Sample records for metal foil cxs

  1. Method of forming a thin unbacked metal foil

    SciTech Connect (OSTI)

    Duchane, D.V.; Barthell, B.L.

    1983-02-23T23:59:59.000Z

    The present invention relates generally to metal foils and methods of making the same. More particularly, this invention pertains to the fabrication of very thin, unbacked metal foils.

  2. Tubular hydrogen permeable metal foil membrane and method of fabrication

    DOE Patents [OSTI]

    Paglieri, Stephen N.; Birdsell, Stephen A.; Barbero, Robert S.; Snow, Ronny C.; Smith, Frank M.

    2006-04-04T23:59:59.000Z

    A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.

  3. Methods of making metallic glass foil laminate composites

    DOE Patents [OSTI]

    Vianco, P.T.; Fisher, R.W.; Hosking, F.M.; Zanner, F.J.

    1996-08-20T23:59:59.000Z

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone. 6 figs.

  4. Methods of making metallic glass foil laminate composites

    DOE Patents [OSTI]

    Vianco, Paul T. (Albuquerque, NM); Fisher, Robert W. (Albuquerque, NM); Hosking, Floyd M. (Albuquerque, NM); Zanner, Frank J. (Sandia Park, NM)

    1996-01-01T23:59:59.000Z

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone.

  5. Hydrogen loaded metal for bridge-foils for enhanced electric gun/slapper detonator operation

    DOE Patents [OSTI]

    Osher, John E. (Alamo, CA)

    1992-01-01T23:59:59.000Z

    The invention provides a more efficient electric gun or slapper detonator ich provides a higher velocity flyer by using a bridge foil made of a hydrogen loaded metal.

  6. Metal Mesh Foil Bearings: Prediction and Measurement for Static and Dynamic Performance Characteristics

    E-Print Network [OSTI]

    Chirathadam, Thomas

    2012-12-10T23:59:59.000Z

    pads and a smooth top foil. The analysis models the top foil as a 2D finite element (FE) shell supported uniformly by a metal mesh under-layer. The solution of the structural FE model coupled with a gas film model, governed by the Reynolds equation...

  7. Hydrogen loaded metal for bridge-foils for enhanced electric gun/slapper detonator operation

    DOE Patents [OSTI]

    Osher, J.E.

    1992-01-14T23:59:59.000Z

    The invention provides a more efficient electric gun or slapper detonator which provides a higher velocity flyer by using a bridge foil made of a hydrogen loaded metal. 8 figs.

  8. METAL FOILS FOR DIRECT APPLICATION OF ABSORBER COATINGS ON SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2011-01-01T23:59:59.000Z

    Plated Metal Foils and Solar Collector Conference. U. S.Surfaces on Flat Plate Solar Collectors". Proceedings of 2ndSputtering for Depositing Solar Collector Coatings i i •

  9. Method for laser welding ultra-thin metal foils

    DOE Patents [OSTI]

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-26T23:59:59.000Z

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld. 5 figs.

  10. Method for laser welding ultra-thin metal foils

    DOE Patents [OSTI]

    Pernicka, John C. (Fort Collins, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1996-01-01T23:59:59.000Z

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.

  11. Final Report: Sintered CZTS Nanoparticle Solar Cells on Metal Foil; July 26, 2011 - July 25, 2012

    SciTech Connect (OSTI)

    Leidholm, C.; Hotz, C.; Breeze, A.; Sunderland, C.; Ki, W.; Zehnder, D.

    2012-09-01T23:59:59.000Z

    This is the final report covering 12 months of this subcontract for research on high-efficiency copper zinc tin sulfide (CZTS)-based thin-film solar cells on flexible metal foil. Each of the first three quarters of the subcontract has been detailed in quarterly reports. In this final report highlights of the first three quarters will be provided and details will be given of the final quarter of the subcontract.

  12. Accelerated testing of metal foil tape joints and their effect of photovoltaic module reliability.

    SciTech Connect (OSTI)

    Puskar, Joseph David; Quintana, Michael A.; Sorensen, Neil Robert; Lucero, Samuel J.

    2009-07-01T23:59:59.000Z

    A program is underway at Sandia National Laboratories to predict long-term reliability of photovoltaic (PV) systems. The vehicle for the reliability predictions is a Reliability Block Diagram (RBD), which models system behavior. Because this model is based mainly on field failure and repair times, it can be used to predict current reliability, but it cannot currently be used to accurately predict lifetime. In order to be truly predictive, physics-informed degradation processes and failure mechanisms need to be included in the model. This paper describes accelerated life testing of metal foil tapes used in thin-film PV modules, and how tape joint degradation, a possible failure mode, can be incorporated into the model.

  13. Simultaneous laser cutting and welding of metal foil to edge of a plate

    DOE Patents [OSTI]

    Pernicka, John C. (Fort Collins, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1996-01-01T23:59:59.000Z

    A method of welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads.

  14. Simultaneous laser cutting and welding of metal foil to edge of a plate

    DOE Patents [OSTI]

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-19T23:59:59.000Z

    A method is described for welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads. 7 figs.

  15. Calibration of a thin metal foil for infrared imaging video bolometer to estimate the spatial variation of thermal diffusivity using a photo-thermal technique

    SciTech Connect (OSTI)

    Pandya, Shwetang N., E-mail: pandya.shwetang@LHD.nifs.ac.jp; Sano, Ryuichi [The Graduate University of Advanced Studies, 322-6 Oroshi-cho, Toki 509-5292 (Japan)] [The Graduate University of Advanced Studies, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Peterson, Byron J.; Mukai, Kiyofumi; Akiyama, Tsuyoshi; Watanabe, Takashi [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)] [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Drapiko, Evgeny A. [Fusion Centre, 1, Akademika Kurchatova pl., Moscow 123182 (Russian Federation)] [Fusion Centre, 1, Akademika Kurchatova pl., Moscow 123182 (Russian Federation); Alekseyev, Andrey G. [Kurchatov Institute, 1, Akademika Kurchatova pl., Moscow 123182 (Russian Federation)] [Kurchatov Institute, 1, Akademika Kurchatova pl., Moscow 123182 (Russian Federation); Itomi, Muneji [Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan)] [Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan)

    2014-05-15T23:59:59.000Z

    A thin metal foil is used as a broad band radiation absorber for the InfraRed imaging Video Bolometer (IRVB), which is a vital diagnostic for studying three-dimensional radiation structures from high temperature plasmas in the Large Helical Device. The two-dimensional (2D) heat diffusion equation of the foil needs to be solved numerically to estimate the radiation falling on the foil through a pinhole geometry. The thermal, physical, and optical properties of the metal foil are among the inputs to the code besides the spatiotemporal variation of temperature, for reliable estimation of the exhaust power from the plasma illuminating the foil. The foil being very thin and of considerable size, non-uniformities in these properties need to be determined by suitable calibration procedures. The graphite spray used for increasing the surface emissivity also contributes to a change in the thermal properties. This paper discusses the application of the thermographic technique for determining the spatial variation of the effective in-plane thermal diffusivity of the thin metal foil and graphite composite. The paper also discusses the advantages of this technique in the light of limitations and drawbacks presented by other calibration techniques being practiced currently. The technique is initially applied to a material of known thickness and thermal properties for validation and finally to thin foils of gold and platinum both with two different thicknesses. It is observed that the effect of the graphite layer on the estimation of the thermal diffusivity becomes more pronounced for thinner foils and the measured values are approximately 2.5–3 times lower than the literature values. It is also observed that the percentage reduction in thermal diffusivity due to the coating is lower for high thermal diffusivity materials such as gold. This fact may also explain, albeit partially, the higher sensitivity of the platinum foil as compared to gold.

  16. Developing a dissimilar metal foil-to-substrate resistance welding process.

    SciTech Connect (OSTI)

    Knorovsky, Gerald Albert

    2010-10-01T23:59:59.000Z

    Materials changes occurring upon redesign caused redevelopment of the multiple spot resistance weld procedure employed to join a 23 micrometer thick foil of 15-7PH to a thick substrate and (at a separate location) a second, smaller thermal mass substrate. Both substrates were 304L. To avoid foil wrinkling, minimal heat input was used. The foil/thick substrate weld was solid-state, though the foil/small substrate weld was not. Metallographic evidence indicated occasional separation of the solid-state weld, hence a fusion weld was desired at both locations. In the redesign, a Co-Cr-Fe-Ni alloy was substituted for the foil, and a Ni-Cr-Mo alloy was evaluated for the small substrate. Both materials are substantially more resistive than their predecessors. This study reports development of weld schedules to accommodate the changes, yet achieve the fusion weld goal. Thermal analysis was employed to understand the effects caused by the various weld schedule parameters, and guide their optimization.

  17. Measurements of Drag Torque and Lift Off Speed and Identification of Stiffness and Damping in a Metal Mesh Foil Bearing

    E-Print Network [OSTI]

    Chirathadam, Thomas A.

    2010-07-14T23:59:59.000Z

    within a small gap between the rotating shaft and a smooth foil supports a load. Gas foil bearings are presently used in air cycle machines, cryogenic turbocompressors and turboexpanders, and micro gas turbines. Gas bearings have potential application...

  18. SELECTIVE ABSORBER COATED FOILS FOR SOLAR COLLECTORS

    SciTech Connect (OSTI)

    Lampert, Carl M.

    1980-04-01T23:59:59.000Z

    Solar absorber metal foils are discussed in terms of materials and basic processing science. Also included is the use of finished heavy sheet stock for direct fabrication of solar collector panels. Both the adhesives and bonding methods for foils and sheet are surveyed. Developmental and representative commercial foils are used as illustrative examples. As a result it was found that foils can compete economically with batch plating but are limited by adhesive temperature stability. Also absorber foils are very versatile and direct collector fabrication from heavy foils appears very promising.

  19. Direct fabrication of nanopores in a metal foil using focused ion beam with in situ measurements of the penetrating ion beam current

    SciTech Connect (OSTI)

    Nagoshi, Kotaro; Honda, Junki; Sakaue, Hiroyuki; Takahagi, Takayuki; Suzuki, Hitoshi [Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan)

    2009-12-15T23:59:59.000Z

    A through hole with a diameter less than 100 nm was fabricated in an Ag foil using only a focused ion beam (FIB) system and in situ measurements of the penetrating ion beam. During the drilling of the foil by a FIB of Ga{sup +} ions, the transmitted part of the beam was measured with an electrode mounted on the back face of the foil. When the beam current penetrating through the nanopore reached a certain value, irradiation was stopped and the area of the created aperture was measured with a scanning electron microscope. The resulting area was correlated with the current of the penetrating ion beam. This suggests that we can fabricate a nanopore of the desired size by controlling the ion beam via penetrating ion beam measurements. The smallest aperture thus created was circular with diameter of 30 nm.

  20. SELECTIVE ABSORBER COATED FOILS FOR SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2013-01-01T23:59:59.000Z

    of the solar foil market, other companies are becomingor company. ILLUSTRATIVE EXAMPLES OF COMMERCIAL SOLAR FOILS

  1. High strain rate metalworking with vaporizing foil actuator: Control of flyer velocity by varying input energy and foil thickness

    SciTech Connect (OSTI)

    Vivek, A., E-mail: vivek.4@osu.edu; Hansen, S. R.; Daehn, Glenn S. [Department of Materials Science and Engineering, The Ohio State University, 2041, College Road, Columbus, Ohio 43210 (United States)

    2014-07-15T23:59:59.000Z

    Electrically driven rapid vaporization of thin metallic foils can generate a high pressure which can be used to launch flyers at high velocities. Recently, vaporizing foil actuators have been applied toward a variety of impulse-based metal working operations. In order to exercise control over this useful tool, it is imperative that an understanding of the effect of characteristics of the foil actuator on its ability for mechanical impulse generation is developed. Here, foil actuators made out of 0.0508 mm, 0.0762 mm, and 0.127 mm thick AA1145 were used for launching AA2024-T3 sheets of thickness 0.508 mm toward a photonic Doppler velocimeter probe. Launch velocities ranging between 300 m/s and 1100 m/s were observed. In situ measurement of velocity, current, and voltage assisted in understanding the effect of burst current density and deposited electrical energy on average pressure and velocity with foil actuators of various thicknesses. For the pulse generator, geometry, and flyer used here, the 0.0762 mm thick foil was found to be optimal for launching flyers to high velocities over short distances. Experimenting with annealed foil actuators resulted in no change in the temporal evolution of flyer velocity as compared to foil actuators of full hard temper. A physics-based analytical model was developed and found to have reasonable agreement with experiment.

  2. Hybrid air foil bearing with external pressurization 

    E-Print Network [OSTI]

    Park, Soongook

    2009-05-15T23:59:59.000Z

    Foil bearings are widely used for oil-free micro turbomachinery. One of the critical technical issues related to reliability of the foil bearings is a coating wear on the top foil and rotor during start/stops. Bearing ...

  3. Effects of ductile phase volume fraction on the mechanical properties of Ti-Al?Ti metal-intermetallic laminate (MIL) composites

    E-Print Network [OSTI]

    Price, Richard David

    2010-01-01T23:59:59.000Z

    I. J. Light Alloys - Metallurgy of the Light Metals, 3rdformed by reactive foil metallurgy. ? Materials Science andformed by reactive foil metallurgy. HIP reaction at (a) 1300

  4. Method for fabricating uranium foils and uranium alloy foils

    DOE Patents [OSTI]

    Hofman, Gerard L. (Downers Grove, IL); Meyer, Mitchell K. (Idaho Falls, ID); Knighton, Gaven C. (Moore, ID); Clark, Curtis R. (Idaho Falls, ID)

    2006-09-05T23:59:59.000Z

    A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

  5. Method of using deuterium-cluster foils for an intense pulsed neutron source

    DOE Patents [OSTI]

    Miley, George H.; Yang, Xiaoling

    2013-09-03T23:59:59.000Z

    A method is provided for producing neutrons, comprising: providing a converter foil comprising deuterium clusters; focusing a laser on the foil with power and energy sufficient to cause deuteron ions to separate from the foil; and striking a surface of a target with the deuteron ions from the converter foil with energy sufficient to cause neutron production by a reaction selected from the group consisting of D-D fusion, D-T fusion, D-metal nuclear spallation, and p-metal. A further method is provided for assembling a plurality of target assemblies for a target injector to be used in the previously mentioned manner. A further method is provided for producing neutrons, comprising: splitting a laser beam into a first beam and a second beam; striking a first surface of a target with the first beam, and an opposite second surface of the target with the second beam with energy sufficient to cause neutron production.

  6. Eddy current probe with foil sensor mounted on flexible probe tip and method of use

    SciTech Connect (OSTI)

    Viertl, John R. M. (Niskayuna, NY); Lee, Martin K. (Niskayuna, NY)

    2001-01-01T23:59:59.000Z

    A pair of copper coils are embedded in the foil strip. A first coil of the pair generates an electromagnetic field that induces eddy currents on the surface, and the second coil carries a current influenced by the eddy currents on the surface. The currents in the second coil are analyzed to obtain information on the surface eddy currents. An eddy current probe has a metal housing having a tip that is covered by a flexible conductive foil strip. The foil strip is mounted on a deformable nose at the probe tip so that the strip and coils will conform to the surface to which they are applied.

  7. Actinide Foil Production for MPACT Research

    SciTech Connect (OSTI)

    Beller, Denis

    2012-10-31T23:59:59.000Z

    Sensitive fast-neutron detectors are required for use in lead slowing down spectrometry (LSDS), an active interrogation technique for used nuclear fuel assay for Materials Protection, Accounting, and Controls Technologies (MPACT). During the past several years UNLV sponsored a research project at RPI to investigate LSDS; began development of fission chamber detectors for use in LSDS experiments in collaboration with INL, LANL, and Oregon State U.; and participated in a LSDS experiment at LANL. In the LSDS technique, research has demonstrated that these fission chamber detectors must be sensitive to fission energy neutrons but insensitive to thermal-energy neutrons. Because most systems are highly sensitive to large thermal neutron populations due to the well-known large thermal cross section of 235U, even a miniscule amount of this isotope in a fission chamber will overwhelm the small population of higher-energy neutrons. Thus, fast-fission chamber detectors must be fabricated with highly depleted uranium (DU) or ultra-pure thorium (Th), which is about half as efficient as DU. Previous research conducted at RPI demonstrated that the required purity of DU for assay of used nuclear fuel using LSDS is less than 4 ppm 235U, material that until recently was not available in the U.S. In 2009 the PI purchased 3 grams of ultra-depleted uranium (uDU, 99.99998% 238U with just 0.2 ���± 0.1 ppm 235U) from VNIIEF in Sarov, Russia. We received the material in the form of U3O8 powder in August of 2009, and verified its purity and depletion in a FY10 MPACT collaboration project. In addition, chemical processing for use in FC R&D was initiated, fission chamber detectors and a scanning alpha-particle spectrometer were developed, and foils were used in a preliminary LSDS experiment at a LANL/LANSCE in Sept. of 2010. The as-received U3O8 powder must be chemically processed to convert it to another chemical form while maintaining its purity, which then must be used to electro-deposit U or UO2 in extremely thin layers (1 to 2 mg/cm2) on various media such as films, foils, or discs. After many months of investigation and trials in FY10 and 11, UNLV researchers developed a new method to produce pure UO2 deposits on foils using a unique approach, which has never been demonstrated, that involves dissolution of U3O8 directly into room temperature ionic liquid (RTIL) followed by electrodeposition from the RTIL-uDU solution (Th deposition from RTIL had been previously demonstrated). The high-purity dissolution of the U3O8 permits the use of RTIL solutions for deposition of U on metal foils in layers without introducing contamination. In FY10 and early FY11 a natural U surrogate for the uDU was used to investigate this and other techniques. In this research project UNLV will deposit directly from RTIL to produce uDU and Th foils devoid of possible contaminants. After these layers have been deposited, they will be examined for purity and uniformity. UNLV will complete the development and demonstration of the RTIL technology/ methodology to prepare uDU and Th samples for use in constructing fast-neutron detectors. Although this material was purchased for use in research using fast-fission chamber detectors for active inspection techniques for MPACT, it could also contribute to R&D for other applications, such as cross section measurements or neutron spectroscopy for national security

  8. Efficiency and lifetime of carbon foils

    SciTech Connect (OSTI)

    Chou, W.; /Fermilab; Kostin, M.; /Michigan State U., NSCL; Tang, Z.; /Fermilab

    2006-11-01T23:59:59.000Z

    Charge-exchange injection by means of carbon foils is a widely used method in accelerators. This paper discusses two critical issues concerning the use of carbon foils: efficiency and lifetime. An energy scaling of stripping efficiency was suggested and compared with measurements. Several factors that determine the foil lifetime--energy deposition, heating, stress and buckling--were studied by using the simulation codes MARS and ANSYS.

  9. Mechanical design and vibro-acoustic testing of ultrathin carbon foils for a spacecraft instrument

    SciTech Connect (OSTI)

    Bernardin, John D [Los Alamos National Laboratory; Baca, Allen G [SNL

    2009-01-01T23:59:59.000Z

    IBEX-Hi is an electrostatic analyzer spacecraft instrument designed to measure the energy and flux distribution of energetic neutral atoms (ENAs) emanating from the interaction zone between the Earth's solar system and the Milky Way galaxy. A key element to this electro-optic instrument is an array of fourteen carbon foils that are used to ionize the ENAs. The foils are comprised of an ultrathin (50-100 {angstrom} thick) layer of carbon suspended across the surface of an electroformed Nickel wire screen, which in turn is held taught by a metal frame holder. The electro formed orthogonal screen has square wire elements, 12.7 {micro}m thick, with a pitch of 131.1 wires/cm. Each foil holder has an open aperture approximately 5 cm by 2.5 cm. Designing and implementing foil holders with such a large surface area has not been attempted for spaceflight in the past and has proven to be extremely challenging. The delicate carbon foils are subject to fatigue failure from the large acoustic and vibration loads that they will be exposed to during launch of the spacecraft. This paper describes the evolution of the foil holder design from previous space instrument applications to a flight-like IBEX-Hi prototype. Vibro-acoustic qualification tests of the IBEX-Hi prototype instrument and the resulting failure of several foils are summarized. This is followed by a discussion of iterative foil holder design modifications and laser vibrometer modal testing to support future fatigue failure analyses, along with additional acoustic testing of the IBEX-Hi prototype instrument. The results of these design and testing activities are merged and the resulting flight-like foil holder assembly is proposed.

  10. Fish and Vegetables in Foil Ingredients

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Fish and Vegetables in Foil Ingredients: 1 1/2 pounds fresh or frozen fish fillets or steaks 4 sodium) Directions 1. Rinse fish under cold water and pat dry. Place 4 individual portions of fish on 4 pieces of foil large enough to completely wrap around the fish and vegetables. 2. Diagonally slice

  11. A simple method for the measurement of reflective foil emissivity

    SciTech Connect (OSTI)

    Ballico, M. J.; Ham, E. W. M. van der [National Measurement Institute, Lindfield, NSW 2070 (Australia)

    2013-09-11T23:59:59.000Z

    Reflective metal foil is widely used to reduce radiative heat transfer within the roof space of buildings. Such foils are typically mass-produced by vapor-deposition of a thin metallic coating onto a variety of substrates, ranging from plastic-coated reinforced paper to 'bubble-wrap'. Although the emissivity of such surfaces is almost negligible in the thermal infrared, typically less than 0.03, an insufficiently thick metal coating, or organic contamination of the surface, can significantly increase this value. To ensure that the quality of the installed insulation is satisfactory, Australian building code AS/NZS 4201.5:1994 requires a practical agreed method for measurement of the emissivity, and the standard ASTM-E408 is implied. Unfortunately this standard is not a 'primary method' and requires the use of specified expensive apparatus and calibrated reference materials. At NMIA we have developed a simple primary technique, based on an apparatus to thermally modulate the sample and record the apparent modulation in infra-red radiance with commercially available radiation thermometers. The method achieves an absolute accuracy in the emissivity of approximately 0.004 (k=2). This paper theoretically analyses the equivalence between the thermal emissivity measured in this manner, the effective thermal emissivity in application, and the apparent emissivity measured in accordance with ASTM-E408.

  12. SELECTIVE ABSORBER COATED FOILS FOR SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2013-01-01T23:59:59.000Z

    Proc. of 1977 Flat Plate Solar Collector Conference- USDOE,"Second Coatings for Solar Collectors Symp. , 11 Winter Park,COATED FOILS FOR SOLAR COLLECTORS Carl M. Lampert TWO-WEEK

  13. Performance of biologically inspired flapping foils

    E-Print Network [OSTI]

    Read, Melissa B. (Melissa Beth), 1982-

    2006-01-01T23:59:59.000Z

    Flapping foil propulsion is thought to provide AUVs with greater maneuverability than propellers. This thesis seeks to simplify the design process for this type of propulsion system by identifying thrust and wake characteristics ...

  14. High temperature oxidation behavior of Fe-Cr-Al foils

    SciTech Connect (OSTI)

    Chang, C.S.; Jha, B. [Texas Instruments, Inc., Attleboro, MA (United States)

    1998-12-31T23:59:59.000Z

    Metallic catalytic converters for automotive emission control is becoming an important application for heat resistant alloys as more design opportunities are realized. The service conditions and design of metallic catalytic converters require the alloy to be highly oxidation resistant at gauges typically at 50 microns or less. For conventional heat resistant alloy design the goal is to form a well adherent scale on the alloy surface to protect the alloy matrix from being oxidized. However, the thin gauge results in a limited supply of alloying elements that can form the protective scale on the surface. The alloy chemistry has to be optimized to have the minimum oxidation while maintaining processing characteristics. Furthermore, the ratio of scale thickness to foil gauge is significant and the stress state between them introduces measurable permanent distortion of the foil. In this study, the effect of alloying elements on the oxidation behavior of commonly used Fe-Cr-Al alloys was quantified by the oxidation weight gain and length change measurements.

  15. FINAL FOCUS ION BEAM INTENSITY FROM TUNGSTEN FOIL CALORIMETER AND SCINTILLATOR IN NDCX-I

    E-Print Network [OSTI]

    Lidia, S.M.

    2010-01-01T23:59:59.000Z

    FOCUS ION BEAM INTENSITY FROM TUNGSTEN FOIL CALORIMETER ANDtemperature rise in the tungsten foil. A cross-calibrationis obtained with a 3µm thick tungsten foil calorimeter and

  16. Compressor ported shroud for foil bearing cooling

    DOE Patents [OSTI]

    Elpern, David G. (Los Angeles, CA); McCabe, Niall (Torrance, CA); Gee, Mark (South Pasadena, CA)

    2011-08-02T23:59:59.000Z

    A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.

  17. Method of high-density foil fabrication

    DOE Patents [OSTI]

    Blue, Craig A.; Sikka, Vinod K.; Ohriner, Evan K.

    2003-12-16T23:59:59.000Z

    A method for preparing flat foils having a high density includes the steps of mixing a powdered material with a binder to form a green sheet. The green sheet is exposed to a high intensity radiative source adapted to emit radiation of wavelengths corresponding to an absorption spectrum of the powdered material. The surface of the green sheet is heated while a lower sub-surface temperature is maintained. An apparatus for preparing a foil from a green sheet using a radiation source is also disclosed.

  18. CX-011047: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Brazing Dissimilar Metals with a Novel Composite Foil CX(s) Applied: B3.6 Date: 09/09/2013 Location(s): Maryland Offices(s): National Energy Technology Laboratory

  19. Hall-Effect in Amorphous La1-Xgax Foils

    E-Print Network [OSTI]

    COLTER, PC; Adair, Thomas W.; Naugle, Donald G.

    1979-01-01T23:59:59.000Z

    in RH for the La~ ?Ga? foils arises from the uncertainty in determination of the foil thickness. Consequently, the absolute magnitude of R~ for these foils is uncertain by about 20%. How- ever, the relative precision of the data points for any given...

  20. Nuclear target foil fabrication for the Romano Event

    SciTech Connect (OSTI)

    Weed, J.W.; Romo, J.G. Jr.; Griggs, G.E.

    1984-06-19T23:59:59.000Z

    The Vacuum Processes Lab, of LLNL's M.E. Dept. - Material Fabrication Division, was requested to provide 250 coated Parylene target foils for a nuclear physics experiment titled the ROMANO Event. Due to the developmental nature of some of the fabrication procedures, approximately 400 coated foils were produced to satisfy the event's needs. The foils were used in the experiment as subkilovolt x-ray, narrow band pass filters, and wide band ultraviolet filters. This paper is divided into three sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, and (3) foil and substrate inspections.

  1. Microstructural Features in Aged Erbium Tritide Foils

    SciTech Connect (OSTI)

    Gelles, David S.; Brewer, L. N.; Kotula, Paul G.; Cowgill, Donald F.; Busick, C. C.; Snow, C. S.

    2008-01-01T23:59:59.000Z

    Aged erbium tritide foil specimens are found to contain five distinctly different microstructural features. The general structure was of large columnar grains of ErT2. But on a fine scale, precipitates believed to be erbium oxy-tritides and helium bubbles could be identified. The precipitate size was in the range of ~10 nm and the bubbles were of an unusual planar shape on {111} planes with an invariant thickness of ~1 nm and a diameter on the order of 10 nm. Also, an outer layer containing no fine precipitate structure and only a few helium bubbles was present on foils. This layer is best described as a denuded zone which probably grew during aging in air. Finally, large embedded Er2O3 particles were found at low density and non-uniformly distributed, but sometimes extending through the thickness of the foil. A failure mechanism allowing the helium to escape is suggested by observed cracking between bubbles closer to end of life.

  2. Apparatus and process for ultrasonic seam welding stainless steel foils

    DOE Patents [OSTI]

    Leigh, Richard W. (New York, NY)

    1992-01-01T23:59:59.000Z

    An ultrasonic seam welding apparatus having a head which is rotated to form contact, preferably rolling contact, between a metallurgically inert coated surface of the head and an outside foil of a plurality of layered foils or work materials. The head is vibrated at an ultrasonic frequency, preferably along a longitudinal axis of the head. The head is constructed to transmit vibration through a contacting surface of the head into each of the layered foils. The contacting surface of the head is preferably coated with aluminum oxide to prevent the head from becoming welded to layered stainless steel foils.

  3. Research and Development of Commercially Manufactured Large GEM Foils

    E-Print Network [OSTI]

    M. Posik; B. Surrow

    2015-06-12T23:59:59.000Z

    With future experiments proposing detectors that utilize very large-area GEM foils, there is a need for commercially available GEM foils. Double-mask etching techniques pose a clear limitation in the maximum size of GEM foils. In contrast, single-mask techniques developed at CERN would allow one to overcome those limitations. However with interest in GEM foils increasing and CERN being the only main distributor, keeping up with the demand for GEM foils will be difficult. Thus the commercialization of GEMs has been established by Tech-Etch of Plymouth, MA, USA using single-mask techniques. We report on the electrical and geometrical properties, along with the inner and outer hole diameter size uniformity of 10 $\\times$ 10 cm$^2$ and 40$\\times$40 cm$^2$ GEM foils. The Tech-Etch foils were found to have excellent electrical properties. The measured mean optical properties were found to reflect the desired parameters and are consistent with those measured in double-mask GEM foils, and show good hole diameter uniformity over the active area. These foils are well suited for future applications in nuclear and particle physics where tracking devices are needed.

  4. Characterization of U-Mo Foils for AFIP-7

    SciTech Connect (OSTI)

    Edwards, Danny J.; Ermi, Ruby M.; Schemer-Kohrn, Alan L.; Overman, Nicole R.; Henager, Charles H.; Burkes, Douglas; Senor, David J.

    2012-11-07T23:59:59.000Z

    Twelve AFIP in-process foil samples, fabricated by either Y-12 or LANL, were shipped from LANL to PNNL for potential characterization using optical and scanning electron microscopy techniques. Of these twelve, nine different conditions were examined to one degree or another using both techniques. For this report a complete description of the results are provided for one archive foil from each source of material, and one unirradiated piece of a foil of each source that was irradiated in the Advanced Test Reactor. Additional data from two other LANL conditions are summarized in very brief form in an appendix. The characterization revealed that all four characterized conditions contained a cold worked microstructure to different degrees. The Y-12 foils exhibited a higher degree of cold working compared to the LANL foils, as evidenced by the highly elongated and obscure U-Mo grain structure present in each foil. The longitudinal orientations for both of the Y-12 foils possesses a highly laminar appearance with such a distorted grain structure that it was very difficult to even offer a range of grain sizes. The U-Mo grain structure of the LANL foils, by comparison, consisted of a more easily discernible grain structure with a mix of equiaxed and elongated grains. Both materials have an inhomogenous grain structure in that all of the characterized foils possess abnormally coarse grains.

  5. Producing titanium aluminide foil from plasma-sprayed preforms

    SciTech Connect (OSTI)

    Jha, S.C.; Forster, J.A. (Texas Instruments, Inc., Attleboro, MA (United States))

    1993-07-01T23:59:59.000Z

    A new method was used to fabricate foils of Ti-6Al-4V (Ti-6-4) alloy and Ti-14Al-21Nb(Ti-14-21) titanium aluminide, starting from a plasma-sprayed (PS) preform. The foils were 100 percent dense, with microstructures similar to those of wrought (IM) foil material. The foil made from PS preforms were characterized by the mechanical properties equivalent to their IM-processed counterparts. It is concluded that the method of roll consolidation of a PS preform is well suited for alloys and intermetallics that do not possess extensive hot and cold workability. 6 refs.

