:59.000Z

60

Why mercury prefers soft ligands  

Science Conference Proceedings (OSTI)

Mercury (Hg) is a major global pollutant arising from both natural and anthropogenic sources. Defining the factors that determine the relative affinities of different ligands for the mercuric ion, Hg2+, is critical to understanding its speciation, transformation, and bioaccumulation in the environment. Here, we use quantum chemistry to dissect the relative binding free energies for a series of inorganic anion complexes of Hg2+. Comparison of Hg2+ ligand interactions in the gaseous and aqueous phases shows that differences in interactions with a few, local water molecules led to a clear periodic trend within the chalcogenide and halide groups and resulted in the well-known experimentally observed preference of Hg2+ for soft ligands such as thiols. Our approach establishes a basis for understanding Hg speciation in the biosphere.

Riccardi, Demian M [ORNL] [ORNL; Guo, Hao-Bo [ORNL] [ORNL; Gu, Baohua [ORNL] [ORNL; Parks, Jerry M [ORNL] [ORNL; Summers, Anne [University of Georgia, Athens, GA] [University of Georgia, Athens, GA; Miller, S [University of California, San Francisco] [University of California, San Francisco; Liang, Liyuan [ORNL] [ORNL; Smith, Jeremy C [ORNL] [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alkaline sorbent injection for mercury control  

DOE Patents (OSTI)

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2003-01-01T23:59:59.000Z

62

Alkaline sorbent injection for mercury control  

DOE Patents (OSTI)

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2002-01-01T23:59:59.000Z

63

Mercury Information Clearinghouse  

SciTech Connect

The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. With the support of CEA, the Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates, and the U.S. Department of Energy (DOE), the EERC developed comprehensive quarterly information updates that provide a detailed assessment of developments in the various areas of mercury monitoring, control, policy, and research. A total of eight topical reports were completed and are summarized and updated in this final CEA quarterly report. The original quarterly reports can be viewed at the CEA Web site (www.ceamercuryprogram.ca). In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. Members of Canada's coal-fired electricity generation sector (ATCO Power, EPCOR, Manitoba Hydro, New Brunswick Power, Nova Scotia Power Inc., Ontario Power Generation, SaskPower, and TransAlta) and CEA, have compiled an extensive database of information from stack-, coal-, and ash-sampling activities. Data from this effort are also available at the CEA Web site and have provided critical information for establishing and reviewing a mercury standard for Canada that is protective of environment and public health and is cost-effective. Specific goals outlined for the CEA mercury program included the following: (1) Improve emission inventories and develop management options through an intensive 2-year coal-, ash-, and stack-sampling program; (2) Promote effective stack testing through the development of guidance material and the support of on-site training on the Ontario Hydro method for employees, government representatives, and contractors on an as-needed basis; (3) Strengthen laboratory analytical capabilities through analysis and quality assurance programs; and (4) Create and maintain an information clearinghouse to ensure that all parties can keep informed on global mercury research and development activities.

Chad A. Wocken; Michael J. Holmes; Dennis L. Laudal; Debra F. Pflughoeft-Hassett; Greg F. Weber; Nicholas V. C. Ralston; Stanley J. Miller; Grant E. Dunham; Edwin S. Olson; Laura J. Raymond; John H. Pavlish; Everett A. Sondreal; Steven A. Benson

2006-03-31T23:59:59.000Z

64

AN EXPERIMENT ON DEHASIDDHI WITH MERCURY  

E-Print Network (OSTI)

ABSTRACT: The author experimented with the dehasiddhi using mercury. The interesting experiment is narrated in this article. The land of Bharath is the only place which developed the science dealing with the metal remedies for holistic health during the Vedic period when people in other parts of the world continued to use potions and witchcraft to cure diseases of the body. This science in Vedic language is termed rasa sastra. It uses metals such as iron, copper, silver, gold mercury, elements such as iron, copper, silver, gold mercury, elements such as sulphur, mica and other materials such as shells, pearls corals jewels, salts, etc in a purified and processed form for internal

M. P Alexander

1995-01-01T23:59:59.000Z

65

Recovery of Mercury From Contaminated Liquid Wastes  

SciTech Connect

The Base Contract program emphasized the manufacture and testing of superior sorbents for mercury removal, testing of the sorption process at a DOE site, and determination of the regeneration conditions in the laboratory. During this project, ADA Technologies, Inc. demonstrated the following key elements of a successful regenerable mercury sorption process: (1) sorbents that have a high capacity for dissolved, ionic mercury; (2) removal of ionic mercury at greater than 99% efficiency; and (3) thermal regeneration of the spent sorbent. ADA's process is based on the highly efficient and selective sorption of mercury by noble metals. Contaminated liquid flows through two packed columns that contain microporous sorbent particles on which a noble metal has been finely dispersed. A third column is held in reserve. When the sorbent is loaded with mercury to the point of breakthrough at the outlet of the second column, the first column is taken off-line and the flow of contaminated liquid is switched to the second and third columns. The spent column is regenerated by heating. A small flow of purge gas carries the desorbed mercury to a capture unit where the liquid mercury is recovered. Laboratory-scale tests with mercuric chloride solutions demonstrated the sorbents' ability to remove mercury from contaminated wastewater. Isotherms on surrogate wastes from DOE's Y-12 Plant in Oak Ridge, Tennessee showed greater than 99.9% mercury removal. Laboratory- and pilot-scale tests on actual Y-12 Plant wastes were also successful. Mercury concentrations were reduced to less than 1 ppt from a starting concentration of 1,000 ppt. The treatment objective was 50 ppt. The sorption unit showed 10 ppt discharge after six months. Laboratory-scale tests demonstrated the feasibility of sorbent regeneration. Results show that sorption behavior is not affected after four cycles.

1998-06-12T23:59:59.000Z

66

Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium vapor lamps, ultraviolet and  

E-Print Network (OSTI)

Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium light tubes are recycled. They are made from aluminum and metal. Aluminum is a silver-white metal and is very light in weight and strong. Because aluminum is ductile, it can be drawn into wires or pressed

Ungerleider, Leslie G.

67

Glossary Term - Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Nitrogen Previous Term (Liquid Nitrogen) Glossary Main Index Next Term (Mole) Mole Mercury Mercury as seen by the Mariner 10 spacecraft on March 24, 1974. Mercury is the...

68

Mercury Emission Measurement at a CFB Plant  

DOE Green Energy (OSTI)

In response to pending regulation to control mercury emissions in the United States and Canada, several projects have been conducted to perform accurate mass balances at pulverized coal (pc)-fired utilities. Part of the mercury mass balance always includes total gaseous mercury as well as a determination of the speciation of the mercury emissions and a concentration bound to the particulate matter. This information then becomes useful in applying mercury control strategies, since the elemental mercury has traditionally been difficult to control by most technologies. In this instance, oxidation technologies have proven most beneficial for increased capture. Despite many years of mercury measurement and control projects at pc-fired units, far less work has been done on circulating fluidized-bed (CFB) units, which are able to combust a variety of feedstocks, including cofiring coal with biomass. Indeed, these units have proven to be more problematic because it is very difficult to obtain a reliable mercury mass balance. These units tend to have very different temperature profiles than pc-fired utility boilers. The flexibility of CFB units also tends to be an issue when a mercury balance is determined, since the mercury inputs to the system come from the bed material and a variety of fuels, which can have quite variable chemistry, especially for mercury. In addition, as an integral part of the CFB operation, the system employs a feedback loop to circulate the bed material through the combustor and the solids collection system (the primary cyclone), thereby subjecting particulate-bound metals to higher temperatures again. Despite these issues, CFB boilers generally emit very little mercury and show good native capture. The Energy & Environmental Research Center is carrying out this project for Metso Power in order to characterize the fate of mercury across the unit at Rosebud Plant, an industrial user of CFB technology from Metso. Appropriate solids were collected, and flue gas samples were obtained using the Ontario Hydro method, mercury continuous emission monitors, and sorbent trap methods. In addition, chlorine and fluorine were determined for solids and in the flue gas stream. Results of this project have indicated a very good mercury mass balance for Rosebud Plant, indicating 105 {+-} 19%, which is well within acceptable limits. The mercury flow through the system was shown to be primarily in with the coal and out with the flue gas, which falls outside of the norm for CFB boilers.

John Pavlish; Jeffrey Thompson; Lucinda Hamre

2009-02-28T23:59:59.000Z

69

Faster Dissociation: Aryl Halide Radical Anions  

NLE Websites -- All DOE Office Websites (Extended Search)

Faster Dissociation: Measured Rates and Computed Effects on Barriers in Faster Dissociation: Measured Rates and Computed Effects on Barriers in Aryl Halide Radical Anions Norihiko Takeda, Pavel V. Poliakov, Andrew R. Cook, and John R. Miller J. Am. Chem. Soc. 126, 4301-4309 (2004). [Find paper at ACS Publications] Abstract: Carbon-halogen bond dissociation rates for a series of aryl halide radical anions (ArX-·: X = Cl, Br) in NMP were measured at room temperature by pulse radiolysis with 10-11 s time resolution. To obtain accurate dissociation rates, care was taken to measure and correct for competing decay channels. The observed rates correlated well with activation energies computed in the gas phase by density functional (DFT) calculations. The rates did not correlate well with electron affinities or dissociation energies obtained by the same computational methods, although such

70

Lanthanide-halide based humidity indicators  

SciTech Connect

The present invention discloses a lanthanide-halide based humidity indicator and method of producing such indicator. The color of the present invention indicates the humidity of an atmosphere to which it is exposed. For example, impregnating an adsorbent support such as silica gel with an aqueous solution of the europium-containing reagent solution described herein, and dehydrating the support to dryness forms a substance with a yellow color. When this substance is exposed to a humid atmosphere the water vapor from the air is adsorbed into the coating on the pore surface of the silica gel. As the water content of the coating increases, the visual color of the coated silica gel changes from yellow to white. The color change is due to the water combining with the lanthanide-halide complex on the pores of the gel.

Beitz, James V. (Hinsdale, IL); Williams, Clayton W. (Chicago, IL)

2008-01-01T23:59:59.000Z

71

Mercury contamination extraction  

DOE Patents (OSTI)

Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

Fuhrmann, Mark (Silver Spring, MD); Heiser, John (Bayport, NY); Kalb, Paul (Wading River, NY)

2009-09-15T23:59:59.000Z

72

Phytoremediation of Ionic and Methyl Mercury P  

DOE Green Energy (OSTI)

Our long-term goal is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic heavy metal pollutants as an environmentally friendly alternative to physical remediation methods. We have focused this phytoremediation research on soil and water-borne ionic and methylmercury. Mercury pollution is a serious world-wide problem affecting the health of human and wild-life populations. Methylmercury, produced by native bacteria at mercury-contaminated wetland sites, is a particularly serious problem due to its extreme toxicity and efficient biomagnification in the food chain. We engineered several plant species (e.g., Arabidopsis, tobacco, canola, yellow poplar, rice) to express the bacterial genes, merB and/or merA, under the control of plant regulatory sequences. These transgenic plants acquired remarkable properties for mercury remediation. (1) Transgenic plants expressing merB (organomercury lyase) extract methylmercury from their growth substrate and degrade it to less toxic ionic mercury. They grow on concentrations of methylmercury that kill normal plants and accumulate low levels of ionic mercury. (2) Transgenic plants expressing merA (mercuric ion reductase) extract and electrochemically reduce toxic, reactive ionic mercury to much less toxic and volatile metallic mercury. This metal transformation is driven by the powerful photosynthetic reducing capacity of higher plants that generates excess NADPH using solar energy. MerA plants grow vigorously on levels of ionic mercury that kill control plants. Plants expressing both merB and merA degrade high levels of methylmercury and volatilize metallic mercury. These properties were shown to be genetically stable for several generations in the two plant species examined. Our work demonstrates that native trees, shrubs, and grasses can be engineered to remediate the most abundant toxic mercury pollutants. Building on these data our working hypothesis for the next grant period is that transgenic plants expressing the bacterial merB and merA genes will (a) remove mercury from polluted soil and water and (b) prevent methylmercury from entering the food chain. Our specific aims center on understanding the mechanisms by which plants process the various forms of mercury and volatilize or transpire mercury vapor. This information will allow us to improve the design of our current phytoremediation strategies. As an alternative to volatilizing mercury, we are using several new genes to construct plants that will hyperaccumulate mercury in above-ground tissues for later harvest. The Department of Energy's Oak Ridge National Laboratory and Brookhaven National Laboratory have sites with significant levels of mercury contamination that could be cleaned by applying the scientific discoveries and new phytoremediation technologies described in this proposal. The knowledge and expertise gained by engineering plants to hyperaccumulate mercury can be applied to the remediation of other heavy metals pollutants (e.g., arsenic, cesium, cadmium, chromium, lead, strontium, technetium, uranium) found at several DOE facilities.

Meagher, Richard B.

1999-06-01T23:59:59.000Z

73

Thief Carbon Catalyst for Oxidation of Mercury in Effluent Stream  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Catalyst for Oxidation of Mercury in Effluent Carbon Catalyst for Oxidation of Mercury in Effluent Stream Contact NETL Technology Transfer Group techtransfer@netl.doe.gov January 2012 Significance * Oxidizes heavy metal contaminants, especially mercury, in gas streams * Uses partially combusted coal ("Thief" carbon) * Yields an inexpensive catalyst * Cheap enough to be a disposable catalyst * Cuts long-term costs * Simultaneously addresses oxidation and adsorption issues Applications * Any process requiring removal of heavy

74

Thief carbon catalyst for oxidation of mercury in effluent stream  

DOE Patents (OSTI)

A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

2011-12-06T23:59:59.000Z

75

Semantic search | Open Energy Information  

Open Energy Info (EERE)

100 | 250 | 500) 175W Mercury Vapor Contemporary Style Decorative Post Top Luminaires Lighting 175W Metal Halide Acorn Style Decorative Post Top Luminaires Lighting 175W Metal...

76

Mercury in mussels of Bellingham Bay, Washington, (USA)  

SciTech Connect

Laboratory experiments demonstrated the existence of metallothionein-like, low molecular weight, mercury-binding proteins in the marine mussel Mytilus edulis. Relatively large quantities of mercury were associated with such proteins in gills and digestive gland, the organs of interest in the present study. /sup 14/C-incorporation indicated induction of the protein in gills, but not in digestive gland. Mercury in digestive gland may have bound to existing metal-binding proteins. Short-term incorporation of mercury occurred primarily in gills. The induction of mercury-binding proteins in gills may have facilitated detoxification of mercury at the site of uptake. Mercury in mussels of Bellingham Bay were shown to have decreased from 1970 to 1978, the collection date for the present study. Mercury levels were low but approximately three times higher than those from uncontaminated areas. Mercury associated with the mercury-binding protein of gills and digestive glands of Bellingham Bay mussels were low and reflected the concentrations measured in the whole tissues. However, the highest concentration of mercury was associated with the low molecular pool components, the identity of which is not presently known.

Roesijadi, G.; Drum, A.S.; Bridge, J.R.

1978-11-01T23:59:59.000Z

77

FY09 assessment of mercury reduction at SNL/NM.  

Science Conference Proceedings (OSTI)

This assessment takes the result of the FY08 performance target baseline of mercury at Sandia National Laboratories/New Mexico, and records the steps taken in FY09 to collect additional data, encourage the voluntary reduction of mercury, and measure success. Elemental (metallic) mercury and all of its compounds are toxic, and exposure to excessive levels can permanently damage or fatally injure the brain and kidneys. Elemental mercury can also be absorbed through the skin and cause allergic reactions. Ingestion of inorganic mercury compounds can cause severe renal and gastrointestinal damage. Organic compounds of mercury such as methyl mercury, created when elemental mercury enters the environment, are considered the most toxic forms of the element. Exposures to very small amounts of these compounds can result in devastating neurological damage and death.1 SNL/NM is required to report annually on the site wide inventory of mercury for the Environmental Protection Agency's (EPA) Toxics Release Inventory (TRI) Program, as the site's inventory is excess of the ten pound reportable threshold quantity. In the fiscal year 2008 (FY08) Pollution Prevention Program Plan, Section 5.3 Reduction of Environmental Releases, a performance target stated was to establish a baseline of mercury, its principle uses, and annual quantity or inventory. This was accomplished on July 29, 2008 by recording the current status of mercury in the Chemical Information System (CIS).

McCord, Samuel Adam

2010-02-01T23:59:59.000Z

78

Atomic Data for Mercury (Hg)  

Science Conference Proceedings (OSTI)

... Mercury (Hg) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Atomic Data for Mercury (Hg). ...

79

Strong Lines of Mercury ( Hg )  

Science Conference Proceedings (OSTI)

... Mercury (Hg) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Strong Lines of Mercury ( Hg ). ...

80

METHOD OF PURIFYING URANIUM METAL  

DOE Patents (OSTI)

The removal of lmpurities from uranlum metal can be done by a process conslstlng of contacting the metal with liquid mercury at 300 icient laborato C, separating the impunitycontalnlng slag formed, cooling the slag-free liquld substantlally below the point at which uranlum mercurlde sollds form, removlng the mercury from the solids, and recovering metallic uranium by heating the solids.

Blanco, R.E.; Morrison, B.H.

1958-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Mercury and Fish  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury and Fish Mercury and Fish Name: donna Location: N/A Country: N/A Date: N/A Question: how does mercury get into fish in rivers. what is the ecological process involved which could produce toxic levels of mercury in fish and eventually get into humans? Replies: Hi Donna! Nowadays mercury or its compounds are used at a high scale in many industries as the manufacture of chemicals, paints, household itens, pesticides and fungicides. These products can contaminate humans (and mamals) by direct contact, ingestion or inhalation. Besides the air can become contaminated also, and since mercury compounds produce harmful effects in body tissues and functions, that pollution is very dangerous. Now for your question: Efluent wastes containing mercury in various forms sometimes are dropped in sea water or in rivers or lakes. There the mercury may be converted by bacteria, that are in the muddy sediments, into organic mercurial compounds particularly the highly toxic alkyl mercurials ( methyl and di-methyl mercury), which may in turn be concentrated by the fishes and other aquatic forms of life that are used as food by men. The fishes dont seem to be affected but they are able to concentrate mercury in high poisoning levels, and if human beings, mamals or birds eat these containing mercury fishes, algae, crabs or oysters they will be contaminated and poisoned.

82

Mercury Control Technologies for Electric Utilities Burning Lignite Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury control technologies for Mercury control technologies for electric utilities Burning lignite coal Background In partnership with a number of key stakeholders, the U.S. Department of Energy's Office of Fossil Energy (DOE/FE), through its National Energy Technology Laboratory (NETL), has been carrying out a comprehensive research program since the mid-1990s focused on the development of advanced, cost-effective mercury (Hg) control technologies for coal-fired power plants. Mercury is a poisonous metal found in coal, which can be harmful and even toxic when absorbed from the environment and concentrated in animal tissues. Mercury is present as an unwanted by-product of combustion in power plant flue gases, and is found in varying percentages in three basic chemical forms(known as speciation): particulate-bound mercury, oxidized

83

MERCURY-NITRITE-RHODIUM-RUTHENIUM INTERACTIONS IN NOBLE METAL CATALYZED HYDROGEN GENERATION FROM FORMIC ACID DURING NUCLEAR WASTE PROCESSING AT THE SAVANNAH RIVER SITE - 136C  

DOE Green Energy (OSTI)

Chemical pre-treatment of radioactive waste at the Savannah River Site is performed to prepare the waste for vitrification into a stable waste glass form. During pre-treatment, compounds in the waste become catalytically active. Mercury, rhodium, and palladium become active for nitrite destruction by formic acid, while rhodium and ruthenium become active for catalytic conversion of formic acid into hydrogen and carbon dioxide. Nitrite ion is present during the maximum activity of rhodium, but is consumed prior to the activation of ruthenium. Catalytic hydrogen generation during pre-treatment can exceed radiolytic hydrogen generation by several orders of magnitude. Palladium and mercury impact the maximum catalytic hydrogen generation rates of rhodium and ruthenium by altering the kinetics of nitrite ion decomposition. New data are presented that illustrate the interactions of these various species.

Koopman, D.; Pickenheim, B.; Lambert, D.; Newell, J; Stone, M.

2009-09-02T23:59:59.000Z

84

Mercury's Protoplanetary Mass  

E-Print Network (OSTI)

Major element fractionation among chondrites has been discussed for decades as ratios relative to Si or Mg. Recently, by expressing ratios relative to Fe, I discovered a new relationship admitting the possibility that ordinary chondrite meteorites are derived from two components, a relatively oxidized and undifferentiated, primitive component and a somewhat differentiated, planetary component, with oxidation state like the highly reduced enstatite chondrites, which I suggested was identical to Mercury's complement of lost elements. Here, on the basis of that relationship, I derive expressions, as a function of the mass of planet Mercury and the mass of its core, to estimate the mass of Mercury's lost elements, the mass of Mercury's alloy and rock protoplanetary core, and the mass of Mercury's gaseous protoplanet. Although Mercury's mass is well known, its core mass is not, being widely believed to be in the range of 70-80 percent of the planet mass. For a core mass of 75 percent, the mass of Mercury's lost elements is about 1.32 times the mass of Mercury, the mass of the alloy and rock protoplanetary core is about 2.32 times the mass of Mercury, and the mass of the gaseous protoplanet of Mercury is about 700 times the mass of Mercury. Circumstantial evidence is presented in support of the supposition that Mercury's lost elements is identical to the planetary component of ordinary chondrite formation.

J. Marvin Herndon

2004-10-01T23:59:59.000Z

85

Mercury in the Environment  

Science Conference Proceedings (OSTI)

EPRI periodically issues updates on critical research on environmental mercury, discussing scientific findings of crucial interest for a complete understanding of mercury sources, transport, fate, cycling, human exposure, and health effects. This document is part of that EPRI series, focusing on several critical reviews of mercury sources and impacts.

2007-03-30T23:59:59.000Z

86

Watershed Mercury Loading Framework  

Science Conference Proceedings (OSTI)

This report explains and illustrates a simplified stochastic framework, the Watershed Mercury Loading Framework, for organizing and framing site-specific knowledge and information on mercury loading to waterbodies. The framework permits explicit treatment of data uncertainties. This report will be useful to EPRI members, state and federal regulatory agencies, and watershed stakeholders concerned with mercury-related human and ecological health risk.

2003-05-23T23:59:59.000Z

87

Semi-Continuous Detection of Mercury in Gases  

NLE Websites -- All DOE Office Websites (Extended Search)

Continuous Detection of Mercury in Gases Continuous Detection of Mercury in Gases Opportunity Research is currently active on the patented technology "Semi-Continuous Detection of Mercury in Gases." The technology, which is a spinoff of the National Energy Technology Laboratory's (NETL) GP-254 Process (U.S. patent 6,576,092), is available for licensing and/or further collaborative research from the U.S. Department of Energy's NETL. Overview This invention discloses a method for the quantitative detection of heavy metals, especially mercury, in effluent gas streams. The method employs photo-deposition and an array of surface acoustic wave sensors where each sensor monitors a specific metal. The U.S. Environmental Protection Agency issued a national regulation for mercury removal from coal-derived flue and fuel gases in December 2011,

88

Oxidation of Mercury in Products of Coal Combustion  

SciTech Connect

Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materials for simultaneous oxidation and adsorption of mercury, were performed in support of the development of technology for control of mercury emissions from coal-fired boilers and furnaces. Conversion of gas-phase mercury from the elemental state to water-soluble oxidized form (HgCl{sub 2}) enables removal of mercury during wet flue gas desulfurization. The increase in mercury oxidation in a monolithic V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} SCR catalyst with increasing HCl at low levels of HCl (< 10 ppmv) and decrease in mercury oxidation with increasing NH{sub 3}/NO ratio during SCR were consistent with results of previous work by others. The most significant finding of the present work was the inhibition of mercury oxidation in the presence of CO during SCR of NO at low levels of HCl. In the presence of 2 ppmv HCl, expected in combustion products from some Powder River Basin coals, an increase in CO from 0 to 50 ppmv reduced the extent of mercury oxidation from 24 {+-} 3 to 1 {+-} 4%. Further increase in CO to 100 ppmv completely suppressed mercury oxidation. In the presence of 11-12 ppmv HCl, increasing CO from 0 to {approx}120 ppmv reduced mercury oxidation from {approx}70% to 50%. Conversion of SO{sub 2} to sulfate also decreased with increasing NH{sub 3}/NO ratio, but the effects of HCl and CO in flue gas on SO{sub 2} oxidation were unclear. Oxidation and adsorption of mercury by unburned carbon and fly ash enables mercury removal in a particulate control device. A chemical kinetic mechanism consisting of nine homogeneous and heterogeneous reactions for mercury oxidation and removal was developed to interpret pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash in experiments at pilot scale, burning bituminous coals (Gale, 2006) and blends of bituminous coals with Powder River Basin coal (Gale, 2005). The removal of mercury by fly ash and unburned carbon in the flue gas from combustion of the bituminous coals and blends was reproduced with satisfactory accuracy by the model. The enhancement of mercury capture in the presence of calcium (Gale, 2005) explained a synergistic effect of blending on mercury removal across the baghouse. The extent of mercury oxidation, on the other hand, was not so well described by the simulation, because of oversensitivity of the oxidation process in the model to the concentration of unburned carbon. Combined catalysts and sorbents for oxidation and removal of mercury from flue gas at low temperature were based on surfactant-templated silicas containing a transition metal and an organic functional group. The presence of both metal ions and organic groups within the pore structure of the materials is expected to impart to them the ability to simultaneously oxidize elemental mercury and adsorb the resulting oxidized mercury. Twelve mesoporous organosilicate catalysts/sorbents were synthesized, with and without metals (manganese, titanium, vanadium) and organic functional groups (aminopropyl, chloropropyl, mercaptopropyl). Measurement of mercury oxidation and adsorption by the candidate materials remains for future work.

Peter Walsh; Giang Tong; Neeles Bhopatkar; Thomas Gale; George Blankenship; Conrad Ingram; Selasi Blavo Tesfamariam Mehreteab; Victor Banjoko; Yohannes Ghirmazion; Heng Ban; April Sibley

2009-09-14T23:59:59.000Z

89

METHOD FOR THE PREPARATION OF PLUTONIUM HALIDES AND OXYHALIDES  

DOE Patents (OSTI)

Plutonium trihalide or plutonium(III) oxyhalide is prepared by reacting plutonium dioxide with hydrogen halide at 300 to 1000 deg C in the presence of hydrogen, ammonium iodide, or ammonium bromide.

Davidson, N.R.; Katz, J.J.

1960-02-23T23:59:59.000Z

90

Mercury Calibration System  

Science Conference Proceedings (OSTI)

U.S. Environmental Protection Agency (EPA) Performance Specification 12 in the Clean Air Mercury Rule (CAMR) states that a mercury CEM must be calibrated with National Institute for Standards and Technology (NIST)-traceable standards. In early 2009, a NIST traceable standard for elemental mercury CEM calibration still does not exist. Despite the vacature of CAMR by a Federal appeals court in early 2008, a NIST traceable standard is still needed for whatever regulation is implemented in the future. Thermo Fisher is a major vendor providing complete integrated mercury continuous emissions monitoring (CEM) systems to the industry. WRI is participating with EPA, EPRI, NIST, and Thermo Fisher towards the development of the criteria that will be used in the traceability protocols to be issued by EPA. An initial draft of an elemental mercury calibration traceability protocol was distributed for comment to the participating research groups and vendors on a limited basis in early May 2007. In August 2007, EPA issued an interim traceability protocol for elemental mercury calibrators. Various working drafts of the new interim traceability protocols were distributed in late 2008 and early 2009 to participants in the Mercury Standards Working Committee project. The protocols include sections on qualification and certification. The qualification section describes in general terms tests that must be conducted by the calibrator vendors to demonstrate that their calibration equipment meets the minimum requirements to be established by EPA for use in CAMR monitoring. Variables to be examined include linearity, ambient temperature, back pressure, ambient pressure, line voltage, and effects of shipping. None of the procedures were described in detail in the draft interim documents; however they describe what EPA would like to eventually develop. WRI is providing the data and results to EPA for use in developing revised experimental procedures and realistic acceptance criteria based on actual capabilities of the current calibration technology. As part of the current effort, WRI worked with Thermo Fisher elemental mercury calibrator units to conduct qualification experiments to demonstrate their performance characteristics under a variety of conditions and to demonstrate that they qualify for use in the CEM calibration program. Monitoring of speciated mercury is another concern of this research. The mercury emissions from coal-fired power plants are comprised of both elemental and oxidized mercury. Current CEM analyzers are designed to measure elemental mercury only. Oxidized mercury must first be converted to elemental mercury prior to entering the analyzer inlet in order to be measured. CEM systems must demonstrate the ability to measure both elemental and oxidized mercury. This requires the use of oxidized mercury generators with an efficient conversion of the oxidized mercury to elemental mercury. There are currently two basic types of mercuric chloride (HgCl{sub 2}) generators used for this purpose. One is an evaporative HgCl{sub 2} generator, which produces gas standards of known concentration by vaporization of aqueous HgCl{sub 2} solutions and quantitative mixing with a diluent carrier gas. The other is a device that converts the output from an elemental Hg generator to HgCl{sub 2} by means of a chemical reaction with chlorine gas. The Thermo Fisher oxidizer system involves reaction of elemental mercury vapor with chlorine gas at an elevated temperature. The draft interim protocol for oxidized mercury units involving reaction with chlorine gas requires the vendors to demonstrate high efficiency of oxidation of an elemental mercury stream from an elemental mercury vapor generator. The Thermo Fisher oxidizer unit is designed to operate at the power plant stack at the probe outlet. Following oxidation of elemental mercury from reaction with chlorine gas, a high temperature module reduces the mercuric chloride back to elemental mercury. WRI conducted work with a custom laboratory configured stand-alone oxidized mercury generator unit prov

John Schabron; Eric Kalberer; Joseph Rovani; Mark Sanderson; Ryan Boysen; William Schuster

2009-03-11T23:59:59.000Z

91

Process for low mercury coal  

DOE Patents (OSTI)

A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

1995-04-04T23:59:59.000Z

92

Mercury Detection with Gold Nanoparticles  

E-Print Network (OSTI)

R. J. Warmack, “Detection of mercury vapor using resonatingA surface acoustic wave mercury vapor sensor,” Ieee Trans.N. E. Selin, “Integrating mercury science and policy in the

Crosby, Jeffrey

2013-01-01T23:59:59.000Z

93

Process for low mercury coal  

SciTech Connect

A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

Merriam, Norman W. (Laramie, WY); Grimes, R. William (Laramie, WY); Tweed, Robert E. (Laramie, WY)

1995-01-01T23:59:59.000Z

94

Spectroscopy on Metal-Halide Lamps under Varying Gravity Conditions  

E-Print Network (OSTI)

orange street lighting), which has a slightly lower discharge conversion efficiency, but the 589 nm line. They are mainly used for applications where a high light output is desired; examples are shop lighting, street. Haverlag Copromotor: dr.ir. W.W. Stoffels Copyright c 2008 by A.J. Flikweert This research was financially

Eindhoven, Technische Universiteit

95

Planar Sodium Metal Halide Battery for Renewable Integration and ...  

Science Conference Proceedings (OSTI)

In this work we will present a sodium ߔ-alumina cell designed for widespread renewable energy integration and electrical grid applications. The new generation ...

96

CX-006430: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

high-pressure sodium, metal halide or mercury vapor lamps with energy efficient light emitting diode fixtures. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-006430.pdf More Documents &...

97

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

OpenEIUtilityRateDescription Applicable only to outdoor lighting by ballast operated vapor lamp fixtures, either Mercury Vapor, Pressure Sodium, or Metal Halide....

98

Data:445d426e-8503-4331-82d7-db5b8d07dd8f | Open Energy Information  

Open Energy Info (EERE)

MV without Pole) Sector: Lighting Description: Applicable only to outdoor lighting by ballast operated vapor lamp fixtures, either Mercury Vapor, Pressure Sodium, or Metal Halide....

99

Data:65c9cfff-dc25-4b05-9ee9-d5d70bb2e905 | Open Energy Information  

Open Energy Info (EERE)

HPS without Pole) Sector: Lighting Description: Applicable only to outdoor lighting by ballast operated vapor lamp fixtures, either Mercury Vapor, Pressure Sodium, or Metal Halide....

100

Data:847d6419-dcc8-4499-bc82-52909c8067ca | Open Energy Information  

Open Energy Info (EERE)

HPS without Pole) Sector: Lighting Description: Applicable only to outdoor lighting by ballast operated vapor lamp fixtures, either Mercury Vapor, Pressure Sodium, or Metal Halide....

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Data:4383f60e-b140-4087-b642-a716217c9927 | Open Energy Information  

Open Energy Info (EERE)

W MV with Pole) Sector: Lighting Description: Applicable only to outdoor lighting by ballast operated vapor lamp fixtures, either Mercury Vapor, Pressure Sodium, or Metal Halide....

