National Library of Energy BETA

Sample records for metal foil cxs

  1. Design Potential of Metal Foil Substrates for Optimized DOC Performanc...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential of Metal Foil Substrates for Optimized DOC Performance Design Potential of Metal Foil Substrates for Optimized DOC Performance Poster presentation at the 2007 Diesel...

  2. Method of forming a thin unbacked metal foil

    SciTech Connect (OSTI)

    Duchane, D.V.; Barthell, B.L.

    1983-02-23

    The present invention relates generally to metal foils and methods of making the same. More particularly, this invention pertains to the fabrication of very thin, unbacked metal foils.

  3. Composite metal foil and ceramic fabric materials

    DOE Patents [OSTI]

    Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.

    1992-03-24

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.

  4. Tubular hydrogen permeable metal foil membrane and method of fabrication

    DOE Patents [OSTI]

    Paglieri, Stephen N.; Birdsell, Stephen A.; Barbero, Robert S.; Snow, Ronny C.; Smith, Frank M.

    2006-04-04

    A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.

  5. Application of a Turbulent Metal Foil Substrate for a PGM optimized...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Turbulent Metal Foil Substrate for a PGM optimized DOC on a U.S. HD Diesel Engine Application of a Turbulent Metal Foil Substrate for a PGM optimized DOC on a U.S. HD Diesel...

  6. Hydrogen loaded metal for bridge-foils for enhanced electric gun/slapper detonator operation

    DOE Patents [OSTI]

    Osher, John E. (Alamo, CA)

    1992-01-01

    The invention provides a more efficient electric gun or slapper detonator ich provides a higher velocity flyer by using a bridge foil made of a hydrogen loaded metal.

  7. CHARACTERIZATION OF AN ACTIVELY COOLED METAL FOIL THERMAL RADIATION SHIELD

    SciTech Connect (OSTI)

    Feller, J. R.; Salerno, L. J.; Kashani, A.; Helvensteijn, B. P. M.

    2010-04-09

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (approx20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  8. Hydrogen loaded metal for bridge-foils for enhanced electric gun/slapper detonator operation

    DOE Patents [OSTI]

    Osher, J.E.

    1992-01-14

    The invention provides a more efficient electric gun or slapper detonator which provides a higher velocity flyer by using a bridge foil made of a hydrogen loaded metal. 8 figs.

  9. METAL FOILS FOR DIRECT APPLICATION OF ABSORBER COATINGS ON SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2011-01-01

    Plated Metal Foils and Solar Collector Conference. U. S.Surfaces on Flat Plate Solar Collectors". Proceedings of 2ndSputtering for Depositing Solar Collector Coatings i i •

  10. Method for laser welding ultra-thin metal foils

    DOE Patents [OSTI]

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-26

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld. 5 figs.

  11. Method for laser welding ultra-thin metal foils

    DOE Patents [OSTI]

    Pernicka, John C. (Fort Collins, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1996-01-01

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.

  12. Final Report: Sintered CZTS Nanoparticle Solar Cells on Metal Foil; July 26, 2011 - July 25, 2012

    SciTech Connect (OSTI)

    Leidholm, C.; Hotz, C.; Breeze, A.; Sunderland, C.; Ki, W.; Zehnder, D.

    2012-09-01

    This is the final report covering 12 months of this subcontract for research on high-efficiency copper zinc tin sulfide (CZTS)-based thin-film solar cells on flexible metal foil. Each of the first three quarters of the subcontract has been detailed in quarterly reports. In this final report highlights of the first three quarters will be provided and details will be given of the final quarter of the subcontract.

  13. METAL FOILS FOR DIRECT APPLICATION OF ABSORBER COATINGS ON SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2011-01-01

    In addition to the electroplating the finished absorbera continuous foil the electroplating parameters have to be

  14. METAL FOILS FOR DIRECT APPLICATION OF ABSORBER COATINGS ON SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2011-01-01

    In addition to the electroplating the finished absorber isa continuous foil the electroplating parameters have to be

  15. Evaluation of metallic foils for preconcentration of sulfur-containing gases with subsequent flash desorption/flame photometric detection

    SciTech Connect (OSTI)

    Kagel, R.A.; Farwell, S.O.

    1986-05-01

    Ag, Ni, Pd, Pt, Rh, and W foils were examined for their collective efficiencies toward seven sulfur-containing gases, i.e., H/sub 2/S, CH/sub 3/SH, CH/sub 3/SCH/sub 3/, CH/sub 3/SSCH/sub 3/, CS/sub 2/, COS, and SO/sub 2/. Low- and sub-part-per-billion (v/v) concentrations of these individual sulfur gases in air were drawn through a fluorocarbon resin cell containing a mounted 30-mm x 7-mm x 0.025-mm metal foil. The preconcentrated species were then thermally desorbed by a controlled pulse of current through the foil. The desorbed sample plug was swept in precleaned zero air from the fluorocarbon resin cell to a flame photometric detector. Sampling flow rate, ambient temperature, sample humidity, and common oxidants were examined for their effects on the collection efficiencies of these sulfur compounds on platinum and palladium foils. Analytical characteristics of this metal foil collection/flash desorption/flame photometric detector (MFC/FD/FPD) technique include a sulfur gas detectability of less than 50 pptr (parts per trillion) (v/v), a response repeatability of at least 95%, and field portable collection cells and instrumentation. The results are discussed both in terms of potential analytical applications of MFC/FD/FPD and in terms of their relationship to characterized models of gas adsorption on solid surfaces. 33 references, 6 figures, 3 tables.

  16. Simultaneous laser cutting and welding of metal foil to edge of a plate

    DOE Patents [OSTI]

    Pernicka, John C. (Fort Collins, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1996-01-01

    A method of welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads.

  17. Simultaneous laser cutting and welding of metal foil to edge of a plate

    DOE Patents [OSTI]

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-19

    A method is described for welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads. 7 figs.

  18. Measurements of Drag Torque and Lift Off Speed and Identification of Stiffness and Damping in a Metal Mesh Foil Bearing 

    E-Print Network [OSTI]

    Chirathadam, Thomas A.

    2010-07-14

    performance. Application of a sacrificial layer of solid lubricant on the top foil surface aids to reduce the rotor break-away torque. The measurements give confidence on this simple bearing technology for ready application into oil-free turbomachinery. Impact...

  19. Foil Electron Multiplier

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM); Baldonado, Juan R. (Los Alamos, NM); Dors, Eric E. (Los Alamos, NM); Harper, Ronnie W. (Los Alamos, NM); Skoug, Ruth M. (Los Alamos, NM)

    2006-03-28

    An apparatus for electron multiplication by transmission that is designed with at least one foil having a front side for receiving incident particles and a back side for transmitting secondary electrons that are produced from the incident particles transiting through the foil. The foil thickness enables the incident particles to travel through the foil and continue on to an anode or to a next foil in series with the first foil. The foil, or foils, and anode are contained within a supporting structure that is attached within an evacuated enclosure. An electrical power supply is connected to the foil, or foils, and the anode to provide an electrical field gradient effective to accelerate negatively charged incident particles and the generated secondary electrons through the foil, or foils, to the anode for collection.

  20. Application of a Turbulent Metal Foil Substrate for a PGM optimized DOC on a U.S. HD Diesel Engine

    Broader source: Energy.gov [DOE]

    Lower platinum-metal group catalysts can be used to save money while offering equivalent or better hydrocarbon performanc and longer life and durability.

  1. Monolithic exploding foil initiator

    DOE Patents [OSTI]

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  2. Microscale Laser Shock Processing (LSP) of Metal Thin Films Wenwu Zhang*

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    (organic paint, tape, or thin metallic foil), and the coating is instantaneously vaporized and evolves

  3. Method for fabricating uranium foils and uranium alloy foils

    DOE Patents [OSTI]

    Hofman, Gerard L. (Downers Grove, IL); Meyer, Mitchell K. (Idaho Falls, ID); Knighton, Gaven C. (Moore, ID); Clark, Curtis R. (Idaho Falls, ID)

    2006-09-05

    A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

  4. Eddy current probe with foil sensor mounted on flexible probe tip and method of use

    SciTech Connect (OSTI)

    Viertl, John R. M. (Niskayuna, NY); Lee, Martin K. (Niskayuna, NY)

    2001-01-01

    A pair of copper coils are embedded in the foil strip. A first coil of the pair generates an electromagnetic field that induces eddy currents on the surface, and the second coil carries a current influenced by the eddy currents on the surface. The currents in the second coil are analyzed to obtain information on the surface eddy currents. An eddy current probe has a metal housing having a tip that is covered by a flexible conductive foil strip. The foil strip is mounted on a deformable nose at the probe tip so that the strip and coils will conform to the surface to which they are applied.

  5. Method of using deuterium-cluster foils for an intense pulsed neutron source

    DOE Patents [OSTI]

    Miley, George H.; Yang, Xiaoling

    2013-09-03

    A method is provided for producing neutrons, comprising: providing a converter foil comprising deuterium clusters; focusing a laser on the foil with power and energy sufficient to cause deuteron ions to separate from the foil; and striking a surface of a target with the deuteron ions from the converter foil with energy sufficient to cause neutron production by a reaction selected from the group consisting of D-D fusion, D-T fusion, D-metal nuclear spallation, and p-metal. A further method is provided for assembling a plurality of target assemblies for a target injector to be used in the previously mentioned manner. A further method is provided for producing neutrons, comprising: splitting a laser beam into a first beam and a second beam; striking a first surface of a target with the first beam, and an opposite second surface of the target with the second beam with energy sufficient to cause neutron production.

  6. Actinide Foil Production for MPACT Research

    SciTech Connect (OSTI)

    Beller, Denis

    2012-10-31

    Sensitive fast-neutron detectors are required for use in lead slowing down spectrometry (LSDS), an active interrogation technique for used nuclear fuel assay for Materials Protection, Accounting, and Controls Technologies (MPACT). During the past several years UNLV sponsored a research project at RPI to investigate LSDS; began development of fission chamber detectors for use in LSDS experiments in collaboration with INL, LANL, and Oregon State U.; and participated in a LSDS experiment at LANL. In the LSDS technique, research has demonstrated that these fission chamber detectors must be sensitive to fission energy neutrons but insensitive to thermal-energy neutrons. Because most systems are highly sensitive to large thermal neutron populations due to the well-known large thermal cross section of 235U, even a miniscule amount of this isotope in a fission chamber will overwhelm the small population of higher-energy neutrons. Thus, fast-fission chamber detectors must be fabricated with highly depleted uranium (DU) or ultra-pure thorium (Th), which is about half as efficient as DU. Previous research conducted at RPI demonstrated that the required purity of DU for assay of used nuclear fuel using LSDS is less than 4 ppm 235U, material that until recently was not available in the U.S. In 2009 the PI purchased 3 grams of ultra-depleted uranium (uDU, 99.99998% 238U with just 0.2 ���± 0.1 ppm 235U) from VNIIEF in Sarov, Russia. We received the material in the form of U3O8 powder in August of 2009, and verified its purity and depletion in a FY10 MPACT collaboration project. In addition, chemical processing for use in FC R&D was initiated, fission chamber detectors and a scanning alpha-particle spectrometer were developed, and foils were used in a preliminary LSDS experiment at a LANL/LANSCE in Sept. of 2010. The as-received U3O8 powder must be chemically processed to convert it to another chemical form while maintaining its purity, which then must be used to electro-deposit U or UO2 in extremely thin layers (1 to 2 mg/cm2) on various media such as films, foils, or discs. After many months of investigation and trials in FY10 and 11, UNLV researchers developed a new method to produce pure UO2 deposits on foils using a unique approach, which has never been demonstrated, that involves dissolution of U3O8 directly into room temperature ionic liquid (RTIL) followed by electrodeposition from the RTIL-uDU solution (Th deposition from RTIL had been previously demonstrated). The high-purity dissolution of the U3O8 permits the use of RTIL solutions for deposition of U on metal foils in layers without introducing contamination. In FY10 and early FY11 a natural U surrogate for the uDU was used to investigate this and other techniques. In this research project UNLV will deposit directly from RTIL to produce uDU and Th foils devoid of possible contaminants. After these layers have been deposited, they will be examined for purity and uniformity. UNLV will complete the development and demonstration of the RTIL technology/ methodology to prepare uDU and Th samples for use in constructing fast-neutron detectors. Although this material was purchased for use in research using fast-fission chamber detectors for active inspection techniques for MPACT, it could also contribute to R&D for other applications, such as cross section measurements or neutron spectroscopy for national security

  7. Fish and Vegetables in Foil Ingredients

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Fish and Vegetables in Foil Ingredients: 1 1/2 pounds fresh or frozen fish fillets or steaks 4 sodium) Directions 1. Rinse fish under cold water and pat dry. Place 4 individual portions of fish on 4 pieces of foil large enough to completely wrap around the fish and vegetables. 2. Diagonally slice

  8. Five Ways Aluminum Foil Is Advancing Science | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    SLAC National Accelerator Laboratory uses massive quantities of aluminum foil to perform "bake out" of their equipment. In a typical bake out, the equipment is blanketed in foil,...

  9. Reactive multilayer synthesis of hard ceramic foils and films

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Holt, Joseph B. (San Jose, CA)

    1996-01-01

    A method for synthesizing hard ceramic materials such as carbides, borides nd aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coild as a tape for later use.

  10. A simple method for the measurement of reflective foil emissivity

    SciTech Connect (OSTI)

    Ballico, M. J.; Ham, E. W. M. van der [National Measurement Institute, Lindfield, NSW 2070 (Australia)

    2013-09-11

    Reflective metal foil is widely used to reduce radiative heat transfer within the roof space of buildings. Such foils are typically mass-produced by vapor-deposition of a thin metallic coating onto a variety of substrates, ranging from plastic-coated reinforced paper to 'bubble-wrap'. Although the emissivity of such surfaces is almost negligible in the thermal infrared, typically less than 0.03, an insufficiently thick metal coating, or organic contamination of the surface, can significantly increase this value. To ensure that the quality of the installed insulation is satisfactory, Australian building code AS/NZS 4201.5:1994 requires a practical agreed method for measurement of the emissivity, and the standard ASTM-E408 is implied. Unfortunately this standard is not a 'primary method' and requires the use of specified expensive apparatus and calibrated reference materials. At NMIA we have developed a simple primary technique, based on an apparatus to thermally modulate the sample and record the apparent modulation in infra-red radiance with commercially available radiation thermometers. The method achieves an absolute accuracy in the emissivity of approximately 0.004 (k=2). This paper theoretically analyses the equivalence between the thermal emissivity measured in this manner, the effective thermal emissivity in application, and the apparent emissivity measured in accordance with ASTM-E408.

  11. SELECTIVE ABSORBER COATED FOILS FOR SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2013-01-01

    Proc. of 1977 Flat Plate Solar Collector Conference- USDOE,"Second Coatings for Solar Collectors Symp. , 11 Winter Park,COATED FOILS FOR SOLAR COLLECTORS Carl M. Lampert TWO-WEEK

  12. Cryostat with Foil and MLI

    SciTech Connect (OSTI)

    Hwang, Peter K.F.; Gung, Chen-yu

    2005-10-06

    Induction cores are used to accelerate heavy ion beam array, which are built around the outer diameter of the cryostat housing the superconducting quadruple array. Compact cryostat is highly desirable to reduce the cost of the induction cores. Recent experiences in fabrication of a cryostat for single beam transport revealed that it is possible to reduce the spacing in the cryostat vacuum jacket by using low-emissivity thermal insulation material instead of conventional MLI. However, it is labor-intensive to install the new type of insulation as compared with using MLI. It is promising to build a cost-effective compact cryostat for quadruple magnet array for heavy ion beam array transport by using low-emissivity material combined with conventional MLI as radiation insulation. A matrix of insulation designs and tests will be performed as the feasibility study and for the selection of the optimal thermal insulation as the Phase I work. The selected mixed insulation will be used to build prototype compact cryostats in the Phase II project, which are aiming for housing quadruple doublet array. In this STTR phase I study, a small cryostat has been designed and built to perform calorimetric characterization of the heat load in a liquid helium vessel insulated with a vacuum layer with a nominal clearance of 3.5 mm. The vacuum clearance resembled that used in the warm-bore beam tube region in a prototype cryostat previously built for the heavy ion beam transport experiment. The vacuum clearance was geometrically restricted with a heater shell with the temperature controlled at near 300 K. Various combinations of radiation and thermal shields were installed in the tight vacuum clearance for heat load measurements. The measured heat loads are reported and compared with previous test result using a compact vacuum layer. Further developments of the thermal insulations used in the present study are discussed. The compact cryostat with foil and MLI insulation may be used in the superconducting magnets for a wide range of applications including particle accelerators, fusion energy research, NMR, NMI, laboratory high field experiments and industrial magnets, compact feed through for general-purpose cryostat, etc. Combination of low emissivity thermal insulation material with the conventional MLI has a great potential to build cost-effective compact cryostats for heavy ion fusion beam array transport and other more general-purpose applications.

  13. Compressor ported shroud for foil bearing cooling

    DOE Patents [OSTI]

    Elpern, David G. (Los Angeles, CA); McCabe, Niall (Torrance, CA); Gee, Mark (South Pasadena, CA)

    2011-08-02

    A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.

  14. Method of high-density foil fabrication

    DOE Patents [OSTI]

    Blue, Craig A.; Sikka, Vinod K.; Ohriner, Evan K.

    2003-12-16

    A method for preparing flat foils having a high density includes the steps of mixing a powdered material with a binder to form a green sheet. The green sheet is exposed to a high intensity radiative source adapted to emit radiation of wavelengths corresponding to an absorption spectrum of the powdered material. The surface of the green sheet is heated while a lower sub-surface temperature is maintained. An apparatus for preparing a foil from a green sheet using a radiation source is also disclosed.

  15. R&D of Commercially Manufactured Large GEM Foils

    E-Print Network [OSTI]

    M. Posik; B. Surrow

    2015-11-27

    Many experiments are currently using or proposing to use large area GEM foils in their detectors, which is creating a need for commercially available GEM foils. Currently CERN is the only main distributor of GEM foils, however with the growing interest in GEM technology keeping up with the increasing demand for GEM foils will be difficult. Thus the commercialization of GEM foils has been established by Tech-Etch Inc. of Plymouth, MA, USA using the single-mask technique, which is capable of producing GEM foils over a meter long. To date Tech-Etch has successfully manufactured 10 $\\times$ 10 cm$^2$ and 40 $\\times$ 40 cm$^2$ GEM foils. We will report on the electrical and geometrical properties, along with the inner and outer hole diameter size uniformity of these foils. Furthermore, Tech-Etch has now begun producing even larger GEM foils of 50 $\\times$ 50 cm$^2$, and are currently looking into how to accommodate GEM foils on the order of one meter long. The Tech-Etch foils were found to have excellent electrical properties. The measured mean optical properties were found to reflect the desired parameters and are consistent with those measured in double-mask GEM foils, as well as single-mask GEM foils produced at CERN. They also show good hole diameter uniformity over the active area.

  16. (001) Oriented piezoelectric films prepared by chemical solution deposition on Ni foils

    SciTech Connect (OSTI)

    Yeo, Hong Goo, E-mail: hxy162@psu.edu; Trolier-McKinstry, Susan [Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2014-07-07

    Flexible metal foil substrates are useful in some microelectromechanical systems applications including wearable piezoelectric sensors or energy harvesters based on Pb(Zr,Ti)O? (PZT) thin films. Full utilization of the potential of piezoelectrics on metal foils requires control of the film crystallographic texture. In this study, (001) oriented PZT thin films were grown by chemical solution deposition (CSD) on Ni foil and Si substrates. Ni foils were passivated using HfO? grown by atomic layer deposition in order to suppress substrate oxidation during subsequent thermal treatment. To obtain the desired orientation of PZT film, strongly (100) oriented LaNiO? films were integrated by CSD on the HfO? coated substrates. A high level of (001) LaNiO? and PZT film orientation were confirmed by X-ray diffraction patterns. Before poling, the low field dielectric permittivity and loss tangents of (001) oriented PZT films on Ni are near 780 and 0.04 at 1 kHz; the permittivity drops significantly on poling due to in-plane to out-of-plane domain switching. (001) oriented PZT film on Ni displayed a well-saturated hysteresis loop with a large remanent polarization ~36 ?C/cm², while (100) oriented PZT on Si showed slanted P-E hysteresis loops with much lower remanent polarizations. The |e{sub 31,f}| piezoelectric coefficient was around 10.6 C/m² for hot-poled (001) oriented PZT film on Ni.

  17. Multilayer roll bonded aluminium foil: processing, microstructure and flow stress

    SciTech Connect (OSTI)

    Barlow, C.Y.; Nielsen, P.; Hansen, N

    2004-08-02

    Bulk aluminium has been produced by warm-rolling followed by cold-rolling of commercial purity (99% purity) aluminium foil. The bonding appeared perfect from observation with the naked eye, light and transmission electron microscopy. By comparison with bulk aluminium of similar purity (AA1200) rolled to a similar strain (90%RA), the roll-bonded metal showed a much higher density of high-angle grain boundaries, similar strength and improved thermal stability. This study has implications for a number of applications in relation to the processing of aluminium. Roll bonding is of interest as a method for grain size refinement; oxide-containing materials have increased strength, enhanced work-hardening behaviour, and exhibit alterations in recrystallisation behaviour. The behaviour of the hard oxide film is of interest in aluminium processing, and has been investigated by characterising the size and distribution of oxide particles in the roll-bonded samples.

  18. Apparatus and process for ultrasonic seam welding stainless steel foils

    DOE Patents [OSTI]

    Leigh, Richard W. (New York, NY)

    1992-01-01

    An ultrasonic seam welding apparatus having a head which is rotated to form contact, preferably rolling contact, between a metallurgically inert coated surface of the head and an outside foil of a plurality of layered foils or work materials. The head is vibrated at an ultrasonic frequency, preferably along a longitudinal axis of the head. The head is constructed to transmit vibration through a contacting surface of the head into each of the layered foils. The contacting surface of the head is preferably coated with aluminum oxide to prevent the head from becoming welded to layered stainless steel foils.

  19. Research and Development of Commercially Manufactured Large GEM Foils

    E-Print Network [OSTI]

    M. Posik; B. Surrow

    2015-06-12

    With future experiments proposing detectors that utilize very large-area GEM foils, there is a need for commercially available GEM foils. Double-mask etching techniques pose a clear limitation in the maximum size of GEM foils. In contrast, single-mask techniques developed at CERN would allow one to overcome those limitations. However with interest in GEM foils increasing and CERN being the only main distributor, keeping up with the demand for GEM foils will be difficult. Thus the commercialization of GEMs has been established by Tech-Etch of Plymouth, MA, USA using single-mask techniques. We report on the electrical and geometrical properties, along with the inner and outer hole diameter size uniformity of 10 $\\times$ 10 cm$^2$ and 40$\\times$40 cm$^2$ GEM foils. The Tech-Etch foils were found to have excellent electrical properties. The measured mean optical properties were found to reflect the desired parameters and are consistent with those measured in double-mask GEM foils, and show good hole diameter uniformity over the active area. These foils are well suited for future applications in nuclear and particle physics where tracking devices are needed.

  20. Characterization of U-Mo Foils for AFIP-7

    SciTech Connect (OSTI)

    Edwards, Danny J.; Ermi, Ruby M.; Schemer-Kohrn, Alan L.; Overman, Nicole R.; Henager, Charles H.; Burkes, Douglas; Senor, David J.

    2012-11-07

    Twelve AFIP in-process foil samples, fabricated by either Y-12 or LANL, were shipped from LANL to PNNL for potential characterization using optical and scanning electron microscopy techniques. Of these twelve, nine different conditions were examined to one degree or another using both techniques. For this report a complete description of the results are provided for one archive foil from each source of material, and one unirradiated piece of a foil of each source that was irradiated in the Advanced Test Reactor. Additional data from two other LANL conditions are summarized in very brief form in an appendix. The characterization revealed that all four characterized conditions contained a cold worked microstructure to different degrees. The Y-12 foils exhibited a higher degree of cold working compared to the LANL foils, as evidenced by the highly elongated and obscure U-Mo grain structure present in each foil. The longitudinal orientations for both of the Y-12 foils possesses a highly laminar appearance with such a distorted grain structure that it was very difficult to even offer a range of grain sizes. The U-Mo grain structure of the LANL foils, by comparison, consisted of a more easily discernible grain structure with a mix of equiaxed and elongated grains. Both materials have an inhomogenous grain structure in that all of the characterized foils possess abnormally coarse grains.

  1. Hybrid air foil bearing with external pressurization 

    E-Print Network [OSTI]

    Park, Soongook

    2009-05-15

    stream_source_info PARK-THESIS.pdf.txt stream_content_type text/plain stream_size 71559 Content-Encoding ISO-8859-1 stream_name PARK-THESIS.pdf.txt Content-Type text/plain; charset=ISO-8859-1 HYBRID AIR FOIL BEARING... nalytical ? x peak to peak and phase ang with difference bearing clearances; S f =0.2 and bump stiffness = 0.77 GN/m 3 0 30 60 90 120 150 180 6000 11000 16000 21000 26000 31000 Rotating speed (rpm) P h as e an gl e ( ) ? 11,150 rpm 14,171 rpm C...

  2. Concept Feasibility Report for Electroplating Zirconium onto Uranium Foil - Year 2

    SciTech Connect (OSTI)

    Coffey, Greg W.; Meinhardt, Kerry D.; Joshi, Vineet V.; Pederson, Larry R.; Lavender, Curt A.; Burkes, Douglas

    2015-03-01

    The Fuel Fabrication Capability within the U.S. High Performance Research Reactor Conversion Program is funded through the National Nuclear Security Administration (NNSA) NA-26 (Office of Material Management and Minimization). An investigation was commissioned to determine the feasibility of using electroplating techniques to apply a coating of zirconium onto depleted uranium/molybdenum alloy (U-10Mo). Electroplating would provide an alternative method to the existing process of hot roll-bonding zirconium foil onto the U-10Mo fuel foil during the fabrication of fuel elements for high-performance research reactors. The objective of this research was to develop a reproducible and scalable plating process that will produce a uniform, 25 ?m thick zirconium metal coating on U-10Mo foil. In previous work, Pacific Northwest National Laboratory (PNNL) established a molten salt electroplating apparatus and protocol to plate zirconium metal onto molybdenum foil (Coffey 2015). During this second year of the research, PNNL furthered this work by moving to the U-10Mo alloy system (90 percent uranium:10 percent molybdenum). The original plating apparatus was disassembled and re-assembled in a laboratory capable of handling low-level radioactive materials. Initially, the work followed the previous year’s approach, and the salt bath composition was targeted at the eutectic composition (LiF:NaF:ZrF4 = 26:37:37 mol%). Early results indicated that the formation of uranium fluoride compounds would be problematic. Other salt bath compositions were investigated in order to eliminate the uranium fluoride production (LiF:NaF = 61:39 mol% and LiF:NaF:KF = 46.5:11.5:42 mol% ). Zirconium metal was used as the crucible for the molten salt. Three plating methods were used—isopotential, galvano static, and pulsed plating. The molten salt method for zirconium metal application provided high-quality plating on molybdenum in PNNL’s previous work. A key advantage of this approach is that plating can be performed under conditions that would greatly reduce the quantity of intermetallics that form at the interface between the zirconium and U-10Mo; unlike roll bonding, the molten salt plating approach would allow for complete coverage of the U-10Mo foil with zirconium. When utilizing the experimental parameters developed for zirconium plating onto molybdenum, a uranium fluoride reaction product was formed at the Zr/U-10Mo interface. By controlling the initial plating potential, the uranium fluoride could be prevented; however, the targeted zirconium thickness (25 ±12.5 ?m) could not be achieved while maintaining 100% coverage.

  3. Design Potential of Metal Foil Substrates for Optimized DOC Performance

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  4. Indium Phosphide Polycrystalline Films on Metal Foil for PV Applications -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR THE SITE-218inper Thousand CubicCampaign ForEnergy

  5. Research and Development of Commercially Manufactured Large GEM Foils

    E-Print Network [OSTI]

    Posik, M

    2015-01-01

    With future experiments proposing detectors that utilize very large-area GEM foils, there is a need for commercially available GEM foils. Double-mask etching techniques pose a clear limitation in the maximum size of GEM foils. In contrast, single-mask techniques developed at CERN would allow one to overcome those limitations. However with interest in GEM foils increasing and CERN being the only main distributor, keeping up with the demand for GEM foils will be difficult. Thus the commercialization of GEMs has been established by Tech-Etch of Plymouth, MA, USA using single-mask techniques. We report on the electrical and geometrical properties, along with the inner and outer hole diameter size uniformity of 10 $\\times$ 10 cm$^2$ and 40$\\times$40 cm$^2$ GEM foils. The Tech-Etch foils were found to have excellent electrical properties. The measured mean optical properties were found to reflect the desired parameters and are consistent with those measured in double-mask GEM foils, and show good hole diameter unif...

  6. Investigations of factors affecting the use of uranium metal as a source of alpha particles for the evaluation of alpha track detectors 

    E-Print Network [OSTI]

    Voirin, Marc

    1994-01-01

    , an uranium foil was used as the alpha particle source. The foil created new problems which needed to be studied in detail. Among these problems, the effect of the thickness of the oxide layer on the uranium metal foil surface was the most important. To study...

  7. Pigmented foils for radiative cooling and condensation irrigation

    SciTech Connect (OSTI)

    Nilsson, T.M.J.; Vargas, W.E.; Niklasson, G.A.

    1994-12-31

    This paper reports on the development of pigmented polyethylene foils for radiative cooling. The optical properties of the foils were optimized for applications in day-time radiative cooling and water condensation. The authors first study highly scattering foils used as convection shields. These cover foils combine a high solar reflectance and a high transmittance in the atmospheric window region in the infrared. Different pigment materials were studied and ZnS was the only one that could prevent heating of an underlying blackbody at noon, with the sun in its zenith. A 400 {micro}m thick ZnS pigmented polyethylene foil with a pigment volume fraction of 0.15 was tested in Tanzania. At noon the observed temperature of the covered blackbody was only 1.5 K above the ambient. Secondly, they study the potential for condensation of water in an arid region. Pigmented foils for this purpose should combine a high solar reflectance and a high infrared emittance, in order to promote condensation by the radiative cooling effect. Titanium dioxide is a fairly good infrared emitter, but the emittance can be improved by using a mixture of TiO{sub 2} and BaSO{sub 4} pigments or only employing a composite SiO{sub 2}/TiO{sub 2}. Field tests with a 390 {micro}m thick polyethylene foil with TiO{sub 2} and BaSO{sub 4} pigments gave encouraging results.