  6. (001) Oriented piezoelectric films prepared by chemical solution deposition on Ni foils

    SciTech Connect (OSTI)

    Yeo, Hong Goo, E-mail: hxy162@psu.edu; Trolier-McKinstry, Susan [Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2014-07-07T23:59:59.000Z

    Flexible metal foil substrates are useful in some microelectromechanical systems applications including wearable piezoelectric sensors or energy harvesters based on Pb(Zr,Ti)O{sub 3} (PZT) thin films. Full utilization of the potential of piezoelectrics on metal foils requires control of the film crystallographic texture. In this study, (001) oriented PZT thin films were grown by chemical solution deposition (CSD) on Ni foil and Si substrates. Ni foils were passivated using HfO{sub 2} grown by atomic layer deposition in order to suppress substrate oxidation during subsequent thermal treatment. To obtain the desired orientation of PZT film, strongly (100) oriented LaNiO{sub 3} films were integrated by CSD on the HfO{sub 2} coated substrates. A high level of (001) LaNiO{sub 3} and PZT film orientation were confirmed by X-ray diffraction patterns. Before poling, the low field dielectric permittivity and loss tangents of (001) oriented PZT films on Ni are near 780 and 0.04 at 1?kHz; the permittivity drops significantly on poling due to in-plane to out-of-plane domain switching. (001) oriented PZT film on Ni displayed a well-saturated hysteresis loop with a large remanent polarization ?36??C/cm{sup 2}, while (100) oriented PZT on Si showed slanted P-E hysteresis loops with much lower remanent polarizations. The |e{sub 31,f}| piezoelectric coefficient was around 10.6?C/m{sup 2} for hot-poled (001) oriented PZT film on Ni.

  7. Design Potential of Metal Foil Substrates for Optimized DOC Performance |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E L D *DepartmentTS NOTDiesel Engine

  8. Indium Phosphide Polycrystalline Films on Metal Foil for PV Applications -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link to facebook link to twittersupportEnergy

  9. Investigations of factors affecting the use of uranium metal as a source of alpha particles for the evaluation of alpha track detectors

    E-Print Network [OSTI]

    Voirin, Marc

    1994-01-01T23:59:59.000Z

    , an uranium foil was used as the alpha particle source. The foil created new problems which needed to be studied in detail. Among these problems, the effect of the thickness of the oxide layer on the uranium metal foil surface was the most important. To study...

  10. Research and Development of Commercially Manufactured Large GEM Foils

    E-Print Network [OSTI]

    Posik, M

    2015-01-01T23:59:59.000Z

    With future experiments proposing detectors that utilize very large-area GEM foils, there is a need for commercially available GEM foils. Double-mask etching techniques pose a clear limitation in the maximum size of GEM foils. In contrast, single-mask techniques developed at CERN would allow one to overcome those limitations. However with interest in GEM foils increasing and CERN being the only main distributor, keeping up with the demand for GEM foils will be difficult. Thus the commercialization of GEMs has been established by Tech-Etch of Plymouth, MA, USA using single-mask techniques. We report on the electrical and geometrical properties, along with the inner and outer hole diameter size uniformity of 10 $\\times$ 10 cm$^2$ and 40$\\times$40 cm$^2$ GEM foils. The Tech-Etch foils were found to have excellent electrical properties. The measured mean optical properties were found to reflect the desired parameters and are consistent with those measured in double-mask GEM foils, and show good hole diameter unif...

  11. Foil fabrication for the ROMANO event. Revision 1

    SciTech Connect (OSTI)

    Romo, J.G. Jr.; Weed, J.W.; Griggs, G.E.; Brown, T.G.; Tassano, P.L.

    1984-06-13T23:59:59.000Z

    The Vacuum Processes Lab (VPL), of LLNL's M.E. Dept. - Material Fabrication Division (MFD), conducted various vacuum related support activities for the ROMANO nuclear physics experiment. This report focuses on the foil fabrication activities carried out between July and November 1983 for the ROMANO event. Other vacuum related activities for ROMANO, such as outgassing tests of materials, are covered in separate documentation. VPL was asked to provide 270 coated Parylene foils for the ROMANO event. However, due to the developmental nature of some of the procedures, approximately 400 coated foils were processed. In addition, VPL interacted with MFD's Plastics Shop to help supply Parylene substrates to other organizations (i.e., LBL and commercial vendors) which had also been asked to provide coated foils for ROMANO. The purposes of this report are (A) to document the processes developed and the techniques used to produce the foils, and (B) to suggest future directions. The report is divided into four sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, (3) calibration foil fabrication, and (4) foil and substrate inspections.

  12. E-Print Network 3.0 - aluminum foil craters Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the craters in aluminium foils (calibration, classification and particle... in aerogel and as residue rich craters in aluminium foils (2). Although the aerogel (and its...

  13. Method of fabricating a uranium-bearing foil

    DOE Patents [OSTI]

    Gooch, Jackie G. (Seymour, TN); DeMint, Amy L. (Kingston, TN)

    2012-04-24T23:59:59.000Z

    Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.

  14. Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils

    SciTech Connect (OSTI)

    Jason Schulthess

    2014-09-01T23:59:59.000Z

    Tensile mechanical properties for uranium-10 wt.% molybdenum (U–10Mo) foils are required to support modeling and qualification of new monolithic fuel plate designs. It is expected that depleted uranium-10 wt% Mo (DU–10Mo) mechanical behavior is representative of the low enriched U–10Mo to be used in the actual fuel plates, therefore DU-10Mo was studied to simplify material processing, handling, and testing requirements. In this report, tensile testing of DU-10Mo fuel foils prepared using four different thermomechanical processing treatments were conducted to assess the impact of foil fabrication history on resultant tensile properties.

  15. aluminium foil craters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including two recent additions. We present examples of tasks tackled by foil and of systems that adapt and extend its approach. J. R. Quinlan; R. M. Cameron-jones 1995-01-01 73...

  16. Coherent multiple-foil x-ray transition radiation

    SciTech Connect (OSTI)

    Moran, M.J.; Chang, B.; Schneider, M.B.

    1993-08-25T23:59:59.000Z

    Intense x-ray transition radiation can be generated when relativistic electrons pass through a multiple-foil target. When the foil spacing is periodic, the transition radiation can be spatially coherent with respect to the target period. The spatial coherence can be evident in the spectra and angular distributions of transition radiation from such targets. A series of experiments has measured coherent transition radiation distributions from multiple-foil targets (up to six foils) with spacings of 50 {mu}m and 100 {mu}m. The electron energy was about 75 MeV and the photon energies were about 200 eV. Agreement between calculation and experimental data is excellent.

  17. activation foils aplicacao: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OXIDE AS OBSERVED IN AN ELECTRON MICROSCOPE L Investigating (001) and (011) oriented monocrystalline thin foils of Cu2O in a conven- tional electron Abstracts 61. 80F 1....

  18. ANALYSIS OF THE ELECTRON EXCITATION SPECTRA IN HEAVY RARE EARTH METALS, HYDRIDES AND OXIDES

    E-Print Network [OSTI]

    Boyer, Edmond

    397 ANALYSIS OF THE ELECTRON EXCITATION SPECTRA IN HEAVY RARE EARTH METALS, HYDRIDES AND OXIDES C thin evaporated foils of heavy rare earths (Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in three different chemical of high energy incident electrons (75 keV) transmitted through thin foils of yttric rare earth elements

  19. The diffusion bonding of silicon carbide and boron carbide using refractory metals

    SciTech Connect (OSTI)

    Cockeram, B.V.

    1999-10-01T23:59:59.000Z

    Joining is an enabling technology for the application of structural ceramics at high temperatures. Metal foil diffusion bonding is a simple process for joining silicon carbide or boron carbide by solid-state, diffusive conversion of the metal foil into carbide and silicide compounds that produce bonding. Metal diffusion bonding trials were performed using thin foils (5 {micro}m to 100 {micro}m) of refractory metals (niobium, titanium, tungsten, and molybdenum) with plates of silicon carbide (both {alpha}-SiC and {beta}-SiC) or boron carbide that were lapped flat prior to bonding. The influence of bonding temperature, bonding pressure, and foil thickness on bond quality was determined from metallographic inspection of the bonds. The microstructure and phases in the joint region of the diffusion bonds were evaluated using SEM, microprobe, and AES analysis. The use of molybdenum foil appeared to result in the highest quality bond of the metal foils evaluated for the diffusion bonding of silicon carbide and boron carbide. Bonding pressure appeared to have little influence on bond quality. The use of a thinner metal foil improved the bond quality. The microstructure of the bond region produced with either the {alpha}-SiC and {beta}-SiC polytypes were similar.

  20. Nitrided Metallic Bipolar Plates

    SciTech Connect (OSTI)

    Brady, Michael P [ORNL; Tortorelli, Peter F [ORNL; Pihl, Josh A [ORNL; Toops, Todd J [ORNL; More, Karren Leslie [ORNL; Meyer III, Harry M [ORNL; Vitek, John Michael [ORNL; Wang, Heli [National Renewable Energy Laboratory (NREL); Turner, John [National Renewable Energy Laboratory (NREL); Wilson, Mahlon [Los Alamos National Laboratory (LANL); Garzon, Fernando [Los Alamos National Laboratory (LANL); Rockward, Tommy [Los Alamos National Laboratory (LANL); Connors, Dan [GenCell Corp; Rakowski, Jim [Allegheny Ludlum; Gervasio, Don [Arizona State University

    2008-01-01T23:59:59.000Z

    The objectives are: (1) Develop and optimize stainless steel alloys amenable to formation of a protective Cr-nitride surface by gas nitridation, at a sufficiently low cost to meet DOE targets and with sufficient ductility to permit manufacture by stamping. (2) Demonstrate capability of nitridation to yield high-quality stainless steel bipolar plates from thin stamped alloy foils (no significant stamped foil warping or embrittlement). (3) Demonstrate single-cell fuel cell performance of stamped and nitrided alloy foils equivalent to that of machined graphite plates of the same flow-field design ({approx}750-1,000 h, cyclic conditions, to include quantification of metal ion contamination of the membrane electrode assembly [MEA] and contact resistance increase attributable to the bipolar plates). (4) Demonstrate potential for adoption in automotive fuel cell stacks. Thin stamped metallic bipolar plates offer the potential for (1) significantly lower cost than currently-used machined graphite bipolar plates, (2) reduced weight/volume, and (3) better performance and amenability to high volume manufacture than developmental polymer/carbon fiber and graphite composite bipolar plates. However, most metals exhibit inadequate corrosion resistance in proton exchange membrane fuel cell (PEMFC) environments. This behavior leads to high electrical resistance due to the formation of surface oxides and/or contamination of the MEA by metallic ions, both of which can significantly degrade fuel cell performance. Metal nitrides offer electrical conductivities up to an order of magnitude greater than that of graphite and are highly corrosion resistant. Unfortunately, most conventional coating methods (for metal nitrides) are too expensive for PEMFC stack commercialization or tend to leave pinhole defects, which result in accelerated local corrosion and unacceptable performance.

  1. Open loop performance of a biomimetic flapping foil autonomous underwater vehicle

    E-Print Network [OSTI]

    Wolf, Malima Isabelle, 1981-

    2006-01-01T23:59:59.000Z

    Flapping foil propulsion is emerging as an alternative to conventional propulsion for underwater vehicles. MIT's Biomimetic Flapping Foil Autonomous Underwater Vehicle is a prototype vehicle that uses four three-dimensional ...

  2. Foiling the Flu Bug Global Partnerships for Nuclear Energy

    E-Print Network [OSTI]

    1 1663 Foiling the Flu Bug Global Partnerships for Nuclear Energy Dark Universe Mysteries WILL NOT NEED TESTING Expanding Nuclear Energy the Right Way GLOBAL PARTNERSHIPS AND AN ADVANCED FUEL CYCLE sense.The Laboratory is operated by Los Alamos National Security, LLC, for the Department of Energy

  3. Evaluation of Alumina-Forming Austenitic Foil for Advanced Recuperators

    SciTech Connect (OSTI)

    Pint, Bruce A [ORNL; Brady, Michael P [ORNL; Yamamoto, Yukinori [ORNL; Santella, Michael L [ORNL; Maziasz, Philip J [ORNL; Matthews, Wendy [Capstone Turbines

    2011-01-01T23:59:59.000Z

    A corrosion- and creep-resistant austenitic stainless steel has been developed for advanced recuperator applications. By optimizing the Al and Cr contents, the alloy is fully austenitic for creep strength while allowing the formation of a chemically stable external alumina scale at temperatures up to 900 C. An alumina scale eliminates long-term problems with the formation of volatile Cr oxy-hydroxides in the presence of water vapor in exhaust gas. As a first step in producing foil for primary surface recuperators, three commercially cast heats have been rolled to 100 m thick foil in the laboratory to evaluate performance in creep and oxidation testing. Results from initial creep testing are presented at 675 C and 750 C, showing excellent creep strength compared with other candidate foil materials. Laboratory exposures in humid air at 650 800 C have shown acceptable oxidation resistance. A similar oxidation behavior was observed for sheet specimens of these alloys exposed in a modified 65 kW microturbine for 2871 h. One composition that showed superior creep and oxidation resistance has been selected for the preparation of a commercial batch of foil. DOI: 10.1115/1.4002827

  4. Surface nanostructuring of Ni/Cu foils by femtosecond laser pulses

    SciTech Connect (OSTI)

    Korol'kov, V P; Ionin, Andrei A; Kudryashov, Sergei I; Seleznev, L V; Sinitsyn, D V; Samsonov, R V; Maslii, A I; Medvedev, A Zh; Gol'denberg, B G

    2011-04-30T23:59:59.000Z

    This work examines the effect of high-power femtosecond laser pulses on Ni/Cu bilayer foils produced by electrodeposition. We consider nanostructures formed at different laser beam parameters and under different ambient conditions. The surface nanostructures obtained in air and water have mostly the form of quasi-periodic ripples with a characteristic period of 400 - 450 and 370 - 390 nm, respectively, at a laser wavelength of 744 nm, whereas the nanostructures produced in ethanol and benzine have the form of spikes, typically spaced 400 - 700 nm apart. Femtosecond laser nanostructuring of metals is for the first time proposed, and experimentally tested, as a viable approach to producing anti-reflective coatings on the surface of polymer replicas. (laser nanotechnologies)

  5. Fuel cell with metal screen flow-field

    DOE Patents [OSTI]

    Wilson, M.S.; Zawodzinski, C.

    1998-08-25T23:59:59.000Z

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field there between for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells. 11 figs.

  6. Fuel cell with metal screen flow-field

    DOE Patents [OSTI]

    Wilson, Mahlon S. (Los Alamos, NM); Zawodzinski, Christine (Los Alamos, NM)

    2001-01-01T23:59:59.000Z

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  7. Beam Test of a Segmented Foil SEM Grid

    E-Print Network [OSTI]

    S. Kopp; D. Indurthy; Z. Pavlovich; M. Proga; R. Zwaska; S. Childress; R. Ford; C. Kendziora; T. Kobilarcik; C. Moore; G. Tassotto

    2005-07-29T23:59:59.000Z

    A prototype Secondary-electron Emission Monitor (SEM) was installed in the 8 GeV proton transport line for the MiniBooNE experiment at Fermilab. The SEM is a segmented grid made with 5 um Ti foils, intended for use in the 120 GeV NuMI beam at Fermilab. Similar to previous workers, we found that the full collection of the secondary electron signal requires a bias voltage to draw the ejected electrons cleanly off the foils, and this effect is more pronounced at larger beam intensity. The beam centroid and width resolutions of the SEM were measured at beam widths of 3, 7, and 8 mm, and compared to calculations. Extrapolating the data from this beam test, we expect a centroid and width resolutions of 20um and 25 um, respectively, in the NuMI beam which has 1 mm spot size.

  8. Analytical and experimental investigations of hybrid air foil bearings

    E-Print Network [OSTI]

    Kumar, Manish

    2009-05-15T23:59:59.000Z

    rotary flow compressor, micro-turbines [2] and oil-free turbochargers [3]. Air Foil bearings, however, have reliability issues that stem from the wear caused by dry rubbing during startups and stops. These bearings also have limited heat dissipation... of Hybrid Airfoil Bearing? by Kumar, M., and Kim, D., 2008. Journal of Engineering for Gas Turbines and Power, 130, Copyright 2008 by ASME. 10 Table 1: Bearing parameters ? Simulation Parameters Value Bearing diameter, 2R 38.1 mm Bearing axial...

  9. Comparison of EXAFS foil spectra from around the world

    SciTech Connect (OSTI)

    Kelly, S.D.; Bare, S.R.; Greenlay, N.; Azevedo, G.; Balasubramanian, M.; Barton, D.; Chattopadhyay, S.; Fakra, S.; Johannessen, B.; Newville, M.; Pena, J.; Pokrovski, G.S.; Proux, O.; Priolkar, K.; Ravel, B.; Webb, S.M.; (Honeywell); (CNRS-UMR); (IIT); (UCB); (EXAFS Analysis); (Dow); (NIST); (SSRL); (LBNL); (ANSTO); (UC)

    2010-11-10T23:59:59.000Z

    The EXAFS spectra of Cu and Pd foil from many different beamlines and synchrotrons are compared to address the dependence of the amplitude reduction factor (S{sub 0}{sup 2}) on beamline specific parameters. Even though S{sub 0}{sup 2} is the same parameter as the EXAFS coordination number, the value for S{sub 0}{sup 2} is given little attention, and is often unreported. The S{sub 0}{sup 2} often differs for the same material due to beamline and sample attributes, such that no importance is given to S{sub 0}{sup 2}-values within a general range of 0.7 to 1.1. EXAFS beamlines have evolved such that it should now be feasible to use standard S{sub 0}{sup 2} values for all EXAFS measurements of a specific elemental environment. This would allow for the determination of the imaginary energy (Ei) to account for broadening of the EXAFS signal rather than folding these errors into an effective S{sub 0}{sup 2}-value. To test this concept, we model 11 Cu-foil and 6 Pd-foil EXAFS spectra from around the world to compare the difference in S{sub 0}{sup 2}- and Ei-values.

  10. Ultra-Fine Grain Foils and Sheets by Large-Strain Extrusion Machining...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grain Foils and Sheets by Large-Strain Extrusion Machining 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

  11. Thermal neutron flux perturbation due to indium foils in water

    E-Print Network [OSTI]

    Stinson, Ronald Calvin

    1961-01-01T23:59:59.000Z

    of MASTER OF SCIENCE August, i 96I Major Subject: Nuclear Engineering THERMAL NEUTRON FLUX PERTURBATION DUE TO INDIUM FOILS IN WATER A Thesis by Ronald C. Stinson, Jr. Approved as to style and content by: Chai man of Committee Head of Department.... 2. Tittle, C. N. , Nucleonics 8, (6), 5 (1951); Ibid 9 (1), 60 (1951). 3. Skyrme, T, H. R. , "Reduction in Neutron Density Caused by an Absorbing Disc. " MS-91 (N. D. ) 4. Dalton, G. R. and Osborn, R. K. , Nuclear Science and En ineerin 9, 19...

  12. Spot size dependence of laser accelerated protons in thin multi-ion foils Tung-Chang Liu,1,a)

    E-Print Network [OSTI]

    polarized laser beam irradiates an ultra-thin foil and accelerates nearly the whole foil by the radiationSpot size dependence of laser accelerated protons in thin multi-ion foils Tung-Chang Liu,1,a) Xi of the effect of the laser spot size of a circularly polarized laser beam on the energy of quasi

  13. Transitions in the wake of a flapping foil

    E-Print Network [OSTI]

    Godoy-Diana, R; Wesfreid, J E; Aider, Jean-Luc; Godoy-Diana, Ramiro; Wesfreid, Jos\\'e Eduardo

    2007-01-01T23:59:59.000Z

    We study experimentally the vortex streets produced by a flapping foil in a hydrodynamic tunnel, using 2D Particle Image Velocimetry (PIV). A novel analysis in terms of a flapping frequency-amplitude phase space allows to identify: 1) the transition from the well-known Benard-von Karman (BvK) wake to the reverse BvK vortex street that characterizes propulsive wakes, and 2) the symmetry breaking of this reverse BvK pattern giving rise to an asymmetric wake. We also show that the transition from a BvK wake to a reverse BvK wake precedes the actual drag-thrust transition and we discuss the significance of the present results in the analysis of flapping systems in nature.

  14. An investigation of the cadmium absorption of resonance neutrons in cadmium covered indium foils

    E-Print Network [OSTI]

    Powell, James Edward

    1963-01-01T23:59:59.000Z

    Thicknesses and Cadmium Covers Page 25 II Fcd Determined by E3 and Logarithmic Fits for Various Foil Thickness 29 III Experimental Values of Fcd for Various Foil Thicknesses and Cadmium Covers 32 LIST OF FIGURES No. Title Bare Infinite Disk Showing... The Coordinates g and B Cadmium Covered Infinite Disk Indicating the Directions X and 8 . Page Theoretically Determine)Bare and Cadmium Covered Activity of a 18. 5 mg/cm Foil. Theoretically Determined Bare and Cadmium Covered Activities of a 184. 5 mg/cm2...

  15. FULL SIZE U-10MO MONOLITHIC FUEL FOIL AND FUEL PLATE FABRICATION-TECHNOLOGY DEVELOPMENT

    SciTech Connect (OSTI)

    G. A. Moore; J-F Jue; B. H. Rabin; M. J. Nilles

    2010-03-01T23:59:59.000Z

    Full-size U10Mo foils are being developed for use in high density LEU monolithic fuel plates. The application of a zirconium barrier layer too the foil is applied using a hot co-rolling process. Aluminum clad fuel plates are fabricated using Hot Isostatic Pressing (HIP) or a Friction Bonding (FB) process. An overview is provided of ongoing technology development activities, including: the co-rolling process, foil shearing/slitting and polishing, cladding bonding processes, plate forming, plate-assembly swaging, and fuel plate characterization. Characterization techniques being employed include, Ultrasonic Testing (UT), radiography, and microscopy.

  16. Experimental identification of structural force coefficients in a bump-type foil bearing 

    E-Print Network [OSTI]

    Breedlove, Anthony Wayne

    2009-06-02T23:59:59.000Z

    /m] KW Prediction model stiffness of bump with one welded and one free end [MN/m] kB Thermal conductivity of FB housing material [W/mK] kf Thermal conductivity of foil layer [W/mK] kS Thermal conductivity of test shaft material [W/mK] L Bearing axial... foil weld location [degrees] Subscript B Bearing b Bump I Initial condition f Foil S Shaft Superscript ' Denotes new radial dimension after thermal expansion Acronyms ACM Air Cycle Machine APU Auxiliary Power Units CTE Coefficient...

  17. Method of applying a bond coating and a thermal barrier coating on a metal substrate, and related articles

    DOE Patents [OSTI]

    Hasz, Wayne Charles (Pownal, VT); Borom, Marcus Preston (Tucson, AZ)

    2002-01-01T23:59:59.000Z

    A method for applying at least one bond coating on a surface of a metal-based substrate is described. A foil of the bond coating material is first attached to the substrate surface and then fused thereto, e.g., by brazing. The foil is often initially prepared by thermally spraying the bond coating material onto a removable support sheet, and then detaching the support sheet. Optionally, the foil may also include a thermal barrier coating applied over the bond coating. The substrate can be a turbine engine component.

  18. Experimental identification of structural force coefficients in a bump-type foil bearing

    E-Print Network [OSTI]

    Breedlove, Anthony Wayne

    2009-06-02T23:59:59.000Z

    temperature applications. During actual operation with shaft rotation, the bearing structural parameters are coupled to the effects of a hydrodynamic gas film layer, thus determining the overall bearing load performance. A 38.17 mm inner diameter foil bearing...

  19. A MULTIPLE FOIL LUNAR ENVIRONMENTAL ANALYSER (FLEA PACKAGE) FOR THE EVALUATION OF

    E-Print Network [OSTI]

    Rathbun, Julie A.

    -- A MULTIPLE FOIL LUNAR ENVIRONMENTAL ANALYSER (FLEA PACKAGE) FOR THE EVALUATION OF: · Meteoroid Products. · Solar Wind Composition. · Medium Energy Solar Flare Composition. · Solar Wind Sputter Rate .. . . ... . .. .. . .. ...... ... ENVIRONMENTAL STABILITY OF FLEA SYSTEM DATA EVALUATION ··········· SUPPORT DETAILS AND PERSONNEL

  20. E-Print Network 3.0 - aluminum foils interpreting Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BY STARDUST The Stardust Cratering Team: Friedrich Hrz... exposed some 1039 cm2 of aerogel and some 153 cm2 of aluminum-foil to the particle flux of comet Wild 2... upon...

  1. E-Print Network 3.0 - activation foils method Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BY STARDUST The Stardust Cratering Team: Friedrich Hrz... exposed some 1039 cm2 of aerogel and some 153 cm2 of aluminum-foil to the particle flux of comet Wild 2... . The...

  2. Process for forming a nickel foil with controlled and predetermined permeability to hydrogen

    DOE Patents [OSTI]

    Engelhaupt, Darell E. (Kansas City, MO)

    1981-09-22T23:59:59.000Z

    The present invention provides a novel process for forming a nickel foil having a controlled and predetermined hydrogen permeability. This process includes the steps of passing a nickel plating bath through a suitable cation exchange resin to provide a purified nickel plating bath free of copper and gold cations, immersing a nickel anode and a suitable cathode in the purified nickel plating bath containing a selected concentration of an organic sulfonic acid such as a napthalene-trisulfonic acid, electrodepositing a nickel layer having the thickness of a foil onto the cathode, and separating the nickel layer from the cathode to provide a nickel foil. The anode is a readily-corrodible nickel anode. The present invention also provides a novel nickel foil having a greater hydrogen permeability than palladium at room temperature.

  3. Manufacturability of lab-on-chip devices : dimensional variation analysis of electrode foils using visual technology

    E-Print Network [OSTI]

    Namvari, Kasra

    2011-01-01T23:59:59.000Z

    Electrodes are necessary components for measuring changes in electrical properties in many microfluidic devices. Daktari CD4 Cell Counter system utilizes an interdigitated electrode foil in order to measure the concentration ...

  4. Rotordynamic performance of a rotor supported on bump-type foil bearings: experiments and predictions 

    E-Print Network [OSTI]

    Rubio Tabares, Dario

    2006-08-16T23:59:59.000Z

    Gas foil bearings (GFB) appear to satisfy most requirements for oil-free turbomachinery, i.e. relatively simple in construction, ensuring low drag friction and reliable high speed operation. However, GFBs have a limited load capacity and minimal...

  5. All-optical measurement of the hot electron sheath driving laser ion acceleration from thin foils

    E-Print Network [OSTI]

    Jackel, O.

    We present experimental results from an all-optical diagnostic method to directly measure the evolution of the hot-electron distribution driving the acceleration of ions from thin foils using high-intensity lasers. Central ...

  6. Boundary element simulation of oscillating foil with leading-edge separation

    E-Print Network [OSTI]

    Dong, Xiaoxia, S.M. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    In this thesis, we develop a numerical model to account for the leading-edge separation for the boundary element simulation of the oscillating foil with potential flow assumption. Similar to the trailing-edge separation, ...

  7. Biomimetic oscillating foil propulsion to enhance underwater vehicle agility and maneuverability

    E-Print Network [OSTI]

    Licht, Stephen Carl

    2008-01-01T23:59:59.000Z

    Inspired by the swimming abilities of marine animals, this thesis presents "Finnegan the RoboTurtle", an autonomous underwater vehicle (AUV) powered entirely by four flapping foils. Biomimetic actuation is shown to produce ...

  8. Co-Rolled U10Mo/Zirconium-Barrier-Layer Monolithic Fuel Foil Fabrication Process

    SciTech Connect (OSTI)

    G. A. Moore; M. C. Marshall

    2010-01-01T23:59:59.000Z

    Integral to the current UMo fuel foil processing scheme being developed at Idaho National Laboratory (INL) is the incorporation of a zirconium barrier layer for the purpose of controlling UMo-Al interdiffusion at the fuel-meat/cladding interface. A hot “co-rolling” process is employed to establish a ~25-µm-thick zirconium barrier layer on each face of the ~0.3-mm-thick U10Mo fuel foil.

  9. METAL FOILS FOR DIRECT APPLICATION OF ABSORBER COATINGS ON SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2011-01-01T23:59:59.000Z

    Sputtering for Depositing Solar Collector Coatings".AES Coatings for Solar Collectors Symposium. Atlanta. Ga.Surfaces on Flat Plate Solar Collectors". Proceedings of 2nd

  10. METAL FOILS FOR DIRECT APPLICATION OF ABSORBER COATINGS ON SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2011-01-01T23:59:59.000Z

    Surfaces on Flat Plate Solar Collectors". Proceedings of 2ndfor Depositing Solar Collector Coatings i i • Proceedings ofAES Coatings for Solar Collectors Symposium. Atlanta. Ga.

  11. METAL FOILS FOR DIRECT APPLICATION OF ABSORBER COATINGS ON SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2011-01-01T23:59:59.000Z

    Sputtering for Depositing Solar Collector Coatings".of the AES Coatings for Solar Collectors Symposium. Atlanta.Neutral Surfaces in Solar Collectors." Proceedings of ISES

  12. METAL FOILS FOR DIRECT APPLICATION OF ABSORBER COATINGS ON SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2011-01-01T23:59:59.000Z

    for Depositing Solar Collector Coatings i i • Proceedings ofSymposium on Coatings for Solar Collectors, St. Louis, MO,OF ABSORBER COATINGS ON SOLAR COLLECTORS Carl M. Lampert

  13. METAL FOILS FOR DIRECT APPLICATION OF ABSORBER COATINGS ON SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2011-01-01T23:59:59.000Z

    for Depositing Solar Collector Coatings". Proceedings of theSymposium on Coatings for Solar Collectors, . Louis,'MO,OF ABSORBER COATINGS ON SOLAR COLLECTORS Carl M. Lampert

  14. METAL FOILS FOR DIRECT APPLICATION OF ABSORBER COATINGS ON SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2011-01-01T23:59:59.000Z

    of the AES Coatings for Solar Collectors Symposium. Atlanta.Sputtering for Depositing Solar Collector Coatings".Symposium on Coatings for Solar Collectors, . Louis,'MO,

  15. METAL FOILS FOR DIRECT APPLICATION OF ABSORBER COATINGS ON SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2011-01-01T23:59:59.000Z

    of the AES Coatings for Solar Collectors Symposium. Atlanta.Symposium on Coatings for Solar Collectors, St. Louis, MO,OF ABSORBER COATINGS ON SOLAR COLLECTORS Carl M. Lampert

  16. Application of a Turbulent Metal Foil Substrate for a PGM optimized DOC on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa U.S. HD Diesel Engine | Department of Energy a

  17. Nanodiamond Foils for H- Stripping to Support the Spallation Neutron Source (SNS) and Related Applications

    SciTech Connect (OSTI)

    Vispute, R D [Blue Wave Semiconductors; Ermer, Henry K [Blue Wave Semiconductors; Sinsky, Phillip [Blue Wave Semiconductors; Seiser, Andrew [Blue Wave Semiconductors; Shaw, Robert W [ORNL; Wilson, Leslie L [ORNL; Harris, Gary [Howard University; Piazza, Fabrice [Pontifica Universidad Catolica Madre y Maestra, Dominican Republic

    2013-01-01T23:59:59.000Z

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a single nanodiamond foil about the size of a postage stamp is critical to the entire operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control over film thickness. The results are discussed in the light of development of nanodiamond foils that will be able to withstand a few MW proton beam and hopefully will be able to be used after possible future upgrades to the SNS to greater than a 3MW beam.