102

Data:A36f0169-8028-4fc9-954c-071b63d0811c | Open Energy Information  

Open Energy Info (EERE)

W HPS with Pole) Sector: Lighting Description: Applicable only to outdoor lighting by ballast operated vapor lamp fixtures, either Mercury Vapor, Pressure Sodium, or Metal Halide....

103

Data:468fda37-fb88-408b-a804-bcdacd6f23aa | Open Energy Information  

Open Energy Info (EERE)

W HPS with Pole) Sector: Lighting Description: Applicable only to outdoor lighting by ballast operated vapor lamp fixtures, either Mercury Vapor, Pressure Sodium, or Metal Halide....

104

Data:3e340fd3-e49a-44bd-8c4a-16fa47debe51 | Open Energy Information  

Open Energy Info (EERE)

HPS without Pole) Sector: Lighting Description: Applicable only to outdoor lighting by ballast operated vapor lamp fixtures, either Mercury Vapor, Pressure Sodium, or Metal Halide....

105

Data:9f63edce-619a-4ae5-acbc-06d752f31d2d | Open Energy Information  

Open Energy Info (EERE)

HPS without Pole) Sector: Lighting Description: Applicable only to outdoor lighting by ballast operated vapor lamp fixtures, either Mercury Vapor, Pressure Sodium, or Metal Halide....

106

Data:A97d4360-0ad8-4d10-ad37-23a878a1e3f7 | Open Energy Information  

Open Energy Info (EERE)

MV without Pole) Sector: Lighting Description: Applicable only to outdoor lighting by ballast operated vapor lamp fixtures, either Mercury Vapor, Pressure Sodium, or Metal Halide....

107

Data:D02e240e-0b03-4a55-a0cb-2fb21d990680 | Open Energy Information  

Open Energy Info (EERE)

W HPS with Pole) Sector: Lighting Description: Applicable only to outdoor lighting by ballast operated vapor lamp fixtures, either Mercury Vapor, Pressure Sodium, or Metal Halide....

108

Data:4df36a5c-1301-4c53-9017-92328028cfe4 | Open Energy Information  

Open Energy Info (EERE)

MV without Pole) Sector: Lighting Description: Applicable only to outdoor lighting by ballast operated vapor lamp fixtures, either Mercury Vapor, Pressure Sodium, or Metal Halide....

109

Data:Bf2519c7-759c-4e83-80ef-406e0a5f00d9 | Open Energy Information  

Open Energy Info (EERE)

MHHPS 400 W) Sector: Lighting Description: Applicable only to outdoor lighting by ballast operated vapor lamp fixtures, either Mercury Vapor, Pressure Sodium, or Metal Halide....

110

Data:820e509f-d2b1-4345-bf6d-240d05d98b17 | Open Energy Information  

Open Energy Info (EERE)

HPSMV with Pole) Sector: Lighting Description: Applicable only to outdoor lighting by ballast operated vapor lamp fixtures, either Mercury Vapor, Pressure Sodium, or Metal Halide....

111

Atmospheric Mercury Research Update  

Science Conference Proceedings (OSTI)

This report is a summary and analysis of research findings on utility and environmental mercury from 1997 to 2003. The update categorizes and describes recent work on mercury in utility-burned coal and its route through power plants, the measures for its control, and its fate in the environment following emissions from utility stacks. This fate includes atmospheric chemistry and transport, deposition to land and water surfaces, aquatic cycling, the dynamics of mercury in freshwater fish food webs, and th...

2004-03-30T23:59:59.000Z

112

Mercury Thermometer Alternatives Training  

Science Conference Proceedings (OSTI)

... tutorials are designed for educating various industrial user groups about the upcoming and current changes that ban the use of mercury products. ...

2013-06-04T23:59:59.000Z

113

MERCURY & DIMETHYLMERCURY EXPOSURE & EFFECTS  

SciTech Connect

This report identifies the dose response data available for several toxic mercury compounds and summarizes the symptoms and health effects associated with each of them.

HONEYMAN, J.O.

2005-12-13T23:59:59.000Z

114

Mercury Risk Assessment II  

NLE Websites -- All DOE Office Websites (Extended Search)

Protection Agency in 2005, will require significant reductions in mercury emissions from coal-fired power plants. In formulating the regulations, a central point of debate...

115

Studies of Mercury in High Level Waste Systems  

Science Conference Proceedings (OSTI)

During nuclear weapons production, nuclear reactor target and fuel rods were processed in F- and H-Canyons. For the target rods, a caustic dissolution of the aluminum cladding was performed prior to nitric acid dissolution of the uranium metal targets in the large canyon dissolvers. To dissolve the aluminum cladding and the U-Al fuel, mercury in the form of soluble mercury (II) nitrate was added as a catalyst to accelerate the dissolution of the aluminum. F-Canyon began to process plutonium-containing residues that were packaged in aluminum cans and thus required the use of mercury as a dissolution catalyst. Following processing to remove uranium and plutonium using the solvent extraction process termed the Plutonium-Uranium Recovery by Extraction (PUREX) process, the acidic waste solutions containing fission products and other radionuclides were neutralized with sodium hydroxide. The mercury used in canyon processing is fractionated between the sludge and supernate that is transferred from the canyons to the tank farm. The sludge component of the waste is currently vitrified in the Defense Waste Processing Facility (DWPF). The vitrified waste canisters are to be sent to the federal repository for High Level Waste. The mercury in the sludge, presumably in an oxide or hydroxide form is reduced to elemental mercury by the chemical additions and high temperatures, steam stripped and collected in the Mercury Collection Tank. The mercury in the dilute supernate is in the form of mercuric ion and is soluble. During evaporation, the mercuric ion is reduced to elemental mercury, vaporizes into the overheads system and is collected as a metallic liquid in the Mercury Removal Tank.

Wilmarth, W.R.

2003-09-03T23:59:59.000Z

116

Mercury Control Update 2009  

Science Conference Proceedings (OSTI)

EPRI has been evaluating cost-effective methods for reducing mercury emissions from coal-fired power plants. This report summarizes the current status of mercury control technologies and offers detailed discussion of boiler bromide addition balance-of-plant impacts and activated carbon injection (ACI) tests at selected sites.

2009-12-14T23:59:59.000Z

117

DOE Mercury Control Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control Research Mercury Control Research Air Quality III: Mercury, Trace Elements, and Particulate Matter September 9-12, 2002 Rita A. Bajura, Director National Energy Technology Laboratory www.netl.doe.gov 169330 RAB 09/09/02 2 Potential Mercury Regulations MACT Standards * Likely high levels of Hg reduction * Compliance: 2007 Clean Power Act of 2001 * 4-contaminant control * 90% Hg reduction by 2007 Clear Skies Act of 2002 * 3-contaminant control * 46% Hg reduction by 2010 * 70% Hg reduction by 2018 * Hg emission trading President Bush Announcing Clear Skies Initiative February 14, 2002 169330 RAB 09/09/02 3 Uncertainties Mercury Control Technologies * Balance-of-plant impacts * By-product use and disposal * Capture effectiveness with low-rank coals * Confidence of performance 169330 RAB 09/09/02 4

118

NETL: Mercury Emissions Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Mercury Emissions Control Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Mercury Emissions Control Innovations for Existing Plants Mercury Emissions Control NETL managed the largest funded research program in the country to develop an in-depth understanding of fossil combustion-based mercury emissions. The program goal was to develop effective control options that would allow generators to comply with regulations. Research focus areas included measurement and characterization of mercury emissions, as well as the development of cost-effective control technologies for the U.S. coal-fired electric generating industry. Control Technologies Field Testing Phase I & II Phase III Novel Concepts APCD Co-benefits Emissions Characterization

119

Thiacrown polymers for removal of mercury from waste streams  

DOE Patents (OSTI)

Thiacrown polymers immobilized to a polystyrene-divinylbenzene matrix react with Hg.sup.2+ under a variety of conditions to efficiently and selectively remove Hg.sup.2+ ions from acidic aqueous solutions, even in the presence of a variety of other metal ions. The mercury can be recovered and the polymer regenerated. This mercury removal method has utility in the treatment of industrial wastewater, where a selective and cost-effective removal process is required.

Baumann, Theodore F. (Tracy, CA); Reynolds, John G. (San Ramon, CA); Fox, Glenn A. (Livermore, CA)

2002-01-01T23:59:59.000Z

120

Definition: Mercury Vapor | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor Jump to: navigation, search Dictionary.png Mercury Vapor Mercury is discharged as a highly volatile vapor during hydrothermal activity and high concentrations in...

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Mercury Sensing with Optically Responsive Gold Nanoparticles  

E-Print Network (OSTI)

We assume that the mass of mercury adsorbed at saturation istactics, nanoparticle based mercury sensing should advancemost sensitive method for mercury sensing. References "1!

James, Jay Zachary

2012-01-01T23:59:59.000Z

122

Regeneration of zinc halide catalyst used in the hydrocracking of polynuclear hydrocarbons  

DOE Patents (OSTI)

Improved recovery of spent molten zinc halide hydro-cracking catalyst is achieved in the oxidative vapor phase regeneration thereof by selective treatment of the zinc oxide carried over by the effluent vapors from the regeneration zone with hydrogen halide gas under conditions favoring the reaction of the zinc oxide with the hydrogen halide, whereby regenerated zinc halide is recovered in a solids-free state with little loss of zinc values.

Gorin, Everett (San Rafael, CA)

1978-01-01T23:59:59.000Z

123

2010 EPRI-Southern Company Services Activated Carbon Mercury Control Workshop Proceedings  

Science Conference Proceedings (OSTI)

The U.S. Environmental Protection Agency (EPA) proposed a maximum achievable control technology ruling for air toxics on March 16, 2011. The proposed rule would impose new emission limits on mercury, acid gases, and particulate matter (as a surrogate for non-mercury metallic pollutants such as arsenic) from coal-fired power plants. These new limits are in addition to already existing mercury emissions limits imposed by many states. Activated carbon injection (ACI) is one of the leading control options to...

2011-04-28T23:59:59.000Z

124

Multimedia Mercury Fate at Coal-Fired Power Plants Equipped With SCR and Wet FGD Controls  

Science Conference Proceedings (OSTI)

Given the current regulatory climate in the United States, a number of selective catalytic reduction (SCR) and flue gas desulfurization (FGD) systems will be installed at new and existing coal-fired power plants to remove nitrogen oxide (NOx), sulfur dioxide (SO2), and mercury. The multimedia fate of trace metal species, especially mercury, in SCR/wet FGD systems is not well understood. Understanding and quantifying the amount of mercury removed from the flue gas and distributed to the solid and aqueous ...

2008-03-19T23:59:59.000Z

125

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1988-01-01T23:59:59.000Z

126

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

Grossman, M.W.; George, W.A.

1989-11-07T23:59:59.000Z

127

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1989-01-01T23:59:59.000Z

128

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1991-01-01T23:59:59.000Z

129

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

Grossman, M.W.; George, W.A.

1991-06-18T23:59:59.000Z

130

Mercury Risk Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

ASSESSING THE MERCURY HEALTH RISKS ASSOCIATED ASSESSING THE MERCURY HEALTH RISKS ASSOCIATED WITH COAL-FIRED POWER PLANTS: IMPACTS OF LOCAL DEPOSITIONS *T.M. Sullivan 1 , F.D. Lipfert 2 , S.M. Morris 2 , and S. Renninger 3 1 Building 830, Brookhaven National Laboratory, Upton, NY 11973 2 Private Consultants 3 Department of Energy, National Energy Technology Laboratory, Morgantown, WV ABSTRACT The U.S. Environmental Protection Agency has announced plans to regulate emissions of mercury to the atmosphere from coal-fired power plants. However, there is still debate over whether the limits should be placed on a nationwide or a plant-specific basis. Before a nationwide limit is selected, it must be demonstrated that local deposition of mercury from coal-fired power plants does not impose an excessive local health risk. The principal health

131

Mercury Control Update 2010  

Science Conference Proceedings (OSTI)

A February 2008 decision by the U.S. District of Columbia Circuit Court of Appeals remanded the Clean Air Mercury Rule back to the U.S. Environmental Protection Agency, opening the possibility of more stringent federal emission limits similar to those already adopted by some states. To meet these stringent limits, high mercury removals based on Maximum Achievable Control Technology for individual power plants may be needed. To help electric power companies comply with tightening emission standards in a ...

2010-12-31T23:59:59.000Z

132

Method for calcining nuclear waste solutions containing zirconium and halides  

DOE Patents (OSTI)

A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.

Newby, Billie J. (Idaho Falls, ID)

1979-01-01T23:59:59.000Z

133

Method and apparatus for monitoring mercury emissions  

DOE Patents (OSTI)

A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber. 15 figs.

Durham, M.D.; Schlager, R.J.; Sappey, A.D.; Sagan, F.J.; Marmaro, R.W.; Wilson, K.G.

1997-10-21T23:59:59.000Z

134

Method and apparatus for monitoring mercury emissions  

DOE Patents (OSTI)

A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

Durham, Michael D. (Castle Rock, CO); Schlager, Richard J. (Aurora, CO); Sappey, Andrew D. (Golden, CO); Sagan, Francis J. (Lakewood, CO); Marmaro, Roger W. (Littleton, CO); Wilson, Kevin G. (Littleton, CO)

1997-01-01T23:59:59.000Z

135

MERCURY CONTAMINATED MATERIAL DECONTAMINATION METHODS: INVESTIGATION AND ASSESSMENT  

Science Conference Proceedings (OSTI)

Over the years mercury has been recognized as having serious impacts on human health and the environment. This recognition has led to numerous studies that deal with the properties of various mercury forms, the development of methods to quantify and speciate the forms, fate and transport, toxicology studies, and the development of site remediation and decontamination technologies. This report reviews several critical areas that will be used in developing technologies for cleaning mercury from mercury-contaminated surfaces of metals and porous materials found in many DOE facilities. The technologies used for decontamination of water and mixed wastes (solid) are specifically discussed. Many technologies that have recently appeared in the literature are included in the report. Current surface decontamination processes have been reviewed, and the limitations of these technologies for mercury decontamination are discussed. Based on the currently available technologies and the processes published recently in the literature, several processes, including strippable coatings, chemical cleaning with iodine/iodide lixiviant, chemisorbing surface wipes with forager sponge and grafted cotton, and surface/pore fixation through amalgamation or stabilization, have been identified as potential techniques for decontamination of mercury-contaminated metal and porous surfaces. Their potential merits and applicability are discussed. Finally, two processes, strippable coatings and chemical cleaning with iodine/iodide lixiviant, were experimentally investigated in Phase II of this project.

M.A. Ebadian, Ph.D.

2001-01-01T23:59:59.000Z

136

NETL: IEP - Mercury Emissions Control: Emissions Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Control Emissions Characterization In anticipation of the 1990 CAAAs, specifically the draft Title III regarding the characterization of potential HAPs from electric steam generating units, DOE initiated a new Air Toxics Program in 1989. The DOE Mercury Measurement and Control Program evolved as a result of the findings from the comprehensive assessment of hazardous air pollutants studies conducted by DOE from 1990 through 1997. DOE, in collaboration with EPRI, performed stack tests at a number of coal-fired power plants (identified on map below) to accurately determine the emission rates of a series of potentially toxic chemicals. These tests had not been conducted previously because of their cost, about $1 million per test, so conventional wisdom on emissions was based on emission factors derived from analyses of coal. In general, actual emissions were found to be about one-tenth previous estimates, due to a high fraction of the pollutants being captured by existing particulate control systems. These data resulted in a decision by EPA that most of these pollutants were not a threat to the environment, and needed no further regulation at power plants. This shielded the coal-fired power industry from major (tens of millions) costs that would have resulted from further controlling these emissions. However, another finding of these studies was that mercury was not effectively controlled in coal-fired utility boiler systems. Moreover, EPA concluded that a plausible link exists between these emissions and adverse health effects. Ineffective control of mercury by existing control technologies resulted from a number of factors, including variation in coal composition and variability in the form of the mercury in flue gases. The volatility of mercury was the main contributor for less removal, as compared to the less volatile trace elements/metals which were being removed at efficiencies over 99% with the fly ash. In addition, it was determined that there was no reliable mercury speciation method to accurately distinguish between the elemental and oxidized forms of mercury in the flue gas. These two forms of mercury respond differently to removal techniques in existing air pollution control devices utilized by the coal-fired utility industry.

137

Semi-continuous detection of mercury in gases  

DOE Patents (OSTI)

A new method for the semi-continuous detection of heavy metals and metalloids including mercury in gaseous streams. The method entails mass measurement of heavy metal oxides and metalloid oxides with a surface acoustic wave (SAW) sensor having an uncoated substrate. An array of surface acoustic wave (SAW) sensors can be used where each sensor is for the semi-continuous emission monitoring of a particular heavy metal or metalloid.

Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

2011-12-06T23:59:59.000Z

138

NETL: Mercury Emissions Inactive Mercury Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Completed Mercury Projects Completed Mercury Projects View specific project information by clicking the state of interest on the map. Clickable U.S. Map ALABAMA Characterizing Toxic Emissions from Coal-Fired Power Plants Southern Research Institute The objective of this contract is to perform sampling and analysis of air toxic emissions at commercial coal-fired power plants in order to collect data that the EPA will use in their Congressionally mandated report on Hazardous Air Pollutants from Electric Utilities. CALIFORNIA Assessment of Toxic Emissions from a Coal-Fired Power Plant Utilizing an ESP Energy & Environmental Research Corporation – CA The overall objective of this project is to conduct comprehensive assessments of toxic emissions of two coal-fired electric utility power plants. The power plant that was assessed for toxic emissions during Phase I was American Electric Power Service Corporation's Cardinal Station Unit 1.

139

Groundwater Discharge of Mercury to California Coastal Waters  

E-Print Network (OSTI)

too much is consumed. This toxic form of mercury is producedfrom inorganic mercury by sulfur- and iron-reducing bacteriadischarge of total mercury and monomethyl mercury to central

Flegal, Russell; Paytan, Adina; Black, Frank

2009-01-01T23:59:59.000Z

140

ORNL DAAC Announces Mercury EOS  

NLE Websites -- All DOE Office Websites (Extended Search)

Announces Mercury EOS Search and Order April 21, 2003: Mercury EOS, the ORNL DAAC's new search and order system that works with NASA's EOS ClearingHouse (ECHO), is now operational....

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Dynamic Mercury Cycling Model Upgrade  

Science Conference Proceedings (OSTI)

This technical update describes the status of activities to upgrade the Dynamic Mercury Cycling Model (D-MCM), an EPRI simulation model that predicts mercury cycling and bioaccumulation in lakes.

2008-12-17T23:59:59.000Z

142

Sorption Mechanisms for Mercury Capture in Warm Post-Gasification Gas Clean-Up Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorption MechaniSMS for Mercury Sorption MechaniSMS for Mercury capture in WarM poSt-GaSification GaS clean-up SySteMS Background Power generation systems employing gasification technology must remove a variety of potential air pollutants, including mercury, from the synthetic gas steam prior to combustion. In general, efforts to remove mercury have focused on removal at lower temperatures (under 300 °F). The ability to remove mercury at warm-gas cleanup conditions (300 °F to 700 °F) or in the hot-gas cleanup range (above 1200 °F) would provide plant operators with greater flexibility to choose the treatment method best suited to conditions at their plant. The University of Arizona is investigating the use of paper waste-derived sorbents (PWDS) for the removal of mercury and other trace metals at temperatures in and

143

BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING  

Science Conference Proceedings (OSTI)

The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower retention of mercury in the slurry. Both recovery of mercury in the offgas system and removal (segregation + recovery) from the slurry correlate with slurry consistency. Higher slurry consistency results in better retention of Hg in the slurry (less segregation) and better recovery in the offgas system, but the relationships of recovery and retention with consistency are sludge dependent. Some correlation with slurry yield stress and acid stoichiometry was also found. Better retention of mercury in the slurry results in better recovery in the offgas system because the mercury in the slurry is stripped more easily than the segregated mercury at the bottom of the vessel. Although better retention gives better recovery, the time to reach a particular slurry mercury content (wt%) is longer than if the retention is poorer because the segregation is faster. The segregation of mercury is generally a faster process than stripping. The stripping factor (mass of water evaporated per mass of mercury stripped) of mercury at the start of boiling were found to be less than 1000 compared to the assumed design basis value of 750 (the theoretical factor is 250). However, within two hours, this value increased to at least 2000 lb water per lb Hg. For runs with higher mercury recovery in the offgas system, the stripping factor remained around 2000, but runs with low recovery had stripping factors of 4000 to 40,000. DWPF data shows similar trends with the stripping factor value increasing during boiling. These high values correspond to high segregation and low retention of mercury in the sludge. The stripping factor for a pure Hg metal bead in water was found to be about 10,000 lb/lb. About 10-36% of the total Hg evaporated in a SRAT cycle was refluxed back to the SRAT during formic acid addition and boiling. Mercury is dissolved as a result of nitric acid formation from absorption of NO{sub x}. The actual solubility of dissolved mercury in the acidic condensate is about 100 times higher than the actual concentrations measured. Mercury metal present in the MWWT from previous batch

Zamecnik, J.; Koopman, D.

2012-04-09T23:59:59.000Z

144

Removal of Elemental Mercury from a Gas Stream Facilitated by a Non-Thermal Plasma Device  

SciTech Connect

Mercury generated from anthropogenic sources presents a difficult environmental problem. In comparison to other toxic metals, mercury has a low vaporization temperature. Mercury and mercury compounds are highly toxic, and organic forms such as methyl mercury can be bio-accumulated. Exposure pathways include inhalation and transport to surface waters. Mercury poisoning can result in both acute and chronic effects. Most commonly, chronic exposure to mercury vapor affects the central nervous system and brain, resulting in neurological damage. The CRE technology employs a series of non-thermal, plasma-jet devices to provide a method for elemental mercury removal from a gas phase by targeting relevant chemical reactions. The technology couples the known chemistry of converting elemental mercury to ionic compounds by mercury-chlorine-oxygen reactions with the generation of highly reactive species in a non-thermal, atmospheric, plasma device. The generation of highly reactive metastable species in a non-thermal plasma device is well known. The introduction of plasma using a jet-injection device provides a means to contact highly reactive species with elemental mercury in a manner to overcome the kinetic and mass-transfer limitations encountered by previous researchers. To demonstrate this technology, WRI has constructed a plasma test facility that includes plasma reactors capable of using up to four plasma jets, flow control instrumentation, an integrated control panel to operate the facility, a mercury generation system that employs a temperature controlled oven and permeation tube, combustible and mercury gas analyzers, and a ductless fume hood designed to capture fugitive mercury emissions. Continental Research and Engineering (CR&E) and Western Research Institute (WRI) successfully demonstrated that non-thermal plasma containing oxygen and chlorine-oxygen reagents could completely convert elemental mercury to an ionic form. These results demonstrate potential the application of this technology for removing elemental mercury from flue gas streams generated by utility boilers. On an absolute basis, the quantity of reagent required to accomplish the oxidation was small. For example, complete oxidation of mercury was accomplished using a 1% volume fraction of oxygen in a nitrogen stream. Overall, the tests with mercury validated the most useful aspect of the CR&E technology: Providing a method for elemental mercury removal from a gas phase by employing a specific plasma reagent to either increase reaction kinetics or promote reactions that would not have occurred under normal circumstances.

Charles Mones

2006-12-01T23:59:59.000Z

145

ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL  

Science Conference Proceedings (OSTI)

U.S. Department of Energy (DOE) used large quantities of mercury in the uranium separating process from the 1950s until the late 1980s in support of national defense. Some of this mercury, as well as other hazardous metals and radionuclides, found its way into, and under, several buildings, soil and subsurface soils and into some of the surface waters. Several of these areas may pose potential health or environmental risks and must be dealt with under current environmental regulations. DOE's National Energy Technology Laboratory (NETL) awarded a contract ''Alternative Field Methods to Treat Mercury in Soil'' to IT Group, Knoxville TN (IT) and its subcontractor NFS, Erwin, TN to identify remedial methods to clean up mercury-contaminated high-clay content soils using proven treatment chemistries. The sites of interest were the Y-12 National Security Complex located in Oak Ridge, Tennessee, the David Witherspoon properties located in Knoxville, Tennessee, and at other similarly contaminated sites. The primary laboratory-scale contract objectives were (1) to safely retrieve and test samples of contaminated soil in an approved laboratory and (2) to determine an acceptable treatment method to ensure that the mercury does not leach from the soil above regulatory levels. The leaching requirements were to meet the TC (0.2 mg/l) and UTS (0.025 mg/l) TCLP criteria. In-situ treatments were preferred to control potential mercury vapors emissions and liquid mercury spills associated with ex-situ treatments. All laboratory work was conducted in IT's and NFS laboratories. Mercury contaminated nonradioactive soil from under the Alpha 2 building in the Y-12 complex was used. This soils contained insufficient levels of leachable mercury and resulted in TCLP mercury concentrations that were similar to the applicable LDR limits. The soil was spiked at multiple levels with metallic (up to 6000 mg/l) and soluble mercury compounds (up to 500 mg/kg) to simulate expected ranges of mercury contamination and to increase the TCLP mercury values. IT/NFS investigated ambient temperature amalgamation/stabilization/fixation of mercury-contaminated soils to meet these objectives. Treatment ranged in size from a few ounces to 10 pounds. The treatability study philosophy was to develop working envelops of formulations where reasonable minimum and maximum amounts of each reagent that would successfully treat the contaminated soil were determined. The dosages investigated were based on ratios of stoichiometric reactions and applications of standard sets of formulations. The approach purposely identified formulations that failed short or longer cure-time performance criteria to define the limits of the envelope. Reagent envelops successfully met the project requirements one day after treatment and after greater than 30-day cures. The use of multiple levels of spikes allowed the establishment of reagent dosages that were successful across a broad range of mercury values, e.g., 50 to 6000 mg/kg mercury. The treatment products were damp to slightly wet material. Enough drying reagent, e.g., Portland cement or lime by-product, were added to some formulations to control the leachability of uranium and other hazardous metals and to ensure the product passed the paint filter test. Cost analyzes and conceptual designs for four alternatives for full-scale treatments were prepared. The alternatives included two in-situ treatments and two ex-situ treatments. The cost estimates were based on the results from the bench-scale study. All four alternatives treatment costs were well below the baseline costs.

Ernest F. Stine Jr; Steven T. Downey

2002-08-14T23:59:59.000Z

146

Gas Mileage of 1994 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Mercury Vehicles 4 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1994 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Capri 20 City 21 Combined 24 Highway 1994 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1994 Mercury Capri 21 City 23 Combined 26 Highway 1994 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1994 Mercury Capri 22 City 24 Combined 28 Highway 1994 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Cougar 17 City 19 Combined 24 Highway 1994 Mercury Cougar 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Cougar 16 City 18 Combined 23 Highway 1994 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Grand Marquis 16

147

Gas Mileage of 1985 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Mercury Vehicles 5 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1985 Mercury Capri 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1985 Mercury Capri 19 City 20 Combined 23 Highway 1985 Mercury Capri 4 cyl, 2.3 L, Manual 4-spd, Regular Gasoline Compare 1985 Mercury Capri 21 City 23 Combined 27 Highway 1985 Mercury Capri 6 cyl, 3.8 L, Automatic 3-spd, Regular Gasoline Compare 1985 Mercury Capri 17 City 18 Combined 20 Highway 1985 Mercury Capri 8 cyl, 5.0 L, Manual 5-spd, Regular Gasoline Compare 1985 Mercury Capri 15 City 17 Combined 22 Highway 1985 Mercury Capri 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1985 Mercury Capri 15 City 17 Combined 22 Highway 1985 Mercury Capri 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1985 Mercury Capri 18 City

148

Catalysts for oxidation of mercury in flue gas  

DOE Patents (OSTI)

Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

2010-08-17T23:59:59.000Z

149

NETL: Mercury Emissions Control Technologies - Oxidation of Mercury Across  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxidation of Mercury Across SCR Catalysts in Coal-Fired Power Plants Burning Low Rank Fuels Oxidation of Mercury Across SCR Catalysts in Coal-Fired Power Plants Burning Low Rank Fuels The objective of the proposed research is to assess the potential for the oxidation of mercury in flue gas across SCR catalysts in a coal fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. Results from the project will contribute to a greater understanding of mercury behavior across SCR catalysts. Additional tasks include: review existing pilot and field data on mercury oxidation across SCR catalysts and propose a mechanism for mercury oxidation and create a simple computer model for mercury oxidation based on the hypothetical mechanism. Related Papers and Publications: Final Report - December 31, 2004 [PDF-532KB]

150

Water displacement mercury pump  

DOE Patents (OSTI)

A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

Nielsen, Marshall G. (Woodside, CA)

1985-01-01T23:59:59.000Z

151

Water displacement mercury pump  

DOE Patents (OSTI)

A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

Nielsen, M.G.

1984-04-20T23:59:59.000Z

152

Mercury Vapor | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor Mercury Vapor Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Mercury Vapor Details Activities (23) Areas (23) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Anomalously high concentrations can indicate high permeability or conduit for fluid flow Hydrological: Field wide soil sampling can generate a geometrical approximation of fluid circulation Thermal: High concentration in soils can be indicative of active hydrothermal activity Dictionary.png Mercury Vapor: Mercury is discharged as a highly volatile vapor during hydrothermal

153

SAP for Mercury Control  

Science Conference Proceedings (OSTI)

EPRI and the Illinois State Geological Survey (ISGS) have developed and patented a technology for the on-site production of activated carbon (AC). The basic approach of the sorbent activation process (SAP) is to use coal from the plant site to form AC for direct injection into flue gas, upstream of the particulate control device, for mercury adsorption. The SAP is designed to help significantly reduce the cost of AC for power plant mercury control. This report summarizes laboratory and Phase 1 field test...

2009-06-17T23:59:59.000Z

154

Mercury Controls Update 2011  

Science Conference Proceedings (OSTI)

In light of the proposed Maximum Achievable Control Technology (MACT) ruling for hazardous air pollutants (HAPs) issued by the U.S. Environmental Protection Agency on March 16, 2011, the requirement to reduce emissions of mercury and other HAPs is one of the key challenges for coal-fired power plants. The proposed MACT ruling limits mercury emissions to 1.2 lb/TBtu at the stack (4.0 lb/TBtu for lignite-fired units), based on a 30-day rolling average including startup and shutdown periods. To help electri...

2011-12-21T23:59:59.000Z

155

Mercury in FGD Byproducts  

Science Conference Proceedings (OSTI)

This report provides interim results from two EPRI co-funded projects that pertain to what happens to mercury in flue gas from coal-fired power boilers when the scrubbed by wet flue gas desulfurization (FGD) systems. The first project is co-sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) and by USG Corporation under Cooperative Agreement DE-FC26-04NT42080, "Fate of Mercury in Synthetic Gypsum Used for Wallboard Production." The second project is being co-sponsore...

2005-12-07T23:59:59.000Z

156

Gas Mileage of 1986 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Mercury Vehicles 6 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1986 Mercury Capri 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1986 Mercury Capri 18 City 20 Combined 23 Highway 1986 Mercury Capri 4 cyl, 2.3 L, Manual 4-spd, Regular Gasoline Compare 1986 Mercury Capri 21 City 23 Combined 26 Highway 1986 Mercury Capri 6 cyl, 3.8 L, Automatic 3-spd, Regular Gasoline Compare 1986 Mercury Capri 17 City 19 Combined 22 Highway 1986 Mercury Capri 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1986 Mercury Capri 15 City 18 Combined 24 Highway 1986 Mercury Capri 8 cyl, 5.0 L, Manual 5-spd, Regular Gasoline Compare 1986 Mercury Capri View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1986 Mercury Cougar 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline

157

Gas Mileage of 1991 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Mercury Vehicles 1 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1991 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1991 Mercury Capri 21 City 22 Combined 24 Highway 1991 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1991 Mercury Capri View MPG Estimates Shared By Vehicle Owners 21 City 23 Combined 26 Highway 1991 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1991 Mercury Capri 22 City 24 Combined 28 Highway 1991 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1991 Mercury Cougar 17 City 20 Combined 24 Highway 1991 Mercury Cougar 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1991 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 22 Highway 1991 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline

158

Recovery and removal of mercury from mixed wastes. Final report, September 1994--June 1995  

SciTech Connect

In recognition of the major environmental problem created by mercury contamination of wastes and soils at an estimated 200,000 sites along US natural gas and oil pipelines and at a number of government facilities, including Oak Ridge, Savannah River, Hanford, and Rocky Flats, the US Department of Energy (DOE) is seeking an effective and economical process for removing mercury from various DOE waste streams in order to allow the base waste streams to be treated by means of conventional technologies. In response to the need for Unproved mercury decontamination technology, Mercury Recovery Services (MRS) has developed and commercialized a thermal treatment process for the recovery of mercury from contaminated soils and industrial wastes. The objectives of this program were to: demonstrate the technical and economic feasibility of the MRS process to successfully remove and recover mercury from low-level mixed waste containing mercury compounds (HgO, HgS, HgCl{sub 2}) and selected heavy metal compounds (PbO, CdO); determine optimum processing conditions required to consistently reduce the residual total mercury content to 1 mg/kg while rendering the treated product nontoxic as determined by TCLP methods; and provide an accurate estimate of the capital and operating costs for a commercial processing facility designed specifically to remove and recovery mercury from various waste streams of interest at DOE facilities. These objectives were achieved in a four-stage demonstration program described within with results.