  8. Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils

    SciTech Connect (OSTI)

    Schulthess, Jason

    2014-09-01

    Tensile mechanical properties for uranium-10 wt.% molybdenum (U–10Mo) foils are required to support modeling and qualification of new monolithic fuel plate designs. It is expected that depleted uranium-10 wt% Mo (DU–10Mo) mechanical behavior is representative of the low enriched U–10Mo to be used in the actual fuel plates, therefore DU-10Mo was studied to simplify material processing, handling, and testing requirements. In this report, tensile testing of DU-10Mo fuel foils prepared using four different thermomechanical processing treatments were conducted to assess the impact of foil fabrication history on resultant tensile properties.

  9. Method of fabricating a uranium-bearing foil

    DOE Patents [OSTI]

    Gooch, Jackie G. (Seymour, TN); DeMint, Amy L. (Kingston, TN)

    2012-04-24

    Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.

  10. Five Ways Aluminum Foil Is Advancing Science | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    practice for your x-ray laser Have you ever accidentally put aluminum foil in the microwave and turned it on? I imagine that is similar to experiments that researchers use to...

  11. Analytical and experimental investigations of hybrid air foil bearings 

    E-Print Network [OSTI]

    Kumar, Manish

    2009-05-15

    operations. However, the foil bearings have reliability issues that come from dry rubbing during start-up/shutdown and limited heat dissipation capability. Regardless of lubricating media, the hydrodynamic pressure generated provides only load support...

  12. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.

    2015-11-19

    In this study, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ~600 kA with ~200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. As amore »result, this technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.« less

  13. Force and hydrodynamic efficiency measurements of a three-dimensional flapping foil

    E-Print Network [OSTI]

    McLetchie, Karl-Magnus Weidmann

    2004-01-01

    Investigations into unsteady flapping foil propulsion have shown that it is an efficient and high thrust means of propulsion. Extensive work has been done to optimize the efficiency of two-dimensional flapping foils, varying ...

  14. Analysis of a flapping foil system for energy harvesting at low Reynolds number

    E-Print Network [OSTI]

    Cho, Hunkee

    2011-01-01

    Ocean power wave and tidal energy review”, Refocis 5, 50,fields of wind and tidal energy. The flapping foil systems

  15. Foiling the Flu Bug Global Partnerships for Nuclear Energy

    E-Print Network [OSTI]

    1 1663 Foiling the Flu Bug Global Partnerships for Nuclear Energy Dark Universe Mysteries WILL NOT NEED TESTING Expanding Nuclear Energy the Right Way GLOBAL PARTNERSHIPS AND AN ADVANCED FUEL CYCLE sense.The Laboratory is operated by Los Alamos National Security, LLC, for the Department of Energy

  16. Inline motion in flapping foils for improved force vectoring performance

    E-Print Network [OSTI]

    Izraelevitz, Jacob (Jacob Samuel)

    2013-01-01

    In this thesis, I study the effect of adding in-line oscillation to heaving and pitching foils using a power downstroke. I show that far from being a limitation imposed by the muscular structure of certain animals, in-line ...

  17. ANALYSIS OF THE ELECTRON EXCITATION SPECTRA IN HEAVY RARE EARTH METALS, HYDRIDES AND OXIDES

    E-Print Network [OSTI]

    Boyer, Edmond

    397 ANALYSIS OF THE ELECTRON EXCITATION SPECTRA IN HEAVY RARE EARTH METALS, HYDRIDES AND OXIDES C thin evaporated foils of heavy rare earths (Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in three different chemical of high energy incident electrons (75 keV) transmitted through thin foils of yttric rare earth elements

  18. Computational simulations of the Laguna foil implosion experiments

    SciTech Connect (OSTI)

    Greene, A.E.; Bowers, R.L.; Brownell, J.H.; Oliplant, T.A.; Peterson, D.L.; Weiss, D.L.

    1989-01-01

    The Los Alamos foil implosion project is intended to produce a source of intense laboratory x-radiation for physics and fusion studies. Following the Pioneer shot series, the project is now embarking on the Laguna foil implosion experiments. In this series a Mark-IX helical generator will be coupled to an explosively-formed-fuse opening switch, a surface discharge closing switch, and a vacuum power flow and load chamber. The system design will be discussed and an overview of zero-, one-, and two-dimensional MHD preshot simulations will be presented. The generator should provide more than 11 MA of which /approximately/5.5 MA will be switched to the 5-cm- radius, 2-cm-high, 250-nm-thick aluminum foil load. This should give rise to a 1.1 ..mu..s implosion with tens of kilojoules of kinetic energy. Zero-dimensional calculations serve to optimize the pulse- power system. One-dimensional, Lagrangian, MHD calculations are made to estimate temperature, densities and radiation output. The temperature and density profiles predicted by the 1-D code are used as initial conditions for our 2-D Eulerian code. The 2-D calculations predict a small amount of radiated energy from a decoupled plasma associated with Rayleigh-Taylor bubbles. This matter is predicted to have electron and ion temperatures in the keV regime as the bubble material thermalizes ahead of the bulk of the plasma.

  19. Copper foil adhesion within polyimide/glass multilayer printed wiring boards: Final report

    SciTech Connect (OSTI)

    Lula, J.W.

    1987-04-01

    Copper foil adhesion to polyimide/glass prepreg was evaluated. Typical peel strength obtained between prepreg and the smooth side of the copper foil was 1 to 3 lb./in. width. Peel strength between prepreg and the rough side of the copper foil ranged between 6 and 7 lb./in. width. An alternate test for evaluating the integrity of multilayer printed wiring boards is described.

  20. Fuel cell with metal screen flow-field

    DOE Patents [OSTI]

    Wilson, Mahlon S. (Los Alamos, NM); Zawodzinski, Christine (Los Alamos, NM)

    2001-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  1. Fuel cell with metal screen flow-field

    DOE Patents [OSTI]

    Wilson, M.S.; Zawodzinski, C.

    1998-08-25

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field there between for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells. 11 figs.

  2. Development and use of a Velocity Prediction Program to compare the effects of changes to foil arrangement on a hydro-foiling Moth dinghy

    E-Print Network [OSTI]

    arrangement on a hydro-foiling Moth dinghy M W Findlay, S R Turnock, School of Engineering Sciences main reasons. Firstly, the power to weight ratio of most sailing boats is relatively small because

  3. MANUFACTURING OF A GAS FOIL BEARINGS FOR PALMED-SIZED TURBOMACHINERY 

    E-Print Network [OSTI]

    Creary, Andron

    2010-07-14

    machine forming was used to create a top foil for the foil bearing. The predicted performance of the bearing was investigated through the orbit simulation method. A parametric study based on preload, as well as loss factor, was conducted in which the rotor...

  4. All-optical measurement of the hot electron sheath driving laser ion acceleration from thin foils

    E-Print Network [OSTI]

    Jackel, O.

    We present experimental results from an all-optical diagnostic method to directly measure the evolution of the hot-electron distribution driving the acceleration of ions from thin foils using high-intensity lasers. Central ...

  5. Nonlinear increase of X-ray intensities from thin foils irradiated...

    Office of Scientific and Technical Information (OSTI)

    increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser Citation Details In-Document Search Title: Nonlinear increase of X-ray intensities...

  6. PRELIMINARY EXAMINATION OF THE STARDUST INTERSTELLAR COLLECTOR: AL FOIL I1044N,1.

    E-Print Network [OSTI]

    Nittler, Larry R.

    stream. Like for the cometary tray, the interstellar collector's aerogel cells are held together with Al and manually inspected for impact craters. The SEM survey of this foil is complicated by lots of aerogel debris

  7. Boundary element simulation of oscillating foil with leading-edge separation

    E-Print Network [OSTI]

    Dong, Xiaoxia, S.M. Massachusetts Institute of Technology

    2007-01-01

    In this thesis, we develop a numerical model to account for the leading-edge separation for the boundary element simulation of the oscillating foil with potential flow assumption. Similar to the trailing-edge separation, ...

  8. Effect of Cooling Flow on the Operation of a Hot Rotor-Gas Foil Bearing System 

    E-Print Network [OSTI]

    Ryu, Keun

    2012-02-14

    Gas foil bearings (GFBs) operating at high temperature rely on thermal management procedures that supply needed cooling flow streams to keep the bearing and rotor from overheating. Poor thermal management not only makes ...

  9. Experimental identification of structural force coefficients in a bump-type foil bearing 

    E-Print Network [OSTI]

    Breedlove, Anthony Wayne

    2009-06-02

    temperature applications. During actual operation with shaft rotation, the bearing structural parameters are coupled to the effects of a hydrodynamic gas film layer, thus determining the overall bearing load performance. A 38.17 mm inner diameter foil bearing...

  10. Analysis of side end pressurized bump type gas foil bearings: a model anchored to test data 

    E-Print Network [OSTI]

    Kim, Tae Ho

    2009-05-15

    Comprehensive modeling of gas foil bearings (GFBs) anchored to reliable test data will enable the widespread usage of GFBs into novel turbomachinery applications, such as light weight business aircraft engines, hybrid fuel cell-turbine power systems...

  11. LANL Experience Rolling Zr-Clad LEU-10Mo Foils for AFIP-7

    SciTech Connect (OSTI)

    Hammon, Duncan L.; Clarke, Kester D.; Alexander, David J.; Kennedy, Patrick K.; Edwards, Randall L.; Duffield, Andrew N.; Dombrowski, David E.

    2015-05-29

    The cleaning, canning, rolling and final trimming of Low Enriched Uranium-10 wt. pct. Molybdenum (LEU-10Mo) foils for ATR (Advanced Test Reactor) fuel plates to be used in the AFIP-7 (ATR Full Size Plate In Center Flux Trap Position) experiments are summarized. Six Zr-clad foils were produced from two LEU-10Mo castings supplied to Los Alamos National Laboratory (LANL) by Y-12 National Security Complex. Details of cleaning and canning procedures are provided. Hot- and cold-rolling results are presented, including rolling schedules, images of foils in-process, metallography and local compositions of regions of interest, and details of final foil dimensions and process yield. This report was compiled from the slides for the presentation of the same name given by Duncan Hammon on May 12, 2011 at the AFIP-7 Lessons Learned meeting in Salt Lake City, UT, with Los Alamos National Laboratory document number LA-UR 11-02898.

  12. Process for forming a nickel foil with controlled and predetermined permeability to hydrogen

    DOE Patents [OSTI]

    Engelhaupt, Darell E. (Kansas City, MO)

    1981-09-22

    The present invention provides a novel process for forming a nickel foil having a controlled and predetermined hydrogen permeability. This process includes the steps of passing a nickel plating bath through a suitable cation exchange resin to provide a purified nickel plating bath free of copper and gold cations, immersing a nickel anode and a suitable cathode in the purified nickel plating bath containing a selected concentration of an organic sulfonic acid such as a napthalene-trisulfonic acid, electrodepositing a nickel layer having the thickness of a foil onto the cathode, and separating the nickel layer from the cathode to provide a nickel foil. The anode is a readily-corrodible nickel anode. The present invention also provides a novel nickel foil having a greater hydrogen permeability than palladium at room temperature.

  13. Co-Rolled U10Mo/Zirconium-Barrier-Layer Monolithic Fuel Foil Fabrication Process

    SciTech Connect (OSTI)

    G. A. Moore; M. C. Marshall

    2010-01-01

    Integral to the current UMo fuel foil processing scheme being developed at Idaho National Laboratory (INL) is the incorporation of a zirconium barrier layer for the purpose of controlling UMo-Al interdiffusion at the fuel-meat/cladding interface. A hot “co-rolling” process is employed to establish a ~25-µm-thick zirconium barrier layer on each face of the ~0.3-mm-thick U10Mo fuel foil.

  14. An investigation of the cadmium absorption of resonance neutrons in cadmium covered indium foils 

    E-Print Network [OSTI]

    Powell, James Edward

    1963-01-01

    AN INVESTIGATION OF THE CADMIUM ABSORPTION OF RESONANCE NEUTRONS IN CADMIUM COVERED INDIUM FOILS A Thesis by JAMES EDWARD POWELL Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1963 Major Subject Nuclear Engineering AN INVESTIGATION OF THE CADMIUM ABSORPTION OF RESONANCE NEUTRONS IN CADMIUM COVERED INDIUM FOILS A Thesis by JAMES EDWARD POWELL Approved as to style...

  15. Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells

    SciTech Connect (OSTI)

    Martini, R., E-mail: roberto.martini@imec.be [Department of Electrical Engineering, KU Leuven, Kasteelpark 10, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Kepa, J.; Stesmans, A. [Department of Physics, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven (Belgium); Debucquoy, M.; Depauw, V.; Gonzalez, M.; Gordon, I. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Poortmans, J. [Department of Electrical Engineering, KU Leuven, Kasteelpark 10, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Universiteit Hasselt, Martelarenlaan 42, B-3500 Hasselt (Belgium)

    2014-10-27

    We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ?100??s or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process. A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1??m of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461??s. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.

  16. Hall-Effect in Amorphous La1-Xgax Foils 

    E-Print Network [OSTI]

    COLTER, PC; Adair, Thomas W.; Naugle, Donald G.

    1979-01-01

    . Mater. 16, 117 (1973). 5L. E. Ballentine, in Liquid Metals l976, edited by R. Evans and D. A. Greenwood, IOP Conf, Ser. No, 30 (IPPS, London, 1977), p. 188. ...

  17. System and process for aluminization of metal-containing substrates

    DOE Patents [OSTI]

    Chou, Yeong-Shyung; Stevenson, Jeffry W

    2015-11-03

    A system and method are detailed for aluminizing surfaces of metallic substrates, parts, and components with a protective alumina layer in-situ. Aluminum (Al) foil sandwiched between the metallic components and a refractory material when heated in an oxidizing gas under a compression load at a selected temperature forms the protective alumina coating on the surface of the metallic components. The alumina coating minimizes evaporation of volatile metals from the metallic substrates, parts, and components in assembled devices during operation at high temperature that can degrade performance.

  18. Ion Acceleration from the Interaction of Ultra-Intense Lasers with Solid Foils

    SciTech Connect (OSTI)

    Allen, M

    2004-11-24

    The discovery that ultra-intense laser pulses (I > 10{sup 18} W/cm{sup 2}) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. Experiments have shown that protons present as hydrocarbon contaminants on laser targets can be accelerated up to energies > 50 MeV. Different theoretical models that explain the observed results have been proposed. One model describes a front-surface acceleration mechanism based on the ponderomotive potential of the laser pulse. At high intensities (I > 10{sup 18} W/cm{sup 2}), the quiver energy of an electron oscillating in the electric field of the laser pulse exceeds the electron rest mass, requiring the consideration of relativistic effects. The relativistically correct ponderomotive potential is given by U{sub p} = ([1 + I{lambda}{sup 2}/1.3 x 10{sup 18}]{sup 1/2} - 1) m{sub o}c{sup 2}, where I{lambda}{sup 2} is the irradiance in W {micro}m{sup 2}/cm{sup 2} and m{sub o}c{sup 2} is the electron rest mass. At laser irradiance of I{lambda}{sup 2} {approx} 10{sup 20} W {micro}m{sup 2}/cm{sup 2}, the ponderomotive potential can be of order several MeV. A few recent experiments--discussed in Chapter 3 of this thesis--consider this ponderomotive potential sufficiently strong to accelerate protons from the front surface of the target to energies up to tens of MeV. Another model, known as Target Normal Sheath Acceleration (TNSA), describes the mechanism as an electrostatic sheath on the back surface of the laser target. According to the TNSA model, relativistic hot electrons created at the laser-solid interaction penetrate the foil where a few escape to infinity. The remaining hot electrons are retained by the target potential and establish an electrostatic sheath on the back surface of the target. In this thesis we present several experiments that study the accelerated ions by affecting the contamination layer from which they originate. Radiative heating was employed as a method of removing contamination from palladium targets doped with deuterium. We present evidence that ions heavier than protons can be accelerated if hydrogenous contaminants that cover the laser target can be removed. We show that deuterons can be accelerated from the deuterated-palladium target, which has been radiatively heated to remove contaminants. Impinging a deuteron beam onto a tritiated-titanium catcher could lead to the development of a table-top source of short-pulse, 14-MeV fusion neutrons. We also show that by using an argon-ion sputter gun, contaminants from one side of the laser target can be selectively removed without affecting the other side. We show that irradiating a thin metallic foil with an ultra-intense laser pulse produces a proton beam with a yield of 1.5-2.5 10{sup 11} and temperature, kT = 1.5 MeV with a maximum proton energy > 9 MeV. Removing contaminants from the front surface of the laser target with an argon-ion sputter gun, had no observable effect on the proton beam. However, removing contaminants from the back surface of the laser target reduced the proton beam by two orders of magnitude to, at most, a yield of {approx} 10{sup 9} and a maximum proton energy < 4 MeV. Based on these observations, we conclude that the majority (> 99%) of high energy protons (E > 5 MeV) from the interaction of an ultra-intense laser pulse with a thin foil originate on the back surface of the foil--as predicted by the TNSA model. Our experimental results are in agreement with PIC simulations showing back surface protons reach energies up to 13 MeV, while front surface protons reach a maximum energy of 4 MeV. Well diagnosed and controllable proton beams will have many applications: neutron radiography, material damage studies, production of medical isotopes, and as a high-resolution radiography tool for diagnosing opaque materials and plasmas. Well collimated and focusable ion beams may also prove beneficial for alternative inertial-fusion concepts such as proton fast ignition, a pote

  19. METAL FOILS FOR DIRECT APPLICATION OF ABSORBER COATINGS ON SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2011-01-01

    for Depositing Solar Collector Coatings i i • Proceedingsof the AES Coatings for Solar Collectors Symposium. Atlanta.48. REFERENCES C. M. • "Coatings for Enhanced Photothermal

  20. METAL FOILS FOR DIRECT APPLICATION OF ABSORBER COATINGS ON SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2011-01-01

    Sputtering for Depositing Solar Collector Coatings".Proceedings of the AES Coatings for Solar Collectorsanalysis is noted. This coating has some theoretical

  1. Vehicle Technologies Office Merit Review 2015: Brazing Dissimilar Metals with a Novel Composite Foil

    Broader source: Energy.gov [DOE]

    Presentation given by John Hopkins University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about brazing dissimilar...

  2. Metal Mesh Foil Bearings: Prediction and Measurement for Static and Dynamic Performance Characteristics 

    E-Print Network [OSTI]

    Chirathadam, Thomas

    2012-12-10

    Gas bearings in oil-free micro-turbomachinery for process gas applications and for power generation (performance at high speeds and temperatures, low power...

  3. METAL FOILS FOR DIRECT APPLICATION OF ABSORBER COATINGS ON SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2011-01-01

    Sputtering for Depositing Solar Collector Coatings".of the AES Coatings for Solar Collectors Symposium. Atlanta.Neutral Surfaces in Solar Collectors." Proceedings of ISES

  4. METAL FOILS FOR DIRECT APPLICATION OF ABSORBER COATINGS ON SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2011-01-01

    for Depositing Solar Collector Coatings i i • Proceedings ofSymposium on Coatings for Solar Collectors, St. Louis, MO,OF ABSORBER COATINGS ON SOLAR COLLECTORS Carl M. Lampert

  5. METAL FOILS FOR DIRECT APPLICATION OF ABSORBER COATINGS ON SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2011-01-01

    for Depositing Solar Collector Coatings". Proceedings of theSymposium on Coatings for Solar Collectors, . Louis,'MO,OF ABSORBER COATINGS ON SOLAR COLLECTORS Carl M. Lampert

  6. METAL FOILS FOR DIRECT APPLICATION OF ABSORBER COATINGS ON SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2011-01-01

    of the AES Coatings for Solar Collectors Symposium. Atlanta.Sputtering for Depositing Solar Collector Coatings".Symposium on Coatings for Solar Collectors, . Louis,'MO,

  7. METAL FOILS FOR DIRECT APPLICATION OF ABSORBER COATINGS ON SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2011-01-01

    of the AES Coatings for Solar Collectors Symposium. Atlanta.Symposium on Coatings for Solar Collectors, St. Louis, MO,OF ABSORBER COATINGS ON SOLAR COLLECTORS Carl M. Lampert

  8. METAL FOILS FOR DIRECT APPLICATION OF ABSORBER COATINGS ON SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2011-01-01

    Sputtering for Depositing Solar Collector Coatings".of the AES Coatings for Solar Collectors Symposium. Atlanta.Surfaces on Flat Plate Solar Collectors". Proceedings of 2nd

  9. METAL FOILS FOR DIRECT APPLICATION OF ABSORBER COATINGS ON SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2011-01-01

    Surfaces on Flat Plate Solar Collectors". Proceedings of 2ndSputtering for Depositing Solar Collector Coatings i i •of the AES Coatings for Solar Collectors Symposium. Atlanta.

  10. Prediction and characterization of heat-affected zone formation due to neighboring nickel-aluminum multilayer foil reaction

    SciTech Connect (OSTI)

    Adams, David P.; Hirschfeld, Deidre A.; Hooper, Ryan J.; Manuel, Michelle V.

    2015-09-01

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. Much of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To enhance the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical model for the purpose of evaluating new foil-substrate combinations for screening and optimization. The model is experimentally validated using a commercially available Ni-Al multilayer foils and different alloys.

  11. Nanodiamond Foils for H- Stripping to Support the Spallation Neutron Source (SNS) and Related Applications

    SciTech Connect (OSTI)

    Vispute, R D; Ermer, Henry K; Sinsky, Phillip; Seiser, Andrew; Shaw, Robert W; Wilson, Leslie L; Harris, Gary; Piazza, Fabrice

    2013-01-01

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a single nanodiamond foil about the size of a postage stamp is critical to the entire operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control over film thickness. The results are discussed in the light of development of nanodiamond foils that will be able to withstand a few MW proton beam and hopefully will be able to be used after possible future upgrades to the SNS to greater than a 3MW beam.

  12. Laser shaping of a relativistic circularly polarized pulse by laser foil interaction

    SciTech Connect (OSTI)

    Zou, D. B.; Zhuo, H. B.; Yu, T. P.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yin, Y.; Ouyang, J. M.; Ge, Z. Y.; Zhang, G. B.; Wang, P.

    2013-07-15

    Laser shaping of a relativistic circularly polarized laser pulse in ultra-intense laser thin-foil interaction is investigated by theoretical analysis and particle-in-cell simulations. It is found that the plasma foil as a nonlinear optical shutter has an obvious cut-out effect on the laser temporal and spatial profiles. Two-dimensional particle-in-cell simulations show that the high intensity part of a Gaussian laser pulse can be well extracted from the whole pulse. The transmitted pulse with longitudinal steep rise front and transverse super-Gaussian profile is thus obtained which would be beneficial for the radiation pressure acceleration regime. The Rayleigh-Taylor-like instability is observed in the simulations, which destroys the foil and results in the cut-out effect of the pulse in the rise front of a circularly polarized laser.

  13. Eutectic bonding of a Ti sputter coated, carbon aerogel wafer to a Ni foil

    SciTech Connect (OSTI)

    Jankowski, A.F.; Hayes, J.P.; Kanna, R.L.

    1994-06-01

    The formation of high energy density, storage devices is achievable using composite material systems. Alternate layering of carbon aerogel wafers and Ni foils with rnicroporous separators is a prospective composite for capacitor applications. An inherent problem exists to form a physical bond between Ni and the porous carbon wafer. The bonding process must be limited to temperatures less than 1000{degrees}C, at which point the aerogel begins to degrade. The advantage of a low temperature eutectic in the Ni-Ti alloy system solves this problem. Ti, a carbide former, is readily adherent as a sputter deposited thin film onto the carbon wafer. A vacuum bonding process is then used to join the Ni foil and Ti coating through eutectic phase formation. The parameters required for successfld bonding are described along with a structural characterization of the Ni foil-carbon aerogel wafer interface.

  14. The development of uranium foil farication technology utilizing twin roll method for Mo-99 irradiation target

    E-Print Network [OSTI]

    Kim, C K; Park, H D

    2002-01-01

    MDS Nordion in Canada, occupying about 75% of global supply of Mo-99 isotope, has provided the irradiation target of Mo-99 using the rod-type UAl sub x alloys with HEU(High Enrichment Uranium). ANL (Argonne National Laboratory) through co-operation with BATAN in Indonesia, leading RERTR (Reduced Enrichment for Research and Test Reactors) program substantially for nuclear non-proliferation, has designed and fabricated the annular cylinder of uranium targets, and successfully performed irradiation test, in order to develop the fabrication technology of fission Mo-99 using LEU(Low Enrichment Uranium). As the uranium foils could be fabricated in laboratory scale, not in commercialized scale by hot rolling method due to significant problems in foil quality, productivity and economic efficiency, attention has shifted to the development of new technology. Under these circumstances, the invention of uranium foil fabrication technology utilizing twin-roll casting method in KAERI is found to be able to fabricate LEU or...

  15. Foil cycling technique for the VESUVIO spectrometer operating in the resonance detector configuration

    SciTech Connect (OSTI)

    Schooneveld, E. M.; Mayers, J.; Rhodes, N. J.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Gorini, G.; Perelli-Cippo, E.; Tardocchi, M.

    2006-09-15

    This article reports a novel experimental technique, namely, the foil cycling technique, developed on the VESUVIO spectrometer (ISIS spallation source) operating in the resonance detector configuration. It is shown that with a proper use of two foils of the same neutron absorbing material it is possible, in a double energy analysis process, to narrow the width of the instrumental resolution of a spectrometer operating in the resonance detector configuration and to achieve an effective subtraction of the neutron and gamma backgrounds. Preliminary experimental results, obtained from deep inelastic neutron scattering measurements on lead, zirconium hydride, and deuterium chloride samples, are presented.

  16. Pre-Oxidized and Nitrided Stainless Steel Foil for Proton Exchange Membrane Fuel Cell Bipolar Plates: Part 2- Single-Cell Fuel Cell Evaluation of Stamped Plates

    SciTech Connect (OSTI)

    Toops, Todd J [ORNL; Brady, Michael P [ORNL; Tortorelli, Peter F [ORNL; Pihl, Josh A [ORNL; EstevezGenCell, Francisco [GenCell Corp; Connors, Dan [GenCell Corp; Garzon, Fernando [Los Alamos National Laboratory (LANL); Rockward, Tommy [Los Alamos National Laboratory (LANL); Gervasio, Don [Arizona State University; Kosaraju, S.H. [Arizona State University

    2010-01-01

    Thermal (gas) nitridation of stainless steel alloys can yield low interfacial contact resistance (ICR), electrically conductive and corrosion-resistant nitride containing surface layers (Cr{sub 2}N, CrN, TiN, V{sub 2}N, VN, etc.) of interest for fuel cells, batteries, and sensors. This paper presents results of proton exchange membrane (PEM) single-cell fuel cell studies of stamped and pre-oxidized/nitrided developmental Fe-20Cr-4V weight percent (wt.%) and commercial type 2205 stainless steel alloy foils. The single-cell fuel cell behavior of the stamped and pre-oxidized/nitrided material was compared to as-stamped (no surface treatment) 904L, 2205, and Fe-20Cr-4V stainless steel alloy foils and machined graphite of similar flow field design. The best fuel cell behavior among the alloys was exhibited by the pre-oxidized/nitrided Fe-20Cr-4V, which exhibited {approx}5-20% better peak power output than untreated Fe-20Cr-4V, 2205, and 904L metal stampings. Durability was assessed for pre-oxidized/nitrided Fe-20Cr-4V, 904L metal, and graphite plates by 1000+ h of cyclic single-cell fuel cell testing. All three materials showed good durability with no significant degradation in cell power output. Post-test analysis indicated no metal ion contamination of the membrane electrode assemblies (MEAs) occurred with the pre-oxidized and nitrided Fe-20Cr-4V or graphite plates, and only a minor amount of contamination with the 904L plates.

  17. Mechanics of rollable and foldable film-on-foil electronics Department of Mechanical and Aerospace Engineering and Princeton Materials Institute,

    E-Print Network [OSTI]

    Suo, Zhigang

    the foils are rolled to small radii of curvature. When a substrate with a lower elastic modulus is used to roll-to-roll fabrication. We show in this letter that such devices can be made particularly rugged. We deposition. First, the substrate foil was coated with a 0.5 m thick SiNx layer. An 100 nm thick Cr layer

  18. Preliminary Examination of Al Foil I1061N,1 from the Stardust Interstellar Collector. C. Floss (floss@wustl.edu), C.

    E-Print Network [OSTI]

    Nittler, Larry R.

    to aerogel capture cells, the tray contains Al foils that make up ~15% of the total exposed collection

  19. THE SEARCH FOR INTERSTELLAR PARTICLE (ISP) IMPACTS ON STARDUST ALUMINIUM FOILS.

    E-Print Network [OSTI]

    Nittler, Larry R.

    ]. Although aerogel tracks [3] consistent with ISP origin have been found and some have already been analysed), their small size ( µm), variable surface contamination by aerogel debris, and the foil roughness might make oblique impacts by spacecraft-derived debris (as have been tentatively recognized in the collector aerogel

  20. A MULTIPLE FOIL LUNAR ENVIRONMENTAL ANALYSER (FLEA PACKAGE) FOR THE EVALUATION OF

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Products. · Solar Wind Composition. · Medium Energy Solar Flare Composition. · Solar Wind Sputter Rate The conception of a multiple thin foil sensor has been investigated and is suggested a.s a very valuable tool of specific param- eters of the meteor environment, of the solar wind spectrum and of the overall

  1. Rotordynamic performance of a rotor supported on bump-type foil bearings: experiments and predictions 

    E-Print Network [OSTI]

    Rubio Tabares, Dario

    2006-08-16

    ? foil journal bearings. Coastdown tests from 61,000 rpm Steady state motions at subsynchronous rigid body mode frequencies limited in magnitude. Similar dynamic performance of the rotor system for vertical and horizontal operations. 2002 Swason E...????????????????????????????? 65 Predicted Bearing Performance?????????????????... 65 Journal Eccentricity and Attitude Angle??????????????. 68 Predicted Bearing Force Coefficients???????????????.. 72 Predicted Rotor/Bearing Performance???????????????. 75 Damped Natural...