  18. Creep Strength and Microstructure of Al20-25+Nb Alloy Sheets and Foils for Advanced Microturbine Recurperators

    SciTech Connect (OSTI)

    Maziasz, Philip J [ORNL; Shingledecker, John P [ORNL; Evans, Neal D [ORNL; Yamamoto, Yukinori [ORNL; More, Karren Leslie [ORNL; Trejo, Rosa M [ORNL; Lara-Curzio, Edgar [ORNL

    2007-01-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) and ATI Allegheny Ludlum worked together on a collaborative program for about two years to produce a wide range of commercial sheets and foils of the new AL20-25+Nb{trademark} (AL20-25+Nb) stainless alloy for advanced microturbine recuperator applications. There is a need for cost-effective sheets/foils with more performance and reliability at 650-750 C than 347 stainless steel, particularly for larger 200-250 kW microturbines. Phase 1 of this collaborative program produced the sheets and foils needed for manufacturing brazed plated-fin air cells, while Phase 2 provided foils for primary surface air cells, and did experiments on modified processing designed to change the microstructure of sheets and foils for improved creep-resistance. Phase 1 sheets and foils of AL20-25+Nb have much more creep-resistance than 347 steel at 700-750 C, and those foils are slightly stronger than HR120 and HR230. Results for Phase 2 showed nearly double the creep-rupture life of sheets at 750 C/100 MPa, and similar improvements in foils. Creep data show that Phase 2 foils of AL20-25+Nb alloy have creep resistance approaching that of alloy 625 foils. Testing at about 750 C in flowing turbine exhaust gas for 500 h in the ORNL Recuperator Test Facility shows that foils of AL20-25+Nb alloy have oxidation-resistance similar to HR120 alloy, and much better than 347 steel.

  19. Eutectic bonding of a Ti sputter coated, carbon aerogel wafer to a Ni foil

    SciTech Connect (OSTI)

    Jankowski, A.F.; Hayes, J.P.; Kanna, R.L.

    1994-06-01T23:59:59.000Z

    The formation of high energy density, storage devices is achievable using composite material systems. Alternate layering of carbon aerogel wafers and Ni foils with rnicroporous separators is a prospective composite for capacitor applications. An inherent problem exists to form a physical bond between Ni and the porous carbon wafer. The bonding process must be limited to temperatures less than 1000{degrees}C, at which point the aerogel begins to degrade. The advantage of a low temperature eutectic in the Ni-Ti alloy system solves this problem. Ti, a carbide former, is readily adherent as a sputter deposited thin film onto the carbon wafer. A vacuum bonding process is then used to join the Ni foil and Ti coating through eutectic phase formation. The parameters required for successfld bonding are described along with a structural characterization of the Ni foil-carbon aerogel wafer interface.

  20. Pre-Oxidized and Nitrided Stainless Steel Foil for Proton Exchange Membrane Fuel Cell Bipolar Plates: Part 2- Single-Cell Fuel Cell Evaluation of Stamped Plates

    SciTech Connect (OSTI)

    Toops, Todd J [ORNL; Brady, Michael P [ORNL; Tortorelli, Peter F [ORNL; Pihl, Josh A [ORNL; EstevezGenCell, Francisco [GenCell Corp; Connors, Dan [GenCell Corp; Garzon, Fernando [Los Alamos National Laboratory (LANL); Rockward, Tommy [Los Alamos National Laboratory (LANL); Gervasio, Don [Arizona State University; Kosaraju, S.H. [Arizona State University

    2010-01-01T23:59:59.000Z

    Thermal (gas) nitridation of stainless steel alloys can yield low interfacial contact resistance (ICR), electrically conductive and corrosion-resistant nitride containing surface layers (Cr{sub 2}N, CrN, TiN, V{sub 2}N, VN, etc.) of interest for fuel cells, batteries, and sensors. This paper presents results of proton exchange membrane (PEM) single-cell fuel cell studies of stamped and pre-oxidized/nitrided developmental Fe-20Cr-4V weight percent (wt.%) and commercial type 2205 stainless steel alloy foils. The single-cell fuel cell behavior of the stamped and pre-oxidized/nitrided material was compared to as-stamped (no surface treatment) 904L, 2205, and Fe-20Cr-4V stainless steel alloy foils and machined graphite of similar flow field design. The best fuel cell behavior among the alloys was exhibited by the pre-oxidized/nitrided Fe-20Cr-4V, which exhibited {approx}5-20% better peak power output than untreated Fe-20Cr-4V, 2205, and 904L metal stampings. Durability was assessed for pre-oxidized/nitrided Fe-20Cr-4V, 904L metal, and graphite plates by 1000+ h of cyclic single-cell fuel cell testing. All three materials showed good durability with no significant degradation in cell power output. Post-test analysis indicated no metal ion contamination of the membrane electrode assemblies (MEAs) occurred with the pre-oxidized and nitrided Fe-20Cr-4V or graphite plates, and only a minor amount of contamination with the 904L plates.

  1. Elastic Properties of Rolled Uranium -- 10 wt.% Molybdenum Nuclear Fuel Foils

    SciTech Connect (OSTI)

    D. W. Brown; D. J. Alexander; K. D. Clarke; B. Clausen; M. A. Okuniewski; T. A. Sisneros

    2013-11-01T23:59:59.000Z

    In situ neutron diffraction data was collected during elastic loading of rolled foils of uranium-10 wt.% molybdenum bonded to a thin layer of zirconium. Lattice parameters were ascertained from the diffraction patterns to determine the elastic strain and, subsequently, the elastic moduli and Poisson’s ratio in the rolling and transverse directions. The foil was found to be elastically isotropic in the rolling plane with an effective modulus of 86 + / - 3 GPa and a Poisson’s ratio 0.39 + / - 0.04.

  2. Foil cycling technique for the VESUVIO spectrometer operating in the resonance detector configuration

    SciTech Connect (OSTI)

    Schooneveld, E. M.; Mayers, J.; Rhodes, N. J.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Gorini, G.; Perelli-Cippo, E.; Tardocchi, M. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Consiglio Nazionale delle Ricerche-Istituto Nazionale per la Fisica della Materia, Universita degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Dipartimento di Fisica, Universita degli Studi di Roma 'Tor Vergata', Via della Ricerca Scientifica 1, 00133 Rome (Italy); Dipartimento di Fisica 'G. Occhialini', Universita degli Studi di Milano Bicocca, Piazza della Scienza 2, I-20126 Milan (Italy) and CNR-INFM, Universita degli Studi di Milano Bicocca, Piazza della Scienza 2, I-20126 Milan (Italy)

    2006-09-15T23:59:59.000Z

    This article reports a novel experimental technique, namely, the foil cycling technique, developed on the VESUVIO spectrometer (ISIS spallation source) operating in the resonance detector configuration. It is shown that with a proper use of two foils of the same neutron absorbing material it is possible, in a double energy analysis process, to narrow the width of the instrumental resolution of a spectrometer operating in the resonance detector configuration and to achieve an effective subtraction of the neutron and gamma backgrounds. Preliminary experimental results, obtained from deep inelastic neutron scattering measurements on lead, zirconium hydride, and deuterium chloride samples, are presented.

  3. Back contact to film silicon on metal for photovoltaic cells

    DOE Patents [OSTI]

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18T23:59:59.000Z

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  4. Tuning the Passive Structural Response of an Oscillating-foil Propulsion Mechanism for Improved Thrust Generation and Efficiency

    E-Print Network [OSTI]

    Victoria, University of

    Thrust Generation and Efficiency by Andrew James Richards B.A.Sc., The University of British Columbia of an Oscillating-foil Propulsion Mechanism for Improved Thrust Generation and Efficiency by Andrew James Richards B for the use of flexible oscillating foils which, under suitable conditions, have been demon- strated

  5. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    SciTech Connect (OSTI)

    Dutta, P., E-mail: pdutta2@central.uh.edu; Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V. [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Zheng, N.; Ahrenkiel, P. [Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701 (United States); Martinez, J. [Materials Evaluation Laboratory, NASA Johnson Space Center, Houston, Texas 77085 (United States)

    2014-09-01T23:59:59.000Z

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ?10{sup 7?}cm{sup ?2}. Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300?cm{sup 2}/V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  6. Nanorodnanosheet hierarchically structured ZnO crystals on zinc foil as flexible photoanodes for

    E-Print Network [OSTI]

    Cao, Guozhong

    for dye-sensitized solar cells Rui Gao,ab Jianjun Tian,a Zhiqiang Liang,a Qifeng Zhang,a Liduo Wang method on zinc foil and used as flexible photoanodes in dye-sensitized solar cells (DSCs). Compared of the NR­NS hierarchical structures are discussed. 1 Introduction Dye-sensitized solar cells (DSCs

  7. Direct Physical Exfoliation of Few-Layer Graphene from Graphite Grown on a Nickel Foil Using

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Direct Physical Exfoliation of Few-Layer Graphene from Graphite Grown on a Nickel Foil Using Physical graphene exfoliation from graphite using optimized PDMS PACS codes: 68.65.Pq, 81.05.ue, 81.05.uf for the site-specific direct physical exfoliation of few-layer graphene sheets from cheap and easily

  8. Preparation of high-strength nanometer scale twinned coating and foil

    DOE Patents [OSTI]

    Zhang, Xinghang (Los Alamos, NM); Misra, Amit (Los Alamos, NM); Nastasi, Michael A. (Santa Fe, NM); Hoagland, Richard G. (Santa Fe, NM)

    2006-07-18T23:59:59.000Z

    Very high strength single phase stainless steel coating has been prepared by magnetron sputtering onto a substrate. The coating has a unique microstructure of nanometer spaced twins that are parallel to each other and to the substrate surface. For cases where the coating and substrate do not bind strongly, the coating can be peeled off to provide foil.

  9. Stabilization of Electrocatalytic Metal Nanoparticles at Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points. Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene...

  10. Method for making radioactive metal articles having small dimensions

    DOE Patents [OSTI]

    Ohriner, Evan K. (Knoxville, TN)

    2000-01-01T23:59:59.000Z

    A method for making a radioactive article such as wire, includes the steps of providing a metal article having a first shape, such a cylinder, that is either radioactive itself or can be converted to a second, radioactive isotope by irradiation; melting the metal article one or more times; optionally adding an alloying metal to the molten metal in order to enhance ductility or other properties; placing the metal article having the first shape (e.g., cylindrical) into a cavity in the interior of an extrusion body (e.g., a cylinder having a cylindrical cavity therein); extruding the extrusion body and the article having the first shape located in the cavity therein, resulting in an elongated extrusion body and an article having a second shape; removing the elongated extrusion body, for example by chemical means, leaving the elongated inner article substantially intact; optionally repeating the extrusion procedure one or more times; and then drawing the elongated article to still further elongate it, into wire, foil, or another desired shape. If the starting metal is enriched in a radioactive isotope or a precursor thereof, the end product can provide a more intense radiation source than conventionally manufactured radioactive wire, foil, or the like.

  11. Development of process to transfer large areas of LPCVD graphene from copper foil to a porous support substrate

    E-Print Network [OSTI]

    O'Hern, Sean C. (Sean Carson)

    2011-01-01T23:59:59.000Z

    In this thesis, I present a procedure by which to transfer greater than 25 mm² areas of high-quality graphene synthesized via low-pressure chemical vapor deposition from copper foil to porous support substrates. Large-area, ...

  12. Fast-ion spectrometry of ICF implosions and laser-foil experiments at the omega and MTW laser facilities

    E-Print Network [OSTI]

    Sinenian, Nareg

    2013-01-01T23:59:59.000Z

    Fast ions generated from laser-plasma interactions (LPI) have been used to study inertial confinement fusion (ICF) implosions and laser-foil interactions. LPI, which vary in nature depending on the wavelength and intensity ...

  13. Creep behavior of commercial FeCrAl foils: beneficial and detrimental effect of oxidation

    SciTech Connect (OSTI)

    Dryepondt, Sebastien N [ORNL; Pint, Bruce A [ORNL; Lara-Curzio, Edgar [ORNL

    2012-01-01T23:59:59.000Z

    Creep tests were performed at 875 and 1050 C on commercially available FeCrAl foils (~50 m, 2 mil thickness) over a wide range of stress and duration to characterize their creep behavior. The oxide scales formed on the creep specimens were analyzed and compared to those that formed on unstressed specimens to assess the effect of stress and strain on oxide growth mechanisms. Below a specific stress threshold, creep rate and lifetime become independent of the applied load and rupture occurs due to the onset of breakaway oxidation. A creep rate model based on the strengthening of the FeCrAl foils due to load-bearing by the thermally-grown alumina scale was observed to be in good agreement with the experimental results.

  14. Effect of Cooling Flow on the Operation of a Hot Rotor-Gas Foil Bearing System

    E-Print Network [OSTI]

    Ryu, Keun

    2012-02-14T23:59:59.000Z

    .2 Drive end GFB: Predicted bearing static parameters ................................. 157 M.3 Free end GFB: Predicted bearing static parameters ................................... 158 1 CHAPTER I INTRODUCTION Micro gas turbine engines (<400... kW) are light-weight compact units operating at extreme temperatures and at high rotor speeds to achieve the desired power with reduced emissions [1]. Employing gas foil bearings (GFBs) in micro gas turbines increases system efficiency...

  15. Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor-like by Electrostatic Gating

    E-Print Network [OSTI]

    Zettl, Alex

    with dry nitrogen during the measurement. Sample preparation We grow single layer graphene on copper foil1 Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor electro-optic sampling.2 The focused THz beam at our graphene sample has a diameter of 1 mm. For optical

  16. Effects of pulse duration and areal density on ultrathin foil acceleration

    SciTech Connect (OSTI)

    Zhang Xiaomei; Shen Baifei; Ji Liangliang; Wang Fengchao; Wen Meng; Wang Wenpeng; Xu Jiancai; Yu Yahong [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2010-06-15T23:59:59.000Z

    The influence of laser pulse duration and areal density of target in the interaction of a circularly polarized pulse with an ultrathin overdense foil is investigated. One-dimensional particle-in-cell simulation shows that with an appropriate laser-pulse rising front, the light pressure acceleration regime is effective even though the thin foil is transparent. As the laser intensity evolves, three stages in the acceleration process can be identified: at first the total reflection of the laser pulse, followed by partial reflection, and then near total reflection again due to the Doppler effect. The influences of the rising front of laser pulse and areal density of the ultrathin foil are investigated. It is found that an optimal laser pulse rising front exists for obtaining high (saturation) ion energy with the same laser energy within a short time. An optimal areal density also exists for obtaining the highest energy. For the same laser pulse, a higher areal density or a higher density with same areal density is more appropriate for obtaining a stationary state for making light pressure acceleration mechanism more effective.

  17. Development of mirrors made of chemically tempered glass foils for future X-ray telescopes

    E-Print Network [OSTI]

    Salmaso, B; Brizzolari, B; Basso, S; Ghigo, M; Pareschi, G; Spiga, D; Proserpio, L; Suppiger, Y

    2015-01-01T23:59:59.000Z

    Thin slumped glass foils are considered good candidates for the realization of future X-ray telescopes with large effective area and high spatial resolution. However, the hot slumping process affects the glass strength, and this can be an issue during the launch of the satellite because of the high kinematical and static loads occurring during that phase. In the present work we have investigated the possible use of Gorilla glass (produced by Corning), a chemical tempered glass that, thanks to its strength characteristics, would be ideal. The un-tempered glass foils were curved by means of an innovative hot slumping technique and subsequently chemically tempered. In this paper we show that the chemical tempering process applied to Gorilla glass foils does not affect the surface micro-roughness of the mirrors. On the other end, the stress introduced by the tempering process causes a reduction in the amplitude of the longitudinal profile errors with a lateral size close to the mirror length. The effect of the ov...

  18. Metal aminoboranes

    DOE Patents [OSTI]

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya; Shrestha, Roshan P.

    2010-05-11T23:59:59.000Z

    Metal aminoboranes of the formula M(NH2BH3)n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  19. Brazing ZrO{sub 2} ceramic to Ti–6Al–4V alloy using NiCrSiB amorphous filler foil: Interfacial microstructure and joint properties

    SciTech Connect (OSTI)

    Cao, J., E-mail: cao_jian@hit.edu.cn [Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Song, X.G., E-mail: song_xiaoguohit@yahoo.com.cn [Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Li, C., E-mail: li_chun1989@yahoo.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Zhao, L.Y., E-mail: Zhao_ly@163.com [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Feng, J.C., E-mail: feng_jicai@163.com [Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China)

    2013-07-15T23:59:59.000Z

    Reliable brazing of ZrO{sub 2} ceramic and Ti–6Al–4V alloy was achieved using NiCrSiB amorphous filler foil. The interfacial microstructure of ZrO{sub 2}/Ti–6Al–4V joints was characterized by scanning electron microscope, energy dispersive spectrometer and micro-focused X-ray diffractometer. The effects of brazing temperature on the interfacial microstructure and joining properties of brazed joints were investigated in detail. Active Ti of Ti–6Al–4V alloy dissolved into molten filler metal and reacted with ZrO{sub 2} ceramic to form a continuous TiO reaction layer, which played an important role in brazing. Various reaction phases including Ti{sub 2}Ni, Ti{sub 5}Si{sub 3} and ?-Ti were formed in brazed joints. With an increasing of brazing temperature, the TiO layer thickened gradually while the Ti{sub 2}Ni amount reduced. Shear test indicated that brazed joints tend to fracture at the interface between ZrO{sub 2} ceramic and brazing seam or Ti{sub 2}Ni intermetallic layer. The maximum average shear strength reached 284.6 MPa when brazed at 1025 °C for 10 min. - Graphical Abstract: Interfacial microstructure of ZrO{sub 2}/TC4 joint brazed using NiCrSiB amorphous filler foil was: ZrO{sub 2}/TiO/Ti{sub 2}Ni + ?-Ti + Ti{sub 5}Si{sub 3}/?-Ti/Widmanstätten structure/TC4. - Highlights: • Brazing of ZrO{sub 2} ceramic and Ti-6Al-4V alloy was achieved. • Interfacial microstructure was TiO/Ti{sub 2}Ni + ? + Ti{sub 5}Si{sub 3}/?/Widmanstätten structure. • The formation of TiO produced the darkening effect of ZrO{sub 2} ceramic. • The highest joining strength of 284.6MPa was obtained.

  20. Effects of the foil flatness on the stress-strain characteristics of U10Mo alloy based monolithic mini-plates

    SciTech Connect (OSTI)

    Hakan Ozaltun; Pavel Medvedev

    2014-11-01T23:59:59.000Z

    The effects of the foil flatness on stress-strain behavior of monolithic fuel mini-plates during fabrication and irradiation were studied. Monolithic plate-type fuels are a new fuel form being developed for research and test reactors to achieve higher uranium densities. This concept facilitates the use of low-enriched uranium fuel in the reactor. These fuel elements are comprised of a high density, low enrichment, U–Mo alloy based fuel foil encapsulated in a cladding material made of Aluminum. To evaluate the effects of the foil flatness on the stress-strain behavior of the plates during fabrication, irradiation and shutdown stages, a representative plate from RERTR-12 experiments (Plate L1P756) was considered. Both fabrication and irradiation processes of the plate were simulated by using actual irradiation parameters. The simulations were repeated for various foil curvatures to observe the effects of the foil flatness on the peak stress and strain magnitudes of the fuel elements. Results of fabrication simulations revealed that the flatness of the foil does not have a considerable impact on the post fabrication stress-strain fields. Furthermore, the irradiation simulations indicated that any post-fabrication stresses in the foil would be relieved relatively fast in the reactor. While, the perfectly flat foil provided the slightly better mechanical performance, overall difference between the flat-foil case and curved-foil case was not significant. Even though the peak stresses are less affected, the foil curvature has several implications on the strain magnitudes in the cladding. It was observed that with an increasing foil curvature, there is a slight increase in the cladding strains.

  1. Development of nanodiamond foils for H- stripping to Support the Spallation Neutron Source (SNS) using hot filament chemical vapor deposition

    SciTech Connect (OSTI)

    Vispute, R D [Blue Wave Semiconductors; Ermer, Henry K [Blue Wave Semiconductors; Sinsky, Phillip [Blue Wave Semiconductors; Seiser, Andrew [Blue Wave Semiconductors; Shaw, Robert W [ORNL; Wilson, Leslie L [ORNL

    2014-01-01T23:59:59.000Z

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a small foil about the size of a postage stamp is critical to the operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control film thickness. The results are discussed in the light of development of nanodiamond foils that will be able to withstand a few MW proton beam and hopefully will be able to be used after possible future upgrades to the SNS to greater than a 3MW beam.

  2. Metal inks

    DOE Patents [OSTI]

    Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

    2014-02-04T23:59:59.000Z

    Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

  3. Relativistic Single-Cycled Short-Wavelength Laser Pulse Compressed from a Chirped Pulse Induced by Laser-Foil Interaction

    SciTech Connect (OSTI)

    Ji, L. L.; Shen, B. F.; Li, D. X.; Wang, D.; Leng, Y. X.; Zhang, X. M.; Wen, M.; Wang, W. P.; Xu, J. C.; Yu, Y. H. [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)

    2010-07-09T23:59:59.000Z

    By particle-in-cell simulation and analysis, we propose a plasma approach to generate a relativistic chirped pulse based on a laser-foil interaction. When two counterpropagating circularly polarized pulses interact with an overdense foil, the driving pulse (with a larger laser field amplitude) will accelerate the whole foil to form a double-layer structure, and the scattered pulse (with a smaller laser field amplitude) is reflected by this flying layer. Because of the Doppler effect and the varying velocity of the layer, the reflected pulse is up-shifted for frequency and chirped; thus, it could be compressed to a nearly single-cycled relativistic laser pulse with a short wavelength. Simulations show that a nearly single-cycled subfemtosecond relativistic pulse can be generated with a wavelength of 0.2 {mu}m after dispersion compensation.

  4. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09T23:59:59.000Z

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  5. D-Cluster Converter Foil for Laser-Accelerated Deuteron Beams: Towards Deuteron-Beam-Driven Fast Ignition

    SciTech Connect (OSTI)

    Miley, George H.

    2012-10-24T23:59:59.000Z

    Fast Ignition (FI) uses Petawatt laser generated particle beam pulse to ignite a small volume called a pre-compressed Inertial Confinement Fusion (ICF) target, and is the favored method to achieve the high energy gain per target burn needed for an attractive ICF power plant. Ion beams such as protons, deuterons or heavier carbon ions are especially appealing for FI as they have relative straight trajectory, and easier to focus on the fuel capsule. But current experiments have encountered problems with the 'converter-foil' which is irradiated by the Petawatt laser to produce the ion beams. The problems include depletion of the available ions in the convertor foils, and poor energy efficiency (ion beam energy/ input laser energy). We proposed to develop a volumetrically-loaded ultra-high-density deuteron deuterium cluster material as the basis for converter-foil for deuteron beam generation. The deuterons will fuse with the ICF DT while they slow down, providing an extra 'bonus' energy gain in addition to heating the hot spot. Also, due to the volumetric loading, the foil will provide sufficient energetic deuteron beam flux for 'hot spot' ignition, while avoiding the depletion problem encountered by current proton-driven FI foils. After extensive comparative studies, in Phase I, high purity PdO/Pd/PdO foils were selected for the high packing fraction D-Cluster converter foils. An optimized loading process has been developed to increase the cluster packing fraction in this type of foil. As a result, the packing fraction has been increased from 0.1% to 10% - meeting the original Phase I goal and representing a significant progress towards the beam intensities needed for both FI and pulsed neutron applications. Fast Ignition provides a promising approach to achieve high energy gain target performance needed for commercial Inertial Confinement Fusion (ICF). This is now a realistic goal for near term in view of the anticipated ICF target burn at the National Ignition Facility (NIF) in CA within a year. This will usher in the technology development Phase of ICF after years of research aimed at achieving breakeven experiment. Methods to achieve the high energy gain needed for a competitive power plant will then be a key developmental issue, and our D-cluster target for Fast Ignition (FI) is expected to meet that need.

  6. High-resolution radial Ka spectra obtained from a multi-keV electron distribution in solid-density titanium foils generated by relativistic laserematter interaction

    E-Print Network [OSTI]

    Kroupp, Eyal

    -density titanium foils generated by relativistic laserematter interaction U. Zastrau a,*, A. Sengebusch b , P s t r a c t We studied temperature and Ka yield radial profiles of thin titanium foils as a result in novel experiments generating high energy plasma in materials and will be of particular importance

  7. Ion acceleration with ultra-thin foils using elliptically polarized laser pulses This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Ion acceleration with ultra-thin foils using elliptically polarized laser pulses This article has of Physics Ion acceleration with ultra-thin foils using elliptically polarized laser pulses S G Rykovanov1 of ions with ultra-high intensity laser pulses has attracted broad interest over the last decade. The high

  8. Prism foil from an LCD monitor as a tool for teaching introductory optics This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Planin?iè, Gorazd

    Prism foil from an LCD monitor as a tool for teaching introductory optics This article has been foil from an LCD monitor as a tool for teaching introductory optics Gorazd Planinsic and Mihael used today. This paper describes the optical properties of the prism foil and several pedagogical

  9. FINDING INTERSTELLAR PARTICLE IMPACTS ON STARDUST ALUMINIUM FOILS: THE SAFE HANDLING, IMAGING AND ANALYSIS OF SAMPLES CONTAINING FEMTOGRAM RESIDUES.

    E-Print Network [OSTI]

    Particles (ISP): Impact ioni- sation detectors on a suite of spacecraft have shown the direction, velocity, flux and mass distribution of smaller ISP entering the Solar System [1]. During the aphelion segments of high magnification electron im- ages (whilst avoiding contamination of the foils) and comment

  10. Angular Distribution and Recoil Effect for 1 MeV Au+ Ions through a Si3N4 Thin Foil

    SciTech Connect (OSTI)

    Jin, Ke; Zhu, Zihua; Manandhar, Sandeep; Liu, Jia; Chen, Chien-Hung; Shutthanandan, V.; Thevuthasan, Suntharampillai; Weber, William J.; Zhang, Yanwen

    2014-03-18T23:59:59.000Z

    The Stopping and Range of Ions in Matter (SRIM) code has been widely used to predict nuclear stopping power and angular distribution of ion-solid collisions. However, experimental validation of the predictions is insufficient for slow heavy ions in nonmetallic compounds. In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) is applied to determine the angular distribution of 1 MeV Au ions after penetrating a Si3N4 foil with a thickness of ~100 nm. The exiting Au ions are collected by a Si wafer located ~14 mm behind the Si3N4 foil, and the resulting 2-dimensional distribution of Au ions on the Si wafer is measured by ToF-SIMS. The SRIM-predicted angular distribution of Au ions through the Si3N4 thin foil is compared with the measured results, indicating that SRIM slightly overestimates the nuclear stopping power by up to 10%. In addition, thickness reduction of the suspended Si3N4 foils induced by 1 MeV Au ion irradiation is observed with an average loss rate of ~107 atom/ion.

  11. Experimental measurement of the dynamics of foil targets under the impact of intense pulses of soft x radiation

    SciTech Connect (OSTI)

    Edwards, J.; Dunne, M.; Taylor, R.; Willi, O. (Blackett Laboratory, Imperial College of Science Technology and Medicine, London SW7 2BZ (United Kingdom)); Back, C.A. (Laboratoire PMI, Ecole Polytechnique, Palaiseau, CEDEX (France)); Rose, S.J. (Rutherford Appleton Laboratory, Chilton, Didcot, Oxon. OX11 0QX (United Kingdom))

    1993-11-22T23:59:59.000Z

    The dynamics of plastic foils of different thicknesses which were irradiated with intense, approximately Planckian soft-x-ray pulses, have been investigated using a high magnification (80[times]), time-resolving extreme ultraviolet (95 or 205 eV) imaging technique for the first time. The experimental results are discussed and compared with hydrocode simulations.

  12. Laser-based proton acceleration on ultra-thin foil with a 100 TW class high intensity laser system

    E-Print Network [OSTI]

    Marjoribanks, Robin S.

    of electromagnetic fields in plasma, isotopes production or hadron therapy. The 100 TW class laser systemLaser-based proton acceleration on ultra-thin foil with a 100 TW class high intensity laser system. To characterize the plasma expansion, we monitor it with an imaging technique using a femtosecond laser probe

  13. Angular distribution and recoil effect for 1 MeV Au+ ions through a Si3N4 thin foil

    SciTech Connect (OSTI)

    Jin, Ke [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Zhu, Zihua [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Manandhar, Sandeep [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Liu, Jia [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Chen, Chien-Hung [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Shutthanandan, Vaithiyalingam [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Thevuthasan, Suntharampillai [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Weber, William J [ORNL] [ORNL; Zhang, Yanwen [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The Stopping and Range of Ions in Matter (SRIM) code has been widely used to predict nuclear stopping power and angular distribution of ion-solid collisions. However, experimental validation of the predictions is insufficient for slow heavy ions in nonmetallic compounds. In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) is applied to determine the angular distribution of 1 MeV Au ions after penetrating a Si3N4 foil with a thickness of ~100 nm. The exiting Au ions are collected by a Si wafer located ~14 mm behind the Si3N4 foil, and the resulting 2-dimensional distribution of Au ions on the Si wafer is measured by ToF-SIMS. The SRIM-predicted angular distribution of Au ions through the Si3N4 thin foil is compared with the measured results, indicating that SRIM slightly overestimates the nuclear stopping power by up to 10%. In addition, thickness reduction of the suspended Si3N4 foils induced by 1 MeV Au ion irradiation is observed with an average loss rate of ~107 atom/ion.

  14. Surface Morphology and Phase Stability of Titanium Foils Irradiated by 136 MeV 136Xe

    E-Print Network [OSTI]

    S. Sadi; A. Paulenova; W. Loveland; P. R. Watson; J. P. Greene; S. Zhu; G. Zinkann

    2013-01-08T23:59:59.000Z

    A stack of titanium foils was irradiated with 136 MeV 136Xe to study microstructure damage and phase stability of titanium upon irradiation. X- ray diffraction, scanning electron microscopy/energy dispersive spectroscopy and atomic force microscopy were used to study the resulting microstructure damage and phase stability of titanium. We observed the phase transfor- mation of polycrystalline titanium from alpha-Ti (hexagonally closed packed (hcp)) to face centered cubic (fcc) after irradiation with 2.2 x 1015 ions/cm2. Irradiation of Ti with 1.8 x 1014-2.2 x 1015 ions/cm2 resulted in the forma- tion of voids, hillocks, dislocation loops, dislocation lines, as well as polygonal ridge networks.

  15. Surface Morphology and Phase Stability of Titanium Foils Irradiated by 136 MeV 136Xe

    E-Print Network [OSTI]

    Sadi, S; Loveland, W; Watson, P R; Greene, J P; Zhu, S; Zinkann, G

    2013-01-01T23:59:59.000Z

    A stack of titanium foils was irradiated with 136 MeV 136Xe to study microstructure damage and phase stability of titanium upon irradiation. X- ray diffraction, scanning electron microscopy/energy dispersive spectroscopy and atomic force microscopy were used to study the resulting microstructure damage and phase stability of titanium. We observed the phase transfor- mation of polycrystalline titanium from alpha-Ti (hexagonally closed packed (hcp)) to face centered cubic (fcc) after irradiation with 2.2 x 1015 ions/cm2. Irradiation of Ti with 1.8 x 1014-2.2 x 1015 ions/cm2 resulted in the forma- tion of voids, hillocks, dislocation loops, dislocation lines, as well as polygonal ridge networks.

  16. Modification of Thermal Emission via Metallic Photonic Crystals

    SciTech Connect (OSTI)

    Norris, David J.; Stein, Andreas; George, Steven M.