Sutton, W.F.; Weyand, T.E.; Koshinski, C.J.

1995-06-01T23:59:59.000Z

159

Mercury Binding Sites in Thiol-Functionalized Mesostructured Silica  

SciTech Connect

Thiol-functionalized mesostructured silica with anhydrous compositions of (SiO{sub 2}){sub 1-x}(LSiO{sub 1.5}){sub x}, where L is a mercaptopropyl group and x is the fraction of functionalized framework silicon centers, are effective trapping agents for the removal of mercuric(II) ions from water. In the present work, we investigate the mercury-binding mechanism for representative thiol-functionalized mesostructures by atomic pair distribution function (PDF) analysis of synchrotron X-ray powder diffraction data and by Raman spectroscopy. The mesostructures with wormhole framework structures and compositions corresponding to x = 0.30 and 0.50 were prepared by direct assembly methods in the presence of a structure-directing amine porogen. PDF analyses of five mercury-loaded compositions with Hg/S ratios of 0.50-1.30 provided evidence for the bridging of thiolate sulfur atoms to two metal ion centers and the formation of chain structures on the pore surfaces. We find no evidence for Hg-O bonds and can rule out oxygen coordination of the mercury at greater than the 10% level. The relative intensities of the PDF peaks corresponding to Hg-S and Hg-Hg atomic pairs indicate that the mercury centers cluster on the functionalized surfaces by virtue of thiolate bridging, regardless of the overall mercury loading. However, the Raman results indicate that the complexation of mercury centers by thiolate depends on the mercury loading. At low mercury loadings (Hg/S {le} 0.5), the dominant species is an electrically neutral complex in which mercury most likely is tetrahedrally coordinated to bridging thiolate ligands, as in Hg(SBu{sup t}){sub 2}. At higher loadings (Hg/S 1.0-1.3), mercury complex cations predominate, as evidenced by the presence of charge-balancing anions (nitrate) on the surface. This cationic form of bound mercury is assigned a linear coordination to two bridging thiolate ligands.

Billinge, Simon J.L.; McKimmey, Emily J.; Shatnawi, Mouath; Kim, HyunJeong; Petkov, Valeri; Wermeille, Didier; Pinnavaia, Thomas J. (MSU); (CMU); (Iowa State)

2010-07-13T23:59:59.000Z

160

Gas Mileage of 2008 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Mercury Vehicles 8 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2008 Mercury Grand Marquis FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2008 Mercury Grand Marquis FFV Gas 15 City 18 Combined 23 Highway E85 11 City 13 Combined 16 Highway 2008 Mercury Mariner 4WD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner 4WD 19 City 21 Combined 24 Highway 2008 Mercury Mariner 4WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner 4WD View MPG Estimates Shared By Vehicle Owners 17 City 19 Combined 22 Highway 2008 Mercury Mariner FWD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner FWD 20 City 22 Combined 26 Highway 2008 Mercury Mariner FWD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner FWD

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Gas Mileage of 1987 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Mercury Vehicles 7 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1987 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Cougar 17 City 19 Combined 24 Highway 1987 Mercury Cougar 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 1987 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 1987 Mercury Grand Marquis Wagon 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Grand Marquis Wagon 16 City 19 Combined 24 Highway 1987 Mercury Lynx 4 cyl, 1.9 L, Automatic 3-spd, Regular Gasoline Compare 1987 Mercury Lynx 23

162

Gas Mileage of 1990 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

90 Mercury Vehicles 90 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1990 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Premium Gasoline Compare 1990 Mercury Cougar 15 City 18 Combined 21 Highway 1990 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1990 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 17 City 20 Combined 24 Highway 1990 Mercury Cougar 6 cyl, 3.8 L, Manual 5-spd, Premium Gasoline Compare 1990 Mercury Cougar 15 City 18 Combined 22 Highway 1990 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1990 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1990 Mercury Grand Marquis Wagon 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1990 Mercury Grand Marquis Wagon 15

163

Gas Mileage of 1999 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

1999 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1999 Mercury Cougar 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1999 Mercury Cougar View MPG Estimates Shared By...

164

Gas Mileage of 1984 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1984 Mercury Capri 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1984 Mercury Capri 18 City 20 Combined 22 Highway 1984...

165

Gas Mileage of 1988 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1988 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1988 Mercury Cougar 18 City 21 Combined 25 Highway 1988...

166

Gas Mileage of 1992 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1992 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1992 Mercury Capri View MPG Estimates Shared By Vehicle...

167

Gas Mileage of 1996 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1996 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1996 Mercury Cougar 17 City 19 Combined 24 Highway 1996...

168

Gas Mileage of 2007 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2007 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2007 Mercury Grand Marquis View MPG Estimates...

169

Gas Mileage of 2002 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Mercury Vehicles 2 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2002 Mercury Cougar 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 2002 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 31 Highway 2002 Mercury Cougar 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 2002 Mercury Cougar 18 City 21 Combined 26 Highway 2002 Mercury Cougar 6 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 2002 Mercury Cougar 18 City 21 Combined 27 Highway 2002 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2002 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 2002 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 2002 Mercury Mountaineer 2WD 14 City

170

Gas Mileage of 1989 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Mercury Vehicles 9 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1989 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1989 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 17 City 20 Combined 25 Highway 1989 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Premium Gasoline Compare 1989 Mercury Cougar 15 City 17 Combined 21 Highway 1989 Mercury Cougar 6 cyl, 3.8 L, Manual 5-spd, Premium Gasoline Compare 1989 Mercury Cougar 15 City 18 Combined 22 Highway 1989 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1989 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1989 Mercury Grand Marquis Wagon 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1989 Mercury Grand Marquis Wagon 15

171

Gas Mileage of 1993 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Mercury Vehicles 3 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1993 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1993 Mercury Capri 20 City 21 Combined 24 Highway 1993 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1993 Mercury Capri View MPG Estimates Shared By Vehicle Owners 21 City 23 Combined 26 Highway 1993 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1993 Mercury Capri View MPG Estimates Shared By Vehicle Owners 22 City 24 Combined 28 Highway 1993 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1993 Mercury Cougar 17 City 19 Combined 24 Highway 1993 Mercury Cougar 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 15

172

SEPARATION OF METAL SALTS BY ADSORPTION  

DOE Patents (OSTI)

It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

Gruen, D.M.

1959-01-20T23:59:59.000Z

173

Platinum Metals Rev., 2008, 52, (3), 144-154  

NLE Websites -- All DOE Office Websites (Extended Search)

Metals Rev., 2008, 52, (3), 144-154 Metals Rev., 2008, 52, (3), 144-154 144 1. Introduction Coal-fired utility boilers are the largest anthro- pogenic emitters of mercury in the United States, accounting for approximately one third of the 150 tons of mercury emitted annually (1, 2). In 2005, the U.S. Environmental Protection Agency (EPA) announced the Clean Air Mercury Rule, to limit mercury emissions from coal-fired utility boilers to 15 tons annually, approximately 30% of 1999 levels, by 2018 (3). At the time of publication (July 2008) this measure is under legal dispute. Of alter- native legislative proposals to regulate mercury along with other pollutants, most would require a 90% mercury reduction, with deadlines for control varying from 2011 to 2015. Mercury exists in three forms in coal-derived flue gas: elemental (Hg

174

Public Health Guidance Note Mercury  

E-Print Network (OSTI)

Mercury (Hg) occurs in nature as the mineral cinnibar (red mercuric sulfide) and has found widespread use in industry. The commercial

unknown authors

2002-01-01T23:59:59.000Z

175

doi:10.1155/2012/460508 Review Article Mercury Toxicity and Treatment: A Review of the Literature  

E-Print Network (OSTI)

Copyright © 2012 Robin A. Bernhoft. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Mercury is a toxic heavy metal which is widely dispersed in nature. Most human exposure results from fish consumption or dental amalgam. Mercury occurs in several chemical forms, with complex pharmacokinetics. Mercury is capable of inducing a wide range of clinical presentations. Diagnosis of mercury toxicity can be challenging but can be obtained with reasonable reliability. Effective therapies for clinical toxicity have been described. 1.

Robin A. Bernhoft

2011-01-01T23:59:59.000Z

176

ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) currently has mercury (Hg) contaminated materials and soils at the various sites. Figure 1-1 (from http://www.ct.ornl.gov/stcg.hg/) shows the estimated distribution of mercury contaminated waste at the various DOE sites. Oak Ridge and Idaho sites have the largest deposits of contaminated materials. The majorities of these contaminated materials are soils, sludges, debris, and waste waters. This project concerns treatment of mercury contaminated soils. The technology is applicable to many DOE sites, in-particular, the Y-12 National Security Complex in Oak Ridge Tennessee and Idaho National Engineering and Environmental Laboratory (INEEL). These sites have the majority of the soils and sediments contaminated with mercury. The soils may also be contaminated with other hazardous metals and radionuclides. At the Y12 plant, the baseline treatment method for mercury contaminated soil is low temperature thermal desorption (LTTD), followed by on-site landfill disposal. LTTD is relatively expensive (estimated cost of treatment which exclude disposal cost for the collect mercury is greater than $740/per cubic yard [cy] at Y-12), does not treat any of the metal or radionuclides. DOE is seeking a less costly alternative to the baseline technology. As described in the solicitation (DE-RA-01NT41030), this project initially focused on evaluating cost-effective in-situ alternatives to stabilize or remove the mercury (Hg) contamination from high-clay content soil. It was believed that ex-situ treatment of soil contaminated with significant quantities of free-liquid mercury might pose challenges during excavation and handling. Such challenges may include controlling potential mercury vapors and containing liquid mercury beads. As described below, the focus of this project was expanded to include consideration of ex-situ treatment after award of the contract to International Technology Corporation (IT). After award of the contract, IT became part of Shaw E&I. The company will be denoted as ''IT'' for the rest of the document since the original contract was awarded to IT. This report details IT, Knoxville, TN and its subcontractor Nuclear Fuels Services (NFS) study to investigate alternative mercury treatment technology. The IT/NFS team demonstrated two processes for the amalgamation/stabilization/fixation of mercury and potentially Resource Conservation Recovery Act (RCRA) and radionuclide-contaminated soils. This project was to identify and demonstrate remedial methods to clean up mercury-contaminated soil using established treatment chemistries on soil from the Oak Ridge Reservation, Y-12 National Security Complex, the off-site David Witherspoon properties, and/or other similarly contaminated sites. Soil from the basement of Y-12 Plant Alpha 2 Building at the Oak Ridge Reservation was received at IT and NFS on December 20, 2001. Soils from the other locations were not investigated. The soil had background levels of radioactivity and had all eight RCRA metals well below the Toxicity Characteristic (TC) criteria. This project addresses the new DOE Environmental Management Thrust 2 ''Alternative Approaches to Current High Risk/High Cost Baselines''. Successful completion of this project will provide a step-change in DOE's treatment ability.

Ernie F. Stine

2002-08-14T23:59:59.000Z

177

Method for mercury refinement  

DOE Patents (OSTI)

The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA); George, William A. (Rockport, MA)

1991-01-01T23:59:59.000Z

178

Apparatus for mercury refinement  

DOE Patents (OSTI)

The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA); George, William A. (Rockport, MA)

1991-01-01T23:59:59.000Z

179

Apparatus for mercury refinement  

DOE Patents (OSTI)

The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

Grossman, M.W.; Speer, R.; George, W.A.

1991-07-16T23:59:59.000Z

180

PUBLIC HEALTH STATEMENT MERCURY  

E-Print Network (OSTI)

This Public Health Statement is the summary chapter from the Toxicological Profile for Mercury. It is one in a series of Public Health Statements about hazardous substances and their health effects. A shorter version, the ToxFAQs™, is also available. This information is important because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are

unknown authors

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Method for mercury refinement  

DOE Patents (OSTI)

The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

Grossman, M.W.; Speer, R.; George, W.A.

1991-04-09T23:59:59.000Z

182

Mercury Emissions Data Analyses  

Science Conference Proceedings (OSTI)

This report contains the visual materials included in presentations given at Research Triangle Park, North Carolina on April 3, 2002. Participants included representatives from EPRI, DOE, RMB Consulting & Research, and EERC. The MACT Working Group gave a presentation on "Variability in Hg Emissions Based on SCEM Data." The visuals in the report are a set of graphs documenting results of mercury emissions over time, using semi-continuous emissions monitor (SCEM) data. The EPA Utility Working Group gave a ...

2002-05-02T23:59:59.000Z

183

Method for scavenging mercury  

DOE Patents (OSTI)

Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

Chang, Shih-ger (El Cerrito, CA); Liu, Shou-heng (Kaohsiung, TW); Liu, Zhao-rong (Bejing, CN); Yan, Naiqiang (Burkeley, CA)

2010-07-13T23:59:59.000Z

184

Method for scavenging mercury  

SciTech Connect

Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

Chang, Shih-Ger (El Cerrito, CA); Liu, Shou-Heng (Kaohsiung, TW); Liu, Zhao-Rong (Beijing, CN); Yan, Naiqiang (Berkeley, CA)

2011-08-30T23:59:59.000Z

185

Method for scavenging mercury  

SciTech Connect

Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

Chang, Shih-ger (El Cerrito, CA); Liu, Shou-heng (Kaohsiung, TW); Liu, Zhao-rong (Beijing, CN); Yan, Naiqiang (Berkeley, CA)

2009-01-20T23:59:59.000Z

186

Gas Mileage of 2001 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Mercury Vehicles 1 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2001 Mercury Cougar 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 2001 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 31 Highway 2001 Mercury Cougar 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 2001 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 26 Highway 2001 Mercury Cougar 6 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 2001 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 27 Highway 2001 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2001 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 2001 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline

187

Gas Mileage of 1998 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Mercury Vehicles 8 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1998 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1998 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1998 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 1998 Mercury Mountaineer 2WD View MPG Estimates Shared By Vehicle Owners 14 City 16 Combined 18 Highway 1998 Mercury Mountaineer 2WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1998 Mercury Mountaineer 2WD 12 City 14 Combined 17 Highway 1998 Mercury Mountaineer 4WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 1998 Mercury Mountaineer 4WD View MPG Estimates Shared By Vehicle Owners 14 City 15 Combined 18 Highway 1998 Mercury Mountaineer 4WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline

188

Gas Mileage of 2005 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Mercury Vehicles 5 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2005 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 23 Highway 2005 Mercury Mariner 2WD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Mariner 2WD View MPG Estimates Shared By Vehicle Owners 19 City 21 Combined 24 Highway 2005 Mercury Mariner 2WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Mariner 2WD View MPG Estimates Shared By Vehicle Owners 17 City 19 Combined 23 Highway 2005 Mercury Mariner 4WD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Mariner 4WD 17 City 19 Combined 21 Highway 2005 Mercury Mariner 4WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline

189

Gas Mileage of 2000 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

2000 Mercury Vehicles 2000 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2000 Mercury Cougar 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 2000 Mercury Cougar 21 City 25 Combined 31 Highway 2000 Mercury Cougar 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 2000 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 26 Highway 2000 Mercury Cougar 6 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 2000 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 26 Highway 2000 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2000 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 2000 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline

190

Gas Mileage of 2004 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Mercury Vehicles 4 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2004 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2004 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 2004 Mercury Marauder 8 cyl, 4.6 L, Automatic 4-spd, Premium Gasoline Compare 2004 Mercury Marauder View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 21 Highway 2004 Mercury Monterey Wagon FWD 6 cyl, 4.2 L, Automatic 4-spd, Regular Gasoline Compare 2004 Mercury Monterey Wagon FWD View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 21 Highway 2004 Mercury Mountaineer 2WD 8 cyl, 4.6 L, Automatic 5-spd, Regular Gasoline Compare 2004 Mercury Mountaineer 2WD 13 City 15 Combined 18 Highway 2004 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline

191

Gas Mileage of 1997 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Mercury Vehicles 7 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1997 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 1997 Mercury Cougar 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1997 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1997 Mercury Mountaineer 2WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Mountaineer 2WD View MPG Estimates Shared By Vehicle Owners 12 City 14 Combined 17 Highway 1997 Mercury Mountaineer 4WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline

192

Gas Mileage of 1995 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Mercury Vehicles 5 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1995 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Cougar 17 City 19 Combined 24 Highway 1995 Mercury Cougar 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1995 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1995 Mercury Mystique 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Mystique View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 29 Highway 1995 Mercury Mystique 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline

193

NETL: Mercury Emissions Control Technologies - Pilot Testing of Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of Mercury Oxidation Catalysts Project Summary Testing of Mercury Oxidation Catalysts Project Summary URS Group, Inc., Austin, TX, will demonstrate at the pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion, and the use of a wet flue gas desulfurization (FGD) system downstream to remove the oxidized mercury at high efficiency. The project's pilot tests, conducted at electric generating plants using wet flue gas desulfurization systems and particulate collection systems, will be conducted for periods up to 14 months to provide data for future, full-scale designs. Mercury-oxidation potential will be measured periodically to provide long-term catalyst life data. The project is applicable to about 90,000 megawatts of generation capacity. Project partners are the Electric Power Research Institute, Palo Alto, CA, which will co-manage and co-fund the pilot tests, and five utilities.

194

NETL: Mercury Emissions Control Technologies - Evaluation of Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Technology Evaluation of Mercury Emissions from Coal-Fired Facilities w/ SCR and FGD Systems Control Technology Evaluation of Mercury Emissions from Coal-Fired Facilities w/ SCR and FGD Systems CONSOL is evaluating the mercury removal co-benefits achieved by SCR-FGD combi nations. Specific issues that will be addressed include the effects of SCR, catalyst degradation, and load changes on mercury oxidation and capture. This objective will be achieved by measuring mercury removal achieved by SCR-FGD combinations at ten plants with such equipment configurations. These plants include five with wet limestone, three wet lime, and two with dry scrubbing. Material balance will be conducted. Related Papers and Publications: Final Report - April 2006 [PDF-377KB] Topical Report # 11 - January 2006 [PDF-19MB] Topical Report # 9 - January 2006 [PDF-6MB]

195

SULFUR POLYMER STABILIZATION/SOLIDIFICATION (SPSS) TREATABILITY OF LOS ALAMOS NATIONAL LABORATORY MERCURY WASTE.  

Science Conference Proceedings (OSTI)

Brookhaven National Laboratory's Sulfur Polymer Stabilization/Solidification (SPSS) process was used to treat approximately 90kg of elemental mercury mixed waste from Los Alamos National Laboratory. Treatment was carried out in a series of eight batches using a 1 ft{sup 3} pilot-scale mixer, where mercury loading in each batch was 33.3 weight percent. Although leach performance is currently not regulated for amalgamated elemental mercury (Hg) mixed waste, Toxicity Characteristic Leach Procedure (TCLP) testing of SPSS treated elemental mercury waste indicates that leachability is readily reduced to below the TCLP limit of 200 ppb (regulatory requirement following treatment by retort for wastes containing > 260 ppb Hg), and with process optimization, to levels less than the stringent Universal Treatment Standard (UTS) limit of 25 ppb that is applied to waste containing < 260 ppm Hg. In addition, mercury-contaminated debris, consisting of primary glass and plastic containers, as well as assorted mercury thermometers, switches, and labware, was first reacted with SPSS components to stabilize the mercury contamination, then macroencapsulated in the molten SPSS product. This treatment was done by vigorous agitation of the sulfur polymer powder and the comminuted debris. Larger plastic and metal containers were reacted to stabilize internal mercury contamination, and then filled with molten sulfur polymer to encapsulate the treated product.

ADAMS,J.W.; KALB,P.D.

2001-11-01T23:59:59.000Z

196

The Clean Air Mercury Rule  

SciTech Connect

Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

Michael Rossler [Edison Electric Institute, Washington, DC (US)

2005-07-01T23:59:59.000Z

197

Information Collection Request (ICR) Data Analysis to Meet Mercury and Air Toxics Standards (MATS) Requirements  

Science Conference Proceedings (OSTI)

With the promulgation of the new Mercury and Air Toxics Standards (MATS), power companies are looking for ways to comply with more stringent limits on emissions. This report summarizes the results of a study to identify trends among the operating parameters of various air pollutant control technologies that could explain differences in the levels of emissions for fine particulate matter, mercury, hydrochloric acid, and total metals reported to the ...

2012-12-20T23:59:59.000Z

198

Methods for dispensing mercury into devices  

DOE Patents (OSTI)

A process for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg.sub.2 Cl.sub.2 and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1987-04-28T23:59:59.000Z

199

Methods for dispensing mercury into devices  

DOE Patents (OSTI)

A process is described for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg[sub 2]Cl[sub 2] and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury. 2 figs.

Grossman, M.W.; George, W.A.

1987-04-28T23:59:59.000Z

200

Recovery from Mercury Contamination in the Second Songhua River, China  

E-Print Network (OSTI)

K. , & Rubin, J. R. (2005). Mercury levels and relationshipsJ. , et al. (1999). Mercury in contaminated coastalEnvironmental costs of mercury pollution. Science of the

Zhang, Z. S.; Sun, X. J.; Wang, Q. C.; Zheng, D. M.; Zheng, N.; Lv, X. G.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Mercury Isotope Fractionation by Environmental Transport and Transformation Processes  

E-Print Network (OSTI)

measurements of atomic mercury. Applied Physics B, 87(2),M. & Covelli, S. , 2000. Mercury speciation in sedimentsarea of the Idrija mercury mine, Slovenia. Environmental

Koster van Groos, Paul Gijsbert

2011-01-01T23:59:59.000Z

202

NETL: Health Effects - Risk Assessment of Reduced Mercury Emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

of mercury. The primary pathway for mercury exposure is through consumption of fish. The most susceptible population to mercury exposure is the fetus. Therefore, the risk...

203

Mercury Vapor (Kooten, 1987) | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor (Kooten, 1987) Mercury Vapor (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor (Kooten, 1987) Exploration Activity Details Location Unspecified Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Surface soil-mercury surveys are an inexpensive and useful exploration tool for geothermal resources. ---- Surface geochemical surveys for mercury were conducted in 16 areas in 1979-1981 by ARCO Oil and Gas Company as part of its geothermal evaluation program. Three techniques used together have proved satisfactory in evaluating surface mercury data. These are contouring, histograms and cumulative frequency plots of the data. Contouring geochemical data and constructing histograms are standard

204

Fluorescent sensor for mercury  

DOE Patents (OSTI)

The present invention provides a sensor for detecting mercury, comprising: a first polynucleotide, comprising a first region, and a second region, a second polynucleotide, a third polynucleotide, a fluorophore, and a quencher, wherein the third polynucleotide is optionally linked to the second region; the fluorophore is linked to the first polynucleotide and the quencher is linked to the second polynucleotide, or the fluorophore is linked to the second polynucleotide and the quencher is linked to the first polynucleotide; the first region and the second region hybridize to the second polynucleotide; and the second region binds to the third polynucleotide in the presence of Hg.sup.2+ ions.

Wang, Zidong (Urbana, IL); Lee, Jung Heon (Evanston, IL); Lu, Yi (Champaign, IL)

2011-11-22T23:59:59.000Z

205

The role of natural purified humic acids in modifying mercury accessibility in water and soil  

SciTech Connect

We investigated the influence of different humic acids (HAs, extracted from lignite, compost, and forest soil) on mercury mobility and availability both in a model solution and in soil samples from a mercury-polluted region. The technique of diffusive gradients in thin-films (DGT), which is capable of measuring: (i) free metal in solution: (ii) dissociated metal complexes previously mobilized by HA; (iii) mobilized metal-HA complexes that liberate metals by dissociation or by exchange reaction between the metal-HA complexes and the chelating groups on the resin-gel, was used in solutions and soils. The DGT measurements in solution, together with ultrafiltration, allowed estimation of the lability of Hg-HA complexes. Ultrafiltration results were also compared with predictions made by the windermere humic-aqueous model (WHAM). According to both these different approaches, Hg{sup 2+} resulted nearly 100% complexed by HAs, whereas results from ultrafiltration showed that 32 to 72% of the CH{sub 4}Hg{sup +} was bound to the HAs, with higher values for compost and lower values for forest and Aldrich HA. The DGT-measured mercury in soils was below 0.20 {mu}g L{sup -1}, irrespective of the extent of the contamination. Addition of HA increased the concentration of DGT-measured mercury in soil solution up to 100-fold in the contaminated soil and up to 30-fold in the control soil. The level of the increase also depended on the HA. The smallest increase (about 10 times) was found for lignite HA in both control and contaminated soils. The addition of forest HA gave the largest increases in DGT-measured mercury, in particular for the contaminated soil. Overall, the results demonstrated that DGT can be used for estimating the lability of mercury complexes in solution and for verifying enhanced mercury mobility when HA is added to contaminated soils.

Cattani, I.; Zhang, H.; Beone, G.M.; Del Re, A.A.M.; Boccelli, R.; Trevisan, M. [University of Cattolica Sacro Cuore, Piacenza (Italy)

2009-03-15T23:59:59.000Z

206

Ultrasonic Relaxation in Ethanol?Ethyl Halide Mixtures  

Science Conference Proceedings (OSTI)

Ultrasonic studies in mixtures of ethanol and various ethyl halides show that maxima exist in the plots of the absorption coefficient versus concentration. These maxima are located at relatively small ethanol concentrations. The measurements made include a detailed investigation of the temperature and frequency dependence of the absorption in the ethanol?ethyl chloride system and somewhat less complete studies of the ethanol?ethyl bromide and ethanol?ethyl iodide systems. In each of the systems the measurements were made as a function of concentration. The results in the ethanol?ethyl chloride mixtures indicate the presence of a single relaxation process occurring in the range of measurement (15?165 MHz). The mechanism for this relaxation process is considered both in terms of a quasichemical association theory and in terms of a fluctuating concentration theory. The suggestion is made that the relaxational behavior may be connected with the existence azeotropic concentrations in these mixtures.

V. A. Solovyev; C. J. Montrose; M. H. Watkins; T. A. Litovitz

1968-01-01T23:59:59.000Z

207

THE STABILITY AND REVERSIBILITY OF METALLIC BOROHYDRIDES  

DOE Green Energy (OSTI)

In effort to develop reversible metallic borohydrides with high hydrogen storage capacity and low dehydriding temperature, several new materials have been synthesized by modifying LiBH{sub 4} with various metal halides and hydrides. The investigation shows that the halide modification effectively reduced the dehydriding temperature through ion exchange interaction. The effective halides are TiCl{sub 3}, TiF{sub 3}, ZnF{sub 2} and AlF{sub 3}. The material LiBH{sub 4}+0.1TiF{sub 3} desorbs 3.5wt% and 8.5wt% hydrogen at 150 C and 450 C respectively. It re-absorbed 6wt% hydrogen at 500 C and 70 bar after dehydrogenation. The XRD of the rehydrided samples confirmed the formation of LiBH{sub 4}. It indicates that the materials are reversible at the conditions given. However, a number of other halides: MgF{sub 2}, MgCl{sub 2}, CaCl{sub 2}, SrCl{sub 2} and FeCl{sub 3}, did not reduce dehydriding temperature of LiBH{sub 4} significantly. TGA-RGA analysis indicated that some halide modified lithium borohydrides such as LiBH{sub 4}+0.1ZnF{sub 2} evolved diborane during dehydrogenation, but some did not such as LiBH{sub 4}+0.1TiCl{sub 3}. The formation of diborane caused unrecoverable capacity loss resulting in irreversibility. It is suggested that the lithium borohydrides modified by the halides containing the metals that can not form metal borides with boron are likely to evolve diborane during dehydriding. It was discovered that halide modification reduces sensitivity of LiBH{sub 4}. The materials such as LiBH{sub 4}+0.1TiCl{sub 3} and LiBH{sub 4}+0.5TiCl{sub 3} can be handled in open air without visible reaction.

Au, M

2007-07-27T23:59:59.000Z

208

NETL: Mercury Emissions Control Technologies - Testing of Mercury Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of Mercury Control with Calcium-Based Sorbents and Oxidizing Agents Testing of Mercury Control with Calcium-Based Sorbents and Oxidizing Agents Southern Research Institute, Birmingham, Alabama Subcontractor- ARCADIS Geraghty & Miller The overall goal of this project is to test the effectiveness of calcium-based sorbents and oxidizing agents for controlling mercury emissions from coal-fired power plant boilers. ARCADIS Geraghty & Miller, with EPA support, has developed calcium-based sorbents to remove SO2 and mercury simultaneously. The sorbents consist of hydrated lime (Ca(OH)2) and an added oxidant and a silica-modified calcium (CaSiO3) with an added oxidant. The mercury capacity in ug Hg/g sorbent for the two sorbents is 20 and 110-150, respectively, verses a mercury capacity for the current standard sorbent, activated carbon, of 70-100. The advantages of a lime based sorbent verses carbon is lower cost, simultaneous removal of sulfur, and allowance of ash to be utilized for a cement additive.

209

Methods for synthesizing alane without the formation of adducts and free of halides  

Science Conference Proceedings (OSTI)

A process is provided to synthesize an alane without the formation of alane adducts as a precursor. The resulting product is a crystallized .alpha.-alane and is a highly stable product and is free of halides.

Zidan, Ragaiy; Knight, Douglas A; Dinh, Long V

2013-02-19T23:59:59.000Z

210

Discovery of the Mercury Isotopes  

E-Print Network (OSTI)

Forty mercury isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

D. Meierfrankenfeld; M. Thoennessen

2009-12-01T23:59:59.000Z

211

Mercury Atomic Clock Sets Time-Keeping Record  

Science Conference Proceedings (OSTI)

Mercury Atomic Clock Sets Time-Keeping Record. ... A prototype mercury optical clock originally was demonstrated at NIST in 2000. ...

2013-08-27T23:59:59.000Z

212

Mercury Control Technology Selection Guide  

Science Conference Proceedings (OSTI)

EPRI, the DOE National Energy Technology Laboratory, and various other organizations have undertaken extensive RD programs over the past decade to develop cost-effective methods for reducing mercury emissions from coal-burning power plants. The field tests sponsored by these organizations have produced a significant amount of pilot and full-scale mercury control data for a variety of technologies at power plant sites with different boiler types, firing different coals, and equipped with various air emiss...

2006-09-22T23:59:59.000Z

213

Mercury Stability in FGD Byproducts  

Science Conference Proceedings (OSTI)

A significant fraction of the mercury in coals fired for power generation currently is removed by wet flue gas desulfurization (FGD) systems and incorporated in the byproducts from those systems. This report summarizes the results of an EPRI-sponsored project to measure the stability of mercury in FGD byproducts from coal-fired generating plants under simulated landfill and reuse conditions. The current effort repeated portions of a 2003 project, documented in EPRI report 1004254, to determine whether th...

2004-03-24T23:59:59.000Z

214

Metal resistance sequences and transgenic plants  

DOE Patents (OSTI)

The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

Meagher, Richard Brian (Athens, GA); Summers, Anne O. (Athens, GA); Rugh, Clayton L. (Athens, GA)

1999-10-12T23:59:59.000Z

215

Correlations Between Gene Expression and Mercury Levels in Blood of Boys With and Without Autism  

E-Print Network (OSTI)

AJ (2005) Inorganic mercury dissociates preassembledmetabolize toxicants, such as mercury, differently. RNA wasexpression microarrays. Mercury levels were measured using

2011-01-01T23:59:59.000Z

216

NETL: Mercury Emissions Control Technologies - Mercury Control For Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control For Plants Firing Texas Lignite and Equipped with ESP-wet FGD Mercury Control For Plants Firing Texas Lignite and Equipped with ESP-wet FGD URS Group, Inc., in collaboration with EPRI, Apogee Scientific, AEP, Texas Genco, and TXU Power, ADA-ES, will evaluate sorbent injection for mercury control in an 85/15 blend Texas lignite/PRB derived flue gas, upstream of a cold-side ESP – wet FGD combination. Full-scale sorbent injection tests conducted with various sorbents and combinations of fuel and plant air pollution control devices (APCD) have provided a good understanding of variables that affect sorbent performance. However, many uncertainties exist regarding long-term performance and data gaps remain for specific plant configurations. For example, sorbent injection has not been demonstrated at full-scale for plants firing Texas lignite, which represent approximately 10% of the annual U.S. power plant mercury emissions. The low and variable chloride content of Texas lignite may pose a challenge to achieving high levels of mercury removal with sorbent injection. Furthermore, activated carbon injection may render the fly ash unsuitable for sale, posing an economic liability to Texas lignite utilities. Alternatives to standard activated carbon, such as non-carbon sorbents and alternate injection locations (Toxecon II), have not been fully explored. Toxecon II involves sorbent injection in the middle field(s) of an ESP, thus preserving the integrity of the fly ash in the first fields.

217

Mercury switch with non-wettable electrodes  

DOE Patents (OSTI)

A mercury switch device comprising a pool of mercury and a plurality of electrical contacts made of or coated with a non-wettable material such as titanium diboride.

Karnowsky, M.M.; Yost, F.G.