  2. Preparation of high-strength nanometer scale twinned coating and foil

    DOE Patents [OSTI]

    Zhang, Xinghang (Los Alamos, NM); Misra, Amit (Los Alamos, NM); Nastasi, Michael A. (Santa Fe, NM); Hoagland, Richard G. (Santa Fe, NM)

    2006-07-18

    Very high strength single phase stainless steel coating has been prepared by magnetron sputtering onto a substrate. The coating has a unique microstructure of nanometer spaced twins that are parallel to each other and to the substrate surface. For cases where the coating and substrate do not bind strongly, the coating can be peeled off to provide foil.

  3. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    SciTech Connect (OSTI)

    Dutta, P. Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V.; Zheng, N.; Ahrenkiel, P.; Martinez, J.

    2014-09-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ?10{sup 7?}cm{sup ?2}. Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300?cm{sup 2}/V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  4. Back contact to film silicon on metal for photovoltaic cells

    DOE Patents [OSTI]

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  5. Development of process to transfer large areas of LPCVD graphene from copper foil to a porous support substrate

    E-Print Network [OSTI]

    O'Hern, Sean C. (Sean Carson)

    2011-01-01

    In this thesis, I present a procedure by which to transfer greater than 25 mm² areas of high-quality graphene synthesized via low-pressure chemical vapor deposition from copper foil to porous support substrates. Large-area, ...

  6. Fast-ion spectrometry of ICF implosions and laser-foil experiments at the omega and MTW laser facilities

    E-Print Network [OSTI]

    Sinenian, Nareg

    2013-01-01

    Fast ions generated from laser-plasma interactions (LPI) have been used to study inertial confinement fusion (ICF) implosions and laser-foil interactions. LPI, which vary in nature depending on the wavelength and intensity ...

  7. Spot size dependence of laser accelerated protons in thin multi-ion foils

    SciTech Connect (OSTI)

    Liu, Tung-Chang, E-mail: tcliu@umd.edu; Shao, Xi; Liu, Chuan-Sheng [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Eliasson, Bengt [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); SUPA, Department of Physics, Strathclyde University, Glasgow G4 0NG (United Kingdom); Wang, Jyhpyng [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Department of Physics, National Central University, Taoyuan 32001, Taiwan (China); Chen, Shih-Hung [Department of Physics, National Central University, Taoyuan 32001, Taiwan (China)

    2014-06-15

    We present a numerical study of the effect of the laser spot size of a circularly polarized laser beam on the energy of quasi-monoenergetic protons in laser proton acceleration using a thin carbon-hydrogen foil. The used proton acceleration scheme is a combination of laser radiation pressure and shielded Coulomb repulsion due to the carbon ions. We observe that the spot size plays a crucial role in determining the net charge of the electron-shielded carbon ion foil and consequently the efficiency of proton acceleration. Using a laser pulse with fixed input energy and pulse length impinging on a carbon-hydrogen foil, a laser beam with smaller spot sizes can generate higher energy but fewer quasi-monoenergetic protons. We studied the scaling of the proton energy with respect to the laser spot size and obtained an optimal spot size for maximum proton energy flux. Using the optimal spot size, we can generate an 80?MeV quasi-monoenergetic proton beam containing more than 10{sup 8} protons using a laser beam with power 250?TW and energy 10?J and a target of thickness 0.15 wavelength and 49 critical density made of 90% carbon and 10% hydrogen.

  8. Effects of pulse duration and areal density on ultrathin foil acceleration

    SciTech Connect (OSTI)

    Zhang Xiaomei; Shen Baifei; Ji Liangliang; Wang Fengchao; Wen Meng; Wang Wenpeng; Xu Jiancai; Yu Yahong [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2010-06-15

    The influence of laser pulse duration and areal density of target in the interaction of a circularly polarized pulse with an ultrathin overdense foil is investigated. One-dimensional particle-in-cell simulation shows that with an appropriate laser-pulse rising front, the light pressure acceleration regime is effective even though the thin foil is transparent. As the laser intensity evolves, three stages in the acceleration process can be identified: at first the total reflection of the laser pulse, followed by partial reflection, and then near total reflection again due to the Doppler effect. The influences of the rising front of laser pulse and areal density of the ultrathin foil are investigated. It is found that an optimal laser pulse rising front exists for obtaining high (saturation) ion energy with the same laser energy within a short time. An optimal areal density also exists for obtaining the highest energy. For the same laser pulse, a higher areal density or a higher density with same areal density is more appropriate for obtaining a stationary state for making light pressure acceleration mechanism more effective.

  9. Brazing ZrO{sub 2} ceramic to Ti–6Al–4V alloy using NiCrSiB amorphous filler foil: Interfacial microstructure and joint properties

    SciTech Connect (OSTI)

    Cao, J., E-mail: cao_jian@hit.edu.cn [Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Song, X.G., E-mail: song_xiaoguohit@yahoo.com.cn [Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Li, C., E-mail: li_chun1989@yahoo.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Zhao, L.Y., E-mail: Zhao_ly@163.com [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Feng, J.C., E-mail: feng_jicai@163.com [Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China)

    2013-07-15

    Reliable brazing of ZrO{sub 2} ceramic and Ti–6Al–4V alloy was achieved using NiCrSiB amorphous filler foil. The interfacial microstructure of ZrO{sub 2}/Ti–6Al–4V joints was characterized by scanning electron microscope, energy dispersive spectrometer and micro-focused X-ray diffractometer. The effects of brazing temperature on the interfacial microstructure and joining properties of brazed joints were investigated in detail. Active Ti of Ti–6Al–4V alloy dissolved into molten filler metal and reacted with ZrO{sub 2} ceramic to form a continuous TiO reaction layer, which played an important role in brazing. Various reaction phases including Ti{sub 2}Ni, Ti{sub 5}Si{sub 3} and ?-Ti were formed in brazed joints. With an increasing of brazing temperature, the TiO layer thickened gradually while the Ti{sub 2}Ni amount reduced. Shear test indicated that brazed joints tend to fracture at the interface between ZrO{sub 2} ceramic and brazing seam or Ti{sub 2}Ni intermetallic layer. The maximum average shear strength reached 284.6 MPa when brazed at 1025 °C for 10 min. - Graphical Abstract: Interfacial microstructure of ZrO{sub 2}/TC4 joint brazed using NiCrSiB amorphous filler foil was: ZrO{sub 2}/TiO/Ti{sub 2}Ni + ?-Ti + Ti{sub 5}Si{sub 3}/?-Ti/Widmanstätten structure/TC4. - Highlights: • Brazing of ZrO{sub 2} ceramic and Ti-6Al-4V alloy was achieved. • Interfacial microstructure was TiO/Ti{sub 2}Ni + ? + Ti{sub 5}Si{sub 3}/?/Widmanstätten structure. • The formation of TiO produced the darkening effect of ZrO{sub 2} ceramic. • The highest joining strength of 284.6MPa was obtained.

  10. SU-E-T-557: Measuring Neutron Activation of Cardiac Devices Irradiated During Proton Therapy Using Indium Foils

    SciTech Connect (OSTI)

    Avery, S; Christodouleas, J; Delaney, K; Diffenderfer, E; Brown, K

    2014-06-01

    Purpose: Measuring Neutron Activation of Cardiac devices Irradiated during Proton Therapy using Indium Foils Methods: The foils had dimensions of 25mm x 25mm x 1mm. After being activated, the foils were placed in a Canberra Industries well chamber utilizing a NaI(Tl) scintillation detector. The resulting gamma spectrum was acquired and analyzed using Genie 2000 spectroscopy software. One activation foil was placed over the upper, left chest of RANDO where a pacemaker would be. The rest of the foils were placed over the midline of the patient at different distances, providing a spatial distribution over the phantom. Using lasers and BBs to align the patient, 200 MU square fields were delivered to various treatment sites: the brain, the pancreas, and the prostate. Each field was shot at least a day apart, giving more than enough time for activity of the foil to decay (t1=2 = 54.12 min). Results: The net counts (minus background) of the three aforementioned peaks were used for our measurements. These counts were adjusted to account for detector efficiency, relative photon yields from decay, and the natural abundance of 115-In. The average neutron flux for the closed multi-leaf collimator irradiation was measured to be 1.62 x 106 - 0.18 x 106 cm2 s-1. An order of magnitude estimate of the flux for neutrons up to 1 keV from Diffenderfer et al. gives 3 x 106 cm2 s-1 which does agree on the order of magnitude. Conclusion: Lower energy neutrons have higher interaction cross-sections and are more likely to damage pacemakers. The thermal/slow neutron component may be enough to estimate the overall risk. The true test of the applicability of activation foils is whether or not measurements are capable of predicting cardiac device malfunction. For that, additional studies are needed to provide clinical evidence one way or the other.

  11. Method for fabricating prescribed flaws in the interior of metals

    DOE Patents [OSTI]

    Hsu, David K. (Ames, IA); Thompson, Donald O. (Ames, IA)

    1989-03-07

    The method for fabricating a metal body having a flaw of predetermined size and shape located therein comprises placing half of the metal powder required to make the metal body in the die of a press and pressing it to create a flat upper surface thereon. A piece of copper foil is cut to the size and shape of the desired interior crack and placed on the upper surface of the powder and centered in position. The remaining powder is then placed in the die to cover the copper foil. The powder is first cold pressed and removed from the press. The powder metal piece is then sintered in a furnace at a temperature above the melting point of the copper and below the melting point of the metal. It is then removed from the furnace, cooled to room temperature, and placed back in the die and pressed further. This procedure results in an interior flaw or crack. Modified forms of the method involve using a press-sinter-press-sinter cycle with the first sinter being below the melting point of the copper and the second sinter being above the melting point of the copper and below the melting point of the metal.

  12. Method for making radioactive metal articles having small dimensions

    DOE Patents [OSTI]

    Ohriner, Evan K. (Knoxville, TN)

    2000-01-01

    A method for making a radioactive article such as wire, includes the steps of providing a metal article having a first shape, such a cylinder, that is either radioactive itself or can be converted to a second, radioactive isotope by irradiation; melting the metal article one or more times; optionally adding an alloying metal to the molten metal in order to enhance ductility or other properties; placing the metal article having the first shape (e.g., cylindrical) into a cavity in the interior of an extrusion body (e.g., a cylinder having a cylindrical cavity therein); extruding the extrusion body and the article having the first shape located in the cavity therein, resulting in an elongated extrusion body and an article having a second shape; removing the elongated extrusion body, for example by chemical means, leaving the elongated inner article substantially intact; optionally repeating the extrusion procedure one or more times; and then drawing the elongated article to still further elongate it, into wire, foil, or another desired shape. If the starting metal is enriched in a radioactive isotope or a precursor thereof, the end product can provide a more intense radiation source than conventionally manufactured radioactive wire, foil, or the like.

  13. Effects of the foil flatness on the stress-strain characteristics of U10Mo alloy based monolithic mini-plates

    SciTech Connect (OSTI)

    Hakan Ozaltun; Pavel Medvedev

    2014-11-01

    The effects of the foil flatness on stress-strain behavior of monolithic fuel mini-plates during fabrication and irradiation were studied. Monolithic plate-type fuels are a new fuel form being developed for research and test reactors to achieve higher uranium densities. This concept facilitates the use of low-enriched uranium fuel in the reactor. These fuel elements are comprised of a high density, low enrichment, U–Mo alloy based fuel foil encapsulated in a cladding material made of Aluminum. To evaluate the effects of the foil flatness on the stress-strain behavior of the plates during fabrication, irradiation and shutdown stages, a representative plate from RERTR-12 experiments (Plate L1P756) was considered. Both fabrication and irradiation processes of the plate were simulated by using actual irradiation parameters. The simulations were repeated for various foil curvatures to observe the effects of the foil flatness on the peak stress and strain magnitudes of the fuel elements. Results of fabrication simulations revealed that the flatness of the foil does not have a considerable impact on the post fabrication stress-strain fields. Furthermore, the irradiation simulations indicated that any post-fabrication stresses in the foil would be relieved relatively fast in the reactor. While, the perfectly flat foil provided the slightly better mechanical performance, overall difference between the flat-foil case and curved-foil case was not significant. Even though the peak stresses are less affected, the foil curvature has several implications on the strain magnitudes in the cladding. It was observed that with an increasing foil curvature, there is a slight increase in the cladding strains.

  14. Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor-like by Electrostatic Gating

    E-Print Network [OSTI]

    Zettl, Alex

    with dry nitrogen during the measurement. Sample preparation We grow single layer graphene on copper foil1 Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor electro-optic sampling.2 The focused THz beam at our graphene sample has a diameter of 1 mm. For optical

  15. A Real-Time Beam Monitor for Hadrontherapy Applications Based on Thin Foil Secondary Electron Emission and a Back-Thinned Monolithic Pixel Sensor

    E-Print Network [OSTI]

    Badano, L; Caccia, M; Cappellini, C; Chmill, V; Jastrzab, M; Abbas, K; Holzwarth, U; Gibson, P N; Molinari, G

    2008-01-01

    A Real-Time Beam Monitor for Hadrontherapy Applications Based on Thin Foil Secondary Electron Emission and a Back-Thinned Monolithic Pixel Sensor

  16. Development of nanodiamond foils for H- stripping to Support the Spallation Neutron Source (SNS) using hot filament chemical vapor deposition

    SciTech Connect (OSTI)

    Vispute, R D; Ermer, Henry K; Sinsky, Phillip; Seiser, Andrew; Shaw, Robert W; Wilson, Leslie L

    2014-01-01

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a small foil about the size of a postage stamp is critical to the operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control film thickness. The results are discussed in the light of development of nanodiamond foils that will be able to withstand a few MW proton beam and hopefully will be able to be used after possible future upgrades to the SNS to greater than a 3MW beam.

  17. Electron emission of stripping foil and collimation system for CSNS/RCS

    E-Print Network [OSTI]

    Huang, Ming-Yang; Wang, Na; Wang, Sheng

    2015-01-01

    For the Rapid Cycling Synchrotron of the China Spallation Neutron Source (CSNS/RCS), the electron emission plays an important role in the accelerator limitation. The interactions between the proton beam and the stripping foil were studied, and the electron scattering processes were simulated by the ORBIT and FLUKA codes. Then, the electron energy distribution and the electron yielding rate can be given. Furthermore, the interactions between the proton beam and the collimation system were studied, and the electron scattering processes were simulated. Then, the energy distribution of the primary electron emission can be given and the yielding rate of the primary electron can be obtained.

  18. Calorimetric and Resistive Measurements of Amorphous Splat Cooled La1-Xgax Foils 

    E-Print Network [OSTI]

    SHULL, WH; Naugle, Donald G.; POON, SJ; JOHNSON, WL.

    1978-01-01

    VOLUME 18, NUMBER 7 1 OCTOBER 1978 Calorimetric and resistive measurements of amorphous "splat cooled" Lat Ga? foils %. H. Shull' and D. G. Naugle Texax Ad'cM University, College Station, Texas 77843 and S. J. Poon~ and W. L. Johnson 8'. M. Keck...- stants as large as 2.4 values of 2he/ks T, around 4.5; (ii) the electronic properties are well described by the simple free-electron model with the exception of the alloy systems of Bi and Pb which appear to be more complicated; and (iii) n'(re) F...

  19. Ionization-assisted relativistic electron generation with monoenergetic features from laser thin foil interaction

    SciTech Connect (OSTI)

    Glazyrin, I. V.; Karpeev, A. V.; Kotova, O. G.; Bychenkov, V. Yu.; Fedosejevs, R.; Rozmus, W. [Russian Federal Nuclear Center - E.I.Zababakhin Institute of Technical Physics, Snezhinsk, Chelyabinsk Region 456770 (Russian Federation); P. N. Lebedev Physics Institute RAS, Leninskii Prospect 53, Moscow 119991 (Russian Federation); Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6G 2V4, Alberta (Canada); Theoretical Physics Institute, University of Alberta, Edmonton T6G 2G7, Alberta (Canada)

    2012-07-11

    The concept of ionization-induced injection into the laser pulse to produce quasi-monoenergetic bunches of electrons from ultra-thin solid dense targets is analyzed. When the laser pulse propagates through semi-transparent foil the electrons from inner atom shells remain bound during the rise time of the laser pulse and are ionized by the laser intensity near its maximum amplitude, which satisfies the best injection condition for subsequent acceleration. It was found that a bunch of quasimonoenergetic electrons from inner atom shells moves co-directionally with laser pulse and acquire energy {approx}m{sub e}c{sup 2}a{sup 2}/2.

  20. Relativistic Single-Cycled Short-Wavelength Laser Pulse Compressed from a Chirped Pulse Induced by Laser-Foil Interaction

    SciTech Connect (OSTI)

    Ji, L. L.; Shen, B. F.; Li, D. X.; Wang, D.; Leng, Y. X.; Zhang, X. M.; Wen, M.; Wang, W. P.; Xu, J. C.; Yu, Y. H. [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)

    2010-07-09

    By particle-in-cell simulation and analysis, we propose a plasma approach to generate a relativistic chirped pulse based on a laser-foil interaction. When two counterpropagating circularly polarized pulses interact with an overdense foil, the driving pulse (with a larger laser field amplitude) will accelerate the whole foil to form a double-layer structure, and the scattered pulse (with a smaller laser field amplitude) is reflected by this flying layer. Because of the Doppler effect and the varying velocity of the layer, the reflected pulse is up-shifted for frequency and chirped; thus, it could be compressed to a nearly single-cycled relativistic laser pulse with a short wavelength. Simulations show that a nearly single-cycled subfemtosecond relativistic pulse can be generated with a wavelength of 0.2 {mu}m after dispersion compensation.

  1. K{sub ?} x-ray imaging of laser-irradiated, limited-mass zirconium foils

    SciTech Connect (OSTI)

    Storm, M.; Orban, C.; Jiang, S.; Freeman, R. R.; Akli, K. [Department of Physics, The Ohio State University, 191 West Woodruff Road, Columbus, Ohio 43210 (United States); Eichman, B.; Fiksel, G.; Stoeckl, C.; Theobald, W.; Delettrez, J. A. [The Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Dyer, G.; Ditmire, T. [The Texas Center of High Energy Density Science, The University of Texas at Austin, 2511 Speedway Street, Austin, Texas 78712 (United States); Stephens, R. [General Atomics, 3550 General Atomics Court, San Diego, California 92121-1200 (United States)

    2014-07-15

    X-ray fluorescence measurements to determine the effect of target heating on imaging efficiency, at a photon energy of 15.7 keV corresponding to the K{sub ?} line of zirconium, have been carried out using limited-mass foils irradiated by the Texas Petawatt Laser. Zirconium foils that ranged in volume from 3000?×?3000?×?21 ?m{sup 3} to 150?×?150?×?6 ?m{sup 3} were irradiated with 100 J, 8 ps-long pulses and a mean intensity of 4?×?10{sup 19} W/cm{sup 2}. The K{sub ?} emission was measured simultaneously using a highly ordered pyrolytic graphite crystal spectrometer and a curved quartz imaging crystal. The measured ratio of the integrated image signal to the integrated spectral signal was, within the experimental error, constant, indicating that the imaging efficiency's dependence on temperature is weak throughout the probed range. Based on our experience of target heating under similar conditions, we estimate a temperature of ?200 eV for the smallest targets. The successful imaging of K{sub ?} emission for temperatures this high represents an important proof of concept for Zr K{sub ?} imaging. At these temperatures, the imaging of K{sub ?} emission from lower-Z materials (such as Cu) is limited by temperature-dependent shifts in the K{sub ?} emission energy.

  2. Metal aminoboranes

    DOE Patents [OSTI]

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya Kaviraj; Shrestha, Roshan P.

    2010-05-11

    Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  3. D-Cluster Converter Foil for Laser-Accelerated Deuteron Beams: Towards Deuteron-Beam-Driven Fast Ignition

    SciTech Connect (OSTI)

    Miley, George H.

    2012-10-24

    Fast Ignition (FI) uses Petawatt laser generated particle beam pulse to ignite a small volume called a pre-compressed Inertial Confinement Fusion (ICF) target, and is the favored method to achieve the high energy gain per target burn needed for an attractive ICF power plant. Ion beams such as protons, deuterons or heavier carbon ions are especially appealing for FI as they have relative straight trajectory, and easier to focus on the fuel capsule. But current experiments have encountered problems with the 'converter-foil' which is irradiated by the Petawatt laser to produce the ion beams. The problems include depletion of the available ions in the convertor foils, and poor energy efficiency (ion beam energy/ input laser energy). We proposed to develop a volumetrically-loaded ultra-high-density deuteron deuterium cluster material as the basis for converter-foil for deuteron beam generation. The deuterons will fuse with the ICF DT while they slow down, providing an extra 'bonus' energy gain in addition to heating the hot spot. Also, due to the volumetric loading, the foil will provide sufficient energetic deuteron beam flux for 'hot spot' ignition, while avoiding the depletion problem encountered by current proton-driven FI foils. After extensive comparative studies, in Phase I, high purity PdO/Pd/PdO foils were selected for the high packing fraction D-Cluster converter foils. An optimized loading process has been developed to increase the cluster packing fraction in this type of foil. As a result, the packing fraction has been increased from 0.1% to 10% - meeting the original Phase I goal and representing a significant progress towards the beam intensities needed for both FI and pulsed neutron applications. Fast Ignition provides a promising approach to achieve high energy gain target performance needed for commercial Inertial Confinement Fusion (ICF). This is now a realistic goal for near term in view of the anticipated ICF target burn at the National Ignition Facility (NIF) in CA within a year. This will usher in the technology development Phase of ICF after years of research aimed at achieving breakeven experiment. Methods to achieve the high energy gain needed for a competitive power plant will then be a key developmental issue, and our D-cluster target for Fast Ignition (FI) is expected to meet that need.

  4. Measured and calculated activities of spallation products formed in copper and gold foils as a result of bombardment with 120 MeV deuterons 

    E-Print Network [OSTI]

    Belian, Anthony Paul

    1994-01-01

    produced in the target as a function of target materials. An experiment conducted at the Texas A&M University (TAMU) Cyclotron consisted of two foils, copper and gold, being irradiated by 120 MeV deuterons. The foils were transported to the TAMU Nuclear...

  5. STARDUST INTERSTELLAR FOILS I1061N,1 AND I1031N,1: FIRST RESULTS FROM AUTOMATED CRATER SEARCHES AND FUTURE ANALYTICAL POSSIBILITIES. C. Floss, C. Allen, S. Bajt, H. A.

    E-Print Network [OSTI]

    Nittler, Larry R.

    days of that time. In addition to aerogel capture cells, the tray contains Al foils that make up ~15

  6. Design, analyses and experimental study of a foil gas bearing with compression springs as a compliance support 

    E-Print Network [OSTI]

    Song, Ju Ho

    2009-06-02

    of compression springs was developed and showed a good level of agreement with the experimental results. The spring dynamics model was combined with a non-linear orbit simulation to investigate the non-linear behavior of foil gas bearings. The approach could also...

  7. Polymer-ZnO nanocomposites foils and thin films for UV protection

    SciTech Connect (OSTI)

    Shanshool, Haider Mohammed; Yahaya, Muhammad; Abdullah, Ibtisam Yahya [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Yunus, Wan Mahmood Mat [Department of Physics, Faculty of Science, University Putra Malaysia, 43400 UPM, Serdang (Malaysia)

    2014-09-03

    The damage of UV radiation on human eye and skin is extensively studied. In the present work, the nanocomposites foils and thin films have been prepared by using casting method and spin coating, respectively. Nanocomposites were prepared by mixing ZnO nanoparticles with Polymethyl methacrylate (PMMA) and Polyvinylidene fluoride (PVDF) as polymer matrix. Different contents of ZnO nanoparticles were used as filler in the nanocomposites. UV-Vis spectra showed very low transmittance in UV region that decreases with increase content of ZnO. PVDF/ZnO samples showed the lowest transmittance. The rough surface of PVDF was observed from SEM image. While a homogeneous dispersion of ZnO nanoparticles in PMMA were indicated by FESEM images.

  8. Effective post-acceleration of ion bunches in foils irradiated by ultra-intense laser pulses

    SciTech Connect (OSTI)

    Andreev, A. A. [Max Born Institute, Max Born Str. 2a, D-12489 Berlin (Germany); Saint Petersburg State University, University Emb. 7-9, 199034 Saint Petersburg (Russian Federation); ELI-ALPS, Dugonics ter. 13 H-6720 Szeged (Hungary); Nickles, P. V. [Max Born Institute, Max Born Str. 2a, D-12489 Berlin (Germany); Center of Relativistic Laser Science, Institute for Basic Science, Gwangju 500-712 (Korea, Republic of); Platonov, K. Yu [Saint Petersburg State Technical University, Politekhnicheskaja 29, 195251 Saint Petersburg (Russian Federation)

    2014-08-15

    Two-step laser acceleration of protons with two foils and two laser pulses is modelled and optimized. It is shown that a nearly mono-energetic distribution of proton bunches can be realized by a suitable parameter choice. Two-step acceleration schemes make it possible to obtain both higher efficiency and energy as compared to the acceleration with only one laser pulse of an energy equal to the sum of the energy of the two pulses. With the aid of our analytical model, the optimal distance between the two targets, the delay between the two laser pulses, and the parameters of the laser pulses are determined. Estimates and results of the modelling are proven with 2D PIC simulations of the acceleration of proton bunches moving through the second target.

  9. Approach to make macroporous metal sheets as current collectors for lithium-ion batteries

    SciTech Connect (OSTI)

    Xu, Wu; Canfield, Nathan L.; Wang, Deyu; Xiao, Jie; Nie, Zimin; Li, Xiaohong S.; Bennett, Wendy D.; Bonham, Charles C.; Zhang, Jiguang

    2010-05-05

    A new approach and simple method is described to produce macroporous metal sheet as current collector for anode in lithium ion battery. This method, based on slurry blending, tape casting, sintering, and reducing of metal oxides, produces a uniform, macroporous metal sheet. Silicon film sputter-coated on such porous copper substrate shows much higher capacity and longer cycle life than on smooth Cu foil. This methodology produces very limited wastes and is also adaptable to many other materials. It is easy for industrial scale production.

  10. Prism foil from an LCD monitor as a tool for teaching introductory optics This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Planin?iè, Gorazd

    Prism foil from an LCD monitor as a tool for teaching introductory optics This article has been foil from an LCD monitor as a tool for teaching introductory optics Gorazd Planinsic and Mihael used today. This paper describes the optical properties of the prism foil and several pedagogical

  11. Metal inks

    DOE Patents [OSTI]

    Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

    2014-02-04

    Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

  12. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  13. FINAL FOCUS ION BEAM INTENSITY FROM TUNGSTEN FOIL CALORIMETER AND SCINTILLATOR IN NDCX-I

    SciTech Connect (OSTI)

    Lidia, S.M.; Bieniosek, F.; Henestroza, E.; Ni, P.; Seidl, P.

    2010-04-30

    Laboratory high energy density experiments using ion beam drivers rely upon the delivery of high-current, high-brightness ion beams with high peak intensity onto targets. Solid-state scintillators are typically used to measure the ion beam spatial profile but they display dose-dependent degradation and aging effects. These effects produce uncertainties and limit the accuracy of measuring peak beam intensities delivered to the target. For beam tuning and characterizing the incident beam intensity, we have developed a cross-calibrating diagnostic suite that extends the upper limit of measurable peak intensity dynamic range. Absolute intensity calibration is obtained with a 3 {micro}m thick tungsten foil calorimeter and streak spectrometer. We present experimental evidence for peak intensity measures in excess of 400 kW/cm{sup 2} using a 0.3 MV, 25 mA, 5-20 {micro}sec K{sup +1} beam. Radiative models and thermal diffusion effects are discussed because they affect temporal and spatial resolution of beam intensity profiles.

  14. ATR LEU Monolithic Foil-Type Fuel with Integral Cladding Burnable Absorber – Neutronics Performance Evaluation

    SciTech Connect (OSTI)

    Gray Chang

    2012-03-01

    The Advanced Test Reactor (ATR), currently operating in the United States, is used for material testing at very high neutron fluxes. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting HEU driven reactor cores to low-enriched uranium (LEU) cores. The burnable absorber - 10B, was added in the inner and outer plates to reduce the initial excess reactivity, and to improve the peak ratio of the inner/outer heat flux. The present work investigates the LEU Monolithic foil-type fuel with 10B Integral Cladding Burnable Absorber (ICBA) design and evaluates the subsequent neutronics operating effects of this proposed fuel designs. The proposed LEU fuel specification in this work is directly related to both the RERTR LEU Development Program and the Advanced Test Reactor (ATR) LEU Conversion Project at Idaho National Laboratory (INL).

  15. The effects of gaps between bridge foils and PETN as a function of PETN density and specific surface area

    SciTech Connect (OSTI)

    Phillips, D; Roeske, F; Burnham, A

    2007-06-26

    X-ray computer tomography scans of artificially aged PETN seem to indicate shrinkage of material and, by extension, an increased high explosive density, resulting in potential separation of the HE from the header/bridge foil. We have investigated these phenomena by mimicking this shrinkage of material (load density). Thus, we have evaluated various induced gaps between the exploding bridge foil and the PETN in our custom detonators by changing both specific surface area - recognizing crystal morphology changes - and load density. Analyses for these data include absolute function time relative to bridge burst and careful evaluation of the detonation wave breakout curvature, using an electronic streak camera for wave capture, in cases where the bridge foil (exploding bridge wire - EBW style) initiation successfully traverses the gap (a 'go' condition). In addition, a fireset with subnanosecond trigger jitter was used for these tests allowing easy comparison of relative 'go' function times. Using the same test matrix and fine-tuning the induced gap, a second, smaller subset of these experiments were performed to provide additional insight as to what conditions we might expect detonator anomalies/failure.

  16. Candidate alloys for cost-effective, high-efficiency, high-temperature compact/foil heat-exchangers

    SciTech Connect (OSTI)

    Evans, Neal D; Maziasz, Philip J; Shingledecker, John P; Pint, Bruce A; Yamamoto, Yukinori

    2007-01-01

    Solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) systems operate at high temperatures (up to 1000 C and 650 C, respectively), which makes them especially attractive sources for combined heat and power (CHP) cogeneration. However, improvements in the efficiency of heat exchange in these fuel cells require both development and careful processing of advanced cost-effective alloys for use in such high-temperature service conditions. The high-temperature properties of both sheet and foil forms of several alloys being considered for use in compact heat-exchangers (recuperators) have been characterized. Mechanical and creep-rupture testing, oxidation studies, and microstructural studies have been performed on commercially available sheet and foil forms of alloy 347, alloys 625, HR230, HR120, and the new AL20-25+Nb. These studies have led to a mechanistic understanding of the responses of these alloys to anticipated service conditions, and suggest that these alloys developed for gas- and micro-turbine recuperator applications are also suitable for use in fuel cell heat-exchangers. Additional work is still required to achieve foil forms with creep life comparable to thicker-section wrought product forms of the same alloys.