    2012-07-30T23:59:59.000Z

    Photonic crystals are materials that are periodically structured on an optical length scale. It was previously demonstrated that the glow, or thermal emission, of tungsten photonic crystals that have a specific structure - known as the 'woodpile structure' - could be modified to reduce the amount of infrared radiation from the material. This ability has implications for improving the efficiency of thermal emission sources and for thermophotovoltaic devices. The study of this effect had been limited because the fabrication of metallic woodpile structures had previously required a complex fabrication process. In this project we pursued several approaches to simplify the fabrication of metallic photonic crystals that are useful for modification of thermal emission. First, we used the self-assembly of micrometer-scale spheres into colloidal crystals known as synthetic opals. These opals can then be infiltrated with a metal and the spheres removed to obtain a structure, known as an inverse opal, in which a three-dimensional array of bubbles is embedded in a film. Second, we used direct laser writing, in which the focus of an infrared laser is moved through a thin film of photoresist to form lines by multiphoton polymerization. Proper layering of such lines can lead to a scaffold with the woodpile structure, which can be coated with a refractory metal. Third, we explored a completely new approach to modified thermal emission - thin metal foils that contain a simple periodic surface pattern, as shown in Fig. 1. When such a foil is heated, surface plasmons are excited that propagate along the metal interface. If these waves strike the pattern, they can be converted into thermal emission with specific properties.

  17. ZnO buffer layer for metal films on silicon substrates

    DOE Patents [OSTI]

    Ihlefeld, Jon

    2014-09-16T23:59:59.000Z

    Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.

  18. Metal oxide films on metal

    DOE Patents [OSTI]

    Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

    1995-01-01T23:59:59.000Z

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  19. Pleated metal bipolar assembly

    DOE Patents [OSTI]

    Wilson, Mahlon S. (Los Alamos, NM); Zawodzinski, Christine (Los Alamos, NM)

    2001-01-01T23:59:59.000Z

    A thin low-cost bipolar plate for an electrochemical cell is formed from a polymer support plate with first flow channels on a first side of the support plate and second flow channels on a second side of the support plate, where the first flow channels and second flow channels have intersecting locations and have a depth effective to form openings through the support plate at the intersecting locations. A first foil of electrically conductive material is pressed into the first flow channels. A second foil of electrically conductive material pressed into the second flow channels so that electrical contact is made between the first and second foils at the openings through the support plate. A particular application of the bipolar plate is in polymer electrolyte fuel cells.

  20. High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets

    SciTech Connect (OSTI)

    Brenner, C. M. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Robinson, A. P. L.; Markey, K.; Scott, R. H. H.; Lancaster, K. L.; Musgrave, I. O.; Spindloe, C.; Winstone, T.; Wyatt, D.; Neely, D. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Gray, R. J.; McKenna, P. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Rosinski, M.; Badziak, J.; Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, 00-908 Warsaw (Poland); Deppert, O. [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany); Batani, D. [Dipartimento di Fisica G. Occhialini, Universita di Milano Bicocca, 20126 Milan (Italy); Davies, J. R. [Laboratory for Laser Energetics, Fusion Science Center for Extreme States of Matter, University of Rochester, Rochester, New York 14623 (United States); Hassan, S. M.; Tatarakis, M. [Department of Electronics Engineering, Centre for Plasma Physics and Lasers, 73133 Chania, 74100 Rethymno, Crete (Greece); and others

    2014-02-24T23:59:59.000Z

    An all-optical approach to laser-proton acceleration enhancement is investigated using the simplest of target designs to demonstrate application-relevant levels of energy conversion efficiency between laser and protons. Controlled deposition of laser energy, in the form of a double-pulse temporal envelope, is investigated in combination with thin foil targets in which recirculation of laser-accelerated electrons can lead to optimal conditions for coupling laser drive energy into the proton beam. This approach is shown to deliver a substantial enhancement in the coupling of laser energy to 5–30?MeV protons, compared to single pulse irradiation, reaching a record high 15% conversion efficiency with a temporal separation of 1 ps between the two pulses and a 5??m-thick Au foil. A 1D simulation code is used to support and explain the origin of the observation of an optimum pulse separation of ?1 ps.

  1. Metals 2000

    SciTech Connect (OSTI)

    Allison, S.W.; Rogers, L.C.; Slaughter, G. [Oak Ridge National Lab., TN (United States); Boensch, F.D. [6025 Oak Hill Lane, Centerville, OH (United States); Claus, R.O.; de Vries, M. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1993-05-01T23:59:59.000Z

    This strategic planning exercise identified and characterized new and emerging advanced metallic technologies in the context of the drastic changes in global politics and decreasing fiscal resources. In consideration of a hierarchy of technology thrusts stated by various Department of Defense (DOD) spokesmen, and the need to find new and creative ways to acquire and organize programs within an evolving Wright Laboratory, five major candidate programs identified are: C-17 Flap, Transport Fuselage, Mach 5 Aircraft, 4.Fighter Structures, and 5. Missile Structures. These results were formed by extensive discussion with selected major contractors and other experts, and a survey of advanced metallic structure materials. Candidate structural applications with detailed metal structure descriptions bracket a wide variety of uses which warrant consideration for the suggested programs. An analysis on implementing smart skins and structures concepts is given from a metal structures perspective.

  2. Dendritic metal nanostructures

    DOE Patents [OSTI]

    Shelnutt, John A. (Tijeras, NM); Song, Yujiang (Albuquerque, NM); Pereira, Eulalia F. (Vila Nova de Gaia, PT); Medforth, Craig J. (Winters, CA)

    2010-08-31T23:59:59.000Z

    Dendritic metal nanostructures made using a surfactant structure template, a metal salt, and electron donor species.

  3. Alignment of He-Like and H-Like P-States of 48-Mev Foil Excited mg Ions

    E-Print Network [OSTI]

    Palinkas, J.; Pedrazzini, G. J.; Church, David A.; Kenefick, R. A.; Fulton, C. A.; Watson, R. L.; Wang, D. W.

    1985-01-01T23:59:59.000Z

    been measured with a pivoted plane- crystal Bragg spectrometer. Both the polarizations of these lines and the reflection properties of the ammonium dihydrogen phosphate (ADP) diffraction crystal have been determined. The o.o/o. l cross-section ratios...-section ratio. The influence of foil tilting and cascade contributions on the polari- zation were investigated experimentally and taken into account in the analysis of the measurements. I. INTRODUCTION The knowledge of the angular distribution and/or po...

  4. The feed-out process: Rayleigh-Taylor and Richtmyer-Meshkov instabilities in thin, laser-driven foils

    SciTech Connect (OSTI)

    Smitherman, D.P.

    1998-04-01T23:59:59.000Z

    Eight beams carrying a shaped pulse from the NOVA laser were focused into a hohlraum with a total energy of about 25 kJ. A planar foil was placed on the side of the hohlraum with perturbations facing away from the hohlraum. All perturbations were 4 {micro}m in amplitude and 50 {micro}m in wavelength. Three foils of pure aluminum were shot with thicknesses and pulse lengths respectively of 86 {micro}m and 2. 2 ns, 50 {micro}m and 4.5 ns, and 35 {micro}m with both 2.2 ns and 4. 5 ns pulses. Two composite foils constructed respectively of 32 and 84 {micro}m aluminum on the ablative side and 10 {micro}m beryllium on the cold surface were also shot using the 2.2 ns pulse. X-ray framing cameras recorded perturbation growth using both face- and side-on radiography. The LASNEX code was used to model the experiments. A shock wave interacted with the perturbation on the cold surface generating growth from a Richtmyer-Meshkov instability and a strong acoustic mode. The cold surface perturbation fed-out to the Rayleigh-Taylor unstable ablation surface, both by differential acceleration and interface coupling, where it grew. A density jump did not appear to have a large effect on feed-out from interface coupling. The Rayleigh-Taylor instability`s vortex pairs overtook and reversed the direction of flow of the Richtmyer-Meshkov vortices, resulting in the foil moving from a sinuous to a bubble and spike configuration. The Rayleigh-Taylor instability may have acted as an ablative instability on the hot surface, and as a classical instability on the cold surface, on which grew second and third order harmonics.

  5. Passive tailoring of laser-accelerated ion beam cut-off energy by using double foil assembly

    SciTech Connect (OSTI)

    Chen, S. N., E-mail: sophia.chen@polytechnique.edu; Brambrink, E.; Mancic, A.; Romagnani, L.; Audebert, P.; Fuchs, J., E-mail: julien.fuchs@polytechnique.fr [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-École Polytechnique-Université Paris VI, Palaiseau (France); Robinson, A. P. L. [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)] [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Antici, P. [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-École Polytechnique-Université Paris VI, Palaiseau (France) [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-École Polytechnique-Université Paris VI, Palaiseau (France); Dipartimento SBAI, Università di Roma « La Sapienza », Via Scarpa 14-16, 00165 Roma (Italy); INRS-Énergie et Matériaux, 1650 bd. L. Boulet, Varennes, J3X1S2 Québec (Canada); D'Humières, E. [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States) [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States); Centre de Physique Théorique, CNRS-Ecole Polytechnique, 91128 Palaiseau (France); University of Bordeaux—CNRS—CEA, CELIA, UMR5107, 33405 Talence (France); Gaillard, S. [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States)] [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States); Grismayer, T.; Mora, P. [Centre de Physique Théorique, CNRS-Ecole Polytechnique, 91128 Palaiseau (France)] [Centre de Physique Théorique, CNRS-Ecole Polytechnique, 91128 Palaiseau (France); Pépin, H. [INRS-Énergie et Matériaux, 1650 bd. L. Boulet, Varennes, J3X1S2 Québec (Canada)] [INRS-Énergie et Matériaux, 1650 bd. L. Boulet, Varennes, J3X1S2 Québec (Canada)

    2014-02-15T23:59:59.000Z

    A double foil assembly is shown to be effective in tailoring the maximum energy produced by a laser-accelerated proton beam. The measurements compare favorably with adiabatic expansion simulations, and particle-in-cell simulations. The arrangement proposed here offers for some applications a simple and passive way to utilize simultaneously highest irradiance lasers that have best laser-to-ion conversion efficiency while avoiding the production of undesired high-energy ions.

  6. The “accumulation effect” of positrons in the stack of foils, detected by measurements of the positron implantation profile

    SciTech Connect (OSTI)

    Dryzek, Jerzy [Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342 Kraków (Poland); Institute of Physics, Opole University, ul. Oleska 48, 45-052 Opole (Poland); Siemek, Krzysztof [Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342 Kraków (Poland)

    2013-12-14T23:59:59.000Z

    The profiles of positrons implanted from the radioactive source {sup 22}Na into a stack of foils and plates are the subject of our experimental and theoretical studies. The measurements were performed using the depth scanning of positron implantation profile method, and the theoretical calculations using the phenomenological multi-scattering model (MSM). Several stacks consisting of silver, gold and aluminum foils, and titanium and germanium plates were investigated. We notice that the MSM describes well the experimental profiles; however when the stack consisting of silver and gold foils, the backscattering and linear absorption coefficients differ significantly from those reported in the literature. We suggest the energy dependency of the backscattering coefficient for silver and gold. In the stacks which comprise titanium and germanium plates, there were observed the features, which indicate the presence of the “accumulation effect” in the experimental implantation profile. This effect was previously detected in implantation profiles in Monte Carlo simulations using the GEANT4 tool kit, and it consists in higher localization of positrons close the interface. We suppose that this effect can be essential for positron annihilation in any heterogeneous materials.

  7. Ponderomotive force on solitary structures created during radiation pressure acceleration of thin foils

    SciTech Connect (OSTI)

    Tripathi, Vipin K.; Sharma, Anamika [Department of Physics, Indian Institute of Technology, Delhi, New Delhi-110016 (India)] [Department of Physics, Indian Institute of Technology, Delhi, New Delhi-110016 (India)

    2013-05-15T23:59:59.000Z

    We estimate the ponderomotive force on an expanded inhomogeneous electron density profile, created in the later phase of laser irradiated diamond like ultrathin foil. When ions are uniformly distributed along the plasma slab and electron density obeys the Poisson's equation with space charge potential equal to negative of ponderomotive potential, ?=??{sub p}=?(mc{sup 2}/e)(??1), where ?=(1+|a|{sup 2}){sup 1/2}, and |a| is the normalized local laser amplitude inside the slab; the net ponderomotive force on the slab per unit area is demonstrated analytically to be equal to radiation pressure force for both overdense and underdense plasmas. In case electron density is taken to be frozen as a Gaussian profile with peak density close to relativistic critical density, the ponderomotive force has non-monotonic spatial variation and sums up on all electrons per unit area to equal radiation pressure force at all laser intensities. The same result is obtained for the case of Gaussian ion density profile and self consistent electron density profile, obeying Poisson's equation with ?=??{sub p}.

  8. Metal Hydrides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19,DepartmentEnergyMetalMetal

  9. Influence of Al/CuO reactive multilayer films additives on exploding foil initiator

    SciTech Connect (OSTI)

    Zhou Xiang; Shen Ruiqi; Ye Yinghua; Zhu Peng; Hu Yan; Wu Lizhi [School of Chemical Engineeering, Nanjing University of Science and Technology, Nanjing (China)

    2011-11-01T23:59:59.000Z

    An investigation on the influence of Al/CuO reactive multilayer films (RMFs) additives on exploding foil initiator was performed in this paper. Cu film and Cu/Al/CuO RMFs were produced by using standard microsystem technology and RF magnetron sputtering technology, respectively. Scanning electron microscopy characterization revealed the distinct layer structure of the as-deposited Al/CuO RMFs. Differential scanning calorimetry was employed to ascertain the amount of heat released in the thermite reaction between Al films and CuO films, which was found to be 2024 J/g. Electrical explosion tests showed that 600 V was the most matching voltage for our set of apparatus. The explosion process of two types of films was observed by high speed camera and revealed that compared with Cu film, an extra distinct combustion phenomenon was detected with large numbers of product particles fiercely ejected to a distance of about six millimeters for Cu/Al/CuO RMFs. By using the atomic emission spectroscopy double line technique, the reaction temperature was determined to be about 6000-7000 K and 8000-9000 K for Cu film and Cu/Al/CuO RMFs, respectively. The piezoelectricity of polyvinylidene fluoride film was employed to measure the average velocity of the slapper accelerated by the explosion of the films. The average velocities of the slappers were calculated to be 381 m/s and 326 m/s for Cu film and Cu/Al/CuO RMFs, respectively, and some probable reasons were discussed with a few suggestions put forward for further work.

  10. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including materials science, chemistry, and biology. Highly covalent metal-oxygen multiple bonds (metal oxos) are the building blocks of metal oxides and have a bearing...

  11. Fast electron propagation in Ti foils irradiated with sub-picosecond laser pulses at I?{sup 2}>10{sup 18}?Wcm{sup ?2}?m{sup 2}

    SciTech Connect (OSTI)

    Makita, M.; Nersisyan, G.; McKeever, K.; Dzelzainis, T.; White, S.; Kettle, B.; Dromey, B.; Doria, D.; Zepf, M.; Lewis, C. L. S.; Riley, D., E-mail: d.riley@qub.ac.uk [Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast BT7 1NN (United Kingdom); Robinson, A. P. L. [Central Laser Facility, Rutherford-Appleton Laboratory, Chilton Didcot, OX11 OQX (United Kingdom)] [Central Laser Facility, Rutherford-Appleton Laboratory, Chilton Didcot, OX11 OQX (United Kingdom); Hansen, S. B. [Sandia National Laboratory, Albuquerque, New Mexico 87123 (United States)] [Sandia National Laboratory, Albuquerque, New Mexico 87123 (United States)

    2014-02-15T23:59:59.000Z

    We have studied the propagation of fast electrons through laser irradiated Ti foils by monitoring the emission of hard X-rays and K-? radiation from bare foils and foils backed by a thick epoxy layer. Key observations include strong refluxing of electrons and divergence of the electron beam in the foil with evidence of magnetic field collimation. Our diagnostics have allowed us to estimate the fast electron temperature and fraction of laser energy converted to fast electrons. We have observed clear differences between the fast electron temperatures observed with bare and epoxy backed targets which may be due to the effects of refluxing.

  12. Spectral content of buried Ag foils at 10{sup 16} W/cm{sup 2} laser illumination

    SciTech Connect (OSTI)

    Huntington, C. M., E-mail: huntington4@llnl.gov; Maddox, B. R.; Park, H.-S.; Prisbrey, S.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2014-11-15T23:59:59.000Z

    Sources of 5–12 keV thermal He? x-rays are readily generated by laser irradiation of mid-Z foils at intensities >10{sup 14} W/cm{sup 2}, and are widely used as probes for inertial confinement fusion and high-energy-density experiments. Higher energy 17–50 keV x-ray sources are efficiently produced from “cold” K? emission using short pulse, petawatt lasers at intensities >10{sup 18} W/cm{sup 2} [H.-S. Park, B. R. Maddox et al., “High-resolution 17–75 keV backlighters for high energy density experiments,” Phys. Plasmas 15(7), 072705 (2008); B. R. Maddox, H. S. Park, B. A. Remington et al., “Absolute measurements of x-ray backlighter sources at energies above 10 keV,” Phys. Plasmas 18(5), 056709 (2011)]. However, when long pulse (>1 ns) lasers are used with Z > 30 elements, the spectrum contains contributions from both K shell transitions and from ionized atomic states. Here we show that by sandwiching a silver foil between layers of high-density carbon, the ratio of K?:He? in the x-ray spectrum is significant increased over directly illuminated Ag foils, with narrower lines from K-shell transitions. Additionally, the emission volume is more localized for the sandwiched target, producing a more planar x-ray sheet. This technique may be useful for generating probes requiring spectral purity and a limited spatial extent, for example, in incoherent x-ray Thomson scattering experiments.

  13. Alignment of He-Like and H-Like P-States of 48-Mev Foil Excited mg Ions 

    E-Print Network [OSTI]

    Palinkas, J.; Pedrazzini, G. J.; Church, David A.; Kenefick, R. A.; Fulton, C. A.; Watson, R. L.; Wang, D. W.

    1985-01-01T23:59:59.000Z

    PHYSICAL REVIEW A VOLUME 31, NUMBER 2 FEBRUARY 1985 Alignment of He- and H-like P states of 48-MeV foil-excited Mg ions J. Palinkas and G. J. Pedrazzini Cyclotron Institute, Texas Ac%M University, College Station, Texas 77843 D. A. Church and R... with known polarization, and it should be noted that synchrotron radiation presents interesting and useful possibilities in this regard. The determination of the reflectivity for unpolarized radiation is somewhat easier in the sense that it does...

  14. Ion acceleration from thin foil and extended plasma targets by slow electromagnetic wave and related ion-ion beam instability

    SciTech Connect (OSTI)

    Bulanov, S. V. [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto, 619-0215 (Japan); A. M. Prokhorov Institute of General Physics RAS, Moscow, 119991 (Russian Federation); Esirkepov, T. Zh.; Kando, M. [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto, 619-0215 (Japan); Pegoraro, F. [Physical Department, University of Pisa, Pisa 56127 (Italy); Bulanov, S. S. [University of California, Berkeley, California 94720 (United States); Geddes, C. G. R.; Schroeder, C. B.; Esarey, E. [Lawrence Berkeley National Laboratory, Berkeley, California, 94720 (United States); Leemans, W. P. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California, 94720 (United States)

    2012-10-15T23:59:59.000Z

    When ions are accelerated by the radiation pressure of a laser pulse, their velocity cannot exceed the pulse group velocity which can be considerably smaller than the speed of light in vacuum. This is demonstrated in two cases corresponding to a thin foil target irradiated by high intensity laser light and to the hole boring produced in an extended plasma by the laser pulse. It is found that the beams of accelerated ions are unstable against Buneman-like and Weibel-like instabilities which results in the broadening of the ion energy spectrum.

  15. The affect of erbium hydride on the conversion efficience to accelerated protons from ultra-shsort pulse laser irradiated foils

    SciTech Connect (OSTI)

    Offermann, D

    2008-09-04T23:59:59.000Z

    This thesis work explores, experimentally, the potential gains in the conversion efficiency from ultra-intense laser light to proton beams using erbium hydride coatings. For years, it has been known that contaminants at the rear surface of an ultra-intense laser irradiated thin foil will be accelerated to multi-MeV. Inertial Confinement Fusion fast ignition using proton beams as the igniter source requires of about 10{sup 16} protons with an average energy of about 3MeV. This is far more than the 10{sup 12} protons available in the contaminant layer. Target designs must include some form of a hydrogen rich coating that can be made thick enough to support the beam requirements of fast ignition. Work with computer simulations of thin foils suggest the atomic mass of the non-hydrogen atoms in the surface layer has a strong affect on the conversion efficiency to protons. For example, the 167amu erbium atoms will take less energy away from the proton beam than a coating using carbon with a mass of 12amu. A pure hydrogen coating would be ideal, but technologically is not feasible at this time. In the experiments performed for my thesis, ErH{sub 3} coatings on 5 {micro}m gold foils are compared with typical contaminants which are approximately equivalent to CH{sub 1.7}. It will be shown that there was a factor of 1.25 {+-} 0.19 improvement in the conversion efficiency for protons above 3MeV using erbium hydride using the Callisto laser. Callisto is a 10J per pulse, 800nm wavelength laser with a pulse duration of 200fs and can be focused to a peak intensity of about 5 x 10{sup 19}W/cm{sup 2}. The total number of protons from either target type was on the order of 10{sup 10}. Furthermore, the same experiment was performed on the Titan laser, which has a 500fs pulse duration, 150J of energy and can be focused to about 3 x 10{sup 20} W/cm{sup 2}. In this experiment 10{sup 12} protons were seen from both erbium hydride and contaminants on 14 {micro} m gold foils. Significant improvements were also observed but possibly because of the depletion of hydrogen in the contaminant layer case.

  16. A model for the symmetry breaking of the reverse Benard-von Karman vortex street produced by a flapping foil

    E-Print Network [OSTI]

    Godoy-Diana, Ramiro; Aider, Jean-Luc; Wesfreid, José Eduardo

    2008-01-01T23:59:59.000Z

    The vortex streets produced by a flapping foil of span-to-chord aspect ratio of 4:1 are studied in a hydrodynamic tunnel experiment. In particular, the mechanisms giving rise to the symmetry breaking of the reverse B\\'enard-von K\\'arm\\'an vortex street that characterizes fish-like swimming and forward flapping flight are examined. Two-dimensional particle image velocimetry measurements in the mid-plane perpendicular to the span axis of the foil are used to characterize the different flow regimes. The deflection angle of the mean jet flow with respect to the horizontal observed in the average velocity field is used as a measure of the asymmetry of the vortex street. Time series of the vorticity field are used to calculate the advection velocity of the vortices with respect to the free-stream, defined as the phase velocity $U_{phase}$, as well as the circulation $\\Gamma$ of each vortex and the spacing $\\xi$ between consecutive vortices in the near wake. The observation that the symmetry breaking results from th...

  17. JOURNAL DE PHYSIQUE Colloque C1, supplgment au no2, Tome 40,fgvrier 1979,page C1-295 POLARIZATION MEASUREMENTS OF TWO He I TRANSITIONS USING BEAM-TILTED-FOIL EXCITATION*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    these measure- ments, for at least two transitions, to try to establish a trend through as large a foil tilt be rotated by a step- ping motor with reproducibility of axis position of 0.1'. The entrance and exit slits acquisition and experimental control have been previously described.' Nominally 5 ug/cm2 carbon foils were

  18. THE HIGH TEMPERATURE BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE.

    E-Print Network [OSTI]

    Yang, Rosa Lu.

    2010-01-01T23:59:59.000Z

    furnace Tungsten Crucible Rhenium Foil Black Body Hole U 0 Wafer Tungsten Powders U 0 Pellet Tantalum

  19. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25T23:59:59.000Z

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  20. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Phelps, Cindy (Moscow, ID)

    1997-01-01T23:59:59.000Z

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  1. Fabricating Dielectric Ceramic Films on Copper Foils (IN-09-006) - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederalFY 2008 FOIAFabricated Metals (2010

  2. TITLE: Identification of Possible Interstellar Dust Impact Craters on Stardust Foil I033N,1 P43A. Extraterrestrial Dust: Laboratory Analysis of Mission-Returned Samples and

    E-Print Network [OSTI]

    a particle that impacted the spacecraft's solar panels. TEM/EDS analysis determined the presence of solar on Stardust Foil I033N,1 SESSION TYPE: Poster; SESSION TITLE: P43A. Extraterrestrial Dust: Laboratory Analysis. Contamination was monitored according to the ISPE protocol: four 4 µm ! 3 µm areas of C layers of different

  3. Neutron Diffraction Measurement of Residual Stresses, Dislocation Density and Texture in Zr-bonded U-10Mo “Mini” Fuel Foils and Plates

    SciTech Connect (OSTI)

    Brown, Donald W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Okuniewski, M. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sisneros, Thomas A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clausen, Bjorn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moore, G. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Balogh, L [Queen's Univ., Kingston, ON (Canada)

    2014-08-07T23:59:59.000Z

    Aluminum clad monolithic uranium 10 weight percent molybdenum (U-10Mo) fuel plates are being considered for conversion of several research and test nuclear reactors from high-enriched to low-enriched uranium fuel due to the inherently high density of fissile material. Comprehensive neutron diffraction measurements of the evolution of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the HIP procedure significantly reduces the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stresses in the clad fuel plate do not depend strongly on the final processing step of the bare foil prior to HIP boding. Rather, the residual stresses are dominated by the thermal expansion mismatch of the constituent materials of the fuel plate.

  4. Metal-phosphate binders

    DOE Patents [OSTI]

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12T23:59:59.000Z

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  5. Time-of-flight secondary ion mass spectrometry with transmission of energetic primary cluster ions through foil targets

    SciTech Connect (OSTI)

    Hirata, K., E-mail: k.hirata@aist.go.jp [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Saitoh, Y.; Chiba, A.; Yamada, K.; Matoba, S.; Narumi, K. [Takasaki Advanced Radiation Research Institute (TARRI), Japan Atomic Energy Agency (JAEA), Takasaki, Gumma 370-1292 (Japan)] [Takasaki Advanced Radiation Research Institute (TARRI), Japan Atomic Energy Agency (JAEA), Takasaki, Gumma 370-1292 (Japan)

    2014-03-15T23:59:59.000Z

    We developed time-of-flight (TOF) secondary ion (SI) mass spectrometry that provides informative SI ion mass spectra without needing a sophisticated ion beam pulsing system. In the newly developed spectrometry, energetic large cluster ions with energies of the order of sub MeV or greater are used as primary ions. Because their impacts on the target surface produce high yields of SIs, the resulting SI mass spectra are informative. In addition, the start signals necessary for timing information on primary ion incidence are provided by the detection signals of particles emitted from the rear surface of foil targets upon transmission of the primary ions. This configuration allows us to obtain positive and negative TOF SI mass spectra without pulsing system, which requires precise control of the primary ions to give the spectra with good mass resolution. We also successfully applied the TOF SI mass spectrometry with energetic cluster ion impacts to the chemical structure characterization of organic thin film targets.

  6. Monoenergetic acceleration of a target foil by circularly polarized laser pulse in RPA regime without thermal heating

    SciTech Connect (OSTI)

    Khudik, V.; Yi, S. A.; Siemon, C.; Shvets, G. [Department of Physics and Institute for Fusion Studies, University of Texas at Austin, One University Station C1500, Austin, Texas 78712 (United States)

    2012-12-21T23:59:59.000Z

    A kinetic model of the monoenergetic acceleration of a target foil irradiated by the circularly polarized laser pulse is developed. The target moves without thermal heating with constant acceleration which is provided by chirping the frequency of the laser pulse and correspondingly increasing its intensity. In the accelerated reference frame, bulk plasma in the target is neutral and its parameters are stationary: cold ions are immobile while nonrelativistic electrons bounce back and forth inside the potential well formed by ponderomotive and electrostatic potentials. It is shown that a positive charge left behind of the moving target in the ion tail and a negative charge in front of the target in the electron sheath form a capacitor whose constant electric field accelerates the ions of the target. The charge separation is maintained by the radiation pressure pushing electrons forward. The scalings of the target thickness and electromagnetic radiation with the electron temperature are found.

  7. Metal Hydrides - Science Needs

    Broader source: Energy.gov (indexed) [DOE]

    with traditions in metal hydride research Metal and Ceramic Sciences Condensed Matter Physics Materials Chemistry Chemical and Biological Sciences Located on campus of Tier...

  8. CX-011470: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Digestion analysis of copper foil and silicon carbide samples CX(s) Applied: B3.6 Date: 11/26/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  9. Heavy metal biosensor

    SciTech Connect (OSTI)

    Hillson, Nathan J; Shapiro, Lucille; Hu, Ping; Andersen, Gary L

    2014-04-15T23:59:59.000Z

    Compositions and methods are provided for detection of certain heavy metals using bacterial whole cell biosensors.

  10. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01T23:59:59.000Z

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  11. Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P.

    2011-01-11T23:59:59.000Z

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K/s) using differential scanning calorimetry (DSC) traces to 725ºC. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 105 K/s) in high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (Tmax) are largely independent of foil chemistry at 0.6 ± 0.1 m/s and 1220 ± 50 K, respectively, and that the measured Tmax is more than 200 K lower than predicted adiabatic temperatures (Tad). The difference between Tmax and Tad is explained by the prediction that transformation to the final intermetallic phases occurs after Tmax and results in the release of 20-30 % of the total heat of reaction and a delay in rapid cooling.

  12. Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P.

    2011-01-11T23:59:59.000Z

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K/s) using differential scanning calorimetry (DSC) traces to 725ºC. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 105 K/s) inmore »high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (Tmax) are largely independent of foil chemistry at 0.6 ± 0.1 m/s and 1220 ± 50 K, respectively, and that the measured Tmax is more than 200 K lower than predicted adiabatic temperatures (Tad). The difference between Tmax and Tad is explained by the prediction that transformation to the final intermetallic phases occurs after Tmax and results in the release of 20-30 % of the total heat of reaction and a delay in rapid cooling.« less

  13. Metal phthalocyanine catalysts

    DOE Patents [OSTI]

    Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

    1994-01-01T23:59:59.000Z

    As a new composition of matter, alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  14. Liquid Metal Transformers

    E-Print Network [OSTI]

    Sheng, Lei; Liu, Jing

    2014-01-01T23:59:59.000Z

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clar...

  15. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, Paul O. (Golden, CO); Kennedy, Cheryl E. (Lafayette, CO); Jorgensen, Gary J. (Pine, CO); Shinton, Yvonne D. (Northglenn, CO); Goggin, Rita M. (Englewood, CO)

    1994-01-01T23:59:59.000Z

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  16. PHYTOEXTRACTION OF HEAVY METALS

    E-Print Network [OSTI]

    Blouin-Demers, Gabriel

    Plants Chelating agents Pb hyperaccumulation Effects of pH on metal extraction Disposal options contaminants from soils Contaminants must be in harvestable portions of the plant (Wongkongkatep et al. 2003) Chelating Agents: desorb heavy metals from soil matrix and form water-soluble metal complexes (Shen et al

  17. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01T23:59:59.000Z

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  18. Liquid Metal Transformers

    E-Print Network [OSTI]

    Lei Sheng; Jie Zhang; Jing Liu

    2014-01-30T23:59:59.000Z

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clarified. Such events are hard to achieve otherwise on rigid metal or conventional liquid spheres. This finding has both fundamental and practical significances which suggest a generalized way of making smart soft machine, collecting discrete metal fluids, as well as flexibly manipulating liquid metal objects including accompanying devices.