1986-04-09T23:59:59.000Z

218

Mercury switch with non-wettable electrodes  

DOE Patents (OSTI)

A mercury switch device comprising a pool of mercury and a plurality of electrical contacts made of or coated with a non-wettable material such as titanium diboride.

Karnowsky, Maurice M. (Albulquerque, NM); Yost, Frederick G. (Carlsbad, NM)

1987-01-01T23:59:59.000Z

219

Gas Mileage of 2009 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Comb Hwy 2009 Mercury Grand Marquis FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2009 Mercury Grand Marquis FFV Gas 16 City 19 Combined 24 Highway E85 12 City...

220

Gas Mileage of 2010 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Comb Hwy 2010 Mercury Grand Marquis FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2010 Mercury Grand Marquis FFV View MPG Estimates Shared By Vehicle Owners Gas...

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Gas Mileage of 2011 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Comb Hwy 2011 Mercury Grand Marquis FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2011 Mercury Grand Marquis FFV View MPG Estimates Shared By Vehicle Owners Gas...

222

Gas Mileage of 2003 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Highway 2003 Mercury Mountaineer 2WD FFV 6 cyl, 4.0 L, Automatic 5-spd, Regular Gas or E85 Compare 2003 Mercury Mountaineer 2WD FFV Gas 14 City 16 Combined 19 Highway E85 10 City...

223

Mercury Solar Systems | Open Energy Information  

Open Energy Info (EERE)

OpenEI by expanding it. Mercury Solar Systems is a company located in New Rochelle, New York . References "Mercury Solar Systems" Retrieved from "http:en.openei.orgw...

224

NETL: Emissions Characterization - Mercury Reactions in Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Reactions in Power Plant Plumes: Bowen Study DOE-NETL is participating in a field study, managed by EPRI, to document the changes in mercury speciation that may be...

225

Gas Mileage of 2006 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

23 Highway 2006 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2006 Mercury Grand Marquis Gas 15 City 18 Combined 23 Highway E85 11 City 13...

226

Mercury Oxidation Performance of Advanced SCR Catalyst  

Science Conference Proceedings (OSTI)

The ability of selective catalytic reduction (SCR) catalysts to oxidize mercury is an important aspect of many utilities’ mercury control strategies. Improved SCR mercury oxidation will facilitate its capture in downstream wet–flue gas desulfurization systems and will generally result in lower emission rates. Recently, catalyst manufacturers have attempted to maximize mercury oxidation through advanced catalyst formulations.This study documents the performance of an advanced ...

2012-12-31T23:59:59.000Z

227

Transitioning from Mercury Thermometers to Alternative ...  

Science Conference Proceedings (OSTI)

... methods in the petroleum industry continue to specify mercury- in-glass thermometers. ... Thermometers are available from many commercial sources ...

2013-06-03T23:59:59.000Z

228

Mercury Flux Measurements: An Intercomparison and Assessment: Nevada Mercury Emissions Project (NvMEP)  

Science Conference Proceedings (OSTI)

An understanding of the contribution of natural nonpoint mercury sources to regional and global atmospheric mercury pools is critical for developing emission inventories, formulating environmental regulations, and assessing human and ecological health risks. This report discusses the results of the Nevada Mercury Emissions Project (NvMEP) and takes a close look at the emerging technologies used to obtain mercury flux field data. In specific, it provides an intercomparison of mercury flux measurements obt...

1998-12-14T23:59:59.000Z

229

Mercury Continuous Emmission Monitor Calibration  

SciTech Connect

Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry (ID/ICP/MS) performed by NIST in Gaithersburg, MD. The outputs of mercury calibrators are compared to one another using a nesting procedure which allows direct comparison of one calibrator with another at specific concentrations and eliminates analyzer variability effects. The qualification portion of the EPA interim traceability protocol requires the vendors to define calibrator performance as affected by variables such as pressure, temperature, line voltage, and shipping. In 2007 WRI developed and conducted a series of simplified qualification experiments to determine actual calibrator performance related to the variables defined in the qualification portion of the interim protocol.

John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

2009-03-12T23:59:59.000Z

230

Gas phase chromatography of halides of elements 104 and 105  

Science Conference Proceedings (OSTI)

On-line isothermal gas phase chromatography was used to study halides of {sup 261}104 (T{sub {1/2}} = 65 s) and {sup 262,263}105 (T{sub {1/2}} = 34 s and 27 s) produced an atom-at-a time via the reactions {sup 248}Cm({sup 18}O, 5n) and {sup 249}Bk({sup 18}O, 5n, 4n), respectively. Using HBr and HCl gas as halogenating agents, we were able to produce volatile bromides and chlorides of the above mentioned elements and study their behavior compared to their lighter homologs in Groups 4 or 5 of the periodic table. Element 104 formed more volatile bromides than its homolog Hf. In contrast, element 105 bromides were found to be less volatile than the bromides of the group 5 elements Nb and Ta. Both 104 and Hf chlorides were observed to be more volatile than their respective bromides. 31 refs., 8 figs.

Tuerler, A.; Gregorich, K.E.; Czerwinski, K.R.; Hannink, N.J.; Henderson, R.A.; Hoffman, D.C.; Kacher, C.D.; Kadkhodayan, B.; Kreek, S.A.; Lee, D.M.; Leyba, J.D.; Nurmia, M.J. (Lawrence Berkeley Lab., CA (United States)); Gaeggeler, H.W.; Jost, D.T.; Kovacs, J.; Scherer, U.W.; Vermeulen, D.; Weber, A. (Paul Scherrer Inst. (PSI), Villigen (Switzerland)); Barth, H.; Gober, M.K.; Kratz, J.V. (Philipps-Univ., Marburg

1991-04-01T23:59:59.000Z

231

Calcium Phosphate: A potential host for halide contaminated plutonium wastes.  

Science Conference Proceedings (OSTI)

The presence of significant quantities of fluoride and chloride in four types of legacy wastes from plutonium pyrochemical reprocessing required the development of a new wasteform which could adequately immobilize the halides in addition to the Pu and Am. Using a simulant chloride-based waste (Type I waste) and Sm as the surrogate for the Pu3+ and Am3+ present in the waste, AWE developed a process which utilised Ca3(PO4)2 as the host material. The waste was successfully incorporated into two crystalline phases, chlorapatite, [Ca5(PO4)3Cl], and spodiosite, [Ca2(PO4)Cl]. Radioactive studies performed at PNNL with 239Pu and 241Am confirmed the process. A slightly modified version of the process in which CaHPO4 was used as the host was successful in immobilizing a more complex multi-cation oxide–based waste (Type II) which contained significant concentrations of Cl and F in addition to 239Pu and 241Am. This waste resulted in the formation of cation-doped whitlockite, Ca3-xMgx(PO4)2, ?-calcium phosphate, ?-Ca2P2O7 and chlor-fluorapatite rather than the chlorapatite and spodiosite formed with Type I waste.

Metcalfe, Brian L.; Donald, Ian W.; Fong, Shirley K.; Gerrard, Lee A.; Strachan, Denis M.; Scheele, Randall D.

2009-07-06T23:59:59.000Z

232

Lumex Mercury CEM  

E-Print Network (OSTI)

Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the ETV Program is to further environmental protection by substantially accelerating the acceptance and use of improved and cost-effective technologies. ETV seeks to achieve this goal by providing high-quality, peer-reviewed data on technology performance to those involved in the design, distribution, financing, permitting, purchase, and use of environmental technologies. ETV works in partnership with recognized standards and testing organizations; with stakeholder groups that consist of buyers, vendor organizations, and permitters; and with the full participation of individual technology developers. The program evaluates the performance of innovative technologies by developing test plans that are responsive to the needs of stakeholders, conducting field or laboratory tests (as appropriate), collecting and analyzing data, and preparing peer-reviewed reports. All evaluations are conducted in accordance with rigorous quality assurance protocols to ensure that data of known and adequate quality are generated and that the results are defensible. The Advanced Monitoring Systems (AMS) Center, one of six technology centers under ETV, is operated by Battelle in cooperation with EPA’s National Exposure Research Laboratory. The AMS Center has recently evaluated the performance of continuous emission monitors used to measure mercury in flue gases. This

unknown authors

2001-01-01T23:59:59.000Z

233

Surface characterizatin of palladium-alumina sorbents for high-temperature capture of mercury and arsenic from fuel gas  

SciTech Connect

Coal gasification with subsequent cleanup of the resulting fuel gas is a way to reduce the impact of mercury and arsenic in the environment during power generation and on downstream catalytic processes in chemical production, The interactions of mercury and arsenic with PdlAl2D3 model thin film sorbents and PdlAh03 powders have been studied to determine the relative affinities of palladium for mercury and arsenic, and how they are affected by temperature and the presence of hydrogen sulfide in the fuel gas. The implications of the results on strategies for capturing the toxic metals using a sorbent bed are discussed.

Baltrus, J.P.; Granite, E.J.; Pennline, H.W.; Stanko, D.; Hamilton, H.; Rowsell, L.; Poulston, S.; Smith, A.; Chu, W.

2010-01-01T23:59:59.000Z

234

DFJ Mercury | Open Energy Information  

Open Energy Info (EERE)

DFJ Mercury DFJ Mercury Jump to: navigation, search Name DFJ Mercury Place Houston, Texas Zip 77046 Product Houston-based seed and early-stage venture capital firm that targets the information technology, advanced materials, and bioscience sectors. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

2003 CBECS Pre-Test Questionnaire  

U.S. Energy Information Administration (EIA) Indexed Site

(HID) lights such as high pressure sodium, metal halide or mercury vapor HID 6 Light-emitting diode (LED) lights LED 7 Other type of lighting OTLT NEXT IF Other type of lighting...

236

Apparatus for control of mercury  

DOE Patents (OSTI)

A method and apparatus for reducing mercury in industrial gases such as the flue gas produced by the combustion of fossil fuels such as coal adds hydrogen sulfide to the flue gas in or just before a scrubber of the industrial process which contains the wet scrubber. The method and apparatus of the present invention is applicable to installations employing either wet or dry scrubber flue gas desulfurization systems. The present invention uses kraft green liquor as a source for hydrogen sulfide and/or the injection of mineral acids into the green liquor to release vaporous hydrogen sulfide in order to form mercury sulfide solids.

Downs, William (Alliance, OH); Bailey, Ralph T. (Uniontown, OH)

2001-01-01T23:59:59.000Z

237

Development of new sorbents to remove mercury and selenium from flue gas. Final report, September 1, 1993--August 31, 1994  

Science Conference Proceedings (OSTI)

Mercury (Hg) and selenium (Se) are two of the volatile trace metals in coal, which are often not captured by conventional gas clean up devices of coal-fired boilers. An alternative is to use sorbents to capture the volatile components of trace metals after coal combustion. In this project sorbent screening tests were performed in which ten sorbents were selected to remove metallic mercury in N{sub 2}. These sorbents included activated carbon, char prepared from Ohio No. 5 coal, molecular sieves, silica gel, aluminum oxide, hydrated lime, Wyoming bentonite, kaolin, and Amberite IR-120 (an ion-exchanger). The sorbents were selected based on published information and B&W`s experience on mercury removal. The promising sorbent was then selected and modified for detailed studies of removal of mercury and selenium compounds. The sorbents were tested in a bench-scale adsorption facility. A known amount of each sorbent was loaded in the column as a packed bed. A carrier gas was bubbled through the mercury and selenium compounds. The vaporized species were carried by the gas and went through the sorbent beds. The amount of mercury and selenium compounds captured by the sorbents was determined by atomic absorption. Results are discussed.

Shiao, S.Y. [Babcock and Wilcox Co., Alliance, OH (United States)

1995-02-01T23:59:59.000Z

238

NETL: Mercury Emissions Control Technologies - Multi-Pollutant Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Pollutant Control Using Membrane-Based Up-Flow Wet Precipitation Multi-Pollutant Control Using Membrane-Based Up-Flow Wet Precipitation The primary objective of this work is to compare the performance of metallic collecting surfaces to the performance of membrane collecting surfaces in a wet electrostatic precipitator (ESP), in terms of their efficiency in removing fine particulates, acid aerosols, and mercury from an actual power plant flue gas stream. The relative durability and overall cost-effectiveness of the membrane collectors versus metallic collectors will also be evaluated. Due to the higher specific powers, superior corrosion resistance, and better wetting and cleaning qualities, the membrane-collecting surface is expected to perform better than the metallic surface. The second objective of the project will be to compare the overall fine particulate, acid aerosol, and mercury removal efficiency of the baseline flue gas treatment system on BMP Units 1 and 2 to the efficiencies obtained when the two wet ESP systems (metallic and membrane collectors) are added to the existing treatment system.

239

Mercury and platinum abundances in mercury-manganese stars  

E-Print Network (OSTI)

We report new results for the elemental and isotopic abundances of the normally rare elements mercury and platinum in HgMn stars. Typical overabundances can be 4 dex or more. The isotopic patterns do not follow the fractionation model of White et al (1976).

C. M. Jomaron; M. M. Dworetsky; D. A. Bohlender

1998-05-06T23:59:59.000Z

240

NETL: Mercury Emissions Control Technologies - Advanced Mercury Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Mercury Sorbents with Low Impact on Power Plant Operations Advanced Mercury Sorbents with Low Impact on Power Plant Operations Apogee Scientific, Inc. (Apogee) will lead a Team comprised of Southern Company Services, TXU, Tennessee Valley Authority, EPRI, URS Group, University of Illinois-Illinois State Geological Survey (ISGS), Southern Research Institute (SRI), Calgon Carbon, and TDA Research, Inc., to evaluate a number of advanced sorbents for removing vapor-phase mercury from coal-fired flue gas that have minimal impact on by-product utilization and/or on existing particulate collection devices (PCD). The main objective of this program is to evaluate several advanced sorbents for removing mercury from coal-fired flue gas while posing minimal impact on plant operations through three advanced sorbent concepts: 1) Sorbents which minimize impact on concrete production through selective chemical passivation of activated carbon and use of non-carbon material, 2) sorbents that minimize baghouse pressure drop and ESP emissions, and 3) sorbents that can be recovered and reused.

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Content and chemical form of mercury and selenium in Lake Ontario salmon and trout  

SciTech Connect

The content and chemical form of mercury and selenium were determined in the edible tissue of salmon (coho, chinook) and trout (lake, brown) taken offshore from Lake Ontario near Rochester, New York. For all species, total mercury content ranged from 0.3 to 0.8 micro g/g (fresh-weight), which is similar to concentrations commonly found in canned tuna. Most of the total mercury (63 to 79%) was present as methylmercury, the remainder being divalent inorganic mercury. For all species, 6 to 45% of the total selenium content was present as selenate (SeVI), the remainder being selenite (SeIV) and selenide (SEII). On a molar basis, total selenium content usually exceeded that of total mercury. Samples of smoked and unsmoked brown trout fillets were also examined. Based on the results of this study there is no immediate human health hazard from mercury and selenium. However, there is a need to report specific forms of these metals in Lake Ontario salmonid fish so that elevated concentrations can be better evaluated. 42 references, 1 figure, 4 tables.

Cappon, C.J.

1984-01-01T23:59:59.000Z

242

Mercury-Free Dissolution of Aluminum-Based Nuclear Material: From Basic Science to the Plant  

Science Conference Proceedings (OSTI)

Conditions were optimized for the first plant-scale dissolution of an aluminum-containing nuclear material without using mercury as a catalyst. This nuclear material was a homogeneous mixture of plutonium oxide and aluminum metal that had been compounded for use as the core matrix in Mark 42 nuclear fuel. Because this material had later failed plutonium distribution specifications, it was rejected for use in the fabrication of Mark 42 fuel tubes, and was stored at the Savannah River Site (SRS) awaiting disposition. This powder-like material was composed of a mixture of approximately 80 percent aluminum and 11 percent plutonium. Historically, aluminum-clad spent nuclear fuels [13] have been dissolved using a mercuric nitrate catalyst in a nitric acid (HNO3) solution to facilitate the dissolution of the bulk aluminum cladding. Developmental work at SRS indicated that the plutonium oxide/aluminum compounded matrix could be dissolved without mercury. Various mercury-free conditions were studied to evaluate the rate of dissolution of the Mark 42 compact material and to assess the corrosion rate to the stainless steel dissolver. The elimination of mercury from the dissolution process fit with waste minimization and industrial hygiene goals to reduce the use of mercury in the United States. The mercury-free dissolution technology was optimized for Mark 42 compact material in laboratory-scale tests, and successfully implemented at the plant.

Crooks, W.J. III

2003-05-14T23:59:59.000Z

243

EPA's Mercury Report To Congress: A Basis for Decision-Making?  

E-Print Network (OSTI)

to remove acid gases from the boiler flue gas with lime injection · A fabric filter (baghouse) to control scrubber, and Regenerative Selective Catalytic Reduction (RSCR®) nitrogen oxides (NOx) control system will result in lower emissions of lead, other volatile heavy metals, and mercury than for a typical spray

Columbia University

244

FUSED SALT METHOD FOR COATING URANIUM WITH A METAL  

DOE Patents (OSTI)

A method is presented for coating uranium with a less active metal such as Cr, Ni, or Cu comprising immersing the U in a substantially anhydrous molten solution of a halide of these less active metals in a ternary chloride composition which consists of selected percentages of KCl, NaCl and another chloride such as LiCl or CaCl/sub 2/.

Eubank, L.D.

1959-02-01T23:59:59.000Z

245

Mercury emission control for coal fired power plants using coal and biomass  

E-Print Network (OSTI)

Mercury is a leading concern among the air toxic metals addressed in the 1990 Clean Air Act Amendments (CAAA) because of its volatility, persistence, and bioaccumulation as methylmercury in the environment and its neurological health impacts. The Environmental Protection Agency (EPA) reports for 2001 shows that total mercury emissions from all sources in USA is about 145 tons per annum, of which coal fired power plants contribute around 33% of it, about 48 tons per annum. Unlike other trace metals that are emitted in particulate form, mercury is released in vapor phase in elemental (Hg0) or oxidized (Hg2+, mainly HgCl2) form. To date, there is no post combustion treatment which can effectively capture elemental mercury vapor, but the oxidized form of mercury can be captured in traditional emission control devices such as wet flue gas defulrization (WFGD) units, since oxidized mercury (HgCl2) is soluble in water. The chlorine concentration present during coal combustion plays a major role in mercury oxidation, which is evident from the fact that plants burning coal having high chlorine content have less elemental mercury emissions. A novel method of co-firing blends of low chlorine content coal with high chlorine content cattle manure/biomass was used in order to study its effect on mercury oxidation. For Texas Lignite and Wyoming coal the concentrations of chlorine are 139 ppm and 309 ppm on dry ash free basis, while for Low Ash Partially Composted Dairy Biomass it is 2,691 ppm. Co-firing experiments were performed in a 100,000 BTU/hr (29.3 kWt) Boiler Burner facility located in the Coal and Biomass Energy laboratory (CBEL); coal and biomass blends in proportions of 80:20, 90:10, 95:5 and 100:0 were investigated as fuels. The percentage reduction of Hg with 95:5, 90:10 and 80:20 blends were measured to be 28- 50%, 42-62% and 71-75% respectively. Though cattle biomass serves as an additive to coal, to increase the chlorine concentration, it leads to higher ash loading. Low Ash and High Ash Partially Composted Dairy Biomass have 164% and 962% more ash than Wyoming coal respectively. As the fraction of cattle biomass in blend increases in proportion, ash loading problems increase simultaneously. An optimum blend ratio is arrived and suggested as 90:10 blend with good reduction in mercury emissions without any compromise on ash loading.

Arcot Vijayasarathy, Udayasarathy

2007-12-01T23:59:59.000Z

246

A Mercury orientation model including non-zero obliquity and librations  

E-Print Network (OSTI)

Long-period forcing of Mercury’s libration in longitude.M. : Resonant forcing of Mercury’s libration in longitude.A revised control network for Mercury. J. Geophys. Res. 104,

Margot, Jean-Luc

2009-01-01T23:59:59.000Z

247

RECOVERY OF MERCURY FROM CONTAMINATED LIQUID WASTES  

SciTech Connect

Mercury was widely used in U.S. Department of Energy (DOE) weapons facilities, resulting in a broad range of mercury-contaminated wastes and wastewaters. Some of the mercury contamination has escaped to the local environment, particularly at the Y-12 Plant in Oak Ridge, Tennessee, where approximately 330 metric tons of mercury were discharged to the environment between 1953 and 1963 (TN & Associates, 1998). Effective removal of mercury contamination from water is a complex and difficult problem. In particular, mercury treatment of natural waters is difficult because of the low regulatory standards. For example, the Environmental Protection Agency has established a national ambient water quality standard of 12 parts-per-trillion (ppt), whereas the standard is 1.8 ppt in the Great Lakes Region. In addition, mercury in the environment is typically present in several different forms, but sorption processes are rarely effective with more than one or two of these forms. To meet the low regulatory discharge limits, an effective sorption process must be able to address all forms of mercury present in the water. One approach is to apply different sorbents in series depending on the mercury speciation and the regulatory discharge limits. ADA Technologies, Inc. has developed four new sorbents to address the variety of mercury species present in industrial discharges and natural waters. Three of these sorbents have been field tested on contaminated creek water at the Y-12 Plant. Two of these sorbents have been successfully demonstrated very high removal efficiencies for soluble mercury species, reducing mercury concentrations at the outlet of a pilot-scale system to less than 12 ppt for as long as six months. The other sorbent tested at the Y-12 Plant targeted colloidal mercury not removed by standard sorption or filtration processes. At the Y-12 Plant, colloidal mercury appears to be associated with iron, so a sorbent that removes mercury-iron complexes in the presence of a magnetic field was evaluated. Field results indicated good removal of this mercury fraction from the Y-12 waters. In addition, this sorbent is easily regenerated by simply removing the magnetic field and flushing the columns with water. The fourth sorbent is still undergoing laboratory development, but results to date indicate exceptionally high mercury sorption capacity. The sorbent is capable of removing all forms of mercury typically present in natural and industrial waters, including Hg{sup 2+}, elemental mercury, methyl mercury, and colloidal mercury. The process possesses very fast kinetics, which allows for higher flow rates and smaller treatment units. These sorbent technologies, used in tandem or individually depending on the treatment needs, can provide DOE sites with a cost-effective method for reducing mercury concentrations to very low levels mandated by the regulatory community. In addition, the technologies do not generate significant amounts of secondary wastes for disposal. Furthermore, the need for improved water treatment technologies is not unique to the DOE. The new, stringent requirements on mercury concentrations impact other government agencies as well as the private sector. Some of the private-sector industries needing improved methods for removing mercury from water include mining, chloralkali production, chemical processing, and medical waste treatment. The next logical step is to deploy one or more of these sorbents at a contaminated DOE site or at a commercial facility needing improved mercury treatment technologies. A full-scale deployment is planned in fiscal year 2000.

Robin M. Stewart

1999-09-29T23:59:59.000Z

248

Mercury-Contaminated Hydraulic Mining Debris in San Francisco Bay  

E-Print Network (OSTI)

S, and Flegal AR 2008. Mercury in the San Francisco Estuary.may 2010 Mercury-Contaminated Hydraulic Mining Debris in Sancontaminants such as ele- mental mercury and cyanide used in

Bouse, Robin M; Fuller, Christopher C; Luoma, Sam; Hornberger, Michelle I; Jaffe, Bruce E; Smith, Richard E

2010-01-01T23:59:59.000Z

249

Control of mercury methylation in wetlands through iron addition  

E-Print Network (OSTI)

Mason, R. P. ; Flegal, A. R. , Mercury speciation in the SanP. ; Flegal, A. R. , Decadal mercury trends in San FranciscoP. G. ; Nelson, D. C. , Mercury methylation from unexpected

Sedlak, David L; Ulrich, Patrick D

2009-01-01T23:59:59.000Z

250

Amended Silicated for Mercury Control  

Science Conference Proceedings (OSTI)

Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where fly ash is sold as a by-product.

James Butz; Thomas Broderick; Craig Turchi

2006-12-31T23:59:59.000Z

251

Mercury in Alaskan Eskimo mothers and infants  

E-Print Network (OSTI)

The potential danger of natural mercury accumulation in the diet of the Eskimo is evaluated through mercury levels determined in cord blood, placenta, maternal blood, hair, and milk of 38 maternal-infant pairs from Anchorage and the Yukon-Kuskokwim Delta. Although mercury levels are not discernably dangerous, trends to larger accumulations in maternal and fetal RBC and placental tissue with proximity to the sea and consumption of seals during pregnancy provide the basis for considering possible indicators of neonatal involvement. Mercury level in RBC from cord blood appeared as the best potential indicator of this involvement, although relationships with the mother's diet and level of mercury in the placenta also appear useful. In this area, average and maximal mercury levels in cord blood are 39 and 78 ng/ml, respectively, far below the acknowledged toxic level in infants of these mothers who eat seals or fish every day during their pregnancy.

William A. Galster

1976-01-01T23:59:59.000Z

252

COST OF MERCURY REMOVAL IN IGCC PLANTS  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost of Mercury Removal Cost of Mercury Removal in an IGCC Plant Final Report September 2002 Prepared for: The United States Department of Energy National Energy Technology Laboratory By: Parsons Infrastructure and Technology Group Inc. Reading, Pennsylvania Pittsburgh, Pennsylvania DOE Product Manager: Gary J. Stiegel DOE Task Manager: James R. Longanbach Principal Investigators: Michael G. Klett Russell C. Maxwell Michael D. Rutkowski PARSONS The Cost of Mercury Removal in an IGCC Plant Final Report i September 2002 TABLE OF CONTENTS Section Title Page 1 Summary 1 2 Introduction 3 3 Background 4 3.1 Regulatory Initiatives 4 3.2 Mercury Removal for Conventional Coal-Fired Plants 4 3.3 Mercury Removal Experience in Gasification 5 3.4 Variability of Mercury Content in Coal 6 4 Design Considerations 7 4.1 Carbon Bed Location

253

Mercury in the Lake Powell ecosystem  

SciTech Connect

Flameless atomic absorption analyses of samples from Lake Powell yield the following mercury levels (in mean parts per billion): 0.01 in lake water, 30 in bottom sediments, 10 in shoreline substrates, 34 in plant leaves, 145 in plant debris, 28 in algae, 10 in crayfish, and 232 in fish muscle. Bioamplification and the association of mercury with organic matter are evident in this recently created, relatively unpolluted reservoir. Formulation of an estimated mercury budget suggests that the restriction of outflow in the impounded Colorado River leads to mercury accumulation, and that projected regional coal-fired power generation may produce sufficient amounts of mercury to augment significantly the mercury released by natural weathering.

Standiford, D.R.; Potter, L.D.; Kidd, D.E.

1973-06-01T23:59:59.000Z

254

Assessment of Low Cost Novel Mercury Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of Mercury Control Technologies Testing of Mercury Control Technologies for Coal-Fired Power Plants by Thomas J. Feeley, III 1. , Lynn A. Brickett 1. , B. Andrew O'Palko 1. , and James T. Murphy 2. 1. U.S. Department of Energy, National Energy Technology Laboratory 2. Science Applications International Corporation The U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) is conducting a comprehensive research, development, and demonstration (RD&D) program directed at advancing the performance and economics of mercury control technologies for coal- fired power plants. The program also includes evaluating the fate of mercury in coal by-products and studying the transport and transformation of mercury in power plant plumes. This paper presents results from ongoing full-scale and slip-stream field testing of several mercury control

255

Release of Mercury During Curing of Concrete Containing Fly Ash and Mercury Sorbent Material  

Science Conference Proceedings (OSTI)

This report provides laboratory data on mercury release during the initial curing stage of concrete made with fly ash or mixtures of fly ash and activated carbon containing mercury. These experiments suggest that mercury is not released from these concretes during initial curing.

2002-12-09T23:59:59.000Z

256

Remediation of Mercury and Industrial Contaminants Applied Field...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research...

257

NETL: Mercury Emissions Control Technologies - Non-Thermal Plasma...  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Thermal Plasma Based Removal of Mercury Project Summary Powerspan Corp. will pilot test a multi-pollutant technology that converts mercury into mercuric oxide, nitrogen oxide...

258

Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) ...  

Open Energy Info (EERE)

Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Desert Peak Area...

259

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) | Open...  

Open Energy Info (EERE)

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Socorro Mountain Area...

260

THE EFFECT OF MERCURY CONTROLS ON WALLBOARD MANUFACTURE  

Science Conference Proceedings (OSTI)

Pending EPA regulations may mandate 70 to 90% mercury removal efficiency from utility flue gas. A mercury control option is the trapping of oxidized mercury in wet flue gas desulfurization systems (FGD). The potential doubling of mercury in the FGD material and its effect on mercury volatility at temperatures common to wallboard manufacture is a concern that could limit the growing byproduct use of FGD material. Prediction of mercury fate is limited by lack of information on the mercury form in the FGD material. The parts per billion mercury concentrations prevent the identification of mercury compounds by common analytical methods. A sensitive analytical method, cold vapor atomic fluorescence, coupled with leaching and thermodecomposition methods were evaluated for their potential to identify mercury compounds in FGD material. The results of the study suggest that the mercury form is dominated by the calcium sulfate matrix and is probably associated with the sulfate form in the FGD material. Additionally, to determine the effect of high mercury concentration FGD material on wallboard manufacture, a laboratory FGD unit was built to trap the oxidized mercury generated in a simulated flue gas. Although the laboratory prepared FGD material did not contain the mercury concentrations anticipated, further thermal tests determined that mercury begins to evolve from FGD material at 380 to 390 F, consequently dropping the drying temperature should mitigate mercury evolution if necessary. Mercury evolution is also diminished as the weight of the wallboard sample increased. Consequently, mercury evolution may not be a significant problem in wallboard manufacture.

Sandra Meischen

2004-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Mercury Vapor At Mccoy Geothermal Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Mercury Vapor At Mccoy Geothermal Area (DOE GTP) Exploration Activity Details Location Mccoy Geothermal Area Exploration Technique Mercury Vapor Activity Date Usefulness not...

262

NETL: Mercury Emissions Control Technologies - Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of Integrated Approach to Mercury Control This project will demonstrate a novel multi-pollutant control technology for coal-fired power plants that can reduce...

263

NETL: IEP - Mercury Emissions Control: News Releases  

NLE Websites -- All DOE Office Websites (Extended Search)

News Releases The following are links to various recent news stories related to mercury in the environment. These links are provided strictly as a convenience to the general...

264

NETL: Mercury Emissions Control Technologies - Brominated Sorbents...  

NLE Websites -- All DOE Office Websites (Extended Search)

ESPs, and Fly Ash Use in Concrete Sorbent Technology will test two technologies for mercury removal from flue gas. Their concrete safe brominated sorbent will be tested at...

265

Apparatus for isotopic alteration of mercury vapor  

DOE Patents (OSTI)

An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

Grossman, Mark W. (Belmont, MA); George, William A. (Gloucester, MA); Marcucci, Rudolph V. (Danvers, MA)

1988-01-01T23:59:59.000Z

266

Establishing Measurement Traceability for Gaseous Mercury ...  

Science Conference Proceedings (OSTI)

... NIST already provides mercury traceability to the SI for many solid- and liquid-matrix materials, including fossil fuels, through the SRM program, but ...

2012-10-01T23:59:59.000Z

267

Mercury concentrations in Maine sport fishes  

Science Conference Proceedings (OSTI)

To assess mercury contamination of fish in Maine, fish were collected from 120 randomly selected lakes. The collection goal for each lake was five fish of the single most common sport fish species within the size range commonly harvested by anglers. Skinless, boneless fillets of fish from each lake were composited, homogenized, and analyzed for total mercury. The two most abundant species, brook trout Salvelinus fontinalis and smallmouth bass Micropterus dolomieu, were also analyzed individually. The composite fish analyses indicate high concentrations of mercury, particularly in large and long-lived nonsalmonid species. Chain pickerel Esox niger, smallmouth bass, largemouth bass Micropterus salmoides, and white perch Morone americana had the highest average mercury concentrations, and brook trout and yellow perch Perca flavescens had the lowest. The mean species composite mercury concentration was positively correlated with a factor incorporating the average size and age of the fish. Lakes containing fish with high mercury concentrations were not clustered near known industrial or population centers but were commonest in the area within 150 km of the seacoast, reflecting the geographical distribution of species that contained higher mercury concentrations. Stocked and wild brook trout were not different in length or weight, but wild fish were older and had higher mercury concentrations. Fish populations maintained by frequent introductions of hatchery-produced fish and subject to high angler exploitation rates may consist of younger fish with lower exposure to environmental mercury and thus contain lower concentrations than wild populations.

Stafford, C.P. [Univ. of Maine, Orono, ME (United States); Haines, T.A. [Geological Survey, Orono, ME (United States)

1997-01-01T23:59:59.000Z

268

Fate of Mercury in Wet FGD Systems  

Science Conference Proceedings (OSTI)

This report describes the results of a bench-scale, laboratory investigation of the fate of flue gas mercury species in wet flue gas desulfurization (FGD) scrubbers that are used for sulfur dioxide (SO2) control in coal-fired power plants. Data collected in the EPA mercury Information Collection Request (ICR), and in research projects sponsored by EPRI show that most wet scrubbers used for SO2 control achieve high removals of oxidized mercury and little or no elemental mercury removal. However, some scru...