  17. Modification of Thermal Emission via Metallic Photonic Crystals

    SciTech Connect (OSTI)

    Norris, David J.; Stein, Andreas; George, Steven M.

    2012-07-30

    Photonic crystals are materials that are periodically structured on an optical length scale. It was previously demonstrated that the glow, or thermal emission, of tungsten photonic crystals that have a specific structure - known as the 'woodpile structure' - could be modified to reduce the amount of infrared radiation from the material. This ability has implications for improving the efficiency of thermal emission sources and for thermophotovoltaic devices. The study of this effect had been limited because the fabrication of metallic woodpile structures had previously required a complex fabrication process. In this project we pursued several approaches to simplify the fabrication of metallic photonic crystals that are useful for modification of thermal emission. First, we used the self-assembly of micrometer-scale spheres into colloidal crystals known as synthetic opals. These opals can then be infiltrated with a metal and the spheres removed to obtain a structure, known as an inverse opal, in which a three-dimensional array of bubbles is embedded in a film. Second, we used direct laser writing, in which the focus of an infrared laser is moved through a thin film of photoresist to form lines by multiphoton polymerization. Proper layering of such lines can lead to a scaffold with the woodpile structure, which can be coated with a refractory metal. Third, we explored a completely new approach to modified thermal emission - thin metal foils that contain a simple periodic surface pattern, as shown in Fig. 1. When such a foil is heated, surface plasmons are excited that propagate along the metal interface. If these waves strike the pattern, they can be converted into thermal emission with specific properties.

  18. ZnO buffer layer for metal films on silicon substrates

    SciTech Connect (OSTI)

    Ihlefeld, Jon

    2014-09-16

    Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.

  19. Spectral content of buried Ag foils at 10{sup 16} W/cm{sup 2} laser illumination

    SciTech Connect (OSTI)

    Huntington, C. M. Maddox, B. R.; Park, H.-S.; Prisbrey, S.; Remington, B. A.

    2014-11-15

    Sources of 5–12 keV thermal He? x-rays are readily generated by laser irradiation of mid-Z foils at intensities >10{sup 14} W/cm{sup 2}, and are widely used as probes for inertial confinement fusion and high-energy-density experiments. Higher energy 17–50 keV x-ray sources are efficiently produced from “cold” K? emission using short pulse, petawatt lasers at intensities >10{sup 18} W/cm{sup 2} [H.-S. Park, B. R. Maddox et al., “High-resolution 17–75 keV backlighters for high energy density experiments,” Phys. Plasmas 15(7), 072705 (2008); B. R. Maddox, H. S. Park, B. A. Remington et al., “Absolute measurements of x-ray backlighter sources at energies above 10 keV,” Phys. Plasmas 18(5), 056709 (2011)]. However, when long pulse (>1 ns) lasers are used with Z > 30 elements, the spectrum contains contributions from both K shell transitions and from ionized atomic states. Here we show that by sandwiching a silver foil between layers of high-density carbon, the ratio of K?:He? in the x-ray spectrum is significant increased over directly illuminated Ag foils, with narrower lines from K-shell transitions. Additionally, the emission volume is more localized for the sandwiched target, producing a more planar x-ray sheet. This technique may be useful for generating probes requiring spectral purity and a limited spatial extent, for example, in incoherent x-ray Thomson scattering experiments.

  20. Fast electron propagation in Ti foils irradiated with sub-picosecond laser pulses at I?{sup 2}>10{sup 18}?Wcm{sup ?2}?m{sup 2}

    SciTech Connect (OSTI)

    Makita, M.; Nersisyan, G.; McKeever, K.; Dzelzainis, T.; White, S.; Kettle, B.; Dromey, B.; Doria, D.; Zepf, M.; Lewis, C. L. S.; Riley, D., E-mail: d.riley@qub.ac.uk [Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast BT7 1NN (United Kingdom); Robinson, A. P. L. [Central Laser Facility, Rutherford-Appleton Laboratory, Chilton Didcot, OX11 OQX (United Kingdom)] [Central Laser Facility, Rutherford-Appleton Laboratory, Chilton Didcot, OX11 OQX (United Kingdom); Hansen, S. B. [Sandia National Laboratory, Albuquerque, New Mexico 87123 (United States)] [Sandia National Laboratory, Albuquerque, New Mexico 87123 (United States)

    2014-02-15

    We have studied the propagation of fast electrons through laser irradiated Ti foils by monitoring the emission of hard X-rays and K-? radiation from bare foils and foils backed by a thick epoxy layer. Key observations include strong refluxing of electrons and divergence of the electron beam in the foil with evidence of magnetic field collimation. Our diagnostics have allowed us to estimate the fast electron temperature and fraction of laser energy converted to fast electrons. We have observed clear differences between the fast electron temperatures observed with bare and epoxy backed targets which may be due to the effects of refluxing.

  1. The affect of erbium hydride on the conversion efficience to accelerated protons from ultra-shsort pulse laser irradiated foils

    SciTech Connect (OSTI)

    Offermann, D

    2008-09-04

    This thesis work explores, experimentally, the potential gains in the conversion efficiency from ultra-intense laser light to proton beams using erbium hydride coatings. For years, it has been known that contaminants at the rear surface of an ultra-intense laser irradiated thin foil will be accelerated to multi-MeV. Inertial Confinement Fusion fast ignition using proton beams as the igniter source requires of about 10{sup 16} protons with an average energy of about 3MeV. This is far more than the 10{sup 12} protons available in the contaminant layer. Target designs must include some form of a hydrogen rich coating that can be made thick enough to support the beam requirements of fast ignition. Work with computer simulations of thin foils suggest the atomic mass of the non-hydrogen atoms in the surface layer has a strong affect on the conversion efficiency to protons. For example, the 167amu erbium atoms will take less energy away from the proton beam than a coating using carbon with a mass of 12amu. A pure hydrogen coating would be ideal, but technologically is not feasible at this time. In the experiments performed for my thesis, ErH{sub 3} coatings on 5 {micro}m gold foils are compared with typical contaminants which are approximately equivalent to CH{sub 1.7}. It will be shown that there was a factor of 1.25 {+-} 0.19 improvement in the conversion efficiency for protons above 3MeV using erbium hydride using the Callisto laser. Callisto is a 10J per pulse, 800nm wavelength laser with a pulse duration of 200fs and can be focused to a peak intensity of about 5 x 10{sup 19}W/cm{sup 2}. The total number of protons from either target type was on the order of 10{sup 10}. Furthermore, the same experiment was performed on the Titan laser, which has a 500fs pulse duration, 150J of energy and can be focused to about 3 x 10{sup 20} W/cm{sup 2}. In this experiment 10{sup 12} protons were seen from both erbium hydride and contaminants on 14 {micro} m gold foils. Significant improvements were also observed but possibly because of the depletion of hydrogen in the contaminant layer case.

  2. Ion acceleration from thin foil and extended plasma targets by slow electromagnetic wave and related ion-ion beam instability

    SciTech Connect (OSTI)

    Bulanov, S. V. [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto, 619-0215 (Japan); A. M. Prokhorov Institute of General Physics RAS, Moscow, 119991 (Russian Federation); Esirkepov, T. Zh.; Kando, M. [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto, 619-0215 (Japan); Pegoraro, F. [Physical Department, University of Pisa, Pisa 56127 (Italy); Bulanov, S. S. [University of California, Berkeley, California 94720 (United States); Geddes, C. G. R.; Schroeder, C. B.; Esarey, E. [Lawrence Berkeley National Laboratory, Berkeley, California, 94720 (United States); Leemans, W. P. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California, 94720 (United States)

    2012-10-15

    When ions are accelerated by the radiation pressure of a laser pulse, their velocity cannot exceed the pulse group velocity which can be considerably smaller than the speed of light in vacuum. This is demonstrated in two cases corresponding to a thin foil target irradiated by high intensity laser light and to the hole boring produced in an extended plasma by the laser pulse. It is found that the beams of accelerated ions are unstable against Buneman-like and Weibel-like instabilities which results in the broadening of the ion energy spectrum.

  3. Prediction and characterization of heat-affected zone formation in tin-bismuth alloys due to nickel-aluminum multilayer foil reaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hooper, R. J.; Davis, C. G.; Johns, P. M.; Adams, D. P.; Hirschfeld, D.; Nino, J. C.; Manuel, M. V.

    2015-06-26

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. In this study, most of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To improve the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical modelmore »for the purpose of predicting heat affected zone size in substrate materials. The model is experimentally validated using a commercially available Ni-Al multilayer foils and alloys from the Sn-Bi binary system. To accomplish this, phenomenological models for predicting the variation of physical properties (i.e., thermal conductivity, density, and heat capacity) with temperature and composition in the Sn-Bi system were utilized using literature data.« less

  4. Target normal sheath acceleration of foil ions by laser-trapped hot electrons from a long subcritical-density preplasma

    SciTech Connect (OSTI)

    Luan, S. X.; Yu, Wei; Shen, B. F.; Xu, Z. Z.; Yu, M. Y.; Zhuo, H. B.; Xu, Han; Wong, A. Y.; Wang, J. W.

    2014-12-15

    In a long subcritical density plasma, an ultrashort ultraintense laser pulse can self-organize into a fast but sub-relativistic propagating structure consisting of the modulated laser light and a large number of trapped electrons from the plasma. Upon impact of the structure with a solid foil target placed in the latter, the remaining laser light is reflected, but the dense and hot trapped electrons pass through the foil, together with the impact-generated target-frontsurface electrons to form a dense hot electron cloud at the back of the target suitable for enhancing target normal sheath acceleration of the target-backsurface ions. The accelerated ions are well collimated and of high charge and energy densities, with peak energies a full order of magnitude higher than that from target normal sheath acceleration without the subcritical density plasma. In the latter case, the space-charge field accelerating the ions is limited since they are formed only by the target-frontsurface electrons during the very short instant of laser reflection.

  5. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, Nathaniel M. (Espanola, NM); Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM); Birdsell, Stephan A. (Los Alamos, NM)

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  6. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  7. Composite metal membranes for hydrogen separation applications

    SciTech Connect (OSTI)

    Moss, T.S.; Dye, R.C.

    1997-06-01

    A novel multilayer metal membrane has been developed that can be used for the separation of hydrogen from feed streams with near perfect selectivity. The membrane is comprised of very thin layers of fully dense palladium film deposited on both sides of a thin Group V metal foil, ion-milled prior to sputtering of the palladium. Palladium loading are kept low using the thin film deposition technology: 0.0012 grams of palladium per square centimeter of membrane is typically used, although thinner coatings have been employed. This membrane operates at temperatures on the order of 300 C and is capable of high rates of hydrogen flow. Flows are dependent on the pressure differential applied to the membrane, but flows of 105 sccm/cm{sup 2} and higher are regularly observed with differentials below one atmosphere. Long term testing of the membrane for a period in excess of 775 hours under constant conditions showed stable flows and an 85% hydrogen recovery efficiency. A system has been successfully applied to the hydrogen handling system of a proton exchange membrane fuel cell and was tested using a pseudo-reformate feed stream without any degradation in performance.

  8. Durable alloy foils are needed for gas turbine recuperators operating at 650-700C. It has been established that water vapor in the

    E-Print Network [OSTI]

    Pennycook, Steve

    ABSTRACT Durable alloy foils are needed for gas turbine recuperators operating at 650°-700°C-cost alternatives to currently available candidate materials. INTRODUCTION Improving gas turbine engine efficiency or heat exchangers used to improve the efficiency of microturbines and small gas turbines[1]. Over

  9. Neutron Diffraction Measurement of Residual Stresses, Dislocation Density and Texture in Zr-bonded U-10Mo “Mini” Fuel Foils and Plates

    SciTech Connect (OSTI)

    Brown, Donald W.; Okuniewski, M. A.; Sisneros, Thomas A.; Clausen, Bjorn; Moore, G. A.; Balogh, L

    2014-08-07

    Aluminum clad monolithic uranium 10 weight percent molybdenum (U-10Mo) fuel plates are being considered for conversion of several research and test nuclear reactors from high-enriched to low-enriched uranium fuel due to the inherently high density of fissile material. Comprehensive neutron diffraction measurements of the evolution of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the HIP procedure significantly reduces the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stresses in the clad fuel plate do not depend strongly on the final processing step of the bare foil prior to HIP bonding. Rather, the residual stresses are dominated by the thermal expansion mismatch of the constituent materials of the fuel plate.

  10. Foil-based atom chip for BoseEinstein condensates This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Queensland, University of

    was created using a silver foil and simple micro-cutting techniques without the need for photolithography in the electronic version) 1. Introduction Bose­Einstein condensates (BECs) have become a valuable tool for probing conductor thicknesses range from about 2 µm for evaporatively or sputter-coated wires, up to 10 µm

  11. Characterization of proton and heavier ion acceleration in ultrahigh-intensity laser interactions with heated target foils

    SciTech Connect (OSTI)

    McKenna, P.; Ledingham, K.W.D.; Yang, J.M.; Robson, L.; McCanny, T.; Shimizu, S.; Clarke, R.J.; Neely, D.; Norreys, P.A.; Spohr, K.; Chapman, R.; Singhal, R.P.; Krushelnick, K.; Wei, M.S.

    2004-09-01

    Proton and heavy ion acceleration in ultrahigh intensity ({approx}2x10{sup 20} W cm{sup -2}) laser plasma interactions has been investigated using the new petawatt arm of the VULCAN laser. Nuclear activation techniques have been applied to make the first spatially integrated measurements of both proton and heavy ion acceleration from the same laser shots with heated and unheated Fe foil targets. Fe ions with energies greater than 10 MeV per nucleon have been observed. Effects of target heating on the accelerated ion energy spectra and the laser-to-ion energy conversion efficiencies are discussed. The laser-driven production of the long-lived isotope {sup 57}Co (271 days) via a heavy ion induced reaction is demonstrated.

  12. Monoenergetic acceleration of a target foil by circularly polarized laser pulse in RPA regime without thermal heating

    SciTech Connect (OSTI)

    Khudik, V.; Yi, S. A.; Siemon, C.; Shvets, G. [Department of Physics and Institute for Fusion Studies, University of Texas at Austin, One University Station C1500, Austin, Texas 78712 (United States)

    2012-12-21

    A kinetic model of the monoenergetic acceleration of a target foil irradiated by the circularly polarized laser pulse is developed. The target moves without thermal heating with constant acceleration which is provided by chirping the frequency of the laser pulse and correspondingly increasing its intensity. In the accelerated reference frame, bulk plasma in the target is neutral and its parameters are stationary: cold ions are immobile while nonrelativistic electrons bounce back and forth inside the potential well formed by ponderomotive and electrostatic potentials. It is shown that a positive charge left behind of the moving target in the ion tail and a negative charge in front of the target in the electron sheath form a capacitor whose constant electric field accelerates the ions of the target. The charge separation is maintained by the radiation pressure pushing electrons forward. The scalings of the target thickness and electromagnetic radiation with the electron temperature are found.

  13. Metal Hydrides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial ReportProposal to changeNovemberEnergyMessage fromMetal

  14. Metal filled porous carbon

    DOE Patents [OSTI]

    Gross, Adam F. (Los Angeles, CA); Vajo, John J. (West Hills, CA); Cumberland, Robert W. (Malibu, CA); Liu, Ping (Irvine, CA); Salguero, Tina T. (Encino, CA)

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  15. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  16. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Phelps, Cindy (Moscow, ID)

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  17. COORDINATION CHEMISTRY OF METAL SURFACES AND METAL COMPLEXES

    E-Print Network [OSTI]

    Muetterties, E.L.

    2013-01-01

    4, 1980 Catalysis~ COORDINATION CHEMISTRY OF METAL SURFACESAND METAL COMPLEXES Earl L. Muetterties December 1979 TWO-10308 COORDINATION CHEt1ISTRY OF METAL SURFACES AND METAL

  18. Time-resolved K? spectroscopy measurements of hot-electron equilibration dynamics in thin-foil solid targets: Collisional and collective effects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nilson, P. M.; Solodov, A. A.; Davies, J. R.; Theobald, W.; Mileham, C.; Stoeckl, C.; Begishev, I. A.; Zuegel, J. D.; Froula, D. H.; Betti, R.; et al

    2015-09-25

    Time-resolved K? spectroscopy measurements from high-intensity laser interactions with thin-foil solid targets are reviewed. Thin Cu foils were irradiated with 1- to 10-J, 1-ps pulses at focused intensities from 1018 to 1019 W/cm2. The experimental data show K?-emission pulse widths from 3 to 6 ps, increasing with laser intensity. The time-resolved K?-emission data are compared to a hot-electron transport and K?-production model that includes collisional electron-energy coupling, resistive heating, and electromagnetic field effects. The experimental data show good agreement with the model when a reduced ponderomotive scaling is used to describe the initial mean hot-electron energy over the relevant intensitymore »range.« less

  19. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trending: Metal Oxo Bonds Trending: Metal Oxo Bonds Print Wednesday, 29 May 2013 00:00 Metal oxides are important for scientific and technical applications in a variety of...

  20. Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P.

    2011-01-11

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K/s) using differential scanning calorimetry (DSC) traces to 725ºC. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 105 K/s) inmore »high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (Tmax) are largely independent of foil chemistry at 0.6 ± 0.1 m/s and 1220 ± 50 K, respectively, and that the measured Tmax is more than 200 K lower than predicted adiabatic temperatures (Tad). The difference between Tmax and Tad is explained by the prediction that transformation to the final intermetallic phases occurs after Tmax and results in the release of 20-30 % of the total heat of reaction and a delay in rapid cooling.« less

  1. Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P.

    2011-01-11

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K/s) using differential scanning calorimetry (DSC) traces to 725ºC. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 105 K/s) in high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (Tmax) are largely independent of foil chemistry at 0.6 ± 0.1 m/s and 1220 ± 50 K, respectively, and that the measured Tmax is more than 200 K lower than predicted adiabatic temperatures (Tad). The difference between Tmax and Tad is explained by the prediction that transformation to the final intermetallic phases occurs after Tmax and results in the release of 20-30 % of the total heat of reaction and a delay in rapid cooling.

  2. CX-011470: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Digestion analysis of copper foil and silicon carbide samples CX(s) Applied: B3.6 Date: 11/26/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  3. Heavy metal biosensor

    DOE Patents [OSTI]

    Hillson, Nathan J; Shapiro, Lucille; Hu, Ping; Andersen, Gary L

    2014-04-15

    Compositions and methods are provided for detection of certain heavy metals using bacterial whole cell biosensors.

  4. Radiation sources with planar wire arrays and planar foils for inertial confinement fusion and high energy density physics research

    SciTech Connect (OSTI)

    Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Shrestha, I.; Astanovitsky, A.; Osborne, G. C.; Shlyaptseva, V. V.; Weller, M. E.; Keim, S.; Stafford, A.; Cooper, M.; Chuvatin, A. S.; Rudakov, L. I.; Velikovich, A. L.

    2014-03-15

    This article reports on the joint success of two independent lines of research, each of them being a multi-year international effort. One of these is the development of innovative sources, such as planar wire arrays (PWAs). PWAs turned out to be a prolific radiator, which act mainly as a resistor, even though the physical mechanism of efficient magnetic energy conversion into radiation still remains unclear. We review the results of our extensive studies of PWAs. We also report the new results of the experimental comparison PWAs with planar foil liners (another promising alternative to wire array loads at multi-mega-ampere generators). Pioneered at UNR, the PWA Z-pinch loads have later been tested at the Sandia National Laboratories (SNL) on the Saturn generator, on GIT-12 machine in Russia, and on the QiangGuang-1 generator in China, always successfully. Another of these is the drastic improvement in energy efficiency of pulsed-power systems, which started in early 1980s with Zucker's experiments at Naval Research Laboratory (NRL). Successful continuation of this approach was the Load Current Multiplier (LCM) proposed by Chuvatin in collaboration with Rudakov and Weber from NRL. The 100?ns LCM was integrated into the Zebra generator, which almost doubled the plasma load current, from 0.9 to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum radiation source for ICF, as jointly proposed by SNL and UNR [Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The first successful proof-of-the-principle experimental implementation of new hohlraum concept at university-scale generator Zebra/LCM is demonstrated. A numerical simulation capability with VisRaD code (from PRISM Co.) established at UNR allowed for the study of hohlraum coupling physics and provides the possibility of optimization of a new hohlraum. Future studies are discussed.

  5. METAL NANOPARTICLES FUNCTIONALIZED WITH METAL-LIGAND COVALENT BONDS

    E-Print Network [OSTI]

    Kang, Xiongwu

    2012-01-01

    Formation of catalytic metal-molecule contacts. Science,of Organotransition Metal Compounds. Advances inof highly monodisperse metal nanoparticles. Journal of the

  6. Metal halogen electrochemical cell

    SciTech Connect (OSTI)

    Walsh, F.M.

    1986-06-03

    An electrochemical cell is described having a metal anode selected from the group consisting of zinc and cadmium; a bromine cathode; and, an aqueous electrolyte containing a metal bromide, the metal having the same metal as the metal of the anode, the improvement comprising: a bromine complexing agent in the aqueous metal bromide electrolyte consisting solely of a tetraorgano substituted ammonium salt, which salt is soluble of water and forms and substantially water immiscible liquid bromine complex at temperatures in the range of about 10/sup 0/C. to about 60/sup 0/C. and wherein the tetraorgano substituted ammonium salt is selected from asymmetric quaternary ammonium compounds.

  7. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  8. Metal-Ion-Mediated Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal-Ion-Mediated Reactions Metal-Ion-Mediated Reactions Print Monday, 19 December 2011 18:29 While mononuclear, polynuclear, and polymeric metal complexes are most often...

  9. Liquid Metal Transformers

    E-Print Network [OSTI]

    Sheng, Lei; Liu, Jing

    2014-01-01

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clar...

  10. Metal phthalocyanine catalysts

    DOE Patents [OSTI]

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-10-11

    A new composition of matter is described which is an alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  11. Metal phthalocyanine catalysts

    DOE Patents [OSTI]

    Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

    1994-01-01

    As a new composition of matter, alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  12. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  13. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, Paul O. (Golden, CO); Kennedy, Cheryl E. (Lafayette, CO); Jorgensen, Gary J. (Pine, CO); Shinton, Yvonne D. (Northglenn, CO); Goggin, Rita M. (Englewood, CO)

    1994-01-01

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  14. PHYTOEXTRACTION OF HEAVY METALS

    E-Print Network [OSTI]

    Blouin-Demers, Gabriel

    Plants Chelating agents Pb hyperaccumulation Effects of pH on metal extraction Disposal options contaminants from soils Contaminants must be in harvestable portions of the plant (Wongkongkatep et al. 2003) Chelating Agents: desorb heavy metals from soil matrix and form water-soluble metal complexes (Shen et al

  15. Metal Affinity Chromatography (MAC)

    E-Print Network [OSTI]

    Lebendiker, Mario

    Fractogel® Metal Affinity Chromatography (MAC) Resins and Cartridges Tools for His·Tag® Fusion-MACTM Cartridges #12;2 Novagen · Fractogel Metal Affinity Chromatography (MAC) Resins Ni-MACTM , Co-MACTM and u-MACTM Metal Affinity Chromatography (MAC) Resins and Cartridges HI Ni2+ Ni2+ Ni2+ HISHISHI SHISHISHIS Ni2

  16. Metal roofing Shingle roofing

    E-Print Network [OSTI]

    Hutcheon, James M.

    Metal roofing panel Shingle roofing Water & ice barrier Thermal Barrier Plywood Student: Arpit a cost benefit analysis and choose the most efficient and cost effective modification. Metal or shingle roof with only a water barrier between the plywood and the roofing panels. Metal roofing panel Shingle

  17. Backward and forward modes guided by metal-dielectric-metal

    E-Print Network [OSTI]

    Backward and forward modes guided by metal-dielectric-metal plasmonic waveguides Arthur R. Davoyan by metal-dielectric-metal plasmonic waveguides Arthur R. Davoyan,a Ilya V. Shadrivov,a Sergey I.davoyan@gmail.com Abstract. We revisited the problem of the existence of plasmonic modes guided by metal- dielectric-metal

  18. High Metallicity LGRB Hosts

    E-Print Network [OSTI]

    Graham, J F; Levesque, E M; Kewley, L J; Tanvir, N R; Levan, A J; Patel, S K; Misra, K; Huang, K -H; Reichart, D E; Nysewander, M; Schady, P

    2015-01-01

    We present our imaging and spectroscopic observations of the host galaxies of two dark long bursts with anomalously high metallicities, LGRB 051022 and LGRB 020819B, which in conjunction with another LGRB event with an optical afterglow comprise the three LGRBs with high metallicity host galaxies in the Graham & Fruchter (2013) sample. In Graham & Fruchter (2013), we showed that LGRBs exhibit a strong and apparently intrinsic preference for low metallicity environments (12+log(O/H) & redshift. This is surprising: even among a preselected sample of high metallicity LGRBs, were the metal aversion to remain in effect for these objects, we would expect their metallicity to still be lower than the typical metallicity for the galaxies at that luminosity and redshift. Therefore we deduce that it...

  19. Extraction process for removing metallic impurities from alkalide metals

    DOE Patents [OSTI]

    Royer, L.T.

    1987-03-20

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  20. Metal atomization spray nozzle

    DOE Patents [OSTI]

    Huxford, T.J.

    1993-11-16

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  1. Polyacidic multiloading metal extractants 

    E-Print Network [OSTI]

    Gordon, R. J.; Campbell, J.; Henderson, D.K.; Henry, D. C. R.; Swart, R. M.; Tasker, P. A.; White, F. J.; Wood, J. L.; Yellowlees, L. J

    2008-01-01

    Novel polynucleating, di- and tri-acidic ligands have been designed to increase the molar and mass transport efficiencies for the recovery of base metals by solvent extraction.

  2. Central electron temperature estimations of TJ-II neutral beam injection heated plasmas based on the soft x ray multi-foil technique

    SciTech Connect (OSTI)

    Baiao, D.; Varandas, C. [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Medina, F.; Ochando, M.; McCarthy, K.; Tabares, F.; Pastor, I. [Laboratorio Nacional de Fusion, Asociacion EURATOM-CIEMAT, Av. Complutense 40, 28040 Madrid (Spain)

    2012-05-15

    The core electron temperature (T{sub e0}) of neutral beam heated plasmas is determined in TJ-II stellarator by using soft x ray detectors with beryllium filters of different thickness, based on the method known as the foil absorption technique. T{sub e0} estimations are done with the impurity code IONEQ, making use of complementary information from the TJ-II soft x ray tomography and the VUV survey diagnostics. When considering the actual electron density and temperature profile shapes, an acceptable agreement is found with Thomson scattering measurements for 8 different magnetic configurations. The impact of the use of both neutral beam injectors on the T{sub e0} measurements is addressed. Also, the behaviour of T{sub e0} during spontaneous profile transitions is presented.

  3. Initial experimental evidence of self-collimation of target-normal-sheath-accelerated proton beam in a stack of conducting foils

    SciTech Connect (OSTI)

    Ni, P. A.; Bieniosek, F. M.; Logan, B. G.; Lund, S. M.; Barnard, J. J.; Bellei, C.; Cohen, R. H.; McGuffey, C.; Beg, F. N.; Kim, J.; Alexander, N.; Aurand, B.; Brabetz, C.; Neumayer, P.; Roth, M.

    2013-08-15

    Phenomena consistent with self-collimation (or weak self-focusing) of laser target-normal-sheath-accelerated protons was experimentally observed for the first time, in a specially engineered structure (“lens”) consisting of a stack of 300 thin aluminum foils separated by 50 ?m vacuum gaps. The experiments were carried out in a “passive environment,” i.e., no external fields applied, neutralization plasma or injection of secondary charged particles was imposed. Experiments were performed at the petawatt “PHELIX” laser user facility (E = 100 J, ?t = 400 fs, ? = 1062 nm) at the “Helmholtzzentrum für Schwerionenforschung–GSI” in Darmstadt, Germany. The observed rms beam spot reduction depends inversely on energy, with a focusing degree decreasing monotonically from 2 at 5.4 MeV to 1.5 at 18.7 MeV. The physics inside the lens is complex, resulting in a number of different mechanisms that can potentially affect the particle dynamics within the structure. We present a plausible simple interpretation of the experiment in which the combination of magnetic self-pinch forces generated by the beam current together with the simultaneous reduction of the repulsive electrostatic forces due to the foils are the dominant mechanisms responsible for the observed focusing/collimation. This focusing technique could be applied to a wide variety of space-charge dominated proton and heavy ion beams and impact fields and applications, such as HEDP science, inertial confinement fusion in both fast ignition and heavy ion fusion approaches, compact laser-driven injectors for a Linear Accelerator (LINAC) or synchrotron, medical therapy, materials processing, etc.

  4. Efficient laser-induced 6-8 keV x-ray production from iron oxide aerogel and foil-lined cavity targets

    SciTech Connect (OSTI)

    Perez, F.; Kay, J. J.; Patterson, J. R.; Kane, J.; May, M.; Emig, J.; Colvin, J.; Gammon, S.; Satcher, J. H. Jr.; Fournier, K. B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Villette, B.; Girard, F.; Reverdin, C. [CEA DAM DIF, F-91297 Arpajon (France); Sorce, C. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); University of Rochester - Laboratory for Laser Energetics, 250 E. River Rd, Rochester, New York 14623-1299 (United States); Jaquez, J. [General Atomics, San Diego, California 92121 (United States)

    2012-08-15

    The performance of new iron-based laser-driven x-ray sources has been tested at the OMEGA laser facility for production of x rays in the 6.5-8.5 keV range. Two types of targets were experimentally investigated: low-density iron oxide aerogels (density 6-16 mg/cm{sup 3}) and stainless steel foil-lined cavity targets (steel thickness 1-5 {mu}m). The targets were irradiated by 40 beams of the OMEGA laser (500 J/beam, 1 ns pulse, wavelength 351 nm). All targets showed good coupling with the laser, with <5% of the incident laser light backscattered by the resulting plasma in all cases (typically <2.5%). The aerogel targets produced T{sub e}=2 to 3 keV, n{sub e}=0.12-0.2 critical density plasmas yielding a 40%-60% laser-to-x-ray total conversion efficiency (CE) (1.2%-3% in the Fe K-shell range). The foil cavity targets produced T{sub e}{approx} 2 keV, n{sub e}{approx} 0.15 critical density plasmas yielding a 60%-75% conversion efficiency (1.6%-2.2% in the Fe K-shell range). Time-resolved images illustrate that the volumetric heating of low-density aerogels allow them to emit a higher K-shell x-ray yield even though they contain fewer Fe atoms. However, their challenging fabrication process leads to a larger shot-to-shot variation than cavity targets.