  19. Extraction process for removing metallic impurities from alkalide metals

    DOE Patents [OSTI]

    Royer, Lamar T. (Knoxville, TN)

    1988-01-01T23:59:59.000Z

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  20. Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    SciTech Connect (OSTI)

    Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P.

    2011-01-11T23:59:59.000Z

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K/s) using differential scanning calorimetry (DSC) traces to 725ºC. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 105 K/s) in high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (Tmax) are largely independent of foil chemistry at 0.6 ± 0.1 m/s and 1220 ± 50 K, respectively, and that the measured Tmax is more than 200 K lower than predicted adiabatic temperatures (Tad). The difference between Tmax and Tad is explained by the prediction that transformation to the final intermetallic phases occurs after Tmax and results in the release of 20-30 % of the total heat of reaction and a delay in rapid cooling.

  1. Metal atomization spray nozzle

    DOE Patents [OSTI]

    Huxford, T.J.

    1993-11-16T23:59:59.000Z

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  2. Heavy Metal Humor: Reconsidering Carnival in Heavy Metal Culture

    E-Print Network [OSTI]

    Powell, Gary Botts

    2013-06-05T23:59:59.000Z

    This thesis considers Bakhtin?s carnivalesque theory by analyzing comedic rhetoric performed by two comedic metal bands. Through the theories of Johan Huizinga and Mikhail Bakhtin, Chapter I: I Play Metal argues that heavy metal culture is a modern...

  3. Transition Metal Dopants Essential for Producing Ferromagnetism...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Dopants Essential for Producing Ferromagnetism in Metal Oxide Nanoparticles. Transition Metal Dopants Essential for Producing Ferromagnetism in Metal Oxide Nanoparticles....

  4. Metal roofing Shingle roofing

    E-Print Network [OSTI]

    Hutcheon, James M.

    Metal roofing panel Shingle roofing Water & ice barrier Thermal Barrier Plywood Student: Arpit between the roof and the attic. · Apply modifications to traditional roofing assembly and roofing roof with only a water barrier between the plywood and the roofing panels. Metal roofing panel Shingle

  5. Porous metallic bodies

    DOE Patents [OSTI]

    Landingham, R.L.

    1984-03-13T23:59:59.000Z

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides a

  6. Production of magnesium metal

    DOE Patents [OSTI]

    Blencoe, James G. (Harriman, TN) [Harriman, TN; Anovitz, Lawrence M. (Knoxville, TN) [Knoxville, TN; Palmer, Donald A. (Oliver Springs, TN) [Oliver Springs, TN; Beard, James S. (Martinsville, VA) [Martinsville, VA

    2010-02-23T23:59:59.000Z

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  7. Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils

    SciTech Connect (OSTI)

    A. J. Caffrey; C. L. Ridle

    2010-10-01T23:59:59.000Z

    The development of BiPo detectors is dedicated to the measurement of extremely high radiopurity in 208Tl and 214Bi for the SuperNEMO double beta decay source foils. A modular prototype, called BiPo-1, with 0.8m2 of sensitive surface area, has been running in the Modane Underground Laboratory since February, 2008. The goal of BiPo-1 is to measure the different components of the background and in particular the surface radiopurity of the plastic scintillators that make up the detector. The first phase of data collection has been dedicated to the measurement of the radiopurity in 208Tl. After more than one year of background measurement, a surface activity of the scintillators of Að208TlÞ ¼ 1:5mBq=m2 is reported here. Given this level of background, a larger BiPo detector having 12m2 of active surface area, is able to qualify the radiopurity of the SuperNEMO selenium double beta decay foils with the required sensitivity of Að208TlÞo2mBq=kg (90% C.L.) with a six month measurement.

  8. Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils

    E-Print Network [OSTI]

    Argyriades, J; Augier, C; Baker, J; Barabash, A S; Basharina-Freshville, A; Bongrand, M; Bourgeois, C; Breton, D; Briére, M; Broudin-Bay, G; Brudanin, V B; Caffrey, A J; Cebrián, S; Chapon, A; Chauveau, E; Dafni, Th; Díaz, J; Durand, D; Egorov, V G; Evans, J J; Flack, R; Fushima, K-I; Irastorza, I G; Garrido, X; Gómez, H; Guillon, B; Holin, A; Holy, K; Horkey, J J; Hubert, P; Hugon, C; Iguaz, F J; Ishihara, N; Jackson, C M; Jenzer, S; Jullian, S; Kauer, M; Kochetov, O I; Konovalov, S I; Kovalenko, V; Lamhamdi, T; Lang, K; Lemiére, Y; Lutter, G; Luzón, G; Mamedov, F; Marquet, Ch; Mauger, F; Monrabal, F; Nachab, A; Nemchenok, I B; Nguyen, C H; Nomachi, M; Nova, F; Ohsumi, H; Pahlka, R B; Perrot, F; Piquemal, F; Povinec, P P; Richards, B; Ricol, J S; Riddle, C L; Rodríguez, A; Saakyan, R; Sarazin, X; Sedgbeer, J K; Serra, L; Shitov, Yu A; Simard, L; Šimkovic, F; Söldner-Rembold, S; Štekl, I; Sutton, C S; Tamagawa, Y; Szklarz, G; Thomas, J; Timkin, V; Tretyak, V; Tretyak, Vl I; Umatov, V I; Vála, L; Vanyushin, I A; Vasiliev, R; Vasiliev, V A; Vorobel, V; Waters, D; Yahali, N; Žukauskas, A

    2010-01-01T23:59:59.000Z

    The development of BiPo detectors is dedicated to the measurement of extremely high radiopurity in $^{208}$Tl and $^{214}$Bi for the SuperNEMO double beta decay source foils. A modular prototype, called BiPo-1, with 0.8 $m^2$ of sensitive surface area, has been running in the Modane Underground Laboratory since February, 2008. The goal of BiPo-1 is to measure the different components of the background and in particular the surface radiopurity of the plastic scintillators that make up the detector. The first phase of data collection has been dedicated to the measurement of the radiopurity in $^{208}$Tl. After more than one year of background measurement, a surface activity of the scintillators of $\\mathcal{A}$($^{208}$Tl) $=$ 1.5 $\\mu$Bq/m$^2$ is reported here. Given this level of background, a larger BiPo detector having 12 m$^2$ of active surface area, is able to qualify the radiopurity of the SuperNEMO selenium double beta decay foils with the required sensitivity of $\\mathcal{A}$($^{208}$Tl) $<$ 2 $\\mu$...

  9. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOE Patents [OSTI]

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03T23:59:59.000Z

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  10. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14T23:59:59.000Z

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  11. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, N.N.; Watkin, J.G.

    1992-03-24T23:59:59.000Z

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  12. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, Nancy N. (Los Alamos, NM); Watkin, John G. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  13. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  14. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  15. Transition Metal Switchable Mirror

    SciTech Connect (OSTI)

    None

    2009-01-01T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  16. Transition Metal Switchable Mirror

    SciTech Connect (OSTI)

    2009-08-21T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  17. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  18. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOE Patents [OSTI]

    Coops, Melvin S. (Livermore, CA)

    1992-01-01T23:59:59.000Z

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  19. Divalent metal nanoparticles

    E-Print Network [OSTI]

    DeVries, Gretchen Anne

    2008-01-01T23:59:59.000Z

    Metal nanoparticles hold promise for many scientific and technological applications, such as chemical and biological sensors, vehicles for drug delivery, and subdiffraction limit waveguides. To fabricate such devices, a ...

  20. Production of magnesium metal

    DOE Patents [OSTI]

    Blencoe, James G. (Harriman, TN); Anovitz, Lawrence M. (Knoxville, TN); Palmer, Donald A. (Oliver Springs, TN); Beard, James S. (Martinsville, VA)

    2012-04-10T23:59:59.000Z

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

  1. Functionalized Silicone Nanospheres: Synthesis, Transition Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functionalized Silicone Nanospheres: Synthesis, Transition Metal Immobilization, and Catalytic Applications. Functionalized Silicone Nanospheres: Synthesis, Transition Metal...

  2. Molten metal reactors

    DOE Patents [OSTI]

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

    2013-11-05T23:59:59.000Z

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  3. CX-008615: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-008615: Categorical Exclusion Determination Cleaning of Depleted Uranium Metal CX(s) Applied: B3.6 Date: 06262012 Location(s): South Carolina...

  4. Method for forming metal contacts

    DOE Patents [OSTI]

    Reddington, Erik; Sutter, Thomas C; Bu, Lujia; Cannon, Alexandra; Habas, Susan E; Curtis, Calvin J; Miedaner, Alexander; Ginley, David S; Van Hest, Marinus Franciscus Antonius Maria

    2013-09-17T23:59:59.000Z

    Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.

  5. Efficient laser-induced 6-8 keV x-ray production from iron oxide aerogel and foil-lined cavity targets

    SciTech Connect (OSTI)

    Perez, F.; Kay, J. J.; Patterson, J. R.; Kane, J.; May, M.; Emig, J.; Colvin, J.; Gammon, S.; Satcher, J. H. Jr.; Fournier, K. B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Villette, B.; Girard, F.; Reverdin, C. [CEA DAM DIF, F-91297 Arpajon (France); Sorce, C. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); University of Rochester - Laboratory for Laser Energetics, 250 E. River Rd, Rochester, New York 14623-1299 (United States); Jaquez, J. [General Atomics, San Diego, California 92121 (United States)

    2012-08-15T23:59:59.000Z

    The performance of new iron-based laser-driven x-ray sources has been tested at the OMEGA laser facility for production of x rays in the 6.5-8.5 keV range. Two types of targets were experimentally investigated: low-density iron oxide aerogels (density 6-16 mg/cm{sup 3}) and stainless steel foil-lined cavity targets (steel thickness 1-5 {mu}m). The targets were irradiated by 40 beams of the OMEGA laser (500 J/beam, 1 ns pulse, wavelength 351 nm). All targets showed good coupling with the laser, with <5% of the incident laser light backscattered by the resulting plasma in all cases (typically <2.5%). The aerogel targets produced T{sub e}=2 to 3 keV, n{sub e}=0.12-0.2 critical density plasmas yielding a 40%-60% laser-to-x-ray total conversion efficiency (CE) (1.2%-3% in the Fe K-shell range). The foil cavity targets produced T{sub e}{approx} 2 keV, n{sub e}{approx} 0.15 critical density plasmas yielding a 60%-75% conversion efficiency (1.6%-2.2% in the Fe K-shell range). Time-resolved images illustrate that the volumetric heating of low-density aerogels allow them to emit a higher K-shell x-ray yield even though they contain fewer Fe atoms. However, their challenging fabrication process leads to a larger shot-to-shot variation than cavity targets.

  6. High-Temperature Zirconia Oxygen Sensor with Sealed Metal/Metal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference...

  7. SISGR - In situ characterization and modeling of formation reactions under extreme heating rates in nanostructured multilayer foils

    SciTech Connect (OSTI)

    Hufnagel, Todd C.

    2014-06-09T23:59:59.000Z

    Materials subjected to extreme conditions, such as very rapid heating, behave differently than materials under more ordinary conditions. In this program we examined the effect of rapid heating on solid-state chemical reactions in metallic materials. One primary goal was to develop experimental techniques capable of observing these reactions, which can occur at heating rates in excess of one million degrees Celsius per second. One approach that we used is x-ray diffraction performed using microfocused x-ray beams and very fast x-ray detectors. A second approach is the use of a pulsed electron source for dynamic transmission electron microscopy. With these techniques we were able to observe how the heating rate affects the chemical reaction, from which we were able to discern general principles about how these reactions proceed. A second thrust of this program was to develop computational tools to help us understand and predict the reactions. From atomic-scale simulations were learned about the interdiffusion between different metals at high heating rates, and about how new crystalline phases form. A second class of computational models allow us to predict the shape of the reaction front that occurs in these materials, and to connect our understanding of interdiffusion from the atomistic simulations to measurements made in the laboratory. Both the experimental and computational techniques developed in this program are expected to be broadly applicable to a wider range of scientific problems than the intermetallic solid-state reactions studied here. For example, we have already begun using the x-ray techniques to study how materials respond to mechanical deformation at very high rates.

  8. Metallic coating of microspheres

    SciTech Connect (OSTI)

    Meyer, S.F.

    1980-08-15T23:59:59.000Z

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates.

  9. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, Haskell (Los Alamos, NM)

    1986-01-01T23:59:59.000Z

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  10. Hard metal composition

    DOE Patents [OSTI]

    Sheinberg, H.

    1983-07-26T23:59:59.000Z

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  11. Metal alloy identifier

    DOE Patents [OSTI]

    Riley, William D. (Avondale, MD); Brown, Jr., Robert D. (Avondale, MD)

    1987-01-01T23:59:59.000Z

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  12. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliancesTrending: Metal Oxo Bonds Print Metal

  13. Wick for metal vapor laser

    DOE Patents [OSTI]

    Duncan, David B. (Livermore, CA)

    1992-01-01T23:59:59.000Z

    An improved wick for a metal vapor laser is made of a refractory metal cylinder, preferably molybdenum or tungsten for a copper laser, which provides the wicking surface. Alternately, the inside surface of the ceramic laser tube can be metalized to form the wicking surface. Capillary action is enhanced by using wire screen, porous foam metal, or grooved surfaces. Graphite or carbon, in the form of chunks, strips, fibers or particles, is placed on the inside surface of the wick to reduce water, reduce metal oxides and form metal carbides.

  14. Lithium Metal Anodes for Rechargeable Batteries. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

  15. Metallicity and Quasar Outflows

    E-Print Network [OSTI]

    Wang, Huiyuan; Yuan, Weimin; Wang, Tinggui

    2012-01-01T23:59:59.000Z

    Correlations are investigated of the outflow strength of quasars, as measured by the blueshift and asymmetry index (BAI) of the CIV line (Wang et al. 2011), with intensities and ratios of broad emission lines, based on composite quasar spectra built from the Sloan Digital Sky Survey. We find that most of the line ratios of other ions to CIV prominently increases with BAI. These behaviors can be well understood in the context of increasing metallicity with BAI. The strength of dominant coolant, CIV line, decreases and weak collisionally excited lines increase with gas metallicity as a result of the competition between different line coolants. Using SiIV+OIV]/CIV as an indicator of gas metallicity, we present, for the first time, a strong correlation between the metallicitiy and the outflow strength of quasars over a wide range of 1.7 to 6.9 times solar abundance. Our result implies that the metallicity plays an important role in the formation of quasar outflows, likely via affecting outflow acceleration. This ...

  16. Ductile transplutonium metal alloys

    DOE Patents [OSTI]

    Conner, W.V.

    1981-10-09T23:59:59.000Z

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  17. Speed of Sound in metal Speed of Sound in metal

    E-Print Network [OSTI]

    Yu, Jaehoon

    the metal rod and metal bar. 2. Acquire a metal bar or rod and measure its mass. Use the meter stick and measure and record the length in meters. Use the vernier calipers and measure the other dimensionBar Select the Smart Tool. Position the Smart tool so that the vertical line bisects the pulse. The (x

  18. Method of producing adherent metal oxide coatings on metallic surfaces

    DOE Patents [OSTI]

    Lane, Michael H. (Clifton Park, NY); Varrin, Jr., Robert D. (McLean, VA)

    2001-01-01T23:59:59.000Z

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  19. Calixarene supported transition metal clusters 

    E-Print Network [OSTI]

    Taylor, Stephanie Merac

    2013-06-29T23:59:59.000Z

    This thesis describes a series of calix[n]arene polynuclear transition metal and lanthanide complexes. Calix[4]arenes possess lower-rim polyphenolic pockets that are ideal for the complexation of various transition metal ...

  20. Electroless metal plating of plastics

    DOE Patents [OSTI]

    Krause, Lawrence J. (Chicago, IL)

    1984-01-01T23:59:59.000Z

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  1. Electroless metal plating of plastics

    DOE Patents [OSTI]

    Krause, L.J.

    1982-09-20T23:59:59.000Z

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  2. Electroless metal plating of plastics

    DOE Patents [OSTI]

    Krause, Lawrence J. (Chicago, IL)

    1986-01-01T23:59:59.000Z

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  3. Upgrading platform using alkali metals

    DOE Patents [OSTI]

    Gordon, John Howard

    2014-09-09T23:59:59.000Z

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  4. Methods of recovering alkali metals

    DOE Patents [OSTI]

    Krumhansl, James L; Rigali, Mark J

    2014-03-04T23:59:59.000Z

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  5. Fabrication of metallic glass structures

    DOE Patents [OSTI]

    Cline, C.F.

    1983-10-20T23:59:59.000Z

    Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature regime.

  6. Integrated decontamination process for metals

    DOE Patents [OSTI]

    Snyder, Thomas S. (Oakmont, PA); Whitlow, Graham A. (Murrysville, PA)

    1991-01-01T23:59:59.000Z

    An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.

  7. Automated Immobilized Metal Affinity Chromatography System for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Immobilized Metal Affinity Chromatography System for Enrichment of Escherichia coli Phosphoproteome. Automated Immobilized Metal Affinity Chromatography System for Enrichment of...

  8. Spray casting of metallic preforms

    DOE Patents [OSTI]

    Flinn, John E. (Idaho Falls, ID); Burch, Joseph V. (Shelley, ID); Sears, James W. (Niskayuna, NY)

    2000-01-01T23:59:59.000Z

    A metal alloy is melted in a crucible and ejected from the bottom of the crucible as a descending stream of molten metal. The descending stream is impacted with a plurality of primary inert gas jets surrounding the molten metal stream to produce a plume of atomized molten metal droplets. An inert gas is blown onto a lower portion of the plume with a plurality of auxiliary inert gas jets to deflect the plume into a more restricted pattern of high droplet density, thereby substantially eliminating unwanted overspray and resulting wasted material. The plume is projected onto a moving substrate to form a monolithic metallic product having generally parallel sides.

  9. Functional Metal Phosphonates

    E-Print Network [OSTI]

    Perry, Houston Phillipp

    2012-02-14T23:59:59.000Z

    ......................................................... 39 12 Zr6 prepared at 205 ?C with HF as a solubilizing agent ................................ 43 13 Layered structure of Zn(O3PC6H4CN)(H2O) and Mn(O3PC6H4CN)(H2O) viewed along the c-axis. The coordinating water molecules are between... acid groups form hydrogen-bonded pairs in in Zn(O3PC6H4CO2H)(H2O) and Mn(O3PC6H4CO2H)(H2O). ..................... 55 15 Inorganic layered structure common to divalent metal phosphonates. Octahedral metal ions are coordinated by five phosphonate...

  10. FLUIDIC: Metal Air Recharged

    ScienceCinema (OSTI)

    Friesen, Cody

    2014-04-02T23:59:59.000Z

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  11. FLUIDIC: Metal Air Recharged

    SciTech Connect (OSTI)

    Friesen, Cody

    2014-03-07T23:59:59.000Z

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  12. Metal enrichment processes

    E-Print Network [OSTI]

    S. Schindler; A. Diaferio

    2008-01-07T23:59:59.000Z

    There are many processes that can transport gas from the galaxies to their environment and enrich the environment in this way with metals. These metal enrichment processes have a large influence on the evolution of both the galaxies and their environment. Various processes can contribute to the gas transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy interactions and others. We review their observational evidence, corresponding simulations, their efficiencies, and their time scales as far as they are known to date. It seems that all processes can contribute to the enrichment. There is not a single process that always dominates the enrichment, because the efficiencies of the processes vary strongly with galaxy and environmental properties.

  13. Corrosion protective coating for metallic materials

    DOE Patents [OSTI]

    Buchheit, Rudolph G. (Albuquerque, NM); Martinez, Michael A. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds.

  14. Corrosion protective coating for metallic materials

    DOE Patents [OSTI]

    Buchheit, R.G.; Martinez, M.A.

    1998-05-26T23:59:59.000Z

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

  15. Hydrothermal alkali metal recovery process

    DOE Patents [OSTI]

    Wolfs, Denise Y. (Houston, TX); Clavenna, Le Roy R. (Baytown, TX); Eakman, James M. (Houston, TX); Kalina, Theodore (Morris Plains, NJ)

    1980-01-01T23:59:59.000Z

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  16. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect (OSTI)

    Dr. Ramana Reddy

    2012-04-12T23:59:59.000Z

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode. Successful extraction of metal from metal oxide dissolved in Urea/ChCl (2:1) was accomplished. The current efficiencies were relatively high in both the metal deposition processes with current efficiency greater than 86% for lead and 95% for zinc. This technology will advance the metal oxide reduction process by increasing the process efficiency and also eliminate the production of CO2 which makes this an environmentally benign technology for metal extraction.

  17. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z Site Map OrganizationFAQTrending: Metal Oxo

  18. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z Site Map OrganizationFAQTrending: Metal

  19. METALS DESIGN HANDBOOK DISCLAIMER

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamics in807 DE899 06 Revision 0 METALS

  20. Trending: Metal Oxo Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliancesTrending: Metal Oxo Bonds Print

  1. Metal coupled emission process

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMayEnergy Metal Organic Heat Carrierscom,

  2. Metal to ceramic sealed joint

    DOE Patents [OSTI]

    Lasecki, John V. (Livonia, MI); Novak, Robert F. (Farmington Hills, MI); McBride, James R. (Ypsilanti, MI)

    1991-01-01T23:59:59.000Z

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system.

  3. Metal to ceramic sealed joint

    DOE Patents [OSTI]

    Lasecki, J.V.; Novak, R.F.; McBride, J.R.

    1991-08-27T23:59:59.000Z

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system. 11 figures.

  4. Supported molten-metal catalysts

    DOE Patents [OSTI]

    Datta, Ravindra (Iowa City, IA); Singh, Ajeet (Iowa City, IA); Halasz, Istvan (Iowa City, IA); Serban, Manuela (Iowa City, IA)

    2001-01-01T23:59:59.000Z

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  5. Metals removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C. (Pleasanton, CA); Von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Brummond, William A. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

    2002-01-01T23:59:59.000Z

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  6. Method for preparing porous metal hydride compacts

    DOE Patents [OSTI]

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21T23:59:59.000Z

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  7. Method for preparing porous metal hydride compacts

    DOE Patents [OSTI]

    Ron, Moshe (Haifa, IL); Gruen, Dieter M. (Downers Grove, IL); Mendelsohn, Marshall H. (Woodridge, IL); Sheft, Irving (Oak Park, IL)

    1981-01-01T23:59:59.000Z

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  8. Metal-ceramic joint assembly

    DOE Patents [OSTI]

    Li, Jian (New Milford, CT)

    2002-01-01T23:59:59.000Z

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  9. Corrosion-resistant metal surfaces

    DOE Patents [OSTI]

    Sugama, Toshifumi (Wading River, NY)

    2009-03-24T23:59:59.000Z

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  10. Metal deposition using seed layers

    DOE Patents [OSTI]

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12T23:59:59.000Z

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  11. Magnetic metallic multilayers

    SciTech Connect (OSTI)

    Hood, R.Q.

    1994-04-01T23:59:59.000Z

    Utilizing self-consistent Hartree-Fock calculations, several aspects of multilayers and interfaces are explored: enhancement and reduction of the local magnetic moments, magnetic coupling at the interfaces, magnetic arrangements within each film and among non-neighboring films, global symmetry of the systems, frustration, orientation of the various moments with respect to an outside applied field, and magnetic-field induced transitions. Magnetoresistance of ferromagnetic-normal-metal multilayers is found by solving the Boltzmann equation. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by an external magnetic field. The calculation depends on (1) geometric parameters (thicknesses of layers), (2) intrinsic metal parameters (number of conduction electrons, magnetization, and effective masses in layers), (3) bulk sample properties (conductivity relaxation times), (4) interface scattering properties (diffuse scattering versus potential scattering at the interfaces, and (5) outer surface scattering properties (specular versus diffuse surface scattering). It is found that a large negative magnetoresistance requires considerable asymmetry in interface scattering for the two spin orientations. Features of the interfaces that may produce an asymmetrical spin-dependent scattering are studied: varying interfacial geometric random roughness with no lateral coherence, correlated (quasi-periodic) roughness, and varying chemical composition of the interfaces. The interplay between these aspects of the interfaces may enhance or suppress the magnetoresistance, depending on whether it increases or decreases the asymmetry in the spin-dependent scattering of the conduction electrons.

  12. ``Towards Strange Metallic Holography'

    SciTech Connect (OSTI)

    Hartnoll, Sean A.; /Harvard U., Phys. Dept. /Santa Barbara, KITP /UC, Santa Barbara; Polchinski, Joseph; Silverstein, Eva; /Santa Barbara, KITP /UC, Santa Barbara; Tong, David; /Cambridge U., DAMTP /Santa Barbara, KITP /UC, Santa Barbara

    2010-08-26T23:59:59.000Z

    We initiate a holographic model building approach to 'strange metallic' phenomenology. Our model couples a neutral Lifshitz-invariant quantum critical theory, dual to a bulk gravitational background, to a finite density of gapped probe charge carriers, dually described by D-branes. In the physical regime of temperature much lower than the charge density and gap, we exhibit anomalous scalings of the temperature and frequency dependent conductivity. Choosing the dynamical critical exponent z appropriately we can match the non-Fermi liquid scalings, such as linear resistivity, observed in strange metal regimes. As part of our investigation we outline three distinct string theory realizations of Lifshitz geometries: from F theory, from polarized branes, and from a gravitating charged Fermi gas. We also identify general features of renormalization group flow in Lifshitz theories, such as the appearance of relevant charge-charge interactions when z {ge} 2. We outline a program to extend this model building approach to other anomalous observables of interest such as the Hall conductivity.

  13. Clean Metal Casting

    SciTech Connect (OSTI)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05T23:59:59.000Z

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  14. Simultaneous measurement of the average ion-induced electron emission yield and the mean charge for isotachic ions in carbon foils

    SciTech Connect (OSTI)

    Arrale, A.M. [Eaton Corporation, Semiconductor Equipment Division, 2433 Rutland Drive, Austin, Texas 78758-5285 (United States)] [Eaton Corporation, Semiconductor Equipment Division, 2433 Rutland Drive, Austin, Texas 78758-5285 (United States); Zhao, Z.Y.; Kirchhoff, J.F.; Weathers, D.L.; McDaniel, F.D.; Matteson, S. [Ion Beam Modification and Analysis Laboratory, Department of Physics and Center for Materials Characterization, University of North Texas, Denton, Texas 76203 (United States)] [Ion Beam Modification and Analysis Laboratory, Department of Physics and Center for Materials Characterization, University of North Texas, Denton, Texas 76203 (United States)

    1997-02-01T23:59:59.000Z

    Knowledge of the incident ion{close_quote}s atomic number (Z{sub 1}) dependence of ion-induced electron emission yields can be the basis for a general understanding of ion-atom interaction phenomena and, in particular, for the design of Z{sub 1}-sensitive detectors that could be useful, for example, in the separation of isobars in accelerator mass spectrometry. The Z{sub 1} dependence of ion-induced electron emission yields, {gamma}, has been investigated using heavy ions C{sup 3+}, O{sup 3+}, F{sup +3}, Na{sup 3+}, Al{sup 3+}, Si{sup 3+}, P{sup 3+}, S{sup 3+}, Cl{sup 3+}, K{sup 3+}, Ti{sup 3+}, Cr{sup 3+}, Mn{sup 4+}, Fe{sup 4+}, Co{sup 4+}, Ni{sup 4+}, Cu{sup 4+}, Ga{sup 4+}, As{sup 5+}, Br{sup 5+}, Ru{sup 7+}, Ag{sup 7+}, Sn{sup 7+}, and I{sup 8+} of identical velocity (v=2v{sub 0}, where v{sub 0} is the Bohr velocity) normally incident on 50 {mu}g/cm{sup 2} sputter-cleaned carbon foils. Measured yields as a function of Z{sub 1} reveal an oscillatory behavior with pronounced maxima and minima. Contrary to previously reported yields that assumed a monotonically increasing empirical mean charge state for the exiting ion, the present work indicates the Z{sub 1} oscillations in the experimentally measured yields, a fact masked in previous work. The strong Z{sub 1} oscillations can only be observed by simultaneous measurement of the yield and the mean charge state. {copyright} {ital 1996} {ital The American Physical Society}

  15. Metal sulfide initiators for metal oxide sorbent regeneration

    DOE Patents [OSTI]

    Turk, B.S.; Gupta, R.P.

    1999-06-22T23:59:59.000Z

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  16. Method for facilitating catalyzed oxidation reactions, device for facilitating catalyzed oxidation reactions

    DOE Patents [OSTI]

    Beuhler, Robert J. (East Moriches, NY); White, Michael G. (Blue Point, NY); Hrbek, Jan (Rocky Point, NY)

    2006-08-15T23:59:59.000Z

    A catalytic process for the oxidation of organic. Oxygen is loaded into a metal foil by heating the foil while in contact with an oxygen-containing fluid. After cooling the oxygen-activated foil to room temperature, oxygen diffuses through the foil and oxidizes reactants exposed to the other side of the foil.

  17. Creating bulk nanocrystalline metal.

    SciTech Connect (OSTI)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

    2008-10-01T23:59:59.000Z

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  18. Expanding hollow metal rings

    DOE Patents [OSTI]

    Peacock, Harold B. (Evans, GA); Imrich, Kenneth J. (Grovetown, GA)

    2009-03-17T23:59:59.000Z

    A sealing device that may expand more planar dimensions due to internal thermal expansion of a filler material. The sealing material is of a composition such that when desired environment temperatures and internal actuating pressures are reached, the sealing materials undergoes a permanent deformation. For metallic compounds, this permanent deformation occurs when the material enters the plastic deformation phase. Polymers, and other materials, may be using a sealing mechanism depending on the temperatures and corrosivity of the use. Internal pressures are generated by either rapid thermal expansion or material phase change and may include either liquid or solid to gas phase change, or in the gaseous state with significant pressure generation in accordance with the gas laws. Sealing material thickness and material composition may be used to selectively control geometric expansion of the seal such that expansion is limited to a specific facing and or geometric plane.

  19. Metal-carbon nanostructures

    SciTech Connect (OSTI)

    Puretzky, A.A.; Hettich, R.L.; Jin, Changming; Haufler, R.E.; Compton, R.N. [Oak Ridge National Lab., TN (United States); Tuinman, A.A. [Tennessee Univ., Knoxville, TN (United States). Dept. of Chemistry

    1993-12-31T23:59:59.000Z

    Ultrafine particles formed by XeCl laser photolysis of M(CO){sub 6}, M = V, Cr, Mo, and W, have been analyzed by Fourier transform mass spectrometry and other techniques. Novel metal carbide clusters, (MoC{sub 4}){sub n}, n = 1 {minus} 4 and (WC{sub 4}){sub m}, m = 1 {minus} 8, were detected and studied. The material produced by photolysis of V(CO){sub 6} shows a series of vanadium-oxygen clusters, V{sub x}O{sub 2x+2}, x = 2 {minus} 10. No clusters of any type were detected in the photolysis product of Cr(CO){sub 6}. Structures based on the experimental evidence are proposed and discussed in light of their chemical reactivity.

  20. Nanostructured metal-polyaniline composites

    SciTech Connect (OSTI)

    Wang, Hsing-Lin (Los Alamos, NM); Li, Wenguang (Elgin, IL); Bailey, James A. (Los Alamos, NM); Gao, Yuan (Brewer, ME)

    2010-08-31T23:59:59.000Z

    Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

  1. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1991-01-01T23:59:59.000Z

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  2. Synthesis metal nanoparticle

    DOE Patents [OSTI]

    Bunge, Scott D.; Boyle, Timothy J.