2004-03-12T23:59:59.000Z

269

Mercury audit at Rocky Mountain Arsenal  

Science Conference Proceedings (OSTI)

This report presents the results of an environmental compliance audit to identify potential mercury-containing equipment in 261 building and 197 tanks at the Rocky Mountain Arsenal (RMA). The RMA, located near Denver, Colorado, is undergoing clean up and decommissioning by the Department of the Army. Part of the decommissioning procedure is to ensure that all hazardous wastes are properly identified and disposed of. The purpose of the audit was to identify any mercury spills and mercury-containing instrumentation. The audit were conducted from April 7, 1992, through July 16, 1992, by a two-person team. The team interviewed personnel with knowledge of past uses of the buildings and tanks. Information concerning past mercury spills and the locations and types of instrumentation that contain mercury proved to be invaluable for an accurate survey of the arsenal. The team used a Jerome{reg_sign} 431-X{trademark} Mercury Vapor Analyzer to detect spills and confirm locations of mercury vapor. Twelve detections were recorded during the audit and varied from visible mercury spills to slightly elevated readings in the corners of rooms with past spills. The audit also identified instrumentation that contained mercury. All data have been incorporated into a computerized data base that is compatible with the RMA data base.

Smith, S.M.; Jensen, M.K. [Oak Ridge National Lab., TN (United States); Anderson, G.M. [Rocky Mountain Arsenal, Denver, CO (United States)

1994-02-01T23:59:59.000Z

270

NETL: Mercury Emissions Control Technologies - University of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Using SCR and SNCR NOx Control Technologies Determination of the Speciated Mercury Inventory at Four Coal-Fired Boilers Using Continuous Hg Monitors Longer-Term Testing of...

271

Mercury Sorbent Delivery System for Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

(NETL) is seeking licensing partners interested in implementing United States Patent Number 7,494,632 entitled "Mercury Sorbent Delivery System for Flue Gas." Disclosed in...

272

NETL: Mercury Emissions Control Technologies - Field Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

or without performance additives, to reduce mercury emissions from a Texas utility burning either Texas lignite or a blend of Texas lignite and subbituminous coals. Sorbents...

273

NETL: Mercury Emissions Control Technologies - Modifications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control Jointly funded by DOE and the Electric Power Research Institute (EPRI), this project's purpose is to investigate novel approaches of capturing elemental and...

274

THE EFFECTS OF HALIDE MODIFIERS ON THE SORPTION KINETICS OF THE LI-MG-N-H SYSTEM  

DOE Green Energy (OSTI)

The effects of different transition metal halides (TiCl{sub 3}, VCl{sub 3}, ScCl{sub 3} and NiCl{sub 2}) on the sorption properties of the 1:1 molar ratio of LiNH{sub 2} to MgH{sub 2} are investigated. The modified mixtures were found to contain LiNH{sub 2}, MgH{sub 2} and LiCl. TGA results showed that the hydrogen desorption temperature was reduced with the modifier addition in this order: TiCl{sub 3} > ScCl{sub 3} > VCl{sub 3} > NiCL{sub 2}. Ammonia release was not significantly reduced resulting in a weight loss greater than the theoretical hydrogen storage capacity of the material. The isothermal sorption kinetics of the modified systems showed little improvement after the first dehydrogenation cycle over the unmodified system but showed drastic improvement in rehydrogenation cycles. X-ray diffraction and Raman spectroscopy identified the cycled material to be composed of LiH, MgH{sub 2}, Mg(NH{sub 2}){sub 2} and Mg{sub 3}N{sub 2}.

Anton, D.; Gray, J.; Price, C.; Lascola, R.

2011-07-20T23:59:59.000Z

275

THE AFFECTS OF HALIDE MODIFIERS ON THE SORPTION KINETICS OF THE LI-MG-N-H SYSTEM  

DOE Green Energy (OSTI)

In this present work, the affects of different transition metal halides (TiCl{sub 3}, VCl{sub 3}, ScCl{sub 3} and NiCl{sub 2}) on the sorption properties of the 1:1 molar ratio of LiNH{sub 2} to MgH{sub 2} are investigated. The modified mixtures were found to contain LiNH{sub 2}, MgH{sub 2} and LiCl. TGA results showed that the hydrogen desorption temperature was reduced with the modifier addition in this order: TiCl{sub 3}>ScCl{sub 3}>VCl{sub 3}>NiCl{sub 2}. Ammonia release was not significantly reduced resulting in a weight loss greater than the theoretical hydrogen storage capacity of the material. The isothermal sorption kinetics of the modified systems showed little improvement after the first dehydrogenation cycle over the unmodified system but showed drastic improvement in rehydrogenation cycles. XRD and Raman spectroscopy identified the cycled material to be composed of LiH, MgH{sub 2}, Mg(NH{sub 2}){sub 2} and Mg{sub 3}N{sub 2}.

Erdy, C.; Gray, J.; Lascola, R.; Anton, D.

2010-12-16T23:59:59.000Z

276

Carbonized material adsorbents for the removal of mercury from aqueous solutions  

SciTech Connect

Although wood has essentially been excluded as a starting material for the production of granular activated carbon because of the poor strength and friability of the products, powdered wood based activated carbons are still being used in water treatment and other liquid phase applications. However, the capability of powdered wood-based charcoal which in itself porous has not been fully known. Few studies have been conducted in harnessing its potential for adsorption purposes especially in water treatment. This study was conducted to investigate the possibility of using wood based carbonized materials from Sugi (Cryptomeria japonica D. Don) as adsorption materials in aqueous solutions of heavy metals like mercury, zinc, lead, cadmium and arsenic. However, of all the heavy metals investigated, mercury is considered to be the most toxic so this paper describes only the adsorption ability of the carbonized materials in adsorbing this metal from aqueous solutions of different concentrations.

Ishihara, S.; Pulido, L.L. [Kyoto Univ. (Japan); Kajimoto, T. [Wakayama Industrial Technology Center (Japan)

1996-12-31T23:59:59.000Z

277

Exploring the structural basis for selenium/mercury antagonism in Allium fistulosum  

Science Conference Proceedings (OSTI)

While continuing efforts are devoted to studying the mutually protective effect of mercury and selenium in mammals, few studies have investigated the mercury-selenium antagonism in plants. In this study, we report the metabolic fate of mercury and selenium in Allium fistulosum (green onion) after supplementation with sodium selenite and mercuric chloride. Analysis of homogenized root extracts via capillary reversed phase chromatography coupled with inductively coupled plasma mass spectrometry (capRPLC-ICP-MS) suggests the formation of a mercury-selenium containing compound. Micro-focused synchrotron X-ray fluorescence mapping of freshly excised roots show Hg sequestered on the root surface and outlining individual root cells, while Se is more evenly distributed throughout the root. There are also discrete Hg-only, Se-only regions and an overall strong correlation between Hg and Se throughout the root. Analysis of the X-ray absorption near edge structure (XANES) spectra show a 'background' of methylselenocysteine within the root with discrete spots of SeO{sub 3}{sup 2-}, Se{sup 0} and solid HgSe on the root surface. Mercury outlining individual root cells is possibly binding to sulfhydryl groups or plasma membrane or cell wall proteins, and in some places reacting with reduced selenium in the rhizosphere to form a mercury(II) selenide species. Together with the formation of the root-bound mercury(II) selenide species, we also report on the formation of cinnabar (HgS) and Hg{sup 0} in the rhizosphere. The results presented herein shed light on the intricate chemical and biological processes occurring within the rhizosphere that influence Hg and Se bioavailability and will be instrumental in predicting the fate and assisting in the remediation of these metals in the environment and informing whether or not fruit and vegetable food selection from aerial plant compartments or roots from plants grown in Hg contaminated soils, are safe for consumption.

McNear, Jr., David H.; Afton, Scott E.; Caruso, Joseph A. (UCIN); (Kentucky)

2012-12-10T23:59:59.000Z

278

Confounding effects of aqueous-phase impinger chemistry on apparent oxidation of mercury in flue gases  

SciTech Connect

Gas-phase reactions between elemental mercury and chlorine are a possible pathway to producing oxidized mercury species such as mercuric chloride in combustion systems. This study examines the effect of the chemistry of a commonly used sample conditioning system on apparent and actual levels of mercury oxidation in a methane-fired, 0.3 kW, quartz-lined reactor in which gas composition (HCl, Cl{sub 2}, NOx, SO{sub 2}) and quench rate were varied. The sample conditioning system included two impingers in parallel: one containing an aqueous solution of KCl to trap HgCl{sub 2}, and one containing an aqueous solution of SnCl{sub 2} to reduce HgCl{sub 2} to elemental mercury (Hg{sup 0}). Gas-phase concentrations of Cl{sub 2} as low as 1.5 ppmv were sufficient to oxidize a significant fraction of the elemental mercury in the KCl impinger via the hypochlorite ion. Furthermore, these low, but interfering levels of Cl{sub 2} appeared to persist in flue gases from several doped rapidly mixed flames with varied post flame temperature quench rates. The addition of 0.5 wt% sodium thiosulfate to the KCl solution completely prevented the oxidation from occurring in the impinger. The addition of thiosulfate did not inhibit the KCl impinger's ability to capture HgCl{sub 2}. The effectiveness of the thiosulfate was unchanged by NO or SO{sub 2}. These results bring into question laboratory scale experimental data on mercury oxidation where wet chemistry was used to partition metallic and oxidized mercury without the presence of sufficient levels of SO{sub 2}. 23 refs., 5 figs., 1 tab.

Brydger Cauch; Geoffrey D. Silcox; Joann S. Lighty; Jost O.L. Wendt; Andrew Fry; Constance L. Senior [University of Utah, Salt Lake City, UT (United States). Department of Chemical Engineering

2008-04-01T23:59:59.000Z

279

Controls on Fluxes of Mercury in Aquatic Food Webs: Application of the Dynamic Mercury Cycling Model to Four Enclosure Experiments w ith Additions of Stable Mercury Isotopes  

Science Conference Proceedings (OSTI)

New controls on utility mercury emissions are under consideration in order to limit human exposure to mercury resulting from fish consumption. Evaluation of such measures requires an understanding of how mercury cycles through lakes and streams. This report describes the application of EPRI's Dynamic Mercury Cycling Model (D-MCM) to experiments involving the addition of stable mercury Hg(II) isotopes to four 10-meter-diameter enclosures in a lake.

2001-09-21T23:59:59.000Z

280

Oak Ridge Moves Forward in Mercury Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup March 28, 2013 - 12:00pm Addthis Workers recently removed five large mercury-contaminated tanks from Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. OAK RIDGE, Tenn. - Oak Ridge's EM program is making significant progress to reduce environmental mercury releases from the Y-12 National Security Complex. Mercury is one of the greatest environmental concerns facing the Oak Ridge

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Oak Ridge Moves Forward in Mercury Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moves Forward in Mercury Cleanup Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup March 28, 2013 - 12:00pm Addthis Workers recently removed five large mercury-contaminated tanks from Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. OAK RIDGE, Tenn. - Oak Ridge's EM program is making significant progress to reduce environmental mercury releases from the Y-12 National Security Complex. Mercury is one of the greatest environmental concerns facing the Oak Ridge

282

Mercury: the planet and its orbit  

E-Print Network (OSTI)

The planet closest to the Sun, Mercury, is the subject of renewed attention among planetary scientists, as two major space missions will visit it within the next decade. These will be the first to return to Mercury, after the flybys by NASA's Mariner 10 spacecraft in 1974--5. The difficulties of observing this planet from the Earth make such missions necessary for further progress in understanding its origin, evolution and present state. This review provides an overview of what is known about Mercury and what are the major outstanding issues. Mercury's orbital and rotation periods are in a unique 2:3 resonance; an analysis of the orbital dynamics of Mercury is presented here, as well as Mercury's special role in testing theories of gravitation. These derivations provide a good insight into the complexities of planetary motion in general, and how, in the case of Mercury, its proximity to the Sun can be described and exploited in terms of general relativity. Mercury's surface, superficially similar to that of the Moon, presents intriguing differences, representing a different, and more complex history in which the role of early volcanism remains to be clarified and understood. Mercury's interior presents the most important puzzles: it has the highest uncompressed density among the terrestrial planets, implying a very large, mostly iron core. This does not appear to be the completely solidified yet, as Mariner 10 found a planetary magnetic field that is probably generated by an internal dynamo, in a liquid outer layer of the large iron core. The current state of the core, once established, will provide a constraint for its evolution from the time of the planet's formation. Mercury's environment is highly variable. There is only a tenuous exosphere around Mercury; its sourc...

André Balogh; Giacomo Giampieri

2002-01-01T23:59:59.000Z

283

Fly ash properties and mercury sorbent affect mercury release from curing concrete  

Science Conference Proceedings (OSTI)

The release of mercury from concrete containing fly ashes from various generator boilers and powdered activated carbon sorbent used to capture mercury was measured in laboratory experiments. Release of gaseous mercury from these concretes was less than 0.31% of the total quantity of mercury present. The observed gaseous emissions of mercury during the curing process demonstrated a dependency on the organic carbon content of the fly ash, with mercury release decreasing with increasing carbon content. Further, lower gaseous emissions of mercury were observed for concretes incorporating ash containing activated carbon sorbent than would be expected based on the observed association with organic carbon, suggesting that the powdered activated carbon more tightly binds the mercury as compared to unburned carbon in the ash. Following the initial 28-day curing interval, mercury release diminished with time. In separate leaching experiments, average mercury concentrations leached from fly ash concretes were less than 4.1 ng/L after 18 h and 7 days, demonstrating that less than 0.02% of the mercury was released during leaching. 25 refs., 4 figs., 5 tabs.

Danold W. Golightly; Chin-Min Cheng; Linda K. Weavers; Harold W. Walker; William E. Wolfe [State University, Columbus, OH (United States). Department of Civil and Environmental Engineering and Geodetic Science

2009-04-15T23:59:59.000Z

284

MERCURY REMOVAL FROM DOE SOLID MIXED WASTE USING THE GEMEP(sm) TECHNOLOGY  

SciTech Connect

Under the sponsorship of the Federal Energy Technology Center (FETC), Metcalf and Eddy (M and E), in association with General Electric Corporate Research and Development Center (GE-CRD), Colorado Minerals Research Institute (CMRI), and Oak Ridge National Laboratory (ORNL), conducted laboratory-scale and bench-scale tests of the General Electric Mercury Extraction Process technology on two mercury-contaminated mixed solid wastes from U. S. Department of Energy sites: sediment from the East Fork of Poplar Creek, Oak Ridge (samples supplied by Oak Ridge National Laboratory), and drummed soils from Idaho National Environmental and Engineering Laboratory (INEEL). Fluorescent lamps provided by GE-CRD were also studied. The GEMEP technology, invented and patented by the General Electric Company, uses an extraction solution composed of aqueous potassium iodide plus iodine to remove mercury from soils and other wastes. The extraction solution is regenerated by chemical oxidation and reused, after the solubilized mercury is removed from solution by reducing it to the metallic state. The results of the laboratory- and bench-scale testing conducted for this project included: (1) GEMEP extraction tests to optimize extraction conditions and determine the extent of co-extraction of radionuclides; (2) pre-screening (pre-segregation) tests to determine if initial separation steps could be used effectively to reduce the volume of material needing GEMEP extraction; and (3) demonstration of the complete extraction, mercury recovery, and iodine recovery and regeneration process (known as locked-cycle testing).

1999-03-01T23:59:59.000Z

285

2006 Mercury Control Technology Conference Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control Technology Conference Mercury Control Technology Conference December 11-13, 2006 Table of Contents Disclaimer Papers and Presentations Introduction Sorbent Injection By-Product Characterization/Management Mercury Oxidation and Co-Removal with FGD Systems Other Mercury Control Technology Panel Discussions Posters New 2006 Phase III Mercury Field Testing Projects Sorbent Injection Pretreatment of Coal Oxidation of Mercury Environmental Studies on Mercury Mercury in CUBs Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

286

Milestone Project Demonstrates Innovative Mercury Emissions Reduction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Milestone Project Demonstrates Innovative Mercury Emissions Milestone Project Demonstrates Innovative Mercury Emissions Reduction Technology Milestone Project Demonstrates Innovative Mercury Emissions Reduction Technology January 12, 2010 - 12:00pm Addthis Washington, DC - An innovative technology that could potentially help some coal-based power generation facilities comply with anticipated new mercury emissions standards was successfully demonstrated in a recently concluded milestone project at a Michigan power plant. Under a cooperative agreement with the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), WE Energies demonstrated the TOXECON(TM) process in a $52.9million project at the Presque Isle Power Plant in Marquette, Mich. TOXECON is a relatively cost-effective option for achieving significant reductions in mercury emissions and increasing the

287

Mercury removal from solid mixed waste  

SciTech Connect

The removal of mercury from mixed wastes is an essential step in eliminating the temporary storage of large inventories of mixed waste throughout the Department of Energy (DOE) complex. Currently thermal treatment has been identified as a baseline technology and is being developed as part of the DOE Mixed Waste Integrated Program (MWIP). Since thermal treatment will not be applicable to all mercury containing mixed waste and the removal of mercury prior to thermal treatment may be desirable, laboratory studies have been initiated at Oak Ridge National Laboratory (ORNL) to develop alternative remediation technologies capable of removing mercury from certain mixed waste. This paper describes laboratory investigations of the KI/I{sub 2} leaching processes to determine the applicability of this process to mercury containing solid mixed waste.

Gates, D.D.; Morrissey, M.; Chava, K.K.; Chao, K.

1994-12-31T23:59:59.000Z

288

Mercury Emissions Control in Wet FGD Systems  

E-Print Network (OSTI)

The Babcock & Wilcox Company (B&W) and McDermott Technology, Inc. (MTI) have had a continuing program over the past decade for characterizing and optimizing mercury control in flue gas desulfurization (FGD) systems. These efforts have led to the characterization of mercury emissions control at two utility installations and full-scale demonstration (55 MW and 1300 MW) of the effect of a mercury control performance enhancement additive for wet FGD systems. This paper presents the results of the mercury emissions control testing conducted at these two sites. The performance is related to EPA Information Collection Request (ICR) data from an FGD system supplier’s perspective, highlighting the need to consider the effects of system design and operation when evaluating mercury emissions control performance.

Paul S. Nolan; Babcock Wilcox; Kevin E. Redinger; Babcock Wilcox; Gerald T. Amrhein; Gregory A. Kudlac

2002-01-01T23:59:59.000Z

289

Extraction of trace metals from fly ash  

DOE Patents (OSTI)

A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

Blander, Milton (Palos Park, IL); Wai, Chien M. (Moscow, ID); Nagy, Zoltan (Woodridge, IL)

1984-01-01T23:59:59.000Z

290

Extraction of trace metals from fly ash  

DOE Patents (OSTI)

A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

Blander, M.; Wai, C.M.; Nagy, Z.

1983-08-15T23:59:59.000Z

291

Selective extraction of copper, mercury, silver and palladium ions from water using hydrophobic ionic liquids.  

E-Print Network (OSTI)

K. ; Khan, R. H. Low dose mercury toxicity and human health.Gochfeld, M. Cases of mercury exposure, bioavailability, andto enhanced extraction for mercury. Acknowledgements For

Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; Von Stosch, Moritz; Prausnitz, John M.

2008-01-01T23:59:59.000Z

292

A Mass Balance for Mercury in the San Francisco Bay Area  

E-Print Network (OSTI)

and transformation of mercury. I. Model development andand transformation of mercury. II. Simulation results forFernandez, G. C. J. , Mercury and plants in contaminated

MacLeod, Matthew; McKone, Thomas E.; Mackay, Don

2005-01-01T23:59:59.000Z

293

Geothermal Exploration Using Surface Mercury Geochemistry | Open Energy  

Open Energy Info (EERE)

Surface Mercury Geochemistry Surface Mercury Geochemistry Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal Exploration Using Surface Mercury Geochemistry Details Activities (5) Areas (3) Regions (0) Abstract: Shallow, soil-mercury surveys can be used effectively in exploration for geothermal resources. Soil-mercury data from six areas in Nevada, California and New Mexico are analyzed using contour maps, histogram and probability graphs. Plotting on probability graphs allows background and anomalous populations to be resolved even when considerable overlap between populations is present. As is shown in several examples, separate soil-mercury populations can be plausibly interpreted. Mercury data can significantly enhance the structural understanding of a prospect

294

Analysis of mercury diffusion pumps  

SciTech Connect

Several mercury diffusion pump stages in the Tritium Purification process at the Savannah River Site (SRS) have been removed from service for scheduled preventive maintenance. These stages have been examined to determine if failure has occurred. Evidence of fatigue around the flange portion of the pump has been seen. In addition, erosion and cavitation inside the throat of the venturi tube and corrosion on the other surface of the venturi tube has been observed. Several measures are being examined in an attempt to improve the performance of these pumps. These measures, as well as the noted observations, are described. 4 refs.

Dunn, K.A.

1991-12-31T23:59:59.000Z

295

Analysis of mercury diffusion pumps  

SciTech Connect

Several mercury diffusion pump stages in the Tritium Purification process at the Savannah River Site (SRS) have been removed from service for scheduled preventive maintenance. These stages have been examined to determine if failure has occurred. Evidence of fatigue around the flange portion of the pump has been seen. In addition, erosion and cavitation inside the throat of the venturi tube and corrosion on the other surface of the venturi tube has been observed. Several measures are being examined in an attempt to improve the performance of these pumps. These measures, as well as the noted observations, are described. 4 refs.

Dunn, K.A.

1991-01-01T23:59:59.000Z

296

Treatment of mercury containing waste  

DOE Patents (OSTI)

A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

Kalb, Paul D. (Wading River, NY); Melamed, Dan (Gaithersburg, MD); Patel, Bhavesh R (Elmhurst, NY); Fuhrmann, Mark (Babylon, NY)

2002-01-01T23:59:59.000Z

297

Guidelines for Mercury Measurements Using the Ontario Hydro Method  

Science Conference Proceedings (OSTI)

The Clean Air Mercury Rule (CAMR) requires measurement of mercury emissions from coal-fired power plants. The rule requires that all coal-fired power plants emitting >29 lb of mercury per year install continuous mercury measurement technology. Either a continuous mercury monitor (CMM) or sorbent traps meeting the requirements of 40 Code of Federal Regulations (CFR) Part 75, Appendix K, protocols must be used. To ensure the technologies are operating properly, CAMR also requires that a relative accuracy t...

2007-08-28T23:59:59.000Z

298

Investigation into Nanostructured Lanthanum Halides and CeBr{sub 3} for Nuclear Radiation Detection  

Science Conference Proceedings (OSTI)

This slide-show presents work on radiation detection with nanostructured lanthanum halides and CeBr{sub 3}. The goal is to extend the gamma energy response on both low and high-energy regimes by demonstrating the ability to detect low-energy x-rays and relatively high-energy activation prompt gamma rays simultaneously using the nano-structured lanthanum bromide, lanthanum fluoride, cerium bromide, or other nanocrystal material. Homogeneous and nano structure cases are compared.

Guss, P., Guise, R., Mukhopadhyay, S., Yuan, D.

2011-06-22T23:59:59.000Z

299

Development of Mercury Oxidation Catalyst for Enhanced Mercury Capture by Wet FGD  

Science Conference Proceedings (OSTI)

This document describes recent progress on a mercury control technology development program co-funded by EPRI, the U.S. Department of Energy’s National Energy Technology Laboratory (DOE-NETL), and several EPRI-member companies. The mercury control process under development uses catalysts installed downstream of the air heater and particulate control device to promote the oxidation of elemental mercury in flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) ...

2007-03-13T23:59:59.000Z

300

A study of certain trace metals in sea water using anodic stripping voltammetry  

E-Print Network (OSTI)

Anodic stripping voltammetry utilizing a thin film mercury composite graphite electrode has been evaluated and applied for the direct analysis of the metals, Zn,J Cu, Pb, and Cd in sea water. The electrode was observed to ...

Fitzgerald, William Francis, 1926-

1970-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NETL: Mercury Emissions Control Technologies - Enhanced High Temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced High Temperature Mercury Oxidation and Enhanced High Temperature Mercury Oxidation and In-Situ Active Carbon Generation for Low Cost Mercury Capture Mercury oxidation phenomenon and the studies of this phenomenon have generally focused on lower temperatures, typically below 650°F. This has been based on the mercury vapor equilibrium speciation curve. The baseline extents of mercury oxidation as reported in the ICR dataset and observed during subsequent tests has shown a tremendous amount of scatter. The objective of this project is to examine, establish and demonstrate the effect of higher temperature kinetics on mercury oxidation rates. Further, it is the objective of this project to demonstrate how the inherent mercury oxidation kinetics can be influenced to dramatically increase the mercury oxidation.

302

Why 25?? and Y-12 mercury losses  

NLE Websites -- All DOE Office Websites (Extended Search)

"25"? and Y-12 mercury losses Recently I learned something new regarding the "shortcut names" or code names for uranium-235 and plutonium-239. It seems the codes used to discuss...

303

Filter for isotopic alteration of mercury vapor  

DOE Green Energy (OSTI)

A filter for enriching the .sup.196 Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The .sup.196 Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter.

Grossman, Mark W. (Belmont, MA); George, William A. (Gloucestor, MA)

1989-01-01T23:59:59.000Z

304

Filter for isotopic alteration of mercury vapor  

DOE Patents (OSTI)

A filter is described for enriching the [sup 196]Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The [sup 196]Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is, less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter. 9 figs.

Grossman, M.W.; George, W.A.

1989-06-13T23:59:59.000Z

305

NETL: News Release - Meeting Mercury Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

June 18, 2001 June 18, 2001 Meeting Mercury Standards DOE Selects 6 Projects to Develop Cost-Saving Technologies for Curbing Mercury Emissions from Coal Power Plants Power Plant with Fish - MORGANTOWN, WV - With President Bush's National Energy Plan calling for mandatory reductions in the release of mercury from electric power plants - part of the Plan's multi-pollutant reduction strategy - the U.S. Department of Energy today named six new projects to develop innovative technologies that can curb mercury emissions from coal plants more effectively and at a fraction of today's costs. The winning projects were submitted by the University of North Dakota's Energy & Environmental Research Center in Grand Forks; URS Group. Inc., of Austin, TX; CONSOL, Inc., of Library, PA; Southern Research Institute in

306

ZZ Mercury Storage Book.indb  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Comment Response Document Environmental Impact Statement Final Final Environmental Impact Statement DOE/EIS-0423 January 2011 Long-Term Management and Storage of Elemental Mercury Long-Term Management and Storage of Elemental Mercury For additional information on this Final Mercury Storage EIS, contact: AVAILABILITY OF THIS FINAL LONG-TERM MANAGEMENT AND STORAGE OF ELEMENTAL MERCURY ENVIRONMENTAL IMPACT STATEMENT David Levenstein, Document Manager Office of Environmental Compliance (EM-41) U.S. Department of Energy Post Office Box 2612 Germantown, MD 20874 Website: http://www.mercurystorageeis.com Fax: 877-274-5462 Printed with soy ink on recycled paper Cover Sheet Lead Agency: U.S. Department of Energy (DOE) Cooperating Agencies: U.S. Environmental Protection Agency (EPA)

307

Analysis of Alternative Mercury Control Strategies  

Reports and Publications (EIA)

This analysis responds to a September 14, 2004, request from Chairmen James M. Inhofe and George V. Voinovich asking the Energy Information Administration (EIA) to analyze the impacts of different approaches for removing mercury from coal-fired power plants.

Alan Beamon

2005-01-01T23:59:59.000Z

308

Mercury sorbent delivery system for flue gas  

DOE Patents (OSTI)

The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

Klunder; ,Edgar B. (Bethel Park, PA)

2009-02-24T23:59:59.000Z

309

NETL: Mercury Emissions Control Technologies - Utilization of...  

NLE Websites -- All DOE Office Websites (Extended Search)

for mercury removal is produced from coal in a gasification process in-situ at coal burning plant. The main objective of this project is to obtained technical information...

310

Remediation of Mercury and Industrial Contaminants  

Energy.gov (U.S. Department of Energy (DOE))

The mission of the Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

311

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

of Catalysts for Oxidation of Mercury in Flue Gas, Environ.mercury oxidation when the chlorine concentration in flue gas

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

312

Symplectic Integrator Mercury: Bug Report  

E-Print Network (OSTI)

We report on a problem found in MERCURY, a hybrid symplectic integrator used for dynamical problems in Astronomy. The variable that keeps track of bodies' statuses is uninitialised, which can result in bodies disappearing from simulations in a non-physical manner. Some FORTRAN compilers implicitly initialise variables, preventing simulations from having this problem. With other compilers, simulations with a suitably large maximum number of bodies parameter value are also unaffected. Otherwise, the problem manifests at the first event after the integrator is started, whether from scratch or continuing a previously stopped simulation. Although the problem does not manifest in some conditions, explicitly initialising the variable solves the problem in a permanent and unconditional manner.

K. de Souza Torres; D. R. Anderson

2008-08-04T23:59:59.000Z

313

SCR Catalyst Management for Mercury Control  

Science Conference Proceedings (OSTI)

A number of EPRI projects conducted over the past several years have examined the effects of SCR catalyst on mercury speciation. These projects have focused on the various factors influencing mercury oxidation, related to both the flue gas conditions and the catalysts themselves. However, the majority of these studies have only examined the speciation at the SCR inlet and outlet. Much less is known about the interlayer speciation, however, which is very important when developing catalyst management ...

2012-11-16T23:59:59.000Z

314

Article Removal of Mercury by Foam Fractionation Using Surfactin,  

E-Print Network (OSTI)

Abstract: The separation of mercury ions from artificially contaminated water by the foam fractionation process using a biosurfactant (surfactin) and chemical surfactants (SDS and Tween-80) was investigated in this study. Parameters such as surfactant and mercury concentration, pH, foam volume, and digestion time were varied and their effects on the efficiency of mercury removal were investigated. The recovery efficiency of mercury ionsInt. J. Mol. Sci. 2011, 12 8246 was highly sensitive to the concentration of the surfactant. The highest mercury ion recovery by surfactin was obtained using a surfactin concentration of 10 × CMC, while recovery using SDS required 10 × CMC. However, the enrichment of mercury

A Biosurfactant; Hau-ren Chen; Chien-cheng Chen; A. Satyanarayana Reddy; Chien-yen Chen; Wun Rong Li; Min-jen Tseng; Hung-tsan Liu; Wei Pan; Jyoti Prakash Maity; Shashi B. Atla

2011-01-01T23:59:59.000Z

315

Fate of soluble uranium in the I{sub 2}/KI leaching process for mercury removal  

SciTech Connect

General Electric Corporation has developed an extraction and recovery system for mercury, based upon the use of iodine (oxidant) and iodide ion (complexing agent). This system has been proposed for application to select mercury-contaminated mixed waste (i.e., waste containing radionuclides as well as other hazardous constituents), which have been generated by historic activities in support of US Department of Energy (DOE) missions. This system is compared to a system utilizing hypochlorite and chloride ions for removal of mercury and uranium from a sample of authentic mixed waste sludge. Relative to the hypochlorite (bleach) system, the iodine system mobilized more mercury and less uranium from the sludge. An engineering flowsheet has been developed to treat spent iodine-containing extraction medium, allowing the system to be recycled. The fate of soluble uranium in this series of treatment unit operations was monitored by tracing isotopically-enriched uranyl ion into simulated spent extraction medium. Treatment with use of elemental iron is shown to remove > 85% of the traced uranium while concurrently reducing excess iodine to the iodide ion. The next unit operation, adjustment of the solution pH to a value near 12 by the addition of lime slurry to form a metal-laden sludge phase (an operation referred to as lime-softening), removed an additional 57% of soluble uranium activity, for an over-all removal efficiency of {approximately} 96%. However, the precipitated solids did not settle well, and some iodide reagent is held up in the wet filtercake.

Bostick, W.D.; Davis, W.H.; Jarabek, R.J. [East Tennessee Technology Park, Oak Ridge, TN (United States). Materials and Chemistry Lab.

1997-09-01T23:59:59.000Z

316

Superfund Record of Decision (EPA Region 2): Grand Street Mercury Site, Hoboken, NJ, September 30, 1997  

SciTech Connect

This Record of Decision presents the selected remedial action for the Grand Street Mercury Site. The major components of the selected remedy include: permanent relocation of the former residents of the Site; continuation of temporary relocation of the former residents until permanent relocation has been implemented; historic preservation mitigation measures for the buildings at the Site, as appropriate; gross mercury decontamination of the buildings at the Site including recovery of available mercury, whenever possible; identification and abatement of asbestos in the buildings at the Site; removal and recovery of reusable fixtures, appliances, and recyclable scrap metal and other building components; demolition of the two buildings at the Site using measures to minimize releases of mercury into the environment; removal and off-site disposal of all demolition debris at EPA-approved facilities; sampling of soils at the Site; excavation and off-site disposal of contaminated soils at EPA-approved facilities; sampling of soils at off-site adjacent locations; sampling of groundwater at the Site; and assessment of off-site soil and groundwater data to evaluate the need for future remedial action.