  5. Metal pad instabilities in liquid metal batteries

    E-Print Network [OSTI]

    Zikanov, Oleg

    2015-01-01

    A mechanical analogy is used to analyze the interaction between the magnetic field, electric current and deformation of interfaces in liquid metal batteries. It is found that, during charging or discharging, a sufficiently large battery is prone to instabilities of two types. One is similar to the metal pad instability known for aluminum reduction cells. Another type is new. It is related to the destabilizing effect of the Lorentz force formed by the azimuthal magnetic field induced by the base current and the current perturbations caused by the local variations of the thickness of the electrolyte layer.

  6. Heavy Metal Humor: Reconsidering Carnival in Heavy Metal Culture 

    E-Print Network [OSTI]

    Powell, Gary Botts

    2013-06-05

    Bakhtin?s carnivalesque theory by analyzing comedic rhetoric performed by two comedic metal bands. Through the theories of Johan Huizinga and Mikhail Bakhtin, Chapter I: I Play Metal argues that heavy metal culture is a modern carnivalesque play...

  7. Metal-Organic Frameworks Based on Main Group Metals

    E-Print Network [OSTI]

    Zhao, Xiang

    2011-01-01

    Based Frameworks with Open Metal Sites In previous work, weClusters Introduction Porous metal-organic frameworks (MOFs)abundant choice of metal ions and clusters, numerous organic

  8. SISGR - In situ characterization and modeling of formation reactions under extreme heating rates in nanostructured multilayer foils

    SciTech Connect (OSTI)

    Hufnagel, Todd C.

    2014-06-09

    Materials subjected to extreme conditions, such as very rapid heating, behave differently than materials under more ordinary conditions. In this program we examined the effect of rapid heating on solid-state chemical reactions in metallic materials. One primary goal was to develop experimental techniques capable of observing these reactions, which can occur at heating rates in excess of one million degrees Celsius per second. One approach that we used is x-ray diffraction performed using microfocused x-ray beams and very fast x-ray detectors. A second approach is the use of a pulsed electron source for dynamic transmission electron microscopy. With these techniques we were able to observe how the heating rate affects the chemical reaction, from which we were able to discern general principles about how these reactions proceed. A second thrust of this program was to develop computational tools to help us understand and predict the reactions. From atomic-scale simulations were learned about the interdiffusion between different metals at high heating rates, and about how new crystalline phases form. A second class of computational models allow us to predict the shape of the reaction front that occurs in these materials, and to connect our understanding of interdiffusion from the atomistic simulations to measurements made in the laboratory. Both the experimental and computational techniques developed in this program are expected to be broadly applicable to a wider range of scientific problems than the intermetallic solid-state reactions studied here. For example, we have already begun using the x-ray techniques to study how materials respond to mechanical deformation at very high rates.

  9. Metallic nanowire networks

    DOE Patents [OSTI]

    Song, Yujiang; Shelnutt, John A.

    2012-11-06

    A metallic nanowire network synthesized using chemical reduction of a metal ion source by a reducing agent in the presence of a soft template comprising a tubular inverse micellar network. The network of interconnected polycrystalline nanowires has a very high surface-area/volume ratio, which makes it highly suitable for use in catalytic applications.

  10. Porous metallic bodies

    DOE Patents [OSTI]

    Landingham, R.L.

    1984-03-13

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides a

  11. Production of magnesium metal

    DOE Patents [OSTI]

    Blencoe, James G. (Harriman, TN) [Harriman, TN; Anovitz, Lawrence M. (Knoxville, TN) [Knoxville, TN; Palmer, Donald A. (Oliver Springs, TN) [Oliver Springs, TN; Beard, James S. (Martinsville, VA) [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  12. Metallization of electronic insulators

    DOE Patents [OSTI]

    Gottesfeld, Shimshon (Los Alamos, NM); Uribe, Francisco A. (Los Alamos, NM)

    1994-01-01

    An electroplated element is formed to include an insulating substrate, a conducting polymer polymerized in situ on the substrate, and a metal layer deposited on the conducting polymer. In one application a circuit board is formed by polymerizing pyrrole on an epoxy-fiberglass substrate in a single step process and then electrodepositing a metal over the resulting polypyrrole polymer. No chemical deposition of the metal is required prior to electroplating and the resulting layer of substrate-polymer-metal has excellent adhesion characteristics. The metal deposition is surprisingly smooth and uniform over the relatively high resistance film of polypyrrole. A continuous manufacturing process is obtained by filtering the solution between successive substrates to remove polymer formed in the solution, by maintaining the solution oxidizing potential within selected limits, and by adding a strong oxidant, such as KMnO.sub.4 at periodic intervals to maintain a low sheet resistivity in the resulting conducting polymer film.

  13. Metal nanodisks using bicellar templates

    DOE Patents [OSTI]

    Song, Yujiang; Shelnutt, John A

    2013-12-03

    Metallic nanodisks and a method of making them. The metallic nanodisks are wheel-shaped structures that that provide large surface areas for catalytic applications. The metallic nanodisks are grown within bicelles (disk-like micelles) that template the growth of the metal in the form of approximately circular dendritic sheets. The zero-valent metal forming the nanodisks is formed by reduction of a metal ion using a suitable electron donor species.

  14. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOE Patents [OSTI]

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  15. Metal-Poor Stars

    E-Print Network [OSTI]

    Anna Frebel

    2008-02-13

    The abundance patterns of metal-poor stars provide us a wealth of chemical information about various stages of the chemical evolution of the Galaxy. In particular, these stars allow us to study the formation and evolution of the elements and the involved nucleosynthesis processes. This knowledge is invaluable for our understanding of the cosmic chemical evolution and the onset of star- and galaxy formation. Metal-poor stars are the local equivalent of the high-redshift Universe, and offer crucial observational constraints on the nature of the first stars. This review presents the history of the first discoveries of metal-poor stars that laid the foundation to this field. Observed abundance trends at the lowest metallicities are described, as well as particular classes of metal-poor stars such as r-process and C-rich stars. Scenarios on the origins of the abundances of metal-poor stars and the application of large samples of metal-poor stars to cosmological questions are discussed.

  16. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, N.N.; Watkin, J.G.

    1992-03-24

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  17. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, Nancy N. (Los Alamos, NM); Watkin, John G. (Los Alamos, NM)

    1992-01-01

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  18. EXELFS of Metallic Glasses

    SciTech Connect (OSTI)

    Ito, Y.; Alamgir, F.M.; Schwarz, R.B.; Jain, H.; Williams, D.B.

    1999-11-30

    The feasibility of using extended energy-loss fine structure (EXELFS) obtained from {approximately}1 nm regions of metallic glasses to study their short-range order has been examined. Ionization edges of the metallic glasses in the electron energy-loss spectrum (EELS) have been obtained from PdNiP bulk metallic glass and Ni{sub 2}P polycrystalline powder in a transmission electron microscope. The complexity of EXELFS analysis of L- and M-ionization edges of heavy elements (Z>22, i.e. Ni and Pd) is addressed by theoretical calculations using an ab initio computer code, and its results are compared with the experimental data.

  19. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2010-01-08

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  20. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2013-05-29

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  1. Transition Metal Switchable Mirror

    SciTech Connect (OSTI)

    2009-08-21

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  2. Transition Metal Switchable Mirror

    SciTech Connect (OSTI)

    None

    2009-01-01

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  3. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  4. Divalent metal nanoparticles

    E-Print Network [OSTI]

    DeVries, Gretchen Anne

    2008-01-01

    Metal nanoparticles hold promise for many scientific and technological applications, such as chemical and biological sensors, vehicles for drug delivery, and subdiffraction limit waveguides. To fabricate such devices, a ...

  5. Production of magnesium metal

    DOE Patents [OSTI]

    Blencoe, James G. (Harriman, TN); Anovitz, Lawrence M. (Knoxville, TN); Palmer, Donald A. (Oliver Springs, TN); Beard, James S. (Martinsville, VA)

    2012-04-10

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

  6. METALS DESIGN HANDBOOK DISCLAIMER

    Office of Scientific and Technical Information (OSTI)

    9 06 Revision 0 METALS DESIGN HANDBOOK DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States...

  7. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOE Patents [OSTI]

    Coops, Melvin S. (Livermore, CA)

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  8. Molten metal reactors

    DOE Patents [OSTI]

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

    2013-11-05

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  9. Electrochemical nitridation of metal surfaces

    DOE Patents [OSTI]

    Wang, Heli; Turner, John A.

    2015-06-30

    Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.

  10. Thermally tolerant multilayer metal membrane

    DOE Patents [OSTI]

    Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM)

    2001-01-01

    A composite metal membrane including a first metal layer of a Group IVB or Group VB metal sandwiched between two layers of a Group VIIIB metal selected from the group consisting of palladium, platinum, nickel, rhodium, iridium, cobalt, and alloys thereof, and a non-continuous layer of a metal chalcogenide upon one layer of the Group VIIIB metal is disclosed together with a process for the recovery of hydrogen from a gaseous mixture using such a composite membrane and a process for forming such a composite metal membrane.

  11. Peroxotitanates for Biodelivery of Metals

    SciTech Connect (OSTI)

    Hobbs, David; Elvington, M.

    2009-02-11

    Metal-based drugs are largely undeveloped in pharmacology. One limiting factor is the systemic toxicity of metal-based compounds. A solid-phase, sequestratable delivery agent for local delivery of metals could reduce systemic toxicity, facilitating new drug development in this nascent area. Amorphous peroxotitanates (APT) are ion exchange materials with high affinity for several heavy metal ions, and have been proposed to deliver or sequester metal ions in biological contexts. In the current study, we tested a hypothesis that APT are able to deliver metals or metal compounds to cells. We exposed fibroblasts (L929) or monocytes (THP1) to metal-APT materials for 72 h in vitro, then measured cellular mitochondrial activity (SDH-MTT method) to assess the biological impact of the metal-APT materials vs. metals or APT alone. APT alone did not significantly affect cellular mitochondrial activity, but all metal-APT materials suppressed the mitochondrial activity of fibroblasts (by 30-65% of controls). The concentration of metal-APT materials required to suppress cellular mitochondrial activity was below that required for metals alone, suggesting that simple extracellular release of the metals from the metal-APT materials was not the primary mechanism of mitochondrial suppression. In contrast to fibroblasts, no metal-APT material had a measurable effect on THP1 monocyte mitochondrial activity, despite potent suppression by metals alone. This latter result suggested that 'biodelivery' by metal-APT materials may be cell type-specific. Therefore, it appears that APT are plausible solid phase delivery agents of metals or metal compounds to some types of cells for potential therapeutic effect.

  12. Liquid metal thermal electric converter

    DOE Patents [OSTI]

    Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  13. Method for forming metal contacts

    DOE Patents [OSTI]

    Reddington, Erik; Sutter, Thomas C; Bu, Lujia; Cannon, Alexandra; Habas, Susan E; Curtis, Calvin J; Miedaner, Alexander; Ginley, David S; Van Hest, Marinus Franciscus Antonius Maria

    2013-09-17

    Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.

  14. High-Temperature Zirconia Oxygen Sensor with Sealed Metal/Metal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference...

  15. Alkali metal ionization detector

    DOE Patents [OSTI]

    Bauerle, James E. (Plum Borough, PA); Reed, William H. (Monroeville, PA); Berkey, Edgar (Murrysville, PA)

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  16. Method for locating metallic nitride inclusions in metallic alloy ingots

    DOE Patents [OSTI]

    White, Jack C. (Albany, OR); Traut, Davis E. (Corvallis, OR); Oden, Laurance L. (Albany, OR); Schmitt, Roman A. (Corvallis, OR)

    1992-01-01

    A method of determining the location and history of metallic nitride and/or oxynitride inclusions in metallic melts. The method includes the steps of labeling metallic nitride and/or oxynitride inclusions by making a coreduced metallic-hafnium sponge from a mixture of hafnium chloride and the chloride of a metal, reducing the mixed chlorides with magnesium, nitriding the hafnium-labeled metallic-hafnium sponge, and seeding the sponge to be melted with hafnium-labeled nitride inclusions. The ingots are neutron activated and the hafnium is located by radiometric means. Hafnium possesses exactly the proper metallurgical and radiochemical properties for this use.

  17. Metal-optic and Plasmonic Semiconductor-based Nanolasers

    E-Print Network [OSTI]

    Lakhani, Amit

    2012-01-01

    of Metals . . . . . . . . . . . . . . . . . . . . . . .coupled Metal-optic Nanocavities . . . . . . . . . . . . . .dependent quality factors Q metal for good conduc- tors.

  18. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, Haskell (Los Alamos, NM)

    1986-01-01

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  19. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, H.

    1983-07-26

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  20. Metallic carbon materials

    DOE Patents [OSTI]

    Cohen, Marvin Lou (Berkeley, CA); Crespi, Vincent Henry (Darien, IL); Louie, Steven Gwon Sheng (Berkeley, CA); Zettl, Alexander Karlwalter (Kensington, CA)

    1999-01-01

    Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

  1. Fast Rotation vs. Metallicity

    E-Print Network [OSTI]

    Ronaldo Levenhagen; Nelson Vani Leister; Juan Zorec; Yves Fremat

    2005-09-07

    Fast rotation seems to be the major factor to trigger the Be phenomenon. Surface fast rotation can be favored by initial formation conditions such as metal abundance. Models of fast rotating atmospheres and evolutionary tracks are used to determine the stellar fundamental parameters of 120 Be stars situated in spatially well-separated regions to imply there is between them some gradient of metallicity. We study the effects of the incidence of this gradient on the nature of the studied stars as fast rotators.

  2. Catalysis Without Precious Metals

    SciTech Connect (OSTI)

    Bullock, R. Morris

    2010-11-01

    Written for chemists in industry and academia, this ready reference and handbook summarizes recent progress in the development of new catalysts that do not require precious metals. The research thus presented points the way to how new catalysts may ultimately supplant the use of precious metals in some types of reactions, while highlighting the remaining challenges. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

  3. Metal alloy identifier

    DOE Patents [OSTI]

    Riley, William D. (Avondale, MD); Brown, Jr., Robert D. (Avondale, MD)

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  4. Fabricated Metals (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fabricated Metals (2010 MECS) Fabricated Metals (2010 MECS) Manufacturing Energy and Carbon Footprint for Fabricated Metals Sector (NAICS 332) Energy use data source: 2010 EIA MECS...

  5. Locating experiential richness in doom metal

    E-Print Network [OSTI]

    Piper, Jonathan

    2013-01-01

    as Trouble) (1984), Metal Blade. Witchfinder General.Death Penalty (1982), Heavy Metal Records.the Balinese Death/ Thrash Metal Scene. ” Popular Music 22,

  6. Shaping metal nanocrystals through epitaxial seeded growth

    E-Print Network [OSTI]

    Habas, Susan E.; Lee, Hyunjoo; Radmilovic, Velimir; Somorjai, Gabor A.; Yang, Peidong

    2008-01-01

    Structural Evolution in Metal Oxide/Semiconductor Colloidalasymmetric one-sided metal-tipped semiconductor nanocrystalGrowth of Magnetic-Metal- Functionalized Semiconductor Oxide

  7. Metal working lubricant compositions

    SciTech Connect (OSTI)

    Andress, H.J.; Davis, R.H.; Schick, J.W.

    1981-08-11

    A lubricant concentrate for use in metal processing comprises a sulfur compound such as a sulfurized olefin or sulfurized mineral oil and an ester prepared from a fatty acid having 12 to 40 carbon atoms or the dimer thereof or a polyalkenylsuccinic acid or anhydride and a hydroxyl-containing amine.

  8. Ductile transplutonium metal alloys

    DOE Patents [OSTI]

    Conner, William V. (Boulder, CO)

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  9. Ductile transplutonium metal alloys

    DOE Patents [OSTI]

    Conner, W.V.

    1981-10-09

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  10. The erosion of metals

    E-Print Network [OSTI]

    Andrews, David Richard

    1980-10-21

    The study of the erosion of metallic surfaces by solid particles has been an area of dispute recently (1980) especially concerning the importance of target melting as a mechanism for the removal of material. In addition, erosion by particles at a...

  11. Method of producing adherent metal oxide coatings on metallic surfaces

    DOE Patents [OSTI]

    Lane, Michael H. (Clifton Park, NY); Varrin, Jr., Robert D. (McLean, VA)

    2001-01-01

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  12. 9 Metal to Non-metal Transitions in Solids and on Surfaces studied using Photoemission Spectroscopy

    E-Print Network [OSTI]

    Redner, Sidney

    9 Metal to Non-metal Transitions in Solids and on Surfaces studied using Photoemission Spectroscopy of the electrical properties of a material between those of a metal and those of a non-metal (be it semiconducting metal to non-metal transitions. (Thephrase `metal to non-metal transition' is used in this paper

  13. Electroless metal plating of plastics

    DOE Patents [OSTI]

    Krause, L.J.

    1982-09-20

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  14. Electroless metal plating of plastics

    DOE Patents [OSTI]

    Krause, Lawrence J. (Chicago, IL)

    1984-01-01

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  15. Electroless metal plating of plastics

    DOE Patents [OSTI]

    Krause, Lawrence J. (Chicago, IL)

    1986-01-01

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  16. Upgrading platform using alkali metals

    SciTech Connect (OSTI)

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  17. Methods of recovering alkali metals

    DOE Patents [OSTI]

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  18. Inert electrode containing metal oxides, copper and noble metal

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

    2001-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  19. Inert electrode containing metal oxides, copper and noble metal

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

    2000-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  20. FLUIDIC: Metal Air Recharged

    SciTech Connect (OSTI)

    Friesen, Cody

    2014-03-07

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  1. FLUIDIC: Metal Air Recharged

    ScienceCinema (OSTI)

    Friesen, Cody

    2014-04-02

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  2. Spray casting of metallic preforms

    DOE Patents [OSTI]

    Flinn, John E. (Idaho Falls, ID); Burch, Joseph V. (Shelley, ID); Sears, James W. (Niskayuna, NY)

    2000-01-01

    A metal alloy is melted in a crucible and ejected from the bottom of the crucible as a descending stream of molten metal. The descending stream is impacted with a plurality of primary inert gas jets surrounding the molten metal stream to produce a plume of atomized molten metal droplets. An inert gas is blown onto a lower portion of the plume with a plurality of auxiliary inert gas jets to deflect the plume into a more restricted pattern of high droplet density, thereby substantially eliminating unwanted overspray and resulting wasted material. The plume is projected onto a moving substrate to form a monolithic metallic product having generally parallel sides.

  3. Hydrothermal alkali metal recovery process

    DOE Patents [OSTI]

    Wolfs, Denise Y. (Houston, TX); Clavenna, Le Roy R. (Baytown, TX); Eakman, James M. (Houston, TX); Kalina, Theodore (Morris Plains, NJ)

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  4. Dimensionally stable metallic hydride composition

    DOE Patents [OSTI]

    Heung, Leung K. (Aiken, SC)

    1994-01-01

    A stable, metallic hydride composition and a process for making such a composition. The composition comprises a uniformly blended mixture of a metal hydride, kieselguhr, and a ballast metal, all in the form of particles. The composition is made by subjecting a metal hydride to one or more hydrogen absorption/desorption cycles to disintegrate the hydride particles to less than approximately 100 microns in size. The particles are partly oxidized, then blended with the ballast metal and the kieselguhr to form a uniform mixture. The mixture is compressed into pellets and calcined. Preferably, the mixture includes approximately 10 vol. % or more kieselguhr and approximately 50 vol. % or more ballast. Metal hydrides that can be used in the composition include Zr, Ti, V, Nb, Pd, as well as binary, tertiary, and more complex alloys of La, Al, Cu, Ti, Co, Ni, Fe, Zr, Mg, Ca, Mn, and mixtures and other combinations thereof. Ballast metals include Al, Cu and Ni.

  5. Corrosion protective coating for metallic materials

    DOE Patents [OSTI]

    Buchheit, R.G.; Martinez, M.A.

    1998-05-26

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

  6. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect (OSTI)

    Dr. Ramana Reddy

    2012-04-12

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode. Successful extraction of metal from metal oxide dissolved in Urea/ChCl (2:1) was accomplished. The current efficiencies were relatively high in both the metal deposition processes with current efficiency greater than 86% for lead and 95% for zinc. This technology will advance the metal oxide reduction process by increasing the process efficiency and also eliminate the production of CO2 which makes this an environmentally benign technology for metal extraction.

  7. COORDINATION CHEMISTRY OF METAL SURFACES AND METAL COMPLEXES

    E-Print Network [OSTI]

    Muetterties, E.L.

    2013-01-01

    molecular coordination chemistry of CH3NC has been reported.features of this surface chemistry. ACKNOw"LEDGMENTS The1980 Catalysis~ COORDINATION CHEMISTRY OF METAL SURFACES AND

  8. Method for facilitating catalyzed oxidation reactions, device for facilitating catalyzed oxidation reactions

    DOE Patents [OSTI]

    Beuhler, Robert J. (East Moriches, NY); White, Michael G. (Blue Point, NY); Hrbek, Jan (Rocky Point, NY)

    2006-08-15

    A catalytic process for the oxidation of organic. Oxygen is loaded into a metal foil by heating the foil while in contact with an oxygen-containing fluid. After cooling the oxygen-activated foil to room temperature, oxygen diffuses through the foil and oxidizes reactants exposed to the other side of the foil.

  9. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout / TransformingTransuranic Waste RetrievalTrending: Metal Oxo

  10. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout / TransformingTransuranic Waste RetrievalTrending: Metal

  11. Probing metal solidification nondestructively

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions | National NuclearProbingProbing metal solidification

  12. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.WeekProducts >TransportationEHSS A-ZTravisTrending: Metal

  13. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.WeekProducts >TransportationEHSSTrending: Metal Oxo Bonds

  14. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.WeekProducts >TransportationEHSSTrending: Metal Oxo

  15. Probing metal solidification nondestructively

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-Rich Matrices inPrincipalFirm Exchange . . .Probing metal

  16. Supported molten-metal catalysts

    DOE Patents [OSTI]

    Datta, Ravindra (Iowa City, IA); Singh, Ajeet (Iowa City, IA); Halasz, Istvan (Iowa City, IA); Serban, Manuela (Iowa City, IA)

    2001-01-01

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  17. Degenerate doping of metallic anodes

    SciTech Connect (OSTI)

    Friesen, Cody A; Zeller, Robert A; Johnson, Paul B; Switzer, Elise E

    2015-05-12

    Embodiments of the invention relate to an electrochemical cell comprising: (i) a fuel electrode comprising a metal fuel, (ii) a positive electrode, (iii) an ionically conductive medium, and (iv) a dopant; the electrodes being operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode and the dopant increases the conductivity of the metal fuel oxidation product. In an embodiment, the oxidation product comprises an oxide of the metal fuel which is doped degenerately. In an embodiment, the positive electrode is an air electrode that absorbs gaseous oxygen, wherein during discharge mode, oxygen is reduced at the air electrode. Embodiments of the invention also relate to methods of producing an electrode comprising a metal and a doped metal oxidation product.

  18. Metal to ceramic sealed joint

    DOE Patents [OSTI]

    Lasecki, John V. (Livonia, MI); Novak, Robert F. (Farmington Hills, MI); McBride, James R. (Ypsilanti, MI)

    1991-01-01

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system.

  19. Metal to ceramic sealed joint

    DOE Patents [OSTI]

    Lasecki, J.V.; Novak, R.F.; McBride, J.R.

    1991-08-27

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system. 11 figures.

  20. REVERSIBLE METAL-TO-METAL METHYL TRANSFER IN n5-CYCLOPENTADIENYL(TRIPHENYLPHOSPHINE)DIMETHYLCOBALT(III)

    E-Print Network [OSTI]

    Bryndza, Henry E.

    2013-01-01

    transfer between transition metals which is assisted by aJournal of the American Chemical Society REVERSIBLE METAL-TO-METAL METHYL TRANSFER IN n 5-CYCLOPENTAOIENYL(

  1. Alkali metal ion battery with bimetallic electrode

    DOE Patents [OSTI]

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  2. Method for preparing porous metal hydride compacts

    DOE Patents [OSTI]

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  3. Method for preparing porous metal hydride compacts

    DOE Patents [OSTI]

    Ron, Moshe (Haifa, IL); Gruen, Dieter M. (Downers Grove, IL); Mendelsohn, Marshall H. (Woodridge, IL); Sheft, Irving (Oak Park, IL)

    1981-01-01

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  4. Electronic structure of metallic glasses

    SciTech Connect (OSTI)

    Oelhafen, P.; Lapka, R.; Gubler, U.; Krieg, J.; DasGupta, A.; Guentherodt, H.J.; Mizoguchi, T.; Hague, C.; Kuebler, J.; Nagel, S.R.

    1981-01-01

    This paper is organized in six sections and deals with (1) the glassy transition metal alloys, their d-band structure, the d-band shifts on alloying and their relation to the alloy heat of formation (..delta..H) and the glass forming ability, (2) the glass to crystal phase transition viewed by valence band spectroscopy, (3) band structure calculations, (4) metallic glasses prepared by laser glazing, (5) glassy normal metal alloys, and (6) glassy hydrides.

  5. Corrosion-resistant metal surfaces

    DOE Patents [OSTI]

    Sugama, Toshifumi (Wading River, NY)

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  6. Metal-ceramic joint assembly

    DOE Patents [OSTI]

    Li, Jian (New Milford, CT)

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  7. Metal-ion recycle technology for metal electroplating waste waters

    SciTech Connect (OSTI)

    Sauer, N.N.; Smith, B.F.

    1993-06-01

    As a result of a collaboration with Boeing Aerospace, the authors have begun a program to identify suitable treatments or to develop new treatments for electroplating baths. The target baths are mixed-metal or alloy baths that are being integrated into the Boeing electroplating complex. These baths, which are designed to replace highly toxic chromium and cadmium baths, contain mixtures of two metals, either nickel-tungsten, nickel-zinc, or zinc-tin. This report reviews the literature and details currently available on emerging technologies that could affect recovery of metals from electroplating baths under development by Boeing Aerospace. This literature survey summarizes technologies relevant to the recovery of metals from electroplating processes. The authors expanded the scope to investigate single metal ion recovery technologies that could be applied to metal ion recovery from alloy baths. This review clearly showed that the electroplating industry has traditionally relied on precipitation and more recently on electrowinning as its waste treatment methods. Despite the almost ubiquitous use of precipitation to remove contaminant metal ions from waste electroplating baths and rinse waters, this technology is clearly no longer feasible for the electroplating industry for several reasons. First, disposal of unstabilized sludge is no longer allowed by law. Second, these methods are no longer adequate as metal-removal techniques because they cannot meet stringent new metal discharge limits. Third, precious resources are being wasted or discarded because these methods do not readily permit recovery of the target metal ions. As a result, emerging technologies for metal recovery are beginning to see application to electroplating waste recycle. This report summarizes current research in these areas. Included are descriptions of various membrane technologies, such as reverse osmosis and ultrafiltration, ion exchange and chelating polymer technology, and electrodialysis.

  8. Clean Metal Casting

    SciTech Connect (OSTI)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  9. Metal deposition using seed layers

    DOE Patents [OSTI]

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  10. Metal sulfide initiators for metal oxide sorbent regeneration

    DOE Patents [OSTI]

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  11. Heavy metal movement in metal-contaminated soil profiles

    SciTech Connect (OSTI)

    Li, Zhenbin; Shuman, L.M.

    1996-10-01

    Heavy metal movement in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. In this study, three metal-contaminated soil (Fuquay, Dothan, and Clarendon) were selected from cropland were a high-metal flue dust had been applied annually for 6 years to raise soil pH, with application ending 4 years before sampling. One uncontaminated soil (Tifton) from the same physiographic area was also sampled as a control. Soil samples were collected in 15-cm increments from the surface to 105 cm in depth. Total contents of Zn, Cd, and Pb in the soils samples were determined. To better understand metal movement in relation to metal fractions in the soil profile, soil samples were also extracted sequentially for exchangeable (EXC), organic matter (OM), Mn oxide (MNO), amorphous Fe oxide (AFEO), crystalline Fe oxide (CFEO), and residual (RES) fractions. 35 refs., 6 figs., 2 tabs.

  12. Thin film hydrous metal oxide catalysts

    DOE Patents [OSTI]

    Dosch, Robert G. (Albuquerque, NM); Stephens, Howard P. (Albuquerque, NM)

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  13. Non-Destructive Inspection of Adhesive Bonds in Metal-Metal Joints...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inspection of Adhesive Bonds in Metal-Metal Joints Non-Destructive Inspection of Adhesive Bonds in Metal-Metal Joints 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  14. Histological Features of Pseudotumor-like Tissues From Metal-on-Metal Hips

    E-Print Network [OSTI]

    Campbell, Pat; Ebramzadeh, Edward; Nelson, Scott; Takamura, Karren; Smet, Koen; Amstutz, Harlan C.

    2010-01-01

    Fayyazi A, Flury R, Windler M, Koster G, Lohmann CH. Metal-on-metal bearings and hyper- sensitivity in patients withthe acetabular com- ponent and metal ion levels in metal-on-

  15. Expanding hollow metal rings

    DOE Patents [OSTI]

    Peacock, Harold B. (Evans, GA); Imrich, Kenneth J. (Grovetown, GA)

    2009-03-17

    A sealing device that may expand more planar dimensions due to internal thermal expansion of a filler material. The sealing material is of a composition such that when desired environment temperatures and internal actuating pressures are reached, the sealing materials undergoes a permanent deformation. For metallic compounds, this permanent deformation occurs when the material enters the plastic deformation phase. Polymers, and other materials, may be using a sealing mechanism depending on the temperatures and corrosivity of the use. Internal pressures are generated by either rapid thermal expansion or material phase change and may include either liquid or solid to gas phase change, or in the gaseous state with significant pressure generation in accordance with the gas laws. Sealing material thickness and material composition may be used to selectively control geometric expansion of the seal such that expansion is limited to a specific facing and or geometric plane.