    2005-08-16T23:59:59.000Z

    A method for providing an anhydrous route for the synthesis of amine capped coinage-metal (copper, silver, and gold) nanoparticles (NPs) using the coinage-metal mesityl (mesityl=C.sub.6 H.sub.2 (CH.sub.3).sub.3 -2,4,6) derivatives. In this method, a solution of (Cu(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5, (Ag(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.4, or (Au(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5 is dissolved in a coordinating solvent, such as a primary, secondary, or tertiary amine; primary, secondary, or tertiary phosphine, or alkyl thiol, to produce a mesityl precursor solution. This solution is subsequently injected into an organic solvent that is heated to a temperature greater than approximately 100.degree. C. After washing with an organic solvent, such as an alcohol (including methanol, ethanol, propanol, and higher molecular-weight alcohols), oxide free coinage NP are prepared that could be extracted with a solvent, such as an aromatic solvent (including, for example, toluene, benzene, and pyridine) or an alkane (including, for example, pentane, hexane, and heptane). Characterization by UV-Vis spectroscopy and transmission electron microscopy showed that the NPs were approximately 9.2.+-.2.3 nm in size for Cu.degree., (no surface oxide present), approximately 8.5.+-.1.1 nm Ag.degree. spheres, and approximately 8-80 nm for Au.degree..

  3. Method for preparing metal powder, device for preparing metal powder, method for processing spent nuclear fuel

    DOE Patents [OSTI]

    Park, Jong-Hee (Clarendon Hills, IL)

    2011-11-29T23:59:59.000Z

    A method for producing metal powder is provided the comprising supplying a molten bath containing a reducing agent, contacting a metal oxide with the molten bath for a time and at a temperature sufficient to reduce the metal in the metal oxide to elemental metal and produce free oxygen; and isolating the elemental metal from the molten bath.

  4. Pressure-Induced Electronic Phase Transitions Transition Metal Oxides and Rare Earth Metals

    E-Print Network [OSTI]

    Islam, M. Saif

    Pressure-Induced Electronic Phase Transitions in Transition Metal Oxides and Rare Earth Metals Metal Oxides and Rare Earth Metals by Brian Ross Maddox Electron correlation can affect profound changes transition in a transition metal monoxide. iv #12;The lanthanides (the 4f metals also known as rare-earths

  5. Modeling the glass forming ability of metals

    E-Print Network [OSTI]

    Cheney, Justin Lee

    2007-01-01T23:59:59.000Z

    compositions without rare earth metals in the Fe-Cr-Mo-C-B-Wsmall percentages of rare earth metals as the oxide formingmore, often containing rare earth metals, are among the best

  6. Superconducting ``metals'' and ``insulators'' Smitha Vishveshwara

    E-Print Network [OSTI]

    Superconducting ``metals'' and ``insulators'' Smitha Vishveshwara Department of Physics, University to the distinction between normal metals and insulators: the superconducting ``metal'' with delocalized qua- siparticle excitations and the superconducting ``insulator'' with localized quasiparticles. We describe

  7. Cosmic metal production and the mean metallicity of the Universe

    E-Print Network [OSTI]

    F. Calura; F. Matteucci

    2004-03-08T23:59:59.000Z

    By means of detailed chemo-photometric models for elliptical, spiral and irregular galaxies, we evaluate the cosmic history of the production of chemical elements as well as the metal mass density of the present-day universe. We then calculate the mean metal abundances for galaxies of different morphological types, along with the average metallicity of galactic matter in the universe (stars, gas and intergalactic medium). For the average metallicity of galaxies in the local universe, we find Z_gal= 0.0175, i.e. close to the solar value. We find the main metal production in spheroids (ellipticals and bulges) to occur at very early times, implying an early peak in the metal production and a subsequent decrease. On the other hand, the metal production in spirals and irregulars is always increasing with time. We perform a self-consistent census of the baryons and metals in the local universe finding that, while the vast majority of the baryons lies outside galaxies in the inter-galactic medium (IGM), 52 % of the metals (with the exception of the Fe-peak elements) is locked up in stars and in the interstellar medium. We estimate indirectly the amount of baryons which resides in the IGM and we derive its mean Fe abundance, finding a value of X_Fe,IGM=0.05 X_Fe,sun. We believe that this estimate is uncertain by a factor of 2, owing to the normalization of the local luminosity function. This means that the Fe abundance of 0.3 solar inferred from X-ray observations of the hot intra-cluster medium (ICM) is higher than the average Fe abundance of the inter-galactic gas in the field.

  8. Method of coating metal surfaces to form protective metal coating thereon

    DOE Patents [OSTI]

    Krikorian, Oscar H. (Danville, CA); Curtis, Paul G. (Tracy, CA)

    1992-01-01T23:59:59.000Z

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof.

  9. Method of coating metal surfaces to form protective metal coating thereon

    DOE Patents [OSTI]

    Krikorian, O.H.; Curtis, P.G.

    1992-03-31T23:59:59.000Z

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof. 1 figure.

  10. Catalysis using hydrous metal oxide ion exchangers

    DOE Patents [OSTI]

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21T23:59:59.000Z

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  11. Heterogeneous Catalysis on Atomically Dispersed Supported Metals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalysis on Atomically Dispersed Supported Metals: CO2 Reduction on Multifunctional Pd Catalysts. Heterogeneous Catalysis on Atomically Dispersed Supported Metals: CO2 Reduction...

  12. Recommendation 221: Recommendation Regarding Recycling of Metals...

    Office of Environmental Management (EM)

    221: Recommendation Regarding Recycling of Metals and Materials Recommendation 221: Recommendation Regarding Recycling of Metals and Materials In addition to the DOE making a final...

  13. Engineering Metal Impurities in Multicrystalline Silicon Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Metal Impurities in Multicrystalline Silicon Solar Cells Print Transition metals are one of the main culprits in degrading the efficiency of multicrystalline solar...

  14. High-temperature, high-pressure bonding of nested tubular metallic components

    DOE Patents [OSTI]

    Quinby, Thomas C. (Kingston, TN)

    1980-01-01T23:59:59.000Z

    This invention is a tool for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  15. Heavy Metal Humor: Reconsidering Carnival in Heavy Metal Culture 

    E-Print Network [OSTI]

    Powell, Gary Botts

    2013-06-05T23:59:59.000Z

    the majority of the land and maintained a social hierarchy that created a vast wealth disparity between the peasants and the church and upper classes. The Church?s feudal ownership of the land meant that it had power over the peasants, limiting social... manifest itself in metal culture. It may further 16 be suggested that the socio-economic climate from which metal culture developed has analogous threads to 16th century French feudal society. While feudalism and capitalism differ, both French...

  16. Quinary metallic glass alloys

    DOE Patents [OSTI]

    Lin, Xianghong (Pasadena, CA); Johnson, William L. (Pasadena, CA)

    1998-01-01T23:59:59.000Z

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  17. Quinary metallic glass alloys

    DOE Patents [OSTI]

    Lin, X.; Johnson, W.L.

    1998-04-07T23:59:59.000Z

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  18. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    SciTech Connect (OSTI)

    Richard T. Scalettar; Warren E. Pickett

    2005-08-02T23:59:59.000Z

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.

  19. Metal-sensing layer-semiconductor and metal-sensing layer-metal heterostructure gas sensors

    SciTech Connect (OSTI)

    O'Leary, M.; Li, Zheng; Fonash, S.J.

    1987-01-01T23:59:59.000Z

    Extremely sensitive gas sensors can be fabricated using heterostructures of the form metal-sensing layer-semiconductor or metal-sensing layer-metal. These structures are heterostructure diodes which have the barrier controlling transport at least partially located in the sensing layer. In the presence of the gas species to be detected, the electrical properties of the sensing layer evolve, resulting in a modification of the barrier to electric current transport and, hence, resulting in detection due to changes in the current-voltage characteristics of the device. This type of sensor structure is demonstrated using the Pd/Ti-O/sub x/Ti heterostructure hydrogen detector.

  20. Titanium metal: extraction to application

    SciTech Connect (OSTI)

    Gambogi, Joseph (USGS, Reston, VA); Gerdemann, Stephen J.

    2002-09-01T23:59:59.000Z

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium. In this paper, we discuss all aspects of the titanium industry from ore deposits through extraction to present and future applications. The methods of both primary (mining of ore, extraction, and purification) and secondary (forming and machining) operations will be analyzed. The chemical and physical properties of titanium metal will be briefly examined. Present and future applications for titanium will be discussed. Finally, the economics of titanium metal production also are analyzed as well as the advantages and disadvantages of various alternative extraction methods.

  1. Geant4 simulation of the PSI LEM beam line: energy loss and muonium formation in thin foils and the impact of unmoderated muons on the $\\mu$SR spectrometer

    E-Print Network [OSTI]

    Khaw, Kim Siang; Crivelli, Paolo; Kirch, Klaus; Morenzoni, Elvezio; Salman, Zaher; Suter, Andreas; Prokscha, Thomas

    2015-01-01T23:59:59.000Z

    The PSI low-energy $\\mu$SR spectrometer is an instrument dedicated to muon spin rotation and relaxation measurements. Knowledge of the muon beam parameters such as spatial, kinetic energy and arrival-time distributions at the sample position are important ingredients to analyze the $\\mu$SR spectra. We present here the measured energy losses in the thin carbon foil of the muon start detector deduced from time-of-flight measurements. Muonium formation in the thin carbon foil (10 nm thickness) of the muon start detector also affect the measurable decay asymmetry and therefore need to be accounted for. Muonium formation and energy losses in the start detector, whose relevance increase with decreasing muon implantation energy ($<10$ keV), have been implemented in Geant4 Monte Carlo simulation to reproduce the measured time-of-flight spectra. Simulated and measured time-of-flight and beam spot agrees only if a small fraction of so called "unmoderated" muons which contaminate the mono-energetic muon beam of the $...

  2. Metal sponge for cryosorption pumping applications

    DOE Patents [OSTI]

    Myneni, G.R.; Kneisel, P.

    1995-12-26T23:59:59.000Z

    A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area. 4 figs.

  3. Metal salt catalysts for enhancing hydrogen spillover

    DOE Patents [OSTI]

    Yang, Ralph T; Wang, Yuhe

    2013-04-23T23:59:59.000Z

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  4. Horizontal electromagnetic casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1987-01-01T23:59:59.000Z

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  5. Horizontal electromagnetic casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1988-01-01T23:59:59.000Z

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  6. Maskless laser writing of microscopic metallic interconnects

    DOE Patents [OSTI]

    Maya, L.

    1995-10-17T23:59:59.000Z

    A method of forming a metal pattern on a substrate is disclosed. The method includes depositing an insulative nitride film on a substrate and irradiating a laser beam onto the nitride film, thus decomposing the metal nitride into a metal constituent and a gaseous constituent, the metal constituent remaining in the nitride film as a conductive pattern. 4 figs.

  7. Maskless laser writing of microscopic metallic interconnects

    DOE Patents [OSTI]

    Maya, Leon (Oak Ridge, TN)

    1995-01-01T23:59:59.000Z

    A method of forming a metal pattern on a substrate. The method includes depositing an insulative nitride film on a substrate and irradiating a laser beam onto the nitride film, thus decomposing the metal nitride into a metal constituent and a gaseous constituent, the metal constituent remaining in the nitride film as a conductive pattern.

  8. Dispersion enhanced metal/zeolite catalysts

    DOE Patents [OSTI]

    Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

    1987-03-31T23:59:59.000Z

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  9. TRANSITION DE MOTT METAL-INSULATOR TRANSITIONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    TRANSITION DE MOTT METAL-INSULATOR TRANSITIONS IN TRANSITION METAL OXIDES by D. B. McWHAN, A. MENTH oxydes de metaux de transition on observe une transition d'isolant a metal puis de metal a isolant de type Mott lorsque l'on augmentelenombre d'electrons d. Danslesysthe(V1-~Cr~)203une transition de Mott

  10. Metal nanoparticles as a conductive catalyst

    DOE Patents [OSTI]

    Coker, Eric N. (Albuquerque, NM)

    2010-08-03T23:59:59.000Z

    A metal nanocluster composite material for use as a conductive catalyst. The metal nanocluster composite material has metal nanoclusters on a carbon substrate formed within a porous zeolitic material, forming stable metal nanoclusters with a size distribution between 0.6-10 nm and, more particularly, nanoclusters with a size distribution in a range as low as 0.6-0.9 nm.

  11. Metal oxide nanostructures with hierarchical morphology

    DOE Patents [OSTI]

    Ren, Zhifeng (Newton, MA); Lao, Jing Yu (Saline, MI); Banerjee, Debasish (Ann Arbor, MI)

    2007-11-13T23:59:59.000Z

    The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.

  12. Metal sponge for cryosorption pumping applications

    DOE Patents [OSTI]

    Myneni, Ganapati R. (Yorktown, VA); Kneisel, Peter (Williamsburg, VA)

    1995-01-01T23:59:59.000Z

    A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area.

  13. Molten metal injector system and method

    DOE Patents [OSTI]

    Meyer, Thomas N. (Murrysville, PA); Kinosz, Michael J. (Apollo, PA); Bigler, Nicolas (Morin Heights, CA); Arnaud, Guy (Riviere-Beaudette, CA)

    2003-04-01T23:59:59.000Z

    Disclosed is a molten metal injector system including a holder furnace, a casting mold supported above the holder furnace, and a molten metal injector supported from a bottom side of the mold. The holder furnace contains a supply of molten metal having a metal oxide film surface. The bottom side of the mold faces the holder furnace. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The injector projects into the holder furnace and is in fluid communication with the mold cavity. The injector includes a piston positioned within a piston cavity defined by a cylinder for pumping the molten metal upward from the holder furnace and injecting the molten metal into the mold cavity under pressure. The piston and cylinder are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder further includes a molten metal intake for receiving the molten metal into the piston cavity. The molten metal intake is located below the metal oxide film surface of the molten metal when the holder furnace contains the molten metal. A method of injecting molten metal into a mold cavity of a casting mold is also disclosed.

  14. Anaerobic microbial remobilization of coprecipitated metals

    DOE Patents [OSTI]

    Francis, A.J.; Dodge, C.J.

    1994-10-11T23:59:59.000Z

    A process is provided for solubilizing coprecipitated metals. Metals in waste streams are concentrated by treatment with an iron oxide coprecipitating agent. The coprecipitated metals are solubilized by contacting the coprecipitate with a bacterial culture of a Clostridium species ATCC 53464. The remobilized metals can then be recovered and recycled. 4 figs.

  15. Method of bonding metals to ceramics

    DOE Patents [OSTI]

    Maroni, V.A.

    1991-04-23T23:59:59.000Z

    A ceramic or glass having a thin layer of silver, gold or alloys thereof at the surface thereof is disclosed. A first metal is bonded to the thin layer and a second metal is bonded to the first metal. The first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Tl and alloys thereof, and the second metal is selected from the class consisting of Cu, Al, Pb, Au and alloys thereof. 3 figures.

  16. Coated metal articles and method of making

    DOE Patents [OSTI]

    Boller, Ernest R. (Van Buren Township, IN); Eubank, Lowell D. (Wilmington, DE)

    2004-07-06T23:59:59.000Z

    The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.

  17. Coated Metal Articles and Method of Making

    DOE Patents [OSTI]

    Boller, Ernest R.; Eubank, Lowell D.

    2004-07-06T23:59:59.000Z

    The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.

  18. INEL metal recycle radioactive scrap metal survey report

    SciTech Connect (OSTI)

    Funk, D.M.

    1994-09-01T23:59:59.000Z

    DOE requested that inventory and characterization of radioactive scrap metal (RSM) be conducted across the DOE complex. Past studies have estimated the metal available from unsubstantiated sources. In meetings held in FY-1993, with seven DOE sites represented and several DOE-HQ personnel present, INEL personnel discovered that these numbers were not reliable and that large stockpiles did not exist. INEL proposed doing in-field measurements to ascertain the amount of RSM actually available. This information was necessary to determine the economic viability of recycling and to identify feed stock that could be used to produce containers for radioactive waste. This inventory measured the amount of RSM available at the selected DOE sites. Information gathered included radionuclide content and chemical form, general radiation field, alloy type, and mass of metal.

  19. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    SciTech Connect (OSTI)

    Way, J.; Wolden, Colin

    2013-09-30T23:59:59.000Z

    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo{sub 2}C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo{sub 2}C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft{sup 2} at a feed pressure of only 20 psig. The highest H{sub 2}/N{sub 2} selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo{sub 2}C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo{sub 2}C catalyst layers. We have fabricated a Mo{sub 2}C/V composite membrane that in pure gas testing delivered a H{sub 2} flux of 238 SCFH/ft{sup 2} at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ?99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft{sup 2}.psi. However, during testing of a Mo{sub 2}C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft{sup 2}.psi was obtained which was stable during the entire test, meeting the permeance associated with the 2010 DOE target flux. Lastly, the Mo{sub 2}C/V composite membranes were shown to be stable for at least 168 hours = one week, including cycling at high temperature and alternating He/H{sub 2} exposure.

  20. Zone refining of plutonium metal

    SciTech Connect (OSTI)

    Blau, M.S.

    1994-08-01T23:59:59.000Z

    The zone refining process was applied to Pu metal containing known amounts of impurities. Rod specimens of plutonium metal were melted into and contained in tantalum boats, each of which was passed horizontally through a three-turn, high-frequency coil in such a manner as to cause a narrow molten zone to pass through the Pu metal rod 10 times. The impurity elements Co, Cr, Fe, Ni, Np, U were found to move in the same direction as the molten zone as predicted by binary phase diagrams. The elements Al, Am, and Ga moved in the opposite direction of the molten zone as predicted by binary phase diagrams. As the impurity alloy was zone refined, {delta}-phase plutonium metal crystals were produced. The first few zone refining passes were more effective than each later pass because an oxide layer formed on the rod surface. There was no clear evidence of better impurity movement at the slower zone refining speed. Also, constant or variable coil power appeared to have no effect on impurity movement during a single run (10 passes). This experiment was the first step to developing a zone refining process for plutonium metal.

  1. Methods for reducing the loss of metal in a metal vapor laser

    DOE Patents [OSTI]

    Duncan, David B. (Auburn, CA); Alger, Terry W. (Tracy, CA)

    1990-01-01T23:59:59.000Z

    Methods are provided for reducing loss of metal from a metal vapor laser by collecting metal present outside the hot zone of the laser and introducing or confining it in the hot zone.

  2. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOE Patents [OSTI]

    Ellis, T.W.; Schmidt, F.A.

    1995-08-01T23:59:59.000Z

    A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.

  3. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOE Patents [OSTI]

    Ellis, Timothy W. (Ames, IA); Schmidt, Frederick A. (Ames, IA)

    1995-08-01T23:59:59.000Z

    Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.

  4. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11T23:59:59.000Z

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  5. Metal volatilization and separation during incineration

    SciTech Connect (OSTI)

    Ho, T.C.; Chu, H.W.; Hopper, J.R. (Lamar Univ., Beaumont, TX (United States). Dept. of Chemical Engineering)

    1993-01-01T23:59:59.000Z

    The US Environmental Protection Agency (US EPA) has reported that metals can account for almost all of the identified risks from a thermal treatment process. Fundamental research leading to better understanding of their behavior and improved control of their emissions is greatly needed. This paper reports studies on metal volatilization and separation during incineration. Metal volatilization studies were carried out in two separate experiments. In the first experiment, the dynamic volatilization characteristics of various metals during the combustion of metal-containing wood pellets were investigated in a high-temperature electric furnace. In addition to uncontrolled volatilization, the potential of employing chemical additives to bind metals and prevent them from volatilizing during combustion was also investigated. The second experiment involved the investigation of metal volatilization characteristics during the thermal treatment of metal-contaminated clay in a fluidized bed unit. The metal species tested in both experiments were compounds of lead and cadmium. Metal capture/separation studies were also carried out in two separate experiments. The first involved the use of sorbents in the combustion chamber to capture metals during the fluidized bed incineration of metal-containing wood pellets. The second experiments, however, employed sorbents to absorb metal vapors in a fluidized-bed waste-heat boiler. The objective of both the experiments is to characterize the metal absorption efficiency associated with the processes.

  6. Approximating Metal-Insulator Transitions

    E-Print Network [OSTI]

    C. Danieli; K. Rayanov; B. Pavlov; G. Martin; S. Flach

    2014-05-06T23:59:59.000Z

    We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate metal-insulator transitions (MIT) at the finite iteration steps. We also report evidence on mobility edges which are at variance to the celebrated Aubry-Andre model. The dynamics near the MIT shows a critical slowing down of the ballistic group velocity in the metallic phase similar to the divergence of the localization length in the insulating phase.

  7. Metallization and insulization during impact

    SciTech Connect (OSTI)

    Gilman, J.J.

    1992-10-01T23:59:59.000Z

    It is pointed out that the large strains produced by hypervelocity impacts can be expected to produce dramatic changes in the chemical bonding (electronic structures) of materials. This will change the mechanical behavior towards increased ductility when a semiconductor is compressed until it becomes metallic; and towards increased brittleness when a transition metal is expanded so as to localize its d-band electrons. Both isotropic compression (expansion) and shear strains can cause these transformations. Critical deformation criteria are given based on the observed cubic to tetragonal transformations in compressed semiconductors.

  8. Laser photodeposition of refractory metals

    SciTech Connect (OSTI)

    Solanki, R.; Boyer, P.K.; Mahan, J.E.; Collins, G.J.

    1981-04-01T23:59:59.000Z

    We report the deposition of the refractory metals chromium, molybdenum, and tungsten through the laser-induced gas-phase photolysis of their respective hexacarbonyls. A copper, hollow cathode laser was used at ultraviolet wavelengths matched to peaks in the absorption spectra of the carbonyl molecules. Localized room-temperature metal deposition was achieved by focusing the beam into a cell containing the carbonyl gas and helium as a buffer. No major differences were noted for deposition on a polished silicon wafer, a thermally oxidized silicon wafer, and a quartz flat.

  9. Photobiomolecular metallic particles and films

    DOE Patents [OSTI]

    Hu, Zhong-Cheng

    2003-05-06T23:59:59.000Z

    The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.

  10. Thermal barrier and overlay coating systems comprising composite metal/metal oxide bond coating layers

    DOE Patents [OSTI]

    Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL); Vance, Steven J. (Orlando, FL)

    2001-01-01T23:59:59.000Z

    The present invention generally describes multilayer coating systems comprising a composite metal/metal oxide bond coat layer. The coating systems may be used in gas turbines.

  11. Metal oxide and metal fluoride nanostructures and methods of making same

    DOE Patents [OSTI]

    Wong, Stanislaus S. (Stony Brook, NY); Mao, Yuanbing (Los Angeles, CA)

    2009-08-18T23:59:59.000Z

    The present invention includes pure single-crystalline metal oxide and metal fluoride nanostructures, and methods of making same. These nanostructures include nanorods and nanoarrays.

  12. Composite Metal-hydrogen Electrodes for Metal-Hydrogen Batteries

    SciTech Connect (OSTI)

    Ruckman, M W; Wiesmann, H; Strongin, M; Young, K; Fetcenko, M

    1997-04-01T23:59:59.000Z

    The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries. The anodes could be incorporated in thin film solid state Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped metal-hydrogen ratios exceeding and fast hydrogen charging and Nb films, these studies suggested that materials with those of commercially available metal hydride materials discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films-and multiiayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 µm thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for modern electronic devices.

  13. Method for producing metal oxide nanoparticles

    DOE Patents [OSTI]

    Phillips, Jonathan (Santa Fe, NM); Mendoza, Daniel (Santa Fe, NM); Chen, Chun-Ku (Albuquerque, NM)

    2008-04-15T23:59:59.000Z

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  14. Laser-driven flyer plate

    DOE Patents [OSTI]

    Paisley, Dennis L. (Santa Fe, NM)

    1991-01-01T23:59:59.000Z

    Apparatus for producing high velocity flyer plates involving placing a layer of dielectric material between a first metal foil and a second metal foil. With laser irradiation through an optical substrate, the first metal foil forms a plasma in the area of the irradiation, between the substrate and the solid portion of the first metal foil. When the pressure between the substrate and the foil reaches the stress limit of the dielectric, the dielectric will break away and launch the flyer plate out of the second metal foil. The mass of the flyer plate is controlled, as no portion of the flyer plate is transformed into a plasma.

  15. SciTech Connect: Metal-Organic Framework Templated Inorganic...

    Office of Scientific and Technical Information (OSTI)

    Metal-Organic Framework Templated Inorganic Sorbents for Rapid and Efficient Extraction of Heavy Metals Citation Details In-Document Search Title: Metal-Organic Framework Templated...

  16. Cobalt discovery replaces precious metals as industrial catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    develop alternatives to the precious metal catalysts by using relatively inexpensive, earth-abundant metals. The chemical complexities of the more common metals have made this...

  17. Analytical and experimental investigations of the behavior of thermal neutrons in lattices of uranium metal rods in heavy water

    E-Print Network [OSTI]

    Simms, Richard

    1963-01-01T23:59:59.000Z

    Measurements of the intracellular distribution of the activation of foils by neutrons were made in lattices of 1/4-inch diameter, 1.03% U-235, uranium rods moderated by heavy water, with bare and cadmium-covered foils of ...

  18. Corrosion resistant metallic bipolar plate

    DOE Patents [OSTI]

    Brady, Michael P. (Oak Ridge, TN); Schneibel, Joachim H. (Knoxville, TN); Pint, Bruce A. (Knoxville, TN); Maziasz, Philip J. (Oak Ridge, TN)

    2007-05-01T23:59:59.000Z

    A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.

  19. Transition metal sulfide loaded catalyst

    DOE Patents [OSTI]

    Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

    1994-04-26T23:59:59.000Z

    A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  20. Gas adsorption on metal-organic frameworks

    DOE Patents [OSTI]

    Willis, Richard R. (Cary, IL); Low, John J. (Schaumburg, IL), Faheem, Syed A. (Huntley, IL); Benin, Annabelle I. (Oak Forest, IL); Snurr, Randall Q. (Evanston, IL); Yazaydin, Ahmet Ozgur (Evanston, IL)

    2012-07-24T23:59:59.000Z

    The present invention involves the use of certain metal organic frameworks that have been treated with water or another metal titrant in the storage of carbon dioxide. The capacity of these frameworks is significantly increased through this treatment.

  1. Postsynthetic modification of metal-organic frameworks

    E-Print Network [OSTI]

    Tanabe, Kristine Kimie

    2011-01-01T23:59:59.000Z

    S. M. "Tuning Hydrogen Sorption Properties of Metal-OrganicS. M. "Tuning Hydrogen Sorption Properties of Metal-OrganicA summary of hydrogen sorption properties of three distinct

  2. Aspects of the mechanics of metallic glasses

    E-Print Network [OSTI]

    Henann, David Lee

    2011-01-01T23:59:59.000Z

    Metallic glasses are amorphous materials that possess unique mechanical properties, such as high tensile strengths and good fracture toughnesses. Also, since they are amorphous, metallic glasses exhibit a glass transition, ...

  3. NANO - "Green" metal oxides ... | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Green" metal oxides ... Water and nano-sized particles isolated from trees, plants and algae are the ingredients of a new recipe for low-cost metal oxides that are widely used in...

  4. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01T23:59:59.000Z

    CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Corrosion of Oil Shale Retort Component Materials," LBL-

  5. Metal salen catalyzed production of polytrimethylene carbonate

    E-Print Network [OSTI]

    Ganguly, Poulomi

    2009-06-02T23:59:59.000Z

    of Lewis acidic metal salen complexes (Al & Sn), as catalysts for this process. This was followed by the utilization of metal salen complexes of biometals as catalysts for the synthesis of these biodegradable polymers, as well as for the copolymerization...

  6. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01T23:59:59.000Z

    CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Elevated Temperature Corrosion of Oil Shale Retort Component

  7. Preparation of metal-triazolate frameworks

    DOE Patents [OSTI]

    Yaghi, Omar M; Uribe-Romo, Fernando J; Gandara-Barragan, Felipe; Britt, David K

    2014-10-07T23:59:59.000Z

    The disclosure provides for novel metal-triazolate frameworks, methods of use thereof, and devices comprising the frameworks thereof.

  8. Spectroscopic studies of metal growth on oxides

    E-Print Network [OSTI]

    Luo, Kai

    2000-01-01T23:59:59.000Z

    : Chemistry SPECTROSCOPIC STUDIES OF METAL GROWTH ON OXIDES A Thesis by KAI LUO Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style a d content by: avid W. Goodman.... , Jilin University, P. R. China Chair of Advisory Committee: Dr, David W. Goodman Metal/oxide chemistry and metal cluster growth on oxides are fundamental to our understanding of the catalytic activity and selectivity of metal catalysts, thus...

  9. Sintering and ripening resistant noble metal nanostructures

    DOE Patents [OSTI]

    van Swol, Frank B; Song, Yujiang; Shelnutt, John A; Miller, James E; Challa, Sivakumar R

    2013-09-24T23:59:59.000Z

    Durable porous metal nanostructures comprising thin metal nanosheets that are metastable under some conditions that commonly produce rapid reduction in surface area due to sintering and/or Ostwald ripening. The invention further comprises the method for making such durable porous metal nanostructures. Durable, high-surface area nanostructures result from the formation of persistent durable holes or pores in metal nanosheets formed from dendritic nanosheets.

  10. subcollector Schottky collector contact & interconnect metals

    E-Print Network [OSTI]

    Rodwell, Mark J. W.

    base collector depletion layer subcollector ohmic metal (a) base collector depletion layer Schottky metal base emitter collector collector We emitter base emitter emitter We Wc Wc (b) Schottky collector contact & interconnect metals Emitter & collector Ohmics undoped collector depletion layer base N

  11. Process for making transition metal nitride whiskers

    DOE Patents [OSTI]

    Bamberger, Carlos E. (Oak Ridge, TN)

    1989-01-01T23:59:59.000Z

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites.

  12. Process for making transition metal nitride whiskers

    DOE Patents [OSTI]

    Bamberger, C.E.

    1988-04-12T23:59:59.000Z

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.

  13. Imestigation ol" Maenons in Rare Earth Metals

    E-Print Network [OSTI]

    Imestigation ol" Maenons in Rare Earth Metals b\\ Inelastic Neutron Scattering tL Bjerrum Moiler #12;BLANK PAGE #12;Riso Report No. 178 Investigation of Magnons in Rare Earth Metals by Inelastic NeutronN LANGF h. a. dec. #12;Contents Page PREFACE 7 I. INTRODUCTION *> 1. Magnetism of Rare Earth Metals 10 2

  14. Method for decontamination of radioactive metal surfaces

    DOE Patents [OSTI]

    Bray, L.A.

    1996-08-13T23:59:59.000Z

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  15. Plasticity of Metal Nanowires Christopher R. Weinberger

    E-Print Network [OSTI]

    Cai, Wei

    Plasticity of Metal Nanowires Christopher R. Weinberger Sandia National Laboratories, Albuquerque-4040 (Dated: November 24, 2011) Abstract The mechanisms of plasticity in metal naowires with diameters below 100 nm are reviewed. At these length scales, plasticity in face-centered-cubic metals subjected

  16. Method for decontamination of radioactive metal surfaces

    DOE Patents [OSTI]

    Bray, Lane A. (Richland, WA)

    1996-01-01T23:59:59.000Z

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  17. Spectroscopic investigation of metal-RNA interactions

    E-Print Network [OSTI]

    Vogt, Matthew John

    2005-02-17T23:59:59.000Z

    Metal-RNA interactions are important to neutralize the negative charge and aid in correctly folding the RNA. Spectroscopically active metal ions, especially Mn2+, have been used to probe the type of interaction the metal has with RNA. In previous...