1998-01-01T23:59:59.000Z

317

An EXAFS Study Of The Binding Of Chromium, Mercury And Copper On Natural, Crosslinked And Multilayer Chitosan Films  

SciTech Connect

The coordination environment of metal atoms involved in their adsorption on chitosan was studied by using EXAFS technique. Chromium, mercury and copper complexes were gotten on natural, crosslinked and multilayer chitosan films and the spectra of the distribution of neighbor atoms around the adsorbed central atom were obtained. All spectra were obtained in transmission mode and were collected around Hg (12284 eV) L edge, Cr (5989 eV) and Cu (8987 eV) K edges. For chromium ions, it was possible to observe that metal interaction is mainly performed on amino groups, on the other hand, it was not possible to distinguish if the metal interaction takes place preferentially on amino or hydroxyl group, for mercury and copper.

Goncalves de Paiva, Rafael; Silveira Vieira, Rodrigo; Gomes Aimoli, Cassiano; Masumi Beppu, Marisa [School of Chemical Engineering, State University of Campinas, P.O. Box 6066, Zip code 13081-970, Campinas, SP (Brazil)

2009-01-29T23:59:59.000Z

318

On the oscillations in Mercury's obliquity  

E-Print Network (OSTI)

One major objective of MESSENGER and BepiColombo spatial missions is to accurately measure Mercury's rotation and its obliquity in order to obtain constraints on internal structure of the planet. Which is the obliquity's dynamical behavior deriving from a complete spin-orbit motion of Mercury simultaneously integrated with planetary interactions? We have used our SONYR model integrating the spin-orbit N-body problem applied to the solar System (Sun and planets). For lack of current accurate observations or ephemerides of Mercury's rotation, and therefore for lack of valid initial conditions for a numerical integration, we have built an original method for finding the libration center of the spin-orbit system and, as a consequence, for avoiding arbitrary amplitudes in librations of the spin-orbit motion as well as in Mercury's obliquity. The method has been carried out in two cases: (1) the spin-orbit motion of Mercury in the 2-body problem case (Sun-Mercury) where an uniform precession of the Keplerian orbital plane is kinematically added at a fixed inclination (S2K case), (2) the spin-orbit motion of Mercury in the N-body problem case (Sun and planets) (Sn case). We find that the remaining amplitude of the oscillations in the Sn case is one order of magnitude larger than in the S2K case, namely 4 versus 0.4 arcseconds (peak-to-peak). The mean obliquity is also larger, namely 1.98 versus 1.80 arcminutes, for a difference of 10.8 arcseconds. These theoretical results are in a good agreement with recent radar observations but it is not excluded that it should be possible to push farther the convergence process by drawing nearer still more precisely to the libration center.

E. Bois; N. Rambaux

2007-09-07T23:59:59.000Z

319

Evaluation of Sorbent Injection for Mercury Control  

Science Conference Proceedings (OSTI)

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

Sharon Sjostrom

2005-12-30T23:59:59.000Z

320

DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Issues Final Mercury Storage Environmental Impact Statement: DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site Is Preferred for Long-Term Mercury Storage DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site Is Preferred for Long-Term Mercury Storage January 19, 2011 - 12:00pm Addthis Media Contact (202) 586-4940 WASHINGTON - The Department of Energy has prepared a Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement to analyze the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven locations. Based on these factors, DOE identified the Waste Control Specialists, LLC, site near Andrews, Texas, as the preferred alternative for long-term management and storage of mercury. DOE will consider the environmental impact information presented in this

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Laser altimeter measurements from MESSENGER's recent mercury flybys  

E-Print Network (OSTI)

The performance of the Mercury Laser Altimeter is reported from MESSENGER's flybys of Mercury in January and October 2008. The instrument ranged to 600 km at >60deg incidence angle and 1600 km in nadir direction.

Sun, Xiaoli

322

Seismic effects of the Caloris basin impact, Mercury  

E-Print Network (OSTI)

Striking geological features on Mercury's surface have been linked to tectonic disruption associated with the Caloris impact and have the potential to provide information on the interior structure of Mercury. The unusual ...

Lü, Jiangning

2011-01-01T23:59:59.000Z

323

Mitigation and Remediation of Mercury Contamination at the Y...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Full Document and...

324

VEE-0020 - In the Matter of Mercury Fuel Service, Inc.  

Energy.gov (U.S. Department of Energy (DOE))

On April 9, 1996, Mercury Fuel Service, Inc. (Mercury) of Waterbury, Connecticut, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE)....

325

Mercurial commitments with applications to zero-knowledge sets  

Science Conference Proceedings (OSTI)

We introduce a new flavor of commitment schemes, which we call mercurial commitments. Informally, mercurial commitments are standard commitments that have been extended to allow for soft decommitment. Soft decommitments, on the one hand, ...

Melissa Chase; Alexander Healy; Anna Lysyanskaya; Tal Malkin; Leonid Reyzin

2005-05-01T23:59:59.000Z

326

Removal of mercury from coal via a microbial pretreatment process  

Science Conference Proceedings (OSTI)

A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

Borole, Abhijeet P. (Knoxville, TN); Hamilton, Choo Y. (Knoxville, TN)

2011-08-16T23:59:59.000Z

327

Mercury Vapor At Kawaihae Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor At Kawaihae Area (Thomas, 1986) Mercury Vapor At Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Mercury Vapor Activity Date Usefulness not useful DOE-funding Unknown Notes The soil geochemistry yielded quite complex patterns of mercury concentrations and radonemanation rates within the survey area (Cox and Cuff, 1981c). Mercury concentrations (Fig. 38) showed a general minimum along the Kawaihae-Waimea roads and a broad trend of increasing mercury concentrations toward both the north and south. There is no correlation apparent between the mercury patterns and either the resistivity sounding data or the surface geology in the area. The radon emanometry data (Fig.

328

Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing  

DOE Patents (OSTI)

An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500{degree}C. The method comprises positioning a solid Li-Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.

Gay, E.C.

1993-12-23T23:59:59.000Z

329

Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing  

DOE Patents (OSTI)

An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500.degree. C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.

Gay, Eddie C. (Park Forest, IL)

1995-01-01T23:59:59.000Z

330

NIST: Mercury, Atomic Ref. Data for Elect. Struct. Calc.  

Science Conference Proceedings (OSTI)

Table of contents logo, Atomic Reference Data for Electronic Structure Calculations. Mercury. Key to notation | HTML table ...

331

Mercury in Nelson’s Sparrow Subspecies at Breeding Sites  

E-Print Network (OSTI)

Background: Mercury is a persistent, biomagnifying contaminant that can cause negative effects on ecosystems. Marshes are often areas of relatively high mercury methylation and bioaccumulation. Nelson’s Sparrows (Ammodramus nelsoni) use marsh habitats year-round and have been documented to exhibit tissue mercury concentrations that exceed negative effects thresholds. We sought to further characterize the potential risk of Nelson’s Sparrows to mercury exposure by sampling individuals from sites within the range of each of its subspecies.

Virginia L Winder; Steven D. Emslie

2012-01-01T23:59:59.000Z

332

U.S. Mercury Deposition Under Alternative Regulatory Scenarios  

Science Conference Proceedings (OSTI)

The Federal Clean Air Mercury Rule regulates electric utility mercury emissions while permitting individual states to enact stricter rules at their discretion. Computer modeling has shown how mercury deposition patterns will change if all regulated utility power plants follow the Federal rule, vs. alternative state rules. These patterns of deposition can be compared to the limiting case: what if all U.S. utility mercury emissions were zeroed out? The findings show that regulations stricter than the Feder...

2007-12-14T23:59:59.000Z

333

Selective Catalytic Reduction Mercury Oxidation Data to Support Catalyst Management  

Science Conference Proceedings (OSTI)

Selective catalytic reduction (SCR) mercury oxidation can be pivotal for Mercury and Air Toxics Standards compliance, especially for those units that rely on co-benefits as their primary method of mercury control. Much work has been done historically to understand the mercury behavior across SCRs, especially as a function of operating conditions, and in particular, flue gas composition. The present work seeks to integrate the accumulated knowledge into a practical document that will aid utilities in ...

2013-11-13T23:59:59.000Z

334

Bench-scale studies with mercury contaminated SRS soil  

SciTech Connect

Bench-scale studies with mercury contaminated soil were performed at the SRTC to determine the optimum waste loading obtainable in the glass product without sacrificing durability, leach resistance, and processability. Vitrifying this waste stream also required offgas treatment for the capture of the vaporized mercury. Four soil glasses with slight variations in composition were produced, which were capable of passing the Product Consistency Test (PCT) and the Toxicity Characteristic Leaching Procedure (TCLP). The optimum glass feed composition contained 60 weight percent soil and produced a soda-lime-silica glass when melted at 1,350 C. The glass additives used to produce this glass were 24 weight percent Na{sub 2}CO{sub 3} and 16 weight percent CaCO{sub 3}. Volatilized mercury released during the vitrification process was released to the proposed mercury collection system. The proposed mercury collection system consisted of quartz and silica tubing with a Na{sub 2}S wash bottle followed by a NaOH wash bottle. Once in the system, the volatile mercury would pass through the wash bottle containing Na{sub 2}S, where it would be converted to Hg{sub 2}S, which is a stable form of mercury. However, attempts to capture the volatilized mercury in a Na{sub 2}S solution wash bottle were not as successful as anticipated. Maximum mercury captured was only about 3.24% of the mercury contained in the feed. Mercury capture efforts then shifted to condensing and capturing the volatilized mercury. These attempts were much more successful at capturing the volatile mercury, with a capture efficiency of 34.24% when dry ice was used to pack the condenser. This captured mercury was treated on a mercury specific resin after digestion of the volatilized mercury.

Cicero, C.A.

1995-12-31T23:59:59.000Z

335

End of an Era: NIST to Cease Calibrating Mercury ...  

Science Conference Proceedings (OSTI)

... Burning of coal is a major source of vaporous mercury released into the atmosphere. Compact fluorescents use less electricity ...

2011-10-03T23:59:59.000Z

336

Advanced Gasification Mercury/Trace Metal Control With Monolith Traps  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Technologies Gasification Technologies CONTACTS Jenny Tennant Technology/Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880, Morgantown, WV 26507-0880 304-285-4830 jenny.tennant@netl.doe.gov Michael Swanson Principal Investigator University of North Dakota Energy and Environmental Research Center 15 North 23rd Street Grand Forks, ND 58202 701-777-5239 MSwanson@undeerc.org PARTNERS Corning, Inc. PROJECT DURATION

337

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network (OSTI)

Cryostat 1. Remote handling The high radiation levels and presence of hazardous, ac- tivated mercury vaporsMERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER Van Graves , ORNL, Oak Ridge, TN 37830 placement within the Shielding Module in a remote environment. · Providing double containment of the mercury

McDonald, Kirk

338

MERCURY CONTROL FOR MWCs USING THE SODIUM TETRASULFIDE PROCESS  

E-Print Network (OSTI)

technologies for mercury control for flue gases of Municipal Waste Combustors (MWCs) not only ecological hydrochloric acid (HCl) and elemental mercury (Hg") under oxidizing conditions of the off-gases downstream to the decreasing gas temperature, the elemental mercury is able to react with other flue gas components. The main

Columbia University

339

PEER-REVIEW An Experimental Study on Mercury Sorption by  

E-Print Network (OSTI)

flue gases. These studies have shown the relative ease of controlling oxidized mercury (specifically, Nashville, 1996 8. B. Hall, O . Lindqvist, and E. Ljungstrom, "Mercury Chemistry in Simulated Flue Gases municipal waste combustor (MWC), flue gas mercury is mainly found as HgCI2. They postulated thatHgCl2

Columbia University

340

Mercury and Dioxin Control for Municipal Waste Combustors Anthony Licata  

E-Print Network (OSTI)

) and elemental mercury (Hg«» under oxidizing conditions of the off-gases downstream of the refuse incinerator), sulfur dioxide (S02)' nitrogen oxides (NOx), carbon monoxide (CO), PCDDs/PCDFs, cadmium (Cd), mercury (Hg emission regulations. Mercury Control in MWCs The capture of Hg in flue gas cleaning devices depends on the

Columbia University

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

National Waste Processing Conference Proceedings ASME 1994 ACID GASES, MERCURY,  

E-Print Network (OSTI)

) and elemental mercury (Hg«» under oxidizing conditions of the off-gases downstream of the refuse incinerator), sulfur dioxide (S02)' nitrogen oxides (NOx), carbon monoxide (CO), PCDDs/PCDFs, cadmium (Cd), mercury (Hg emission regulations. Mercury Control in MWCs The capture of Hg in flue gas cleaning devices depends on the

Columbia University

342

Mercury Removal Characteristics of Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

The standard Ontario Hydro Method (OHM) was used into the flue gas mercury sampling before and after fabric filter (FF)/ electrostatic precipitator (ESP) locations in coal-fired power stations in China, and then various mercury speciation, Hg0, Hg2+ ... Keywords: coal-fired power plant, mercury, fabric filter, electrostatic precipitator

Yang Liguo, Fan Xiaoxu, Duanyu Feng, Wang Yunjun

2013-01-01T23:59:59.000Z

343

Fission modes of mercury isotopes  

E-Print Network (OSTI)

Background: Recent experiments on beta-delayed fission in the mercury-lead region and the discovery of asym- metric fission in 180 Hg [1] have stimulated theoretical interest in the mechanism of fission in heavy nuclei. Purpose: We study fission modes and fusion valleys in 180 Hg and 198 Hg to reveal the role of shell effects in pre-scission region and explain the experimentally observed fragment mass asymmetry and its variation with A. Methods: We use the self-consistent nuclear density functional theory employing Skyrme and Gogny energy density functionals. Results: The potential energy surfaces in multi-dimensional space of collective coordinates, including elongation, triaxiality, reflection-asymmetry, and necking, are calculated for 180 Hg and 198 Hg. The asymmetric fission valleys - well separated from fusion valleys associated with nearly spherical fragments - are found in in both cases. The density distributions at scission configurations are studied and related to the experimentally observed mass splits. Conclusions: The energy density functionals SkM\\ast and D1S give a very consistent description of the fission process in 180 Hg and 198 Hg. We predict a transition from asymmetric fission in 180 Hg towards more symmetric distribution of fission fragments in 198 Hg. For 180 Hg, both models yield 100 Ru/80 Kr as the most probable split. For 198 Hg, the most likely split is 108 Ru/90 Kr in HFB-D1S and 110 Ru/88 Kr in HFB-SkM\\ast.

M. Warda; A. Staszczak; W. Nazarewicz

2012-05-25T23:59:59.000Z

344

Fission Modes of Mercury Isotopes  

Science Conference Proceedings (OSTI)

Background: Recent experiments on -delayed fission in the mercury-lead region and the discovery of asymmetric fission in 180Hg [A. N. Andreyev et al., Phys. Rev. Lett. 105, 252502 (2010)] have stimulated theoretical interest in the mechanism of fission in heavy nuclei. Purpose: We study fission modes and fusion valleys in 180Hg and 198Hg to reveal the role of shell effects in the prescission region and explain the experimentally observed fragment mass asymmetry and its variation with A. Methods: We use the self-consistent nuclear density functional theory employing Skyrme and Gogny energy density functionals. Results: The potential energy surfaces in multidimensional space of collective coordinates, including elongation, triaxiality, reflection-asymmetry, and necking, are calculated for 180Hg and 198Hg. The asymmetric fission valleys well separated from fusion valleys associated with nearly spherical fragments are found in both cases. The density distributions at scission configurations are studied and related to the experimentally observed mass splits. Conclusions: The energy density functionals SkM and D1S give a very consistent description of the fission process in 180Hg and 198Hg. We predict a transition from asymmetric fission in 180Hg toward a more symmetric distribution of fission fragments in 198Hg. For 180Hg, both models yield 100Ru/80Kr as the most probable split. For 198Hg, the most likely split is 108Ru/90Kr in HFB-D1S and 110Ru/88Kr in HFB-SkM .

Warda, M. [Maria Curie-Sk?odowska University-Poland; Staszczak, A. [Maria Curie-Sklodowska University; Nazarewicz, Witold [UTK/ORNL/University of Warsaw

2012-01-01T23:59:59.000Z

345

Mercury-free fluorescent lighting  

Science Conference Proceedings (OSTI)

A brief comparative review of possible mercury free fluorescent lighting technologies is presented, including rare-gas positive column discharges, molecular discharges, and dielectric barrier discharges. Detailed experimental results on xenon positive column discharges will then be considered. In order to judge whether xenon-based discharges are a viable UV source it is necessary to measure the radiant emittance (power per unit area) for the vacuum ultraviolet (VUV) resonance xenon emission at 147 nm. Two techniques to determine the VUV radiant emittance have been developed and applied to xenon discharges. One method combines the measured resonance level density using absorption spectroscopy and a calculation of the trapped decay rate for the resonance radiation to arrive at the radiant emittance at 147 nm. A second method utilizes a direct measurement of the radiance (power per unit area per unit solid angle) at 147 nm using a calibrated VUV photodiode, and a calculation of the relative angular distribution of the resonance radiation to determine the radiant emittance. In both techniques a simulation of the transport of resonance radiation is key to determining the radiant emittance.

Doughty, D.A. [General Electric Corporate Research and Development, Schenectady, NY (United States)

1996-05-01T23:59:59.000Z

346

Mixed Waste Focus Area Mercury Working Group: An integrated approach to mercury waste treatment and disposal  

SciTech Connect

In May 1996, the US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Working Group (HgWG). The HgWG was established to address and resolve the issues associated with mercury contaminated mixed wastes. During the MWFA`s initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation removal technologies for the treatment of mercury and mercury contaminated mixed waste. The HgWG is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. The focus of the HgWG is to better establish the mercury related treatment technologies at the DOE sites, refine the MWFA technical baseline as it relates to mercury treatment, and make recommendations to the MWFA on how to most effectively address these needs. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate both the amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded that will address DOE`s needs for separation removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the HgWG to date through these various activities.

Conley, T.B.; Morris, M.I.; Osborne-Lee, I.W.

1998-01-01T23:59:59.000Z

347

The mixed waste focus area mercury working group: an integrated approach for mercury treatment and disposal  

SciTech Connect

In May 1996, the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Work Group (HgWG), which was established to address and resolve the issues associated with mercury- contaminated mixed wastes. Three of the first four technology deficiencies identified during the MWFA technical baseline development process were related to mercury amalgamation, stabilization, and separation/removal. The HgWG will assist the MWFA in soliciting, identifying, initiating, and managing all the efforts required to address these deficiencies. The focus of the HgWG is to better establish the mercury-related treatment needs at the DOE sites, refine the MWFA technical baseline as it relates to mercury treatment, and make recommendations to the MWFA on how to most effectively address these needs. The team will initially focus on the sites with the most mercury-contaminated mixed wastes, whose representatives comprise the HgWG. However, the group will also work with the sites with less inventory to maximize the effectiveness of these efforts in addressing the mercury- related needs throughout the entire complex.

Conley, T.B.; Morris, M.I. [Oak Ridge National Lab., TN (United States); Holmes-Burns, H. [Westinghouse Savannah River Co., Aiken, SC (United States); Petersell, J. [AIMS, Inc., Golden, CO (United States); Schwendiman, L. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

1997-02-01T23:59:59.000Z

348

Screening of low cost sorbents for arsenic and mercury capture in gasification systems  

Science Conference Proceedings (OSTI)

A novel laboratory-scale fixed-bed reactor has been developed to investigate trace metal capture on selected sorbents for cleaning the hot raw gas in Integrated Gasification Combined Cycle (IGCC) power plants. The new reactor design is presented, together with initial results for mercury and arsenic capture on five sorbents. It was expected that the capture efficiency of sorbents would decrease with increasing temperature. However, a commercial activated carbon, Norit Darco 'Hg', and a pyrolysis char prepared from scrap tire rubber exhibit similar efficiencies for arsenic at 200 and at 400{sup o}C (70% and 50%, respectively). Meta-kaolinite and fly ash both exhibit an efficiency of around 50% at 200{sup o}C, which then dropped as the test temperature was increased to 400{sup o}C. Activated scrap tire char performed better at 200{sup o}C than the pyrolysis char showing an arsenic capture capacity similar to that of commercial Norit Darco 'Hg'; however, efficiency dropped to below 40% at 400{sup o}C. These results suggest that the capture mechanism of arsenic (As4) is more complex than purely physical adsorption onto the sorbents. Certain elements within the sorbents may have significant importance for chemical adsorption, in addition to the effect of surface area, as determined by the BET method. This was indeed the case for the mercury capture efficiency for all four sorbents tested. Three of the sorbents tested retained 90% of the mercury when operated at 100{sup o}C. As the temperature increased, the efficiency of activated carbon and pyrolysis char reduced significantly. Curiously, despite having the smallest Brunauer-Emmet-Teller (BET) surface area, a pf-combustion ash was the most effective in capturing mercury over the temperature range studied. These observations suggest that the observed mercury capture was not purely physical adsorption but a combination of physical and chemical processes. 27 refs., 4 figs., 4 tabs.

Cedric Charpenteau; Revata Seneviratne; Anthe George; Marcos Millan; Denis R. Dugwell; Rafael Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2007-09-15T23:59:59.000Z

349

The Hydrothermal Chemistry of Gold, Arsenic, Antimony, Mercury and Silver  

DOE Green Energy (OSTI)

A comprehensive thermodynamic database based on the Helgeson-Kirkham-Flowers (HKF) equation of state was developed for metal complexes in hydrothermal systems. Because this equation of state has been shown to accurately predict standard partial molal thermodynamic properties of aqueous species at elevated temperatures and pressures, this study provides the necessary foundation for future exploration into transport and depositional processes in polymetallic ore deposits. The HKF equation of state parameters for gold, arsenic, antimony, mercury, and silver sulfide and hydroxide complexes were derived from experimental equilibrium constants using nonlinear regression calculations. In order to ensure that the resulting parameters were internally consistent, those experiments utilizing incompatible thermodynamic data were re-speciated prior to regression. Because new experimental studies were used to revise the HKF parameters for H2S0 and HS-1, those metal complexes for which HKF parameters had been previously derived were also updated. It was found that predicted thermodynamic properties of metal complexes are consistent with linear correlations between standard partial molal thermodynamic properties. This result allowed assessment of several complexes for which experimental data necessary to perform regression calculations was limited. Oxygen fugacity-temperature diagrams were calculated to illustrate how thermodynamic data improves our understanding of depositional processes. Predicted thermodynamic properties were used to investigate metal transport in Carlin-type gold deposits. Assuming a linear relationship between temperature and pressure, metals are predicted to predominantly be transported as sulfide complexes at a total aqueous sulfur concentration of 0.05 m. Also, the presence of arsenic and antimony mineral phases in the deposits are shown to restrict mineralization within a limited range of chemical conditions. Finally, at a lesser aqueous sulfur concentration of 0.01 m, host rock sulfidation can explain the origin of arsenic and antimony minerals within the paragenetic sequence.

Bessinger, Brad; Apps, John A.

2003-03-23T23:59:59.000Z

350

Mercury levels in Lake Powell. Bioamplification of mercury in man-made desert reservoir  

SciTech Connect

Flameless atomic absorption analyses of samples from Lake Powell yield mean mercury levels in ppb of 0.01 in water, 30 in bottom sediments, 10 in shoreline substrates, 34 in plant leaves, 145 in plant debris, 28 in algae, 10 in crayfish, and 232 in fish muscle. Trout were unique in having lower concentrations in muscle than in highly vascularized blood tissues. Concentrations increased with increased body weight and higher levels on the food chain. Muscle of some large fish over 2 kg whole body weight exceeded 500 ppb. Bioamplification of mercury up the food chain and association of mercury with organic matter are demonstrated.

Potter, L.; Kidd, D.; Standiford, D.

1975-01-01T23:59:59.000Z

351

October 2001 Mercury Report of Earth Engineering Center to New York Academy of Sciences SOURCES AND MATERIAL BALANCE OF MERCURY  

E-Print Network (OSTI)

of mercury from MWC flue gases. After MACT controls reduce total mercury emission rates by 90% or greater not address any chemical transformations affecting mercury in soil, water or sediments (oxidation, reduction Speciation in Flue Gases: Overcoming the Analytical Difficulties," Brooks Rand Ltd., Seattle, WA, Fall 1991

Columbia University

352

NETL: Mercury Emissions Control Technologies - Advanced Utility  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Utility Mercury-Sorbent Field Testing Program Advanced Utility Mercury-Sorbent Field Testing Program Sorbent Technologies Corporation, will test an advanced halgenated activated carbon to determine the mercury removal performance and relative costs of sorbent injection for advanced sorbent materials in large-scale field trials of a variety of combinations of coal-type and utility plant-configuration. These include one site (Detroit Edison's St. Clair Station) with a cold-side ESP using subbituminous coal, or blend of subbituminous and bituminous coal, and one site (Duke Energy's Buck Plant) with a hot-side ESP which burns a bituminous coal. Related Papers and Publications: Semi-Annual Technical Progress Report for the period April 1 - October 31, 2004 [PDF-2275KB] Semi-Annual Technical Progress Report for the period of October 2003 - March 2004 [PDF-1108KB]

353

EVALUATION OF MERCURY COOLED BREEDER REACTORS  

SciTech Connect

A technical and economic evaluation of a mercury-cooled fast breeder reactor is presented. The objectives of the program were to establish the technical feasibility of a fast breeder reactor cooled with boiling mercury and to evaluate the long-range potential of such a reactor power plant for production of economic power. Details of the conceptual design of a 100-Mw(e) reactor and system are discussed. The power cost from a mercury cooled fast breeder reactor was estimated as 21.4 mills/kwh which is competitive with the power cost for the initial Enrico Fermi plant. It was concluded that this reactor concept is technically feasible and has promising long-range economic potential. (M.C.G.)

Battles, D.W.

1960-12-14T23:59:59.000Z

354

Hydrogen Geysers: Explanation for Observed Evidence of Geologically Recent Volatile-Related Activity on Mercury's Surface  

E-Print Network (OSTI)

High resolution images of Mercury's surface, from the MESSENGER spacecraft, reveal many bright deposits associated with irregular, shallow, rimless depressions whose origins were attributed to volatile-related activity, but absent information on the nature and origin of that volatile matter. Here I describe planetary formation, unlike the cited models, and show that primordial condensation from an atmosphere of solar composition at pressures of one atmosphere or above will lead to iron condensing as a liquid and dissolving copious amounts of hydrogen, which is subsequently released as Mercury's core solidifies and escapes from the surface, yielding the observed pit-like features with associated highly-reflecting matter. The exiting hydrogen chemically reduces some iron compound, probably iron sulfide, to the metal, which accounts for the bright deposits.

J. Marvin Herndon

2011-10-20T23:59:59.000Z

355

Optimized Parameters for a Mercury Jet Target  

Science Conference Proceedings (OSTI)

A study of target parameters for a high-power, liquid mercury jet target system for a neutrino factory or muon collider is presented. Using the MARS code, we simulate particle production initiated by incoming protons with kinetic energies between 2 and 100 GeV. For each proton beam energy, we maximize production by varying the geometric parameters of the target: the mercury jet radius, the incoming proton beam angle, and the crossing angle between the mercury jet and the proton beam. The number of muons surviving through an ionization cooling channel is determined as a function of the proton beam energy. We optimize the mercury jet target parameters: the mercury jet radius, the incoming proton beam angle and the crossing angle between the mercury jet and the proton beam for each proton beam energy. The optimized target radius varies from about 0.4 cm to 0.6 cm as the proton beam energy increases. The optimized beam angle varies from 75 mrad to 120 mrad. The optimized crossing angle is near 20 mrad for energies above 5 GeV. These values differ from earlier choices of 67 mrad for the beam angle and 33 mrad for the crossing angle. These new choices for the beam parameters increase the meson production by about 20% compared to the earlier parameters. Our study demonstrates that the maximum meson production efficiency per unit proton beam power occurs when the proton kinetic energy is in the range of 5-15 GeV. Finally, the dependence on energy of the number of muons at the end of the cooling channel is nearly identical to the dependence on energy of the meson production 50 m from the target. This demonstrates that the target parameters can be optimized without the additional step of running the distribution through a code such as ICOOL that simulates the bunching, phase rotation, and cooling.

Ding, X.; Kirk, H.

2010-12-01T23:59:59.000Z

356

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

Michael D. Durham

2003-05-01T23:59:59.000Z

357

A proposed sensor deployment to investigate biogeochemical controls on mercury cycling in Mugu Lagoon, California (CON 5)  

E-Print Network (OSTI)

biogeochemical controls on mercury cycling in Mugu Lagoon,of UCLA, is impaired for mercury, a potent neurotoxin, whichhealth and wildlife t o •Mercury methylation is the process

Sarah Rothenberg; Jenny Jay

2006-01-01T23:59:59.000Z

358

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one

359

Enhanced Mercury Removal by Wet FGD Systems  

Science Conference Proceedings (OSTI)

This report provides results from testing conducted in 2005 as part of three EPRI co-funded projects that are aimed at enhancing the capture of mercury in flue gas from coal-fired power boilers when scrubbed by wet flue gas desulfurization (FGD) systems. The first project is co-sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (DOE-NETL) under Cooperative Agreement DE-FC26-01NT41185, "Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD," as well as by two...

2006-03-07T23:59:59.000Z

360

MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. An additional task was included in this project to evaluate mercury oxidation upstream of a dry scrubber by using mercury oxidants. This project demonstrated at the pilot-scale level a technology that provides a cost-effective technique to control mercury and, at the same time, greatly enhances fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution for improved fine particulate control combined with effective mercury control for a large segment of the U.S. utility industry as well as other industries.

Ye Zhuang; Stanley J. Miller

2005-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Heavy metals in commercial fish in New Jersey  

SciTech Connect

Levels of contaminants in fish are of particular interest because of the potential risk to humans who consume them. While attention has focused on self-caught fish, most of the fish eaten by the American public comes from commercial sources. We sampled 11 types of fish and shellfish obtained from supermarkets and specialty fish markets in New Jersey and analyzed them for arsenic, cadmium, chromium, lead, manganese, mercury, and selenium. We test the null hypothesis that metal levels do not vary among fish types, and we consider whether the levels of any metals could harm the fish themselves or their predators or pose a health risk for human consumers. There were significant interspecific differences for all metals, and no fish types had the highest levels of more than two metals. There were few significant correlations (Kendall tau) among metals for the three most numerous fish (yellowfin tuna, bluefish, and flounder), the correlations were generally low (below 0.40), and many correlations were negative. Only manganese and lead positively were correlated for tuna, bluefish, and flounder. The levels of most metals were below those known to cause adverse effects in the fish themselves. However, the levels of arsenic, lead, mercury, and selenium in some fish were in the range known to cause some sublethal effects in sensitive predatory birds and mammals and in some fish exceeded health-based standards. The greatest risk from different metals resided in different fish; the species of fish with the highest levels of a given metal sometimes exceeded the human health guidance or standards for that metal. Thus, the risk information given to the public (mainly about mercury) does not present a complete picture. The potential of harm from other metals suggests that people not only should eat smaller quantities of fish known to accumulate mercury but also should eat a diversity of fish to avoid consuming unhealthy quantities of other heavy metals. However, consumers should bear in mind that standards have a margin of safety.

Burger, Joanna [Division of Life Sciences, 604 Allison Road, Piscataway, NJ 08854-8082 (United States) and Environmental and Occupational Health Sciences Institute and Consortium for Risk Evaluation with Stakeholder Participation, Piscataway, NJ 08854 (United States)]. E-mail: burger@biology.rutgers.edu; Gochfeld, Michael [Environmental and Occupational Health Sciences Institute and Consortium for Risk Evaluation with Stakeholder Participation, Piscataway, NJ 08854 (United States); Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States)

2005-11-15T23:59:59.000Z

362

Method for dry etching of transition metals  

DOE Patents (OSTI)

A method for dry etching of transition metals. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorous-containing .pi.-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/.pi.-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the .pi.-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the .pi.-acceptor ligand for forming the volatile transition metal/.pi.-acceptor ligand complex.

Ashby, Carol I. H. (Edgewood, NM); Baca, Albert G. (Albuquerque, NM); Esherick, Peter (Albuquerque, NM); Parmeter, John E. (Albuquerque, NM); Rieger, Dennis J. (Tijeras, NM); Shul, Randy J. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

363

Method for dry etching of transition metals  

DOE Patents (OSTI)

A method for dry etching of transition metals is disclosed. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorus-containing {pi}-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/{pi}-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the {pi}-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the {pi}-acceptor ligand for forming the volatile transition metal/{pi}-acceptor ligand complex.

Ashby, C.I.H.; Baca, A.G.; Esherick, P.; Parmeter, J.E.; Rieger, D.J.; Shul, R.J.