  16. Liquid metal thermoacoustic engine

    SciTech Connect (OSTI)

    Swift, G.W.; Migliori, A.; Wheatley, J.C.

    1986-01-01

    We are studying a liquid metal thermoacoustic engine both theoretically and experimentally. This type of engine promises to produce large quantities of electrical energy from heat at modest efficiency with no moving parts. A sound wave is usually thought of as consisting of pressure oscillations, but always attendant to the pressure oscillation are temperature oscillations. The combination produces a rich variety of ''thermoacoustic'' effects. These effects are usually so small that they are never noticed in everyday life; nevertheless under the right circumstances they can be harnessed to produce powerful heat engines, heat pumps, and refrigerators. In our liquid metal thermoacoustic engine, heat flow from a high temperature source to a low temperature sink generates a high-amplitude standing acoustic wave in liquid sodium. This acoustic power is converted to electric power by a simple magnetohydrodynamic effect at the acoustic oscillation frequency. We have developed a detailed thermoacoustic theory applicable to this engine, and find that a reasonably designed liquid sodium engine operating between 700/sup 0/C and 100/sup 0/C should generate about 60 W/cm/sup 2/ of acoustic power at about 1/3 of Carnot's efficiency. Construction of a 3000 W-thermal laboratory model engine has just been completed, and we have exciting preliminary experimental results as of the time of preparation of this manuscript showing, basically, that the engine works. We have also designed and built a 1 kHz liquid sodium magnetohydrodynamic generator and have extensive measurements on it. It is now very well characterized both experimentally and theoretically. The first generator of its kind, it already converts acoustic power to electric power with 40% efficiency. 16 refs., 5 figs.

  17. Synthesis metal nanoparticle

    DOE Patents [OSTI]

    Bunge, Scott D.; Boyle, Timothy J.

    2005-08-16

    A method for providing an anhydrous route for the synthesis of amine capped coinage-metal (copper, silver, and gold) nanoparticles (NPs) using the coinage-metal mesityl (mesityl=C.sub.6 H.sub.2 (CH.sub.3).sub.3 -2,4,6) derivatives. In this method, a solution of (Cu(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5, (Ag(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.4, or (Au(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5 is dissolved in a coordinating solvent, such as a primary, secondary, or tertiary amine; primary, secondary, or tertiary phosphine, or alkyl thiol, to produce a mesityl precursor solution. This solution is subsequently injected into an organic solvent that is heated to a temperature greater than approximately 100.degree. C. After washing with an organic solvent, such as an alcohol (including methanol, ethanol, propanol, and higher molecular-weight alcohols), oxide free coinage NP are prepared that could be extracted with a solvent, such as an aromatic solvent (including, for example, toluene, benzene, and pyridine) or an alkane (including, for example, pentane, hexane, and heptane). Characterization by UV-Vis spectroscopy and transmission electron microscopy showed that the NPs were approximately 9.2.+-.2.3 nm in size for Cu.degree., (no surface oxide present), approximately 8.5.+-.1.1 nm Ag.degree. spheres, and approximately 8-80 nm for Au.degree..

  18. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1991-01-01

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  19. Treatability of Stormwater Heavy Metals

    E-Print Network [OSTI]

    Clark, Shirley E.

    1 Treatability of Stormwater Heavy Metals or Breaking the Irreducible Concentration Barrier R. Pitt Technologies for Urban Stormwater Conducted by the University of Alabamay y from 1999 to 2003 · Examined the characteristics and treatability of stormwater heavy metals at selected source areas and at outfalls. · Conducted

  20. Durability of metals from archaeological objects, metal meteorites, and native metals

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.; Francis, B.

    1980-01-01

    Metal durability is an important consideration in the multi-barrier nuclear waste storage concept. This study summarizes the ancient metals, the environments, and factors which appear to have contributed to metal longevity. Archaeological and radiochemical dating suggest that human use of metals began in the period 6000 to 7000 BC. Gold is clearly the most durable, but many objects fashioned from silver, copper, bronze, iron, lead, and tin have survived for several thousand years. Dry environments, such as tombs, appear to be optimum for metal preservation, but some metals have survived in shipwrecks for over a thousand years. The metal meteorites are Fe-base alloys with 5 to 60 wt% Ni and minor amounts of Co, I, and S. Some meteoritic masses with ages estimated to be 5,000 to 20,000 years have weathered very little, while other masses from the same meteorites are in advanced stages of weathering. Native metals are natural metallic ores. Approximately five million tonnes were mined from native copper deposits in Michigan. Copper masses from the Michigan deposits were transported by the Pleistocene glaciers. Areas on the copper surfaces which appear to represent glacial abrasion show minimal corrosion. Dry cooling tower technology has demonstrated that in pollution-free moist environments, metals fare better at temperatures above than below the dewpoint. Thus, in moderate temperature regimes, elevated temperatures may be useful rather than detrimental for exposures of metal to air. In liquid environments, relatively complex radiolysis reactions can occur, particularly where multiple species are present. A dry environment largely obviates radiolysis effects.

  1. Pressure-Induced Electronic Phase Transitions Transition Metal Oxides and Rare Earth Metals

    E-Print Network [OSTI]

    Islam, M. Saif

    Pressure-Induced Electronic Phase Transitions in Transition Metal Oxides and Rare Earth Metals Metal Oxides and Rare Earth Metals by Brian Ross Maddox Electron correlation can affect profound changes transition in a transition metal monoxide. iv #12;The lanthanides (the 4f metals also known as rare-earths

  2. Method for preparing metal powder, device for preparing metal powder, method for processing spent nuclear fuel

    DOE Patents [OSTI]

    Park, Jong-Hee (Clarendon Hills, IL)

    2011-11-29

    A method for producing metal powder is provided the comprising supplying a molten bath containing a reducing agent, contacting a metal oxide with the molten bath for a time and at a temperature sufficient to reduce the metal in the metal oxide to elemental metal and produce free oxygen; and isolating the elemental metal from the molten bath.

  3. Metal-binding polymesr as chelating agents

    E-Print Network [OSTI]

    Mohammadi, Zahra

    2011-04-11

    , high affinity binding of toxic metals by these functionalized hydrogels offers potential applications in waste water treatment and may enable applications in acute metal poisoning. Finally, a unique synthetic methodology using similar metal chelating...

  4. Metal-directed protein self-assembly

    E-Print Network [OSTI]

    Salgado. Eric N.

    2010-01-01

    F. A. 2010. Evolution of metal selectivity in templatedR. J. , Tezcan, F. A. 2010. Metal-Directed Protein Self-B. , Tezcan, F. A. 2010. Metal templated design of protein

  5. Metal plasmas for the fabrication of nanostructures

    E-Print Network [OSTI]

    Anders, Andre

    2006-01-01

    by Energetic Condensation of Metal Plasmas André AndersD: Appl. Phys. (2006) Metal plasmas for the fabrication ofA review is provided covering metal plasma production, the

  6. Metal-templated assembly of protein cages

    E-Print Network [OSTI]

    Huard, Dustin Johnathen Edward

    2012-01-01

    Chapter 2. Generation of Metal-Responsive HuHF Buildingprotein interactions through metal coordination: Assembly ofSalgado, E.N. , et al. , Metal-mediated self-assembly of

  7. Modeling the glass forming ability of metals

    E-Print Network [OSTI]

    Cheney, Justin Lee

    2007-01-01

    compositions without rare earth metals in the Fe-Cr-Mo-C-B-Wsmall percentages of rare earth metals as the oxide formingmore, often containing rare earth metals, are among the best

  8. High-temperature, high-pressure bonding of nested tubular metallic components

    DOE Patents [OSTI]

    Quinby, Thomas C. (Kingston, TN)

    1980-01-01

    This invention is a tool for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  9. Catalysis using hydrous metal oxide ion exchangers

    DOE Patents [OSTI]

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  10. MECS 2006 - Fabricated Metals | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    supporting documents Manufacturing Energy and Carbon Footprint Fabricated Metals More Documents & Publications Fabricated Metals (2010 MECS) MECS 2006 - Cement MECS 2006 - Glass...

  11. Engineering Metal Impurities in Multicrystalline Silicon Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Metal Impurities in Multicrystalline Silicon Solar Cells Print Transition metals are one of the main culprits in degrading the efficiency of multicrystalline solar...

  12. Thermodynamics of metallic systems | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermodynamics of metallic systems Many thermodynamics properties of metallic systems are not readily available through experimental measurements or widely available databases...

  13. BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE

    E-Print Network [OSTI]

    Yang, Rosa L.

    2013-01-01

    Metallic Inclusions in Uranium Dioxide", LBL-11117 (1980).in Hypostoichiornetric Uranium Dioxide 11 , LBL-11095 (OF METALLIC INCLUSIONS IN URANIUM DIOXIDE Rosa L. Yang and

  14. Metal Hydride Hydrogen Storage Research and Development

    Broader source: Energy.gov [DOE]

    DOE's research on complex metal hydrides targets the development of advanced metal hydride materials including light-weight complex hydrides, destabilized binary hydrides, intermetallic hydrides,...

  15. Light metal explosives and propellants

    DOE Patents [OSTI]

    Wood, Lowell L.; Ishikawa, Muriel Y.; Nuckolls, John H.; Pagoria, Phillip F.; Viecelli, James A.

    2005-04-05

    Disclosed herein are light metal explosives, pyrotechnics and propellants (LME&Ps) comprising a light metal component such as Li, B, Be or their hydrides or intermetallic compounds and alloys containing them and an oxidizer component containing a classic explosive, such as CL-20, or a non-explosive oxidizer, such as lithium perchlorate, or combinations thereof. LME&P formulations may have light metal particles and oxidizer particles ranging in size from 0.01 .mu.m to 1000 .mu.m.

  16. Quinary metallic glass alloys

    DOE Patents [OSTI]

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  17. Quinary metallic glass alloys

    DOE Patents [OSTI]

    Lin, Xianghong (Pasadena, CA); Johnson, William L. (Pasadena, CA)

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  18. Nucleosynthesis in Metal-Free and Metal-Poor Stars

    E-Print Network [OSTI]

    Yong-Zhong Qian

    2008-07-04

    There have been a number of important recent developments in theoretical and observational studies of nucleosynthesis, especially regarding nucleosynthetic sources at low metallicities. Those selected for discussion here include the origin of Li6, the primary production of N, the s-process, and the supernova sources for three groups of metals: (1) C to Zn with mass numbers A<70, (2) Sr to Ag with A~90-110, and (3) r-process nuclei with A~130 and above.

  19. In-situ synchrotron energy-dispersive x-ray diffraction study of thin Pd foils with Pd:D and Pd:H concentrations up to 1:1

    SciTech Connect (OSTI)

    Knies, D. L.; Grabowski, K. S.; Dominguez, D. D.; Qadri, S. B.; Hubler, G. K.; Violante, V.; Hu, J. Z.; He, J. H.

    2012-10-15

    Time resolved, in-situ, energy dispersive x-ray diffraction was performed in an electrolysis cell during electrochemical loading of palladium foil cathodes with hydrogen and deuterium. Concentrations of H:Pd (D:Pd) up to 1:1 in 0.1 M LiOH (LiOD) in H{sub 2}O (D{sub 2}O) electrolyte were obtained, as determined by both the Pd lattice parameter and cathode resistivity. In addition, some indications on the kinetics of loading and deloading of hydrogen from the Pd surface were obtained. The alpha-beta phase transformations were clearly delineated but no new phases at high concentration were determined.

  20. Organometallic chemistry of metal surfaces

    SciTech Connect (OSTI)

    Muetterties, E.L.

    1981-06-01

    The organometallic chemistry of metal surfaces is defined as a function of surface crystallography and of surface composition for a set of cyclic hydrocarbons that include benzene, toluene, cyclohexadienes, cyclohexene, cyclohexane, cyclooctatetraene, cyclooctadienes, cyclooctadiene, cycloheptatriene and cyclobutane. 12 figures.

  1. EROSION MECHANISM IN DUCTILE METALS

    E-Print Network [OSTI]

    Bellman Jr., Robert

    2013-01-01

    England. Mayvflle, fL A. , "Mechanism of fV1aterial RemovalSubmitted to WEAR EROSION MECHANISM IN DUCTILE METALS Robertmetals. ace and erosion rate mechanism is a signifi- mic in

  2. Time domain electromagnetic metal detectors

    SciTech Connect (OSTI)

    Hoekstra, P.

    1996-04-01

    This presentation focuses on illustrating by case histories the range of applications and limitations of time domain electromagnetic (TDEM) systems for buried metal detection. Advantages claimed for TDEM metal detectors are: independent of instrument response (Geonics EM61) to surrounding soil and rock type; simple anomaly shape; mitigation of interference by ambient electromagnetic noise; and responsive to both ferrous and non-ferrous metallic targets. The data in all case histories to be presented were acquired with the Geonics EM61 TDEM system. Case histories are a test bed site on Molokai, Hawaii; Fort Monroe, Virginia; and USDOE, Rocky Flats Plant. The present limitations of this technology are: discrimination capabilities in terms of type of ordnance, and depth of burial is limited, and ability of resolving targets with small metallic ambient needs to be improved.

  3. Nanostructured Metal Oxide Anodes (Presentation)

    SciTech Connect (OSTI)

    Dillon, A. C.; Riley, L. A.; Lee, S.-H.; Kim, Y.-H.; Ban, C.; Gillaspie, D. T.; Pesaran, A.

    2009-05-01

    This summarizes NREL's FY09 battery materials research activity in developing metal oxide nanostructured anodes to enable high-energy, durable and affordable li-ion batteries for HEVs and PHEVs.

  4. Metal-sensing layer-semiconductor and metal-sensing layer-metal heterostructure gas sensors

    SciTech Connect (OSTI)

    O'Leary, M.; Li, Zheng; Fonash, S.J.

    1987-01-01

    Extremely sensitive gas sensors can be fabricated using heterostructures of the form metal-sensing layer-semiconductor or metal-sensing layer-metal. These structures are heterostructure diodes which have the barrier controlling transport at least partially located in the sensing layer. In the presence of the gas species to be detected, the electrical properties of the sensing layer evolve, resulting in a modification of the barrier to electric current transport and, hence, resulting in detection due to changes in the current-voltage characteristics of the device. This type of sensor structure is demonstrated using the Pd/Ti-O/sub x/Ti heterostructure hydrogen detector.

  5. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    SciTech Connect (OSTI)

    Richard T. Scalettar; Warren E. Pickett

    2005-08-02

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.

  6. Metal detector technology data base

    SciTech Connect (OSTI)

    Porter, L.K.; Gallo, L.R.; Murray, D.W.

    1990-08-01

    The tests described in this report were conducted to obtain information on the effects target characteristics have on portal type metal detector response. A second purpose of the tests was to determine the effect of detector type and settings on the detection of the targets. Although in some cases comparison performance of different types and makes of metal detectors is found herein, that is not the primary purpose of the report. Further, because of the many variables that affect metal detector performance, the information presented can be used only in a general way. The results of these tests can show general trends in metal detection, but do little for making accurate predictions as to metal detector response to a target with a complex shape such as a handgun. The shape of an object and its specific metal content (both type and treatment) can have a significant influence on detection. Thus it should not be surprising that levels of detection for a small 100g stainless steel handgun are considerably different than for detection of the 100g stainless steel right circular cylinder that was used in these tests. 7 figs., 1 tab.

  7. Molten metal injector system and method

    DOE Patents [OSTI]

    Meyer, Thomas N. (Murrysville, PA); Kinosz, Michael J. (Apollo, PA); Bigler, Nicolas (Morin Heights, CA); Arnaud, Guy (Riviere-Beaudette, CA)

    2003-04-01

    Disclosed is a molten metal injector system including a holder furnace, a casting mold supported above the holder furnace, and a molten metal injector supported from a bottom side of the mold. The holder furnace contains a supply of molten metal having a metal oxide film surface. The bottom side of the mold faces the holder furnace. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The injector projects into the holder furnace and is in fluid communication with the mold cavity. The injector includes a piston positioned within a piston cavity defined by a cylinder for pumping the molten metal upward from the holder furnace and injecting the molten metal into the mold cavity under pressure. The piston and cylinder are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder further includes a molten metal intake for receiving the molten metal into the piston cavity. The molten metal intake is located below the metal oxide film surface of the molten metal when the holder furnace contains the molten metal. A method of injecting molten metal into a mold cavity of a casting mold is also disclosed.

  8. Metal salt catalysts for enhancing hydrogen spillover

    SciTech Connect (OSTI)

    Yang, Ralph T; Wang, Yuhe

    2013-04-23

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  9. Maskless laser writing of microscopic metallic interconnects

    DOE Patents [OSTI]

    Maya, L.

    1995-10-17

    A method of forming a metal pattern on a substrate is disclosed. The method includes depositing an insulative nitride film on a substrate and irradiating a laser beam onto the nitride film, thus decomposing the metal nitride into a metal constituent and a gaseous constituent, the metal constituent remaining in the nitride film as a conductive pattern. 4 figs.

  10. Metal sponge for cryosorption pumping applications

    DOE Patents [OSTI]

    Myneni, G.R.; Kneisel, P.

    1995-12-26

    A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area. 4 figs.

  11. Anaerobic microbial remobilization of coprecipitated metals

    DOE Patents [OSTI]

    Francis, A.J.; Dodge, C.J.

    1994-10-11

    A process is provided for solubilizing coprecipitated metals. Metals in waste streams are concentrated by treatment with an iron oxide coprecipitating agent. The coprecipitated metals are solubilized by contacting the coprecipitate with a bacterial culture of a Clostridium species ATCC 53464. The remobilized metals can then be recovered and recycled. 4 figs.

  12. Metal nanoparticles as a conductive catalyst

    DOE Patents [OSTI]

    Coker, Eric N. (Albuquerque, NM)

    2010-08-03

    A metal nanocluster composite material for use as a conductive catalyst. The metal nanocluster composite material has metal nanoclusters on a carbon substrate formed within a porous zeolitic material, forming stable metal nanoclusters with a size distribution between 0.6-10 nm and, more particularly, nanoclusters with a size distribution in a range as low as 0.6-0.9 nm.

  13. Dispersion enhanced metal/zeolite catalysts

    DOE Patents [OSTI]

    Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

    1987-03-31

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  14. METAL IONS: Physiological function and Pathological rle

    E-Print Network [OSTI]

    Morante, Silvia

    METAL IONS: Physiological function and Pathological rôle #12;METAL IONS ARE ESSENTIAL CELL COMPONENTS At least one-third of all proteins encoded in the human genome contain metal ions They can easily of biological processes Their ionization state influences how easily metal can get into cells (e.g.: Fe++ cross

  15. Vivapure Metal Chelate Mini spin columns

    E-Print Network [OSTI]

    Lebendiker, Mario

    ® Vivapure Metal Chelate Mini spin columns Hisn #12;E. coli cell lysates containing a recombinant Hisn-tagged protein were purified using Vivapure Metal Chelate Mini spin columns and competitor products. The Vivapure Metal Chelate Mini spin columns were pre- loaded with different metal ions

  16. Horizontal electromagnetic casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  17. Horizontal electromagnetic casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  18. Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA)

    2000-01-01

    An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

  19. All-Angle Negative Refraction for Surface Plasmon Waves Using a Metal-Dielectric-Metal Structure

    E-Print Network [OSTI]

    Fan, Shanhui

    All-Angle Negative Refraction for Surface Plasmon Waves Using a Metal-Dielectric-Metal Structure, California 94305, USA (Received 16 September 2005; published 24 February 2006) We show that a metal-dielectric-metal structure can function as a negative refraction lens for surface plasmon waves on a metal surface

  20. Characterization and prioritization of mining-related metal sources with metal loading

    E-Print Network [OSTI]

    Ryan, Joe

    Characterization and prioritization of mining- related metal sources with metal loading tracer-related metal sources with metal loading tracer dilution tests, and a review of regulations and mine restoration by Professor Joseph N. Ryan Metal-mining associated wastes in the Lefthand Creek watershed in Boulder County

  1. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    SciTech Connect (OSTI)

    Way, J.; Wolden, Colin

    2013-09-30

    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo{sub 2}C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo{sub 2}C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft{sup 2} at a feed pressure of only 20 psig. The highest H{sub 2}/N{sub 2} selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo{sub 2}C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo{sub 2}C catalyst layers. We have fabricated a Mo{sub 2}C/V composite membrane that in pure gas testing delivered a H{sub 2} flux of 238 SCFH/ft{sup 2} at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ?99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft{sup 2}.psi. However, during testing of a Mo{sub 2}C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft{sup 2}.psi was obtained which was stable during the entire test, meeting the permeance associated with the 2010 DOE target flux. Lastly, the Mo{sub 2}C/V composite membranes were shown to be stable for at least 168 hours = one week, including cycling at high temperature and alternating He/H{sub 2} exposure.

  2. Method of bonding metals to ceramics

    DOE Patents [OSTI]

    Maroni, V.A.

    1991-04-23

    A ceramic or glass having a thin layer of silver, gold or alloys thereof at the surface thereof is disclosed. A first metal is bonded to the thin layer and a second metal is bonded to the first metal. The first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Tl and alloys thereof, and the second metal is selected from the class consisting of Cu, Al, Pb, Au and alloys thereof. 3 figures.

  3. Method of bonding metals to ceramics

    DOE Patents [OSTI]

    Maroni, Victor A. (Naperville, IL)

    1991-01-01

    A ceramic or glass having a thin layer of silver, gold or alloys thereof at the surface thereof. A first metal is bonded to the thin layer and a second metal is bonded to the first metal. The first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Tl and alloys thereof, and the second metal is selected from the class consisting of Cu, Al, Pb, An and alloys thereof.

  4. Coated Metal Articles and Method of Making

    DOE Patents [OSTI]

    Boller, Ernest R.; Eubank, Lowell D.

    2004-07-06

    The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.

  5. Semiconductor assisted metal deposition for nanolithography applications

    DOE Patents [OSTI]

    Rajh, Tijana (Naperville, IL); Meshkov, Natalia (Downers Grove, IL); Nedelijkovic, Jovan M. (Belgrade, YU); Skubal, Laura R. (West Brooklyn, IL); Tiede, David M. (Elmhurst, IL); Thurnauer, Marion (Downers Grove, IL)

    2002-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  6. Coated metal articles and method of making

    DOE Patents [OSTI]

    Boller, Ernest R. (Van Buren Township, IN); Eubank, Lowell D. (Wilmington, DE)

    2004-07-06

    The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.

  7. Metal alkoxides and methods of making same

    DOE Patents [OSTI]

    Hentges, Patrick J.; Greene, Laura H.; Pafford, Margaret Mary; Westwood, Glenn; Klemperer, Walter G.

    2005-01-04

    A method of making a superconducting structure includes depositing a metal alkoxide on a surface of a metal and hydrolyzing the metal alkoxide on the surface to form a pinhole-free film. The metal is a superconductor. The metal alkoxide may be a compound of formula (I): where M is zirconium or hafnium, and the purity of the compound is at least 97% as measured by NMR spectroscopy.

  8. Reversible photodeposition and dissolution of metal ions

    DOE Patents [OSTI]

    Foster, Nancy S. (Boulder, CO); Koval, Carl A. (Golden, CO); Noble, Richard D. (Boulder, CO)

    1994-01-01

    A cyclic photocatalytic process for treating waste water containing metal and organic contaminants. In one embodiment of the method, metal ions are photoreduced onto the photocatalyst and the metal concentrated by resolubilization in a smaller volume. In another embodiment of the method, contaminant organics are first oxidized, then metal ions removed by photoreductive deposition. The present invention allows the photocatalyst to be recycled until nearly complete removal of metal ions and organic contaminants is achieved.

  9. Laser-driven flyer plate

    SciTech Connect (OSTI)

    Paisley, Dennis L.

    1991-01-01

    Apparatus for producing high velocity flyer plates involving placing a layer of dielectric material between a first metal foil and a second metal foil. With laser irradiation through an optical substrate, the first metal foil forms a plasma in the area of the irradiation, between the substrate and the solid portion of the first metal foil. When the pressure between the substrate and the foil reaches the stress limit of the dielectric, the dielectric will break away and launch the flyer plate out of the second metal foil. The mass of the flyer plate is controlled, as no portion of the flyer plate is transformed into a plasma.

  10. Laser-driven flyer plate

    SciTech Connect (OSTI)

    Paisley, D.L.

    1991-09-10

    Disclosed is an apparatus for producing high velocity flyer plates involving placing a layer of dielectric material between a first metal foil and a second metal foil. With laser irradiation through an optical substrate, the first metal foil forms a plasma in the area of the irradiation, between the substrate and the solid portion of the first metal foil. When the pressure between the substrate and the foil reaches the stress limit of the dielectric, the dielectric will break away and launch the flyer plate out of the second metal foil. The mass of the flyer plate is controlled, as no portion of the flyer plate is transformed into a plasma. 2 figures.

  11. Metal Compression Forming of aluminum alloys and metal matrix composites

    SciTech Connect (OSTI)

    Viswanathan, S.; Ren, W.; Porter, W.D.; Brinkman, C.R.; Sabau, A.S.; Purgert, R.M.

    2000-02-01

    Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. However, the MCF process applies pressure on the entire mold face, thereby directing pressure on all regions of the casting and producing a uniformly sound part. The process is capable of producing parts with properties close to those of forgings, while retaining the near net shape, complexity in geometry, and relatively low cost of the casting process.

  12. ITP Metal Casting: A Vision for the U.S. Metal Casting Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Vision for the U.S. Metal Casting Industry: 2002 and Beyond ITP Metal Casting: A Vision for the U.S. Metal Casting Industry: 2002 and Beyond mcvision.pdf More Documents &...

  13. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOE Patents [OSTI]

    Ellis, Timothy W. (Ames, IA); Schmidt, Frederick A. (Ames, IA)

    1995-08-01

    Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.

  14. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOE Patents [OSTI]

    Ellis, T.W.; Schmidt, F.A.

    1995-08-01

    A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.

  15. Analytical and experimental investigations of the behavior of thermal neutrons in lattices of uranium metal rods in heavy water

    E-Print Network [OSTI]

    Simms, Richard

    1963-01-01

    Measurements of the intracellular distribution of the activation of foils by neutrons were made in lattices of 1/4-inch diameter, 1.03% U-235, uranium rods moderated by heavy water, with bare and cadmium-covered foils of ...

  16. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  17. Photobiomolecular metallic particles and films

    DOE Patents [OSTI]

    Hu, Zhong-Cheng

    2003-05-06

    The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.

  18. Thermal barrier and overlay coating systems comprising composite metal/metal oxide bond coating layers

    DOE Patents [OSTI]

    Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL); Vance, Steven J. (Orlando, FL)

    2001-01-01

    The present invention generally describes multilayer coating systems comprising a composite metal/metal oxide bond coat layer. The coating systems may be used in gas turbines.

  19. Metal oxide and metal fluoride nanostructures and methods of making same

    DOE Patents [OSTI]

    Wong, Stanislaus S. (Stony Brook, NY); Mao, Yuanbing (Los Angeles, CA)

    2009-08-18

    The present invention includes pure single-crystalline metal oxide and metal fluoride nanostructures, and methods of making same. These nanostructures include nanorods and nanoarrays.

  20. Corrosion control of metals by organic coatings

    SciTech Connect (OSTI)

    Ooij, W.J. van; Bierwagen, G.P.; Skerry, B.S.; Mills, D.

    1999-01-01

    The authors present a comprehensive treatment of the entire field of corrosion control of metals, from mechanisms and testing procedures to modification of metal surfaces and interfaces by silanes and plasma techniques. They discuss the new, sophisticated analytical tools, such as Time-of-Flight SIMS and electrochemical impedance spectroscopy, and all materials -- metals, pretreatments, and paint systems. The contents include: (1) Corrosion under organic coatings; (2) Mechanisms of corrosion control by organic coatings; (3) Metal pretreatments; (4) Techniques to study organic coating-metal interfaces; (5) Modification of metal surfaces and interfaces; (6) corrosion testing; (7) Adhesion testing; (8) Paint systems; (9) Conclusions and prospects references.

  1. Method for producing metal oxide nanoparticles

    DOE Patents [OSTI]

    Phillips, Jonathan (Santa Fe, NM); Mendoza, Daniel (Santa Fe, NM); Chen, Chun-Ku (Albuquerque, NM)

    2008-04-15

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  2. Metal - non-metal transition and the second critical point in expanded metals

    E-Print Network [OSTI]

    V. B. Bobrov; S. A. Trigger; A. G. Zagorodny

    2013-02-16

    Based on the non-relativistic Coulomb model within which the matter is a system of interacting electrons and nuclei, using the quantum field theory and linear response theory methods, opportunity for the existence of the second critical point in expanded metals, which is directly related to the metal--nonmetal transition, predicted by Landau and Zeldovitch, is theoretically justified. It is shown that the matter at the second critical point is in the state of true dielectric with zero static conductivity. The results obtained are in agreement with recent experiments for expanded metals. The existence of the second critical point is caused by the initial multi-component nature of the matter consisting of electrons and nuclei and the long-range character of the Coulomb interaction. (Accepted in PTEP)

  3. Transition metal sulfide loaded catalyst

    DOE Patents [OSTI]

    Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

    1994-04-26

    A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  4. Transition metal sulfide loaded catalyst

    DOE Patents [OSTI]

    Maroni, Victor A. (Naperville, IL); Iton, Lennox E. (Downers Grove, IL); Pasterczyk, James W. (Westmont, IL); Winterer, Markus (Westmont, IL); Krause, Theodore R. (Lisle, IL)

    1994-01-01

    A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  5. Corrosion resistant metallic bipolar plate

    SciTech Connect (OSTI)

    Brady, Michael P.; Schneibel, Joachim H.; Pint, Bruce A.; Maziasz, Philip J.

    2007-05-01

    A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.

  6. Aspects of the mechanics of metallic glasses

    E-Print Network [OSTI]

    Henann, David Lee

    2011-01-01

    Metallic glasses are amorphous materials that possess unique mechanical properties, such as high tensile strengths and good fracture toughnesses. Also, since they are amorphous, metallic glasses exhibit a glass transition, ...

  7. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01

    CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Corrosion of Oil Shale Retort Component Materials," LBL-

  8. BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE

    E-Print Network [OSTI]

    Yang, Rosa L.