  18. Starbursts and their contribution to metal enrichment

    E-Print Network [OSTI]

    Kunth Daniel

    2007-04-28T23:59:59.000Z

    I review the properties of starburst galaxies, compare the properties of the local ones with more distant starburts and examine their role in the metal enrichment of the interstellar medium and the intergalactic-intracluster medium. Metallicity is not an arrow of time and contrary to current belief metal rich galaxies can also be found at high redshift.

  19. Adsorption of Chromium (VI) by metal hydroxide sludge from the metal finishing

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Adsorption of Chromium (VI) by metal hydroxide sludge from the metal finishing Loïc Perrin Ecole sludge (MHS) during the treatment of their liquid effluents charged with heavy metals. Generally, a small part of these sludge is valorized because of their important metal fickleness. Consequently

  20. Slag Metal Reactions in Binary CaF2-Metal Oxide Welding Fluxes

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) Slag Metal Reactions in Binary CaF2-Metal Oxide Welding Fluxes Some otherwise chemically stable fluxes may decompose into suboxides in the presence of welding arcs, thereby providing higher levels of 0 2 in weld metal than those oxides which do not form suboxides ABSTRACT. The stability of metal

  1. Transition metal oxide improves overall efficiency and maintains performance with inexpensive metals.

    E-Print Network [OSTI]

    Transition metal oxide improves overall efficiency and maintains performance with inexpensive that inserting a transition metal oxide (TMO) between the lead sulfide (PbS) quantum dot (QD) layer and the metal-Yu Chen; Octavi E. Semonin; Arthur J. Nozik; Randy J. Ellingson; Matthew C. Beard."n-Type Transition Metal

  2. METAL-NON METAL TRANSITIONS /N RARE EARTH COMPOUNDS. EXPERIMENT AND THEORK /.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    METAL-NON METAL TRANSITIONS /N RARE EARTH COMPOUNDS. EXPERIMENT AND THEORK /. VALENCE INSTABILITIES, superconductivity, electron-phonon and band theory, to name a few. 2. Properties of normal rare earth metals. - Before discussing rare earth valence instabilities, three relevant general features of rare earth metals

  3. Removal of Heavy Metals from Aqueous Systems with Thiol Functionalized...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heavy Metals from Aqueous Systems with Thiol Functionalized Superparamagnetic Nanoparticles. Removal of Heavy Metals from Aqueous Systems with Thiol Functionalized...

  4. Liquid metal Flow Meter - Final Report

    SciTech Connect (OSTI)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30T23:59:59.000Z

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  5. CVD of refractory amorphous metal alloys

    SciTech Connect (OSTI)

    Tenhover, M. [The Carborundum Co., Niagara Falls, NY (United States). Technology Div.

    1995-08-01T23:59:59.000Z

    In this work, a novel process is described for the fabrication of multi-metallic amorphous metal alloy coatings using a chemical vapor deposition (CVD) technique. Of special interest in this work are amorphous metal alloys containing Mo and/or Cr which have high crystallization temperatures and readily available low decomposition temperature metal-bearing precursors. The conditions for amorphous alloy formation via CVD are described as well as the chemical properties of these materials. High temperature, aqueous corrosion tests have shown these materials (especially those containing Cr) are among the most corrosion resistant metal alloys known.

  6. Directly susceptible, noncarbon metal ceramic composite crucible

    DOE Patents [OSTI]

    Holcombe, Jr., Cressie E. (Farragut, TN); Kiggans, Jr., James O. (Oak Ridge, TN); Morrow, S. Marvin (Kingston, TN); Rexford, Donald (Pattersonville, NY)

    1999-01-01T23:59:59.000Z

    A sintered metal ceramic crucible suitable for high temperature induction melting of reactive metals without appreciable carbon or silicon contamination of the melt. The crucible comprises a cast matrix of a thermally conductive ceramic material; a perforated metal sleeve, which serves as a susceptor for induction heating of the crucible, embedded within the ceramic cast matrix; and a thermal-shock-absorber barrier interposed between the metal sleeve and the ceramic cast matrix to allow for differential thermal expansions between the matrix and the metal sleeve and to act as a thermal-shock-absorber which moderates the effects of rapid changes of sleeve temperature on the matrix.

  7. Direct electrochemical reduction of metal-oxides

    DOE Patents [OSTI]

    Redey, Laszlo I. (Downers Grove, IL); Gourishankar, Karthick (Downers Grove, IL)

    2003-01-01T23:59:59.000Z

    A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

  8. Synthesis of transition metal carbonitrides

    DOE Patents [OSTI]

    Munir, Zuhair A. R. (Davis, CA); Eslamloo-Grami, Maryam (Davis, CA)

    1994-01-01T23:59:59.000Z

    Transition metal carbonitrides (in particular, titanium carbonitride, TiC.sub.0.5 N.sub.0.5) are synthesized by a self-propagating reaction between the metal (e.g., titanium) and carbon in a nitrogen atmosphere. Complete conversion to the carbonitride phase is achieved with the addition of TiN as diluent and with a nitrogen pressure .gtoreq.0.6 MPa. Thermodynamic phase-stability calculations and experimental characterizations of quenched samples provided revealed that the mechanism of formation of the carbonitride is a two-step process. The first step involves the formation of the nonstoichiometric carbide, TiC.sub.0.5, and is followed by the formation of the product by the incorporation of nitrogen in the defect-structure carbide.

  9. Amorphous metal alloy and composite

    DOE Patents [OSTI]

    Wang, Rong (Richland, WA); Merz, Martin D. (Richland, WA)

    1985-01-01T23:59:59.000Z

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  10. Metal resistance sequences and transgenic plants

    DOE Patents [OSTI]

    Meagher, Richard Brian (Athens, GA); Summers, Anne O. (Athens, GA); Rugh, Clayton L. (Athens, GA)

    1999-10-12T23:59:59.000Z

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  11. Metalization of lipid vesicles via electroless plating

    SciTech Connect (OSTI)

    Ferrar, W.T.; O'Brien, D.F.; Warshawsky, A.; Voycheck, C.L.

    1988-01-06T23:59:59.000Z

    The encapsulation of metallic particles and metallic oxides within lipid vesicles has recently been of interest for applications such as catalysis, water splitting, and magnetic control of spin coupling. In this communication the authors introduce the concept and practice of the deposition of metal on vesicles by using electroless plating techniques. Coordination of low valent transition metals to organic functional groups on the surface of the bilayer membrane provides a means of binding metal atoms to vesicles. Chemical reduction produced zero valent atoms which serve as sites for further metal deposition by the chemical reduction techniques of electroless plating. Specifically, this procedure involved the binding of a small amount of tetrachloropalladate to the vesicle bilayer, reduction of the palladium(II) to palladium(0), followed by the deposition of much larger amounts of metal from an electroless plating solution. Electroless plating solutions were used for the deposition of palladium, nickel, cobalt, or copper metal onto the catalytic palladium centers. Since the metallic particles were associated with the vesicles, colloids were formed that were stable in water for much longer periods than the control metal particles formed in water alone. If the vesicles were composed in part of unsaturated lipids, with the olefinic groups on the hydrocarbon chains, the initial evidence suggests the transition metal was directed into the bilayer, rather than staying on the surface.

  12. Submicron patterned metal hole etching

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA); Contolini, Robert J. (Lake Oswego, OR); Liberman, Vladimir (Needham, MA); Morse, Jeffrey (Martinez, CA)

    2000-01-01T23:59:59.000Z

    A wet chemical process for etching submicron patterned holes in thin metal layers using electrochemical etching with the aid of a wetting agent. In this process, the processed wafer to be etched is immersed in a wetting agent, such as methanol, for a few seconds prior to inserting the processed wafer into an electrochemical etching setup, with the wafer maintained horizontal during transfer to maintain a film of methanol covering the patterned areas. The electrochemical etching setup includes a tube which seals the edges of the wafer preventing loss of the methanol. An electrolyte composed of 4:1 water: sulfuric is poured into the tube and the electrolyte replaces the wetting agent in the patterned holes. A working electrode is attached to a metal layer of the wafer, with reference and counter electrodes inserted in the electrolyte with all electrodes connected to a potentiostat. A single pulse on the counter electrode, such as a 100 ms pulse at +10.2 volts, is used to excite the electrochemical circuit and perform the etch. The process produces uniform etching of the patterned holes in the metal layers, such as chromium and molybdenum of the wafer without adversely effecting the patterned mask.

  13. Method of nitriding refractory metal articles

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Omatete, Ogbemi O. (Lagos, NG); Young, Albert C. (Flushing, NY)

    1994-01-01T23:59:59.000Z

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  14. Method For Characterizing Residual Stress In Metals

    DOE Patents [OSTI]

    Jacobson, Loren A. (Santa Fe, NM); Michel, David J. (Alexandria, VA); Wyatt, Jeffrey R. (Burke, VA)

    2002-12-03T23:59:59.000Z

    A method is provided for measuring the residual stress in metals. The method includes the steps of drilling one or more holes in a metal workpiece to a preselected depth and mounting one or more acoustic sensors on the metal workpiece and connecting the sensors to an electronic detecting and recording device. A liquid metal capable of penetrating into the metal workpiece placed at the bottom of the hole or holes. A recording is made over a period of time (typically within about two hours) of the magnitude and number of noise events which occur as the liquid metal penetrates into the metal workpiece. The magnitude and number of noise events are then correlated to the internal stress in the region of the workpiece at the bottom of the hole.

  15. Induction slag reduction process for purifying metals

    DOE Patents [OSTI]

    Traut, Davis E. (Corvallis, OR); Fisher, II, George T. (Albany, OR); Hansen, Dennis A. (Corvallis, OR)

    1991-01-01T23:59:59.000Z

    A continuous method is provided for purifying and recovering transition metals such as neodymium and zirconium that become reactive at temperatures above about 500.degree. C. that comprises the steps of contacting the metal ore with an appropriate fluorinating agent such as an alkaline earth metal fluosilicate to form a fluometallic compound, and reducing the fluometallic compound with a suitable alkaline earth or alkali metal compound under molten conditions, such as provided in an induction slag metal furnace. The method of the invention is advantageous in that it is simpler and less expensive than methods used previously to recover pure metals, and it may be employed with a wide range of transition metals that were reactive with enclosures used in the prior art methods and were hard to obtain in uncontaminated form.

  16. Methods of selectively incorporating metals onto substrates

    DOE Patents [OSTI]

    Ernst; Richard D. (Salt Lake City, UT), Eyring; Edward M. (Salt Lake City, UT), Turpin; Gregory C. (Salt Lake City, UT), Dunn; Brian C. (Salt Lake City, UT)

    2008-09-30T23:59:59.000Z

    A method for forming multi-metallic sites on a substrate is disclosed and described. A substrate including active groups such as hydroxyl can be reacted with a pretarget metal complex. The target metal attached to the active group can then be reacted with a secondary metal complex such that an oxidation-reduction (redox) reaction occurs to form a multi-metallic species. The substrate can be a highly porous material such as aerogels, xerogels, zeolites, and similar materials. Additional metal complexes can be reacted to increase catalyst loading or control co-catalyst content. The resulting compounds can be oxidized to form oxides or reduced to form metals in the ground state which are suitable for practical use.

  17. Method and apparatus for dissociating metals from metal compounds extracted into supercritical fluids

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Hunt, Fred H. (Moscow, ID); Smart, Neil G. (Workington, GB); Lin, Yuehe (Richland, WA)

    2000-01-01T23:59:59.000Z

    A method for dissociating metal-ligand complexes in a supercritical fluid by treating the metal-ligand complex with heat and/or reducing or oxidizing agents is described. Once the metal-ligand complex is dissociated, the resulting metal and/or metal oxide form fine particles of substantially uniform size. In preferred embodiments, the solvent is supercritical carbon dioxide and the ligand is a .beta.-diketone such as hexafluoroacetylacetone or dibutyldiacetate. In other preferred embodiments, the metals in the metal-ligand complex are copper, silver, gold, tungsten, titanium, tantalum, tin, or mixtures thereof. In preferred embodiments, the reducing agent is hydrogen. The method provides an efficient process for dissociating metal-ligand complexes and produces easily-collected metal particles free from hydrocarbon solvent impurities. The ligand and the supercritical fluid can be regenerated to provide an economic, efficient process.

  18. Sumitomo Metal Industries Ltd Sumitomo Metals | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL ElecStrategicStories HomeSumco Techxiv CorporationMetal

  19. Methods of producing adsorption media including a metal oxide

    DOE Patents [OSTI]

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04T23:59:59.000Z

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  20. Polymer quenched prealloyed metal powder

    DOE Patents [OSTI]

    Hajaligol, Mohammad R. (Midlothian, VA); Fleischhauer, Grier (Midlothian, VA); German, Randall M. (State College, PA)

    2001-01-01T23:59:59.000Z

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  1. Clamshell closure for metal drum

    DOE Patents [OSTI]

    Blanton, Paul S

    2014-09-30T23:59:59.000Z

    Closure ring to retain a lid in contact with a metal drum in central C-section conforming to the contact area between a lid and the rim of a drum and further having a radially inwardly directed flange and a vertically downwardly directed flange attached to the opposite ends of the C-section. The additional flanges reinforce the top of the drum by reducing deformation when the drum is dropped and maintain the lid in contact with the drum. The invention is particularly valuable in transportation and storage of fissile material.

  2. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, Edward F. (P.O. Box 900, Isle of Palms, SC 29451)

    1992-01-01T23:59:59.000Z

    A method for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF.sub.4 and HNO.sub.3 and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200.degree. C. The porous material can be pulverized before immersion to further increase the leach rate.

  3. Metal-Ion-Mediated Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from aRod EggertMercuryAdvancedMetal-Ion-Mediated

  4. Rapid Freeform Sheet Metal Forming

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified11 Connecticut2 of 3)theDieselFreeform Sheet Metal

  5. Contour forming of metals by laser peening

    DOE Patents [OSTI]

    Hackel, Lloyd (Livermore, CA); Harris, Fritz (Rocklin, CA)

    2002-01-01T23:59:59.000Z

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  6. Nanostructured metal foams: synthesis and applications

    SciTech Connect (OSTI)

    Luther, Erik P [Los Alamos National Laboratory; Tappan, Bryce [Los Alamos National Laboratory; Mueller, Alex [Los Alamos National Laboratory; Mihaila, Bogdan [Los Alamos National Laboratory; Volz, Heather [Los Alamos National Laboratory; Cardenas, Andreas [Los Alamos National Laboratory; Papin, Pallas [Los Alamos National Laboratory; Veauthier, Jackie [Los Alamos National Laboratory; Stan, Marius [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  7. Irradiation behavior of metallic fast reactor fuels

    SciTech Connect (OSTI)

    Pahl, R.G.; Porter, D.L.; Crawford, D.C.; Walters, L.C.

    1991-01-01T23:59:59.000Z

    Metallic fuels were the first fuels chosen for liquid metal cooled fast reactors (LMR's). In the late 1960's world-wide interest turned toward ceramic LMR fuels before the full potential of metallic fuel was realized. However, during the 1970's the performance limitations of metallic fuel were resolved in order to achieve a high plant factor at the Argonne National Laboratory's Experimental Breeder Reactor II. The 1980's spawned renewed interest in metallic fuel when the Integral Fast Reactor (IFR) concept emerged at Argonne National Laboratory. A fuel performance demonstration program was put into place to obtain the data needed for the eventual licensing of metallic fuel. This paper will summarize the results of the irradiation program carried out since 1985.

  8. Removal of metal ions from aqueous solution

    DOE Patents [OSTI]

    Jackson, Paul J. (both Los Alamos, NM); Delhaize, Emmanuel (both Los Alamos, NM); Robinson, Nigel J. (Durham, GB2); Unkefer, Clifford J. (Los Alamos, NM); Furlong, Clement (Seattle, WA)

    1990-11-13T23:59:59.000Z

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat unit for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heayv metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  9. Removal of metal ions from aqueous solution

    DOE Patents [OSTI]

    Jackson, Paul J. (Los Alamos, NM); Delhaize, Emmanuel (Los Alamos, NM); Robinson, Nigel J. (Durham, GB2); Unkefer, Clifford J. (Los Alamos, NM); Furlong, Clement (Seattle, WA)

    1990-01-01T23:59:59.000Z

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  10. Method of stripping metals from organic solvents

    DOE Patents [OSTI]

    Todd, Terry A. (Aberdeen, ID); Law, Jack D. (Pocatello, ID); Herbst, R. Scott (Idaho Falls, ID); Romanovskiy, Valeriy N. (St. Petersburg, RU); Smirnov, Igor V. (St.-Petersburg, RU); Babain, Vasily A. (St-Petersburg, RU); Esimantovski, Vyatcheslav M. (St-Petersburg, RU)

    2009-02-24T23:59:59.000Z

    A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

  11. Three-Electrode Metal Oxide Reduction Cell

    DOE Patents [OSTI]

    Dees, Dennis W. (Downers Grove, IL); Ackerman, John P. (Downers Grove, IL)

    2005-06-28T23:59:59.000Z

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  12. Three-electrode metal oxide reduction cell

    DOE Patents [OSTI]

    Dees, Dennis W. (Downers Groves, IL); Ackerman, John P. (Downers Grove, IL)

    2008-08-12T23:59:59.000Z

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  13. Synthesis of new amorphous metallic spin glasses

    DOE Patents [OSTI]

    Haushalter, R.C.

    1985-02-11T23:59:59.000Z

    Disclosed are: amorphous metallic precipitates having the formula (M/sub 1/)/sub a/(M/sub 2/)/sub b/ wherein M/sub 1/ is at least one transition metal, M/sub 2/ is at least one main group metal and the integers ''a'' and ''b'' provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  14. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA); Miller, John L. (Dublin, CA)

    1993-01-01T23:59:59.000Z

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  15. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, D.G.; Miller, J.L.

    1993-02-23T23:59:59.000Z

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  16. Synthesis of new amorphous metallic spin glasses

    DOE Patents [OSTI]

    Haushalter, Robert C. (Clinton, NJ)

    1988-01-01T23:59:59.000Z

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  17. Internal gettering by metal alloy clusters

    DOE Patents [OSTI]

    Buonassisi, Anthony (San Diego, CA); Heuer, Matthias (Berkeley, CA); Istratov, Andrei A. (Albany, CA); Pickett, Matthew D. (Berkeley, CA); Marcus, Mathew A. (Berkeley, CA); Weber, Eicke R. (Piedmont, CA)

    2010-07-27T23:59:59.000Z

    The present invention relates to the internal gettering of impurities in semiconductors by metal alloy clusters. In particular, intermetallic clusters are formed within silicon, such clusters containing two or more transition metal species. Such clusters have melting temperatures below that of the host material and are shown to be particularly effective in gettering impurities within the silicon and collecting them into isolated, less harmful locations. Novel compositions for some of the metal alloy clusters are also described.

  18. Liquid metal cooled nuclear reactor plant system

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1993-01-01T23:59:59.000Z

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  19. Fabrication of metallic microstructures by micromolding nanoparticles

    DOE Patents [OSTI]

    Morales, Alfredo M. (Livermore, CA); Winter, Michael R. (Goleta, CA); Domeier, Linda A. (Danville, CA); Allan, Shawn M. (Henrietta, NY); Skala, Dawn M. (Fremont, CA)

    2002-01-01T23:59:59.000Z

    A method is provided for fabricating metallic microstructures, i.e., microcomponents of micron or submicron dimensions. A molding composition is prepared containing an optional binder and nanometer size (1 to 1000 nm in diameter) metallic particles. A mold, such as a lithographically patterned mold, preferably a LIGA or a negative photoresist mold, is filled with the molding composition and compressed. The resulting microstructures are then removed from the mold and the resulting metallic microstructures so provided are then sintered.

  20. Method for making monolithic metal oxide aerogels

    DOE Patents [OSTI]

    Droege, M.W.; Coronado, P.R.; Hair, L.M.

    1995-03-07T23:59:59.000Z

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.

  1. Method for making monolithic metal oxide aerogels

    SciTech Connect (OSTI)

    Coronado, Paul R. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  2. Method for making monolithic metal oxide aerogels

    DOE Patents [OSTI]

    Droege, Michael W. (Livermore, CA); Coronado, Paul R. (Livermore, CA); Hair, Lucy M. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.

  3. CX-007916: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Notice of Proposed Rulemaking for( Energy Conservation Standards for Metal Halide lamp Fixtures CX(s) Applied: B5.1 Date: 01/04/2012 Location(s): Nationwide Offices(s): Energy Efficiency and Renewable Energy

  4. CX-011776: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-011776: Categorical Exclusion Determination Final Rule for New and Amended Energy Conservation Standards for Metal Halide Lamp Fixtures CX(s) Applied: B5.1 Date: 01292014...

  5. CX-012520: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Engineering Accessible Adsorption Sites in Metal Organic Frameworks for CO2 Capture CX(s) Applied: B3.6Date: 41848 Location(s): GeorgiaOffices(s): National Energy Technology Laboratory

  6. CX-008646: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Metal Accumulation in Model Plants - Radioactive Studies CX(s) Applied: B3.6 Date: 05/22/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  7. CX-010999: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Collision Welding of Dissimilar Metals by Rapidly Expanding Plasma CX(s) Applied: B3.6 Date: 09122013 Location(s): Ohio Offices(s): National Energy...

  8. CX-011728: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    BlazeTech Corp. - Hyperspectral Imaging for the Identification of Light Metals CX(s) Applied: B3.6 Date: 10/31/2013 Location(s): Massachusetts Offices(s): Advanced Research Projects Agency-Energy

  9. CX-011731: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    University of Utah - Electromagnetic Sorting of Light Metals and Alloys CX(s) Applied: B3.6 Date: 12/12/2013 Location(s): Utah Offices(s): Advanced Research Projects Agency-Energy

  10. CX-009032: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Monitoring and Control of the Hybrid Laser-Gas Metal Arc Welding Process – Idaho National Laboratory CX(s) Applied: B3.6 Date: 08/13/2011 Location(s): Idaho Offices(s): Nuclear Energy

  11. CX-011544: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Innovative Elution Processes for Recovering Uranium and Transition Metals from Amidoxime-based Sorbents CX(s) Applied: B3.6 Date: 12/03/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  12. CX-009928: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Innovations in Advanced Materials and Metals (IAM2) CX(s) Applied: A9, A11 Date: 01/15/2013 Location(s): Washington Offices(s): Golden Field Office

  13. CX-010492: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Permeation Testing Metals, Ceramics, and Polymers CX(s) Applied: B3.6 Date: 05/14/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  14. CX-011738: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Titanium Metals Corp - A Vision of an Electrochemical Cell to Produce Clean Titanium CX(s) Applied: B3.6 Date: 11/22/2013 Location(s): Nevada, Arizona Offices(s): Advanced Research Projects Agency-Energy

  15. CX-011480: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Vegetative Response to Metal Exposure in a Growing Media CX(s) Applied: B3.6 Date: 11/07/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  16. CX-100008: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Selective Recovery of Metals from Geothermal Brines Award Number: DE-EE0006747 CX(s) Applied: A9, B3.6 Geothermal Technologies Date: 08/28/2014 Location(s): California Office(s): Golden Field Office

  17. CX-012691: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of Novel Functional Graded Transition Joints for Improving the Creep Strength of Dissimilar Metal Welds in Nuclear Applications – Lehigh University CX(s) Applied: B3.6Date: 41869 Location(s): PennsylvaniaOffices(s): Nuclear Energy

  18. CX-010837: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Disassembly, Relocation, and Reassembly of a Metal-framed Quonset Hut CX(s) Applied: B1.22 Date: 08/01/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  19. CX-008640: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Construction of a Metal Carport Structure CX(s) Applied: B1.15 Date: 05/29/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  20. CX-008630: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Surface Water and Groundwater Sampling Pen Branch Floodplain near Chemicals Metals and Pesticides Pits CX(s) Applied: B3.1 Date: 06/07/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  1. CX-011568: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mixed Metal Phosphonate: Phosphate Resins for Separation of Lanthanides from Actinides CX(s) Applied: B3.6 Date: 11/18/2013 Location(s): Texas Offices(s): Idaho Operations Office

  2. CX-010210: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pt-based Bi-metallic Monolith Catalysts for Partial Upgrading of Microalgae Oil CX(s) Applied: A9, B3.6 Date: 01/08/2013 Location(s): New Jersey Offices(s): Golden Field Office

  3. CX-012683: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Studies of Lanthanide Transport in metallic Nuclear Fuels – Ohio State University CX(s) Applied: B3.6Date: 41862 Location(s): OhioOffices(s): Nuclear Energy

  4. 'Thirsty' Metals Key to Longer Battery Lifetimes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    needed. In all three cases, today's batteries simply do not hold enough charge. Replacing lithium with other metals with multiple charges could greatly increase battery capacity....

  5. Plasma nonuniformities induced by dissimilar electrode metals

    SciTech Connect (OSTI)

    Barnat, E.V.; Hebner, G.A. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1423 (United States)

    2005-07-01T23:59:59.000Z

    Nonuniformities in both sheath electric field and plasma excitation were observed around dissimilar metals placed on a rf electrode. Spatial maps of the rf sheath electric field obtained by laser-induced fluorescence-dip (LIF-dip) spectroscopy show that the sheath structure was a function of the electrode metal. In addition to the electric-field measurements, LIF, optical emission, and Langmuir probe measurements show nonuniform excitation around the dissimilar metals. The degree and spatial extent of the discharge nonuniformities were dependent on discharge conditions and the history of the metal surfaces.

  6. Lateral electrodeposition of compositionally modulated metal layers

    DOE Patents [OSTI]

    Hearne, Sean J

    2014-03-25T23:59:59.000Z

    A method for making a laterally modulated metallic structure that is compositionally modulated in the lateral direction with respect to a substrate.

  7. Locating experiential richness in doom metal

    E-Print Network [OSTI]

    Piper, Jonathan

    2013-01-01T23:59:59.000Z

    made my return to metal fandom and pushed farther into moreTo be sure I take this fandom to be prior to, and the basis

  8. Evaluation of monolayer protected metal nanoparticle technology

    E-Print Network [OSTI]

    Wu, Diana J

    2005-01-01T23:59:59.000Z

    Self assembling nanostructured nanoparticles represent a new class of synthesized materials with unique functionality. Such monolayer protected metal nanoparticles are capable of resisting protein adsorption, and if utilized ...

  9. Geothermal: Sponsored by OSTI -- Trace metal characterization...

    Office of Scientific and Technical Information (OSTI)

    Trace metal characterization and speciation in geothermal effluent by multiple scanning anodic stripping voltammetry and atomic absorpotion analysis. Annual progress report...

  10. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01T23:59:59.000Z

    at the National Association of Corrosion EngineersConference, Corrosion '81, Toronto, Ontario, Canada,April 6-10, 1981 CORROSION OF METALS IN OIL SHALE

  11. Electronic Relaxation Dynamics in Coupled Metal Nanoparticles

    E-Print Network [OSTI]

    Scherer, Norbert F.

    of hot electrons for photoelectrochemical processes, including solar energy conversion or organic wasteElectronic Relaxation Dynamics in Coupled Metal Nanoparticles Mark J. Feldstein, Christine D

  12. Method and apparatus for melting metals

    DOE Patents [OSTI]

    Moore, Alan F.; Schechter, Donald E.; Morrow, Marvin Stanley

    2006-03-14T23:59:59.000Z

    A method and apparatus for melting metals uses microwave energy as the primary source of heat. The metal or mixture of metals are placed in a ceramic crucible which couples, at least partially, with the microwaves to be used. The crucible is encased in a ceramic casket for insulation and placed within a microwave chamber. The chamber may be evacuated and refilled to exclude oxygen. After melting, the crucible may be removed for pouring or poured within the chamber by dripping or running into a heated mold within the chamber. Apparent coupling of the microwaves with softened or molten metal produces high temperatures with great energy savings.

  13. Preparation of metal-catecholate frameworks

    SciTech Connect (OSTI)

    Yaghi, Omar M.; Gandara-Barragan, Felipe; Lu, Zheng; Wan, Shun

    2014-06-03T23:59:59.000Z

    The disclosure provides for metal catecholate frameworks, and methods of use thereof, including gas separation, gas storage, catalysis, tunable conductors, supercapacitors, and sensors.

  14. Magnetism in metal-organic capsules

    E-Print Network [OSTI]

    Atwood, Jerry L.

    2010-01-01T23:59:59.000Z

    Quantum Spin Chains in Magnetism: Molecules to Materials, J.Magnetism in metal-organic capsules Jerry L. Atwood,* a Euan

  15. About Rare Earth Metals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Rare Earth Metals What Are Rare Earths? Ames Laboratory's Materials Preparation Center The Ames Process for Purification of Rare Earths USGS Rare Earth Information Rare Earth...

  16. Composite Electrolytes to Stabilize Metallic Linium Anodes

    Broader source: Energy.gov (indexed) [DOE]

    metal anode and its poor cycling as the fundamental problem for very high energy Li batteries. Hence, research takes the approach of completely isolating the anode from the...

  17. Pyroprocessing of IFR Metal Fuel

    SciTech Connect (OSTI)

    Laidler, J.J. [Argonne National Laboratory, IL (United States)

    1993-12-31T23:59:59.000Z

    The Integral Fast Reactor (IFR) fuel cycle features the use of an innovative reprocessing method, known as {open_quotes}pyroprocessing{close_quotes} featuring fused-salt electrofining of the spent fuel. Electrofining of IFR spent fuel involves uranium recovery by electro-transport to a solid steel cathode. The thermodynamics of the system preclude plutonium recovery in the same way, so a liquid cadmium cathode located in the electrolyte salt phase is utilized. The deposition of Pu, Am, Np, and Cm takes place at the liquid cadmium cathode in the form of cadmium intermetallic compounds (e.g, PuCd{sub 6}), and uranium deposits as the pure metal when cadmium saturation is reached. A small amount of rare earth fission products deposit together with the heavy metals at both the solid and liquid cadmium cathodes, providing a significant degree of self-protection. A full scope demonstration of the IFR fuel cycle will begin in 1993, using fuel irradiated in EBR-II.

  18. Deformation Behavior of Nanoporous Metals

    SciTech Connect (OSTI)

    Biener, J; Hodge, A M; Hamza, A V

    2007-11-28T23:59:59.000Z

    Nanoporous open-cell foams are a rapidly growing class of high-porosity materials (porosity {ge} 70%). The research in this field is driven by the desire to create functional materials with unique physical, chemical and mechanical properties where the material properties emerge from both morphology and the material itself. An example is the development of nanoporous metallic materials for photonic and plasmonic applications which has recently attracted much interest. The general strategy is to take advantage of various size effects to introduce novel properties. These size effects arise from confinement of the material by pores and ligaments, and can range from electromagnetic resonances to length scale effects in plasticity. In this chapter we will focus on the mechanical properties of low density nanoporous metals and how these properties are affected by length scale effects and bonding characteristics. A thorough understanding of the mechanical behavior will open the door to further improve and fine-tune the mechanical properties of these sometimes very delicate materials, and thus will be crucial for integrating nanoporous metals into products. Cellular solids with pore sizes above 1 micron have been the subject of intense research for many years, and various scaling relations describing the mechanical properties have been developed.[4] In general, it has been found that the most important parameter in controlling their mechanical properties is the relative density, that is, the density of the foam divided by that of solid from which the foam is made. Other factors include the mechanical properties of the solid material and the foam morphology such as ligament shape and connectivity. The characteristic internal length scale of the structure as determined by pores and ligaments, on the other hand, usually has only little effect on the mechanical properties. This changes at the submicron length scale where the surface-to-volume ratio becomes large and the effect of free surfaces can no longer be neglected. As the material becomes more and more constraint by the presence of free surfaces, length scale effects on plasticity become more and more important and bulk properties can no longer be used to describe the material properties. Even the elastic properties may be affected as the reduced coordination of surface atoms and the concomitant redistribution of electrons may soften or stiffen the material. If, and to what extend, such length scale effects control the mechanical behavior of nanoporous materials depends strongly on the material and the characteristic length scale associated with its plastic deformation. For example, ductile materials such as metals which deform via dislocation-mediated processes can be expected to exhibit pronounced length scale effects in the sub-micron regime where free surfaces start to constrain efficient dislocation multiplication. In this chapter we will limit our discussion to our own area of expertise which is the mechanical behavior of nanoporous open-cell gold foams as a typical example of nanoporous metal foams. Throughout this chapter we will review our current understanding of the mechanical properties of nanoporous open-cell foams including both experimental and theoretical studies.