1998-09-29T23:59:59.000Z

364

LFCM (liquid-fed ceramic melter) processing characteristics of mercury  

SciTech Connect

An experimental-scale liquid-fed ceramic melter was used in a series of tests to evaluate the processing characteristics of mercury in simulated defense waste under various melter operating conditions. This solidification technology had no detectable capacity for incorporating mercury into its borosilicate, vitreous, product, and essentially all the mercury fed to the melter was lost to the off-gas system as gaseous effluent. An ejector venturi scrubber condensed and collected 97% of the mercury evolved from the melter. Chemically the condensed mercury effluent was composed entirely of chlorides, and except in a low-temperature test, mercury chlorides (Hg{sub 2}Cl{sub 2}) was the primary chloride formed. As a result, combined mercury accounted for most of the insoluble mass collected by the process quench scrubber. Although macroscopic quantities of elemental mercury were never observed in process secondary waste streams, finely divided and dispersed mercury that blackened all condensed Hg{sub 2}Cl{sub 2} residues was capable of saturating the quenched process exhaust with mercury vapor. However, the vapor pressure of mercury in the quenched melter exhaust was easily and predictably controlled with an off-gas stream chiller. 5 refs., 4 figs., 12 tabs.

Goles, R.W.; Sevigny, G.J.; Andersen, C.M.

1990-06-01T23:59:59.000Z

365

J. Am. Chem. SOC.1991, 113,9575-9585 9575 Mixed Aggregation of Lithium Enolates and Lithium Halides  

E-Print Network (OSTI)

J. Am. Chem. SOC.1991, 113,9575-9585 9575 Mixed Aggregation of Lithium Enolates and Lithium Halides with Lithium 2,2,6,6-Tetramethylpiperidide(LiTMP) Patricia L. Hall, James H. Gilchrist, Aidan T. Harrison]-lithiumdi-tert-butylamide and conformationally locked [6Li]-lithium2,2,4,6,6-pentamethylpiperidide shed further light

Collum, David B.

366

NETL: Mercury Emissions Control Technologies - Full- Scale Testing of  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Scale Testing of Enhanced Mercury Control in Wet FGD Full-Scale Testing of Enhanced Mercury Control in Wet FGD The goal of this project is to commercialize methods for the control of mercury in coal-fired electric utility systems equipped with wet flue gas desulfurization (wet FGD). The two specific objectives of this project are 1) ninety percent (90%) total mercury removal and 2) costs below 1/4 to 1/2 of today's commercially available activated carbon mercury removal technologies. Babcock and Wilcox and McDermott Technology, Inc's (B&W/MTI's) will demonstrate their wet scrubbing mercury removal technology (which uses very small amounts of a liquid reagent to achieve increased mercury removal) at two locations burning high-sulfur Ohio bituminous coal: 1) Michigan South Central Power Agency's (MSCPA) 55 MWe Endicott Station located in Litchfield, Michigan and 2) Cinergy's 1300 MWe Zimmer Station located near Cincinnati, Ohio.

367

NETL: News Release - Innovative Mercury Removal Technique Shows Early  

NLE Websites -- All DOE Office Websites (Extended Search)

August 5, 2003 August 5, 2003 Innovative Mercury Removal Technique Shows Early Promise Photochemical Process Developed in Federal Lab Removes Mercury from Flue Gas - NETL scientist Evan Granite prepares a lab test of the UV mercury removal process. - NETL scientist Evan Granite prepares for a lab test of the UV mercury removal process. MORGANTOWN, WV - A promising technology to remove mercury from coal-fired power plants -- dubbed the "GP-254 Process" -- has been developed and is currently being tested at the Department of Energy's National Energy Technology Laboratory (NETL). Newly patented, the GP-254 Process enhances mercury removal using ultraviolet light to induce various components of power plant stack gas to react with the mercury, and changes the

368

NETL: Mercury Emissions Control Technologies - Bench Scale Kinetics of  

NLE Websites -- All DOE Office Websites (Extended Search)

Bench Scale Kinetics of Mercury Reactions in FGD Liquors Bench Scale Kinetics of Mercury Reactions in FGD Liquors When research into the measurement and control of Hg emissions from coal-fired power plants began in earnest in the early 1990s, it was observed that oxidized mercury can be scrubbed at high efficiency in wet FGD systems, while elemental mercury can not. In many cases, elemental mercury concentrations were observed to increase slightly across wet FGD systems, but this was typically regarded as within the variability of the measurement methods. However, later measurements have shown substantial re-emissions from some FGD systems. The goal of this project is to develop a fundamental understanding of the aqueous chemistry of mercury (Hg) absorbed by wet flue gas desulfurization (FGD) scrubbing liquors. Specifically, the project will determine the chemical reactions that oxidized mercury undergoes once absorbed, the byproducts of those reactions, and reaction kinetics.

369

NETL: Mercury Emissions Control Technologies - Development of Comprehensive  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Scale Testing of Mercury Control Via Sorbent Injection Full-Scale Testing of Mercury Control Via Sorbent Injection DOE has identified technologies (based on past DOE and other R&D organizations' mercury measurement and control achievements) that are expected to be important in developing possible strategies on mercury control for the coal-fired electric utility industry. To address critical questions related to cost and efficiency of these mercury control technologies, DOE has funded the first of a kind large-scale initiative aimed at testing and evaluating large-scale mercury control technologies for coal-based power systems. These tests will collect cost and performance data with parametric and long term field experiments at power plants with existing air pollution control devices (APCDs) utilized to control other pollutants as well as mercury in hopes of providing the cheapest control options for the utility industry in mid-term application (5 to 10 years).

370

Mercury Handling for the Target System for a Muon Collider  

Science Conference Proceedings (OSTI)

The baseline target concept for a Muon Collider or Neutrino Factory is a free-stream mercury jet being impacted by an 8-GeV proton beam. The target is located within a 20-T magnetic field, which captures the generated pions that are conducted to a downstream decay channel. Both the mercury and the proton beam are introduced at slight downward angles to the magnetic axis. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. The impact energy of the remaining beam and jet are substantial, and it is required that splashes and waves be controlled in order to minimize the potential for interference of pion production at the target. Design issues discussed in this paper include the nozzle, splash mitigation in the mercury pool, the mercury containment vessel, and the mercury recirculation system.

Graves, Van B [ORNL; Mcdonald, K [Princeton University; Kirk, H. [Brookhaven National Laboratory (BNL); Weggel, Robert [Particle Beam Laser, Inc.; Souchlas, Nicholas [Particle Beam Laser, Inc.; Sayed, H [Brookhaven National Laboratory (BNL); Ding, X [University of California, Los Angeles

2012-01-01T23:59:59.000Z

371

Application of chemical kinetics to mercury cycling in the aquatic environment: Photoreduction of mercury(II) and binding of mercury(II) and methylmercury(+) to natural ligands .  

E-Print Network (OSTI)

??The thesis comprises four main chapters on chemical reactions and kinetics of some of the processes involved in the global mercury cycle. In the first… (more)

Ababneh, Fuad A

2013-01-01T23:59:59.000Z

372

Bounding estimate of DWPF mercury emissions. Revision 1  

DOE Green Energy (OSTI)

Two factors which have substantial impact on predicted Mercury emissions are the air flows in the Chemical Process Cell (CPC) and the exit temperature of the Formic Acid Vent Condenser (FAVC). The discovery in the IDMS (Integrated DWPF Melter System) of H{sub 2} generation by noble metal catalyzed formic acid decomposition and the resultant required dilution air flow has increased the expected instantaneous CPC air flow by as much as a factor of four. In addition, IDMS has experienced higher than design (10{degrees}C) FAVC exit temperatures during certain portions of the operating cycle. These temperatures were subsequently attributed to the exothermic reaction of NO to NO{sub 2}. Moreover, evaluation of the DWPF FAVC indicated it was undersized and unless modified or replaced, routine exit temperatures would be in excess of design. Purges required for H{sub 2} flammability control and verification of elevated FAVC exit temperatures due to NO{sub x} reactions have lead to significant changes in CPC operating conditions. Accordingly, mercury emissions estimates have been updated based upon the new operating requirements, IDMS experience, and development of an NO{sub x}/FAVC model which predicts FAVC exit temperatures. Using very conservative assumptions and maximum purge rates, the maximum calculated Hg emissions is approximately 130 lbs/yr. A range of 100 to 120 lbs/yr is conservatively predicted for other operating conditions. The peak emission rate calculated is 0.027 lbs/hr. The estimated DWPF Hg emissions for the construction permit are 175 lbs/yr (0.02 lbs/hr annual average).

Jacobs, R.A.

1993-10-28T23:59:59.000Z

373

NETL: IEP - Mercury Emissions Control: Regulatory Drivers  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Drivers Regulatory Drivers The Clean Air Act Amendments of 1990 (CAAA) brought about new awareness regarding the overall health-effects of stationary source fossil combustion emissions. Title III of the CAAA identified 189 pollutants, including mercury, as hazardous or toxic and required the Environmental Protection Agency (EPA) to evaluate their emissions by source, health effects and environmental implications, including the need to control these emissions. These pollutants are collectively referred to as air toxics or hazardous air pollutants (HAPs). The provisions in Title III specific to electric generating units (EGU) were comprehensively addressed by DOE's National Energy Technology Laboratory (NETL) and the Electric Power Research Institute (EPRI) in collaborative air toxic characterization programs conducted between 1990 and 1997. This work provided most of the data supporting the conclusions found in EPA's congressionally mandated reports regarding air toxic emissions from coal-fired utility boilers; the Mercury Study Report to Congress (1997)1 and the "Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units -- Final Report to Congress" (1998).2 The first report identified coal-fired power plants as the largest source of human-generated mercury emissions in the U.S. and the second concluded that mercury from coal-fired utilities was the HAP of "greatest potential concern" to the environment and human health that merited additional research and monitoring.

374

Catalytic Reactor For Oxidizing Mercury Vapor  

DOE Patents (OSTI)

A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

Helfritch, Dennis J. (Baltimore, MD)

1998-07-28T23:59:59.000Z

375

Coal Biomodification to Reduce Mercury Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4132 heino.beckert@netl.doe.gov Coal BiomodifiCation to ReduCe meRCuRy emissions Description In partnership with a number of...

376

Evaluation of Sorbent Injection for Mercury Control  

Science Conference Proceedings (OSTI)

ADA-ES, Inc., with support from DOE/NETL, EPRI, and industry partners, studied mercury control options at six coal-fired power plants. The overall objective of the this test program was to evaluate the capabilities of activated carbon injection at six plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, American Electric Power's Conesville Station Unit 6, and Labadie Power Plant Unit 2. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The financial goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000 per pound of mercury removed. Results from testing at Holcomb, Laramie, Meramec, Labadie, and Monroe indicate the DOE goal was successfully achieved. However, further improvements for plants with conditions similar to Conesville are recommended that would improve both mercury removal performance and economics.

Sharon Sjostrom

2008-06-30T23:59:59.000Z

377

Impacts of NOx Controls on Mercury Controllability  

Science Conference Proceedings (OSTI)

Past tests have led researchers and air pollution regulators to hypothesize that nitrogen oxides (NOx) controls can enhance mercury capture by particulate collection devices and sulfur dioxide (SO2) scrubbers. This technology review presents results obtained to date from a comprehensive program designed to confirm, qualify, and quantify these hypotheses.

2002-03-13T23:59:59.000Z

378

Metal Aminoboranes  

Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be ...

379

Characterization of the Deltaproteobacteria in Contaminated and Uncontaminated Surface Stream Sediments and Identification of Potential Mercury Methylators  

Science Conference Proceedings (OSTI)

Microbial communities were examined in surface stream sediments at five contaminated sites and one control site near Oak Ridge, TN in order to identify bacteria that could be contributing to mercury methylation. The phylogenetic composition of the sediment bacterial community was examined over three quarterly sampling periods (36 samples) using 16s rRNA pyrosequencing. Only 3064 sequences (0.85 % of the total community) were identified as Deltaproteobacteria by the RDP classifier at the 99% confidence threshold. Constrained ordination techniques indicated significant positive correlations between Desulfobulbus spp., Desulfonema spp. and Desulfobacca spp. and methyl mercury concentrations in the contaminated sites. On the contrary, the distribution of organisms related to Byssovorax was significantly correlated to inorganic carbon, nitrate and uranium concentrations. Overall, the abundance and richness of Deltaproteobacteria sequences were higher in the sediments of the site, while the majority of the members present at the contaminated sites were either known metal reducers/methylators or metal tolerant species.

Mosher, Jennifer J [ORNL; Vishnivetskaya, Tatiana A [ORNL; Elias, Dwayne A [ORNL; Podar, Mircea [ORNL; Brooks, Scott C [ORNL; Brown, Steven D [ORNL; Brandt, Craig C [ORNL; Palumbo, Anthony Vito [ORNL

2012-01-01T23:59:59.000Z

380

Evaluation of Sorbent Injection for Mercury Control  

SciTech Connect

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at DTE Energy's Monroe Power Plant, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program was to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000/lb mercury removed. The results from Monroe indicate that using DARCO{reg_sign} Hg would result in higher mercury removal (80%) at a sorbent cost of $18,000/lb mercury, or 70% lower than the benchmark. These results demonstrate that the goals established by DOE/NETL were exceeded during this test program. The increase in mercury removal over baseline conditions is defined for this program as a comparison in the outlet emissions measured using the Ontario Hydro method during the baseline and long-term test periods. The change in outlet emissions from baseline to long-term testing was 81%.

Sharon Sjostrom

2006-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

High Permeability Ternary Palladium Alloy Membranes with Improved Sulfur and Halide Tolerance  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 HigH Permeability ternary Palladium alloy membranes witH imProved sulfur and Halide tolerance Description A critical step in the transition to the hydrogen economy is the separation of hydrogen from coal gasification gases (syngas) or methane. This is typically accomplished through membrane separation. Past research has shown that palladium (Pd) alloys possess great potential as robust and economical membranes. However, the search for the optimal binary or ternary alloys is an involved and costly process due to the immense number of alloy variations that could be prepared and tested. Recent modeling work at Georgia Institute of Technology using density functional theory (DFT) identified several promising ternary alloy compositions with improved

382

Studies of non-proportionality in alkali halide and strontium iodide scintillators using SLYNCI  

Science Conference Proceedings (OSTI)

Recently a collaboration of LLNL and LBNL has constructed a second generation Compton coincidence instrument to study the non-proportionality of scintillators. This device, known as SLYNCI (Scintillator Light-Yield Non-proportionality Characterization Instrument), has can completely characterize a sample with less than 24 hours of running time. Thus, SLYNCI enables a number of systematic studies of scintillators since many samples can be processed in a reasonable length of time. These studies include differences in nonproportionality between different types of scintillators, different members of the same family of scintillators, and impact of different doping levels. The results of such recent studies are presented here, including a study of various alkali halides, and the impact of europium doping level in strontium iodide. Directions of future work area also discussed.

Ahle, Larry; Bizarri, Gregory; Boatner, Lynn; Cherepy, Nerine J.; Choong, Woon-Seng; Moses, William W.; Payne, Stephen A.; Shah, Kanai; Sheets, Steven; Sturm, Benjamin, W.

2010-10-14T23:59:59.000Z

383

Studies of Non-Proportionality in Alkali Halide and Strontium Iodide Scintillators Using SLYNCI  

Science Conference Proceedings (OSTI)

Recently a collaboration of LLNL and LBNL has constructed a second generation Compton coincidence instrument to study the non-proportionality of scintillators [1-3]. This device, known as SLYNCI (Scintillator Light-Yield Non-proportionality Characterization Instrument), has can completely characterize a sample with less than 24 hours of running time. Thus, SLYNCI enables a number of systematic studies of scintillators since many samples can be processed in a reasonable length of time. These studies include differences in nonproportionality between different types of scintillators, different members of the same family of scintillators, and impact of different doping levels. The results of such recent studies are presented here, including a study of various alkali halides, and the impact of europium doping level in strontium iodide. Directions of future work area also discussed.

Ahle, L; Bizarri, G; Boatner, L; Cherepy, N J; Choong, W; Moses, W W; Payne, S A; Shah, K; Sheets, S; Sturm, B W

2009-05-05T23:59:59.000Z

384

Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria  

Science Conference Proceedings (OSTI)

Methylmercury is a neurotoxin that poses significant health risks to humans. Some anaerobic sulphate- and iron-reducing bacteria can methylate oxidized forms of mercury, generating methylmercury1-4. One strain of sulphate-reducing bacteria (Desulfovibrio desulfuricans ND132) can also methylate elemental mercury5. The prevalence of this trait among different bacterial strains and species remains unclear, however. Here, we compare the ability of two strains of the sulphate-reducing bacterium Desulfovibrio and one strain of the iron-reducing bacterium Geobacter to oxidise and methylate elemental mercury in a series of laboratory incubations. Experiments were carried out under dark, anaerobic conditions, in the presence of environmentally-relevant concentrations of elemental mercury. We report differences in the ability of these organisms to oxidise and methylate elemental mercury. In line with recent findings5, we show that Desulfovibrio desulfuricans ND132 can both oxidise and methylate elemental mercury. However, the rate of methylation of elemental mercury is only about one third the rate of methylation of oxidized mercury. We also show that Desulfovibrio alaskensis G20 can oxidise, but not methylate, elemental mercury. Geobacter sulfurreducens PCA is able to oxidise and methylate elemental mercury in the presence of cysteine. We suggest that the activity of methylating and non-methylating bacteria may together enhance the formation of methylmercury in anaerobic environments.

Hu, Haiyan [ORNL] [ORNL; Lin, Hui [ORNL] [ORNL; Zheng, Wang [ORNL] [ORNL; Tomanicek, Stephen J [ORNL] [ORNL; Johs, Alexander [ORNL] [ORNL; Feng, Xinbin [ORNL] [ORNL; Elias, Dwayne A [ORNL] [ORNL; Liang, Liyuan [ORNL] [ORNL; Liang, Liyuan [ORNL] [ORNL; Gu, Baohua [ORNL] [ORNL

2013-01-01T23:59:59.000Z

385

Mercury Control with Calcium-Based Sorbents and Oxidizing Agents  

SciTech Connect

This Final Report contains the test descriptions, results, analysis, correlations, theoretical descriptions, and model derivations produced from many different investigations performed on a project funded by the U.S. Department of Energy, to investigate calcium-based sorbents and injection of oxidizing agents for the removal of mercury. Among the technologies were (a) calcium-based sorbents in general, (b) oxidant-additive sorbents developed originally at the EPA, and (c) optimized calcium/carbon synergism for mercury-removal enhancement. In addition, (d) sodium-tetrasulfide injection was found to effectively capture both forms of mercury across baghouses and ESPs, and has since been demonstrated at a slipstream treating PRB coal. It has been shown that sodium-tetrasulfide had little impact on the foam index of PRB flyash, which may indicate that sodium-tetrasulfide injection could be used at power plants without affecting flyash sales. Another technology, (e) coal blending, was shown to be an effective means of increasing mercury removal, by optimizing the concentration of calcium and carbon in the flyash. In addition to the investigation and validation of multiple mercury-control technologies (a through e above), important fundamental mechanism governing mercury kinetics in flue gas were elucidated. For example, it was shown, for the range of chlorine and unburned-carbon (UBC) concentrations in coal-fired utilities, that chlorine has much less effect on mercury oxidation and removal than UBC in the flyash. Unburned carbon enhances mercury oxidation in the flue gas by reacting with HCl to form chlorinated-carbon sites, which then react with elemental mercury to form mercuric chloride, which subsequently desorbs back into the flue gas. Calcium was found to enhance mercury removal by stabilizing the oxidized mercury formed on carbon surfaces. Finally, a model was developed to describe these mercury adsorption, desorption, oxidation, and removal mechanisms, including the synergistic enhancement of mercury removal by calcium.

Thomas K. Gale

2005-07-01T23:59:59.000Z

386

Ambient-temperature superconductor symetrical metal-dihalide bis-(ethylenedithio)-tetrathiafulvalene compounds  

DOE Patents (OSTI)

A new class of organic superconductors having the formula (ET).sub.2 MX.sub.2 wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET).sub.2 AuI.sub.2 exhibits a transition temperature of 5 K. which is high for organic superconductors.

Williams, Jack M. (Downers Grove, IL); Wang, Hsien-Hau (Willowbrook, IL); Beno, Mark A. (Woodridge, IL)

1987-01-01T23:59:59.000Z

387

Elkhorn Rural Public Pwr Dist | Open Energy Information  

Open Energy Info (EERE)

Rural Public Pwr Dist Rural Public Pwr Dist Jump to: navigation, search Name Elkhorn Rural Public Pwr Dist Place Nebraska Utility Id 5780 Utility Location Yes Ownership P NERC Location SPP NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Mercury Vapor Lamp 175 Watt Lighting Mercury Vapor Lamp 250 Watt Lighting Mercury Vapor Lamp 400 Watt Lighting Metal Halide 1000 Watt Lighting Metal Halide 1500 Watt Lighting Metal Halide 400 Watt Lighting RATE 1,3- Farm Residential, Commercial, Cabins, Seasonal--Single Phase Commercial RATE 12, 69- Urban Commercial Electric Space Heating, Single Phase

388

The Effect of Wildfire on Soil Mercury Concentrations in Southern California Watersheds  

E-Print Network (OSTI)

G. J. (2007). Release of mercury from Rocky Mountain forestSlemr, F. (2001). Gaseous mercury emissions from a fire inMontesdeoca, M. R. (2008). Mercury transport in response to

2010-01-01T23:59:59.000Z

389

Contribution of Iron-Reducing Bacteria to Mercury Methylation in Marine Sediments  

E-Print Network (OSTI)

AND R. P. MASON. 2006. Mercury methylation by dissimilatoryPRUCHA, AND G. MIERLE. 1991. Mercury methylation by sulfate-AND J. M. SIEBURTH. 1993. Mercury biogeochemical cycling in

Fleming, Emily J.; Nelson, D C

2006-01-01T23:59:59.000Z

390

ROTATION OF MERCURY: THEORETICAL ANALYSIS OF THE DYNAMICS OF A RIGID ELLIPSOIDAL PLANET  

E-Print Network (OSTI)

Laboratory ROTATION OF MERCURY: THEDRETICAL ANALYSIS OF THEW -7405-eng-48 ROTATION OF MERCURY: THEORETICAL ANALYSIS OFfor the rotation of Mercury is sho'ln to imply locked-in

Laslett, L. Jackson

2008-01-01T23:59:59.000Z

391

USE OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY FOR THE MEASUREMENT OF MERCURY IN OIL SHALE GASES  

E-Print Network (OSTI)

and R. E. Poulson. Mercury Emissions From A Simulated In-for the Measurement of Mercury in Oil Shale Gases D. GirvinJFOR THE MEASUREMENT OF MERCURY IN OIL SHALE GASES D. C.

Girvin, D.G.

2011-01-01T23:59:59.000Z

392

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

Shi, J.B. ; Feng, X.B. Mercury Pollution in China. Environ.J T. DOE/NETL’s Phase II Mercury Control Technology Fieldoxidants for the oxidation of mercury gas. Ind. vEng. Chem.

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

393

Oxidation of elemental mercury by chlorine: Gas phase, Surface, and Photo-induced reaction pathways  

E-Print Network (OSTI)

of Air Quality III: Mercury, Trace Elements, and Particulate34, 2711. 7. Sloss, L.L. Mercury – Emissions and Control.1996 , Jan. , 60 pp. 2. Mercury Study Report to Congress;

Yan, Nai-Qiang; Liu, Shou-Heng; Chang, Shih-Ger

2004-01-01T23:59:59.000Z

394

Mercury, Cadmium and Lead Biogeochemistry in the Soil–Plant–Insect System in Huludao City  

E-Print Network (OSTI)

YE, Ketris MP (2005a) Mercury in coal: a review part 1of total and methyl mercury by arthropods. Bull Environ259 DOI 10.1007/s00128-009-9688-6 Mercury, Cadmium and Lead

Zhang, Zhong-Sheng; Lu, Xian-Guo; Wang, Qi-Chao; Zheng, Dong-Mei

2009-01-01T23:59:59.000Z

395

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network (OSTI)

M. and Chang, B. , 1974; Mercury Monitor for Ambient Air,E. Poulson INTRODUCTION Mercury emissions from fossil-fuelHarley, R. A. , 1973; Mercury Balance on a Large Pulverized

Fox, J. P.

2012-01-01T23:59:59.000Z

396

Mercury and Methylmercury in the San Francisco Bay area: land-use impact and indicators  

E-Print Network (OSTI)

R.P. , and Flegal A. R. 2003, Mercury speciation in the SanAbdrashitova S. A. , 2001, Mercury in Aquatic Environment: A222 Hydrology for Planner Mercury and Methylmercury in the

Kim, Hyojin

2008-01-01T23:59:59.000Z

397

Evaluation of MerCAP^TM for Power Plant Mercury Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of MErCaP(tm) for PowEr Plant MErCury Control Background Several technologies are under development for removing mercury from power plant flue gas streams. The mercury...

398

Sorption Mechanisms for Mercury Capture in Warm Post-Gasification Gas Clean-Up Systems  

SciTech Connect

The research was directed towards a sorbent injection/particle removal process where a sorbent may be injected upstream of the warm gas cleanup system to scavenge Hg and other trace metals, and removed (with the metals) within the warm gas cleanup process. The specific objectives of this project were to understand and quantify, through fundamentally based models, mechanisms of interaction between mercury vapor compounds and novel paper waste derived (kaolinite + calcium based) sorbents (currently marketed under the trade name MinPlus). The portion of the research described first is the experimental portion, in which sorbent effectiveness to scavenge metallic mercury (Hg{sup 0}) at high temperatures (>600 C) is determined as a function of temperature, sorbent loading, gas composition, and other important parameters. Levels of Hg{sup 0} investigated were in an industrially relevant range ({approx} 25 {micro}g/m{sup 3}) although contaminants were contained in synthetic gases and not in actual flue gases. A later section of this report contains the results of the complementary computational results.

Jost Wendt; Sung Jun Lee; Paul Blowers

2008-09-30T23:59:59.000Z

399

Persistent infrared spectral hole burning of NO; ions in potassium halide crystals. I. Priric9ple and satellite.holle generation  

E-Print Network (OSTI)

Persistent infrared spectral hole burning of NO; ions in potassium halide crystals. I. Priric9ple spectroscopyand persistentinfrared spectralhole (PIRSH) burning separatelyand together. With interferometry cm --'and, with PIRSH burning, it has beendemijnstratedthat the narrowestlinesare

Sethna, James P.

400

Comparison of spatial interpolation methods for estimating heavy metals in sediments of Caspian Sea  

Science Conference Proceedings (OSTI)

This study aims to estimate the spatial distribution patterns of six heavy metals: Arsenic (As), Cadmium (Cd), Copper (Cu), Mercury (Hg), Plumbum (Pb), Zinc (Zn) in the sediments of Caspian Sea. Ordinary kriging (OK), genetic algorithm based on artificial ... Keywords: Artificial neural network, Caspian Sea, Fuzzy inference system, Genetic algorithm, Heavy metals, Ordinary kriging, Spatial patterns

S. M. Kazemi; S. M. Hosseini

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques |  

Open Energy Info (EERE)

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Abstract In order to evaluate the suitability of the soil mercury geochemical survey as a geothermal exploration technique, soil concentrates of mercy are compared to the distribution of measured geothermal gradients at Dixie Valley, Nevada; Roosevelt Hot Springs, Utah; and Nova, Japan. Zones containing high mercury values are found to closely correspond to high geothermal gradient zones in all three areas. Moreover, the highest mercury values within the anomalies are found near the wells with the highest geothermal gradient. Such close correspondence between soil concentrations

402

Geological and Anthropogenic Factors Influencing Mercury Speciation in Mine  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological and Anthropogenic Factors Influencing Mercury Speciation Geological and Anthropogenic Factors Influencing Mercury Speciation in Mine Wastes Christopher S. Kim,1 James J. Rytuba,2 Gordon E. Brown, Jr.3 1Department of Physical Sciences, Chapman University, Orange, CA 92866 2U.S. Geological Survey, Menlo Park, CA 94025 3Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 Introduction Figure 1. Dr. Christopher Kim collects a mine waste sample from the Oat Hill mercury mine in Northern California. The majority of mercury mine wastes at these sites are present as loose, unconsolidated piles, facilitating the transport of mercury-bearing material downstream into local watersheds. Mercury (Hg) is a naturally occurring element that poses considerable health risks to humans, primarily through the consumption of fish which

403

Thief Process Removal of Mercury from Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Process for the Removal of Mercury from Flue Gas Process for the Removal of Mercury from Flue Gas Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 6,521,021 entitled "Thief Process for the Removal of Mercury from Flue Gas." Disclosed in this patent is a novel process in which partially combusted coal is removed from the combustion chamber of a power plant using a lance (called a "thief"). This partially combusted coal acts as a thermally activated adsorbent for mercury. When it is in- jected into the duct work of the power plant downstream from the exit port of the combustion chamber, mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury

404

Oxidation of Mercury in Products of Coal Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Heng Ban Heng Ban Principal Investigator University of Alabama at Birmingham 1150 10th Avenue South Birmingham, AL 35294-4461 205-934-0011 hban@uab.edu Environmental and Water Resources OxidatiOn Of Mercury in PrOducts Of cOal cOMbustiOn Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. A variety of mercury reduction technologies are under commercial development, but an improved understanding of the fundamental chemical mechanisms that control the transformations and capture of mercury in boilers and pollution control devices is required to achieve necessary performance and cost reduction levels. Oxidized mercury is more easily captured by pollution control devices, such as Selective

405

Mercury Energy formerly Aquus Energy | Open Energy Information  

Open Energy Info (EERE)

Energy formerly Aquus Energy Energy formerly Aquus Energy Jump to: navigation, search Name Mercury Energy (formerly Aquus Energy) Place New Rochelle, New York Zip 10801 Sector Solar Product Integrator of solar energy systems for commercial and residential clients located in the mid-Atlantic and Northeast regions of the US through its wholly-owned subsidary Mercury Solar Energy. References Mercury Energy (formerly Aquus Energy)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mercury Energy (formerly Aquus Energy) is a company located in New Rochelle, New York . References ↑ "Mercury Energy (formerly Aquus Energy)" Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Energy_formerly_Aquus_Energy&oldid=348731

406

Evaluation of the mercury soil mapping geothermal exploration techniques  

Science Conference Proceedings (OSTI)

In order to evaluate the suitability of the soil mercury geochemical survey as a geothermal exploration technique, soil concentrations of mercury are compared to the distribution of measured geothermal gradients at Dixie Valley, Nevada; Roosevelt Hot Springs, Utah; and Noya, Japan. Zones containing high-mercury values are found to closely correspond to high geothermal gradient zones in all three areas. Moreover, the highest mercury values within the anomalies are found near the wells with the highest geothermal gradient. Such close correspondence between soil concentrations of mercury and high-measured geothermal gradients strongly suggests that relatively low-cost soil mercury geochemical sampling can be effective in identifying drilling targets within high-temperature areas.

Matlick, J.S.; Shiraki, M.

1981-10-01T23:59:59.000Z

407

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Soil mercury and radon emanation surveys were performed over much of the accessible surface of Lualualei Valley (Cox and Thomas, 1979). The results of these surveys (Figs 7 and 8) delineated several areas in which soil mercury concentrations or radon emanation rates were substantially above normal background values. Some of these areas were apparently coincident with the mapped fracture systems associated with the caldera boundaries.

408

NETL: Emissions Characterization - Direct Measurement of Mercury Reactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Measurement of Mercury Reactions in Coal Power Plant Plumes: Pleasant Prairie Plant Direct Measurement of Mercury Reactions in Coal Power Plant Plumes: Pleasant Prairie Plant Under DOE-NETL Cooperative Agreement DE-FC26-03NT41724, EPRI, in collaboration with Frontier Geosciences and the University of North Dakota Energy and Environmental Research Center (EERC), will perform precise in-stack and in-plume sampling of mercury emitted from the stack of WE Energies' Pleasant Prairie coal-fired power plant near Kenosha, Wisconsin. The overall objective of the project is to clarify the role, rates and end result of chemical transformations that may occur to mercury that has been emitted from elevated stacks of coal-fired electric power plants. This information is critical in determining the role of coal-fired plants in mercury deposition and in developing cost-effective, environmentally sound policies and strategies for reducing the adverse environmental effects of mercury.

409

Mercury Speciation in Piscivorous Fish from Mining-impacted Reservoirs  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Speciation in Piscivorous Mercury Speciation in Piscivorous Fish from Mining-impacted Reservoirs Mercury toxicity generates environmental concerns in diverse aquatic systems because methylmercury enters the water column in diverse ways then biomagnifies through food webs. At the apex of many freshwater food webs, piscivorous fish can then extend that trophic transfer and potential for neurotoxicity to wildlife and humans. Mining activities, particularly those associated with the San Francisco Bay region, can generate both point and non-point mercury sources. Replicate XANES analyses on largemouth bass and hybrid striped bass from Guadalupe Reservoir (GUA), California and Lahontan Reservoir (LAH), Nevada, were performed to determine predominant chemical species of mercury accumulated by high-trophic-level piscivores that are exposed to elevated mercury in both solution and particulate phases in the water column.