    2013-01-01

    nuclear fuels irradiated to high burnup metallic fissionoxide fuel and observed trails behind metallic 1on thesemetallic fission products arc found attached to of the central void of Lf\\1FBR fuels,

  9. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01

    CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Elevated Temperature Corrosion of Oil Shale Retort Component

  10. Gas adsorption on metal-organic frameworks

    DOE Patents [OSTI]

    Willis, Richard R. (Cary, IL); Low, John J. (Schaumburg, IL), Faheem, Syed A. (Huntley, IL); Benin, Annabelle I. (Oak Forest, IL); Snurr, Randall Q. (Evanston, IL); Yazaydin, Ahmet Ozgur (Evanston, IL)

    2012-07-24

    The present invention involves the use of certain metal organic frameworks that have been treated with water or another metal titrant in the storage of carbon dioxide. The capacity of these frameworks is significantly increased through this treatment.

  11. NREL: Awards and Honors - Electroexploded Metal Nanopowders

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Nanopowders include catalysis, batteries, microelectronic contacts, lubrication, sinteringwelding, coating substrates for wear or corrosion resistance, and more...

  12. Sintering and ripening resistant noble metal nanostructures

    DOE Patents [OSTI]

    van Swol, Frank B; Song, Yujiang; Shelnutt, John A; Miller, James E; Challa, Sivakumar R

    2013-09-24

    Durable porous metal nanostructures comprising thin metal nanosheets that are metastable under some conditions that commonly produce rapid reduction in surface area due to sintering and/or Ostwald ripening. The invention further comprises the method for making such durable porous metal nanostructures. Durable, high-surface area nanostructures result from the formation of persistent durable holes or pores in metal nanosheets formed from dendritic nanosheets.

  13. Preparation of metal-triazolate frameworks

    SciTech Connect (OSTI)

    Yaghi, Omar M; Uribe-Romo, Fernando J; Gandara-Barragan, Felipe; Britt, David K

    2014-10-07

    The disclosure provides for novel metal-triazolate frameworks, methods of use thereof, and devices comprising the frameworks thereof.

  14. Method for plating with metal oxides

    DOE Patents [OSTI]

    Silver, G.L.; Martin, F.S.

    1994-08-23

    A method is disclosed of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate. 1 fig.

  15. Method for plating with metal oxides

    DOE Patents [OSTI]

    Silver, Gary L. (Centerville, OH); Martin, Frank S. (Farmersville, OH)

    1994-08-23

    A method of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate.

  16. CONCAVE LIQUID METAL DIVERTOR FOR SPHERICAL TOKAMAKS

    E-Print Network [OSTI]

    Harilal, S. S.

    CONCAVE LIQUID METAL DIVERTOR FOR SPHERICAL TOKAMAKS Isak Konkashbaev and Ahmed Hassanein Argonne considered for tokamak divertors in magnetic fusion devices. One of such concepts is the use of liquid metals associated with a liquid metal being in the strong tokamak magnetic field. This is particularly important

  17. Method for the melting of metals

    DOE Patents [OSTI]

    White, Jack C. (Albany, OR); Traut, Davis E. (Corvallis, OR)

    1992-01-01

    A method of quantitatively determining the molten pool configuration in melting of metals. The method includes the steps of introducing hafnium metal seeds into a molten metal pool at intervals to form ingots, neutron activating the ingots and determining the hafnium location by radiometric means. Hafnium possesses exactly the proper metallurgical and radiochemical properties for this use.

  18. Method for decontamination of radioactive metal surfaces

    DOE Patents [OSTI]

    Bray, L.A.

    1996-08-13

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  19. Spectroscopic investigation of metal-RNA interactions 

    E-Print Network [OSTI]

    Vogt, Matthew John

    2005-02-17

    Metal-RNA interactions are important to neutralize the negative charge and aid in correctly folding the RNA. Spectroscopically active metal ions, especially Mn2+, have been used to probe the type of interaction the metal has with RNA. In previous...

  20. Vivapure Metal Chelate Maxi spin columns

    E-Print Network [OSTI]

    Lebendiker, Mario

    ® Vivapure Metal Chelate Maxi spin columns Hisn Technical data and operating instructions. For in vitro use only. #12;2 Handling overview Vivapure Metal Chelate Maxi spin columns - for the purification of proteins with poly-histidine tags Storage conditions Vivapure Metal Chelate Maxi spin columns can be stored

  1. NUCLEATION IN A TWO COMPONENT METAL ALLOY

    E-Print Network [OSTI]

    Sander, Evelyn

    NUCLEATION IN A TWO COMPONENT METAL ALLOY Kalea Sebesta Department of Applied Mathematics, known as nucleation, in a two component metal alloy. The motivation behind this study is to use component metal alloys. These alloys are seen in material sciences; therefore, understanding

  2. Vivapure Metal Chelate Mini spin columns

    E-Print Network [OSTI]

    Lebendiker, Mario

    ® Vivapure Metal Chelate Mini spin columns Hisn Technical data and operating instructions. For in vitro use only. #12;2 Handling overview Vivapure Metal Chelate Mini spin columns - for the purification of proteins with poly-histidine tags Storage conditions Vivapure Metal Chelate Mini spin columns can be stored

  3. Metal Biosorption Equilibria in a Ternary System

    E-Print Network [OSTI]

    Volesky, Bohumil

    Metal Biosorption Equilibria in a Ternary System K. H. Chong and B. Volesky* Department of Chemical/Accepted October 4, 1995 Equilibrium metal uptake performance of a biosorbent prepared from Ascophyllum equilibrium sorption data. Application of the multicomponent Langmuir model to describe the three-metal system

  4. Vivapure Metal Chelate Mega spin columns

    E-Print Network [OSTI]

    Lebendiker, Mario

    ®® Vivapure Metal Chelate Mega spin columns Hisn Technical data and operating instructions. For in vitro use only. #12;2 Handling overview Vivapure Metal Chelate Mega spin columns - for the purification of proteins with poly-histidine tags Storage conditions Vivapure Metal Chelate Mega spin columns can be stored

  5. Process for making transition metal nitride whiskers

    DOE Patents [OSTI]

    Bamberger, C.E.

    1988-04-12

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.

  6. Imestigation ol" Maenons in Rare Earth Metals

    E-Print Network [OSTI]

    Imestigation ol" Maenons in Rare Earth Metals b\\ Inelastic Neutron Scattering tL Bjerrum Moiler #12;BLANK PAGE #12;Riso Report No. 178 Investigation of Magnons in Rare Earth Metals by Inelastic NeutronN LANGF h. a. dec. #12;Contents Page PREFACE 7 I. INTRODUCTION *> 1. Magnetism of Rare Earth Metals 10 2

  7. PROPERTIES, IDENTIFICATION, HEAT TREATMENT OF METALS

    E-Print Network [OSTI]

    Gellman, Andrew J.

    to be drawn or stretched permanently without rupture or fracture (Figure 2-5). Metals that lack ductility-524 TOUGHNESS Toughness is the ability of a metal to resist fracture plus the ability to resist failure after. For example, if the hardness of a metal is increased, the brittleness usually increases and the toughness

  8. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  9. Ammonia release method for depositing metal oxides

    DOE Patents [OSTI]

    Silver, G.L.; Martin, F.S.

    1994-12-13

    A method is described for depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates. 1 figure.

  10. Ammonia release method for depositing metal oxides

    DOE Patents [OSTI]

    Silver, Gary L. (Centerville, OH); Martin, Frank S. (Farmersville, OH)

    1994-12-13

    A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

  11. Semiconductor to Metal to Half-Metal Transition in Pt-Embedded Zigzag Graphene Nanoribbons

    E-Print Network [OSTI]

    Krasheninnikov, Arkady V.

    Semiconductor to Metal to Half-Metal Transition in Pt-Embedded Zigzag Graphene Nanoribbons Xiaohui properties of Pt-embedded zigzag graphene nanoribbons (Pt-ZGNRs) are investigated using density-functional theory calculations. It is found that Pt-ZGNRs exhibit a semiconductor-metal-half-metal transition

  12. Vapor-Phase Metalation by Atomic Layer Deposition in a Metal-Organic Framework

    E-Print Network [OSTI]

    Vapor-Phase Metalation by Atomic Layer Deposition in a Metal- Organic Framework Joseph E. Mondloch introduce a new synthetic strategy capable of metallating MOFs from the gas phase: atomic layer deposition and in some instances host- guest interactions may lead to unstable metal@MOFs. Atomic layer deposition (ALD

  13. METAL-NON METAL TRANSITIONS /N RARE EARTH COMPOUNDS. EXPERIMENT AND THEORK /.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    METAL-NON METAL TRANSITIONS /N RARE EARTH COMPOUNDS. EXPERIMENT AND THEORK /. VALENCE INSTABILITIES, superconductivity, electron-phonon and band theory, to name a few. 2. Properties of normal rare earth metals. - Before discussing rare earth valence instabilities, three relevant general features of rare earth metals

  14. Interpretation of Wild 2 Dust Fine Structure: Comparison of Stardust Aluminium Foil Craters to the Three-Dimensional Shape of Experimental Impacts by Artificial Aggregate Particles and Meteorite Powders

    SciTech Connect (OSTI)

    Kearsley, A T; Burchell, M J; Price, M C; Graham, G A; Wozniakiewicz, P J; Cole, M J; Foster, N J; Teslich, N

    2009-12-10

    New experimental results show that Stardust crater morphology is consistent with interpretation of many larger Wild 2 dust grains being aggregates, albeit most of low porosity and therefore relatively high density. The majority of large Stardust grains (i.e. those carrying most of the cometary dust mass) probably had density of 2.4 g cm{sup -3} (similar to soda-lime glass used in earlier calibration experiments) or greater, and porosity of 25% or less, akin to consolidated carbonaceous chondrite meteorites, and much lower than the 80% suggested for fractal dust aggregates. Although better size calibration is required for interpretation of the very smallest impacting grains, we suggest that aggregates could have dense components dominated by {micro}m-scale and smaller sub-grains. If porosity of the Wild 2 nucleus is high, with similar bulk density to other comets, much of the pore-space may be at a scale of tens of micrometers, between coarser, denser grains. Successful demonstration of aggregate projectile impacts in the laboratory now opens the possibility of experiments to further constrain the conditions for creation of bulbous (Type C) tracks in aerogel, which we have observed in recent shots. We are also using mixed mineral aggregates to document differential survival of pristine composition and crystalline structure in diverse fine-grained components of aggregate cometary dust analogues, impacted onto both foil and aerogel under Stardust encounter conditions.

  15. Reclaiming metallic material from an article comprising a non-metallic friable substrate

    DOE Patents [OSTI]

    Bohland, John Raphael (Oregon, OH); Anisimov, Igor Ivanovich (Whitehouse, OH); Dapkus, Todd James (Toledo, OH); Sasala, Richard Anthony (Toledo, OH); Smigielski, Ken Alan (Toledo, OH); Kamm, Kristin Danielle (Swanton, OH)

    2000-01-01

    A method for reclaiming a metallic material from a article including a non-metallic friable substrate. The method comprising crushing the article into a plurality of pieces. An acidic solution capable of dissolving the metallic material is provided dissolving the metallic material in the acidic material to form an etchant effluent. The etchant effluent is separated from the friable substrate. A precipitation agent, capable of precipitating the metallic material, is added to the etchant effluent to precipitate out the metallic material from the etchant effluent. The metallic material is then recovered.

  16. Electrochemistry, Photoelectrochemistry And Photoelectron Spectroscopy Of Nanostructured Metal Oxides

    E-Print Network [OSTI]

    Södergren, S

    1997-01-01

    Electrochemistry, Photoelectrochemistry And Photoelectron Spectroscopy Of Nanostructured Metal Oxides

  17. NEUTRAL-BEAM PLASMA SOURCE METAL-ARC PROTECTION CIRCUIT

    E-Print Network [OSTI]

    deVries, G.J.

    2010-01-01

    e r . METAL ARCS IN PLASMAS Metal-arcs in plasma sources are1981 NEUTRAL-BEAM PLASMA SOURCE METAL-ARC PROTECTION CIRCUIT48 NEUTRAL-BEAM PLASMA SOURCE METAL-ARC PROTECTION CIRCUIT*

  18. FUNDAMENTALS OF WETTING AND BONDING BETWEEN CERAMICS AND METALS

    E-Print Network [OSTI]

    Pask, J.A.

    2010-01-01

    WETTING AND BONDING BETWEEN CERAMICS AND METALS Jo s eph A.OF WETTING AND BONDING BETWEEN CERAMICS AND METALS Joseph A.and glass-to-metal or ceramic-to-metal seals. Both physical

  19. Synthesis of transition metal carbonitrides

    DOE Patents [OSTI]

    Munir, Zuhair A. R. (Davis, CA); Eslamloo-Grami, Maryam (Davis, CA)

    1994-01-01

    Transition metal carbonitrides (in particular, titanium carbonitride, TiC.sub.0.5 N.sub.0.5) are synthesized by a self-propagating reaction between the metal (e.g., titanium) and carbon in a nitrogen atmosphere. Complete conversion to the carbonitride phase is achieved with the addition of TiN as diluent and with a nitrogen pressure .gtoreq.0.6 MPa. Thermodynamic phase-stability calculations and experimental characterizations of quenched samples provided revealed that the mechanism of formation of the carbonitride is a two-step process. The first step involves the formation of the nonstoichiometric carbide, TiC.sub.0.5, and is followed by the formation of the product by the incorporation of nitrogen in the defect-structure carbide.

  20. Direct metal brazing to cermet feedthroughs

    DOE Patents [OSTI]

    Not Available

    1982-07-29

    An improved method for brazing metallic components to a cermet surface in an alumina substrate eliminates the prior art metallized layer over the cermet via and adjoining alumina surfaces. Instead, a nickel layer is applied over the cermet surface only and metallic components are brazed directly to this nickel coated cermet surface. As a result, heretofore unachievable tensile strength joints are produced. In addition, cermet vias with their brazed metal components can be spaced more closely in the alumina substrate because of the elimination of the prior art metallized alumina surfaces.

  1. Direct electrochemical reduction of metal-oxides

    DOE Patents [OSTI]

    Redey, Laszlo I. (Downers Grove, IL); Gourishankar, Karthick (Downers Grove, IL)

    2003-01-01

    A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

  2. Liquid metal Flow Meter - Final Report

    SciTech Connect (OSTI)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  3. Direct metal brazing to cermet feedthroughs

    DOE Patents [OSTI]

    Hopper, Jr., Albert C. (St. Petersburg, FL)

    1984-12-18

    An improved method for brazing metallic components to a cermet surface in an alumina substrate eliminates the prior art metallized layer over the cermet via and adjoining alumina surfaces. Instead, a nickel layer is applied over the cermet surface only and metallic components are brazed directly to this nickel coated cermet surface. As a result, heretofore unachievable tensile strength joints are produced. In addition, cermet vias with their brazed metal components can be spaced more closely in the alumina substrate because of the elimination of the prior art metallized alumina surfaces.

  4. Submicron patterned metal hole etching

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA); Contolini, Robert J. (Lake Oswego, OR); Liberman, Vladimir (Needham, MA); Morse, Jeffrey (Martinez, CA)

    2000-01-01

    A wet chemical process for etching submicron patterned holes in thin metal layers using electrochemical etching with the aid of a wetting agent. In this process, the processed wafer to be etched is immersed in a wetting agent, such as methanol, for a few seconds prior to inserting the processed wafer into an electrochemical etching setup, with the wafer maintained horizontal during transfer to maintain a film of methanol covering the patterned areas. The electrochemical etching setup includes a tube which seals the edges of the wafer preventing loss of the methanol. An electrolyte composed of 4:1 water: sulfuric is poured into the tube and the electrolyte replaces the wetting agent in the patterned holes. A working electrode is attached to a metal layer of the wafer, with reference and counter electrodes inserted in the electrolyte with all electrodes connected to a potentiostat. A single pulse on the counter electrode, such as a 100 ms pulse at +10.2 volts, is used to excite the electrochemical circuit and perform the etch. The process produces uniform etching of the patterned holes in the metal layers, such as chromium and molybdenum of the wafer without adversely effecting the patterned mask.

  5. Boron Nitride Nanoribbons Becomes Metallic

    SciTech Connect (OSTI)

    Huang, Jingsong [ORNL; Terrones Maldonado, Humberto [ORNL; Sumpter, Bobby G [ORNL; Lopez-Benzanilla, Alejandro [Oak Ridge National Laboratory (ORNL)

    2011-01-01

    Standard spin-polarized density functional theory calculations have been conducted to study the electronic structures and magnetic properties of O and S functionalized zigzag boron nitride nanoribbons (zBNNRs). Unlike the semiconducting and nonmagnetic H edge-terminated zBNNRs, the O edge-terminated zBNNRs have two energetically degenerate magnetic ground states with a ferrimagnetic character on the B edge, both of which are metallic. In contrast, the S edge-terminated zBNNRs are nonmagnetic albeit still metallic. An intriguing coexistence of two different Peierls-like distortions is observed for S edge-termination that manifests as a strong S dimerization at the B zigzag edge and a weak S trimerization at the N zigzag edge, dictated by the band fillings at the vicinity of the Fermi level. Nevertheless, metallicity is retained along the S wire on theNedge due to the partial filling of the band derived from the pz orbital of S. A second type of functionalization with O or S atoms embedded in the center of zBNNRs yields semiconducting features. Detailed examination of both types of functionalized zBNNRs reveals that the p orbitals on O or S play a crucial role in mediating the electronic structures of the ribbons.We suggest that O and S functionalization of zBNNRs may open new routes toward practical electronic devices based on boron nitride materials.

  6. Metal resistance sequences and transgenic plants

    DOE Patents [OSTI]

    Meagher, Richard Brian (Athens, GA); Summers, Anne O. (Athens, GA); Rugh, Clayton L. (Athens, GA)

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  7. Methods of selectively incorporating metals onto substrates

    DOE Patents [OSTI]

    Ernst; Richard D. (Salt Lake City, UT), Eyring; Edward M. (Salt Lake City, UT), Turpin; Gregory C. (Salt Lake City, UT), Dunn; Brian C. (Salt Lake City, UT)

    2008-09-30

    A method for forming multi-metallic sites on a substrate is disclosed and described. A substrate including active groups such as hydroxyl can be reacted with a pretarget metal complex. The target metal attached to the active group can then be reacted with a secondary metal complex such that an oxidation-reduction (redox) reaction occurs to form a multi-metallic species. The substrate can be a highly porous material such as aerogels, xerogels, zeolites, and similar materials. Additional metal complexes can be reacted to increase catalyst loading or control co-catalyst content. The resulting compounds can be oxidized to form oxides or reduced to form metals in the ground state which are suitable for practical use.

  8. Method of nitriding refractory metal articles

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Omatete, Ogbemi O. (Lagos, NG); Young, Albert C. (Flushing, NY)

    1994-01-01

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  9. Method For Characterizing Residual Stress In Metals

    DOE Patents [OSTI]

    Jacobson, Loren A. (Santa Fe, NM); Michel, David J. (Alexandria, VA); Wyatt, Jeffrey R. (Burke, VA)

    2002-12-03

    A method is provided for measuring the residual stress in metals. The method includes the steps of drilling one or more holes in a metal workpiece to a preselected depth and mounting one or more acoustic sensors on the metal workpiece and connecting the sensors to an electronic detecting and recording device. A liquid metal capable of penetrating into the metal workpiece placed at the bottom of the hole or holes. A recording is made over a period of time (typically within about two hours) of the magnitude and number of noise events which occur as the liquid metal penetrates into the metal workpiece. The magnitude and number of noise events are then correlated to the internal stress in the region of the workpiece at the bottom of the hole.

  10. Induction slag reduction process for purifying metals

    DOE Patents [OSTI]

    Traut, Davis E. (Corvallis, OR); Fisher, II, George T. (Albany, OR); Hansen, Dennis A. (Corvallis, OR)

    1991-01-01

    A continuous method is provided for purifying and recovering transition metals such as neodymium and zirconium that become reactive at temperatures above about 500.degree. C. that comprises the steps of contacting the metal ore with an appropriate fluorinating agent such as an alkaline earth metal fluosilicate to form a fluometallic compound, and reducing the fluometallic compound with a suitable alkaline earth or alkali metal compound under molten conditions, such as provided in an induction slag metal furnace. The method of the invention is advantageous in that it is simpler and less expensive than methods used previously to recover pure metals, and it may be employed with a wide range of transition metals that were reactive with enclosures used in the prior art methods and were hard to obtain in uncontaminated form.

  11. BIOMIMETIC PROCESSING OF CERAMICS AND CERAMIC-METAL COMPOSITES

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    625 BIOMIMETIC PROCESSING OF CERAMICS AND CERAMIC-METAL COMPOSITES M. YASREBI, G. H. KIM, K. E by a combination of tape casting of the ceramic and infiltration of the metal. The resultant cermets displayed a 40 such as metal-metal,' metal-ceramic,2 internietallic-intermetallic,1 metal-intermetallic,3 and ceramic-ceramic4

  12. Metal Can and Bottle FabricationMetal Can and Bottle Fabrication ME 4210: Manufacturing Processes and Engineering

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Metal Can and Bottle FabricationMetal Can and Bottle Fabrication ver. 1 ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton © GIT 2009 1 #12;Metal CansMetal Cans ME 4210: Manufacturing and Engineering Prof. J.S. Colton © GIT 2009 3 #12;Metal Cans and BottlesMetal Cans and Bottles ME 4210

  13. Sumitomo Metal Industries Ltd Sumitomo Metals | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarket StudiesStrategicStoriesSuezSprings ValleyMetal

  14. Method and apparatus for dissociating metals from metal compounds extracted into supercritical fluids

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Hunt, Fred H. (Moscow, ID); Smart, Neil G. (Workington, GB); Lin, Yuehe (Richland, WA)

    2000-01-01

    A method for dissociating metal-ligand complexes in a supercritical fluid by treating the metal-ligand complex with heat and/or reducing or oxidizing agents is described. Once the metal-ligand complex is dissociated, the resulting metal and/or metal oxide form fine particles of substantially uniform size. In preferred embodiments, the solvent is supercritical carbon dioxide and the ligand is a .beta.-diketone such as hexafluoroacetylacetone or dibutyldiacetate. In other preferred embodiments, the metals in the metal-ligand complex are copper, silver, gold, tungsten, titanium, tantalum, tin, or mixtures thereof. In preferred embodiments, the reducing agent is hydrogen. The method provides an efficient process for dissociating metal-ligand complexes and produces easily-collected metal particles free from hydrocarbon solvent impurities. The ligand and the supercritical fluid can be regenerated to provide an economic, efficient process.

  15. Atomic Scale Imaging of the Electronic Structure and Chemistry of Graphene and Its Precursors on Metal Surfaces

    SciTech Connect (OSTI)

    Flynn, George W

    2015-02-16

    Executive Summary of Final Report for Award DE-FG02-88ER13937 Project Title: Atomic Scale Imaging of the Electronic Structure and Chemistry of Graphene and its Precursors on Metal Surfaces Applicant/Institution: Columbia University Principal Investigator: George W. Flynn Objectives: The objectives of this project were to reveal the mechanisms and reaction processes that solid carbon materials undergo when combining with gases such as oxygen, water vapor and hydrocarbons. This research was focused on fundamental chemical events taking place on single carbon sheets of graphene, a two-dimensional, polycyclic carbon material that possesses remarkable chemical and electronic properties. Ultimately, this work is related to the role of these materials in mediating the formation of polycyclic aromatic hydrocarbons (PAH’s), their reactions at interfaces, and the growth of soot particles. Our intent has been to contribute to a fundamental understanding of carbon chemistry and the mechanisms that control the formation of PAH’s, which eventually lead to the growth of undesirable particulates. We expect increased understanding of these basic chemical mechanisms to spur development of techniques for more efficient combustion of fossil fuels and to lead to a concomitant reduction in the production of undesirable solid carbon material. Project Description: Our work treated specifically the surface chemistry aspects of carbon reactions by using proximal probe (atomic scale imaging) techniques to study model systems of graphene that have many features in common with soot forming reactions of importance in combustion flames. Scanning tunneling microscopy (STM) is the main probe technique that we used to study the interfacial structure and chemistry of graphene, mainly because of its ability to elucidate surface structure and dynamics with molecular or even atomic resolution. Scanning tunneling spectroscopy (STS), which measures the local density of quantum states over a single atom, provides information about the electronic structure of graphene and is particularly sensitive to the sign and magnitude of the charge transfer between graphene and any surface adsorbed species. Results: (A) Graphene on SiO2 In an effort designed to unravel aspects of the mechanisms for chemistry on graphene surfaces, STM and STS were employed to show that graphene on SiO2 is oxidized at lower temperatures than either graphite or multi-layer graphene. Two independent factors control this charge transfer: (1) the degree of graphene coupling to the substrate, and (2) exposure to oxygen and moisture. (B) Graphene on Copper In the case of graphene grown on copper surfaces, we found that the graphene grows primarily in registry with the underlying copper lattice for both Cu(111) and Cu(100). On Cu(111) the graphene has a hexagonal superstructure with a significant electronic component, whereas it has a linear superstructure on Cu(100). (C) Nitrogen Doped Graphene on Copper Using STM we have also studied the electronic structure and morphology of graphene films grown on a copper foil substrate in which N atoms substitute for carbon in the 2-D graphene lattice. The salient features of the results of this study were: (1) Nitrogen doped graphene on Cu foil exhibits a triangular structure with an “apparent” slight elevation of ~ 0.8 Å at N atom substitution sites; (2) Nitrogen doping results in ~0.4 electrons per N atom donated to the graphene lattice; (3) Typical N doping of graphene on Cu foil shows mostly single site Carbon atom displacement (~ 3N/1000C); (4) Some multi-site C atom displacement is observed (<10% of single site events). (D) Boron Doped Graphene on Copper We also used scanning tunneling microscopy and x-ray spectroscopy to characterize the atomic and electronic structure of boron-doped graphene created by chemical vapor deposition on copper substrates. Microscopic measurements show that boron, like nitrogen, incorporates into the carbon lattice primarily in the graphitic form and contributes ~0.5 free carriers into the graphene sheet per dopa

  16. Methods of producing adsorption media including a metal oxide

    DOE Patents [OSTI]

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  17. Polymer quenched prealloyed metal powder

    DOE Patents [OSTI]

    Hajaligol, Mohammad R. (Midlothian, VA); Fleischhauer, Grier (Midlothian, VA); German, Randall M. (State College, PA)

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  18. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, Edward F. (P.O. Box 900, Isle of Palms, SC 29451)

    1992-01-01

    A method for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF.sub.4 and HNO.sub.3 and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200.degree. C. The porous material can be pulverized before immersion to further increase the leach rate.

  19. Clamshell closure for metal drum

    DOE Patents [OSTI]

    Blanton, Paul S

    2014-09-30

    Closure ring to retain a lid in contact with a metal drum in central C-section conforming to the contact area between a lid and the rim of a drum and further having a radially inwardly directed flange and a vertically downwardly directed flange attached to the opposite ends of the C-section. The additional flanges reinforce the top of the drum by reducing deformation when the drum is dropped and maintain the lid in contact with the drum. The invention is particularly valuable in transportation and storage of fissile material.

  20. Contour forming of metals by laser peening

    DOE Patents [OSTI]

    Hackel, Lloyd (Livermore, CA); Harris, Fritz (Rocklin, CA)

    2002-01-01

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  1. Nanostructured metal foams: synthesis and applications

    SciTech Connect (OSTI)

    Luther, Erik P; Tappan, Bryce; Mueller, Alex; Mihaila, Bogdan; Volz, Heather; Cardenas, Andreas; Papin, Pallas; Veauthier, Jackie; Stan, Marius

    2009-01-01

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  2. Versatile Applications of Nanostructured Metal Oxides

    E-Print Network [OSTI]

    Li, Li

    2014-05-29

    of nanopar- ticles becomes broader, an onion type morphology was observed, particles larger than RPEO segregate out, forming a silica-rich core surrounded by a lamellar or lamel- lar/hexagonal structure. This can be understood by the entropic contributions... , acids or bases, metal salts, enzymes, radical initia- tors and solvents. Heterogeneous catalysts typically are solids that do not dissolve. For example, supported metals, transition metal oxides and sulfides, solid acids and bases, immobilized enzymes...

  3. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, D.G.; Miller, J.L.

    1993-02-23

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  4. Liquid metal cooled nuclear reactor plant system

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  5. Metal oxide composite dosimeter method and material

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1998-01-01

    The present invention is a method of measuring a radiation dose wherein a radiation responsive material consisting essentially of metal oxide is first exposed to ionizing radiation. The metal oxide is then stimulating with light thereby causing the radiation responsive material to photoluminesce. Photons emitted from the metal oxide as a result of photoluminescence may be counted to provide a measure of the ionizing radiation.

  6. Method of stripping metals from organic solvents

    DOE Patents [OSTI]

    Todd, Terry A. (Aberdeen, ID); Law, Jack D. (Pocatello, ID); Herbst, R. Scott (Idaho Falls, ID); Romanovskiy, Valeriy N. (St. Petersburg, RU); Smirnov, Igor V. (St.-Petersburg, RU); Babain, Vasily A. (St-Petersburg, RU); Esimantovski, Vyatcheslav M. (St-Petersburg, RU)

    2009-02-24

    A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

  7. Synthesis of new amorphous metallic spin glasses

    DOE Patents [OSTI]

    Haushalter, R.C.

    1985-02-11

    Disclosed are: amorphous metallic precipitates having the formula (M/sub 1/)/sub a/(M/sub 2/)/sub b/ wherein M/sub 1/ is at least one transition metal, M/sub 2/ is at least one main group metal and the integers ''a'' and ''b'' provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  8. Three-Electrode Metal Oxide Reduction Cell

    DOE Patents [OSTI]

    Dees, Dennis W. (Downers Grove, IL); Ackerman, John P. (Downers Grove, IL)

    2005-06-28

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  9. Fabrication of metallic microstructures by micromolding nanoparticles

    DOE Patents [OSTI]

    Morales, Alfredo M. (Livermore, CA); Winter, Michael R. (Goleta, CA); Domeier, Linda A. (Danville, CA); Allan, Shawn M. (Henrietta, NY); Skala, Dawn M. (Fremont, CA)

    2002-01-01

    A method is provided for fabricating metallic microstructures, i.e., microcomponents of micron or submicron dimensions. A molding composition is prepared containing an optional binder and nanometer size (1 to 1000 nm in diameter) metallic particles. A mold, such as a lithographically patterned mold, preferably a LIGA or a negative photoresist mold, is filled with the molding composition and compressed. The resulting microstructures are then removed from the mold and the resulting metallic microstructures so provided are then sintered.