  19. Metal and Ceramic Thin Film Growth by Reaction of Alkali Metals with Metal Halides: A New Route for

    E-Print Network [OSTI]

    Zachariah, Michael R.

    or metal oxide ceramic films are easily formed by the introduction of nitrogen or oxygen gases the precursors of sodium metal vapor, titanium tetrachloride (the limiting reagent), and either Ar or N2 gas, salt-free titanium (Ti), titanium nitride (TiN), and titanium silicide (TixSiy) thin films have been

  20. ~DELING OF METAL TRANSFKR IN GAS METAL ARC WELDING Yong -Seog Kim and T. W. Eagar

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) ) ) ~DELING OF METAL TRANSFKR IN GAS METAL ARC WELDING Yong -Seog Kim and T. W. Eagar theory and the pinch i ns t a bility theor y as a function of welding cur rent . Experimental of the gas metal arc process in the late 1940s, it has become one of the most important welding processes

  1. Displacement method and apparatus for reducing passivated metal powders and metal oxides

    DOE Patents [OSTI]

    Morrell; Jonathan S. (Knoxville, TN), Ripley; Edward B. (Knoxville, TN)

    2009-05-05T23:59:59.000Z

    A method of reducing target metal oxides and passivated metals to their metallic state. A reduction reaction is used, often combined with a flux agent to enhance separation of the reaction products. Thermal energy in the form of conventional furnace, infrared, or microwave heating may be applied in combination with the reduction reaction.

  2. Heat and Metal Transfer in Gas Metal Arc Welding Using Argon and Helium

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Heat and Metal Transfer in Gas Metal Arc Welding Using Argon and Helium P.G. JONSSON, T.W. EAGAR transfer in gas metal arc welding (GMAW) of mild steel using argon and helium shielding gases. Major dif properties. Various findings from the study include that an arc cannot be stru~k in a pure helium atmosphere

  3. Ceramic to metal attachment system. [Ceramic electrode to metal conductor in MHD generator

    DOE Patents [OSTI]

    Marchant, D.D.

    1983-06-10T23:59:59.000Z

    A composition and method are described for attaching a ceramic electrode to a metal conductor. A layer of randomly interlocked metal fibers saturated with polyimide resin is sandwiched between the ceramic electrode and the metal conductor. The polyimide resin is then polymerized providing bonding.

  4. Broadening the Statistical Search for Metal Price Super Cycles to Steel and Related Metals

    E-Print Network [OSTI]

    Broadening the Statistical Search for Metal Price Super Cycles to Steel and Related Metals of industrial development and urbanization: steel, pig iron, and molybdenum (a key ingredient in many steel's (2008) econometric search for super cycles in metals prices to our `steel group', defined here as steel

  5. Interpretation of Wild 2 Dust Fine Structure: Comparison of Stardust Aluminium Foil Craters to the Three-Dimensional Shape of Experimental Impacts by Artificial Aggregate Particles and Meteorite Powders

    SciTech Connect (OSTI)

    Kearsley, A T; Burchell, M J; Price, M C; Graham, G A; Wozniakiewicz, P J; Cole, M J; Foster, N J; Teslich, N

    2009-12-10T23:59:59.000Z

    New experimental results show that Stardust crater morphology is consistent with interpretation of many larger Wild 2 dust grains being aggregates, albeit most of low porosity and therefore relatively high density. The majority of large Stardust grains (i.e. those carrying most of the cometary dust mass) probably had density of 2.4 g cm{sup -3} (similar to soda-lime glass used in earlier calibration experiments) or greater, and porosity of 25% or less, akin to consolidated carbonaceous chondrite meteorites, and much lower than the 80% suggested for fractal dust aggregates. Although better size calibration is required for interpretation of the very smallest impacting grains, we suggest that aggregates could have dense components dominated by {micro}m-scale and smaller sub-grains. If porosity of the Wild 2 nucleus is high, with similar bulk density to other comets, much of the pore-space may be at a scale of tens of micrometers, between coarser, denser grains. Successful demonstration of aggregate projectile impacts in the laboratory now opens the possibility of experiments to further constrain the conditions for creation of bulbous (Type C) tracks in aerogel, which we have observed in recent shots. We are also using mixed mineral aggregates to document differential survival of pristine composition and crystalline structure in diverse fine-grained components of aggregate cometary dust analogues, impacted onto both foil and aerogel under Stardust encounter conditions.

  6. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1992-10-13T23:59:59.000Z

    A method is described for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF[sub 4] and HNO[sub 3] and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200 C. The porous material can be pulverized before immersion to further increase the leach rate.

  7. Process for electrolytically preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A. (Knoxville, TN)

    1989-01-01T23:59:59.000Z

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  8. Dissimilatory Metal Reduction by Anaeromyxobacter Species

    SciTech Connect (OSTI)

    Qingzhong Wu; Cornell Gayle; Frank Löffler; Sanford, Robert

    2004-03-17T23:59:59.000Z

    Recent findings suggest that Anaeromyxobacter populations play relevant roles in metal and radionuclide reduction and immobilization at contaminated DOE sites. This research effort will characterize Anaeromyxobacter dehalogenans strain 2CP-C as well as other Anaeromyxobacter isolates in hand, and assess their contribution towards metal detoxification and plume stabilization under environmentally relevant conditions.

  9. Method for dry etching of transition metals

    DOE Patents [OSTI]

    Ashby, Carol I. H. (Edgewood, NM); Baca, Albert G. (Albuquerque, NM); Esherick, Peter (Albuquerque, NM); Parmeter, John E. (Albuquerque, NM); Rieger, Dennis J. (Tijeras, NM); Shul, Randy J. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A method for dry etching of transition metals. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorous-containing .pi.-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/.pi.-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the .pi.-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the .pi.-acceptor ligand for forming the volatile transition metal/.pi.-acceptor ligand complex.

  10. Toolbox Safety Talk Welding & Metal Work Safety

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Welding & Metal Work Safety Environmental Health & Safety Facilities Safety or harmful emission giving metals. Welding Safety When welding outside of a designated welding booth, ensure injury. Avoid welding on materials such as galvanized or stainless steel in order to minimize toxic fume

  11. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15T23:59:59.000Z

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  12. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04T23:59:59.000Z

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  13. Radiation Induced Nanocrystal Formation in Metallic Glasses

    E-Print Network [OSTI]

    Carter, Jesse

    2010-01-14T23:59:59.000Z

    The irradiation of metallic glasses to induce nanocrystallization was studied in two metallic glass compositions, Cu50Zr45Ti5 and Zr55Cu30Al10Ni5. Atomic mobility was described using a model based on localized excess free volume due to displace...

  14. RESEARCH ARTICLE Assessment of metal contaminations leaching

    E-Print Network [OSTI]

    Short, Daniel

    RESEARCH ARTICLE Assessment of metal contaminations leaching out from recycling plastic bottles syntheses, partic- ularly antimony, human exposure to metal release from plastic bottles has been a serious from a series of recycling plastic bottles upon treatments. Methodology In this study, leaching

  15. Mesoscale Metallic Pyramids with Nanoscale Tips

    E-Print Network [OSTI]

    Odom, Teri W.

    Mesoscale Metallic Pyramids with Nanoscale Tips Joel Henzie, Eun-Soo Kwak, and Teri W. Odom generate free-standing mesoscale metallic pyramids composed of one or more materials and having nanoscale tips (radii of curvature of less than 2 nm). Mesoscale holes (100-300 nm) in a chromium film are used

  16. Metal articles having ultrafine particles dispersed therein

    SciTech Connect (OSTI)

    Alexander, G.B.; Nadkarni, R.A.

    1992-07-28T23:59:59.000Z

    This patent describes a metal article of manufacture. It comprises: a metal selected from the group consisting of copper, silver, gold, lead, tin, nickel, zinc, cobalt, antimony, bismuth, iron, cadmium, chromium, germanium, gallium, selenium, tellurium, mercury, tungsten arsenic, manganese, iridium, indium, ruthenium, rhenium, rhodium, molybdenum, palladium, osmium and platinum; and a plurality of ultrafine particles.

  17. Sewage sludge dewatering using flowing liquid metals

    DOE Patents [OSTI]

    Carlson, Larry W. (Oswego, IL)

    1986-01-01T23:59:59.000Z

    A method and apparatus for reducing the moisture content of a moist sewage sludge having a moisture content of about 50% to 80% and formed of small cellular micro-organism bodies having internally confined water is provided. A hot liquid metal is circulated in a circulation loop and the moist sewage sludge is injected in the circulation loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies. The vapor produced, the dried sludge, and the liquid metal are then separated. Preferably, the moist sewage sludge is injected into the hot liquid metal adjacent the upstream side of a venturi which serves to thoroughly mix the hot liquid metal and the moist sewage sludge. The venturi and the drying zone after the venturi are preferably vertically oriented. The dried sewage sludge recovered is available as a fuel and is preferably used for heating the hot liquid metal.

  18. Metals Production Requirements for Rapid Photovoltaics Deployment

    E-Print Network [OSTI]

    Kavlak, Goksin; Jaffe, Robert L; Trancik, Jessika E

    2015-01-01T23:59:59.000Z

    If global photovoltaics (PV) deployment grows rapidly, the required input materials need to be supplied at an increasing rate. In this paper, we quantify the effect of PV deployment levels on the scale of metals production. For example, we find that if cadmium telluride {copper indium gallium diselenide} PV accounts for more than 3% {10%} of electricity generation by 2030, the required growth rates for the production of indium and tellurium would exceed historically-observed production growth rates for a large set of metals. In contrast, even if crystalline silicon PV supplies all electricity in 2030, the required silicon production growth rate would fall within the historical range. More generally, this paper highlights possible constraints to the rate of scaling up metals production for some PV technologies, and outlines an approach to assessing projected metals growth requirements against an ensemble of past growth rates from across the metals production sector. The framework developed in this paper may be...

  19. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Kim, Jeom-Soo (Naperville, IL); Johnson, Christopher S. (Naperville, IL)

    2008-01-01T23:59:59.000Z

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  20. Extraction of trace metals from fly ash

    DOE Patents [OSTI]

    Blander, Milton (Palos Park, IL); Wai, Chien M. (Moscow, ID); Nagy, Zoltan (Woodridge, IL)

    1984-01-01T23:59:59.000Z

    A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  1. Extraction of trace metals from fly ash

    DOE Patents [OSTI]

    Blander, M.; Wai, C.M.; Nagy, Z.

    1983-08-15T23:59:59.000Z

    A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  2. Metallic coatings on silicon substrates, and methods of forming metallic coatings on silicon substrates

    DOE Patents [OSTI]

    Branagan, Daniel J. (Idaho Falls, ID); Hyde, Timothy A. (Idaho Falls, ID); Fincke, James R. (Los Alamos, NM)

    2008-03-11T23:59:59.000Z

    The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.

  3. Hydrogen Release Studies of Alkali Metal Amidoboranes. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Release Studies of Alkali Metal Amidoboranes. Hydrogen Release Studies of Alkali Metal Amidoboranes. Abstract: A series of metal amido boranes LiNH2BH3 (LAB), NaNH2BH3 (SAB),...

  4. Thermodynamics and kinetics of ceramic/metal interfacial interactions

    E-Print Network [OSTI]

    Arróyave, Raymundo, 1975-

    2004-01-01T23:59:59.000Z

    Ceramic/metal interfaces occur in a great number of important applications, such as ceramic/metal composites, microelectronics packaging, ceramic/metal seals, and so forth. Understanding the formation and evolution of such ...

  5. ITP Metal Casting: Energy and Environmental Profile of the U...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Environmental Profile of the U.S. Metal casting Industry ITP Metal Casting: Energy and Environmental Profile of the U.S. Metal casting Industry profile.pdf More Documents &...

  6. atmospheric heavy metal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    381Chemistry 330 Study Guide 217 Unit 7 Toxic Heavy Metals Overview In ancient Rome wine was stored. Metals--especially heavy metals--pose a unique environmental pollution...

  7. aquatic heavy metals: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    381Chemistry 330 Study Guide 217 Unit 7 Toxic Heavy Metals Overview In ancient Rome wine was stored. Metals--especially heavy metals--pose a unique environmental pollution...

  8. assess heavy metals: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    381Chemistry 330 Study Guide 217 Unit 7 Toxic Heavy Metals Overview In ancient Rome wine was stored. Metals--especially heavy metals--pose a unique environmental pollution...

  9. airborne heavy metals: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    381Chemistry 330 Study Guide 217 Unit 7 Toxic Heavy Metals Overview In ancient Rome wine was stored. Metals--especially heavy metals--pose a unique environmental pollution...

  10. avoid heavy metals: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    381Chemistry 330 Study Guide 217 Unit 7 Toxic Heavy Metals Overview In ancient Rome wine was stored. Metals--especially heavy metals--pose a unique environmental pollution...

  11. Graphene physics and insulator-metal transition in compressed...

    Office of Scientific and Technical Information (OSTI)

    Graphene physics and insulator-metal transition in compressed hydrogen Citation Details Title: Graphene physics and insulator-metal transition in compressed hydrogen Authors:...

  12. Functionalized Nanoporous Silica for Removal of Heavy Metals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoporous Silica for Removal of Heavy Metals from Biological Systems; Adsorption and Application. Functionalized Nanoporous Silica for Removal of Heavy Metals from Biological...

  13. Case Study of Water-Soluble Metal Containing Organic Constituents...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Case Study of Water-Soluble Metal Containing Organic Constituents of Biomass Burning Aerosol. Case Study of Water-Soluble Metal Containing Organic Constituents of Biomass Burning...

  14. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

  15. Hydrogenated Graphene Nanoflakes: Semiconductor to Half-Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogenated Graphene Nanoflakes: Semiconductor to Half-Metal Transition and Remarkable Large Magnetism. Hydrogenated Graphene Nanoflakes: Semiconductor to Half-Metal Transition...

  16. Nanocomposite of graphene and metal oxide materials | OSTI, US...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanocomposite of graphene and metal oxide materials Re-direct Destination: Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The...

  17. Proposed Virtual Center for Excellence for Metal Hydride Development

    Broader source: Energy.gov (indexed) [DOE]

    & Engineering Sciences Center Atoms to Continuum Proposed Virtual Center of Excellence Proposed Virtual Center of Excellence for Metal Hydride Development for Metal Hydride...

  18. ITP Metal Casting: Advanced Melting Technologies: Energy Saving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and...

  19. Aromaticity and Antiaromaticity in Transition-Metal Systems....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aromaticity and Antiaromaticity in Transition-Metal Systems. Aromaticity and Antiaromaticity in Transition-Metal Systems. Abstract: Aromaticity is an important concept in chemistry...

  20. Binding Energy of dº Transition Metals to Alkenes By Wave...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy of dº Transition Metals to Alkenes By Wave Function Theory and Density Functional Theory. Binding Energy of dº Transition Metals to Alkenes By Wave Function Theory...

  1. aluminium clad metallic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    unlimited recyclability. Thus metals can be considered as renewable materials. However mineral resources, the source of primary metals, are non-renewable as their supply is...

  2. aluminium metal matrix: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    unlimited recyclability. Thus metals can be considered as renewable materials. However mineral resources, the source of primary metals, are non-renewable as their supply is...

  3. amorfas como metal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    unlimited recyclability. Thus metals can be considered as renewable materials. However mineral resources, the source of primary metals, are non-renewable as their supply is...

  4. ITP Metal Casting: Corrosion Testing Practices - High Alloy Corrosion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Casting: Corrosion Testing Practices - High Alloy Corrosion Program ITP Metal Casting: Corrosion Testing Practices - High Alloy Corrosion Program lehighfs.pdf More Documents...

  5. Effects of Transition Metals on the Grain Boundary Cohesion in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transition Metals on the Grain Boundary Cohesion in Tungsten. Effects of Transition Metals on the Grain Boundary Cohesion in Tungsten. Abstract: We report on the effects of...

  6. Investigations of Graphite Current Collectors and Metallic Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Graphite Current Collectors and Metallic Lithium Anodes Investigations of Graphite Current Collectors and Metallic Lithium Anodes Presentation from the U.S. DOE Office of Vehicle...

  7. Lewis Acid-Base Interactions between Polysulfides and Metal Organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lewis Acid-Base Interactions between Polysulfides and Metal Organic Framework in Lithium Sulfur Batteries. Lewis Acid-Base Interactions between Polysulfides and Metal Organic...

  8. Development of Novel Non Pt Group Metal Electrocatalysts for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Non Pt Group Metal Electrocatalysts for Proton Exchange Membrane Fuel Cell Applications Development of Novel Non Pt Group Metal Electrocatalysts for Proton Exchange Membrane...

  9. Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Presents...

  10. CENTER FOR THE STUDY OF METALS IN THE ENVIRONMENT

    E-Print Network [OSTI]

    Sparks, Donald L.

    CENTER FOR THE STUDY OF METALS IN THE ENVIRONMENT Annual Report Submitted to: U.S. Environmental of Contents Unit World Model for Metals in Aquatic Environments

  11. Mobilization of Metals from Eau Claire Siltstone and the Impact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Metals from Eau Claire Siltstone and the Impact of Oxygen under Geological Carbon Dioxide Sequestration Mobilization of Metals from Eau Claire Siltstone and the...

  12. Valuable rare earth metals from old electronics | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Valuable rare earth metals from old electronics Scientists at the Critical Materials Institute have developed a two-step recovery process that makes recycling rare-earth metals...

  13. Impact of Biodiesel Metals on the Performance and Durability...

    Broader source: Energy.gov (indexed) [DOE]

    Impact of Biodiesel Metals on the Performance and Durability of DOC and DPF Technologies Impact of Biodiesel Metals on the Performance and Durability of DOC and DPF Technologies...

  14. Powder Metal Performance Modeling of Automotive Components ?AMD...

    Energy Savers [EERE]

    Powder Metal Performance Modeling of Automotive Components AMD 410 Powder Metal Performance Modeling of Automotive Components AMD 410 Presentation from the U.S. DOE Office of...

  15. attaching refractory metals: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M; Kildemo, M 2004-01-01 3 Refractory metal nuggets within presolar graphite: First condensates from a circumstellar environment Physics Websites Summary: Refractory metal nuggets...

  16. Process for removing metals from water

    DOE Patents [OSTI]

    Napier, J.M.; Hancher, C.M.; Hackett, G.D.

    1987-06-29T23:59:59.000Z

    A process for removing metals from water including the steps of prefiltering solids from the water, adjusting the pH to between about 2 and 3, reducing the amount of dissolved oxygen in the water, increasing the pH to between about 6 and 8, adding water-soluble sulfide to precipitate insoluble sulfide- and hydroxide-forming metals, adding a containing floc, and postfiltering the resultant solution. The postfiltered solution may optionally be eluted through an ion exchange resin to remove residual metal ions. 2 tabs.

  17. Process for removing metals from water

    DOE Patents [OSTI]

    Napier, John M. (Oak Ridge, TN); Hancher, Charles M. (Oak Ridge, TN); Hackett, Gail D. (Knoxville, TN)

    1989-01-01T23:59:59.000Z

    A process for removing metals from water including the steps of prefiltering solids from the water, adjusting the pH to between about 2 and 3, reducing the amount of dissolved oxygen in the water, increasing the pH to between about 6 and 8, adding water-soluble sulfide to precipitate insoluble sulfide- and hydroxide-forming metals, adding a flocculating agent, separating precipitate-containing floc, and postfiltering the resultant solution. The postfiltered solution may optionally be eluted through an ion exchange resin to remove residual metal ions.

  18. Metallic substrates for high temperature superconductors

    DOE Patents [OSTI]

    Truchan, Thomas G. (Chicago, IL); Miller, Dean J. (Darien, IL); Goretta, Kenneth C. (Downers Grove, IL); Balachandran, Uthamalingam (Hinsdale, IL); Foley, Robert (Chicago, IL)

    2002-01-01T23:59:59.000Z

    A biaxially textured face-centered cubic metal article having grain boundaries with misorientation angles greater than about 8.degree. limited to less than about 1%. A laminate article is also disclosed having a metal substrate first rolled to at least about 95% thickness reduction followed by a first annealing at a temperature less than about 375.degree. C. Then a second rolling operation of not greater than about 6% thickness reduction is provided, followed by a second annealing at a temperature greater than about 400.degree. C. A method of forming the metal and laminate articles is also disclosed.

  19. Incorporation of noble metals into aerogels

    DOE Patents [OSTI]

    Hair, L.M.; Sanner, R.D.; Coronado, P.R.

    1998-12-22T23:59:59.000Z

    Aerogels or xerogels containing atomically dispersed noble metals for applications such as environmental remediation are disclosed. New noble metal precursors, such as Pt--Si or Pd(Si--P){sub 2}, have been created to bridge the incompatibility between noble metals and oxygen, followed by their incorporation into the aerogel or xerogel through sol-gel chemistry and processing. Applications include oxidation of hydrocarbons and reduction of nitrogen oxide species, complete oxidation of volatile organic carbon species, oxidative membranes for photocatalysis and partial oxidation for synthetic applications.

  20. Incorporation of noble metals into aerogels

    DOE Patents [OSTI]

    Hair, Lucy M. (Livermore, CA); Sanner, Robert D. (Livermore, CA); Coronado, Paul R. (Livermore, CA)

    1998-01-01T23:59:59.000Z

    Aerogels or xerogels containing atomically dispersed noble metals for applications such environmental remediation. New noble metal precursors, such as Pt--Si or Pd(Si--P).sub.2, have been created to bridge the incompatibility between noble metals and oxygen, followed by their incorporation into the aerogel or xerogel through sol-gel chemistry and processing. Applications include oxidation of hydrocarbons and reduction of nitrogen oxide species, complete oxidation of volatile organic carbon species, oxidative membranes for photocatalysis and partial oxidation for synthetic applications.

  1. Metal Hydrides - Science Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19,DepartmentEnergyMetalMetalMetal

  2. Zone refining of plutonium metal

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The purpose of this study was to investigate zone refining techniques for the purification of plutonium metal. The redistribution of 10 impurity elements from zone melting was examined. Four tantalum boats were loaded with plutonium impurity alloy, placed in a vacuum furnace, heated to 700{degrees}C, and held at temperature for one hour. Ten passes were made with each boat. Metallographic and chemical analyses performed on the plutonium rods showed that, after 10 passes, moderate movement of certain elements were achieved. Molten zone speeds of 1 or 2 inches per hour had no effect on impurity element movement. Likewise, the application of constant or variable power had no effect on impurity movement. The study implies that development of a zone refining process to purify plutonium is feasible. Development of a process will be hampered by two factors: (1) the effect on impurity element redistribution of the oxide layer formed on the exposed surface of the material is not understood, and (2) the tantalum container material is not inert in the presence of plutonium. Cold boat studies are planned, with higher temperature and vacuum levels, to determine the effect on these factors. 5 refs., 1 tab., 5 figs.

  3. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOE Patents [OSTI]

    Evans, Barbara R. (Oak Ridge, TN) [Oak Ridge, TN; O'Neill, Hugh M. (Knoxville, TN) [Knoxville, TN; Jansen, Valerie Malyvanh (Memphis, TN) [Memphis, TN; Woodward, Jonathan (Knoxville, TN) [Knoxville, TN

    2010-09-28T23:59:59.000Z

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  4. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOE Patents [OSTI]

    Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN); Jansen, Valerie Malyvanh (Memphis, TN); Woodward, Jonathan (Knoxville, TN)

    2011-06-07T23:59:59.000Z

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  5. Nuclear heated and powered metal excimer laser

    SciTech Connect (OSTI)

    Womack, D.R.

    1982-02-11T23:59:59.000Z

    A laser uses heat and thermionic electrical output from a nuclear reactor in which heat generated by the reactor is utilized to vaporize metal lasants. Voltage output from a thermionic converter is used to create an electric discharge in the metal vapors. In one embodiment the laser vapors are excited by a discharge only. The second embodiment utilizes fission coatings on the inside of heat pipes, in which fission fragment excitation and ionization is employed in addition to a discharge. Both embodiments provide efficient laser systems that are capable of many years of operation without servicing. Metal excimers are the most efficient electronic transition lasers known with output in the visible wavelengths. Use of metal excimers, in addition to their efficiency and wavelengths, allows utilization of reactor waste heat which plagues many nuclear pumped laser concepts.

  6. Method of boronizing transition metal surfaces

    DOE Patents [OSTI]

    Koyama, Koichiro; Shimotake, Hiroshi.

    1983-08-16T23:59:59.000Z

    A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB[sub 2], or CrB[sub 2]. A transition metal to be coated is immersed in the melt at a temperature of no more than 700 C and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface. 4 figs.

  7. Method of boronizing transition metal surfaces

    DOE Patents [OSTI]

    Koyama, Koichiro (Hyogo, JP); Shimotake, Hiroshi (Hinsdale, IL)

    1983-01-01T23:59:59.000Z

    A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB.sub.2, or CrB.sub.2. A transition metal to be coated is immersed in the melt at a temperature of no more than 700.degree. C. and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface.

  8. Locating experiential richness in doom metal

    E-Print Network [OSTI]

    Piper, Jonathan

    2013-01-01T23:59:59.000Z

    by Mastodon, a popular sludge doom band (this style isstyle to counteract an explosion of variation, sludge doom (or sludge metal) was consciously created out of a mixture of

  9. Mixing in a liquid metal electrode

    E-Print Network [OSTI]

    Kelley, Douglas H.

    Fluid mixing has first-order importance for many engineering problems in mass transport, including design and optimization of liquid-phase energy storage devices. Liquid metal batteries are currently being commercialized ...

  10. METALLIC AND HYBRID NANOSTRUCTURES: FUNDAMENTALS AND APPLICATIONS

    SciTech Connect (OSTI)

    Murph, S.

    2012-05-02T23:59:59.000Z

    This book chapter presents an overview of research conducted in our laboratory on preparation, optical and physico-chemical properties of metallic and nanohybrid materials. Metallic nanoparticles, particularly gold, silver, platinum or a combination of those are the main focus of this review manuscript. These metallic nanoparticles were further functionalized and used as templates for creation of complex and ordered nanomaterials with tailored and tunable structural, optical, catalytic and surface properties. Controlling the surface chemistry on/off metallic nanoparticles allows production of advanced nanoarchitectures. This includes coupled or encapsulated core-shell geometries, nano-peapods, solid or hollow, monometallic/bimetallic, hybrid nanoparticles. Rational assemblies of these nanostructures into one-, two- and tridimensional nano-architectures is described and analyzed. Their sensing, environmental and energy related applications are reviewed.

  11. Manufacturing Metallic Parts with Designed Mesostructure

    E-Print Network [OSTI]

    Additive Manufacturing Laser Engineered Net Shaping Electron Beam Melting Williams, C. B., F. M. Mistree, D Additive Manufacturing © Christopher B. Williams Electron Beam Melting Electron Beam Melting Direct Metal

  12. Transition metal fluorides: from superconductors to multiferroics. 

    E-Print Network [OSTI]

    Drathen, Christina

    2013-06-29T23:59:59.000Z

    Transition metal fluorides represent an important family of complex solids displaying a variety of different properties and interesting phenomena. Despite their remarkable behaviour, these classes of materials have not ...

  13. Wetting of metals and glasses on Mo

    SciTech Connect (OSTI)

    Saiz, Eduardo; Tomsia, Antoni P.; Saiz, Eduardo; Lopez-Esteban, Sonia; Benhassine, Mehdi; de Coninck, Joel; Rauch, Nicole; Ruehle, Manfred

    2008-01-08T23:59:59.000Z

    The wetting of low melting point metals and Si-Ca-Al-Ti-O glasses on molybdenum has been investigated. The selected metals (Au, Cu, Ag) form a simple eutectic with Mo. Metal spreading occurs under nonreactive conditions without interdiffusion or ridge formation. The metals exhibit low (non-zero) contact angles on Mo but this requires temperatures higher than 1100 C in reducing atmospheres in order to eliminate a layer of adsorbed impurities on the molybdenum surface. By controlling the oxygen activity in the furnace, glass spreading can take place under reactive or nonreactive conditions. We have found that in the glass/Mo system the contact angle does not decrease under reactive conditions. In all cases, adsorption from the liquid seems to accelerate the diffusivity on the free molybdenum surface.

  14. Radiation Damage in Nanostructured Metallic Films 

    E-Print Network [OSTI]

    Yu, Kaiyuan

    2013-04-15T23:59:59.000Z

    with favorable microstructures and to investigate their response to radiation. The goals of this thesis are to study the radiation responses of several nanostructured metallic thin film systems, including Ag/Ni multilayers, nanotwinned Ag and nanocrystalline Fe...

  15. Radiation Damage in Nanostructured Metallic Films

    E-Print Network [OSTI]

    Yu, Kaiyuan

    2013-04-15T23:59:59.000Z

    with favorable microstructures and to investigate their response to radiation. The goals of this thesis are to study the radiation responses of several nanostructured metallic thin film systems, including Ag/Ni multilayers, nanotwinned Ag and nanocrystalline Fe...

  16. Oil, Gas, and Metallic Minerals (Iowa)

    Broader source: Energy.gov [DOE]

    Operators of oil, gas, and metallic mineral exploration and production operations are required to obtain a drilling permit from the Iowa Department of Natural Resources and file specific forms with...

  17. Magnetism in metal-organic capsules

    SciTech Connect (OSTI)

    Atwood, Jerry L.; Brechin, Euan K; Dalgarno, Scott J.; Inglis, Ross; Jones, Leigh F.; Mossine, Andrew; Paterson, Martin J.; Power, Nicholas P.; Teat, Simon J.

    2010-01-07T23:59:59.000Z

    Nickel and cobalt seamed metal-organic capsules have been isolated and studied using structural, magnetic and computational approaches. Antiferromagnetic exchange in the Ni capsule results from coordination environments enforced by the capsule framework.

  18. Metal stub and ceramic body electrode assembly

    DOE Patents [OSTI]

    Rolf, R.L.

    1984-05-22T23:59:59.000Z

    An electrically conductive ceramic electrode body having an opening therein is threadably engaged with a metal stub having at least a slot therein to provide space for expansion of the stub without damage to the electrode body. 3 figs.

  19. alkali-metal difluorodioxoperoxouranatevi monohydrates: Topics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NMR to explosives detec- tion and fundamental Romalis, Mike 2 Spin-Exchange Optical Pumping with Alkali-Metal Vapors Physics Websites Summary: Spin-Exchange Optical Pumping with...

  20. Stabilization of Metal Nanoparticles in Cubic Mesostructured...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of regenerable metal-based adsorbents which can remove sulfur impurities from warm syngas stream down to less than 60 parts per billion by volume (ppbv) is described. This same...