410

Stabilization of Mercury in High pH Tank Sludges  

Science Conference Proceedings (OSTI)

DOE complex contains many tank sludges contaminated with mercury. The high pH of these tank sludges typically fails to stabilize the mercury, resulting in these radioactive wastes also being characteristically hazardous or mixed waste. The traditional treatment for soluble inorganic mercury species is precipitation as insoluble mercuric sulfide. Sulfide treatment and a commercial mercury-stabilizing product were tested on surrogate sludges at various alkaline pH values. Neither the sulfide nor the commercial product stabilized the mercury sufficiently at the high pH of the tank sludges to pass the Toxicity Characteristic Leach Procedure (TCLP) treatment standards of the Resource Conservation and Recovery Act (RCRA). The commercial product also failed to stabilize the mercury in samples of the actual tank sludges.

Spence, R.; Barton, J.

2003-02-24T23:59:59.000Z

411

Significance of Pre-Industrial and Older Anthropogenic Sources of Mercury in Ichawaynochaway Creek Watershed, Georgia  

Science Conference Proceedings (OSTI)

In response to concerns about elevated levels of mercury in fish tissue, the U.S. Environmental Protection Agency (EPA) has developed mercury Total Maximum Daily Loads (TMDL), which is a calculation of the maximum amount of mercury a waterbody can assimilate without exceeding the applicable water quality standard. These calculations assume that >99% of mercury load to the aquatic systems is derived from recent atmospheric deposition and that older anthropogenic mercury or mercury from terrestrial sources...

2004-06-16T23:59:59.000Z

412

THERMAL DECOMPOSITION OF URANIUM COMPOUNDS  

DOE Patents (OSTI)

A method is presented of preparing uranium metal of high purity consisting contacting impure U metal with halogen vapor at between 450 and 550 C to form uranium halide vapor, contacting the uranium halide vapor in the presence of H/sub 2/ with a refractory surface at about 1400 C to thermally decompose the uranium halides and deposit molten U on the refractory surface and collecting the molten U dripping from the surface. The entire operation is carried on at a sub-atmospheric pressure of below 1 mm mercury.

Magel, T.T.; Brewer, L.

1959-02-10T23:59:59.000Z

413

Development and Evaluation of Low Cost Mercury Sorbents  

Science Conference Proceedings (OSTI)

EPRI is conducting research to investigate sorbent injection for mercury removal in utility flue gas. This report describes laboratory work conducted from mid-1999 through mid-2000 to investigate the ability of low-cost sorbents to remove mercury from simulated and actual flue gas. The goal of this program is the development of effective mercury sorbents that can be produced at lower costs than existing commercial activated carbons. In this work, low-cost sorbents were prepared and then evaluated in labo...

2000-11-27T23:59:59.000Z

414

2009 Update on Mercury Capture by Wet Flue Gas Desulfurization  

Science Conference Proceedings (OSTI)

This technical update presents results of four research and development projects focused on understanding and enhancing mercury emissions control associated with wet flue gas desulfurization (FGD) technology. The first project was directed at characterizing partitioning of elemental and oxidized mercury species in solid, liquid, and gas phases within process streams involved in an operating commercial system. The second project explored dewatering options with an objective of producing low-mercury-conten...

2009-12-15T23:59:59.000Z

415

Controlling mercury spills in laboratories with a thermometer exchange program  

SciTech Connect

This paper presents a case for replacing mercury thermometers with their organic-liquid-filled counterparts. A review of liquid-in glass-thermometers is given. In addition, a brief summary of mercury's health effects and exposure limits is presented. Spill cleanup methods and some lessons learned from our experience are offered as well. Finally, an overview of the mercury thermometer exchange program developed at Lawrence Berkeley National Laboratory is presented.

McLouth, Lawrence D.

2002-03-25T23:59:59.000Z

416

The Effect of Ammonia on Mercury Partitioning in Fly Ash  

Science Conference Proceedings (OSTI)

Management options and environmental assessments for fly ash are driven primarily by their physical and chemical characteristics. This report describes the results of a laboratory study on the leaching of mercury from several paired fly ash samples from facilities employing powdered activated carbon (PAC) injection for mercury control. While previous EPRI research has shown that mercury leaching from ash with PAC is negligible, it has also been found that ammonia complexes can increase the mobility of so...

2008-03-25T23:59:59.000Z

417

State of Knowledge on Mercury Chemistry in Power Plant Plumes  

Science Conference Proceedings (OSTI)

Chemical transformations may occur in the flue gas plume of coal-fired power plants (CFPP) that convert reactive gaseous mercury (RGM) into gaseous elemental mercury (GEM). Since the chemical form of inorganic Hg determines its solubility in water and therefore its deposition rate, understanding this chemistry has important implications for emission control. This fact sheet summarizes the state-of-knowledge of mercury chemistry, kinetics, and thermodynamics in CFPP plumes.

2008-12-23T23:59:59.000Z

418

Development and Demonstration of Mercury Control by Dry Technologies  

Science Conference Proceedings (OSTI)

The Environmental Protection Agency (EPA) will regulate mercury emissions from coal-fired boilers under Title III of the Clean Air Act Amendments of 1990, with compliance slated for December 2007. It is thus very important for power producers to determine the amount of mercury emissions from their power plants, options for reducing mercury emissions, the cost-effectiveness of various removal technologies, and the potential impact on power plant operation and other air pollutant emissions.

2003-02-17T23:59:59.000Z

419

Mercury Vapor At Silver Peak Area (Henkle, Et Al., 2005) | Open...  

Open Energy Info (EERE)

Mercury Vapor At Silver Peak Area (Henkle, Et Al., 2005) Exploration Activity Details Location Silver Peak Area Exploration Technique Mercury Vapor Activity Date Usefulness useful...

420

Oxidation of elemental mercury by chlorine: Gas phase, Surface, and Photo-induced reaction pathways  

E-Print Network (OSTI)

of Elemental Mercury by Chlorine: Gas Phase, Surface, andthe oxidation of mercury by chlorine gas. The kinetics wasoxidation of Hg 0 by chlorine (Cl 2 ). The three concurrent

Yan, Nai-Qiang; Liu, Shou-Heng; Chang, Shih-Ger

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The mission of the Remediation of Mercury and Industrial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

422

Mercury Vapor At Lassen Volcanic National Park Area (Varekamp...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Lassen Volcanic National Park Area (Varekamp & Buseck, 1983) Jump to:...

423

Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck,...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck, 1983) Jump to: navigation,...

424

Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity...

425

NETL: Mercury Emissions Control Technologies - Long-Term Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term Demonstration of Sorbent Enhancement Additive Technology for Mercury Control In this project, The University of North Dakota Energy & Environmental Research Center...

426

Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983) Jump to: navigation, search...

427

NIST: X-Ray Mass Attenuation Coefficients - Mercury  

Science Conference Proceedings (OSTI)

Table of Contents Back to table 3 Mercury Z = 80 HTML table format. Energy, ?/?, ? en /?. (MeV), (cm 2 /g), (cm 2 /g). 1.00000 ...

428

ORNL DAAC, Land Validation Data in Mercury, June 4, 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

collected at field sites for comparison with satellite-derived products. A total of 51 land validation data sets are currently registered in Mercury. The data include land...

429

BSA 99-09: Improved Ex-Situ Mercury Remediation  

The present invention provides a process for the treatment of mercury containing waste in a single reaction vessel. ... i.e. mixed wastes. ...

430

Mercury Control Demonstration Projects Cover Photos: * Top: Limestone Power Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

6 FEBRUARY 2008 6 FEBRUARY 2008 Mercury Control Demonstration Projects Cover Photos: * Top: Limestone Power Plant * Bottom left: AES Greenidge Power Plant * Bottom right: Presque Isle Power Plant A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Consol Energy * Pegasus Technologies * We Energies  Mercury Control Demonstration Projects Executive Summary ............................................................................ 4 Background ......................................................................................... 5 Mercury Removal Projects ................................................................ 7 TOXECON(tm) Retrofit For Mercury and Multi-Pollutant Control on Three 90-MW Coal-Fired Boilers ........................................7

431

Catalysts for Oxidation of Mercury in Flue Gas  

Disclosed in this patent are catalysts for the oxidation of elemental mercury in flue gas. These novel catalysts include iridium (Ir), ...

432

Simultaneous Determination of Mercury and Tin Species in ...  

Science Conference Proceedings (OSTI)

... humans. In some cases, more than 90 % of the total mercury found in edible fish tissue is in the form of methylmercury. ...

2013-03-21T23:59:59.000Z

433

AWMA 97th Annual Conference & Exhibition Mercury and Power Generation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program for Coal-Fired Power Plants AWMA 97 th Annual Conference & Exhibition Mercury and Power Generation Panel June 23, 2003 Indianapolis, IN Thomas J. Feeley, III...

434

DOE-NETLs Mercury R&D Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Initiative February 14, 2002 ACS Monthly Meeting November 4, 2004 History of Mercury R&D 1990 1995 2000 2005 2010 * Field testing * Plume chemistry Final Hg Regulations *...

435

Mercury Oxidation and Capture over SCR Catalysts in Simulated ...  

Science Conference Proceedings (OSTI)

The SCR catalysts were tested for oxidation and capture of elemental mercury ... EBSD Analysis of Complex Microstructures of CSP? Processed Low Carbon ...

436

Critical National Need Idea Title: Effective Mercury Removal ...  

Science Conference Proceedings (OSTI)

... a report to the White House, "Methylmercury in the GulfOfMexico: State of Knowledge and Research Needs", detailed the harm of mercury from coal- ...

2011-08-02T23:59:59.000Z

437

NETL: Advanced NOx Emissions Control: Control Technology - Mercury...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Speciation from NOx Control University of North Dakota Energy and Environmental Research Center (UNDEERC) is addressing the impact that selective catalytic reduction (SCR),...

438

Large-Scale Testing of Enhanced Mercury Removal for Subbituminous...  

NLE Websites -- All DOE Office Websites (Extended Search)

the mid-1990s to develop advanced, cost-effective mercury (Hg) control technologies for coal-fired power plants. Anticipating new Federal rules and possible state legislation,...

439

ORNL research reveals new challenges for mercury cleanup | ornl...  

NLE Websites -- All DOE Office Websites (Extended Search)

Jennifer Brouner Communications 865.241.0709 ORNL research reveals new challenges for mercury cleanup ORNL researchers are learning more about the microbial processes that convert...

440

SNAP I MERCURY BOILER DEVELOPMENT, JANUARY 1957 TO JUNE 1959  

SciTech Connect

The mercury-boiler development program was undertaken to develop a system that would utilize the heat of radioisotope decay to boil and superheat mercury vapor for use with a small turbine-generator package. Through the use of a Rankine cycle, the mercury vapor can be provided continuously to power a turbine-driven alternator and produce electricity for extended periods of time. This mercury boiler and the related power-conversion system was planned for a satellite that would orbit the earth. This system design and development program was designated as SNAP-I. Development of the mercury boiler is described and a chronological description of the various mercury-boiler concepts is presented. The applicable results of an extensive literature survey of mercury are included. The mercury-boiler experimental-test-program description provides complete coverage of each experimental boiler and its relation to the system design of that period. A summary of all mercury boilers and their final disposition is also given. (auth)

Jicha, J.; Keenan, J.J.

1960-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Method for Removal of Mercury from Various Gas Streams  

NLE Websites -- All DOE Office Websites (Extended Search)

(NETL) is seeking licensing partners interested in implementing United States Patent Number 6,576,092 entitled "Method for Removal of Mercury from Various Gas Streams."...

442

NETL: News Release - DOE Licenses Mercury Control Patent to Help...  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2007 DOE Licenses Mercury Control Patent to Help Meet Clean Air Regulations Research Aims at Trace Element Reduction from Power Generation Facilities by 2010 Washington, DC - A...

443

NETL: CCPI - TOXECON Retrofit for Mercury and Multi-Pollutant...  

NLE Websites -- All DOE Office Websites (Extended Search)

2004) Environmental Reports TOXECON Retrofit for Mercury and Multi-Pollutant Control, Environmental Assessment PDF-847KB (Sept 2003) PAPERS AND PRESENTATIONS Concrete...

444

NETL: Mercury Emissions Control Technologies - Long-term Operation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Papers and Publications: Long-Term Evaluation of Activated Carbon Injection for Mercury Control Upstream of a COHPAC Fabric Filter PDF-298KB presented at Air Quality IV...

445

Mercury removal from coal by leaching with sulfur-dioxide.  

E-Print Network (OSTI)

??Mercury from coal-fired utilities has been identified as one of the most hazardous air pollutants and the greatest potential public health concern. Furthermore, it has… (more)

Chateker, Poornima.

2010-01-01T23:59:59.000Z

446

DOE/NETL & EPRI Sponsored Mercury Measurements Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL & EPRI Sponsored Mercury Measurements Workshop July 13, 2004 Table of Contents Disclaimer Papers and Presentations Disclaimer This report was prepared as an account of work...

447

Mercury Vapor At Medicine Lake Area (Kooten, 1987) | Open Energy  

Open Energy Info (EERE)

Kooten, 1987) Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Medicine Lake Area (Kooten, 1987) Exploration Activity Details Location Medicine Lake Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown References Gerald K. Van Kooten (1987) Geothermal Exploration Using Surface Mercury Geochemistry Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Vapor_At_Medicine_Lake_Area_(Kooten,_1987)&oldid=386431" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

448

Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical  

Open Energy Info (EERE)

Geochemical, Groundwater Geochemical, And Radiometric Geophysical Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three Geothermal Prospects In Northern Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three Geothermal Prospects In Northern Nevada Details Activities (14) Areas (3) Regions (0) Abstract: Ground water sampling, desorbed mercury soil geochemical surveys and a radiometric geophysical survey was conducted in conjunction with geological mapping at three geothermal prospects in northern Nevada. Orientation sample lines from 610 m (2000 ft.) to 4575 m (15,000 ft.) in length were surveyed at right angles to known and suspected faults. Scintillometer readings (gamma radiation - total counts / second) were also

449

Novel Solution of Mercury Perihelion Shift  

E-Print Network (OSTI)

We present a novel solution of the Mercury perihelion advance shift in the new gravity model. It is found that the non-relativistic reduction of the Dirac equation with the gravitational potential produces the new gravitational potential of $\\displaystyle{V(r)=-{GMm\\over r}+{G^2M^2m^2\\over 2mc^2r^2}}$. This potential can explain the Mercury perihelion advance shift without any free parameters. Also, it can give rise to the $\\omega-$shift of the GPS satellite where the advance shift amounts to $({\\Delta \\omega\\over \\omega})_{th} \\simeq 3.4\\times 10^{-10}$ which should be compared to the recent observed value of $({\\Delta \\omega\\over \\omega})_{exp} \\simeq 4.5\\times 10^{-10}$.

Takehisa Fujita; Naohiro Kanda

2009-11-11T23:59:59.000Z

450

NETL: IEP - Mercury Emissions Control: Methods Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Methods Development Methods Development EPRI and NETL collaboratively funded a $3-million program under the DOE/ University of North Dakota Energy and Environmental Research Center (UNDEERC) Jointly Sponsored Research Program (JSRP) to evaluate, develop, and validate a mercury speciation method for coal-fired produced flue gas. There was a 60/40 percent split of the funding, as required under the JSRP for this two-year effort. The work conducted by the EERC identified the Ontario Hydro Method as the best mercury speciation method. The EERC has validated the Ontario Hydro Method at both pilot- and full-scale levels. Radian International aided in the full-scale validation, with a written protocol of the method being finalized through the American Society for Testing and Materials (ASTM).

451

FUNDAMENTALS OF MERCURY OXIDATION IN FLUE GAS  

Science Conference Proceedings (OSTI)

The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves two experimental scales and a modeling effort. The team is comprised of University of Utah, Reaction Engineering International, and University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studies include HCl, NOx, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 1 results for the experimental and modeling tasks. Experiments in the drop tube are just beginning and a new, speciated mercury analyzer is up and running. A preliminary assessment has been made for the drop tube experiments using the existing model of gas-phase kinetics.

JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Constance Senior; Joseph Helble

2004-08-01T23:59:59.000Z

452

Mercury Specie and Multi-Pollutant Control  

SciTech Connect

This project was awarded to demonstrate the ability to affect and optimize mercury speciation and multi-pollutant control using non-intrusive advanced sensor and optimization technologies. The intent was to demonstrate plant-wide optimization systems on a large coal fired steam electric power plant in order to minimize emissions, including mercury (Hg), while maximizing efficiency and maintaining saleable byproducts. Advanced solutions utilizing state-of-the-art sensors and neural network-based optimization and control technologies were proposed to maximize the removal of mercury vapor from the boiler flue gas thereby resulting in lower uncontrolled releases of mercury into the atmosphere. Budget Period 1 (Phase I) - Included the installation of sensors, software system design and establishment of the as-found baseline operating metrics for pre-project and post-project data comparison. Budget Period 2 (Phase II) - Software was installed, data communications links from the sensors were verified, and modifications required to integrate the software system to the DCS were performed. Budget Period 3 (Phase III) - Included the validation and demonstration of all control systems and software, and the comparison of the optimized test results with the targets established for the project site. This report represents the final technical report for the project, covering the entire award period and representing the final results compared to project goals. NeuCo shouldered 61% of the total project cost; while DOE shouldered the remaining 39%. The DOE requires repayment of its investment. This repayment will result from commercial sales of the products developed under the project. NRG's Limestone power plant (formerly owned by Texas Genco) contributed the host site, human resources, and engineering support to ensure the project's success.

Rob James; Virgil Joffrion; John McDermott; Steve Piche

2010-05-31T23:59:59.000Z

453

Mercury Detoxification by Bacteria: Simulations of Transcription Activation and Mercury-Carbon Bond Cleavage  

Science Conference Proceedings (OSTI)

In this chapter, we summarize recent work from our laboratory and provide new perspective on two important aspects of bacterial mercury resistance: the molecular mechanism of transcriptional regulation by MerR, and the enzymatic cleavage of the Hg-C bond in methylmercury by the organomercurial lyase, MerB. Molecular dynamics (MD) simulations of MerR reveal an opening-and-closing dynamics, which may be involved in initiating transcription of mercury resistance genes upon Hg(II) binding. Density functional theory (DFT) calculations on an active-site model of the enzyme reveal how MerB catalyzes the Hg-C bond cleavage using cysteine coordination and acid-base chemistry. These studies provide insight into the detailed mechanisms of microbial gene regulation and defense against mercury toxicity.

Guo, Hao-Bo [ORNL; Parks, Jerry M [ORNL; Johs, Alexander [ORNL; Smith, Jeremy C [ORNL

2011-01-01T23:59:59.000Z

454

Gravitomagnetism and the Earth-Mercury range  

E-Print Network (OSTI)

We numerically work out the impact of the general relativistic Lense-Thirring effect on the Earth-Mercury range caused by the gravitomagnetic field of the rotating Sun. The peak-to peak nominal amplitude of the resulting time-varying signal amounts to 1.75 10^1 m over a temporal interval 2 yr. Future interplanetary laser ranging facilities should reach a cm-level in ranging to Mercury over comparable timescales; for example, the BepiColombo mission, to be launched in 2014, should reach a 4.5 - 10 cm level over 1 - 8 yr. We looked also at other Newtonian (solar quadrupole mass moment, ring of the minor asteroids, Ceres, Pallas, Vesta, Trans-Neptunian Objects) and post-Newtonian (gravitoelectric Schwarzschild solar field) dynamical effects on the Earth-Mercury range. They act as sources of systematic errors for the Lense-Thirring signal which, in turn, if not properly modeled, may bias the recovery of some key parameters of such other dynamical features of motion. Their nominal peak-to-peak amplitudes are as large as 4 10^5 m (Schwarzschild), 3 10^2 m (Sun's quadrupole), 8 10^1 m (Ceres, Pallas, Vesta), 4 m (ring of minor asteroids), 8 10^-1 m (Trans-Neptunian Objects). Their temporal patterns are different with respect to that of the gravitomagnetic signal.

Lorenzo Iorio

2010-02-01T23:59:59.000Z

455

HISTORY OF MERCURY USE AND ENVIRONMENTAL CONTAMINATION  

SciTech Connect

Between 1950 and 1963 approximately 11 million kilograms of mercury (Hg) were used at the Oak Ridge Y-12 National Security Complex (Y-12 NSC) for lithium isotope separation processes. About 3% of the Hg was lost to the air, soil and rock under facilities, and East Fork Poplar Creek (EFPC) which originates in the plant site. Smaller amounts of Hg were used at other Oak Ridge facilities with similar results. Although the primary Hg discharges from Y-12 NSC stopped in 1963, small amounts of Hg continue to be released into the creek from point sources and diffuse contaminated soil and groundwater sources within Y-12 NSC. Mercury concentration in EFPC has decreased 85% from not, vert, similar2000 ng/L in the 1980s. In general, methylmercury concentrations in water and in fish have not declined in response to improvements in water quality and exhibit trends of increasing concentration in some cases.Mercury discharges from an industrial plant have created a legacy contamination problem exhibiting complex and at times counter-intuitive patterns in Hg cycling.

Brooks, Scott C [ORNL; Southworth, George R [ORNL

2011-01-01T23:59:59.000Z

456

The free precession and libration of Mercury  

E-Print Network (OSTI)

An analysis based on the direct torque equations including tidal dissipation and a viscous core-mantle coupling is used to determine the damping time scales of O(10^5) years for free precession of the spin about the Cassini state and free libration in longitude for Mercury. The core-mantle coupling dominates the damping over the tides by one to two orders of magnitude for the plausible parameters chosen. The short damping times compared with the age of the solar system means we must find recent or on-going excitation mechanisms if such free motions are found by the current radar experiments or the future measurement by the MESSENGER and BepiColombo spacecraft that will orbit Mercury. We also show that the average precession rate is increased by about 30% over that obtained from the traditional precession constant because of a spin-orbit resonance induced contribution by the C_{22} term in the expansion of the gravitational field. The C_{22} contribution also causes the path of the spin during the precession to be slightly elliptical with a variation in the precession rate that is a maximum when the obliquity is a minimum. An observable free precession will compromise the determination of obliquity of the Cassini state and hence of C/MR^2 for Mercury, but a detected free libration will not compromise the determination of the forced libration amplitude and thus the verification of a liquid core

S. J. Peale

2005-07-06T23:59:59.000Z

457

Mercury-selenium interactions in the environment  

Science Conference Proceedings (OSTI)

The Clean Air Act Amendments of 1990 require the U.S. Environmental Protection Agency (EPA) to consider the need to control emissions of trace elements and compounds emitted from coal combustion, including coal-fired power plants. Concern has been expressed about emissions of mercury and arsenic, for example, since health effects may be associated with exposure to some of these compounds. By and large, effects of trace element emissions have been considered individually, without regard for possible interactions. To the extent that the relevant environmental pathways and health endpoints differ, this mode of analysis is appropriate. For example, arsenic is considered a carcinogen and mercury affects the brain. However, there may be compelling reasons to consider emissions of mercury (Hg) and selenium (Se) together: (1) Both Se and Hg are emitted from power plants primarily as vapors. (2) Hg and Se are both found in fish, which is the primary pathway for Hg health effects. (3) Se has been shown to suppress Hg methylation in aqueous systems, which is a necessary step for Hg health effects at current environmental concentrations. (4) Se is a trace element that is essential for health but that can also be toxic at high concentrations; it can thus have both beneficial and adverse health effects, depending on the dosage. This paper reviews some of the salient characteristics and interactions of the Hg-Se system, to consider the hypothesis that the effects of emissions of these compounds should be considered jointly.

Saroff, L. [Department of Energy, Washington, DC (United States); Lipfert, W.; Moskowitz, P.D. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science

1996-02-01T23:59:59.000Z

458

Nanostructured Lanthanum Halides and CeBr3 for Nuclear Radiation and Detection  

Science Conference Proceedings (OSTI)

Scintillator materials are used to detect, and in some cases identify, gamma rays. Higher performance scintillators are expensive, hard to manufacture, fragile, and sometimes require liquid nitrogen or cooling engines. But whereas lower-quality scintillators are cheap, easy to manufacture, and more rugged, their performance is lower. At issue: can the desirable qualities of high-and low-performance scintillators be combined to achieve better performance at lower cost? Preliminary experiments show that a LaF{sub 3}:Ce oleic acid-based nanocomposite exhibits a photopeak when exposed to {sup 137}Cs source gamma-radiation. The chemical synthesis of the cerium-doped lanthanum halide nanoparticles are scalable and large quantities of material can be produced at a time, unlike typical crystal growth processes such as the Bridgeman process. Using a polymer composite (Figure 1), produced by LANL, initial measurements of the unloaded and 8% LaF{sub 3}:Ce-loaded sample have been made using {sup 137}Cs sources. Figure 2 shows an energy spectrum acquired for CeF{sub 3}. The lighter plot is the measured polymer-only spectrum and the black plot is the spectrum from the nanocomposite scintillator. As the development of this material continues, the energy resolution is expected to improve and the photopeak-to-Compton ratio will become greater at higher loadings. These measurements show the expected Compton edge in the polymer-only sample, and the Compton edge and photo-peak expected in the nanophosphor composites that LANL has produced. Using a porous VYCORR with CdSe/ZnS core shell quantum dots, Letant has demonstrated that he has obtained signatures of the 241Am photopeak with energy resolution as good at NaI (Figure 3). We begin with the fact that CeBr{sub 3} crystals do not have a self-activity component as strong as the lanthanum halides. The radioactive 0.090% {sup 138}La component of lanthanum leads to significant self-activity, which will be a problem for very large detector volumes. Yet a significant strength of the nanostructure detector concept is the ability to create extremely large detector volumes by mixing nanoparticles into a transparent matrix. This would argue for use of nanoparticles other than lanthanum halides. Nanocomposites are easy to prepare; it is much less costly to use nanocomposites than to grow large whole crystals of these materials. The material can be fabricated at an industrial scale, further reducing cost. This material potentially offers the performance of $300/cc material (e.g., lanthanum bromide) at a cost of $1/cc. Because the material acts as a plastic, it is rugged and flexible, and can be made in large sheets, increasing the sensitivity of a detector using it. It would operate at ambient temperatures. Very large volumes of detector may be produced at greatly reduced cost, enhancing the non-proliferation posture of the nation for the same dollar value.

Paul Guss, Sanjoy Mukhopadhyay, Ron Guise, Ding Yuan

2010-06-09T23:59:59.000Z

459

Analysis of Halogen-Mercury Reactions in Flue Gas  

SciTech Connect

Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation was observed at SO{sub 2} concentrations of 400 ppmv and higher. In contrast, SO{sub 2} concentrations as low as 50 ppmv significantly reduced mercury oxidation by bromine, this reduction could be due to both gas and liquid phase interactions between SO{sub 2} and oxidized mercury species. The simultaneous presence of chlorine and bromine in the flue gas resulted in a slight increase in mercury oxidation above that obtained with bromine alone, the extent of the observed increase is proportional to the chlorine concentration. The results of this study can be used to understand the relative importance of gas-phase mercury oxidation by bromine and chlorine in combustion systems. Two temperature profiles were tested: a low quench (210 K/s) and a high quench (440 K/s). For chlorine the effects of quench rate were slight and hard to characterize with confidence. Oxidation with bromine proved sensitive to quench rate with significantly more oxidation at the lower rate. The data generated in this program are the first homogeneous laboratory-scale data on bromine-induced oxidation of mercury in a combustion system. Five Hg-Cl and three Hg-Br mechanisms, some published and others under development, were evaluated and compared to the new data. The Hg-halogen mechanisms were combined with submechanisms from Reaction Engineering International for NO{sub x}, SO{sub x}, and hydrocarbons. The homogeneous kinetics under-predicted the levels of mercury oxidation observed in full-scale systems. This shortcoming can be corrected by including heterogeneous kinetics in the model calculations.

Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

2010-01-01T23:59:59.000Z

460

Calcium looping process for high purity hydrogen production integrated with capture of carbon dioxide, sulfur and halides  

DOE Patents (OSTI)

A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.

Ramkumar, Shwetha; Fan, Liang-Shih

2013-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "metal halide mercury" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

INTERIM RESULTS FROM A STUDY OF THE IMPACTS OF TIN(II) BASED MERCURY TREATMENT IN A SMALL STREAM ECOSYSTEM: TIMS BRANCH, SAVANNAH RIVER SITE  

Science Conference Proceedings (OSTI)

Mercury (Hg) has been identified as a 'persistent, bioaccumulative and toxic' pollutant with widespread impacts throughout North America and the world (EPA. 1997a, 1997b, 1998a, 1998b, 2000). Although most of the mercury in the environment is inorganic Hg, a small proportion of total Hg is transformed through the actions of aquatic microbes into methylmercury (MeHg). In contrast to virtually all other metals, MeHg biomagnifies or becomes increasingly concentrated as it is transferred through aquatic food chains so that the consumption of mercury contaminated fish is the primary route of this toxin to humans. For this reason, the ambient water quality criterion (AWQC) for mercury is based on a fish tissue endpoint rather than an aqueous Hg concentration, as the tissue concentration (e.g., fish are more closely linked to aqueous MeHg than to inorganic Hg concentrations (Sveinsdottir and Mason 2005), but MeHg production is not easily predicted or controlled. At point-source contaminated sites, mercury methylation is not only affected by the absolute mercury load, but also by the form of mercury loaded. In addition, once MeHg is formed, the hydrology, trophic structure, and water chemistry of a given system affect how it is transformed and transferred through the food chain to fish. Decreasing inorganic Hg concentrations and loading may often therefore be a more achievable remediation goal, but has led to mixed results in terms of responses in fish bioaccumulation. A number of source control measures have resulted in rapid responses in lake or reservoir fisheries (Joslin 1994, Turner and Southworth 1999; Orihel et al., 2007), but examples of similar responses in Hg-contaminated stream ecosystems are less common. Recent work suggests that stream systems may actually be more susceptible to mercury bioaccumulation than lakes, highlighting the need to better understand the ecological drivers of mercury bioaccumulation in stream-dwelling fish (Chasar et al. 2009, Ward et al. 2010). In the present study we examine the response of fish to remedial actions in Tims Branch, a point-source contaminated stream on the Department of Energy's (DOE) Savannah River Site in Aiken, South Carolina. This second order stream received inorganic mercury inputs at its headwaters from the 1950s-2000s which contaminated the water, sediments, and biota downstream. In 2007, an innovative mercury removal system using tin (II) chloride (stannous chloride, SnCl{sub 2}) was implemented at a pre-existing air stripper. Tin(II) reduces dissolved Hg (II) to Hg (0), which is removed by the air stripper. During this process, tin(II) is oxidized to tin (IV) which is expected to precipitate as colloidal tin(IV) oxides and hydroxides, particulate materials with relatively low toxicity (Hallas and Cooney, 1981, EPA 2002, ATSDR, 2005). The objectives of the present research are to provide an initial assessment of the net impacts of the tin(II) based mercury treatment on key biota and to document the distribution and fate of inorganic tin in this small stream ecosystem after the first several years of operating a full scale system. To support these objectives, we collected fish, sediment, water, invertebrates, and biofilm samples from Tims Branch to quantify the general behavior and accumulation patterns for mercury and tin in the ecosystem and to determine if the treatment process has resulted in: (1) a measurable beneficial impact on (i.e., decrease of) mercury concentration in upper trophic level fish and other biota; this is a key environmental endpoint since reducing mercury concen

Looney, B.; Bryan, L.; Mathews, T.

2012-03-30T23:59:59.000Z

462

Fundamentals of Mercury Oxidation in Flue Gas  

SciTech Connect

The objective of this project was to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involved both experimental and modeling efforts. The team was comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective was to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. The results suggested that homogeneous mercury oxidation is below 10% which is not consistent with previous data of others and work which was completed early in this research program. Previous data showed oxidation above 10% and up to 100%. However, the previous data are suspect due to apparent oxidation occurring within the sampling system where hypochlorite ion forms in the KCl impinger, which in turn oxidized mercury. Initial tests with entrained iron oxide particles injected into a flame reactor suggest that iron present on fly ash particle surfaces can promote heterogeneous oxidation of mercury in the presence of HCl under entrained flow conditions. Using the data generated above, with homogeneous reactions accounting for less than 10% of the oxidation, comparisons were made to pilot- and full-scale data. The results suggest that heterogeneous reactions, as with the case of iron oxide, and adsorption on solid carbon must be taking place in the full-scale system. Modeling of mercury oxidation using parameters from the literature was conducted to further study the contribution of homogeneous pathways to Hg oxidation in coal combustion systems. Calculations from the literature used rate parameters developed in different studies, in some cases using transition state theory with a range of approaches and basis sets, and in other cases using empirical approaches. To address this, rate constants for the entire 8-step homogeneous Hg oxidation sequence were developed using an internally consistent transition state approach. These rate constants when combined with the appropriate sub-mechanisms produced lower estimates of the overall extent of homogeneous oxidation, further suggesting that heterogeneous pathways play an important role in Hg oxidation in coal-fired systems.

JoAnn Lighty; Geoffrey Silcox; Constance Senior; Joseph Helble; Balaji Krishnakumar

2008-07-