  10. Three-electrode metal oxide reduction cell

    DOE Patents [OSTI]

    Dees, Dennis W. (Downers Groves, IL); Ackerman, John P. (Downers Grove, IL)

    2008-08-12

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  11. Method for making monolithic metal oxide aerogels

    SciTech Connect (OSTI)

    Coronado, Paul R. (Livermore, CA)

    1999-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  12. Method for making monolithic metal oxide aerogels

    SciTech Connect (OSTI)

    Droege, Michael W. (Livermore, CA); Coronado, Paul R. (Livermore, CA); Hair, Lucy M. (Livermore, CA)

    1995-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.

  13. Method for making monolithic metal oxide aerogels

    DOE Patents [OSTI]

    Droege, M.W.; Coronado, P.R.; Hair, L.M.

    1995-03-07

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.

  14. Synthesis of new amorphous metallic spin glasses

    DOE Patents [OSTI]

    Haushalter, Robert C. (Clinton, NJ)

    1988-01-01

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  15. Synthesis of new amorphous metallic spin glasses

    DOE Patents [OSTI]

    Haushalter, Robert C. (Clinton, NJ)

    1986-01-01

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  16. Pyroprocessing of IFR Metal Fuel

    SciTech Connect (OSTI)

    Laidler, J.J. [Argonne National Laboratory, IL (United States)

    1993-12-31

    The Integral Fast Reactor (IFR) fuel cycle features the use of an innovative reprocessing method, known as {open_quotes}pyroprocessing{close_quotes} featuring fused-salt electrofining of the spent fuel. Electrofining of IFR spent fuel involves uranium recovery by electro-transport to a solid steel cathode. The thermodynamics of the system preclude plutonium recovery in the same way, so a liquid cadmium cathode located in the electrolyte salt phase is utilized. The deposition of Pu, Am, Np, and Cm takes place at the liquid cadmium cathode in the form of cadmium intermetallic compounds (e.g, PuCd{sub 6}), and uranium deposits as the pure metal when cadmium saturation is reached. A small amount of rare earth fission products deposit together with the heavy metals at both the solid and liquid cadmium cathodes, providing a significant degree of self-protection. A full scope demonstration of the IFR fuel cycle will begin in 1993, using fuel irradiated in EBR-II.

  17. The Hardest Superconducting Metal Nitride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20?GPa. Here, we report high–pressure synthesis of hexagonal ?–MoN and cubic ?–MoN through an ion–exchange reaction at 3.5?GPa. The final products are in the bulk form with crystallite sizesmore »of 50 – 80??m. Based on indentation testing on single crystals, hexagonal ?–MoN exhibits excellent hardness of ~30?GPa, which is 30% higher than cubic ?–MoN (~23?GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for ?–MoN and cubic ?–MoN are 13.8 and 5.5?K, respectively, in good agreement with previous measurements.« less

  18. Nanoscopy Reveals Metallic Black Phosphorus

    E-Print Network [OSTI]

    Abate, Yohannes; Zhen, Li; Cronin, Stephen B; Wang, Han; Babicheva, Viktoriia; Javani, Mohammad H; Stockman, Mark I

    2015-01-01

    Layered and two-dimensional (2D) materials such as graphene, boron nitride, transition metal dichalcogenides(TMDCs), and black phosphorus (BP) have intriguing fundamental physical properties and bear promise of numerous important applications in electronics and optics. Of them, BP is a novel 2D material that has been theoretically predicted to acquire plasmonic behavior for frequencies below ~0.4 eV when highly doped. The electronic properties of BP are unique due to an anisotropic structure, which could strongly influence collective electronic excitations. Advantages of BP as a material for nanoelectronics and nanooptics are due to the fact that, in contrast to metals, the free carrier density in it can be dynamically controlled by electrostatic gating, which has been demonstrated by its use in field-effect transistors. Despite all the interest that BP attracts, near-field and plasmonic properties of BP have not yet been investigated experimentally. Here we report the first observation of nanoscopic near-fie...

  19. The Hardest Superconducting Metal Nitride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal ?–MoN and cubic ?–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form withmore »crystallite sizes of 50 – 80 ?m. Based on indentation testing on single crystals, hexagonal ?–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic ?–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for ?–MoN and cubic ?–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.« less

  20. 'Thirsty' Metals Key to Longer Battery Lifetimes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Replacing lithium with other metals with multiple charges could greatly increase battery capacity. But first researchers need to understand how to keep multiply charged...

  1. Method and apparatus for melting metals

    DOE Patents [OSTI]

    Moore, Alan F.; Schechter, Donald E.; Morrow, Marvin Stanley

    2006-03-14

    A method and apparatus for melting metals uses microwave energy as the primary source of heat. The metal or mixture of metals are placed in a ceramic crucible which couples, at least partially, with the microwaves to be used. The crucible is encased in a ceramic casket for insulation and placed within a microwave chamber. The chamber may be evacuated and refilled to exclude oxygen. After melting, the crucible may be removed for pouring or poured within the chamber by dripping or running into a heated mold within the chamber. Apparent coupling of the microwaves with softened or molten metal produces high temperatures with great energy savings.

  2. Plasma nonuniformities induced by dissimilar electrode metals

    SciTech Connect (OSTI)

    Barnat, E.V.; Hebner, G.A. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1423 (United States)

    2005-07-01

    Nonuniformities in both sheath electric field and plasma excitation were observed around dissimilar metals placed on a rf electrode. Spatial maps of the rf sheath electric field obtained by laser-induced fluorescence-dip (LIF-dip) spectroscopy show that the sheath structure was a function of the electrode metal. In addition to the electric-field measurements, LIF, optical emission, and Langmuir probe measurements show nonuniform excitation around the dissimilar metals. The degree and spatial extent of the discharge nonuniformities were dependent on discharge conditions and the history of the metal surfaces.

  3. STANDARD OPERATING PROCEDURE HEAVY METAL SALTS (selected)

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    (s): ___________________________________________________ Chemical(s): heavy metal salts: acetates, chlorides, sulfates, nitrates, anhydrides, oxides, hydroxides, etc., of arsenic, cadmium, chromium, cobalt, lead, mercury, osmium, silver, and uranium. Specific

  4. Evaluation of monolayer protected metal nanoparticle technology

    E-Print Network [OSTI]

    Wu, Diana J

    2005-01-01

    Self assembling nanostructured nanoparticles represent a new class of synthesized materials with unique functionality. Such monolayer protected metal nanoparticles are capable of resisting protein adsorption, and if utilized ...

  5. Lateral electrodeposition of compositionally modulated metal layers

    DOE Patents [OSTI]

    Hearne, Sean J

    2014-03-25

    A method for making a laterally modulated metallic structure that is compositionally modulated in the lateral direction with respect to a substrate.

  6. Method of measuring metal coating adhesion

    DOE Patents [OSTI]

    Roper, John R. (Northglenn, CO)

    1985-01-01

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  7. Separation of metal ions from aqueous solutions

    DOE Patents [OSTI]

    Almon, Amy C. (Augusta, GA)

    1994-01-01

    A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.

  8. Preparation of metal-catecholate frameworks

    SciTech Connect (OSTI)

    Yaghi, Omar M.; Gandara-Barragan, Felipe; Lu, Zheng; Wan, Shun

    2014-06-03

    The disclosure provides for metal catecholate frameworks, and methods of use thereof, including gas separation, gas storage, catalysis, tunable conductors, supercapacitors, and sensors.

  9. Electrolytic systems and methods for making metal halides and refining metals

    DOE Patents [OSTI]

    Holland, Justin M.; Cecala, David M.

    2015-05-26

    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  10. Water Adsorption in Metal-Organic Frameworks with Open-Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Adsorption in Metal-Organic Frameworks with Open-Metal Sites Previous Next List Xuan Peng, Li-Chiang Lin, Weizhen Sun and Berend Smit, AIChe J. 6, 677-687 (2015) DOI:...

  11. Numerical models for scoring failures of flexible metal to metal face seals

    E-Print Network [OSTI]

    Hong, Jinchul, 1977-

    2005-01-01

    The flexible metal to metal face seals (FMMFS) has unique features including much more flexibility in the circumferential direction than in the radial direction, identical rotating and stationary seals, and a loading ...

  12. MMT Extremely Metal Poor Galaxy Survey I. An Efficient Technique to Identify Metal Poor Galaxies

    E-Print Network [OSTI]

    Warren R. Brown; Lisa J. Kewley; Margaret J. Geller

    2007-09-27

    We demonstrate a successful strategy for identifying extremely metal poor galaxies. Our preliminary survey of 24 candidates contains 10 metal poor galaxies of which 4 have 12+log(O/H)metallicity blue compact galaxies known to date. Interestingly, our sample of metal poor galaxies have systematically lower metallicity for their luminosity than comparable samples of blue compact galaxies, dIrrs, and normal star-forming galaxies. Our metal poor galaxies share very similar properties, however, with the host galaxies of nearby long-duration gamma-ray bursts (GRBs), including similar metallicity, stellar ages, and star formation rates. We use H\\beta to measure the number of OB stars present in our galaxies and estimate a core-collapse supernova rate of ~10^-3 yr^-1. A larger sample of metal poor galaxies may provide new clues into the environment where GRBs form and may provide a list of potential GRB hosts.

  13. Transition metal oxide improves overall efficiency and maintains performance with inexpensive metals.

    E-Print Network [OSTI]

    that inserting a transition metal oxide (TMO) between the lead sulfide (PbS) quantum dot (QD) layer and the metalTransition metal oxide improves overall efficiency and maintains performance with inexpensive of performance. n-type TMOs consisting of molybdenum oxide (MoOx) and vanadium oxide (V2Ox) were used

  14. Displacement method and apparatus for reducing passivated metal powders and metal oxides

    DOE Patents [OSTI]

    Morrell; Jonathan S. (Knoxville, TN), Ripley; Edward B. (Knoxville, TN)

    2009-05-05

    A method of reducing target metal oxides and passivated metals to their metallic state. A reduction reaction is used, often combined with a flux agent to enhance separation of the reaction products. Thermal energy in the form of conventional furnace, infrared, or microwave heating may be applied in combination with the reduction reaction.

  15. Broadening the Statistical Search for Metal Price Super Cycles to Steel and Related Metals

    E-Print Network [OSTI]

    run up in metal prices, allegedly fueled by industrial development and urbanization in China, India for super-cycle behavior to three additional metal products that are critical in the early phases portfolio managers, and hedge funds are among those that have fueled the demand for these metal plays. #12

  16. Ceramic to metal attachment system. [Ceramic electrode to metal conductor in MHD generator

    DOE Patents [OSTI]

    Marchant, D.D.

    1983-06-10

    A composition and method are described for attaching a ceramic electrode to a metal conductor. A layer of randomly interlocked metal fibers saturated with polyimide resin is sandwiched between the ceramic electrode and the metal conductor. The polyimide resin is then polymerized providing bonding.

  17. Transition Metal Nutrition: A Balance Between Deficiency and Toxicity

    E-Print Network [OSTI]

    Hamel, Patrice

    333 Transition Metal Nutrition: A Balance Between Deficiency and Toxicity CHAPTER 10 CHAPTER CONTENTS I. Introduction 334 II. Components of the metal homeostasis network 335 A. Metal transporters 335 B. Metal chelation 349 C. Differences with other photosynthetic organisms 352 III. Metal tolerance

  18. The METAL Machine Learning Experimentation Environment V3.0

    E-Print Network [OSTI]

    METAL The METAL Machine Learning Experimentation Environment V3.0 (METAL­MLEE) Manual ­ Version 3 in the package . . . . . . . . . 7 3 What METAL­MLEE Does 7 4 Standard Database Format 8 4.1 Names File.pl . . . . . . . . . . . . 22 3 #12;6 Adapting METAL­MLEE 22 6.1 Adding Learning Algorithm Interface Scripts

  19. Safety and core design of large liquid-metal cooled fast breeder reactors

    E-Print Network [OSTI]

    Qvist, Staffan Alexander

    2013-01-01

    4.3.4 Metallic fuel geometry and burnupdata for metallic fuel . . . . . . . . . . . . . . . . .new correlation for metallic fuel elastic modulus . . . . .

  20. CX-011731: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    University of Utah - Electromagnetic Sorting of Light Metals and Alloys CX(s) Applied: B3.6 Date: 12/12/2013 Location(s): Utah Offices(s): Advanced Research Projects Agency-Energy

  1. CX-009032: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Monitoring and Control of the Hybrid Laser-Gas Metal Arc Welding Process – Idaho National Laboratory CX(s) Applied: B3.6 Date: 08/13/2011 Location(s): Idaho Offices(s): Nuclear Energy

  2. CX-010492: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Permeation Testing Metals, Ceramics, and Polymers CX(s) Applied: B3.6 Date: 05/14/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  3. CX-009928: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Innovations in Advanced Materials and Metals (IAM2) CX(s) Applied: A9, A11 Date: 01/15/2013 Location(s): Washington Offices(s): Golden Field Office

  4. CX-011776: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Final Rule for New and Amended Energy Conservation Standards for Metal Halide Lamp Fixtures CX(s) Applied: B5.1 Date: 01/29/2014 Location(s): CX: none Offices(s): Golden Field Office

  5. CX-008618: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Evaluation of Sorbent/Ion Exchangers for Radiochemical and Metal Separations CX(s) Applied: B3.6 Date: 06/26/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  6. CX-009040: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Radiation Tolerance and Mechanical Properties of Nanostructured Ceramic/metal Composites – University of Nebraska CX(s) Applied: B3.6, B3.10 Date: 08/09/2011 Location(s): Nebraska Offices(s): Nuclear Energy

  7. CX-012600: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Understanding Relationships Between Low Level Metal Influx, Remediated Sediments, and Biological Receptors CX(s) Applied: B3.6Date: 41820 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  8. CX-011544: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Innovative Elution Processes for Recovering Uranium and Transition Metals from Amidoxime-based Sorbents CX(s) Applied: B3.6 Date: 12/03/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  9. CX-010210: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pt-based Bi-metallic Monolith Catalysts for Partial Upgrading of Microalgae Oil CX(s) Applied: A9, B3.6 Date: 01/08/2013 Location(s): New Jersey Offices(s): Golden Field Office

  10. CX-012343: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Metal Mountain Communications Site - Emergency Air Conditioner Replacement CX(s) Applied: B1.4 Date: 07/03/2014 Location(s): California Offices(s): Western Area Power Administration-Desert Southwest Region

  11. CX-008615: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cleaning of Depleted Uranium Metal CX(s) Applied: B3.6 Date: 06/26/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  12. CX-010837: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Disassembly, Relocation, and Reassembly of a Metal-framed Quonset Hut CX(s) Applied: B1.22 Date: 08/01/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  13. CX-008640: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Construction of a Metal Carport Structure CX(s) Applied: B1.15 Date: 05/29/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  14. CX-012691: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of Novel Functional Graded Transition Joints for Improving the Creep Strength of Dissimilar Metal Welds in Nuclear Applications – Lehigh University CX(s) Applied: B3.6Date: 41869 Location(s): PennsylvaniaOffices(s): Nuclear Energy

  15. CX-011738: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Titanium Metals Corp - A Vision of an Electrochemical Cell to Produce Clean Titanium CX(s) Applied: B3.6 Date: 11/22/2013 Location(s): Nevada, Arizona Offices(s): Advanced Research Projects Agency-Energy

  16. CX-100008: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Selective Recovery of Metals from Geothermal Brines Award Number: DE-EE0006747 CX(s) Applied: A9, B3.6 Geothermal Technologies Date: 08/28/2014 Location(s): California Office(s): Golden Field Office

  17. CX-012520: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Engineering Accessible Adsorption Sites in Metal Organic Frameworks for CO2 Capture CX(s) Applied: B3.6Date: 41848 Location(s): GeorgiaOffices(s): National Energy Technology Laboratory

  18. CX-012683: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Studies of Lanthanide Transport in metallic Nuclear Fuels – Ohio State University CX(s) Applied: B3.6Date: 41862 Location(s): OhioOffices(s): Nuclear Energy

  19. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1992-10-13

    A method is described for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF[sub 4] and HNO[sub 3] and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200 C. The porous material can be pulverized before immersion to further increase the leach rate.

  20. Biaxially textured metal substrate with palladium layer

    DOE Patents [OSTI]

    Robbins, William B. (Maplewood, MN)

    2002-12-31

    Described is an article comprising a biaxially textured metal substrate and a layer of palladium deposited on at least one major surface of the metal substrate; wherein the palladium layer has desired in-plane and out-of-plane crystallographic orientations, which allow subsequent layers that are applied on the article to also have the desired orientations.

  1. Metal pollution of river Msimbazi, Tanzania

    SciTech Connect (OSTI)

    Ak'habuhaya, J.; Lodenius, M. )

    1988-01-01

    The Misimbazi River in Dar es Salaam is polluted with industrial, urban and agricultural waste waters. A preliminary investigation on the extent of metal pollution (Hg, Cr, Cu, Zn, Fe, Ni, Cd, Mn, Al) was made from samples of sediments and biological indicators. The metal concentrations were in general low, but some of our results indicated industrial pollution.

  2. Arrays of stacked metal coordination compounds

    DOE Patents [OSTI]

    Bulkowski, J.E.

    1986-10-21

    A process is disclosed for preparing novel arrays of metal coordination compounds characterized by arrangement of the metal ions, separated by a linking agent, in stacked order one above the other. The process permits great flexibility in the design of the array. For example, layers of different composition can be added to the array at will. 3 figs.

  3. Mesoscale Metallic Pyramids with Nanoscale Tips

    E-Print Network [OSTI]

    Odom, Teri W.

    Mesoscale Metallic Pyramids with Nanoscale Tips Joel Henzie, Eun-Soo Kwak, and Teri W. Odom generate free-standing mesoscale metallic pyramids composed of one or more materials and having nanoscale tips (radii of curvature of less than 2 nm). Mesoscale holes (100-300 nm) in a chromium film are used

  4. THE COORDINATION CHEMISTRY OF METAL SURFACES

    SciTech Connect (OSTI)

    Muetterties, Earl L.

    1980-10-01

    In coordinately unsaturated molecular metal complexes, carbon-hydrogen bonds of the peripheral ligands may, if the stereochemistry allows, closely approach a metal center so as to develop a three-center two-electron bond between the carbon, the hydrogen, and the metal atoms, C-H-M. In some instances, the interaction .is followed by a scission of the C-H bond whereby the metal is effectively oxidized and discrete M-H and M-C {sigma} bonds are forrned. This class of metal-hydrogen-carbon interactions and reactions is shown to be a common phenomenon in metal surface chemistry. Ultra high vacuum studies of nickel and platinum with simple organic molecules like olefins, and arenes are described. These surface chemistry studies were done as a function of surface crystallography and surface composition. The discussion is largely limited to the chemistry of methyl isocyanide, acetonitrile, benzene and toluene. Molecular orbital calculations are presented that support the experimental identification of the importance of C-H-M metal bonding for metal surfaces.

  5. Bacterio-electric leaching of metals

    DOE Patents [OSTI]

    Lazaroff, Norman (Vestal, NY); Dugan, Patrick R. (Idaho Falls, ID)

    1992-01-01

    The separation of cationic materials from an ore body is assisted by the application of an electric potential, and resulting current, to the ore body, in association with iron or sulphur oxidizing bacteria. The combined process induces migration of cationic metals to a cathode suspended within the ore body so that the cationic metal can be preferentially separated from the ore body.

  6. Trace metals in sediments of coastal Siberia 

    E-Print Network [OSTI]

    Esnough, Teresa Elizabeth

    1996-01-01

    , suggesting a more mafic (basaltic) mineral phase at some locations and/or diagenetic redistribution of these metals. No statistically significant differences were found between metal to Fe ratios at the surface (0-2.5 cm) of the sediment cores and the bottoms...

  7. Implementation of Metal Casting Best Practices

    SciTech Connect (OSTI)

    None

    2007-01-01

    The project examined cases where metal casters had implemented ITP research results and the benefits they received due to that implementation. In cases where casters had not implemented those results, the project examined the factors responsible for that lack of implementation. The project also informed metal casters of the free tools and service offered by the ITP Technology Delivery subprogram.

  8. Process for electrolytically preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A. (Knoxville, TN)

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  9. Fiber metal interlayer improves ceramic coating performance

    SciTech Connect (OSTI)

    Jarrabet, G.P.

    1994-11-01

    This article is a review of the use of a compliant fiber metal inner layer between a ceramic coating and metal. The material used is Zirconia with phase stabilizers of magnesium oxide, calcium oxide, and yttrium oxide. Design, fabrication, and testing of the stabilized zirconia is discussed.

  10. Bacterio-electric leaching of metals

    DOE Patents [OSTI]

    Lazaroff, Norman; Dugan, Patrick R.

    1992-07-07

    The separation of cationic materials from an ore body is assisted by the application of an electric potential, and resulting current, to the ore body, in association with iron or sulphur oxidizing bacteria. The combined process induces migration of cationic metals to a cathode suspended within the ore body so that the cationic metal can be preferentially separated from the ore body.

  11. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  12. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  13. High temperature ceramic/metal joint structure

    DOE Patents [OSTI]

    Boyd, Gary L. (Tempe, AZ)

    1991-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  14. Synthesis of Graphene Layers from Metal-Carbon Melts: Nucleation and Growth Kinetics

    E-Print Network [OSTI]

    Amini, Shaahin

    2012-01-01

    Complete Casting Handbook: Metal Casting Processes,Solidification and Casting of Metals, The Metal Society, [Solidification and Casting of Metals Sheffield, UK, 1977. [

  15. Metals Production Requirements for Rapid Photovoltaics Deployment

    E-Print Network [OSTI]

    Kavlak, Goksin; Jaffe, Robert L; Trancik, Jessika E

    2015-01-01

    If global photovoltaics (PV) deployment grows rapidly, the required input materials need to be supplied at an increasing rate. In this paper, we quantify the effect of PV deployment levels on the scale of metals production. For example, we find that if cadmium telluride {copper indium gallium diselenide} PV accounts for more than 3% {10%} of electricity generation by 2030, the required growth rates for the production of indium and tellurium would exceed historically-observed production growth rates for a large set of metals. In contrast, even if crystalline silicon PV supplies all electricity in 2030, the required silicon production growth rate would fall within the historical range. More generally, this paper highlights possible constraints to the rate of scaling up metals production for some PV technologies, and outlines an approach to assessing projected metals growth requirements against an ensemble of past growth rates from across the metals production sector. The framework developed in this paper may be...

  16. Extraction of trace metals from fly ash

    DOE Patents [OSTI]

    Blander, Milton (Palos Park, IL); Wai, Chien M. (Moscow, ID); Nagy, Zoltan (Woodridge, IL)

    1984-01-01

    A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  17. Extraction of trace metals from fly ash

    DOE Patents [OSTI]

    Blander, M.; Wai, C.M.; Nagy, Z.

    1983-08-15

    A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  18. Sewage sludge dewatering using flowing liquid metals

    DOE Patents [OSTI]

    Carlson, Larry W. (Oswego, IL)

    1986-01-01

    A method and apparatus for reducing the moisture content of a moist sewage sludge having a moisture content of about 50% to 80% and formed of small cellular micro-organism bodies having internally confined water is provided. A hot liquid metal is circulated in a circulation loop and the moist sewage sludge is injected in the circulation loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies. The vapor produced, the dried sludge, and the liquid metal are then separated. Preferably, the moist sewage sludge is injected into the hot liquid metal adjacent the upstream side of a venturi which serves to thoroughly mix the hot liquid metal and the moist sewage sludge. The venturi and the drying zone after the venturi are preferably vertically oriented. The dried sewage sludge recovered is available as a fuel and is preferably used for heating the hot liquid metal.

  19. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Kim, Jeom-Soo (Naperville, IL); Johnson, Christopher S. (Naperville, IL)

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  20. Metal-to-ceramic attachment device

    DOE Patents [OSTI]

    Pavelka, Edwin A. (Bartlesville, OK); Grindstaff, Quirinus G. (Bartlesville, OK); Scheppele, Stuart E. (Bartlesville, OK)

    1985-01-01

    A metal-to-ceramic fastening device is disclosed for securing a metal member to a ceramic member with respective confronting surfaces thereon clamped together, comprising a threaded bolt adapted to extend through a bolt hole in the metal member and into an aligned opening in the ceramic member, a rod nut threadedly receiving the bolt and adapted to span the opening in the ceramic member, and a pressure limiting member received on the bolt between the nut and the confronting surface of the metal member for limiting the movement of the nut toward the metal member when the bolt is tightened, so as to limit the pressure applied by the nut to the ceramic member to avoid damage thereto. The fastening device also prevents damage to the ceramic member due to thermal stresses. The pressure limiting member may have a shallow dish-shaped depression facing the rod nut to assist in accommodating thermal stresses.

  1. Metallic coatings on silicon substrates, and methods of forming metallic coatings on silicon substrates

    DOE Patents [OSTI]

    Branagan, Daniel J. (Idaho Falls, ID); Hyde, Timothy A. (Idaho Falls, ID); Fincke, James R. (Los Alamos, NM)

    2008-03-11

    The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.

  2. ITP Metal Casting: Energy and Environmental Profile of the U...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Environmental Profile of the U.S. Metal casting Industry ITP Metal Casting: Energy and Environmental Profile of the U.S. Metal casting Industry profile.pdf More Documents &...

  3. THE HIGH TEMPERATURE BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE.

    E-Print Network [OSTI]

    Yang, Rosa Lu.

    2010-01-01

    gradient in the reactor fuel, the metallic inclusions moveA. B. Metallic Inclusions in Reactor Fuel Related Work inI. INTRODUCTION A. Metallic Inclusions in Reactor Fuel The

  4. On Extrusion Forging and Extrusion Rolling of Thin Metal Sheets 

    E-Print Network [OSTI]

    Feng, Zhujian

    2013-01-10

    Sheet metal surfaces with pin-fin features have potential fluid and thermal applications. Extrusion forging process and extrusion rolling process can be used to create such surface features on sheet metals. Extrusion forging process is a metal...

  5. Metal mesh scaffold for tissue engineering of membranes.

    E-Print Network [OSTI]

    Alavi, S Hamed; Kheradvar, Arash

    2012-01-01

    Congiu Castellano, A. Cell-metal interaction studied by cy-Jansen, S. , and Lens, P.N. Metal supplementation to uasbbioreactors: from cell-metal inter- actions to full-scale

  6. TECHNICAL SUPPORT DOCUMENT POTENTIAL RECYCLING OF SCRAP METAL

    E-Print Network [OSTI]

    TECHNICAL SUPPORT DOCUMENT POTENTIAL RECYCLING OF SCRAP METAL FROM NUCLEAR FACILITIES PART I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 2 Overview of Scrap Metal Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 2.3 Principal Scrap Metal Operations Considered

  7. Metal Oxide Nanostructured Materials for Optical and Energy Applications

    E-Print Network [OSTI]

    Moore, Michael Christopher

    2013-01-01

    of a Stack of Two Metal Micromeshes. The Journal of Physicalals 3, 601 (2004). M. T. Hill et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Optics

  8. Thermodynamics and kinetics of ceramic/metal interfacial interactions

    E-Print Network [OSTI]

    Arróyave, Raymundo, 1975-

    2004-01-01

    Ceramic/metal interfaces occur in a great number of important applications, such as ceramic/metal composites, microelectronics packaging, ceramic/metal seals, and so forth. Understanding the formation and evolution of such ...

  9. Rotordynamic evaluation of hybrid damper seals with metal mesh elements 

    E-Print Network [OSTI]

    Bhamidipati, Laxmi Narasimha Kameswara Sarma

    2003-01-01

    Metal mesh hybrid damper seals (MHS) were proposed to be an alternative for brush hybrid pocket damper seals (PDS) in turbomachinery. The metal mesh hybrid damper seal is a hybrid of the pocket damper seal and the metal ...

  10. SELECTIVE ABSORBER COATED FOILS FOR SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2013-01-01

    fabrication of solar collector panels. adhesives and bondingdirectly to solar collector panels. the solar selectivefabrication of solar collector panels. However, the finish

  11. The Production of Thin Be Foils

    E-Print Network [OSTI]

    Bradner, Hugh

    2010-01-01

    eng-48 with the Atomic Energy Commission in connection withNational Laboretory Atomic Energy Commission" Washington

  12. SELECTIVE ABSORBER COATED FOILS FOR SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2013-01-01

    p. 1080. AES Second Coatings for Solar Collectors Symp. , 11solar collector panels. Here the major consideration is whether the coatingcoating concept is to use heavy starting stock which might be suitable for direct fabrication of solar collector

  13. SELECTIVE ABSORBER COATED FOILS FOR SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2013-01-01

    p. 1080. AES Second Coatings for Solar Collectors Symp. , 11coating concept is to use heavy starting stock which might be suitable for direct fabrication of solar collectorsolar collector panels. Here the major consideration is whether the coating

  14. Polarimetry of thin metal transmission gratings in the resonance region and its impact on the response of metal-semiconductor-metal

    E-Print Network [OSTI]

    Polarimetry of thin metal transmission gratings in the resonance region and its impact on the response of metal-semiconductor-metal photodetectors Erli Chena) and Stephen Y. Chou Department Received 17 December 1996; accepted for publication 4 March 1997 The resonance behavior of metal

  15. ITP Metal Casting: Advanced Melting Technologies: Energy Saving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and...

  16. Cobalt discovery replaces precious metals as industrial catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Replaces Precious Metals Cobalt discovery replaces precious metals as industrial catalyst Cobalt holds promise as an industrial catalyst with potential applications...

  17. Reliability Tools for Resonance Inspection of Light Metal Castings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tools for Resonance Inspection of Light Metal Castings Reliability Tools for Resonance Inspection of Light Metal Castings 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  18. Microbial-mediated method for metal oxide nanoparticle formation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search Title: Microbial-mediated method for metal oxide nanoparticle formation The invention is directed to a method for producing metal oxide nanoparticles, the method...

  19. Nanocomposite of graphene and metal oxide materials | OSTI, US...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanocomposite of graphene and metal oxide materials Re-direct Destination: Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The...

  20. Next-Generation Lithium Metal Anode Engineering via Atomic Layer...

    Office of Scientific and Technical Information (OSTI)

    Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition Citation Details In-Document Search Title: Next-Generation Lithium Metal Anode Engineering via Atomic...